1 // Copyright (C) 2007-2015 CEA/DEN, EDF R&D, OPEN CASCADE
3 // Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
4 // CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
6 // This library is free software; you can redistribute it and/or
7 // modify it under the terms of the GNU Lesser General Public
8 // License as published by the Free Software Foundation; either
9 // version 2.1 of the License, or (at your option) any later version.
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 // Lesser General Public License for more details.
16 // You should have received a copy of the GNU Lesser General Public
17 // License along with this library; if not, write to the Free Software
18 // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
23 // File : StdMeshers_Regular_1D.cxx
24 // Moved here from SMESH_Regular_1D.cxx
25 // Author : Paul RASCLE, EDF
28 #include "StdMeshers_Regular_1D.hxx"
30 #include "SMDS_MeshElement.hxx"
31 #include "SMDS_MeshNode.hxx"
32 #include "SMESH_Comment.hxx"
33 #include "SMESH_Gen.hxx"
34 #include "SMESH_HypoFilter.hxx"
35 #include "SMESH_Mesh.hxx"
36 #include "SMESH_subMesh.hxx"
37 #include "SMESH_subMeshEventListener.hxx"
38 #include "StdMeshers_Adaptive1D.hxx"
39 #include "StdMeshers_Arithmetic1D.hxx"
40 #include "StdMeshers_Geometric1D.hxx"
41 #include "StdMeshers_AutomaticLength.hxx"
42 #include "StdMeshers_Deflection1D.hxx"
43 #include "StdMeshers_Distribution.hxx"
44 #include "StdMeshers_FixedPoints1D.hxx"
45 #include "StdMeshers_LocalLength.hxx"
46 #include "StdMeshers_MaxLength.hxx"
47 #include "StdMeshers_NumberOfSegments.hxx"
48 #include "StdMeshers_Propagation.hxx"
49 #include "StdMeshers_SegmentLengthAroundVertex.hxx"
50 #include "StdMeshers_StartEndLength.hxx"
52 #include "Utils_SALOME_Exception.hxx"
53 #include "utilities.h"
55 #include <BRepAdaptor_Curve.hxx>
56 #include <BRep_Tool.hxx>
57 #include <GCPnts_AbscissaPoint.hxx>
58 #include <GCPnts_UniformAbscissa.hxx>
59 #include <GCPnts_UniformDeflection.hxx>
60 #include <Precision.hxx>
62 #include <TopExp_Explorer.hxx>
64 #include <TopoDS_Edge.hxx>
65 #include <TopoDS_Vertex.hxx>
71 using namespace StdMeshers;
73 //=============================================================================
77 //=============================================================================
79 StdMeshers_Regular_1D::StdMeshers_Regular_1D(int hypId, int studyId,
81 :SMESH_1D_Algo(hypId, studyId, gen)
83 MESSAGE("StdMeshers_Regular_1D::StdMeshers_Regular_1D");
85 _shapeType = (1 << TopAbs_EDGE);
88 _compatibleHypothesis.push_back("LocalLength");
89 _compatibleHypothesis.push_back("MaxLength");
90 _compatibleHypothesis.push_back("NumberOfSegments");
91 _compatibleHypothesis.push_back("StartEndLength");
92 _compatibleHypothesis.push_back("Deflection1D");
93 _compatibleHypothesis.push_back("Arithmetic1D");
94 _compatibleHypothesis.push_back("GeometricProgression");
95 _compatibleHypothesis.push_back("FixedPoints1D");
96 _compatibleHypothesis.push_back("AutomaticLength");
97 _compatibleHypothesis.push_back("Adaptive1D");
99 _compatibleHypothesis.push_back("QuadraticMesh");
100 _compatibleHypothesis.push_back("Propagation");
101 _compatibleHypothesis.push_back("PropagOfDistribution");
104 //=============================================================================
108 //=============================================================================
110 StdMeshers_Regular_1D::~StdMeshers_Regular_1D()
114 //=============================================================================
118 //=============================================================================
120 bool StdMeshers_Regular_1D::CheckHypothesis( SMESH_Mesh& aMesh,
121 const TopoDS_Shape& aShape,
122 Hypothesis_Status& aStatus )
125 _quadraticMesh = false;
126 _onlyUnaryInput = true;
128 const list <const SMESHDS_Hypothesis * > & hyps =
129 GetUsedHypothesis(aMesh, aShape, /*ignoreAuxiliaryHyps=*/false);
131 const SMESH_HypoFilter & propagFilter = StdMeshers_Propagation::GetFilter();
133 // find non-auxiliary hypothesis
134 const SMESHDS_Hypothesis *theHyp = 0;
135 set< string > propagTypes;
136 list <const SMESHDS_Hypothesis * >::const_iterator h = hyps.begin();
137 for ( ; h != hyps.end(); ++h ) {
138 if ( static_cast<const SMESH_Hypothesis*>(*h)->IsAuxiliary() ) {
139 if ( strcmp( "QuadraticMesh", (*h)->GetName() ) == 0 )
140 _quadraticMesh = true;
141 if ( propagFilter.IsOk( static_cast< const SMESH_Hypothesis*>( *h ), aShape ))
142 propagTypes.insert( (*h)->GetName() );
146 theHyp = *h; // use only the first non-auxiliary hypothesis
152 aStatus = SMESH_Hypothesis::HYP_MISSING;
153 return false; // can't work without a hypothesis
156 string hypName = theHyp->GetName();
158 if (hypName == "LocalLength")
160 const StdMeshers_LocalLength * hyp =
161 dynamic_cast <const StdMeshers_LocalLength * >(theHyp);
163 _value[ BEG_LENGTH_IND ] = hyp->GetLength();
164 _value[ PRECISION_IND ] = hyp->GetPrecision();
165 ASSERT( _value[ BEG_LENGTH_IND ] > 0 );
166 _hypType = LOCAL_LENGTH;
167 aStatus = SMESH_Hypothesis::HYP_OK;
170 else if (hypName == "MaxLength")
172 const StdMeshers_MaxLength * hyp =
173 dynamic_cast <const StdMeshers_MaxLength * >(theHyp);
175 _value[ BEG_LENGTH_IND ] = hyp->GetLength();
176 if ( hyp->GetUsePreestimatedLength() ) {
177 if ( int nbSeg = aMesh.GetGen()->GetBoundaryBoxSegmentation() )
178 _value[ BEG_LENGTH_IND ] = aMesh.GetShapeDiagonalSize() / nbSeg;
180 ASSERT( _value[ BEG_LENGTH_IND ] > 0 );
181 _hypType = MAX_LENGTH;
182 aStatus = SMESH_Hypothesis::HYP_OK;
185 else if (hypName == "NumberOfSegments")
187 const StdMeshers_NumberOfSegments * hyp =
188 dynamic_cast <const StdMeshers_NumberOfSegments * >(theHyp);
190 _ivalue[ NB_SEGMENTS_IND ] = hyp->GetNumberOfSegments();
191 ASSERT( _ivalue[ NB_SEGMENTS_IND ] > 0 );
192 _ivalue[ DISTR_TYPE_IND ] = (int) hyp->GetDistrType();
193 switch (_ivalue[ DISTR_TYPE_IND ])
195 case StdMeshers_NumberOfSegments::DT_Scale:
196 _value[ SCALE_FACTOR_IND ] = hyp->GetScaleFactor();
197 _revEdgesIDs = hyp->GetReversedEdges();
199 case StdMeshers_NumberOfSegments::DT_TabFunc:
200 _vvalue[ TAB_FUNC_IND ] = hyp->GetTableFunction();
201 _revEdgesIDs = hyp->GetReversedEdges();
203 case StdMeshers_NumberOfSegments::DT_ExprFunc:
204 _svalue[ EXPR_FUNC_IND ] = hyp->GetExpressionFunction();
205 _revEdgesIDs = hyp->GetReversedEdges();
207 case StdMeshers_NumberOfSegments::DT_Regular:
213 if (_ivalue[ DISTR_TYPE_IND ] == StdMeshers_NumberOfSegments::DT_TabFunc ||
214 _ivalue[ DISTR_TYPE_IND ] == StdMeshers_NumberOfSegments::DT_ExprFunc)
215 _ivalue[ CONV_MODE_IND ] = hyp->ConversionMode();
216 _hypType = NB_SEGMENTS;
217 aStatus = SMESH_Hypothesis::HYP_OK;
220 else if (hypName == "Arithmetic1D")
222 const StdMeshers_Arithmetic1D * hyp =
223 dynamic_cast <const StdMeshers_Arithmetic1D * >(theHyp);
225 _value[ BEG_LENGTH_IND ] = hyp->GetLength( true );
226 _value[ END_LENGTH_IND ] = hyp->GetLength( false );
227 ASSERT( _value[ BEG_LENGTH_IND ] > 0 && _value[ END_LENGTH_IND ] > 0 );
228 _hypType = ARITHMETIC_1D;
230 _revEdgesIDs = hyp->GetReversedEdges();
232 aStatus = SMESH_Hypothesis::HYP_OK;
235 else if (hypName == "GeometricProgression")
237 const StdMeshers_Geometric1D * hyp =
238 dynamic_cast <const StdMeshers_Geometric1D * >(theHyp);
240 _value[ BEG_LENGTH_IND ] = hyp->GetStartLength();
241 _value[ END_LENGTH_IND ] = hyp->GetCommonRatio();
242 ASSERT( _value[ BEG_LENGTH_IND ] > 0 && _value[ END_LENGTH_IND ] > 0 );
243 _hypType = GEOMETRIC_1D;
245 _revEdgesIDs = hyp->GetReversedEdges();
247 aStatus = SMESH_Hypothesis::HYP_OK;
250 else if (hypName == "FixedPoints1D") {
251 _fpHyp = dynamic_cast <const StdMeshers_FixedPoints1D*>(theHyp);
253 _hypType = FIXED_POINTS_1D;
255 _revEdgesIDs = _fpHyp->GetReversedEdges();
257 aStatus = SMESH_Hypothesis::HYP_OK;
260 else if (hypName == "StartEndLength")
262 const StdMeshers_StartEndLength * hyp =
263 dynamic_cast <const StdMeshers_StartEndLength * >(theHyp);
265 _value[ BEG_LENGTH_IND ] = hyp->GetLength( true );
266 _value[ END_LENGTH_IND ] = hyp->GetLength( false );
267 ASSERT( _value[ BEG_LENGTH_IND ] > 0 && _value[ END_LENGTH_IND ] > 0 );
268 _hypType = BEG_END_LENGTH;
270 _revEdgesIDs = hyp->GetReversedEdges();
272 aStatus = SMESH_Hypothesis::HYP_OK;
275 else if (hypName == "Deflection1D")
277 const StdMeshers_Deflection1D * hyp =
278 dynamic_cast <const StdMeshers_Deflection1D * >(theHyp);
280 _value[ DEFLECTION_IND ] = hyp->GetDeflection();
281 ASSERT( _value[ DEFLECTION_IND ] > 0 );
282 _hypType = DEFLECTION;
283 aStatus = SMESH_Hypothesis::HYP_OK;
286 else if (hypName == "AutomaticLength")
288 StdMeshers_AutomaticLength * hyp = const_cast<StdMeshers_AutomaticLength *>
289 (dynamic_cast <const StdMeshers_AutomaticLength * >(theHyp));
291 _value[ BEG_LENGTH_IND ] = _value[ END_LENGTH_IND ] = hyp->GetLength( &aMesh, aShape );
292 ASSERT( _value[ BEG_LENGTH_IND ] > 0 );
293 _hypType = MAX_LENGTH;
294 aStatus = SMESH_Hypothesis::HYP_OK;
296 else if (hypName == "Adaptive1D")
298 _adaptiveHyp = dynamic_cast < const StdMeshers_Adaptive1D* >(theHyp);
299 ASSERT(_adaptiveHyp);
301 _onlyUnaryInput = false;
302 aStatus = SMESH_Hypothesis::HYP_OK;
306 aStatus = SMESH_Hypothesis::HYP_INCOMPATIBLE;
309 if ( propagTypes.size() > 1 && aStatus == HYP_OK )
311 // detect concurrent Propagation hyps
312 _usedHypList.clear();
313 list< TopoDS_Shape > assignedTo;
314 if ( aMesh.GetHypotheses( aShape, propagFilter, _usedHypList, true, &assignedTo ) > 1 )
316 // find most simple shape and a hyp on it
317 int simpleShape = TopAbs_COMPOUND;
318 const SMESHDS_Hypothesis* localHyp = 0;
319 list< TopoDS_Shape >::iterator shape = assignedTo.begin();
320 list< const SMESHDS_Hypothesis *>::iterator hyp = _usedHypList.begin();
321 for ( ; shape != assignedTo.end(); ++shape )
322 if ( shape->ShapeType() > simpleShape )
324 simpleShape = shape->ShapeType();
327 // check if there a different hyp on simpleShape
328 shape = assignedTo.begin();
329 hyp = _usedHypList.begin();
330 for ( ; hyp != _usedHypList.end(); ++hyp, ++shape )
331 if ( shape->ShapeType() == simpleShape &&
332 !localHyp->IsSameName( **hyp ))
334 aStatus = HYP_INCOMPAT_HYPS;
335 return error( SMESH_Comment("Hypotheses of both \"")
336 << StdMeshers_Propagation::GetName() << "\" and \""
337 << StdMeshers_PropagOfDistribution::GetName()
338 << "\" types can't be applied to the same edge");
343 return ( aStatus == SMESH_Hypothesis::HYP_OK );
346 static bool computeParamByFunc(Adaptor3d_Curve& C3d, double first, double last,
347 double length, bool theReverse,
348 int nbSeg, Function& func,
349 list<double>& theParams)
352 //OSD::SetSignal( true );
357 MESSAGE( "computeParamByFunc" );
359 int nbPnt = 1 + nbSeg;
360 vector<double> x(nbPnt, 0.);
362 if (!buildDistribution(func, 0.0, 1.0, nbSeg, x, 1E-4))
365 MESSAGE( "Points:\n" );
367 for ( int i=0; i<=nbSeg; i++ )
369 sprintf( buf, "%f\n", float(x[i] ) );
375 // apply parameters in range [0,1] to the space of the curve
376 double prevU = first;
383 for( int i = 1; i < nbSeg; i++ )
385 double curvLength = length * (x[i] - x[i-1]) * sign;
386 GCPnts_AbscissaPoint Discret( C3d, curvLength, prevU );
387 if ( !Discret.IsDone() )
389 double U = Discret.Parameter();
390 if ( U > first && U < last )
391 theParams.push_back( U );
402 //================================================================================
404 * \brief adjust internal node parameters so that the last segment length == an
405 * \param a1 - the first segment length
406 * \param an - the last segment length
407 * \param U1 - the first edge parameter
408 * \param Un - the last edge parameter
409 * \param length - the edge length
410 * \param C3d - the edge curve
411 * \param theParams - internal node parameters to adjust
412 * \param adjustNeighbors2an - to adjust length of segments next to the last one
413 * and not to remove parameters
415 //================================================================================
417 static void compensateError(double a1, double an,
418 double U1, double Un,
420 Adaptor3d_Curve& C3d,
421 list<double> & theParams,
422 bool adjustNeighbors2an = false)
424 int i, nPar = theParams.size();
425 if ( a1 + an <= length && nPar > 1 )
427 bool reverse = ( U1 > Un );
428 GCPnts_AbscissaPoint Discret(C3d, reverse ? an : -an, Un);
429 if ( !Discret.IsDone() )
431 double Utgt = Discret.Parameter(); // target value of the last parameter
432 list<double>::reverse_iterator itU = theParams.rbegin();
433 double Ul = *itU++; // real value of the last parameter
434 double dUn = Utgt - Ul; // parametric error of <an>
435 if ( Abs(dUn) <= Precision::Confusion() )
437 double dU = Abs( Ul - *itU ); // parametric length of the last but one segment
438 if ( adjustNeighbors2an || Abs(dUn) < 0.5 * dU ) { // last segment is a bit shorter than it should
439 // move the last parameter to the edge beginning
441 else { // last segment is much shorter than it should -> remove the last param and
442 theParams.pop_back(); nPar--; // move the rest points toward the edge end
443 dUn = Utgt - theParams.back();
446 if ( !adjustNeighbors2an )
448 double q = dUn / ( Utgt - Un ); // (signed) factor of segment length change
449 for ( itU = theParams.rbegin(), i = 1; i < nPar; i++ ) {
453 dUn = q * (*itU - prevU) * (prevU-U1)/(Un-U1);
456 else if ( nPar == 1 )
458 theParams.back() += dUn;
462 double q = dUn / ( nPar - 1 );
463 theParams.back() += dUn;
464 double sign = reverse ? -1 : 1;
465 double prevU = theParams.back();
466 itU = theParams.rbegin();
467 for ( ++itU, i = 2; i < nPar; ++itU, i++ ) {
468 double newU = *itU + dUn;
469 if ( newU*sign < prevU*sign ) {
473 else { // set U between prevU and next valid param
474 list<double>::reverse_iterator itU2 = itU;
477 while ( (*itU2)*sign > prevU*sign ) {
480 dU = ( *itU2 - prevU ) / nb;
481 while ( itU != itU2 ) {
491 //================================================================================
493 * \brief Class used to clean mesh on edges when 0D hyp modified.
494 * Common approach doesn't work when 0D algo is missing because the 0D hyp is
495 * considered as not participating in computation whereas it is used by 1D algo.
497 //================================================================================
499 // struct VertexEventListener : public SMESH_subMeshEventListener
501 // VertexEventListener():SMESH_subMeshEventListener(0) // won't be deleted by submesh
504 // * \brief Clean mesh on edges
505 // * \param event - algo_event or compute_event itself (of SMESH_subMesh)
506 // * \param eventType - ALGO_EVENT or COMPUTE_EVENT (of SMESH_subMesh)
507 // * \param subMesh - the submesh where the event occures
509 // void ProcessEvent(const int event, const int eventType, SMESH_subMesh* subMesh,
510 // EventListenerData*, const SMESH_Hypothesis*)
512 // if ( eventType == SMESH_subMesh::ALGO_EVENT) // all algo events
514 // subMesh->ComputeStateEngine( SMESH_subMesh::MODIF_ALGO_STATE );
517 // }; // struct VertexEventListener
519 //=============================================================================
521 * \brief Sets event listener to vertex submeshes
522 * \param subMesh - submesh where algo is set
524 * This method is called when a submesh gets HYP_OK algo_state.
525 * After being set, event listener is notified on each event of a submesh.
527 //=============================================================================
529 void StdMeshers_Regular_1D::SetEventListener(SMESH_subMesh* subMesh)
531 StdMeshers_Propagation::SetPropagationMgr( subMesh );
534 //=============================================================================
537 * \param subMesh - restored submesh
539 * This method is called only if a submesh has HYP_OK algo_state.
541 //=============================================================================
543 void StdMeshers_Regular_1D::SubmeshRestored(SMESH_subMesh* subMesh)
547 //=============================================================================
549 * \brief Return StdMeshers_SegmentLengthAroundVertex assigned to vertex
551 //=============================================================================
553 const StdMeshers_SegmentLengthAroundVertex*
554 StdMeshers_Regular_1D::getVertexHyp(SMESH_Mesh & theMesh,
555 const TopoDS_Vertex & theV)
557 static SMESH_HypoFilter filter( SMESH_HypoFilter::HasName("SegmentAroundVertex_0D"));
558 if ( const SMESH_Hypothesis * h = theMesh.GetHypothesis( theV, filter, true ))
560 SMESH_Algo* algo = const_cast< SMESH_Algo* >( static_cast< const SMESH_Algo* > ( h ));
561 const list <const SMESHDS_Hypothesis *> & hypList = algo->GetUsedHypothesis( theMesh, theV, 0 );
562 if ( !hypList.empty() && string("SegmentLengthAroundVertex") == hypList.front()->GetName() )
563 return static_cast<const StdMeshers_SegmentLengthAroundVertex*>( hypList.front() );
568 //================================================================================
570 * \brief Tune parameters to fit "SegmentLengthAroundVertex" hypothesis
571 * \param theC3d - wire curve
572 * \param theLength - curve length
573 * \param theParameters - internal nodes parameters to modify
574 * \param theVf - 1st vertex
575 * \param theVl - 2nd vertex
577 //================================================================================
579 void StdMeshers_Regular_1D::redistributeNearVertices (SMESH_Mesh & theMesh,
580 Adaptor3d_Curve & theC3d,
582 std::list< double > & theParameters,
583 const TopoDS_Vertex & theVf,
584 const TopoDS_Vertex & theVl)
586 double f = theC3d.FirstParameter(), l = theC3d.LastParameter();
587 int nPar = theParameters.size();
588 for ( int isEnd1 = 0; isEnd1 < 2; ++isEnd1 )
590 const TopoDS_Vertex & V = isEnd1 ? theVf : theVl;
591 const StdMeshers_SegmentLengthAroundVertex* hyp = getVertexHyp (theMesh, V );
593 double vertexLength = hyp->GetLength();
594 if ( vertexLength > theLength / 2.0 )
596 if ( isEnd1 ) { // to have a segment of interest at end of theParameters
597 theParameters.reverse();
600 if ( _hypType == NB_SEGMENTS )
602 compensateError(0, vertexLength, f, l, theLength, theC3d, theParameters, true );
604 else if ( nPar <= 3 )
607 vertexLength = -vertexLength;
608 GCPnts_AbscissaPoint Discret(theC3d, vertexLength, l);
609 if ( Discret.IsDone() ) {
611 theParameters.push_back( Discret.Parameter());
613 double L = GCPnts_AbscissaPoint::Length( theC3d, theParameters.back(), l);
614 if ( vertexLength < L / 2.0 )
615 theParameters.push_back( Discret.Parameter());
617 compensateError(0, vertexLength, f, l, theLength, theC3d, theParameters, true );
623 // recompute params between the last segment and a middle one.
624 // find size of a middle segment
625 int nHalf = ( nPar-1 ) / 2;
626 list< double >::reverse_iterator itU = theParameters.rbegin();
627 std::advance( itU, nHalf );
629 double Lm = GCPnts_AbscissaPoint::Length( theC3d, Um, *itU);
630 double L = GCPnts_AbscissaPoint::Length( theC3d, *itU, l);
631 static StdMeshers_Regular_1D* auxAlgo = 0;
633 auxAlgo = new StdMeshers_Regular_1D( _gen->GetANewId(), _studyId, _gen );
634 auxAlgo->_hypType = BEG_END_LENGTH;
636 auxAlgo->_value[ BEG_LENGTH_IND ] = Lm;
637 auxAlgo->_value[ END_LENGTH_IND ] = vertexLength;
638 double from = *itU, to = l;
640 std::swap( from, to );
641 std::swap( auxAlgo->_value[ BEG_LENGTH_IND ], auxAlgo->_value[ END_LENGTH_IND ]);
644 if ( auxAlgo->computeInternalParameters( theMesh, theC3d, L, from, to, params, false ))
646 if ( isEnd1 ) params.reverse();
647 while ( 1 + nHalf-- )
648 theParameters.pop_back();
649 theParameters.splice( theParameters.end(), params );
653 compensateError(0, vertexLength, f, l, theLength, theC3d, theParameters, true );
657 theParameters.reverse();
662 //=============================================================================
666 //=============================================================================
667 bool StdMeshers_Regular_1D::computeInternalParameters(SMESH_Mesh & theMesh,
668 Adaptor3d_Curve& theC3d,
672 list<double> & theParams,
673 const bool theReverse,
674 bool theConsiderPropagation)
678 double f = theFirstU, l = theLastU;
680 // Propagation Of Distribution
682 if ( !_mainEdge.IsNull() && _isPropagOfDistribution )
684 TopoDS_Edge mainEdge = TopoDS::Edge( _mainEdge ); // should not be a reference!
685 _gen->Compute( theMesh, mainEdge, /*aShapeOnly=*/true, /*anUpward=*/true);
687 SMESHDS_SubMesh* smDS = theMesh.GetMeshDS()->MeshElements( mainEdge );
689 return error("No mesh on the source edge of Propagation Of Distribution");
690 if ( smDS->NbNodes() < 1 )
691 return true; // 1 segment
693 map< double, const SMDS_MeshNode* > mainEdgeParamsOfNodes;
694 if ( ! SMESH_Algo::GetSortedNodesOnEdge( theMesh.GetMeshDS(), mainEdge, _quadraticMesh,
695 mainEdgeParamsOfNodes, SMDSAbs_Edge ))
696 return error("Bad node parameters on the source edge of Propagation Of Distribution");
698 vector< double > segLen( mainEdgeParamsOfNodes.size() - 1 );
700 BRepAdaptor_Curve mainEdgeCurve( mainEdge );
701 map< double, const SMDS_MeshNode* >::iterator
702 u_n2 = mainEdgeParamsOfNodes.begin(), u_n1 = u_n2++;
703 for ( size_t i = 1; i < mainEdgeParamsOfNodes.size(); ++i, ++u_n1, ++u_n2 )
705 segLen[ i-1 ] = GCPnts_AbscissaPoint::Length( mainEdgeCurve,
708 totalLen += segLen[ i-1 ];
710 for ( size_t i = 0; i < segLen.size(); ++i )
711 segLen[ i ] *= theLength / totalLen;
713 size_t iSeg = theReverse ? segLen.size()-1 : 0;
714 size_t dSeg = theReverse ? -1 : +1;
715 double param = theFirstU;
717 for ( int i = 0, nb = segLen.size()-1; i < nb; ++i, iSeg += dSeg )
719 GCPnts_AbscissaPoint Discret( theC3d, segLen[ iSeg ], param );
720 if ( !Discret.IsDone() ) break;
721 param = Discret.Parameter();
722 theParams.push_back( param );
725 if ( nbParams != segLen.size()-1 )
726 return error( SMESH_Comment("Can't divide into ") << segLen.size() << " segements");
728 compensateError( segLen[ theReverse ? segLen.size()-1 : 0 ],
729 segLen[ theReverse ? 0 : segLen.size()-1 ],
730 f, l, theLength, theC3d, theParams, true );
743 if ( _hypType == MAX_LENGTH )
745 double nbseg = ceil(theLength / _value[ BEG_LENGTH_IND ]); // integer sup
747 nbseg = 1; // degenerated edge
748 eltSize = theLength / nbseg;
749 nbSegments = (int) nbseg;
751 else if ( _hypType == LOCAL_LENGTH )
753 // Local Length hypothesis
754 double nbseg = ceil(theLength / _value[ BEG_LENGTH_IND ]); // integer sup
757 bool isFound = false;
758 if (theConsiderPropagation && !_mainEdge.IsNull()) // propagated from some other edge
760 // Advanced processing to assure equal number of segments in case of Propagation
761 SMESH_subMesh* sm = theMesh.GetSubMeshContaining(_mainEdge);
763 bool computed = sm->IsMeshComputed();
765 if (sm->GetComputeState() == SMESH_subMesh::READY_TO_COMPUTE) {
766 _gen->Compute( theMesh, _mainEdge, /*anUpward=*/true);
767 computed = sm->IsMeshComputed();
771 SMESHDS_SubMesh* smds = sm->GetSubMeshDS();
772 int nb_segments = smds->NbElements();
773 if (nbseg - 1 <= nb_segments && nb_segments <= nbseg + 1) {
780 if (!isFound) // not found by meshed edge in the propagation chain, use precision
782 double aPrecision = _value[ PRECISION_IND ];
783 double nbseg_prec = ceil((theLength / _value[ BEG_LENGTH_IND ]) - aPrecision);
784 if (nbseg_prec == (nbseg - 1)) nbseg--;
788 nbseg = 1; // degenerated edge
789 eltSize = theLength / nbseg;
790 nbSegments = (int) nbseg;
794 // Number Of Segments hypothesis
795 nbSegments = _ivalue[ NB_SEGMENTS_IND ];
796 if ( nbSegments < 1 ) return false;
797 if ( nbSegments == 1 ) return true;
799 switch (_ivalue[ DISTR_TYPE_IND ])
801 case StdMeshers_NumberOfSegments::DT_Scale:
803 double scale = _value[ SCALE_FACTOR_IND ];
805 if (fabs(scale - 1.0) < Precision::Confusion()) {
806 // special case to avoid division by zero
807 for (int i = 1; i < nbSegments; i++) {
808 double param = f + (l - f) * i / nbSegments;
809 theParams.push_back( param );
812 // general case of scale distribution
816 double alpha = pow(scale, 1.0 / (nbSegments - 1));
817 double factor = (l - f) / (1.0 - pow(alpha, nbSegments));
819 for (int i = 1; i < nbSegments; i++) {
820 double param = f + factor * (1.0 - pow(alpha, i));
821 theParams.push_back( param );
824 const double lenFactor = theLength/(l-f);
825 list<double>::iterator u = theParams.begin(), uEnd = theParams.end();
826 for ( ; u != uEnd; ++u )
828 GCPnts_AbscissaPoint Discret( theC3d, ((*u)-f) * lenFactor, f );
829 if ( Discret.IsDone() )
830 *u = Discret.Parameter();
835 case StdMeshers_NumberOfSegments::DT_TabFunc:
837 FunctionTable func(_vvalue[ TAB_FUNC_IND ], _ivalue[ CONV_MODE_IND ]);
838 return computeParamByFunc(theC3d, f, l, theLength, theReverse,
839 _ivalue[ NB_SEGMENTS_IND ], func,
843 case StdMeshers_NumberOfSegments::DT_ExprFunc:
845 FunctionExpr func(_svalue[ EXPR_FUNC_IND ].c_str(), _ivalue[ CONV_MODE_IND ]);
846 return computeParamByFunc(theC3d, f, l, theLength, theReverse,
847 _ivalue[ NB_SEGMENTS_IND ], func,
851 case StdMeshers_NumberOfSegments::DT_Regular:
852 eltSize = theLength / nbSegments;
858 GCPnts_UniformAbscissa Discret(theC3d, eltSize, f, l);
859 if ( !Discret.IsDone() )
860 return error( "GCPnts_UniformAbscissa failed");
862 int NbPoints = Min( Discret.NbPoints(), nbSegments + 1 );
863 for ( int i = 2; i < NbPoints; i++ ) // skip 1st and last points
865 double param = Discret.Parameter(i);
866 theParams.push_back( param );
868 compensateError( eltSize, eltSize, f, l, theLength, theC3d, theParams, true ); // for PAL9899
872 case BEG_END_LENGTH: {
874 // geometric progression: SUM(n) = ( a1 - an * q ) / ( 1 - q ) = theLength
876 double a1 = _value[ BEG_LENGTH_IND ];
877 double an = _value[ END_LENGTH_IND ];
878 double q = ( theLength - a1 ) / ( theLength - an );
879 if ( q < theLength/1e6 || 1.01*theLength < a1 + an)
880 return error ( SMESH_Comment("Invalid segment lengths (")<<a1<<" and "<<an<<") "<<
881 "for an edge of length "<<theLength);
883 double U1 = theReverse ? l : f;
884 double Un = theReverse ? f : l;
886 double eltSize = theReverse ? -a1 : a1;
888 // computes a point on a curve <theC3d> at the distance <eltSize>
889 // from the point of parameter <param>.
890 GCPnts_AbscissaPoint Discret( theC3d, eltSize, param );
891 if ( !Discret.IsDone() ) break;
892 param = Discret.Parameter();
893 if ( f < param && param < l )
894 theParams.push_back( param );
899 compensateError( a1, an, U1, Un, theLength, theC3d, theParams );
900 if (theReverse) theParams.reverse(); // NPAL18025
904 case ARITHMETIC_1D: {
906 // arithmetic progression: SUM(n) = ( an - a1 + q ) * ( a1 + an ) / ( 2 * q ) = theLength
908 double a1 = _value[ BEG_LENGTH_IND ];
909 double an = _value[ END_LENGTH_IND ];
910 if ( 1.01*theLength < a1 + an)
911 return error ( SMESH_Comment("Invalid segment lengths (")<<a1<<" and "<<an<<") "<<
912 "for an edge of length "<<theLength);
914 double q = ( an - a1 ) / ( 2 *theLength/( a1 + an ) - 1 );
915 int n = int(fabs(q) > numeric_limits<double>::min() ? ( 1+( an-a1 )/q ) : ( 1+theLength/a1 ));
917 double U1 = theReverse ? l : f;
918 double Un = theReverse ? f : l;
925 while ( n-- > 0 && eltSize * ( Un - U1 ) > 0 ) {
926 // computes a point on a curve <theC3d> at the distance <eltSize>
927 // from the point of parameter <param>.
928 GCPnts_AbscissaPoint Discret( theC3d, eltSize, param );
929 if ( !Discret.IsDone() ) break;
930 param = Discret.Parameter();
931 if ( param > f && param < l )
932 theParams.push_back( param );
937 compensateError( a1, an, U1, Un, theLength, theC3d, theParams );
938 if (theReverse) theParams.reverse(); // NPAL18025
945 double a1 = _value[ BEG_LENGTH_IND ], an;
946 double q = _value[ END_LENGTH_IND ];
948 double U1 = theReverse ? l : f;
949 double Un = theReverse ? f : l;
957 // computes a point on a curve <theC3d> at the distance <eltSize>
958 // from the point of parameter <param>.
959 GCPnts_AbscissaPoint Discret( theC3d, eltSize, param );
960 if ( !Discret.IsDone() ) break;
961 param = Discret.Parameter();
962 if ( f < param && param < l )
963 theParams.push_back( param );
972 if ( Abs( param - Un ) < 0.2 * Abs( param - theParams.back() ))
974 compensateError( a1, Abs(eltSize), U1, Un, theLength, theC3d, theParams );
976 else if ( Abs( Un - theParams.back() ) <
977 0.2 * Abs( theParams.back() - *(++theParams.rbegin())))
979 theParams.pop_back();
980 compensateError( a1, Abs(an), U1, Un, theLength, theC3d, theParams );
983 if (theReverse) theParams.reverse(); // NPAL18025
988 case FIXED_POINTS_1D: {
989 const std::vector<double>& aPnts = _fpHyp->GetPoints();
990 const std::vector<int>& nbsegs = _fpHyp->GetNbSegments();
992 TColStd_SequenceOfReal Params;
993 for(; i<aPnts.size(); i++) {
994 if( aPnts[i]<0.0001 || aPnts[i]>0.9999 ) continue;
996 bool IsExist = false;
997 for(; j<=Params.Length(); j++) {
998 if( fabs(aPnts[i]-Params.Value(j)) < 1e-4 ) {
1002 if( aPnts[i]<Params.Value(j) ) break;
1004 if(!IsExist) Params.InsertBefore(j,aPnts[i]);
1006 double par2, par1, lp;
1015 double eltSize, segmentSize = 0.;
1016 double currAbscissa = 0;
1017 for(i=0; i<Params.Length(); i++) {
1018 int nbseg = ( i > nbsegs.size()-1 ) ? nbsegs[0] : nbsegs[i];
1019 segmentSize = Params.Value(i+1)*theLength - currAbscissa;
1020 currAbscissa += segmentSize;
1021 GCPnts_AbscissaPoint APnt(theC3d, sign*segmentSize, par1);
1022 if( !APnt.IsDone() )
1023 return error( "GCPnts_AbscissaPoint failed");
1024 par2 = APnt.Parameter();
1025 eltSize = segmentSize/nbseg;
1026 GCPnts_UniformAbscissa Discret(theC3d, eltSize, par1, par2);
1028 Discret.Initialize(theC3d, eltSize, par2, par1);
1030 Discret.Initialize(theC3d, eltSize, par1, par2);
1031 if ( !Discret.IsDone() )
1032 return error( "GCPnts_UniformAbscissa failed");
1033 int NbPoints = Discret.NbPoints();
1034 list<double> tmpParams;
1035 for(int i=2; i<NbPoints; i++) {
1036 double param = Discret.Parameter(i);
1037 tmpParams.push_back( param );
1040 compensateError( eltSize, eltSize, par2, par1, segmentSize, theC3d, tmpParams );
1041 tmpParams.reverse();
1044 compensateError( eltSize, eltSize, par1, par2, segmentSize, theC3d, tmpParams );
1046 list<double>::iterator itP = tmpParams.begin();
1047 for(; itP != tmpParams.end(); itP++) {
1048 theParams.push_back( *(itP) );
1050 theParams.push_back( par2 );
1055 int nbseg = ( nbsegs.size() > Params.Length() ) ? nbsegs[Params.Length()] : nbsegs[0];
1056 segmentSize = theLength - currAbscissa;
1057 eltSize = segmentSize/nbseg;
1058 GCPnts_UniformAbscissa Discret;
1060 Discret.Initialize(theC3d, eltSize, par1, lp);
1062 Discret.Initialize(theC3d, eltSize, lp, par1);
1063 if ( !Discret.IsDone() )
1064 return error( "GCPnts_UniformAbscissa failed");
1065 int NbPoints = Discret.NbPoints();
1066 list<double> tmpParams;
1067 for(int i=2; i<NbPoints; i++) {
1068 double param = Discret.Parameter(i);
1069 tmpParams.push_back( param );
1072 compensateError( eltSize, eltSize, lp, par1, segmentSize, theC3d, tmpParams );
1073 tmpParams.reverse();
1076 compensateError( eltSize, eltSize, par1, lp, segmentSize, theC3d, tmpParams );
1078 list<double>::iterator itP = tmpParams.begin();
1079 for(; itP != tmpParams.end(); itP++) {
1080 theParams.push_back( *(itP) );
1084 theParams.reverse(); // NPAL18025
1091 GCPnts_UniformDeflection Discret(theC3d, _value[ DEFLECTION_IND ], f, l, true);
1092 if ( !Discret.IsDone() )
1095 int NbPoints = Discret.NbPoints();
1096 for ( int i = 2; i < NbPoints; i++ )
1098 double param = Discret.Parameter(i);
1099 theParams.push_back( param );
1110 //=============================================================================
1114 //=============================================================================
1116 bool StdMeshers_Regular_1D::Compute(SMESH_Mesh & theMesh, const TopoDS_Shape & theShape)
1118 if ( _hypType == NONE )
1121 if ( _hypType == ADAPTIVE )
1123 _adaptiveHyp->GetAlgo()->InitComputeError();
1124 _adaptiveHyp->GetAlgo()->Compute( theMesh, theShape );
1125 return error( _adaptiveHyp->GetAlgo()->GetComputeError() );
1128 SMESHDS_Mesh * meshDS = theMesh.GetMeshDS();
1130 const TopoDS_Edge & EE = TopoDS::Edge(theShape);
1131 TopoDS_Edge E = TopoDS::Edge(EE.Oriented(TopAbs_FORWARD));
1132 int shapeID = meshDS->ShapeToIndex( E );
1135 Handle(Geom_Curve) Curve = BRep_Tool::Curve(E, f, l);
1137 TopoDS_Vertex VFirst, VLast;
1138 TopExp::Vertices(E, VFirst, VLast); // Vfirst corresponds to f and Vlast to l
1140 ASSERT(!VFirst.IsNull());
1141 ASSERT(!VLast.IsNull());
1142 const SMDS_MeshNode * idFirst = SMESH_Algo::VertexNode( VFirst, meshDS );
1143 const SMDS_MeshNode * idLast = SMESH_Algo::VertexNode( VLast, meshDS );
1144 if (!idFirst || !idLast)
1145 return error( COMPERR_BAD_INPUT_MESH, "No node on vertex");
1147 // remove elements created by e.g. patern mapping (PAL21999)
1148 // CLEAN event is incorrectly ptopagated seemingly due to Propagation hyp
1149 // so TEMPORARY solution is to clean the submesh manually
1150 //theMesh.GetSubMesh(theShape)->ComputeStateEngine( SMESH_subMesh::CLEAN );
1151 if (SMESHDS_SubMesh * subMeshDS = meshDS->MeshElements(theShape))
1153 SMDS_ElemIteratorPtr ite = subMeshDS->GetElements();
1155 meshDS->RemoveFreeElement(ite->next(), subMeshDS);
1156 SMDS_NodeIteratorPtr itn = subMeshDS->GetNodes();
1157 while (itn->more()) {
1158 const SMDS_MeshNode * node = itn->next();
1159 if ( node->NbInverseElements() == 0 )
1160 meshDS->RemoveFreeNode(node, subMeshDS);
1162 meshDS->RemoveNode(node);
1166 if (!Curve.IsNull())
1168 list< double > params;
1169 bool reversed = false;
1170 if ( theMesh.GetShapeToMesh().ShapeType() >= TopAbs_WIRE ) {
1171 // if the shape to mesh is WIRE or EDGE
1172 reversed = ( EE.Orientation() == TopAbs_REVERSED );
1174 if ( !_mainEdge.IsNull() ) {
1175 // take into account reversing the edge the hypothesis is propagated from
1176 // (_mainEdge.Orientation() marks mutual orientation of EDGEs in propagation chain)
1177 reversed = ( _mainEdge.Orientation() == TopAbs_REVERSED );
1178 if ( !_isPropagOfDistribution ) {
1179 int mainID = meshDS->ShapeToIndex(_mainEdge);
1180 if ( std::find( _revEdgesIDs.begin(), _revEdgesIDs.end(), mainID) != _revEdgesIDs.end())
1181 reversed = !reversed;
1184 // take into account this edge reversing
1185 if ( std::find( _revEdgesIDs.begin(), _revEdgesIDs.end(), shapeID) != _revEdgesIDs.end())
1186 reversed = !reversed;
1188 BRepAdaptor_Curve C3d( E );
1189 double length = EdgeLength( E );
1190 if ( ! computeInternalParameters( theMesh, C3d, length, f, l, params, reversed, true )) {
1193 redistributeNearVertices( theMesh, C3d, length, params, VFirst, VLast );
1195 // edge extrema (indexes : 1 & NbPoints) already in SMDS (TopoDS_Vertex)
1196 // only internal nodes receive an edge position with param on curve
1198 const SMDS_MeshNode * idPrev = idFirst;
1211 for (list<double>::iterator itU = params.begin(); itU != params.end(); itU++) {
1212 double param = *itU;
1213 gp_Pnt P = Curve->Value(param);
1215 //Add the Node in the DataStructure
1216 SMDS_MeshNode * node = meshDS->AddNode(P.X(), P.Y(), P.Z());
1217 meshDS->SetNodeOnEdge(node, shapeID, param);
1219 if(_quadraticMesh) {
1220 // create medium node
1221 double prm = ( parPrev + param )/2;
1222 gp_Pnt PM = Curve->Value(prm);
1223 SMDS_MeshNode * NM = meshDS->AddNode(PM.X(), PM.Y(), PM.Z());
1224 meshDS->SetNodeOnEdge(NM, shapeID, prm);
1225 SMDS_MeshEdge * edge = meshDS->AddEdge(idPrev, node, NM);
1226 meshDS->SetMeshElementOnShape(edge, shapeID);
1229 SMDS_MeshEdge * edge = meshDS->AddEdge(idPrev, node);
1230 meshDS->SetMeshElementOnShape(edge, shapeID);
1236 if(_quadraticMesh) {
1237 double prm = ( parPrev + parLast )/2;
1238 gp_Pnt PM = Curve->Value(prm);
1239 SMDS_MeshNode * NM = meshDS->AddNode(PM.X(), PM.Y(), PM.Z());
1240 meshDS->SetNodeOnEdge(NM, shapeID, prm);
1241 SMDS_MeshEdge * edge = meshDS->AddEdge(idPrev, idLast, NM);
1242 meshDS->SetMeshElementOnShape(edge, shapeID);
1245 SMDS_MeshEdge* edge = meshDS->AddEdge(idPrev, idLast);
1246 meshDS->SetMeshElementOnShape(edge, shapeID);
1251 //MESSAGE("************* Degenerated edge! *****************");
1253 // Edge is a degenerated Edge : We put n = 5 points on the edge.
1254 const int NbPoints = 5;
1255 BRep_Tool::Range( E, f, l ); // PAL15185
1256 double du = (l - f) / (NbPoints - 1);
1258 gp_Pnt P = BRep_Tool::Pnt(VFirst);
1260 const SMDS_MeshNode * idPrev = idFirst;
1261 for (int i = 2; i < NbPoints; i++) {
1262 double param = f + (i - 1) * du;
1263 SMDS_MeshNode * node = meshDS->AddNode(P.X(), P.Y(), P.Z());
1264 if(_quadraticMesh) {
1265 // create medium node
1266 double prm = param - du/2.;
1267 SMDS_MeshNode * NM = meshDS->AddNode(P.X(), P.Y(), P.Z());
1268 meshDS->SetNodeOnEdge(NM, shapeID, prm);
1269 SMDS_MeshEdge * edge = meshDS->AddEdge(idPrev, node, NM);
1270 meshDS->SetMeshElementOnShape(edge, shapeID);
1273 SMDS_MeshEdge * edge = meshDS->AddEdge(idPrev, node);
1274 meshDS->SetMeshElementOnShape(edge, shapeID);
1276 meshDS->SetNodeOnEdge(node, shapeID, param);
1279 if(_quadraticMesh) {
1280 // create medium node
1281 double prm = l - du/2.;
1282 SMDS_MeshNode * NM = meshDS->AddNode(P.X(), P.Y(), P.Z());
1283 meshDS->SetNodeOnEdge(NM, shapeID, prm);
1284 SMDS_MeshEdge * edge = meshDS->AddEdge(idPrev, idLast, NM);
1285 meshDS->SetMeshElementOnShape(edge, shapeID);
1288 SMDS_MeshEdge * edge = meshDS->AddEdge(idPrev, idLast);
1289 meshDS->SetMeshElementOnShape(edge, shapeID);
1296 //=============================================================================
1300 //=============================================================================
1302 bool StdMeshers_Regular_1D::Evaluate(SMESH_Mesh & theMesh,
1303 const TopoDS_Shape & theShape,
1304 MapShapeNbElems& aResMap)
1306 if ( _hypType == NONE )
1309 if ( _hypType == ADAPTIVE )
1311 _adaptiveHyp->GetAlgo()->InitComputeError();
1312 _adaptiveHyp->GetAlgo()->Evaluate( theMesh, theShape, aResMap );
1313 return error( _adaptiveHyp->GetAlgo()->GetComputeError() );
1316 const TopoDS_Edge & EE = TopoDS::Edge(theShape);
1317 TopoDS_Edge E = TopoDS::Edge(EE.Oriented(TopAbs_FORWARD));
1320 Handle(Geom_Curve) Curve = BRep_Tool::Curve(E, f, l);
1322 TopoDS_Vertex VFirst, VLast;
1323 TopExp::Vertices(E, VFirst, VLast); // Vfirst corresponds to f and Vlast to l
1325 ASSERT(!VFirst.IsNull());
1326 ASSERT(!VLast.IsNull());
1328 std::vector<int> aVec(SMDSEntity_Last,0);
1330 if (!Curve.IsNull()) {
1331 list< double > params;
1333 BRepAdaptor_Curve C3d( E );
1334 double length = EdgeLength( E );
1335 if ( ! computeInternalParameters( theMesh, C3d, length, f, l, params, false, true )) {
1336 SMESH_subMesh * sm = theMesh.GetSubMesh(theShape);
1337 aResMap.insert(std::make_pair(sm,aVec));
1338 SMESH_ComputeErrorPtr& smError = sm->GetComputeError();
1339 smError.reset( new SMESH_ComputeError(COMPERR_ALGO_FAILED,"Submesh can not be evaluated",this));
1342 redistributeNearVertices( theMesh, C3d, length, params, VFirst, VLast );
1344 if(_quadraticMesh) {
1345 aVec[SMDSEntity_Node] = 2*params.size() + 1;
1346 aVec[SMDSEntity_Quad_Edge] = params.size() + 1;
1349 aVec[SMDSEntity_Node] = params.size();
1350 aVec[SMDSEntity_Edge] = params.size() + 1;
1355 //MESSAGE("************* Degenerated edge! *****************");
1356 // Edge is a degenerated Edge : We put n = 5 points on the edge.
1357 if(_quadraticMesh) {
1358 aVec[SMDSEntity_Node] = 11;
1359 aVec[SMDSEntity_Quad_Edge] = 6;
1362 aVec[SMDSEntity_Node] = 5;
1363 aVec[SMDSEntity_Edge] = 6;
1367 SMESH_subMesh * sm = theMesh.GetSubMesh(theShape);
1368 aResMap.insert(std::make_pair(sm,aVec));
1374 //=============================================================================
1376 * See comments in SMESH_Algo.cxx
1378 //=============================================================================
1380 const list <const SMESHDS_Hypothesis *> &
1381 StdMeshers_Regular_1D::GetUsedHypothesis(SMESH_Mesh & aMesh,
1382 const TopoDS_Shape & aShape,
1383 const bool ignoreAuxiliary)
1385 _usedHypList.clear();
1386 _mainEdge.Nullify();
1388 SMESH_HypoFilter auxiliaryFilter( SMESH_HypoFilter::IsAuxiliary() );
1389 const SMESH_HypoFilter* compatibleFilter = GetCompatibleHypoFilter(/*ignoreAux=*/true );
1391 // get non-auxiliary assigned directly to aShape
1392 int nbHyp = aMesh.GetHypotheses( aShape, *compatibleFilter, _usedHypList, false );
1394 if (nbHyp == 0 && aShape.ShapeType() == TopAbs_EDGE)
1396 // Check, if propagated from some other edge
1397 _mainEdge = StdMeshers_Propagation::GetPropagationSource( aMesh, aShape,
1398 _isPropagOfDistribution );
1399 if ( !_mainEdge.IsNull() )
1401 // Propagation of 1D hypothesis from <aMainEdge> on this edge;
1402 // get non-auxiliary assigned to _mainEdge
1403 nbHyp = aMesh.GetHypotheses( _mainEdge, *compatibleFilter, _usedHypList, true );
1407 if (nbHyp == 0) // nothing propagated nor assigned to aShape
1409 SMESH_Algo::GetUsedHypothesis( aMesh, aShape, ignoreAuxiliary );
1410 nbHyp = _usedHypList.size();
1414 // get auxiliary hyps from aShape
1415 aMesh.GetHypotheses( aShape, auxiliaryFilter, _usedHypList, true );
1417 if ( nbHyp > 1 && ignoreAuxiliary )
1418 _usedHypList.clear(); //only one compatible non-auxiliary hypothesis allowed
1420 return _usedHypList;
1423 //================================================================================
1425 * \brief Pass CancelCompute() to a child algorithm
1427 //================================================================================
1429 void StdMeshers_Regular_1D::CancelCompute()
1431 SMESH_Algo::CancelCompute();
1432 if ( _hypType == ADAPTIVE )
1433 _adaptiveHyp->GetAlgo()->CancelCompute();