Salome HOME
Update wrapping for BLSURFPLUGIN and GHS3DPLUGIN hypothesis
[modules/smesh.git] / src / SMESH_SWIG / smeshDC.py
index 4789415c96b2ac875e48a97c99d1d6f60d907771..d0b9e762ae9befaf53020265963ccc9eb209c7b1 100644 (file)
@@ -1,29 +1,25 @@
-#  -*- coding: iso-8859-1 -*-
-#  Copyright (C) 2007-2008  CEA/DEN, EDF R&D, OPEN CASCADE
+# Copyright (C) 2007-2011  CEA/DEN, EDF R&D, OPEN CASCADE
 #
-#  Copyright (C) 2003-2007  OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
-#  CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
+# This library is free software; you can redistribute it and/or
+# modify it under the terms of the GNU Lesser General Public
+# License as published by the Free Software Foundation; either
+# version 2.1 of the License.
 #
-#  This library is free software; you can redistribute it and/or
-#  modify it under the terms of the GNU Lesser General Public
-#  License as published by the Free Software Foundation; either
-#  version 2.1 of the License.
+# This library is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+# Lesser General Public License for more details.
 #
-#  This library is distributed in the hope that it will be useful,
-#  but WITHOUT ANY WARRANTY; without even the implied warranty of
-#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
-#  Lesser General Public License for more details.
+# You should have received a copy of the GNU Lesser General Public
+# License along with this library; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 #
-#  You should have received a copy of the GNU Lesser General Public
-#  License along with this library; if not, write to the Free Software
-#  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
-#
-#  See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
+# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
 #
 #  File   : smesh.py
 #  Author : Francis KLOSS, OCC
 #  Module : SMESH
-#
+
 """
  \namespace smesh
  \brief Module smesh
@@ -52,6 +48,7 @@
 ##     @defgroup l3_hypos_ghs3dh GHS3D Parameters hypothesis
 ##     @defgroup l3_hypos_blsurf BLSURF Parameters hypothesis
 ##     @defgroup l3_hypos_hexotic Hexotic Parameters hypothesis
+##     @defgroup l3_hypos_quad Quadrangle Parameters hypothesis
 ##     @defgroup l3_hypos_additi Additional Hypotheses
 
 ##   @}
@@ -89,6 +86,7 @@
 ##   @defgroup l2_modif_tofromqu Convert to/from Quadratic Mesh
 
 ## @}
+## @defgroup l1_measurements Measurements
 
 import salome
 import geompyDC
@@ -99,6 +97,7 @@ from   SMESH import *
 import StdMeshers
 
 import SALOME
+import SALOMEDS
 
 # import NETGENPlugin module if possible
 noNETGENPlugin = 0
@@ -162,6 +161,8 @@ Hexa    = 8
 Hexotic = 9
 BLSURF  = 10
 GHS3DPRL = 11
+QUADRANGLE = 0
+RADIAL_QUAD = 1
 
 # MirrorType enumeration
 POINT = SMESH_MeshEditor.POINT
@@ -187,13 +188,22 @@ None_Optimization, Light_Optimization, Medium_Optimization, Strong_Optimization
 None_Optimization, Light_Optimization, Standard_Optimization, StandardPlus_Optimization, Strong_Optimization = 0,1,2,3,4
 
 # Topology treatment way of BLSURF
-FromCAD, PreProcess, PreProcessPlus = 0,1,2
+FromCAD, PreProcess, PreProcessPlus, PreCAD = 0,1,2,3
 
 # Element size flag of BLSURF
-DefaultSize, DefaultGeom, Custom = 0,0,1
+DefaultSize, DefaultGeom, BLSURF_Custom, SizeMap = 0,0,1,2
 
 PrecisionConfusion = 1e-07
 
+# TopAbs_State enumeration
+[TopAbs_IN, TopAbs_OUT, TopAbs_ON, TopAbs_UNKNOWN] = range(4)
+
+# Methods of splitting a hexahedron into tetrahedra
+Hex_5Tet, Hex_6Tet, Hex_24Tet = 1, 2, 3
+
+# import items of enum QuadType
+for e in StdMeshers.QuadType._items: exec('%s = StdMeshers.%s'%(e,e))
+
 ## Converts an angle from degrees to radians
 def DegreesToRadians(AngleInDegrees):
     from math import pi
@@ -346,7 +356,7 @@ def ParseDirStruct(Dir):
         pntStr = Dir.pointStruct
         if isinstance(pntStr, PointStructStr6):
             Parameters = str(pntStr.x1Str) + var_separator + str(pntStr.x2Str) + var_separator
-            Parameters += str(pntStr.y1Str) + var_separator + str(pntStr.y2Str) + var_separator 
+            Parameters += str(pntStr.y1Str) + var_separator + str(pntStr.y2Str) + var_separator
             Parameters += str(pntStr.z1Str) + var_separator + str(pntStr.z2Str)
             Point = PointStruct(pntStr.x2 - pntStr.x1, pntStr.y2 - pntStr.y1, pntStr.z2 - pntStr.z1)
         else:
@@ -375,13 +385,13 @@ def ParseAngles(list):
         else:
             Result.append(parameter)
             pass
-        
+
         Parameters = Parameters + str(parameter)
         Parameters = Parameters + var_separator
         pass
     Parameters = Parameters[:len(Parameters)-1]
     return Result, Parameters
-    
+
 def IsEqual(val1, val2, tol=PrecisionConfusion):
     if abs(val1 - val2) < tol:
         return True
@@ -391,13 +401,33 @@ NO_NAME = "NoName"
 
 ## Gets object name
 def GetName(obj):
-    ior  = salome.orb.object_to_string(obj)
-    sobj = salome.myStudy.FindObjectIOR(ior)
-    if sobj is None:
-        return NO_NAME
-    else:
-        attr = sobj.FindAttribute("AttributeName")[1]
-        return attr.Value()
+    if obj:
+        # object not null
+        if isinstance(obj, SALOMEDS._objref_SObject):
+            # study object
+            return obj.GetName()
+        ior  = salome.orb.object_to_string(obj)
+        if ior:
+            # CORBA object
+            studies = salome.myStudyManager.GetOpenStudies()
+            for sname in studies:
+                s = salome.myStudyManager.GetStudyByName(sname)
+                if not s: continue
+                sobj = s.FindObjectIOR(ior)
+                if not sobj: continue
+                return sobj.GetName()
+            if hasattr(obj, "GetName"):
+                # unknown CORBA object, having GetName() method
+                return obj.GetName()
+            else:
+                # unknown CORBA object, no GetName() method
+                return NO_NAME
+            pass
+        if hasattr(obj, "GetName"):
+            # unknown non-CORBA object, having GetName() method
+            return obj.GetName()
+        pass
+    raise RuntimeError, "Null or invalid object"
 
 ## Prints error message if a hypothesis was not assigned.
 def TreatHypoStatus(status, hypName, geomName, isAlgo):
@@ -413,6 +443,7 @@ def TreatHypoStatus(status, hypName, geomName, isAlgo):
     elif status == HYP_NOTCONFORM :
         reason = "a non-conform mesh would be built"
     elif status == HYP_ALREADY_EXIST :
+        if isAlgo: return # it does not influence anything
         reason = hypType + " of the same dimension is already assigned to this shape"
     elif status == HYP_BAD_DIM :
         reason = hypType + " mismatches the shape"
@@ -432,10 +463,12 @@ def TreatHypoStatus(status, hypName, geomName, isAlgo):
         return
     hypName = '"' + hypName + '"'
     geomName= '"' + geomName+ '"'
-    if status < HYP_UNKNOWN_FATAL:
+    if status < HYP_UNKNOWN_FATAL and not geomName =='""':
         print hypName, "was assigned to",    geomName,"but", reason
-    else:
+    elif not geomName == '""':
         print hypName, "was not assigned to",geomName,":", reason
+    else:
+        print hypName, "was not assigned:", reason
         pass
 
 ## Check meshing plugin availability
@@ -456,13 +489,37 @@ def CheckPlugin(plugin):
         print "Warning: BLSURFPlugin module unavailable"
         return False
     return True
-    
+
+## Private method. Add geom (sub-shape of the main shape) into the study if not yet there
+def AssureGeomPublished(mesh, geom, name=''):
+    if not isinstance( geom, geompyDC.GEOM._objref_GEOM_Object ):
+        return
+    if not geom.IsSame( mesh.geom ) and not geom.GetStudyEntry():
+        ## set the study
+        studyID = mesh.smeshpyD.GetCurrentStudy()._get_StudyId()
+        if studyID != mesh.geompyD.myStudyId:
+            mesh.geompyD.init_geom( mesh.smeshpyD.GetCurrentStudy())
+        ## get a name
+        if not name and geom.GetShapeType() != geompyDC.GEOM.COMPOUND:
+            # for all groups SubShapeName() returns "Compound_-1"
+            name = mesh.geompyD.SubShapeName(geom, mesh.geom)
+        if not name:
+            name = "%s_%s"%(geom.GetShapeType(), id(geom)%10000)
+        ## publish
+        mesh.geompyD.addToStudyInFather( mesh.geom, geom, name )
+    return
+
 # end of l1_auxiliary
 ## @}
 
 # All methods of this class are accessible directly from the smesh.py package.
 class smeshDC(SMESH._objref_SMESH_Gen):
 
+    ## Dump component to the Python script
+    #  This method overrides IDL function to allow default values for the parameters.
+    def DumpPython(self, theStudy, theIsPublished=True, theIsMultiFile=True):
+        return SMESH._objref_SMESH_Gen.DumpPython(self, theStudy, theIsPublished, theIsMultiFile)
+
     ## Sets the current study and Geometry component
     #  @ingroup l1_auxiliary
     def init_smesh(self,theStudy,geompyD):
@@ -485,6 +542,20 @@ class smeshDC(SMESH._objref_SMESH_Gen):
     def EnumToLong(self,theItem):
         return theItem._v
 
+    ## Returns a string representation of the color.
+    #  To be used with filters.
+    #  @param c color value (SALOMEDS.Color)
+    #  @ingroup l1_controls
+    def ColorToString(self,c):
+        val = ""
+        if isinstance(c, SALOMEDS.Color):
+            val = "%s;%s;%s" % (c.R, c.G, c.B)
+        elif isinstance(c, str):
+            val = c
+        else:
+            raise ValueError, "Color value should be of string or SALOMEDS.Color type"
+        return val
+
     ## Gets PointStruct from vertex
     #  @param theVertex a GEOM object(vertex)
     #  @return SMESH.PointStruct
@@ -614,26 +685,16 @@ class smeshDC(SMESH._objref_SMESH_Gen):
         aMesh = Mesh(self, self.geompyD, aSmeshMesh)
         return aMesh
 
-    ## From SMESH_Gen interface
-    #  @return the list of integer values
-    #  @ingroup l1_auxiliary
-    def GetSubShapesId( self, theMainObject, theListOfSubObjects ):
-        return SMESH._objref_SMESH_Gen.GetSubShapesId(self,theMainObject, theListOfSubObjects)
-
-    ## From SMESH_Gen interface. Creates a pattern
-    #  @return an instance of SMESH_Pattern
-    #
-    #  <a href="../tui_modifying_meshes_page.html#tui_pattern_mapping">Example of Patterns usage</a>
-    #  @ingroup l2_modif_patterns
-    def GetPattern(self):
-        return SMESH._objref_SMESH_Gen.GetPattern(self)
-
-    ## Sets number of segments per diagonal of boundary box of geometry by which
-    #  default segment length of appropriate 1D hypotheses is defined.
-    #  Default value is 10
-    #  @ingroup l1_auxiliary
-    def SetBoundaryBoxSegmentation(self, nbSegments):
-        SMESH._objref_SMESH_Gen.SetBoundaryBoxSegmentation(self,nbSegments)
+    ## Creates Mesh objects importing data from the given CGNS file
+    #  @return an instance of Mesh class
+    #  @ingroup l2_impexp
+    def CreateMeshesFromCGNS( self, theFileName ):
+        aSmeshMeshes, aStatus = SMESH._objref_SMESH_Gen.CreateMeshesFromCGNS(self,theFileName)
+        aMeshes = []
+        for iMesh in range(len(aSmeshMeshes)) :
+            aMesh = Mesh(self, self.geompyD, aSmeshMeshes[iMesh])
+            aMeshes.append(aMesh)
+        return aMeshes, aStatus
 
     ## Concatenate the given meshes into one mesh.
     #  @return an instance of Mesh class
@@ -645,6 +706,9 @@ class smeshDC(SMESH._objref_SMESH_Gen):
     def Concatenate( self, meshes, uniteIdenticalGroups,
                      mergeNodesAndElements = False, mergeTolerance = 1e-5, allGroups = False):
         mergeTolerance,Parameters = geompyDC.ParseParameters(mergeTolerance)
+        for i,m in enumerate(meshes):
+            if isinstance(m, Mesh):
+                meshes[i] = m.GetMesh()
         if allGroups:
             aSmeshMesh = SMESH._objref_SMESH_Gen.ConcatenateWithGroups(
                 self,meshes,uniteIdenticalGroups,mergeNodesAndElements,mergeTolerance)
@@ -655,6 +719,41 @@ class smeshDC(SMESH._objref_SMESH_Gen):
         aMesh = Mesh(self, self.geompyD, aSmeshMesh)
         return aMesh
 
+    ## Create a mesh by copying a part of another mesh.
+    #  @param meshPart a part of mesh to copy, either a Mesh, a sub-mesh or a group;
+    #                  to copy nodes or elements not contained in any mesh object,
+    #                  pass result of Mesh.GetIDSource( list_of_ids, type ) as meshPart
+    #  @param meshName a name of the new mesh
+    #  @param toCopyGroups to create in the new mesh groups the copied elements belongs to
+    #  @param toKeepIDs to preserve IDs of the copied elements or not
+    #  @return an instance of Mesh class
+    def CopyMesh( self, meshPart, meshName, toCopyGroups=False, toKeepIDs=False):
+        if (isinstance( meshPart, Mesh )):
+            meshPart = meshPart.GetMesh()
+        mesh = SMESH._objref_SMESH_Gen.CopyMesh( self,meshPart,meshName,toCopyGroups,toKeepIDs )
+        return Mesh(self, self.geompyD, mesh)
+
+    ## From SMESH_Gen interface
+    #  @return the list of integer values
+    #  @ingroup l1_auxiliary
+    def GetSubShapesId( self, theMainObject, theListOfSubObjects ):
+        return SMESH._objref_SMESH_Gen.GetSubShapesId(self,theMainObject, theListOfSubObjects)
+
+    ## From SMESH_Gen interface. Creates a pattern
+    #  @return an instance of SMESH_Pattern
+    #
+    #  <a href="../tui_modifying_meshes_page.html#tui_pattern_mapping">Example of Patterns usage</a>
+    #  @ingroup l2_modif_patterns
+    def GetPattern(self):
+        return SMESH._objref_SMESH_Gen.GetPattern(self)
+
+    ## Sets number of segments per diagonal of boundary box of geometry by which
+    #  default segment length of appropriate 1D hypotheses is defined.
+    #  Default value is 10
+    #  @ingroup l1_auxiliary
+    def SetBoundaryBoxSegmentation(self, nbSegments):
+        SMESH._objref_SMESH_Gen.SetBoundaryBoxSegmentation(self,nbSegments)
+
     # Filtering. Auxiliary functions:
     # ------------------------------
 
@@ -676,6 +775,7 @@ class smeshDC(SMESH._objref_SMESH_Gen):
                                 UnaryOp, BinaryOp, Tolerance, TypeOfElement, Precision)
 
     ## Creates a criterion by the given parameters
+    #  \n Criterion structures allow to define complex filters by combining them with logical operations (AND / OR) (see example below)
     #  @param elementType the type of elements(NODE, EDGE, FACE, VOLUME)
     #  @param CritType the type of criterion (FT_Taper, FT_Area, FT_RangeOfIds, FT_LyingOnGeom etc.)
     #  @param Compare  belongs to {FT_LessThan, FT_MoreThan, FT_EqualTo}
@@ -683,17 +783,23 @@ class smeshDC(SMESH._objref_SMESH_Gen):
     #  @param UnaryOp  FT_LogicalNOT or FT_Undefined
     #  @param BinaryOp a binary logical operation FT_LogicalAND, FT_LogicalOR or
     #                  FT_Undefined (must be for the last criterion of all criteria)
+    #  @param Tolerance the tolerance used by FT_BelongToGeom, FT_BelongToSurface,
+    #         FT_LyingOnGeom, FT_CoplanarFaces criteria
     #  @return SMESH.Filter.Criterion
+    #
+    #  <a href="../tui_filters_page.html#combining_filters">Example of Criteria usage</a>
     #  @ingroup l1_controls
     def GetCriterion(self,elementType,
                      CritType,
                      Compare = FT_EqualTo,
                      Treshold="",
                      UnaryOp=FT_Undefined,
-                     BinaryOp=FT_Undefined):
+                     BinaryOp=FT_Undefined,
+                     Tolerance=1e-07):
         aCriterion = self.GetEmptyCriterion()
         aCriterion.TypeOfElement = elementType
         aCriterion.Type = self.EnumToLong(CritType)
+        aCriterion.Tolerance = Tolerance
 
         aTreshold = Treshold
 
@@ -705,7 +811,7 @@ class smeshDC(SMESH._objref_SMESH_Gen):
             aCriterion.Compare = self.EnumToLong(FT_LessThan)
         elif Compare == ">":
             aCriterion.Compare = self.EnumToLong(FT_MoreThan)
-        else:
+        elif Compare != FT_Undefined:
             aCriterion.Compare = self.EnumToLong(FT_EqualTo)
             aTreshold = Compare
 
@@ -718,6 +824,10 @@ class smeshDC(SMESH._objref_SMESH_Gen):
             else:
                 print "Error: The treshold should be a shape."
                 return None
+            if isinstance(UnaryOp,float):
+                aCriterion.Tolerance = UnaryOp
+                UnaryOp = FT_Undefined
+                pass
         elif CritType == FT_RangeOfIds:
             # Checks the treshold
             if isinstance(aTreshold, str):
@@ -725,8 +835,42 @@ class smeshDC(SMESH._objref_SMESH_Gen):
             else:
                 print "Error: The treshold should be a string."
                 return None
+        elif CritType == FT_CoplanarFaces:
+            # Checks the treshold
+            if isinstance(aTreshold, int):
+                aCriterion.ThresholdID = "%s"%aTreshold
+            elif isinstance(aTreshold, str):
+                ID = int(aTreshold)
+                if ID < 1:
+                    raise ValueError, "Invalid ID of mesh face: '%s'"%aTreshold
+                aCriterion.ThresholdID = aTreshold
+            else:
+                raise ValueError,\
+                      "The treshold should be an ID of mesh face and not '%s'"%aTreshold
+        elif CritType == FT_ElemGeomType:
+            # Checks the treshold
+            try:
+                aCriterion.Threshold = self.EnumToLong(aTreshold)
+            except:
+                if isinstance(aTreshold, int):
+                    aCriterion.Threshold = aTreshold
+                else:
+                    print "Error: The treshold should be an integer or SMESH.GeometryType."
+                    return None
+                pass
+            pass
+        elif CritType == FT_GroupColor:
+            # Checks the treshold
+            try:
+                aCriterion.ThresholdStr = self.ColorToString(aTreshold)
+            except:
+                print "Error: The threshold value should be of SALOMEDS.Color type"
+                return None
+            pass
         elif CritType in [FT_FreeBorders, FT_FreeEdges, FT_BadOrientedVolume, FT_FreeNodes,
-                          FT_FreeFaces, FT_ElemGeomType, FT_GroupColor]:
+                          FT_FreeFaces, FT_LinearOrQuadratic,
+                          FT_BareBorderFace, FT_BareBorderVolume,
+                          FT_OverConstrainedFace, FT_OverConstrainedVolume]:
             # At this point the treshold is unnecessary
             if aTreshold ==  FT_LogicalNOT:
                 aCriterion.UnaryOp = self.EnumToLong(FT_LogicalNOT)
@@ -761,19 +905,38 @@ class smeshDC(SMESH._objref_SMESH_Gen):
     #  @param Compare  belongs to {FT_LessThan, FT_MoreThan, FT_EqualTo}
     #  @param Treshold the threshold value (range of id ids as string, shape, numeric)
     #  @param UnaryOp  FT_LogicalNOT or FT_Undefined
+    #  @param Tolerance the tolerance used by FT_BelongToGeom, FT_BelongToSurface,
+    #         FT_LyingOnGeom, FT_CoplanarFaces criteria
     #  @return SMESH_Filter
+    #
+    #  <a href="../tui_filters_page.html#tui_filters">Example of Filters usage</a>
     #  @ingroup l1_controls
     def GetFilter(self,elementType,
                   CritType=FT_Undefined,
                   Compare=FT_EqualTo,
                   Treshold="",
-                  UnaryOp=FT_Undefined):
-        aCriterion = self.GetCriterion(elementType, CritType, Compare, Treshold, UnaryOp, FT_Undefined)
+                  UnaryOp=FT_Undefined,
+                  Tolerance=1e-07):
+        aCriterion = self.GetCriterion(elementType, CritType, Compare, Treshold, UnaryOp, FT_Undefined,Tolerance)
         aFilterMgr = self.CreateFilterManager()
         aFilter = aFilterMgr.CreateFilter()
         aCriteria = []
         aCriteria.append(aCriterion)
         aFilter.SetCriteria(aCriteria)
+        aFilterMgr.UnRegister()
+        return aFilter
+
+    ## Creates a filter from criteria
+    #  @param criteria a list of criteria
+    #  @return SMESH_Filter
+    #
+    #  <a href="../tui_filters_page.html#tui_filters">Example of Filters usage</a>
+    #  @ingroup l1_controls
+    def GetFilterFromCriteria(self,criteria):
+        aFilterMgr = self.CreateFilterManager()
+        aFilter = aFilterMgr.CreateFilter()
+        aFilter.SetCriteria(criteria)
+        aFilterMgr.UnRegister()
         return aFilter
 
     ## Creates a numerical functor by its type
@@ -798,6 +961,10 @@ class smeshDC(SMESH._objref_SMESH_Gen):
             return aFilterMgr.CreateArea()
         elif theCriterion == FT_Volume3D:
             return aFilterMgr.CreateVolume3D()
+        elif theCriterion == FT_MaxElementLength2D:
+            return aFilterMgr.CreateMaxElementLength2D()
+        elif theCriterion == FT_MaxElementLength3D:
+            return aFilterMgr.CreateMaxElementLength3D()
         elif theCriterion == FT_MultiConnection:
             return aFilterMgr.CreateMultiConnection()
         elif theCriterion == FT_MultiConnection2D:
@@ -816,20 +983,124 @@ class smeshDC(SMESH._objref_SMESH_Gen):
     def CreateHypothesis(self, theHType, theLibName="libStdMeshersEngine.so"):
         return SMESH._objref_SMESH_Gen.CreateHypothesis(self, theHType, theLibName )
 
-    ## Gets the mesh stattistic
-    #  @return dictionary type element - count of elements
+    ## Gets the mesh statistic
+    #  @return dictionary "element type" - "count of elements"
     #  @ingroup l1_meshinfo
     def GetMeshInfo(self, obj):
         if isinstance( obj, Mesh ):
             obj = obj.GetMesh()
         d = {}
-        if hasattr(obj, "_narrow") and obj._narrow(SMESH.SMESH_IDSource):
-            values = obj.GetMeshInfo() 
+        if hasattr(obj, "GetMeshInfo"):
+            values = obj.GetMeshInfo()
             for i in range(SMESH.Entity_Last._v):
                 if i < len(values): d[SMESH.EntityType._item(i)]=values[i]
             pass
         return d
 
+    ## Get minimum distance between two objects
+    #
+    #  If @a src2 is None, and @a id2 = 0, distance from @a src1 / @a id1 to the origin is computed.
+    #  If @a src2 is None, and @a id2 != 0, it is assumed that both @a id1 and @a id2 belong to @a src1.
+    #
+    #  @param src1 first source object
+    #  @param src2 second source object
+    #  @param id1 node/element id from the first source
+    #  @param id2 node/element id from the second (or first) source
+    #  @param isElem1 @c True if @a id1 is element id, @c False if it is node id
+    #  @param isElem2 @c True if @a id2 is element id, @c False if it is node id
+    #  @return minimum distance value
+    #  @sa GetMinDistance()
+    #  @ingroup l1_measurements
+    def MinDistance(self, src1, src2=None, id1=0, id2=0, isElem1=False, isElem2=False):
+        result = self.GetMinDistance(src1, src2, id1, id2, isElem1, isElem2)
+        if result is None:
+            result = 0.0
+        else:
+            result = result.value
+        return result
+
+    ## Get measure structure specifying minimum distance data between two objects
+    #
+    #  If @a src2 is None, and @a id2 = 0, distance from @a src1 / @a id1 to the origin is computed.
+    #  If @a src2 is None, and @a id2 != 0, it is assumed that both @a id1 and @a id2 belong to @a src1.
+    #
+    #  @param src1 first source object
+    #  @param src2 second source object
+    #  @param id1 node/element id from the first source
+    #  @param id2 node/element id from the second (or first) source
+    #  @param isElem1 @c True if @a id1 is element id, @c False if it is node id
+    #  @param isElem2 @c True if @a id2 is element id, @c False if it is node id
+    #  @return Measure structure or None if input data is invalid
+    #  @sa MinDistance()
+    #  @ingroup l1_measurements
+    def GetMinDistance(self, src1, src2=None, id1=0, id2=0, isElem1=False, isElem2=False):
+        if isinstance(src1, Mesh): src1 = src1.mesh
+        if isinstance(src2, Mesh): src2 = src2.mesh
+        if src2 is None and id2 != 0: src2 = src1
+        if not hasattr(src1, "_narrow"): return None
+        src1 = src1._narrow(SMESH.SMESH_IDSource)
+        if not src1: return None
+        if id1 != 0:
+            m = src1.GetMesh()
+            e = m.GetMeshEditor()
+            if isElem1:
+                src1 = e.MakeIDSource([id1], SMESH.FACE)
+            else:
+                src1 = e.MakeIDSource([id1], SMESH.NODE)
+            pass
+        if hasattr(src2, "_narrow"):
+            src2 = src2._narrow(SMESH.SMESH_IDSource)
+            if src2 and id2 != 0:
+                m = src2.GetMesh()
+                e = m.GetMeshEditor()
+                if isElem2:
+                    src2 = e.MakeIDSource([id2], SMESH.FACE)
+                else:
+                    src2 = e.MakeIDSource([id2], SMESH.NODE)
+                pass
+            pass
+        aMeasurements = self.CreateMeasurements()
+        result = aMeasurements.MinDistance(src1, src2)
+        aMeasurements.UnRegister()
+        return result
+
+    ## Get bounding box of the specified object(s)
+    #  @param objects single source object or list of source objects
+    #  @return tuple of six values (minX, minY, minZ, maxX, maxY, maxZ)
+    #  @sa GetBoundingBox()
+    #  @ingroup l1_measurements
+    def BoundingBox(self, objects):
+        result = self.GetBoundingBox(objects)
+        if result is None:
+            result = (0.0,)*6
+        else:
+            result = (result.minX, result.minY, result.minZ, result.maxX, result.maxY, result.maxZ)
+        return result
+
+    ## Get measure structure specifying bounding box data of the specified object(s)
+    #  @param objects single source object or list of source objects
+    #  @return Measure structure
+    #  @sa BoundingBox()
+    #  @ingroup l1_measurements
+    def GetBoundingBox(self, objects):
+        if isinstance(objects, tuple):
+            objects = list(objects)
+        if not isinstance(objects, list):
+            objects = [objects]
+        srclist = []
+        for o in objects:
+            if isinstance(o, Mesh):
+                srclist.append(o.mesh)
+            elif hasattr(o, "_narrow"):
+                src = o._narrow(SMESH.SMESH_IDSource)
+                if src: srclist.append(src)
+                pass
+            pass
+        aMeasurements = self.CreateMeasurements()
+        result = aMeasurements.BoundingBox(srclist)
+        aMeasurements.UnRegister()
+        return result
+
 import omniORB
 #Registering the new proxy for SMESH_Gen
 omniORB.registerObjref(SMESH._objref_SMESH_Gen._NP_RepositoryId, smeshDC)
@@ -866,7 +1137,16 @@ class Mesh:
         if obj != 0:
             if isinstance(obj, geompyDC.GEOM._objref_GEOM_Object):
                 self.geom = obj
+                # publish geom of mesh (issue 0021122)
+                if not self.geom.GetStudyEntry():
+                    studyID = smeshpyD.GetCurrentStudy()._get_StudyId()
+                    if studyID != geompyD.myStudyId:
+                        geompyD.init_geom( smeshpyD.GetCurrentStudy())
+                        pass
+                    geo_name = "%s_%s"%(self.geom.GetShapeType(), id(self.geom)%100)
+                    geompyD.addToStudy( self.geom, geo_name )
                 self.mesh = self.smeshpyD.CreateMesh(self.geom)
+
             elif isinstance(obj, SMESH._objref_SMESH_Mesh):
                 self.SetMesh(obj)
         else:
@@ -909,12 +1189,13 @@ class Mesh:
 
     ## Gets the subMesh object associated to a \a theSubObject geometrical object.
     #  The subMesh object gives access to the IDs of nodes and elements.
-    #  @param theSubObject a geometrical object (shape)
-    #  @param theName a name for the submesh
+    #  @param geom a geometrical object (shape)
+    #  @param name a name for the submesh
     #  @return an object of type SMESH_SubMesh, representing a part of mesh, which lies on the given shape
     #  @ingroup l2_submeshes
-    def GetSubMesh(self, theSubObject, theName):
-        submesh = self.mesh.GetSubMesh(theSubObject, theName)
+    def GetSubMesh(self, geom, name):
+        AssureGeomPublished( self, geom, name )
+        submesh = self.mesh.GetSubMesh( geom, name )
         return submesh
 
     ## Returns the shape associated to the mesh
@@ -995,6 +1276,24 @@ class Mesh:
         else:
             return Mesh_Segment(self, geom)
 
+    ## Creates 1D algorithm importing segments conatined in groups of other mesh.
+    #  If the optional \a geom parameter is not set, this algorithm is global.
+    #  Otherwise, this algorithm defines a submesh based on \a geom subshape.
+    #  @param geom If defined the subshape is to be meshed
+    #  @return an instance of Mesh_UseExistingElements class
+    #  @ingroup l3_algos_basic
+    def UseExisting1DElements(self, geom=0):
+        return Mesh_UseExistingElements(1,self, geom)
+
+    ## Creates 2D algorithm importing faces conatined in groups of other mesh.
+    #  If the optional \a geom parameter is not set, this algorithm is global.
+    #  Otherwise, this algorithm defines a submesh based on \a geom subshape.
+    #  @param geom If defined the subshape is to be meshed
+    #  @return an instance of Mesh_UseExistingElements class
+    #  @ingroup l3_algos_basic
+    def UseExisting2DElements(self, geom=0):
+        return Mesh_UseExistingElements(2,self, geom)
+
     ## Enables creation of nodes and segments usable by 2D algoritms.
     #  The added nodes and segments must be bound to edges and vertices by
     #  SetNodeOnVertex(), SetNodeOnEdge() and SetMeshElementOnShape()
@@ -1031,17 +1330,20 @@ class Mesh:
         if (isinstance(algo, geompyDC.GEOM._objref_GEOM_Object)):
             geom = algo
             algo = MEFISTO
-
         return Mesh_Triangle(self, algo, geom)
 
     ## Creates a quadrangle 2D algorithm for faces.
     #  If the optional \a geom parameter is not set, this algorithm is global.
     #  \n Otherwise, this algorithm defines a submesh based on \a geom subshape.
     #  @param geom If defined, the subshape to be meshed (GEOM_Object)
+    #  @param algo values are: smesh.QUADRANGLE || smesh.RADIAL_QUAD
     #  @return an instance of Mesh_Quadrangle algorithm
     #  @ingroup l3_algos_basic
-    def Quadrangle(self, geom=0):
-        return Mesh_Quadrangle(self,  geom)
+    def Quadrangle(self, geom=0, algo=QUADRANGLE):
+        if algo==RADIAL_QUAD:
+            return Mesh_RadialQuadrangle1D2D(self,geom)
+        else:
+            return Mesh_Quadrangle(self, geom)
 
     ## Creates a tetrahedron 3D algorithm for solids.
     #  The parameter \a algo permits to choose the algorithm: NETGEN or GHS3D
@@ -1123,7 +1425,9 @@ class Mesh:
         return Mesh_RadialPrism3D(self,  geom)
 
     ## Evaluates size of prospective mesh on a shape
-    #  @return True or False
+    #  @return a list where i-th element is a number of elements of i-th SMESH.EntityType
+    #  To know predicted number of e.g. edges, inquire it this way
+    #  Evaluate()[ EnumToLong( Entity_Edge )]
     def Evaluate(self, geom=0):
         if geom == 0 or not isinstance(geom, geompyDC.GEOM._objref_GEOM_Object):
             if self.geom == 0:
@@ -1134,9 +1438,13 @@ class Mesh:
 
 
     ## Computes the mesh and returns the status of the computation
+    #  @param geom geomtrical shape on which mesh data should be computed
+    #  @param discardModifs if True and the mesh has been edited since
+    #         a last total re-compute and that may prevent successful partial re-compute,
+    #         then the mesh is cleaned before Compute()
     #  @return True or False
     #  @ingroup l2_construct
-    def Compute(self, geom=0):
+    def Compute(self, geom=0, discardModifs=False):
         if geom == 0 or not isinstance(geom, geompyDC.GEOM._objref_GEOM_Object):
             if self.geom == 0:
                 geom = self.mesh.GetShapeToMesh()
@@ -1144,6 +1452,8 @@ class Mesh:
                 geom = self.geom
         ok = False
         try:
+            if discardModifs and self.mesh.HasModificationsToDiscard(): # issue 0020693
+                self.mesh.Clear()
             ok = self.smeshpyD.Compute(self.mesh, geom)
         except SALOME.SALOME_Exception, ex:
             print "Mesh computation failed, exception caught:"
@@ -1153,8 +1463,64 @@ class Mesh:
             print "Mesh computation failed, exception caught:"
             traceback.print_exc()
         if True:#not ok:
-            errors = self.smeshpyD.GetAlgoState( self.mesh, geom )
             allReasons = ""
+
+            # Treat compute errors
+            computeErrors = self.smeshpyD.GetComputeErrors( self.mesh, geom )
+            for err in computeErrors:
+                shapeText = ""
+                if self.mesh.HasShapeToMesh():
+                    try:
+                        mainIOR  = salome.orb.object_to_string(geom)
+                        for sname in salome.myStudyManager.GetOpenStudies():
+                            s = salome.myStudyManager.GetStudyByName(sname)
+                            if not s: continue
+                            mainSO = s.FindObjectIOR(mainIOR)
+                            if not mainSO: continue
+                            if err.subShapeID == 1:
+                                shapeText = ' on "%s"' % mainSO.GetName()
+                            subIt = s.NewChildIterator(mainSO)
+                            while subIt.More():
+                                subSO = subIt.Value()
+                                subIt.Next()
+                                obj = subSO.GetObject()
+                                if not obj: continue
+                                go = obj._narrow( geompyDC.GEOM._objref_GEOM_Object )
+                                if not go: continue
+                                ids = go.GetSubShapeIndices()
+                                if len(ids) == 1 and ids[0] == err.subShapeID:
+                                    shapeText = ' on "%s"' % subSO.GetName()
+                                    break
+                        if not shapeText:
+                            shape = self.geompyD.GetSubShape( geom, [err.subShapeID])
+                            if shape:
+                                shapeText = " on %s #%s" % (shape.GetShapeType(), err.subShapeID)
+                            else:
+                                shapeText = " on subshape #%s" % (err.subShapeID)
+                    except:
+                        shapeText = " on subshape #%s" % (err.subShapeID)
+                errText = ""
+                stdErrors = ["OK",                 #COMPERR_OK
+                             "Invalid input mesh", #COMPERR_BAD_INPUT_MESH
+                             "std::exception",     #COMPERR_STD_EXCEPTION
+                             "OCC exception",      #COMPERR_OCC_EXCEPTION
+                             "SALOME exception",   #COMPERR_SLM_EXCEPTION
+                             "Unknown exception",  #COMPERR_EXCEPTION
+                             "Memory allocation problem", #COMPERR_MEMORY_PB
+                             "Algorithm failed",   #COMPERR_ALGO_FAILED
+                             "Unexpected geometry"]#COMPERR_BAD_SHAPE
+                if err.code > 0:
+                    if err.code < len(stdErrors): errText = stdErrors[err.code]
+                else:
+                    errText = "code %s" % -err.code
+                if errText: errText += ". "
+                errText += err.comment
+                if allReasons != "":allReasons += "\n"
+                allReasons += '"%s" failed%s. Error: %s' %(err.algoName, shapeText, errText)
+                pass
+
+            # Treat hyp errors
+            errors = self.smeshpyD.GetAlgoState( self.mesh, geom )
             for err in errors:
                 if err.isGlobalAlgo:
                     glob = "global"
@@ -1180,9 +1546,7 @@ class Mesh:
                     reason = "For unknown reason."+\
                              " Revise Mesh.Compute() implementation in smeshDC.py!"
                     pass
-                if allReasons != "":
-                    allReasons += "\n"
-                    pass
+                if allReasons != "":allReasons += "\n"
                 allReasons += reason
                 pass
             if allReasons != "":
@@ -1201,6 +1565,18 @@ class Mesh:
             pass
         return ok
 
+    ## Return submesh objects list in meshing order
+    #  @return list of list of submesh objects
+    #  @ingroup l2_construct
+    def GetMeshOrder(self):
+        return self.mesh.GetMeshOrder()
+
+    ## Return submesh objects list in meshing order
+    #  @return list of list of submesh objects
+    #  @ingroup l2_construct
+    def SetMeshOrder(self, submeshes):
+        return self.mesh.SetMeshOrder(submeshes)
+
     ## Removes all nodes and elements
     #  @ingroup l2_construct
     def Clear(self):
@@ -1222,7 +1598,7 @@ class Mesh:
             salome.sg.updateObjBrowser(1)
 
     ## Computes a tetrahedral mesh using AutomaticLength + MEFISTO + NETGEN
-    #  @param fineness [0,-1] defines mesh fineness
+    #  @param fineness [0.0,1.0] defines mesh fineness
     #  @return True or False
     #  @ingroup l3_algos_basic
     def AutomaticTetrahedralization(self, fineness=0):
@@ -1239,7 +1615,7 @@ class Mesh:
         return self.Compute()
 
     ## Computes an hexahedral mesh using AutomaticLength + Quadrangle + Hexahedron
-    #  @param fineness [0,-1] defines mesh fineness
+    #  @param fineness [0.0, 1.0] defines mesh fineness
     #  @return True or False
     #  @ingroup l3_algos_basic
     def AutomaticHexahedralization(self, fineness=0):
@@ -1271,7 +1647,11 @@ class Mesh:
             pass
         status = self.mesh.AddHypothesis(geom, hyp)
         isAlgo = hyp._narrow( SMESH_Algo )
-        TreatHypoStatus( status, GetName( hyp ), GetName( geom ), isAlgo )
+        hyp_name = GetName( hyp )
+        geom_name = ""
+        if geom:
+            geom_name = GetName( geom )
+        TreatHypoStatus( status, hyp_name, geom_name, isAlgo )
         return status
 
     ## Unassigns a hypothesis
@@ -1305,56 +1685,86 @@ class Mesh:
             pass
         pass
 
-    ## Creates a mesh group based on the geometric object \a grp
-    #  and gives a \a name, \n if this parameter is not defined
-    #  the name is the same as the geometric group name \n
-    #  Note: Works like GroupOnGeom().
-    #  @param grp  a geometric group, a vertex, an edge, a face or a solid
-    #  @param name the name of the mesh group
-    #  @return SMESH_GroupOnGeom
-    #  @ingroup l2_grps_create
-    def Group(self, grp, name=""):
-        return self.GroupOnGeom(grp, name)
-
-    ## Deprecated, used only for compatibility! Please, use ExportMED() method instead.
+    ## Deprecated, used only for compatibility! Please, use ExportToMEDX() method instead.
     #  Exports the mesh in a file in MED format and chooses the \a version of MED format
+    ## allowing to overwrite the file if it exists or add the exported data to its contents
     #  @param f the file name
     #  @param version values are SMESH.MED_V2_1, SMESH.MED_V2_2
     #  @param opt boolean parameter for creating/not creating
-    #  the groups Group_On_All_Nodes, Group_On_All_Faces, ...
+    #         the groups Group_On_All_Nodes, Group_On_All_Faces, ...
+    #  @param overwrite boolean parameter for overwriting/not overwriting the file
     #  @ingroup l2_impexp
-    def ExportToMED(self, f, version, opt=0):
-        self.mesh.ExportToMED(f, opt, version)
+    def ExportToMED(self, f, version, opt=0, overwrite=1):
+        self.mesh.ExportToMEDX(f, opt, version, overwrite)
 
-    ## Exports the mesh in a file in MED format
+    ## Exports the mesh in a file in MED format and chooses the \a version of MED format
+    ## allowing to overwrite the file if it exists or add the exported data to its contents
     #  @param f is the file name
     #  @param auto_groups boolean parameter for creating/not creating
     #  the groups Group_On_All_Nodes, Group_On_All_Faces, ... ;
     #  the typical use is auto_groups=false.
     #  @param version MED format version(MED_V2_1 or MED_V2_2)
+    #  @param overwrite boolean parameter for overwriting/not overwriting the file
+    #  @param meshPart a part of mesh (group, sub-mesh) to export instead of the mesh
     #  @ingroup l2_impexp
-    def ExportMED(self, f, auto_groups=0, version=MED_V2_2):
-        self.mesh.ExportToMED(f, auto_groups, version)
+    def ExportMED(self, f, auto_groups=0, version=MED_V2_2, overwrite=1, meshPart=None):
+        if meshPart:
+            if isinstance( meshPart, list ):
+                meshPart = self.GetIDSource( meshPart, SMESH.ALL )
+            self.mesh.ExportPartToMED( meshPart, f, auto_groups, version, overwrite )
+        else:
+            self.mesh.ExportToMEDX(f, auto_groups, version, overwrite)
 
     ## Exports the mesh in a file in DAT format
     #  @param f the file name
+    #  @param meshPart a part of mesh (group, sub-mesh) to export instead of the mesh
     #  @ingroup l2_impexp
-    def ExportDAT(self, f):
-        self.mesh.ExportDAT(f)
+    def ExportDAT(self, f, meshPart=None):
+        if meshPart:
+            if isinstance( meshPart, list ):
+                meshPart = self.GetIDSource( meshPart, SMESH.ALL )
+            self.mesh.ExportPartToDAT( meshPart, f )
+        else:
+            self.mesh.ExportDAT(f)
 
     ## Exports the mesh in a file in UNV format
     #  @param f the file name
+    #  @param meshPart a part of mesh (group, sub-mesh) to export instead of the mesh
     #  @ingroup l2_impexp
-    def ExportUNV(self, f):
-        self.mesh.ExportUNV(f)
+    def ExportUNV(self, f, meshPart=None):
+        if meshPart:
+            if isinstance( meshPart, list ):
+                meshPart = self.GetIDSource( meshPart, SMESH.ALL )
+            self.mesh.ExportPartToUNV( meshPart, f )
+        else:
+            self.mesh.ExportUNV(f)
 
     ## Export the mesh in a file in STL format
     #  @param f the file name
     #  @param ascii defines the file encoding
+    #  @param meshPart a part of mesh (group, sub-mesh) to export instead of the mesh
     #  @ingroup l2_impexp
-    def ExportSTL(self, f, ascii=1):
-        self.mesh.ExportSTL(f, ascii)
+    def ExportSTL(self, f, ascii=1, meshPart=None):
+        if meshPart:
+            if isinstance( meshPart, list ):
+                meshPart = self.GetIDSource( meshPart, SMESH.ALL )
+            self.mesh.ExportPartToSTL( meshPart, f, ascii )
+        else:
+            self.mesh.ExportSTL(f, ascii)
 
+    ## Exports the mesh in a file in CGNS format
+    #  @param f is the file name
+    #  @param overwrite boolean parameter for overwriting/not overwriting the file
+    #  @param meshPart a part of mesh (group, sub-mesh) to export instead of the mesh
+    #  @ingroup l2_impexp
+    def ExportCGNS(self, f, overwrite=1, meshPart=None):
+        if isinstance( meshPart, list ):
+            meshPart = self.GetIDSource( meshPart, SMESH.ALL )
+        if isinstance( meshPart, Mesh ):
+            meshPart = meshPart.mesh
+        elif not meshPart:
+            meshPart = self.mesh
+        self.mesh.ExportCGNS(meshPart, f, overwrite)
 
     # Operations with groups:
     # ----------------------
@@ -1367,6 +1777,17 @@ class Mesh:
     def CreateEmptyGroup(self, elementType, name):
         return self.mesh.CreateGroup(elementType, name)
 
+    ## Creates a mesh group based on the geometric object \a grp
+    #  and gives a \a name, \n if this parameter is not defined
+    #  the name is the same as the geometric group name \n
+    #  Note: Works like GroupOnGeom().
+    #  @param grp  a geometric group, a vertex, an edge, a face or a solid
+    #  @param name the name of the mesh group
+    #  @return SMESH_GroupOnGeom
+    #  @ingroup l2_grps_create
+    def Group(self, grp, name=""):
+        return self.GroupOnGeom(grp, name)
+
     ## Creates a mesh group based on the geometrical object \a grp
     #  and gives a \a name, \n if this parameter is not defined
     #  the name is the same as the geometrical group name
@@ -1377,58 +1798,44 @@ class Mesh:
     #  @return SMESH_GroupOnGeom
     #  @ingroup l2_grps_create
     def GroupOnGeom(self, grp, name="", typ=None):
+        AssureGeomPublished( self, grp, name )
         if name == "":
             name = grp.GetName()
-
-        if typ == None:
-            tgeo = str(grp.GetShapeType())
-            if tgeo == "VERTEX":
-                typ = NODE
-            elif tgeo == "EDGE":
-                typ = EDGE
-            elif tgeo == "FACE":
-                typ = FACE
-            elif tgeo == "SOLID":
-                typ = VOLUME
-            elif tgeo == "SHELL":
-                typ = VOLUME
-            elif tgeo == "COMPOUND":
-                try: # it raises on a compound of compounds
-                    if len( self.geompyD.GetObjectIDs( grp )) == 0:
-                        print "Mesh.Group: empty geometric group", GetName( grp )
-                        return 0
-                    pass
-                except:
-                    pass
-                if grp.GetType() == 37: # GEOMImpl_Types.hxx: #define GEOM_GROUP 37
-                    # group
-                    tgeo = self.geompyD.GetType(grp)
-                    if tgeo == geompyDC.ShapeType["VERTEX"]:
-                        typ = NODE
-                    elif tgeo == geompyDC.ShapeType["EDGE"]:
-                        typ = EDGE
-                    elif tgeo == geompyDC.ShapeType["FACE"]:
-                        typ = FACE
-                    elif tgeo == geompyDC.ShapeType["SOLID"]:
-                        typ = VOLUME
-                        pass
-                    pass
-                else:
-                    # just a compound
-                    for elemType, shapeType in [[VOLUME,"SOLID"],[FACE,"FACE"],
-                                                [EDGE,"EDGE"],[NODE,"VERTEX"]]:
-                        if self.geompyD.SubShapeAll(grp,geompyDC.ShapeType[shapeType]):
-                            typ = elemType
-                            break
-                        pass
-                    pass
-                pass
-            pass
-        if typ == None:
-            print "Mesh.Group: bad first argument: expected a group, a vertex, an edge, a face or a solid"
-            return 0
+        if not typ:
+            typ = self._groupTypeFromShape( grp )
+        return self.mesh.CreateGroupFromGEOM(typ, name, grp)
+
+    ## Pivate method to get a type of group on geometry
+    def _groupTypeFromShape( self, shape ):
+        tgeo = str(shape.GetShapeType())
+        if tgeo == "VERTEX":
+            typ = NODE
+        elif tgeo == "EDGE":
+            typ = EDGE
+        elif tgeo == "FACE" or tgeo == "SHELL":
+            typ = FACE
+        elif tgeo == "SOLID" or tgeo == "COMPSOLID":
+            typ = VOLUME
+        elif tgeo == "COMPOUND":
+            sub = self.geompyD.SubShapeAll( shape, geompyDC.ShapeType["SHAPE"])
+            if not sub:
+                raise ValueError,"_groupTypeFromShape(): empty geometric group or compound '%s'" % GetName(shape)
+            return self._groupTypeFromShape( sub[0] )
         else:
-            return self.mesh.CreateGroupFromGEOM(typ, name, grp)
+            raise ValueError, \
+                  "_groupTypeFromShape(): invalid geometry '%s'" % GetName(shape)
+        return typ
+
+    ## Creates a mesh group with given \a name based on the \a filter which
+    ## is a special type of group dynamically updating it's contents during
+    ## mesh modification
+    #  @param typ  the type of elements in the group
+    #  @param name the name of the mesh group
+    #  @param filter the filter defining group contents
+    #  @return SMESH_GroupOnFilter
+    #  @ingroup l2_grps_create
+    def GroupOnFilter(self, typ, name, filter):
+        return self.mesh.CreateGroupFromFilter(typ, name, filter)
 
     ## Creates a mesh group by the given ids of elements
     #  @param groupName the name of the mesh group
@@ -1448,6 +1855,8 @@ class Mesh:
     #  @param Compare belongs to {FT_LessThan, FT_MoreThan, FT_EqualTo}
     #  @param Treshold the threshold value (range of id ids as string, shape, numeric)
     #  @param UnaryOp FT_LogicalNOT or FT_Undefined
+    #  @param Tolerance the tolerance used by FT_BelongToGeom, FT_BelongToSurface,
+    #         FT_LyingOnGeom, FT_CoplanarFaces criteria
     #  @return SMESH_Group
     #  @ingroup l2_grps_create
     def MakeGroup(self,
@@ -1456,8 +1865,9 @@ class Mesh:
                   CritType=FT_Undefined,
                   Compare=FT_EqualTo,
                   Treshold="",
-                  UnaryOp=FT_Undefined):
-        aCriterion = self.smeshpyD.GetCriterion(elementType, CritType, Compare, Treshold, UnaryOp, FT_Undefined)
+                  UnaryOp=FT_Undefined,
+                  Tolerance=1e-07):
+        aCriterion = self.smeshpyD.GetCriterion(elementType, CritType, Compare, Treshold, UnaryOp, FT_Undefined,Tolerance)
         group = self.MakeGroupByCriterion(groupName, aCriterion)
         return group
 
@@ -1473,6 +1883,7 @@ class Mesh:
         aCriteria.append(Criterion)
         aFilter.SetCriteria(aCriteria)
         group = self.MakeGroupByFilter(groupName, aFilter)
+        aFilterMgr.UnRegister()
         return group
 
     ## Creates a mesh group by the given criteria (list of criteria)
@@ -1485,6 +1896,7 @@ class Mesh:
         aFilter = aFilterMgr.CreateFilter()
         aFilter.SetCriteria(theCriteria)
         group = self.MakeGroupByFilter(groupName, aFilter)
+        aFilterMgr.UnRegister()
         return group
 
     ## Creates a mesh group by the given filter
@@ -1493,9 +1905,9 @@ class Mesh:
     #  @return SMESH_Group
     #  @ingroup l2_grps_create
     def MakeGroupByFilter(self, groupName, theFilter):
-        anIds = theFilter.GetElementsId(self.mesh)
-        anElemType = theFilter.GetElementType()
-        group = self.MakeGroupByIds(groupName, anElemType, anIds)
+        group = self.CreateEmptyGroup(theFilter.GetElementType(), groupName)
+        theFilter.SetMesh( self.mesh )
+        group.AddFrom( theFilter )
         return group
 
     ## Passes mesh elements through the given filter and return IDs of fitting elements
@@ -1503,7 +1915,8 @@ class Mesh:
     #  @return a list of ids
     #  @ingroup l1_controls
     def GetIdsFromFilter(self, theFilter):
-        return theFilter.GetElementsId(self.mesh)
+        theFilter.SetMesh( self.mesh )
+        return theFilter.GetIDs()
 
     ## Verifies whether a 2D mesh element has free edges (edges connected to one face only)\n
     #  Returns a list of special structures (borders).
@@ -1514,6 +1927,7 @@ class Mesh:
         aPredicate = aFilterMgr.CreateFreeEdges()
         aPredicate.SetMesh(self.mesh)
         aBorders = aPredicate.GetBorders()
+        aFilterMgr.UnRegister()
         return aBorders
 
     ## Removes a group
@@ -1555,15 +1969,15 @@ class Mesh:
     #  @ingroup l2_grps_operon
     def UnionGroups(self, group1, group2, name):
         return self.mesh.UnionGroups(group1, group2, name)
-        
+
     ## Produces a union list of groups
-    #  New group is created. All mesh elements that are present in 
+    #  New group is created. All mesh elements that are present in
     #  initial groups are added to the new one
     #  @return an instance of SMESH_Group
     #  @ingroup l2_grps_operon
     def UnionListOfGroups(self, groups, name):
       return self.mesh.UnionListOfGroups(groups, name)
-      
+
     ## Prodices an intersection of two groups
     #  A new group is created. All mesh elements that are common
     #  for the two initial groups are added to the new one.
@@ -1571,9 +1985,9 @@ class Mesh:
     #  @ingroup l2_grps_operon
     def IntersectGroups(self, group1, group2, name):
         return self.mesh.IntersectGroups(group1, group2, name)
-        
+
     ## Produces an intersection of groups
-    #  New group is created. All mesh elements that are present in all 
+    #  New group is created. All mesh elements that are present in all
     #  initial groups simultaneously are added to the new one
     #  @return an instance of SMESH_Group
     #  @ingroup l2_grps_operon
@@ -1587,19 +2001,19 @@ class Mesh:
     #  @ingroup l2_grps_operon
     def CutGroups(self, main_group, tool_group, name):
         return self.mesh.CutGroups(main_group, tool_group, name)
-        
+
     ## Produces a cut of groups
-    #  A new group is created. All mesh elements that are present in main groups 
+    #  A new group is created. All mesh elements that are present in main groups
     #  but do not present in tool groups are added to the new one
     #  @return an instance of SMESH_Group
     #  @ingroup l2_grps_operon
     def CutListOfGroups(self, main_groups, tool_groups, name):
       return self.mesh.CutListOfGroups(main_groups, tool_groups, name)
-      
-    ## Produces a group of elements with specified element type using list of existing groups
-    #  A new group is created. System 
-    #  1) extract all nodes on which groups elements are built
-    #  2) combine all elements of specified dimension laying on these nodes
+
+    ## Produces a group of elements of specified type using list of existing groups
+    #  A new group is created. System
+    #  1) extracts all nodes on which groups elements are built
+    #  2) combines all elements of specified dimension laying on these nodes
     #  @return an instance of SMESH_Group
     #  @ingroup l2_grps_operon
     def CreateDimGroup(self, groups, elem_type, name):
@@ -1669,6 +2083,13 @@ class Mesh:
     def GetMeshEditor(self):
         return self.mesh.GetMeshEditor()
 
+    ## Wrap a list of IDs of elements or nodes into SMESH_IDSource which
+    #  can be passed as argument to accepting mesh, group or sub-mesh
+    #  @return an instance of SMESH_IDSource
+    #  @ingroup l1_auxiliary
+    def GetIDSource(self, ids, elemType):
+        return self.GetMeshEditor().MakeIDSource(ids, elemType)
+
     ## Gets MED Mesh
     #  @return an instance of SALOME_MED::MESH
     #  @ingroup l1_auxiliary
@@ -1855,7 +2276,7 @@ class Mesh:
         return self.mesh.GetElementsId()
 
     ## Returns the list of IDs of mesh elements with the given type
-    #  @param elementType  the required type of elements
+    #  @param elementType  the required type of elements (SMESH.NODE, SMESH.EDGE, SMESH.FACE or SMESH.VOLUME)
     #  @return list of integer values
     #  @ingroup l1_meshinfo
     def GetElementsByType(self, elementType):
@@ -1876,6 +2297,12 @@ class Mesh:
     def GetElementType(self, id, iselem):
         return self.mesh.GetElementType(id, iselem)
 
+    ## Returns the geometric type of mesh element
+    #  @return the value from SMESH::EntityType enumeration
+    #  @ingroup l1_meshinfo
+    def GetElementGeomType(self, id):
+        return self.mesh.GetElementGeomType(id)
+
     ## Returns the list of submesh elements IDs
     #  @param Shape a geom object(subshape) IOR
     #         Shape must be the subshape of a ShapeToMesh()
@@ -1999,6 +2426,16 @@ class Mesh:
     def ElemNbFaces(self, id):
         return self.mesh.ElemNbFaces(id)
 
+    ## Returns nodes of given face (counted from zero) for given volumic element.
+    #  @ingroup l1_meshinfo
+    def GetElemFaceNodes(self,elemId, faceIndex):
+        return self.mesh.GetElemFaceNodes(elemId, faceIndex)
+
+    ## Returns an element based on all given nodes.
+    #  @ingroup l1_meshinfo
+    def FindElementByNodes(self,nodes):
+        return self.mesh.FindElementByNodes(nodes)
+
     ## Returns true if the given element is a polygon
     #  @ingroup l1_meshinfo
     def IsPoly(self, id):
@@ -2017,6 +2454,95 @@ class Mesh:
         return self.mesh.BaryCenter(id)
 
 
+    # Get mesh measurements information:
+    # ------------------------------------
+
+    ## Get minimum distance between two nodes, elements or distance to the origin
+    #  @param id1 first node/element id
+    #  @param id2 second node/element id (if 0, distance from @a id1 to the origin is computed)
+    #  @param isElem1 @c True if @a id1 is element id, @c False if it is node id
+    #  @param isElem2 @c True if @a id2 is element id, @c False if it is node id
+    #  @return minimum distance value
+    #  @sa GetMinDistance()
+    def MinDistance(self, id1, id2=0, isElem1=False, isElem2=False):
+        aMeasure = self.GetMinDistance(id1, id2, isElem1, isElem2)
+        return aMeasure.value
+
+    ## Get measure structure specifying minimum distance data between two objects
+    #  @param id1 first node/element id
+    #  @param id2 second node/element id (if 0, distance from @a id1 to the origin is computed)
+    #  @param isElem1 @c True if @a id1 is element id, @c False if it is node id
+    #  @param isElem2 @c True if @a id2 is element id, @c False if it is node id
+    #  @return Measure structure
+    #  @sa MinDistance()
+    def GetMinDistance(self, id1, id2=0, isElem1=False, isElem2=False):
+        if isElem1:
+            id1 = self.editor.MakeIDSource([id1], SMESH.FACE)
+        else:
+            id1 = self.editor.MakeIDSource([id1], SMESH.NODE)
+        if id2 != 0:
+            if isElem2:
+                id2 = self.editor.MakeIDSource([id2], SMESH.FACE)
+            else:
+                id2 = self.editor.MakeIDSource([id2], SMESH.NODE)
+            pass
+        else:
+            id2 = None
+
+        aMeasurements = self.smeshpyD.CreateMeasurements()
+        aMeasure = aMeasurements.MinDistance(id1, id2)
+        aMeasurements.UnRegister()
+        return aMeasure
+
+    ## Get bounding box of the specified object(s)
+    #  @param objects single source object or list of source objects or list of nodes/elements IDs
+    #  @param isElem if @a objects is a list of IDs, @c True value in this parameters specifies that @a objects are elements,
+    #  @c False specifies that @a objects are nodes
+    #  @return tuple of six values (minX, minY, minZ, maxX, maxY, maxZ)
+    #  @sa GetBoundingBox()
+    def BoundingBox(self, objects=None, isElem=False):
+        result = self.GetBoundingBox(objects, isElem)
+        if result is None:
+            result = (0.0,)*6
+        else:
+            result = (result.minX, result.minY, result.minZ, result.maxX, result.maxY, result.maxZ)
+        return result
+
+    ## Get measure structure specifying bounding box data of the specified object(s)
+    #  @param IDs single source object or list of source objects or list of nodes/elements IDs
+    #  @param isElem if @a objects is a list of IDs, @c True value in this parameters specifies that @a objects are elements,
+    #  @c False specifies that @a objects are nodes
+    #  @return Measure structure
+    #  @sa BoundingBox()
+    def GetBoundingBox(self, IDs=None, isElem=False):
+        if IDs is None:
+            IDs = [self.mesh]
+        elif isinstance(IDs, tuple):
+            IDs = list(IDs)
+        if not isinstance(IDs, list):
+            IDs = [IDs]
+        if len(IDs) > 0 and isinstance(IDs[0], int):
+            IDs = [IDs]
+        srclist = []
+        for o in IDs:
+            if isinstance(o, Mesh):
+                srclist.append(o.mesh)
+            elif hasattr(o, "_narrow"):
+                src = o._narrow(SMESH.SMESH_IDSource)
+                if src: srclist.append(src)
+                pass
+            elif isinstance(o, list):
+                if isElem:
+                    srclist.append(self.editor.MakeIDSource(o, SMESH.FACE))
+                else:
+                    srclist.append(self.editor.MakeIDSource(o, SMESH.NODE))
+                pass
+            pass
+        aMeasurements = self.smeshpyD.CreateMeasurements()
+        aMeasure = aMeasurements.BoundingBox(srclist)
+        aMeasurements.UnRegister()
+        return aMeasure
+
     # Mesh edition (SMESH_MeshEditor functionality):
     # ---------------------------------------------
 
@@ -2034,6 +2560,12 @@ class Mesh:
     def RemoveNodes(self, IDsOfNodes):
         return self.editor.RemoveNodes(IDsOfNodes)
 
+    ## Removes all orphan (free) nodes from mesh
+    #  @return number of the removed nodes
+    #  @ingroup l2_modif_del
+    def RemoveOrphanNodes(self):
+        return self.editor.RemoveOrphanNodes()
+
     ## Add a node to the mesh by coordinates
     #  @return Id of the new node
     #  @ingroup l2_modif_add
@@ -2054,7 +2586,7 @@ class Mesh:
     #  @param IDsOfNodes the list of node IDs for creation of the element.
     #  The order of nodes in this list should correspond to the description
     #  of MED. \n This description is located by the following link:
-    #  http://www.salome-platform.org/salome2/web_med_internet/logiciels/medV2.2.2_doc_html/html/modele_de_donnees.html#3.
+    #  http://www.code-aster.org/outils/med/html/modele_de_donnees.html#3.
     #  @return the Id of the new edge
     #  @ingroup l2_modif_add
     def AddEdge(self, IDsOfNodes):
@@ -2065,7 +2597,7 @@ class Mesh:
     #  @param IDsOfNodes the list of node IDs for creation of the element.
     #  The order of nodes in this list should correspond to the description
     #  of MED. \n This description is located by the following link:
-    #  http://www.salome-platform.org/salome2/web_med_internet/logiciels/medV2.2.2_doc_html/html/modele_de_donnees.html#3.
+    #  http://www.code-aster.org/outils/med/html/modele_de_donnees.html#3.
     #  @return the Id of the new face
     #  @ingroup l2_modif_add
     def AddFace(self, IDsOfNodes):
@@ -2083,7 +2615,7 @@ class Mesh:
     #  @param IDsOfNodes the list of node IDs for creation of the element.
     #  The order of nodes in this list should correspond to the description
     #  of MED. \n This description is located by the following link:
-    #  http://www.salome-platform.org/salome2/web_med_internet/logiciels/medV2.2.2_doc_html/html/modele_de_donnees.html#3.
+    #  http://www.code-aster.org/outils/med/html/modele_de_donnees.html#3.
     #  @return the Id of the new volumic element
     #  @ingroup l2_modif_add
     def AddVolume(self, IDsOfNodes):
@@ -2236,11 +2768,20 @@ class Mesh:
     #  @param z  the Z coordinate of a point
     #  @param elementType type of elements to find (SMESH.ALL type
     #         means elements of any type excluding nodes and 0D elements)
+    #  @param meshPart a part of mesh (group, sub-mesh) to search within
     #  @return list of IDs of found elements
     #  @ingroup l2_modif_throughp
-    def FindElementsByPoint(self, x, y, z, elementType = SMESH.ALL):
-        return self.editor.FindElementsByPoint(x, y, z, elementType)
-        
+    def FindElementsByPoint(self, x, y, z, elementType = SMESH.ALL, meshPart=None):
+        if meshPart:
+            return self.editor.FindAmongElementsByPoint( meshPart, x, y, z, elementType );
+        else:
+            return self.editor.FindElementsByPoint(x, y, z, elementType)
+
+    # Return point state in a closed 2D mesh in terms of TopAbs_State enumeration.
+    # TopAbs_UNKNOWN state means that either mesh is wrong or the analysis fails.
+
+    def GetPointState(self, x, y, z):
+        return self.editor.GetPointState(x, y, z)
 
     ## Finds the node closest to a point and moves it to a point location
     #  @param x  the X coordinate of a point
@@ -2306,7 +2847,7 @@ class Mesh:
             IDsOfElements = self.GetElementsId()
         self.mesh.SetParameters(Parameters)
         Functor = 0
-       if ( isinstance( theCriterion, SMESH._objref_NumericalFunctor ) ):
+        if ( isinstance( theCriterion, SMESH._objref_NumericalFunctor ) ):
             Functor = theCriterion
         else:
             Functor = self.smeshpyD.GetFunctor(theCriterion)
@@ -2373,6 +2914,18 @@ class Mesh:
     def BestSplit (self, IDOfQuad, theCriterion):
         return self.editor.BestSplit(IDOfQuad, self.smeshpyD.GetFunctor(theCriterion))
 
+    ## Splits volumic elements into tetrahedrons
+    #  @param elemIDs either list of elements or mesh or group or submesh
+    #  @param method  flags passing splitting method: Hex_5Tet, Hex_6Tet, Hex_24Tet
+    #         Hex_5Tet - split the hexahedron into 5 tetrahedrons, etc
+    #  @ingroup l2_modif_cutquadr
+    def SplitVolumesIntoTetra(self, elemIDs, method=Hex_5Tet ):
+        if isinstance( elemIDs, Mesh ):
+            elemIDs = elemIDs.GetMesh()
+        if ( isinstance( elemIDs, list )):
+            elemIDs = self.editor.MakeIDSource(elemIDs, SMESH.VOLUME)
+        self.editor.SplitVolumesIntoTetra(elemIDs, method)
+
     ## Splits quadrangle faces near triangular facets of volumes
     #
     #  @ingroup l1_auxiliary
@@ -2585,24 +3138,87 @@ class Mesh:
 
     ## Converts the mesh to quadratic, deletes old elements, replacing
     #  them with quadratic with the same id.
+    #  @param theForce3d new node creation method:
+    #         0 - the medium node lies at the geometrical entity from which the mesh element is built
+    #         1 - the medium node lies at the middle of the line segments connecting start and end node of a mesh element
+    #  @param theSubMesh a group or a sub-mesh to convert; WARNING: in this case the mesh can become not conformal
     #  @ingroup l2_modif_tofromqu
-    def ConvertToQuadratic(self, theForce3d):
-        self.editor.ConvertToQuadratic(theForce3d)
+    def ConvertToQuadratic(self, theForce3d, theSubMesh=None):
+        if theSubMesh:
+            self.editor.ConvertToQuadraticObject(theForce3d,theSubMesh)
+        else:
+            self.editor.ConvertToQuadratic(theForce3d)
 
     ## Converts the mesh from quadratic to ordinary,
     #  deletes old quadratic elements, \n replacing
     #  them with ordinary mesh elements with the same id.
-    #  @return TRUE in case of success, FALSE otherwise.
+    #  @param theSubMesh a group or a sub-mesh to convert; WARNING: in this case the mesh can become not conformal
     #  @ingroup l2_modif_tofromqu
-    def ConvertFromQuadratic(self):
-        return self.editor.ConvertFromQuadratic()
+    def ConvertFromQuadratic(self, theSubMesh=None):
+        if theSubMesh:
+            self.editor.ConvertFromQuadraticObject(theSubMesh)
+        else:
+            return self.editor.ConvertFromQuadratic()
 
     ## Creates 2D mesh as skin on boundary faces of a 3D mesh
     #  @return TRUE if operation has been completed successfully, FALSE otherwise
     #  @ingroup l2_modif_edit
     def  Make2DMeshFrom3D(self):
         return self.editor. Make2DMeshFrom3D()
-        
+
+    ## Creates missing boundary elements
+    #  @param elements - elements whose boundary is to be checked:
+    #                    mesh, group, sub-mesh or list of elements
+    #   if elements is mesh, it must be the mesh whose MakeBoundaryMesh() is called
+    #  @param dimension - defines type of boundary elements to create:
+    #                     SMESH.BND_2DFROM3D, SMESH.BND_1DFROM3D, SMESH.BND_1DFROM2D
+    #    SMESH.BND_1DFROM3D creates mesh edges on all borders of free facets of 3D cells
+    #  @param groupName - a name of group to store created boundary elements in,
+    #                     "" means not to create the group
+    #  @param meshName - a name of new mesh to store created boundary elements in,
+    #                     "" means not to create the new mesh
+    #  @param toCopyElements - if true, the checked elements will be copied into
+    #     the new mesh else only boundary elements will be copied into the new mesh
+    #  @param toCopyExistingBondary - if true, not only new but also pre-existing
+    #     boundary elements will be copied into the new mesh
+    #  @return tuple (mesh, group) where bondary elements were added to
+    #  @ingroup l2_modif_edit
+    def MakeBoundaryMesh(self, elements, dimension=SMESH.BND_2DFROM3D, groupName="", meshName="",
+                         toCopyElements=False, toCopyExistingBondary=False):
+        if isinstance( elements, Mesh ):
+            elements = elements.GetMesh()
+        if ( isinstance( elements, list )):
+            elemType = SMESH.ALL
+            if elements: elemType = self.GetElementType( elements[0], iselem=True)
+            elements = self.editor.MakeIDSource(elements, elemType)
+        mesh, group = self.editor.MakeBoundaryMesh(elements,dimension,groupName,meshName,
+                                                   toCopyElements,toCopyExistingBondary)
+        if mesh: mesh = self.smeshpyD.Mesh(mesh)
+        return mesh, group
+
+    ##
+    # @brief Creates missing boundary elements around either the whole mesh or 
+    #    groups of 2D elements
+    #  @param dimension - defines type of boundary elements to create
+    #  @param groupName - a name of group to store all boundary elements in,
+    #    "" means not to create the group
+    #  @param meshName - a name of a new mesh, which is a copy of the initial 
+    #    mesh + created boundary elements; "" means not to create the new mesh
+    #  @param toCopyAll - if true, the whole initial mesh will be copied into
+    #    the new mesh else only boundary elements will be copied into the new mesh
+    #  @param groups - groups of 2D elements to make boundary around
+    #  @retval tuple( long, mesh, groups )
+    #                 long - number of added boundary elements
+    #                 mesh - the mesh where elements were added to
+    #                 group - the group of boundary elements or None
+    #
+    def MakeBoundaryElements(self, dimension=SMESH.BND_2DFROM3D, groupName="", meshName="",
+                             toCopyAll=False, groups=[]):
+        nb, mesh, group = self.editor.MakeBoundaryElements(dimension,groupName,meshName,
+                                                           toCopyAll,groups)
+        if mesh: mesh = self.smeshpyD.Mesh(mesh)
+        return nb, mesh, group
+
     ## Renumber mesh nodes
     #  @ingroup l2_modif_renumber
     def RenumberNodes(self):
@@ -2649,7 +3265,8 @@ class Mesh:
         return []
 
     ## Generates new elements by rotation of the elements of object around the axis
-    #  @param theObject object which elements should be sweeped
+    #  @param theObject object which elements should be sweeped.
+    #                   It can be a mesh, a sub mesh or a group.
     #  @param Axis the axis of rotation, AxisStruct or line(geom object)
     #  @param AngleInRadians the angle of Rotation
     #  @param NbOfSteps number of steps
@@ -2684,7 +3301,8 @@ class Mesh:
         return []
 
     ## Generates new elements by rotation of the elements of object around the axis
-    #  @param theObject object which elements should be sweeped
+    #  @param theObject object which elements should be sweeped.
+    #                   It can be a mesh, a sub mesh or a group.
     #  @param Axis the axis of rotation, AxisStruct or line(geom object)
     #  @param AngleInRadians the angle of Rotation
     #  @param NbOfSteps number of steps
@@ -2719,7 +3337,8 @@ class Mesh:
         return []
 
     ## Generates new elements by rotation of the elements of object around the axis
-    #  @param theObject object which elements should be sweeped
+    #  @param theObject object which elements should be sweeped.
+    #                   It can be a mesh, a sub mesh or a group.
     #  @param Axis the axis of rotation, AxisStruct or line(geom object)
     #  @param AngleInRadians the angle of Rotation
     #  @param NbOfSteps number of steps
@@ -2755,7 +3374,7 @@ class Mesh:
 
     ## Generates new elements by extrusion of the elements with given ids
     #  @param IDsOfElements the list of elements ids for extrusion
-    #  @param StepVector vector, defining the direction and value of extrusion
+    #  @param StepVector vector or DirStruct, defining the direction and value of extrusion for one step (the total extrusion length will be NbOfSteps * ||StepVector||)
     #  @param NbOfSteps the number of steps
     #  @param MakeGroups forces the generation of new groups from existing ones
     #  @return the list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
@@ -2796,8 +3415,9 @@ class Mesh:
         return []
 
     ## Generates new elements by extrusion of the elements which belong to the object
-    #  @param theObject the object which elements should be processed
-    #  @param StepVector vector, defining the direction and value of extrusion
+    #  @param theObject the object which elements should be processed.
+    #                   It can be a mesh, a sub mesh or a group.
+    #  @param StepVector vector, defining the direction and value of extrusion for one step (the total extrusion length will be NbOfSteps * ||StepVector||)
     #  @param NbOfSteps the number of steps
     #  @param MakeGroups forces the generation of new groups from existing ones
     #  @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
@@ -2817,8 +3437,9 @@ class Mesh:
         return []
 
     ## Generates new elements by extrusion of the elements which belong to the object
-    #  @param theObject object which elements should be processed
-    #  @param StepVector vector, defining the direction and value of extrusion
+    #  @param theObject object which elements should be processed.
+    #                   It can be a mesh, a sub mesh or a group.
+    #  @param StepVector vector, defining the direction and value of extrusion for one step (the total extrusion length will be NbOfSteps * ||StepVector||)
     #  @param NbOfSteps the number of steps
     #  @param MakeGroups to generate new groups from existing ones
     #  @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
@@ -2838,8 +3459,9 @@ class Mesh:
         return []
 
     ## Generates new elements by extrusion of the elements which belong to the object
-    #  @param theObject object which elements should be processed
-    #  @param StepVector vector, defining the direction and value of extrusion
+    #  @param theObject object which elements should be processed.
+    #                   It can be a mesh, a sub mesh or a group.
+    #  @param StepVector vector, defining the direction and value of extrusion for one step (the total extrusion length will be NbOfSteps * ||StepVector||)
     #  @param NbOfSteps the number of steps
     #  @param MakeGroups forces the generation of new groups from existing ones
     #  @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
@@ -2862,7 +3484,7 @@ class Mesh:
 
     ## Generates new elements by extrusion of the given elements
     #  The path of extrusion must be a meshed edge.
-    #  @param Base mesh or list of ids of elements for extrusion
+    #  @param Base mesh or group, or submesh, or list of ids of elements for extrusion
     #  @param Path - 1D mesh or 1D sub-mesh, along which proceeds the extrusion
     #  @param NodeStart the start node from Path. Defines the direction of extrusion
     #  @param HasAngles allows the shape to be rotated around the path
@@ -2889,7 +3511,9 @@ class Mesh:
         Parameters = AnglesParameters + var_separator + RefPointParameters
         self.mesh.SetParameters(Parameters)
 
-        if isinstance(Base,list):
+        if (isinstance(Path, Mesh)): Path = Path.GetMesh()
+
+        if isinstance(Base, list):
             IDsOfElements = []
             if Base == []: IDsOfElements = self.GetElementsId()
             else: IDsOfElements = Base
@@ -2897,7 +3521,8 @@ class Mesh:
                                                    HasAngles, Angles, LinearVariation,
                                                    HasRefPoint, RefPoint, MakeGroups, ElemType)
         else:
-            if isinstance(Base,Mesh):
+            if isinstance(Base, Mesh): Base = Base.GetMesh()
+            if isinstance(Base, SMESH._objref_SMESH_Mesh) or isinstance(Base, SMESH._objref_SMESH_Group) or isinstance(Base, SMESH._objref_SMESH_subMesh):
                 return self.editor.ExtrusionAlongPathObjX(Base, Path, NodeStart,
                                                           HasAngles, Angles, LinearVariation,
                                                           HasRefPoint, RefPoint, MakeGroups, ElemType)
@@ -2949,7 +3574,8 @@ class Mesh:
 
     ## Generates new elements by extrusion of the elements which belong to the object
     #  The path of extrusion must be a meshed edge.
-    #  @param theObject the object which elements should be processed
+    #  @param theObject the object which elements should be processed.
+    #                   It can be a mesh, a sub mesh or a group.
     #  @param PathMesh mesh containing a 1D sub-mesh on the edge, along which the extrusion proceeds
     #  @param PathShape shape(edge) defines the sub-mesh for the path
     #  @param NodeStart the first or the last node on the edge. Defines the direction of extrusion
@@ -2991,7 +3617,8 @@ class Mesh:
 
     ## Generates new elements by extrusion of the elements which belong to the object
     #  The path of extrusion must be a meshed edge.
-    #  @param theObject the object which elements should be processed
+    #  @param theObject the object which elements should be processed.
+    #                   It can be a mesh, a sub mesh or a group.
     #  @param PathMesh mesh containing a 1D sub-mesh on the edge, along which the extrusion proceeds
     #  @param PathShape shape(edge) defines the sub-mesh for the path
     #  @param NodeStart the first or the last node on the edge. Defines the direction of extrusion
@@ -3033,7 +3660,8 @@ class Mesh:
 
     ## Generates new elements by extrusion of the elements which belong to the object
     #  The path of extrusion must be a meshed edge.
-    #  @param theObject the object which elements should be processed
+    #  @param theObject the object which elements should be processed.
+    #                   It can be a mesh, a sub mesh or a group.
     #  @param PathMesh mesh containing a 1D sub-mesh on the edge, along which the extrusion proceeds
     #  @param PathShape shape(edge) defines the sub-mesh for the path
     #  @param NodeStart the first or the last node on the edge. Defines the direction of extrusion
@@ -3227,6 +3855,51 @@ class Mesh:
         mesh.SetParameters(Parameters)
         return Mesh( self.smeshpyD, self.geompyD, mesh )
 
+
+
+    ## Scales the object
+    #  @param theObject - the object to translate (mesh, submesh, or group)
+    #  @param thePoint - base point for scale
+    #  @param theScaleFact - list of 1-3 scale factors for axises
+    #  @param Copy - allows copying the translated elements
+    #  @param MakeGroups - forces the generation of new groups from existing
+    #                      ones (if Copy)
+    #  @return list of created groups (SMESH_GroupBase) if MakeGroups=True,
+    #          empty list otherwise
+    def Scale(self, theObject, thePoint, theScaleFact, Copy, MakeGroups=False):
+        if ( isinstance( theObject, Mesh )):
+            theObject = theObject.GetMesh()
+        if ( isinstance( theObject, list )):
+            theObject = self.GetIDSource(theObject, SMESH.ALL)
+
+        thePoint, Parameters = ParsePointStruct(thePoint)
+        self.mesh.SetParameters(Parameters)
+
+        if Copy and MakeGroups:
+            return self.editor.ScaleMakeGroups(theObject, thePoint, theScaleFact)
+        self.editor.Scale(theObject, thePoint, theScaleFact, Copy)
+        return []
+
+    ## Creates a new mesh from the translated object
+    #  @param theObject - the object to translate (mesh, submesh, or group)
+    #  @param thePoint - base point for scale
+    #  @param theScaleFact - list of 1-3 scale factors for axises
+    #  @param MakeGroups - forces the generation of new groups from existing ones
+    #  @param NewMeshName - the name of the newly created mesh
+    #  @return instance of Mesh class
+    def ScaleMakeMesh(self, theObject, thePoint, theScaleFact, MakeGroups=False, NewMeshName=""):
+        if (isinstance(theObject, Mesh)):
+            theObject = theObject.GetMesh()
+        if ( isinstance( theObject, list )):
+            theObject = self.GetIDSource(theObject,SMESH.ALL)
+
+        mesh = self.editor.ScaleMakeMesh(theObject, thePoint, theScaleFact,
+                                         MakeGroups, NewMeshName)
+        #mesh.SetParameters(Parameters)
+        return Mesh( self.smeshpyD, self.geompyD, mesh )
+
+
+
     ## Rotates the elements
     #  @param IDsOfElements list of elements ids
     #  @param Axis the axis of rotation (AxisStruct or geom line)
@@ -3343,10 +4016,17 @@ class Mesh:
     ## Finds groups of ajacent nodes within Tolerance.
     #  @param Tolerance the value of tolerance
     #  @param SubMeshOrGroup SubMesh or Group
+    #  @param exceptNodes list of either SubMeshes, Groups or node IDs to exclude from search
     #  @return the list of groups of nodes
     #  @ingroup l2_modif_trsf
-    def FindCoincidentNodesOnPart (self, SubMeshOrGroup, Tolerance):
-        return self.editor.FindCoincidentNodesOnPart(SubMeshOrGroup, Tolerance)
+    def FindCoincidentNodesOnPart (self, SubMeshOrGroup, Tolerance, exceptNodes=[]):
+        if (isinstance( SubMeshOrGroup, Mesh )):
+            SubMeshOrGroup = SubMeshOrGroup.GetMesh()
+        if not isinstance( exceptNodes, list):
+            exceptNodes = [ exceptNodes ]
+        if exceptNodes and isinstance( exceptNodes[0], int):
+            exceptNodes = [ self.GetIDSource( exceptNodes, SMESH.NODE)]
+        return self.editor.FindCoincidentNodesOnPartBut(SubMeshOrGroup, Tolerance,exceptNodes)
 
     ## Merges nodes
     #  @param GroupsOfNodes the list of groups of nodes
@@ -3441,52 +4121,59 @@ class Mesh:
 
      ## Creates a hole in a mesh by doubling the nodes of some particular elements
     #  @param theNodes identifiers of nodes to be doubled
-    #  @param theModifiedElems identifiers of elements to be updated by the new (doubled) 
-    #         nodes. If list of element identifiers is empty then nodes are doubled but 
+    #  @param theModifiedElems identifiers of elements to be updated by the new (doubled)
+    #         nodes. If list of element identifiers is empty then nodes are doubled but
     #         they not assigned to elements
     #  @return TRUE if operation has been completed successfully, FALSE otherwise
     #  @ingroup l2_modif_edit
     def DoubleNodes(self, theNodes, theModifiedElems):
         return self.editor.DoubleNodes(theNodes, theModifiedElems)
-        
+
     ## Creates a hole in a mesh by doubling the nodes of some particular elements
     #  This method provided for convenience works as DoubleNodes() described above.
-    #  @param theNodes identifiers of node to be doubled
+    #  @param theNodeId identifiers of node to be doubled
     #  @param theModifiedElems identifiers of elements to be updated
     #  @return TRUE if operation has been completed successfully, FALSE otherwise
     #  @ingroup l2_modif_edit
     def DoubleNode(self, theNodeId, theModifiedElems):
         return self.editor.DoubleNode(theNodeId, theModifiedElems)
-        
+
     ## Creates a hole in a mesh by doubling the nodes of some particular elements
     #  This method provided for convenience works as DoubleNodes() described above.
     #  @param theNodes group of nodes to be doubled
     #  @param theModifiedElems group of elements to be updated.
-    #  @return TRUE if operation has been completed successfully, FALSE otherwise
+    #  @param theMakeGroup forces the generation of a group containing new nodes.
+    #  @return TRUE or a created group if operation has been completed successfully,
+    #          FALSE or None otherwise
     #  @ingroup l2_modif_edit
-    def DoubleNodeGroup(self, theNodes, theModifiedElems):
+    def DoubleNodeGroup(self, theNodes, theModifiedElems, theMakeGroup=False):
+        if theMakeGroup:
+            return self.editor.DoubleNodeGroupNew(theNodes, theModifiedElems)
         return self.editor.DoubleNodeGroup(theNodes, theModifiedElems)
-        
+
     ## Creates a hole in a mesh by doubling the nodes of some particular elements
     #  This method provided for convenience works as DoubleNodes() described above.
     #  @param theNodes list of groups of nodes to be doubled
     #  @param theModifiedElems list of groups of elements to be updated.
+    #  @param theMakeGroup forces the generation of a group containing new nodes.
     #  @return TRUE if operation has been completed successfully, FALSE otherwise
     #  @ingroup l2_modif_edit
-    def DoubleNodeGroups(self, theNodes, theModifiedElems):
+    def DoubleNodeGroups(self, theNodes, theModifiedElems, theMakeGroup=False):
+        if theMakeGroup:
+            return self.editor.DoubleNodeGroupsNew(theNodes, theModifiedElems)
         return self.editor.DoubleNodeGroups(theNodes, theModifiedElems)
-    
+
     ## Creates a hole in a mesh by doubling the nodes of some particular elements
     #  @param theElems - the list of elements (edges or faces) to be replicated
     #         The nodes for duplication could be found from these elements
     #  @param theNodesNot - list of nodes to NOT replicate
-    #  @param theAffectedElems - the list of elements (cells and edges) to which the 
+    #  @param theAffectedElems - the list of elements (cells and edges) to which the
     #         replicated nodes should be associated to.
     #  @return TRUE if operation has been completed successfully, FALSE otherwise
     #  @ingroup l2_modif_edit
     def DoubleNodeElem(self, theElems, theNodesNot, theAffectedElems):
         return self.editor.DoubleNodeElem(theElems, theNodesNot, theAffectedElems)
-        
+
     ## Creates a hole in a mesh by doubling the nodes of some particular elements
     #  @param theElems - the list of elements (edges or faces) to be replicated
     #         The nodes for duplication could be found from these elements
@@ -3498,17 +4185,22 @@ class Mesh:
     #  @ingroup l2_modif_edit
     def DoubleNodeElemInRegion(self, theElems, theNodesNot, theShape):
         return self.editor.DoubleNodeElemInRegion(theElems, theNodesNot, theShape)
-    
+
     ## Creates a hole in a mesh by doubling the nodes of some particular elements
     #  This method provided for convenience works as DoubleNodes() described above.
     #  @param theElems - group of of elements (edges or faces) to be replicated
     #  @param theNodesNot - group of nodes not to replicated
     #  @param theAffectedElems - group of elements to which the replicated nodes
     #         should be associated to.
+    #  @param theMakeGroup forces the generation of a group containing new elements.
+    #  @return TRUE or a created group if operation has been completed successfully,
+    #          FALSE or None otherwise
     #  @ingroup l2_modif_edit
-    def DoubleNodeElemGroup(self, theElems, theNodesNot, theAffectedElems):
+    def DoubleNodeElemGroup(self, theElems, theNodesNot, theAffectedElems, theMakeGroup=False):
+        if theMakeGroup:
+            return self.editor.DoubleNodeElemGroupNew(theElems, theNodesNot, theAffectedElems)
         return self.editor.DoubleNodeElemGroup(theElems, theNodesNot, theAffectedElems)
-        
+
     ## Creates a hole in a mesh by doubling the nodes of some particular elements
     #  This method provided for convenience works as DoubleNodes() described above.
     #  @param theElems - group of of elements (edges or faces) to be replicated
@@ -3518,17 +4210,21 @@ class Mesh:
     #         The replicated nodes should be associated to affected elements.
     #  @ingroup l2_modif_edit
     def DoubleNodeElemGroupInRegion(self, theElems, theNodesNot, theShape):
-        return self.editor.DoubleNodeElemGroup(theElems, theNodesNot, theShape)
-        
+        return self.editor.DoubleNodeElemGroupInRegion(theElems, theNodesNot, theShape)
+
     ## Creates a hole in a mesh by doubling the nodes of some particular elements
     #  This method provided for convenience works as DoubleNodes() described above.
     #  @param theElems - list of groups of elements (edges or faces) to be replicated
     #  @param theNodesNot - list of groups of nodes not to replicated
     #  @param theAffectedElems - group of elements to which the replicated nodes
     #         should be associated to.
-    #  @return TRUE if operation has been completed successfully, FALSE otherwise
+    #  @param theMakeGroup forces the generation of a group containing new elements.
+    #  @return TRUE or a created group if operation has been completed successfully,
+    #          FALSE or None otherwise
     #  @ingroup l2_modif_edit
-    def DoubleNodeElemGroups(self, theElems, theNodesNot, theAffectedElems):
+    def DoubleNodeElemGroups(self, theElems, theNodesNot, theAffectedElems, theMakeGroup=False):
+        if theMakeGroup:
+            return self.editor.DoubleNodeElemGroupsNew(theElems, theNodesNot, theAffectedElems)
         return self.editor.DoubleNodeElemGroups(theElems, theNodesNot, theAffectedElems)
 
     ## Creates a hole in a mesh by doubling the nodes of some particular elements
@@ -3543,6 +4239,107 @@ class Mesh:
     def DoubleNodeElemGroupsInRegion(self, theElems, theNodesNot, theShape):
         return self.editor.DoubleNodeElemGroupsInRegion(theElems, theNodesNot, theShape)
 
+    ## Double nodes on shared faces between groups of volumes and create flat elements on demand.
+    # The list of groups must describe a partition of the mesh volumes.
+    # The nodes of the internal faces at the boundaries of the groups are doubled.
+    # In option, the internal faces are replaced by flat elements.
+    # Triangles are transformed in prisms, and quadrangles in hexahedrons.
+    # @param theDomains - list of groups of volumes
+    # @param createJointElems - if TRUE, create the elements
+    # @return TRUE if operation has been completed successfully, FALSE otherwise
+    def DoubleNodesOnGroupBoundaries(self, theDomains, createJointElems ):
+       return self.editor.DoubleNodesOnGroupBoundaries( theDomains, createJointElems )
+
+    ## Double nodes on some external faces and create flat elements.
+    # Flat elements are mainly used by some types of mechanic calculations.
+    #
+    # Each group of the list must be constituted of faces.
+    # Triangles are transformed in prisms, and quadrangles in hexahedrons.
+    # @param theGroupsOfFaces - list of groups of faces
+    # @return TRUE if operation has been completed successfully, FALSE otherwise
+    def CreateFlatElementsOnFacesGroups(self, theGroupsOfFaces ):
+        return self.editor.CreateFlatElementsOnFacesGroups( theGroupsOfFaces )
+
+    def _valueFromFunctor(self, funcType, elemId):
+        fn = self.smeshpyD.GetFunctor(funcType)
+        fn.SetMesh(self.mesh)
+        if fn.GetElementType() == self.GetElementType(elemId, True):
+            val = fn.GetValue(elemId)
+        else:
+            val = 0
+        return val
+
+    ## Get length of 1D element.
+    #  @param elemId mesh element ID
+    #  @return element's length value
+    #  @ingroup l1_measurements
+    def GetLength(self, elemId):
+        return self._valueFromFunctor(SMESH.FT_Length, elemId)
+
+    ## Get area of 2D element.
+    #  @param elemId mesh element ID
+    #  @return element's area value
+    #  @ingroup l1_measurements
+    def GetArea(self, elemId):
+        return self._valueFromFunctor(SMESH.FT_Area, elemId)
+
+    ## Get volume of 3D element.
+    #  @param elemId mesh element ID
+    #  @return element's volume value
+    #  @ingroup l1_measurements
+    def GetVolume(self, elemId):
+        return self._valueFromFunctor(SMESH.FT_Volume3D, elemId)
+
+    ## Get maximum element length.
+    #  @param elemId mesh element ID
+    #  @return element's maximum length value
+    #  @ingroup l1_measurements
+    def GetMaxElementLength(self, elemId):
+        if self.GetElementType(elemId, True) == SMESH.VOLUME:
+            ftype = SMESH.FT_MaxElementLength3D
+        else:
+            ftype = SMESH.FT_MaxElementLength2D
+        return self._valueFromFunctor(ftype, elemId)
+
+    ## Get aspect ratio of 2D or 3D element.
+    #  @param elemId mesh element ID
+    #  @return element's aspect ratio value
+    #  @ingroup l1_measurements
+    def GetAspectRatio(self, elemId):
+        if self.GetElementType(elemId, True) == SMESH.VOLUME:
+            ftype = SMESH.FT_AspectRatio3D
+        else:
+            ftype = SMESH.FT_AspectRatio
+        return self._valueFromFunctor(ftype, elemId)
+
+    ## Get warping angle of 2D element.
+    #  @param elemId mesh element ID
+    #  @return element's warping angle value
+    #  @ingroup l1_measurements
+    def GetWarping(self, elemId):
+        return self._valueFromFunctor(SMESH.FT_Warping, elemId)
+
+    ## Get minimum angle of 2D element.
+    #  @param elemId mesh element ID
+    #  @return element's minimum angle value
+    #  @ingroup l1_measurements
+    def GetMinimumAngle(self, elemId):
+        return self._valueFromFunctor(SMESH.FT_MinimumAngle, elemId)
+
+    ## Get taper of 2D element.
+    #  @param elemId mesh element ID
+    #  @return element's taper value
+    #  @ingroup l1_measurements
+    def GetTaper(self, elemId):
+        return self._valueFromFunctor(SMESH.FT_Taper, elemId)
+
+    ## Get skew of 2D element.
+    #  @param elemId mesh element ID
+    #  @return element's skew value
+    #  @ingroup l1_measurements
+    def GetSkew(self, elemId):
+        return self._valueFromFunctor(SMESH.FT_Skew, elemId)
+
 ## The mother class to define algorithm, it is not recommended to use it directly.
 #
 #  More details.
@@ -3684,20 +4481,22 @@ class Mesh_Algorithm:
         if geom is None:
             raise RuntimeError, "Attemp to create " + algo + " algoritm on None shape"
         self.mesh = mesh
-        piece = mesh.geom
+        name = ""
         if not geom:
-            self.geom = piece
+            self.geom = mesh.geom
         else:
             self.geom = geom
-            name = GetName(geom)
-            if name==NO_NAME:
-                name = mesh.geompyD.SubShapeName(geom, piece)
-                mesh.geompyD.addToStudyInFather(piece, geom, name)
+            AssureGeomPublished( mesh, geom )
+            try:
+                name = GetName(geom)
+                pass
+            except:
+                pass
             self.subm = mesh.mesh.GetSubMesh(geom, algo.GetName())
-
         self.algo = algo
         status = mesh.mesh.AddHypothesis(self.geom, self.algo)
-        TreatHypoStatus( status, algo.GetName(), GetName(self.geom), True )
+        TreatHypoStatus( status, algo.GetName(), name, True )
+        return
 
     def CompareHyp (self, hyp, args):
         print "CompareHyp is not implemented for ", self.__class__.__name__, ":", hyp.GetName()
@@ -3727,8 +4526,11 @@ class Mesh_Algorithm:
                 pass
             self.mesh.smeshpyD.SetName(hypo, hyp + a)
             pass
+        geomName=""
+        if self.geom:
+            geomName = GetName(self.geom)
         status = self.mesh.mesh.AddHypothesis(self.geom, hypo)
-        TreatHypoStatus( status, GetName(hypo), GetName(self.geom), 0 )
+        TreatHypoStatus( status, GetName(hypo), geomName, 0 )
         return hypo
 
     ## Returns entry of the shape to mesh in the study
@@ -3743,6 +4545,29 @@ class Mesh_Algorithm:
         if not entry: return ""
         return entry
 
+    ## Defines "ViscousLayers" hypothesis to give parameters of layers of prisms to build
+    #  near mesh boundary. This hypothesis can be used by several 3D algorithms:
+    #  NETGEN 3D, GHS3D, Hexahedron(i,j,k)
+    #  @param thickness total thickness of layers of prisms
+    #  @param numberOfLayers number of layers of prisms
+    #  @param stretchFactor factor (>1.0) of growth of layer thickness towards inside of mesh
+    #  @param ignoreFaces list of geometrical faces (or their ids) not to generate layers on
+    #  @ingroup l3_hypos_additi
+    def ViscousLayers(self, thickness, numberOfLayers, stretchFactor, ignoreFaces=[]):
+        if not isinstance(self.algo, SMESH._objref_SMESH_3D_Algo):
+            raise TypeError, "ViscousLayers are supported by 3D algorithms only"
+        if not "ViscousLayers" in self.GetCompatibleHypothesis():
+            raise TypeError, "ViscousLayers are not supported by %s"%self.algo.GetName()
+        if ignoreFaces and isinstance( ignoreFaces[0], geompyDC.GEOM._objref_GEOM_Object ):
+            ignoreFaces = [ self.mesh.geompyD.GetSubShapeID(self.mesh.geom, f) for f in ignoreFaces ]
+        hyp = self.Hypothesis("ViscousLayers",
+                              [thickness, numberOfLayers, stretchFactor, ignoreFaces])
+        hyp.SetTotalThickness(thickness)
+        hyp.SetNumberLayers(numberOfLayers)
+        hyp.SetStretchFactor(stretchFactor)
+        hyp.SetIgnoreFaces(ignoreFaces)
+        return hyp
+
 # Public class: Mesh_Segment
 # --------------------------
 
@@ -3811,7 +4636,7 @@ class Mesh_Segment(Mesh_Algorithm):
             pass
         hyp.SetUsePreestimatedLength( length == 0.0 )
         return hyp
-        
+
     ## Defines "NumberOfSegments" hypothesis to cut an edge in a fixed number of segments
     #  @param n for the number of segments that cut an edge
     #  @param s for the scale factor (optional)
@@ -3824,6 +4649,8 @@ class Mesh_Segment(Mesh_Algorithm):
         if not isinstance(reversedEdges,list): #old version script, before adding reversedEdges
             reversedEdges, UseExisting = [], reversedEdges
         entry = self.MainShapeEntry()
+        if reversedEdges and isinstance(reversedEdges[0],geompyDC.GEOM._objref_GEOM_Object):
+            reversedEdges = [ self.mesh.geompyD.GetSubShapeID(self.mesh.geom, e) for e in reversedEdges ]
         if s == []:
             hyp = self.Hypothesis("NumberOfSegments", [n, reversedEdges, entry],
                                   UseExisting=UseExisting,
@@ -3866,6 +4693,8 @@ class Mesh_Segment(Mesh_Algorithm):
     def Arithmetic1D(self, start, end, reversedEdges=[], UseExisting=0):
         if not isinstance(reversedEdges,list): #old version script, before adding reversedEdges
             reversedEdges, UseExisting = [], reversedEdges
+        if reversedEdges and isinstance(reversedEdges[0],geompyDC.GEOM._objref_GEOM_Object):
+            reversedEdges = [ self.mesh.geompyD.GetSubShapeID(self.mesh.geom, e) for e in reversedEdges ]
         entry = self.MainShapeEntry()
         hyp = self.Hypothesis("Arithmetic1D", [start, end, reversedEdges, entry],
                               UseExisting=UseExisting,
@@ -3902,10 +4731,12 @@ class Mesh_Segment(Mesh_Algorithm):
     def FixedPoints1D(self, points, nbSegs=[1], reversedEdges=[], UseExisting=0):
         if not isinstance(reversedEdges,list): #old version script, before adding reversedEdges
             reversedEdges, UseExisting = [], reversedEdges
+        if reversedEdges and isinstance(reversedEdges[0],geompyDC.GEOM._objref_GEOM_Object):
+            reversedEdges = [ self.mesh.geompyD.GetSubShapeID(self.mesh.geom, e) for e in reversedEdges ]
         entry = self.MainShapeEntry()
         hyp = self.Hypothesis("FixedPoints1D", [points, nbSegs, reversedEdges, entry],
                               UseExisting=UseExisting,
-                              CompareMethod=self.CompareArithmetic1D)
+                              CompareMethod=self.CompareFixedPoints1D)
         hyp.SetPoints(points)
         hyp.SetNbSegments(nbSegs)
         hyp.SetReversedEdges(reversedEdges)
@@ -3936,6 +4767,8 @@ class Mesh_Segment(Mesh_Algorithm):
     def StartEndLength(self, start, end, reversedEdges=[], UseExisting=0):
         if not isinstance(reversedEdges,list): #old version script, before adding reversedEdges
             reversedEdges, UseExisting = [], reversedEdges
+        if reversedEdges and isinstance(reversedEdges[0],geompyDC.GEOM._objref_GEOM_Object):
+            reversedEdges = [ self.mesh.geompyD.GetSubShapeID(self.mesh.geom, e) for e in reversedEdges ]
         entry = self.MainShapeEntry()
         hyp = self.Hypothesis("StartEndLength", [start, end, reversedEdges, entry],
                               UseExisting=UseExisting,
@@ -4004,7 +4837,7 @@ class Mesh_Segment(Mesh_Algorithm):
         store_geom = self.geom
         if type(vertex) is types.IntType:
             if vertex == 0 or vertex == 1:
-                vertex = self.mesh.geompyD.SubShapeAllSorted(self.geom, geompyDC.ShapeType["VERTEX"])[vertex]
+                vertex = self.mesh.geompyD.ExtractShapes(self.geom, geompyDC.ShapeType["VERTEX"],True)[vertex]
                 self.geom = vertex
                 pass
             pass
@@ -4014,11 +4847,9 @@ class Mesh_Segment(Mesh_Algorithm):
         ### 0D algorithm
         if self.geom is None:
             raise RuntimeError, "Attemp to create SegmentAroundVertex_0D algoritm on None shape"
+        AssureGeomPublished( self.mesh, self.geom )
         name = GetName(self.geom)
-        if name == NO_NAME:
-            piece = self.mesh.geom
-            name = self.mesh.geompyD.SubShapeName(self.geom, piece)
-            self.mesh.geompyD.addToStudyInFather(piece, self.geom, name)
+
         algo = self.FindAlgorithm("SegmentAroundVertex_0D", self.mesh.smeshpyD)
         if algo is None:
             algo = self.mesh.smeshpyD.CreateHypothesis("SegmentAroundVertex_0D", "libStdMeshersEngine.so")
@@ -4114,7 +4945,6 @@ class Mesh_Triangle(Mesh_Algorithm):
     def __init__(self, mesh, algoType, geom=0):
         Mesh_Algorithm.__init__(self)
 
-        self.algoType = algoType
         if algoType == MEFISTO:
             self.Create(mesh, geom, "MEFISTO_2D")
             pass
@@ -4131,6 +4961,8 @@ class Mesh_Triangle(Mesh_Algorithm):
             self.Create(mesh, geom, "NETGEN_2D_ONLY", "libNETGENEngine.so")
             pass
 
+        self.algoType = algoType
+
     ## Defines "MaxElementArea" hypothesis basing on the definition of the maximum area of each triangle
     #  @param area for the maximum area of each triangle
     #  @param UseExisting if ==true - searches for an  existing hypothesis created with the
@@ -4166,114 +4998,359 @@ class Mesh_Triangle(Mesh_Algorithm):
             return hyp
 
     ## Sets a way to define size of mesh elements to generate.
-    #  @param thePhysicalMesh is: DefaultSize or Custom.
+    #  @param thePhysicalMesh is: DefaultSize, BLSURF_Custom or SizeMap.
     #  @ingroup l3_hypos_blsurf
     def SetPhysicalMesh(self, thePhysicalMesh=DefaultSize):
-        # Parameter of BLSURF algo
-        self.Parameters().SetPhysicalMesh(thePhysicalMesh)
+        if self.Parameters():
+            # Parameter of BLSURF algo
+            self.params.SetPhysicalMesh(thePhysicalMesh)
 
     ## Sets size of mesh elements to generate.
     #  @ingroup l3_hypos_blsurf
     def SetPhySize(self, theVal):
-        # Parameter of BLSURF algo
-        self.SetPhysicalMesh(1) #Custom - else why to set the size?
-        self.Parameters().SetPhySize(theVal)
+        if self.Parameters():
+            # Parameter of BLSURF algo
+            self.params.SetPhySize(theVal)
 
     ## Sets lower boundary of mesh element size (PhySize).
     #  @ingroup l3_hypos_blsurf
     def SetPhyMin(self, theVal=-1):
-        #  Parameter of BLSURF algo
-        self.Parameters().SetPhyMin(theVal)
+        if self.Parameters():
+            #  Parameter of BLSURF algo
+            self.params.SetPhyMin(theVal)
 
     ## Sets upper boundary of mesh element size (PhySize).
     #  @ingroup l3_hypos_blsurf
     def SetPhyMax(self, theVal=-1):
-        #  Parameter of BLSURF algo
-        self.Parameters().SetPhyMax(theVal)
+        if self.Parameters():
+            #  Parameter of BLSURF algo
+            self.params.SetPhyMax(theVal)
 
     ## Sets a way to define maximum angular deflection of mesh from CAD model.
-    #  @param theGeometricMesh is: DefaultGeom or Custom
+    #  @param theGeometricMesh is: 0 (None) or 1 (Custom)
     #  @ingroup l3_hypos_blsurf
     def SetGeometricMesh(self, theGeometricMesh=0):
-        #  Parameter of BLSURF algo
-        if self.Parameters().GetPhysicalMesh() == 0: theGeometricMesh = 1
-        self.params.SetGeometricMesh(theGeometricMesh)
+        if self.Parameters():
+            #  Parameter of BLSURF algo
+            if self.params.GetPhysicalMesh() == 0: theGeometricMesh = 1
+            self.params.SetGeometricMesh(theGeometricMesh)
 
     ## Sets angular deflection (in degrees) of a mesh face from CAD surface.
     #  @ingroup l3_hypos_blsurf
     def SetAngleMeshS(self, theVal=_angleMeshS):
-        #  Parameter of BLSURF algo
-        if self.Parameters().GetGeometricMesh() == 0: theVal = self._angleMeshS
-        self.params.SetAngleMeshS(theVal)
+        if self.Parameters():
+            #  Parameter of BLSURF algo
+            if self.params.GetGeometricMesh() == 0: theVal = self._angleMeshS
+            self.params.SetAngleMeshS(theVal)
 
     ## Sets angular deflection (in degrees) of a mesh edge from CAD curve.
     #  @ingroup l3_hypos_blsurf
     def SetAngleMeshC(self, theVal=_angleMeshS):
-        #  Parameter of BLSURF algo
-        if self.Parameters().GetGeometricMesh() == 0: theVal = self._angleMeshS
-        self.params.SetAngleMeshC(theVal)
+        if self.Parameters():
+            #  Parameter of BLSURF algo
+            if self.params.GetGeometricMesh() == 0: theVal = self._angleMeshS
+            self.params.SetAngleMeshC(theVal)
 
     ## Sets lower boundary of mesh element size computed to respect angular deflection.
     #  @ingroup l3_hypos_blsurf
     def SetGeoMin(self, theVal=-1):
-        #  Parameter of BLSURF algo
-        self.Parameters().SetGeoMin(theVal)
+        if self.Parameters():
+            #  Parameter of BLSURF algo
+            self.params.SetGeoMin(theVal)
 
     ## Sets upper boundary of mesh element size computed to respect angular deflection.
     #  @ingroup l3_hypos_blsurf
     def SetGeoMax(self, theVal=-1):
-        #  Parameter of BLSURF algo
-        self.Parameters().SetGeoMax(theVal)
+        if self.Parameters():
+            #  Parameter of BLSURF algo
+            self.params.SetGeoMax(theVal)
 
     ## Sets maximal allowed ratio between the lengths of two adjacent edges.
     #  @ingroup l3_hypos_blsurf
     def SetGradation(self, theVal=_gradation):
-        #  Parameter of BLSURF algo
-        if self.Parameters().GetGeometricMesh() == 0: theVal = self._gradation
-        self.params.SetGradation(theVal)
+        if self.Parameters():
+            #  Parameter of BLSURF algo
+            if self.params.GetGeometricMesh() == 0: theVal = self._gradation
+            self.params.SetGradation(theVal)
 
     ## Sets topology usage way.
     # @param way defines how mesh conformity is assured <ul>
     # <li>FromCAD - mesh conformity is assured by conformity of a shape</li>
     # <li>PreProcess or PreProcessPlus - by pre-processing a CAD model</li></ul>
+    # <li>PreCAD - by pre-processing with PreCAD a CAD model</li></ul>
     #  @ingroup l3_hypos_blsurf
     def SetTopology(self, way):
-        #  Parameter of BLSURF algo
-        self.Parameters().SetTopology(way)
+        if self.Parameters():
+            #  Parameter of BLSURF algo
+            self.params.SetTopology(way)
 
     ## To respect geometrical edges or not.
     #  @ingroup l3_hypos_blsurf
     def SetDecimesh(self, toIgnoreEdges=False):
-        #  Parameter of BLSURF algo
-        self.Parameters().SetDecimesh(toIgnoreEdges)
+        if self.Parameters():
+            #  Parameter of BLSURF algo
+            self.params.SetDecimesh(toIgnoreEdges)
 
     ## Sets verbosity level in the range 0 to 100.
     #  @ingroup l3_hypos_blsurf
     def SetVerbosity(self, level):
-        #  Parameter of BLSURF algo
-        self.Parameters().SetVerbosity(level)
+        if self.Parameters():
+            #  Parameter of BLSURF algo
+            self.params.SetVerbosity(level)
+
+    ## To optimize merges edges.
+    #  @ingroup l3_hypos_blsurf
+    def SetPreCADMergeEdges(self, toMergeEdges=False):
+        if self.Parameters():
+            #  Parameter of BLSURF algo
+            self.params.SetPreCADMergeEdges(toMergeEdges)
+
+    ## To remove nano edges.
+    #  @ingroup l3_hypos_blsurf
+    def SetPreCADRemoveNanoEdges(self, toRemoveNanoEdges=False):
+        if self.Parameters():
+            #  Parameter of BLSURF algo
+            self.params.SetPreCADRemoveNanoEdges(toRemoveNanoEdges)
+
+    ## To compute topology from scratch
+    #  @ingroup l3_hypos_blsurf
+    def SetPreCADDiscardInput(self, toDiscardInput=False):
+        if self.Parameters():
+            #  Parameter of BLSURF algo
+            self.params.SetPreCADDiscardInput(toDiscardInput)
+
+    ## Sets the length below which an edge is considered as nano 
+    #  for the topology processing.
+    #  @ingroup l3_hypos_blsurf
+    def SetPreCADEpsNano(self, epsNano):
+        if self.Parameters():
+            #  Parameter of BLSURF algo
+            self.params.SetPreCADEpsNano(epsNano)
 
     ## Sets advanced option value.
     #  @ingroup l3_hypos_blsurf
     def SetOptionValue(self, optionName, level):
-        #  Parameter of BLSURF algo
-        self.Parameters().SetOptionValue(optionName,level)
+        if self.Parameters():
+            #  Parameter of BLSURF algo
+            self.params.SetOptionValue(optionName,level)
+
+    ## Sets advanced PreCAD option value.
+    #  Keyword arguments:
+    #  optionName: name of the option
+    #  optionValue: value of the option
+    #  @ingroup l3_hypos_blsurf
+    def SetPreCADOptionValue(self, optionName, optionValue):
+        if self.Parameters():
+            #  Parameter of BLSURF algo
+            self.params.SetPreCADOptionValue(optionName,optionValue)
+
+    ## Sets GMF file for export at computation
+    #  @ingroup l3_hypos_blsurf
+    def SetGMFFile(self, fileName):
+        if self.Parameters():
+            #  Parameter of BLSURF algo
+            self.params.SetGMFFile(fileName)
+
+    ## Enforced vertices (BLSURF)
+
+    ## To get all the enforced vertices
+    #  @ingroup l3_hypos_blsurf
+    def GetAllEnforcedVertices(self):
+        if self.Parameters():
+            #  Parameter of BLSURF algo
+            return self.params.GetAllEnforcedVertices()
+
+    ## To get all the enforced vertices sorted by face (or group, compound)
+    #  @ingroup l3_hypos_blsurf
+    def GetAllEnforcedVerticesByFace(self):
+        if self.Parameters():
+            #  Parameter of BLSURF algo
+            return self.params.GetAllEnforcedVerticesByFace()
+
+    ## To get all the enforced vertices sorted by coords of input vertices
+    #  @ingroup l3_hypos_blsurf
+    def GetAllEnforcedVerticesByCoords(self):
+        if self.Parameters():
+            #  Parameter of BLSURF algo
+            return self.params.GetAllEnforcedVerticesByCoords()
+
+    ## To get all the coords of input vertices sorted by face (or group, compound)
+    #  @ingroup l3_hypos_blsurf
+    def GetAllCoordsByFace(self):
+        if self.Parameters():
+            #  Parameter of BLSURF algo
+            return self.params.GetAllCoordsByFace()
+
+    ## To get all the enforced vertices on a face (or group, compound)
+    #  @param theFace : GEOM face (or group, compound) on which to define an enforced vertex
+    #  @ingroup l3_hypos_blsurf
+    def GetEnforcedVertices(self, theFace):
+        if self.Parameters():
+            #  Parameter of BLSURF algo
+            AssureGeomPublished( self.mesh, theFace )
+            return self.params.GetEnforcedVertices(theFace)
+
+    ## To clear all the enforced vertices
+    #  @ingroup l3_hypos_blsurf
+    def ClearAllEnforcedVertices(self):
+        if self.Parameters():
+            #  Parameter of BLSURF algo
+            return self.params.ClearAllEnforcedVertices()
+
+    ## To set an enforced vertex on a face (or group, compound) given the coordinates of a point. If the point is not on the face, it will projected on it. If there is no projection, no enforced vertex is created.
+    #  @param theFace      : GEOM face (or group, compound) on which to define an enforced vertex
+    #  @param x            : x coordinate
+    #  @param y            : y coordinate
+    #  @param z            : z coordinate
+    #  @param vertexName   : name of the enforced vertex
+    #  @param groupName    : name of the group
+    #  @ingroup l3_hypos_blsurf
+    def SetEnforcedVertex(self, theFace, x, y, z, vertexName = "", groupName = ""):
+        if self.Parameters():
+            #  Parameter of BLSURF algo
+            AssureGeomPublished( self.mesh, theFace )
+            if vertexName == "":
+              if groupName == "":
+                return self.params.SetEnforcedVertex(theFace, x, y, z)
+              else:
+                return self.params.SetEnforcedVertexWithGroup(theFace, x, y, z, groupName)
+            else:
+              if groupName == "":
+                return self.params.SetEnforcedVertexNamed(theFace, x, y, z, vertexName)
+              else:
+                return self.params.SetEnforcedVertexNamedWithGroup(theFace, x, y, z, vertexName, groupName)
+
+    ## To set an enforced vertex on a face (or group, compound) given a GEOM vertex, group or compound.
+    #  @param theFace      : GEOM face (or group, compound) on which to define an enforced vertex
+    #  @param theVertex    : GEOM vertex (or group, compound) to be projected on theFace.
+    #  @param groupName    : name of the group
+    #  @ingroup l3_hypos_blsurf
+    def SetEnforcedVertexGeom(self, theFace, theVertex, groupName = ""):
+        if self.Parameters():
+            #  Parameter of BLSURF algo
+            AssureGeomPublished( self.mesh, theFace )
+            AssureGeomPublished( self.mesh, theVertex )
+            if groupName == "":
+              return self.params.SetEnforcedVertexGeom(theFace, theVertex)
+            else:
+              return self.params.SetEnforcedVertexGeomWithGroup(theFace, theVertex,groupName)
+
+    ## To remove an enforced vertex on a given GEOM face (or group, compound) given the coordinates.
+    #  @param theFace      : GEOM face (or group, compound) on which to remove the enforced vertex
+    #  @param x            : x coordinate
+    #  @param y            : y coordinate
+    #  @param z            : z coordinate
+    #  @ingroup l3_hypos_blsurf
+    def UnsetEnforcedVertex(self, theFace, x, y, z):
+        if self.Parameters():
+            #  Parameter of BLSURF algo
+            AssureGeomPublished( self.mesh, theFace )
+            return self.params.UnsetEnforcedVertex(theFace, x, y, z)
+
+    ## To remove an enforced vertex on a given GEOM face (or group, compound) given a GEOM vertex, group or compound.
+    #  @param theFace      : GEOM face (or group, compound) on which to remove the enforced vertex
+    #  @param theVertex    : GEOM vertex (or group, compound) to remove.
+    #  @ingroup l3_hypos_blsurf
+    def UnsetEnforcedVertexGeom(self, theFace, theVertex):
+        if self.Parameters():
+            #  Parameter of BLSURF algo
+            AssureGeomPublished( self.mesh, theFace )
+            AssureGeomPublished( self.mesh, theVertex )
+            return self.params.UnsetEnforcedVertexGeom(theFace, theVertex)
+
+    ## To remove all enforced vertices on a given face.
+    #  @param theFace      : face (or group/compound of faces) on which to remove all enforced vertices
+    #  @ingroup l3_hypos_blsurf
+    def UnsetEnforcedVertices(self, theFace):
+        if self.Parameters():
+            #  Parameter of BLSURF algo
+            AssureGeomPublished( self.mesh, theFace )
+            return self.params.UnsetEnforcedVertices(theFace)
+
+    ## Attractors (BLSURF)
+
+    ## Sets an attractor on the chosen face. The mesh size will decrease exponentially with the distance from theAttractor, following the rule h(d) = theEndSize - (theEndSize - theStartSize) * exp [ - ( d / theInfluenceDistance ) ^ 2 ] 
+    #  @param theFace      : face on which the attractor will be defined
+    #  @param theAttractor : geometrical object from which the mesh size "h" decreases exponentially   
+    #  @param theStartSize : mesh size on theAttractor      
+    #  @param theEndSize   : maximum size that will be reached on theFace                                                     
+    #  @param theInfluenceDistance : influence of the attractor ( the size grow slower on theFace if it's high)                                                      
+    #  @param theConstantSizeDistance : distance until which the mesh size will be kept constant on theFace                                                      
+    #  @ingroup l3_hypos_blsurf
+    def SetAttractorGeom(self, theFace, theAttractor, theStartSize, theEndSize, theInfluenceDistance, theConstantSizeDistance):
+        if self.Parameters():
+            #  Parameter of BLSURF algo
+            AssureGeomPublished( self.mesh, theFace )
+            AssureGeomPublished( self.mesh, theAttractor )
+            self.params.SetAttractorGeom(theFace, theAttractor, theStartSize, theEndSize, theInfluenceDistance, theConstantSizeDistance)
+
+    ## Unsets an attractor on the chosen face. 
+    #  @param theFace      : face on which the attractor has to be removed                               
+    #  @ingroup l3_hypos_blsurf
+    def UnsetAttractorGeom(self, theFace):
+        if self.Parameters():
+            #  Parameter of BLSURF algo
+            AssureGeomPublished( self.mesh, theFace )
+            self.params.SetAttractorGeom(theFace)
+
+    ## Size maps (BLSURF)
+
+    ## To set a size map on a face, edge or vertex (or group, compound) given Python function.
+    #  If theObject is a face, the function can be: def f(u,v): return u+v
+    #  If theObject is an edge, the function can be: def f(t): return t/2
+    #  If theObject is a vertex, the function can be: def f(): return 10
+    #  @param theObject   : GEOM face, edge or vertex (or group, compound) on which to define a size map
+    #  @param theSizeMap  : Size map defined as a string
+    #  @ingroup l3_hypos_blsurf
+    def SetSizeMap(self, theObject, theSizeMap):
+        if self.Parameters():
+            #  Parameter of BLSURF algo
+            AssureGeomPublished( self.mesh, theObject )
+            return self.params.SetSizeMap(theObject, theSizeMap)
+
+    ## To remove a size map defined on a face, edge or vertex (or group, compound)
+    #  @param theObject   : GEOM face, edge or vertex (or group, compound) on which to define a size map
+    #  @ingroup l3_hypos_blsurf
+    def UnsetSizeMap(self, theObject):
+        if self.Parameters():
+            #  Parameter of BLSURF algo
+            AssureGeomPublished( self.mesh, theObject )
+            return self.params.UnsetSizeMap(theObject)
+
+    ## To remove all the size maps
+    #  @ingroup l3_hypos_blsurf
+    def ClearSizeMaps(self):
+        if self.Parameters():
+            #  Parameter of BLSURF algo
+            return self.params.ClearSizeMaps()
+
 
     ## Sets QuadAllowed flag.
-    #  Only for algoType == NETGEN || NETGEN_2D || BLSURF
+    #  Only for algoType == NETGEN(NETGEN_1D2D) || NETGEN_2D || BLSURF
     #  @ingroup l3_hypos_netgen l3_hypos_blsurf
     def SetQuadAllowed(self, toAllow=True):
         if self.algoType == NETGEN_2D:
-            if toAllow: # add QuadranglePreference
-                self.Hypothesis("QuadranglePreference", UseExisting=1, CompareMethod=self.CompareEqualHyp)
-            else:       # remove QuadranglePreference
+            if not self.params:
+                # use simple hyps
+                hasSimpleHyps = False
+                simpleHyps = ["QuadranglePreference","LengthFromEdges","MaxElementArea"]
                 for hyp in self.mesh.GetHypothesisList( self.geom ):
-                    if hyp.GetName() == "QuadranglePreference":
-                        self.mesh.RemoveHypothesis( self.geom, hyp )
+                    if hyp.GetName() in simpleHyps:
+                        hasSimpleHyps = True
+                        if hyp.GetName() == "QuadranglePreference":
+                            if not toAllow: # remove QuadranglePreference
+                                self.mesh.RemoveHypothesis( self.geom, hyp )
+                                pass
+                            return
                         pass
                     pass
+                if hasSimpleHyps:
+                    if toAllow: # add QuadranglePreference
+                        self.Hypothesis("QuadranglePreference", UseExisting=1, CompareMethod=self.CompareEqualHyp)
+                        pass
+                    return
                 pass
-            return
+            pass
         if self.Parameters():
             self.params.SetQuadAllowed(toAllow)
             return
@@ -4282,30 +5359,25 @@ class Mesh_Triangle(Mesh_Algorithm):
     #
     #  @ingroup l3_hypos_netgen
     def Parameters(self, which=SOLE):
-        if self.params:
-            return self.params
-        if self.algoType == NETGEN:
-            if which == SIMPLE:
-                self.params = self.Hypothesis("NETGEN_SimpleParameters_2D", [],
+        if not self.params:
+            if self.algoType == NETGEN:
+                if which == SIMPLE:
+                    self.params = self.Hypothesis("NETGEN_SimpleParameters_2D", [],
+                                                  "libNETGENEngine.so", UseExisting=0)
+                else:
+                    self.params = self.Hypothesis("NETGEN_Parameters_2D", [],
+                                                  "libNETGENEngine.so", UseExisting=0)
+            elif self.algoType == MEFISTO:
+                print "Mefisto algo support no multi-parameter hypothesis"
+            elif self.algoType == NETGEN_2D:
+                self.params = self.Hypothesis("NETGEN_Parameters_2D_ONLY", [],
                                               "libNETGENEngine.so", UseExisting=0)
+            elif self.algoType == BLSURF:
+                self.params = self.Hypothesis("BLSURF_Parameters", [],
+                                              "libBLSURFEngine.so", UseExisting=0)
             else:
-                self.params = self.Hypothesis("NETGEN_Parameters_2D", [],
-                                              "libNETGENEngine.so", UseExisting=0)
-            return self.params
-        elif self.algoType == MEFISTO:
-            print "Mefisto algo support no multi-parameter hypothesis"
-            return None
-        elif self.algoType == NETGEN_2D:
-            print "NETGEN_2D_ONLY algo support no multi-parameter hypothesis"
-            print "NETGEN_2D_ONLY uses 'MaxElementArea' and 'LengthFromEdges' ones"
-            return None
-        elif self.algoType == BLSURF:
-            self.params = self.Hypothesis("BLSURF_Parameters", [],
-                                          "libBLSURFEngine.so", UseExisting=0)
-            return self.params
-        else:
-            print "Mesh_Triangle with algo type %s does not have such a parameter, check algo type"%self.algoType
-        return None
+                print "Mesh_Triangle with algo type %s does not have such a parameter, check algo type"%self.algoType
+        return self.params
 
     ## Sets MaxSize
     #
@@ -4390,30 +5462,97 @@ class Mesh_Triangle(Mesh_Algorithm):
 #  @ingroup l3_algos_basic
 class Mesh_Quadrangle(Mesh_Algorithm):
 
+    params=0
+
     ## Private constructor.
     def __init__(self, mesh, geom=0):
         Mesh_Algorithm.__init__(self)
         self.Create(mesh, geom, "Quadrangle_2D")
+        return
 
-    ## Defines "QuadranglePreference" hypothesis, forcing construction
-    #  of quadrangles if the number of nodes on the opposite edges is not the same
-    #  while the total number of nodes on edges is even
-    #
-    #  @ingroup l3_hypos_additi
-    def QuadranglePreference(self):
-        hyp = self.Hypothesis("QuadranglePreference", UseExisting=1,
-                              CompareMethod=self.CompareEqualHyp)
-        return hyp
+    ## Defines "QuadrangleParameters" hypothesis
+    #  @param quadType defines the algorithm of transition between differently descretized
+    #                  sides of a geometrical face:
+    #  - QUAD_STANDARD - both triangles and quadrangles are possible in the transition
+    #                    area along the finer meshed sides.
+    #  - QUAD_TRIANGLE_PREF - only triangles are built in the transition area along the
+    #                    finer meshed sides.
+    #  - QUAD_QUADRANGLE_PREF - only quadrangles are built in the transition area along
+    #                    the finer meshed sides, iff the total quantity of segments on
+    #                    all four sides of the face is even (divisible by 2).
+    #  - QUAD_QUADRANGLE_PREF_REVERSED - same as QUAD_QUADRANGLE_PREF but the transition
+    #                    area is located along the coarser meshed sides.
+    #  - QUAD_REDUCED - only quadrangles are built and the transition between the sides
+    #                    is made gradually, layer by layer. This type has a limitation on
+    #                    the number of segments: one pair of opposite sides must have the
+    #                    same number of segments, the other pair must have an even difference
+    #                    between the numbers of segments on the sides.
+    #  @param triangleVertex: vertex of a trilateral geometrical face, around which triangles
+    #                  will be created while other elements will be quadrangles.
+    #                  Vertex can be either a GEOM_Object or a vertex ID within the
+    #                  shape to mesh
+    #  @param UseExisting: if ==true - searches for the existing hypothesis created with
+    #                  the same parameters, else (default) - creates a new one
+    #  @ingroup l3_hypos_quad
+    def QuadrangleParameters(self, quadType=StdMeshers.QUAD_STANDARD, triangleVertex=0, UseExisting=0):
+        vertexID = triangleVertex
+        if isinstance( triangleVertex, geompyDC.GEOM._objref_GEOM_Object ):
+            vertexID = self.mesh.geompyD.GetSubShapeID( self.mesh.geom, triangleVertex )
+        if not self.params:
+            compFun = lambda hyp,args: \
+                      hyp.GetQuadType() == args[0] and \
+                      ( hyp.GetTriaVertex()==args[1] or ( hyp.GetTriaVertex()<1 and args[1]<1))
+            self.params = self.Hypothesis("QuadrangleParams", [quadType,vertexID],
+                                          UseExisting = UseExisting, CompareMethod=compFun)
+            pass
+        if self.params.GetQuadType() != quadType:
+            self.params.SetQuadType(quadType)
+        if vertexID > 0:
+            self.params.SetTriaVertex( vertexID )
+        return self.params
+
+    ## Defines "QuadrangleParams" hypothesis with a type of quadrangulation that only
+    #   quadrangles are built in the transition area along the finer meshed sides,
+    #   iff the total quantity of segments on all four sides of the face is even.
+    #  @param reversed if True, transition area is located along the coarser meshed sides.
+    #  @param UseExisting: if ==true - searches for the existing hypothesis created with
+    #                  the same parameters, else (default) - creates a new one
+    #  @ingroup l3_hypos_quad
+    def QuadranglePreference(self, reversed=False, UseExisting=0):
+        if reversed:
+            return self.QuadrangleParameters(QUAD_QUADRANGLE_PREF_REVERSED,UseExisting=UseExisting)
+        return self.QuadrangleParameters(QUAD_QUADRANGLE_PREF,UseExisting=UseExisting)
+
+    ## Defines "QuadrangleParams" hypothesis with a type of quadrangulation that only
+    #   triangles are built in the transition area along the finer meshed sides.
+    #  @param UseExisting: if ==true - searches for the existing hypothesis created with
+    #                  the same parameters, else (default) - creates a new one
+    #  @ingroup l3_hypos_quad
+    def TrianglePreference(self, UseExisting=0):
+        return self.QuadrangleParameters(QUAD_TRIANGLE_PREF,UseExisting=UseExisting)
+
+    ## Defines "QuadrangleParams" hypothesis with a type of quadrangulation that only
+    #   quadrangles are built and the transition between the sides is made gradually,
+    #   layer by layer. This type has a limitation on the number of segments: one pair
+    #   of opposite sides must have the same number of segments, the other pair must
+    #   have an even difference between the numbers of segments on the sides.
+    #  @param UseExisting: if ==true - searches for the existing hypothesis created with
+    #                  the same parameters, else (default) - creates a new one
+    #  @ingroup l3_hypos_quad
+    def Reduced(self, UseExisting=0):
+        return self.QuadrangleParameters(QUAD_REDUCED,UseExisting=UseExisting)
+
+    ## Defines "QuadrangleParams" hypothesis with QUAD_STANDARD type of quadrangulation
+    #  @param vertex: vertex of a trilateral geometrical face, around which triangles
+    #                 will be created while other elements will be quadrangles.
+    #                 Vertex can be either a GEOM_Object or a vertex ID within the
+    #                 shape to mesh
+    #  @param UseExisting: if ==true - searches for the existing hypothesis created with
+    #                   the same parameters, else (default) - creates a new one
+    #  @ingroup l3_hypos_quad
+    def TriangleVertex(self, vertex, UseExisting=0):
+        return self.QuadrangleParameters(QUAD_STANDARD,vertex,UseExisting)
 
-    ## Defines "TrianglePreference" hypothesis, forcing construction
-    #  of triangles in the refinement area if the number of nodes
-    #  on the opposite edges is not the same
-    #
-    #  @ingroup l3_hypos_additi
-    def TrianglePreference(self):
-        hyp = self.Hypothesis("TrianglePreference", UseExisting=1,
-                              CompareMethod=self.CompareEqualHyp)
-        return hyp
 
 # Public class: Mesh_Tetrahedron
 # ------------------------------
@@ -4475,33 +5614,34 @@ class Mesh_Tetrahedron(Mesh_Algorithm):
     #
     #  @ingroup l3_hypos_netgen
     def Parameters(self, which=SOLE):
-        if self.params:
-            return self.params
+        if not self.params:
 
-        if self.algoType == FULL_NETGEN:
-            if which == SIMPLE:
-                self.params = self.Hypothesis("NETGEN_SimpleParameters_3D", [],
-                                              "libNETGENEngine.so", UseExisting=0)
-            else:
-                self.params = self.Hypothesis("NETGEN_Parameters", [],
+            if self.algoType == FULL_NETGEN:
+                if which == SIMPLE:
+                    self.params = self.Hypothesis("NETGEN_SimpleParameters_3D", [],
+                                                  "libNETGENEngine.so", UseExisting=0)
+                else:
+                    self.params = self.Hypothesis("NETGEN_Parameters", [],
+                                                  "libNETGENEngine.so", UseExisting=0)
+
+            elif self.algoType == NETGEN:
+                self.params = self.Hypothesis("NETGEN_Parameters_3D", [],
                                               "libNETGENEngine.so", UseExisting=0)
-            return self.params
 
-        if self.algoType == GHS3D:
-            self.params = self.Hypothesis("GHS3D_Parameters", [],
-                                          "libGHS3DEngine.so", UseExisting=0)
-            return self.params
+            elif self.algoType == GHS3D:
+                self.params = self.Hypothesis("GHS3D_Parameters", [],
+                                              "libGHS3DEngine.so", UseExisting=0)
 
-        if self.algoType == GHS3DPRL:
-            self.params = self.Hypothesis("GHS3DPRL_Parameters", [],
-                                          "libGHS3DPRLEngine.so", UseExisting=0)
-            return self.params
+            elif self.algoType == GHS3DPRL:
+                self.params = self.Hypothesis("GHS3DPRL_Parameters", [],
+                                              "libGHS3DPRLEngine.so", UseExisting=0)
+            else:
+                print "Warning: %s supports no multi-parameter hypothesis"%self.algo.GetName()
 
-        print "Algo supports no multi-parameter hypothesis"
-        return None
+        return self.params
 
     ## Sets MaxSize
-    #  Parameter of FULL_NETGEN
+    #  Parameter of FULL_NETGEN and NETGEN
     #  @ingroup l3_hypos_netgen
     def SetMaxSize(self, theSize):
         self.Parameters().SetMaxSize(theSize)
@@ -4513,7 +5653,7 @@ class Mesh_Tetrahedron(Mesh_Algorithm):
         self.Parameters().SetSecondOrder(theVal)
 
     ## Sets Optimize flag
-    #  Parameter of FULL_NETGEN
+    #  Parameter of FULL_NETGEN and NETGEN
     #  @ingroup l3_hypos_netgen
     def SetOptimize(self, theVal):
         self.Parameters().SetOptimize(theVal)
@@ -4581,7 +5721,8 @@ class Mesh_Tetrahedron(Mesh_Algorithm):
     #  @ingroup l3_hypos_ghs3dh
     def SetToMeshHoles(self, toMesh):
         #  Parameter of GHS3D
-        self.Parameters().SetToMeshHoles(toMesh)
+        if self.Parameters():
+            self.params.SetToMeshHoles(toMesh)
 
     ## Set Optimization level:
     #   None_Optimization, Light_Optimization, Standard_Optimization, StandardPlus_Optimization,
@@ -4590,32 +5731,37 @@ class Mesh_Tetrahedron(Mesh_Algorithm):
     #  @ingroup l3_hypos_ghs3dh
     def SetOptimizationLevel(self, level):
         #  Parameter of GHS3D
-        self.Parameters().SetOptimizationLevel(level)
+        if self.Parameters():
+            self.params.SetOptimizationLevel(level)
 
     ## Maximal size of memory to be used by the algorithm (in Megabytes).
     #  @ingroup l3_hypos_ghs3dh
     def SetMaximumMemory(self, MB):
         #  Advanced parameter of GHS3D
-        self.Parameters().SetMaximumMemory(MB)
+        if self.Parameters():
+            self.params.SetMaximumMemory(MB)
 
     ## Initial size of memory to be used by the algorithm (in Megabytes) in
     #  automatic memory adjustment mode.
     #  @ingroup l3_hypos_ghs3dh
     def SetInitialMemory(self, MB):
         #  Advanced parameter of GHS3D
-        self.Parameters().SetInitialMemory(MB)
+        if self.Parameters():
+            self.params.SetInitialMemory(MB)
 
     ## Path to working directory.
     #  @ingroup l3_hypos_ghs3dh
     def SetWorkingDirectory(self, path):
         #  Advanced parameter of GHS3D
-        self.Parameters().SetWorkingDirectory(path)
+        if self.Parameters():
+            self.params.SetWorkingDirectory(path)
 
     ## To keep working files or remove them. Log file remains in case of errors anyway.
     #  @ingroup l3_hypos_ghs3dh
     def SetKeepFiles(self, toKeep):
         #  Advanced parameter of GHS3D and GHS3DPRL
-        self.Parameters().SetKeepFiles(toKeep)
+        if self.Parameters():
+            self.params.SetKeepFiles(toKeep)
 
     ## To set verbose level [0-10]. <ul>
     #<li> 0 - no standard output,
@@ -4628,38 +5774,137 @@ class Mesh_Tetrahedron(Mesh_Algorithm):
     #  @ingroup l3_hypos_ghs3dh
     def SetVerboseLevel(self, level):
         #  Advanced parameter of GHS3D
-        self.Parameters().SetVerboseLevel(level)
+        if self.Parameters():
+            self.params.SetVerboseLevel(level)
 
     ## To create new nodes.
     #  @ingroup l3_hypos_ghs3dh
     def SetToCreateNewNodes(self, toCreate):
         #  Advanced parameter of GHS3D
-        self.Parameters().SetToCreateNewNodes(toCreate)
+        if self.Parameters():
+            self.params.SetToCreateNewNodes(toCreate)
 
     ## To use boundary recovery version which tries to create mesh on a very poor
     #  quality surface mesh.
     #  @ingroup l3_hypos_ghs3dh
     def SetToUseBoundaryRecoveryVersion(self, toUse):
         #  Advanced parameter of GHS3D
-        self.Parameters().SetToUseBoundaryRecoveryVersion(toUse)
+        if self.Parameters():
+            self.params.SetToUseBoundaryRecoveryVersion(toUse)
+
+    ## Applies finite-element correction by replacing overconstrained elements where
+    #  it is possible. The process is cutting first the overconstrained edges and
+    #  second the overconstrained facets. This insure that no edges have two boundary
+    #  vertices and that no facets have three boundary vertices.
+    #  @ingroup l3_hypos_ghs3dh
+    def SetFEMCorrection(self, toUseFem):
+        #  Advanced parameter of GHS3D
+        if self.Parameters():
+            self.params.SetFEMCorrection(toUseFem)
+
+    ## To removes initial central point.
+    #  @ingroup l3_hypos_ghs3dh
+    def SetToRemoveCentralPoint(self, toRemove):
+        #  Advanced parameter of GHS3D
+        if self.Parameters():
+            self.params.SetToRemoveCentralPoint(toRemove)
+
+    ## To set an enforced vertex.
+    #  @param x            : x coordinate
+    #  @param y            : y coordinate
+    #  @param z            : z coordinate
+    #  @param size         : size of 1D element around enforced vertex
+    #  @param vertexName   : name of the enforced vertex
+    #  @param groupName    : name of the group
+    #  @ingroup l3_hypos_ghs3dh
+    def SetEnforcedVertex(self, x, y, z, size, vertexName = "", groupName = ""):
+        #  Advanced parameter of GHS3D
+        if self.Parameters():
+          if vertexName == "":
+            if groupName == "":
+              return self.params.SetEnforcedVertex(x, y, z, size)
+            else:
+              return self.params.SetEnforcedVertexWithGroup(x, y, z, size, groupName)
+          else:
+            if groupName == "":
+              return self.params.SetEnforcedVertexNamed(x, y, z, size, vertexName)
+            else:
+              return self.params.SetEnforcedVertexNamedWithGroup(x, y, z, size, vertexName, groupName)
+
+    ## To set an enforced vertex given a GEOM vertex, group or compound.
+    #  @param theVertex    : GEOM vertex (or group, compound) to be projected on theFace.
+    #  @param size         : size of 1D element around enforced vertex
+    #  @param groupName    : name of the group
+    #  @ingroup l3_hypos_ghs3dh
+    def SetEnforcedVertexGeom(self, theVertex, size, groupName = ""):
+        AssureGeomPublished( self.mesh, theVertex )
+        #  Advanced parameter of GHS3D
+        if self.Parameters():
+          if groupName == "":
+            return self.params.SetEnforcedVertexGeom(theVertex, size)
+          else:
+            return self.params.SetEnforcedVertexGeomWithGroup(theVertex, size, groupName)
+
+    ## To remove an enforced vertex.
+    #  @param x            : x coordinate
+    #  @param y            : y coordinate
+    #  @param z            : z coordinate
+    #  @ingroup l3_hypos_ghs3dh
+    def RemoveEnforcedVertex(self, x, y, z):
+        #  Advanced parameter of GHS3D
+        if self.Parameters():
+          return self.params.RemoveEnforcedVertex(x, y, z)
+
+    ## To remove an enforced vertex given a GEOM vertex, group or compound.
+    #  @param theVertex    : GEOM vertex (or group, compound) to be projected on theFace.
+    #  @ingroup l3_hypos_ghs3dh
+    def RemoveEnforcedVertexGeom(self, theVertex):
+        AssureGeomPublished( self.mesh, theVertex )
+        #  Advanced parameter of GHS3D
+        if self.Parameters():
+          return self.params.RemoveEnforcedVertexGeom(theVertex)
+
+    ## To set an enforced mesh with given size and add the enforced elements in the group "groupName".
+    #  @param theSource    : source mesh which provides constraint elements/nodes
+    #  @param elementType  : SMESH.ElementType (NODE, EDGE or FACE)
+    #  @param size         : size of elements around enforced elements. Unused if -1.
+    #  @param groupName    : group in which enforced elements will be added. Unused if "".
+    #  @ingroup l3_hypos_ghs3dh
+    def SetEnforcedMesh(self, theSource, elementType, size = -1, groupName = ""):
+        #  Advanced parameter of GHS3D
+        if self.Parameters():
+          if size >= 0:
+            if groupName != "":
+              return self.params.SetEnforcedMesh(theSource, elementType)
+            else:
+              return self.params.SetEnforcedMeshWithGroup(theSource, elementType, groupName)
+          else:
+            if groupName != "":
+              return self.params.SetEnforcedMeshSize(theSource, elementType, size)
+            else:
+              return self.params.SetEnforcedMeshSizeWithGroup(theSource, elementType, size, groupName)
 
     ## Sets command line option as text.
     #  @ingroup l3_hypos_ghs3dh
     def SetTextOption(self, option):
         #  Advanced parameter of GHS3D
-        self.Parameters().SetTextOption(option)
+        if self.Parameters():
+            self.params.SetTextOption(option)
 
     ## Sets MED files name and path.
     def SetMEDName(self, value):
-        self.Parameters().SetMEDName(value)
+        if self.Parameters():
+            self.params.SetMEDName(value)
 
     ## Sets the number of partition of the initial mesh
     def SetNbPart(self, value):
-        self.Parameters().SetNbPart(value)
+        if self.Parameters():
+            self.params.SetNbPart(value)
 
     ## When big mesh, start tepal in background
     def SetBackground(self, value):
-        self.Parameters().SetBackground(value)
+        if self.Parameters():
+            self.params.SetBackground(value)
 
 # Public class: Mesh_Hexahedron
 # ------------------------------
@@ -4761,6 +6006,9 @@ class Mesh_Projection1D(Mesh_Algorithm):
     #  @param UseExisting if ==true - searches for the existing hypothesis created with
     #                     the same parameters, else (default) - creates a new one
     def SourceEdge(self, edge, mesh=None, srcV=None, tgtV=None, UseExisting=0):
+        AssureGeomPublished( self.mesh, edge )
+        AssureGeomPublished( self.mesh, srcV )
+        AssureGeomPublished( self.mesh, tgtV )
         hyp = self.Hypothesis("ProjectionSource1D", [edge,mesh,srcV,tgtV],
                               UseExisting=0)
                               #UseExisting=UseExisting, CompareMethod=self.CompareSourceEdge)
@@ -4807,11 +6055,13 @@ class Mesh_Projection2D(Mesh_Algorithm):
     #  Note: all association vertices must belong to one edge of a face
     def SourceFace(self, face, mesh=None, srcV1=None, tgtV1=None,
                    srcV2=None, tgtV2=None, UseExisting=0):
+        for geom in [ face, srcV1, tgtV1, srcV2, tgtV2 ]:
+            AssureGeomPublished( self.mesh, geom )
         hyp = self.Hypothesis("ProjectionSource2D", [face,mesh,srcV1,tgtV1,srcV2,tgtV2],
                               UseExisting=0)
                               #UseExisting=UseExisting, CompareMethod=self.CompareSourceFace)
         hyp.SetSourceFace( face )
-        if not mesh is None and isinstance(mesh, Mesh):
+        if isinstance(mesh, Mesh):
             mesh = mesh.GetMesh()
         hyp.SetSourceMesh( mesh )
         hyp.SetVertexAssociation( srcV1, srcV2, tgtV1, tgtV2 )
@@ -4852,6 +6102,8 @@ class Mesh_Projection3D(Mesh_Algorithm):
     #  Note: association vertices must belong to one edge of a solid
     def SourceShape3D(self, solid, mesh=0, srcV1=0, tgtV1=0,
                       srcV2=0, tgtV2=0, UseExisting=0):
+        for geom in [ solid, srcV1, tgtV1, srcV2, tgtV2 ]:
+            AssureGeomPublished( self.mesh, geom )
         hyp = self.Hypothesis("ProjectionSource3D",
                               [solid,mesh,srcV1,tgtV1,srcV2,tgtV2],
                               UseExisting=0)
@@ -4912,6 +6164,7 @@ class Mesh_RadialPrism3D(Mesh_Algorithm):
             self.mesh.GetMesh().RemoveHypothesis( self.geom, self.nbLayers )
             self.mesh.GetMesh().AddHypothesis( self.geom, self.distribHyp )
         study = self.mesh.smeshpyD.GetCurrentStudy() # prevents publishing own 1D hypothesis
+        self.mesh.smeshpyD.SetCurrentStudy( None )
         hyp = self.mesh.smeshpyD.CreateHypothesis(hypType, so)
         self.mesh.smeshpyD.SetCurrentStudy( study ) # enables publishing
         self.distribHyp.SetLayerDistribution( hyp )
@@ -4998,7 +6251,7 @@ class Mesh_RadialQuadrangle1D2D(Mesh_Algorithm):
         Mesh_Algorithm.__init__(self)
         self.Create(mesh, geom, "RadialQuadrangle_1D2D")
 
-        self.distribHyp = self.Hypothesis("LayerDistribution2D", UseExisting=0)
+        self.distribHyp = None #self.Hypothesis("LayerDistribution2D", UseExisting=0)
         self.nbLayers = None
 
     ## Return 2D hypothesis holding the 1D one
@@ -5009,21 +6262,26 @@ class Mesh_RadialQuadrangle1D2D(Mesh_Algorithm):
     #  hypothesis. Returns the created hypothesis
     def OwnHypothesis(self, hypType, args=[], so="libStdMeshersEngine.so"):
         #print "OwnHypothesis",hypType
-        if not self.nbLayers is None:
+        if self.nbLayers:
             self.mesh.GetMesh().RemoveHypothesis( self.geom, self.nbLayers )
+        if self.distribHyp is None:
+            self.distribHyp = self.Hypothesis("LayerDistribution2D", UseExisting=0)
+        else:
             self.mesh.GetMesh().AddHypothesis( self.geom, self.distribHyp )
         study = self.mesh.smeshpyD.GetCurrentStudy() # prevents publishing own 1D hypothesis
+        self.mesh.smeshpyD.SetCurrentStudy( None )
         hyp = self.mesh.smeshpyD.CreateHypothesis(hypType, so)
         self.mesh.smeshpyD.SetCurrentStudy( study ) # enables publishing
         self.distribHyp.SetLayerDistribution( hyp )
         return hyp
 
-    ## Defines "NumberOfLayers2D" hypothesis, specifying the number of layers
+    ## Defines "NumberOfLayers" hypothesis, specifying the number of layers
     #  @param n number of layers
     #  @param UseExisting if ==true - searches for the existing hypothesis created with
     #                     the same parameters, else (default) - creates a new one
-    def NumberOfLayers2D(self, n, UseExisting=0):
-        self.mesh.GetMesh().RemoveHypothesis( self.geom, self.distribHyp )
+    def NumberOfLayers(self, n, UseExisting=0):
+        if self.distribHyp:
+            self.mesh.GetMesh().RemoveHypothesis( self.geom, self.distribHyp )
         self.nbLayers = self.Hypothesis("NumberOfLayers2D", [n], UseExisting=UseExisting,
                                         CompareMethod=self.CompareNumberOfLayers)
         self.nbLayers.SetNumberOfLayers( n )
@@ -5083,6 +6341,77 @@ class Mesh_RadialQuadrangle1D2D(Mesh_Algorithm):
         return hyp
 
 
+# Public class: Mesh_UseExistingElements
+# --------------------------------------
+## Defines a Radial Quadrangle 1D2D algorithm
+#  @ingroup l3_algos_basic
+#
+class Mesh_UseExistingElements(Mesh_Algorithm):
+
+    def __init__(self, dim, mesh, geom=0):
+        if dim == 1:
+            self.Create(mesh, geom, "Import_1D")
+        else:
+            self.Create(mesh, geom, "Import_1D2D")
+        return
+
+    ## Defines "Source edges" hypothesis, specifying groups of edges to import
+    #  @param groups list of groups of edges
+    #  @param toCopyMesh if True, the whole mesh \a groups belong to is imported
+    #  @param toCopyGroups if True, all groups of the mesh \a groups belong to are imported
+    #  @param UseExisting if ==true - searches for the existing hypothesis created with
+    #                     the same parameters, else (default) - creates a new one
+    def SourceEdges(self, groups, toCopyMesh=False, toCopyGroups=False, UseExisting=False):
+        if self.algo.GetName() == "Import_2D":
+            raise ValueError, "algoritm dimension mismatch"
+        for group in groups:
+            AssureGeomPublished( self.mesh, group )
+        hyp = self.Hypothesis("ImportSource1D", [groups, toCopyMesh, toCopyGroups],
+                              UseExisting=UseExisting, CompareMethod=self._compareHyp)
+        hyp.SetSourceEdges(groups)
+        hyp.SetCopySourceMesh(toCopyMesh, toCopyGroups)
+        return hyp
+
+    ## Defines "Source faces" hypothesis, specifying groups of faces to import
+    #  @param groups list of groups of faces
+    #  @param toCopyMesh if True, the whole mesh \a groups belong to is imported
+    #  @param toCopyGroups if True, all groups of the mesh \a groups belong to are imported
+    #  @param UseExisting if ==true - searches for the existing hypothesis created with
+    #                     the same parameters, else (default) - creates a new one
+    def SourceFaces(self, groups, toCopyMesh=False, toCopyGroups=False, UseExisting=False):
+        if self.algo.GetName() == "Import_1D":
+            raise ValueError, "algoritm dimension mismatch"
+        for group in groups:
+            AssureGeomPublished( self.mesh, group )
+        hyp = self.Hypothesis("ImportSource2D", [groups, toCopyMesh, toCopyGroups],
+                              UseExisting=UseExisting, CompareMethod=self._compareHyp)
+        hyp.SetSourceFaces(groups)
+        hyp.SetCopySourceMesh(toCopyMesh, toCopyGroups)
+        return hyp
+
+    def _compareHyp(self,hyp,args):
+        if hasattr( hyp, "GetSourceEdges"):
+            entries = hyp.GetSourceEdges()
+        else:
+            entries = hyp.GetSourceFaces()
+        groups = args[0]
+        toCopyMesh,toCopyGroups = hyp.GetCopySourceMesh()
+        if len(entries)==len(groups) and toCopyMesh==args[1] and toCopyGroups==args[2]:
+            entries2 = []
+            study = self.mesh.smeshpyD.GetCurrentStudy()
+            if study:
+                for g in groups:
+                    ior  = salome.orb.object_to_string(g)
+                    sobj = study.FindObjectIOR(ior)
+                    if sobj: entries2.append( sobj.GetID() )
+                    pass
+                pass
+            entries.sort()
+            entries2.sort()
+            return entries == entries2
+        return False
+
+
 # Private class: Mesh_UseExisting
 # -------------------------------
 class Mesh_UseExisting(Mesh_Algorithm):
@@ -5147,7 +6476,7 @@ omniORB.registerObjref(StdMeshers._objref_StdMeshers_LocalLength._NP_RepositoryI
 
 #Wrapper class for StdMeshers_LayerDistribution hypothesis
 class LayerDistribution(StdMeshers._objref_StdMeshers_LayerDistribution):
-    
+
     def SetLayerDistribution(self, hypo):
         StdMeshers._objref_StdMeshers_LayerDistribution.SetParameters(self,hypo.GetParameters())
         hypo.ClearParameters();
@@ -5158,9 +6487,9 @@ omniORB.registerObjref(StdMeshers._objref_StdMeshers_LayerDistribution._NP_Repos
 
 #Wrapper class for StdMeshers_SegmentLengthAroundVertex hypothesis
 class SegmentLengthAroundVertex(StdMeshers._objref_StdMeshers_SegmentLengthAroundVertex):
-    
+
     ## Set Length parameter value
-    #  @param length numerical value or name of variable from notebook    
+    #  @param length numerical value or name of variable from notebook
     def SetLength(self, length):
         length,parameters = ParseParameters(StdMeshers._objref_StdMeshers_SegmentLengthAroundVertex.GetLastParameters(self),1,1,length)
         StdMeshers._objref_StdMeshers_SegmentLengthAroundVertex.SetParameters(self,parameters)
@@ -5172,7 +6501,7 @@ omniORB.registerObjref(StdMeshers._objref_StdMeshers_SegmentLengthAroundVertex._
 
 #Wrapper class for StdMeshers_Arithmetic1D hypothesis
 class Arithmetic1D(StdMeshers._objref_StdMeshers_Arithmetic1D):
-    
+
     ## Set Length parameter value
     #  @param length   numerical value or name of variable from notebook
     #  @param isStart  true is length is Start Length, otherwise false
@@ -5183,15 +6512,15 @@ class Arithmetic1D(StdMeshers._objref_StdMeshers_Arithmetic1D):
         length,parameters = ParseParameters(StdMeshers._objref_StdMeshers_Arithmetic1D.GetLastParameters(self),2,nb,length)
         StdMeshers._objref_StdMeshers_Arithmetic1D.SetParameters(self,parameters)
         StdMeshers._objref_StdMeshers_Arithmetic1D.SetLength(self,length,isStart)
-        
+
 #Registering the new proxy for Arithmetic1D
 omniORB.registerObjref(StdMeshers._objref_StdMeshers_Arithmetic1D._NP_RepositoryId, Arithmetic1D)
 
 #Wrapper class for StdMeshers_Deflection1D hypothesis
 class Deflection1D(StdMeshers._objref_StdMeshers_Deflection1D):
-    
+
     ## Set Deflection parameter value
-    #  @param deflection numerical value or name of variable from notebook    
+    #  @param deflection numerical value or name of variable from notebook
     def SetDeflection(self, deflection):
         deflection,parameters = ParseParameters(StdMeshers._objref_StdMeshers_Deflection1D.GetLastParameters(self),1,1,deflection)
         StdMeshers._objref_StdMeshers_Deflection1D.SetParameters(self,parameters)
@@ -5202,7 +6531,7 @@ omniORB.registerObjref(StdMeshers._objref_StdMeshers_Deflection1D._NP_Repository
 
 #Wrapper class for StdMeshers_StartEndLength hypothesis
 class StartEndLength(StdMeshers._objref_StdMeshers_StartEndLength):
-    
+
     ## Set Length parameter value
     #  @param length  numerical value or name of variable from notebook
     #  @param isStart true is length is Start Length, otherwise false
@@ -5213,54 +6542,54 @@ class StartEndLength(StdMeshers._objref_StdMeshers_StartEndLength):
         length,parameters = ParseParameters(StdMeshers._objref_StdMeshers_StartEndLength.GetLastParameters(self),2,nb,length)
         StdMeshers._objref_StdMeshers_StartEndLength.SetParameters(self,parameters)
         StdMeshers._objref_StdMeshers_StartEndLength.SetLength(self,length,isStart)
-        
+
 #Registering the new proxy for StartEndLength
 omniORB.registerObjref(StdMeshers._objref_StdMeshers_StartEndLength._NP_RepositoryId, StartEndLength)
 
 #Wrapper class for StdMeshers_MaxElementArea hypothesis
 class MaxElementArea(StdMeshers._objref_StdMeshers_MaxElementArea):
-    
+
     ## Set Max Element Area parameter value
     #  @param area  numerical value or name of variable from notebook
     def SetMaxElementArea(self, area):
         area ,parameters = ParseParameters(StdMeshers._objref_StdMeshers_MaxElementArea.GetLastParameters(self),1,1,area)
         StdMeshers._objref_StdMeshers_MaxElementArea.SetParameters(self,parameters)
         StdMeshers._objref_StdMeshers_MaxElementArea.SetMaxElementArea(self,area)
-        
+
 #Registering the new proxy for MaxElementArea
 omniORB.registerObjref(StdMeshers._objref_StdMeshers_MaxElementArea._NP_RepositoryId, MaxElementArea)
 
 
 #Wrapper class for StdMeshers_MaxElementVolume hypothesis
 class MaxElementVolume(StdMeshers._objref_StdMeshers_MaxElementVolume):
-    
+
     ## Set Max Element Volume parameter value
     #  @param volume numerical value or name of variable from notebook
     def SetMaxElementVolume(self, volume):
         volume ,parameters = ParseParameters(StdMeshers._objref_StdMeshers_MaxElementVolume.GetLastParameters(self),1,1,volume)
         StdMeshers._objref_StdMeshers_MaxElementVolume.SetParameters(self,parameters)
         StdMeshers._objref_StdMeshers_MaxElementVolume.SetMaxElementVolume(self,volume)
-        
+
 #Registering the new proxy for MaxElementVolume
 omniORB.registerObjref(StdMeshers._objref_StdMeshers_MaxElementVolume._NP_RepositoryId, MaxElementVolume)
 
 
 #Wrapper class for StdMeshers_NumberOfLayers hypothesis
 class NumberOfLayers(StdMeshers._objref_StdMeshers_NumberOfLayers):
-    
+
     ## Set Number Of Layers parameter value
     #  @param nbLayers  numerical value or name of variable from notebook
     def SetNumberOfLayers(self, nbLayers):
         nbLayers ,parameters = ParseParameters(StdMeshers._objref_StdMeshers_NumberOfLayers.GetLastParameters(self),1,1,nbLayers)
         StdMeshers._objref_StdMeshers_NumberOfLayers.SetParameters(self,parameters)
         StdMeshers._objref_StdMeshers_NumberOfLayers.SetNumberOfLayers(self,nbLayers)
-        
+
 #Registering the new proxy for NumberOfLayers
 omniORB.registerObjref(StdMeshers._objref_StdMeshers_NumberOfLayers._NP_RepositoryId, NumberOfLayers)
 
 #Wrapper class for StdMeshers_NumberOfSegments hypothesis
 class NumberOfSegments(StdMeshers._objref_StdMeshers_NumberOfSegments):
-    
+
     ## Set Number Of Segments parameter value
     #  @param nbSeg numerical value or name of variable from notebook
     def SetNumberOfSegments(self, nbSeg):
@@ -5268,14 +6597,14 @@ class NumberOfSegments(StdMeshers._objref_StdMeshers_NumberOfSegments):
         nbSeg , parameters = ParseParameters(lastParameters,1,1,nbSeg)
         StdMeshers._objref_StdMeshers_NumberOfSegments.SetParameters(self,parameters)
         StdMeshers._objref_StdMeshers_NumberOfSegments.SetNumberOfSegments(self,nbSeg)
-        
+
     ## Set Scale Factor parameter value
     #  @param factor numerical value or name of variable from notebook
     def SetScaleFactor(self, factor):
         factor, parameters = ParseParameters(StdMeshers._objref_StdMeshers_NumberOfSegments.GetLastParameters(self),2,2,factor)
         StdMeshers._objref_StdMeshers_NumberOfSegments.SetParameters(self,parameters)
         StdMeshers._objref_StdMeshers_NumberOfSegments.SetScaleFactor(self,factor)
-        
+
 #Registering the new proxy for NumberOfSegments
 omniORB.registerObjref(StdMeshers._objref_StdMeshers_NumberOfSegments._NP_RepositoryId, NumberOfSegments)
 
@@ -5346,7 +6675,7 @@ if not noNETGENPlugin:
             NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.SetLocalLength(self, length)
 
         ## Set Max Element Area parameter value
-        #  @param area numerical value or name of variable from notebook    
+        #  @param area numerical value or name of variable from notebook
         def SetMaxElementArea(self, area):
             lastParameters = NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.GetLastParameters(self)
             area, parameters = ParseParameters(lastParameters,2,2,area)
@@ -5367,7 +6696,7 @@ if not noNETGENPlugin:
     #Wrapper class for NETGENPlugin_SimpleHypothesis_3D hypothesis
     class NETGEN_SimpleParameters_3D(NETGEN_SimpleParameters_2D,NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_3D):
         ## Set Max Element Volume parameter value
-        #  @param volume numerical value or name of variable from notebook    
+        #  @param volume numerical value or name of variable from notebook
         def SetMaxElementVolume(self, volume):
             lastParameters = NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_3D.GetLastParameters(self)
             volume, parameters = ParseParameters(lastParameters,3,3,volume)