Salome HOME
Merge from PHASE_25_BR 09/12/2010
[modules/smesh.git] / src / SMESH_SWIG / smeshDC.py
index da351e2c2ca99dffa865861a45270ddbeecf6b5e..64aace0e51795df7322c631bbfcfce3f5cd6afac 100644 (file)
@@ -1,8 +1,5 @@
 #  -*- coding: iso-8859-1 -*-
-#  Copyright (C) 2007-2008  CEA/DEN, EDF R&D, OPEN CASCADE
-#
-#  Copyright (C) 2003-2007  OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
-#  CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
+#  Copyright (C) 2007-2010  CEA/DEN, EDF R&D, OPEN CASCADE
 #
 #  This library is free software; you can redistribute it and/or
 #  modify it under the terms of the GNU Lesser General Public
@@ -20,6 +17,7 @@
 #
 #  See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
 #
+
 #  File   : smesh.py
 #  Author : Francis KLOSS, OCC
 #  Module : SMESH
@@ -52,6 +50,7 @@
 ##     @defgroup l3_hypos_ghs3dh GHS3D Parameters hypothesis
 ##     @defgroup l3_hypos_blsurf BLSURF Parameters hypothesis
 ##     @defgroup l3_hypos_hexotic Hexotic Parameters hypothesis
+##     @defgroup l3_hypos_quad Quadrangle Parameters hypothesis
 ##     @defgroup l3_hypos_additi Additional Hypotheses
 
 ##   @}
@@ -89,6 +88,7 @@
 ##   @defgroup l2_modif_tofromqu Convert to/from Quadratic Mesh
 
 ## @}
+## @defgroup l1_measurements Measurements
 
 import salome
 import geompyDC
@@ -200,6 +200,11 @@ PrecisionConfusion = 1e-07
 # TopAbs_State enumeration
 [TopAbs_IN, TopAbs_OUT, TopAbs_ON, TopAbs_UNKNOWN] = range(4)
 
+# Methods of splitting a hexahedron into tetrahedra
+Hex_5Tet, Hex_6Tet, Hex_24Tet = 1, 2, 3
+
+# import items of enum QuadType
+for e in StdMeshers.QuadType._items: exec('%s = StdMeshers.%s'%(e,e))
 
 ## Converts an angle from degrees to radians
 def DegreesToRadians(AngleInDegrees):
@@ -440,6 +445,7 @@ def TreatHypoStatus(status, hypName, geomName, isAlgo):
     elif status == HYP_NOTCONFORM :
         reason = "a non-conform mesh would be built"
     elif status == HYP_ALREADY_EXIST :
+        if isAlgo: return # it does not influence anything
         reason = hypType + " of the same dimension is already assigned to this shape"
     elif status == HYP_BAD_DIM :
         reason = hypType + " mismatches the shape"
@@ -514,6 +520,20 @@ class smeshDC(SMESH._objref_SMESH_Gen):
     def EnumToLong(self,theItem):
         return theItem._v
 
+    ## Returns a string representation of the color.
+    #  To be used with filters.
+    #  @param c color value (SALOMEDS.Color)
+    #  @ingroup l1_controls
+    def ColorToString(self,c):
+        val = ""
+        if isinstance(c, SALOMEDS.Color):
+            val = "%s;%s;%s" % (c.R, c.G, c.B)
+        elif isinstance(c, str):
+            val = c
+        else:
+            raise ValueError, "Color value should be of string or SALOMEDS.Color type"
+        return val
+
     ## Gets PointStruct from vertex
     #  @param theVertex a GEOM object(vertex)
     #  @return SMESH.PointStruct
@@ -643,6 +663,43 @@ class smeshDC(SMESH._objref_SMESH_Gen):
         aMesh = Mesh(self, self.geompyD, aSmeshMesh)
         return aMesh
 
+    ## Concatenate the given meshes into one mesh.
+    #  @return an instance of Mesh class
+    #  @param meshes the meshes to combine into one mesh
+    #  @param uniteIdenticalGroups if true, groups with same names are united, else they are renamed
+    #  @param mergeNodesAndElements if true, equal nodes and elements aremerged
+    #  @param mergeTolerance tolerance for merging nodes
+    #  @param allGroups forces creation of groups of all elements
+    def Concatenate( self, meshes, uniteIdenticalGroups,
+                     mergeNodesAndElements = False, mergeTolerance = 1e-5, allGroups = False):
+        mergeTolerance,Parameters = geompyDC.ParseParameters(mergeTolerance)
+        for i,m in enumerate(meshes):
+            if isinstance(m, Mesh):
+                meshes[i] = m.GetMesh()
+        if allGroups:
+            aSmeshMesh = SMESH._objref_SMESH_Gen.ConcatenateWithGroups(
+                self,meshes,uniteIdenticalGroups,mergeNodesAndElements,mergeTolerance)
+        else:
+            aSmeshMesh = SMESH._objref_SMESH_Gen.Concatenate(
+                self,meshes,uniteIdenticalGroups,mergeNodesAndElements,mergeTolerance)
+        aSmeshMesh.SetParameters(Parameters)
+        aMesh = Mesh(self, self.geompyD, aSmeshMesh)
+        return aMesh
+
+    ## Create a mesh by copying a part of another mesh.
+    #  @param meshPart a part of mesh to copy, either a Mesh, a sub-mesh or a group;
+    #                  to copy nodes or elements not contained in any mesh object,
+    #                  pass result of Mesh.GetIDSource( list_of_ids, type ) as meshPart
+    #  @param meshName a name of the new mesh
+    #  @param toCopyGroups to create in the new mesh groups the copied elements belongs to
+    #  @param toKeepIDs to preserve IDs of the copied elements or not
+    #  @return an instance of Mesh class
+    def CopyMesh( self, meshPart, meshName, toCopyGroups=False, toKeepIDs=False):
+        if (isinstance( meshPart, Mesh )):
+            meshPart = meshPart.GetMesh()
+        mesh = SMESH._objref_SMESH_Gen.CopyMesh( self,meshPart,meshName,toCopyGroups,toKeepIDs )
+        return Mesh(self, self.geompyD, mesh)
+
     ## From SMESH_Gen interface
     #  @return the list of integer values
     #  @ingroup l1_auxiliary
@@ -664,26 +721,6 @@ class smeshDC(SMESH._objref_SMESH_Gen):
     def SetBoundaryBoxSegmentation(self, nbSegments):
         SMESH._objref_SMESH_Gen.SetBoundaryBoxSegmentation(self,nbSegments)
 
-    ## Concatenate the given meshes into one mesh.
-    #  @return an instance of Mesh class
-    #  @param meshes the meshes to combine into one mesh
-    #  @param uniteIdenticalGroups if true, groups with same names are united, else they are renamed
-    #  @param mergeNodesAndElements if true, equal nodes and elements aremerged
-    #  @param mergeTolerance tolerance for merging nodes
-    #  @param allGroups forces creation of groups of all elements
-    def Concatenate( self, meshes, uniteIdenticalGroups,
-                     mergeNodesAndElements = False, mergeTolerance = 1e-5, allGroups = False):
-        mergeTolerance,Parameters = geompyDC.ParseParameters(mergeTolerance)
-        if allGroups:
-            aSmeshMesh = SMESH._objref_SMESH_Gen.ConcatenateWithGroups(
-                self,meshes,uniteIdenticalGroups,mergeNodesAndElements,mergeTolerance)
-        else:
-            aSmeshMesh = SMESH._objref_SMESH_Gen.Concatenate(
-                self,meshes,uniteIdenticalGroups,mergeNodesAndElements,mergeTolerance)
-        aSmeshMesh.SetParameters(Parameters)
-        aMesh = Mesh(self, self.geompyD, aSmeshMesh)
-        return aMesh
-
     # Filtering. Auxiliary functions:
     # ------------------------------
 
@@ -712,6 +749,8 @@ class smeshDC(SMESH._objref_SMESH_Gen):
     #  @param UnaryOp  FT_LogicalNOT or FT_Undefined
     #  @param BinaryOp a binary logical operation FT_LogicalAND, FT_LogicalOR or
     #                  FT_Undefined (must be for the last criterion of all criteria)
+    #  @param Tolerance the tolerance used by FT_BelongToGeom, FT_BelongToSurface,
+    #         FT_LyingOnGeom, FT_CoplanarFaces criteria
     #  @return SMESH.Filter.Criterion
     #  @ingroup l1_controls
     def GetCriterion(self,elementType,
@@ -719,10 +758,12 @@ class smeshDC(SMESH._objref_SMESH_Gen):
                      Compare = FT_EqualTo,
                      Treshold="",
                      UnaryOp=FT_Undefined,
-                     BinaryOp=FT_Undefined):
+                     BinaryOp=FT_Undefined,
+                     Tolerance=1e-07):
         aCriterion = self.GetEmptyCriterion()
         aCriterion.TypeOfElement = elementType
         aCriterion.Type = self.EnumToLong(CritType)
+        aCriterion.Tolerance = Tolerance
 
         aTreshold = Treshold
 
@@ -754,8 +795,42 @@ class smeshDC(SMESH._objref_SMESH_Gen):
             else:
                 print "Error: The treshold should be a string."
                 return None
+        elif CritType == FT_CoplanarFaces:
+            # Checks the treshold
+            if isinstance(aTreshold, int):
+                aCriterion.ThresholdID = "%s"%aTreshold
+            elif isinstance(aTreshold, str):
+                ID = int(aTreshold)
+                if ID < 1:
+                    raise ValueError, "Invalid ID of mesh face: '%s'"%aTreshold
+                aCriterion.ThresholdID = aTreshold
+            else:
+                raise ValueError,\
+                      "The treshold should be an ID of mesh face and not '%s'"%aTreshold
+        elif CritType == FT_ElemGeomType:
+            # Checks the treshold
+            try:
+                aCriterion.Threshold = self.EnumToLong(aTreshold)
+            except:
+                if isinstance(aTreshold, int):
+                    aCriterion.Threshold = aTreshold
+                else:
+                    print "Error: The treshold should be an integer or SMESH.GeometryType."
+                    return None
+                pass
+            pass
+        elif CritType == FT_GroupColor:
+            # Checks the treshold
+            try:
+                aCriterion.ThresholdStr = self.ColorToString(aTreshold)
+            except:
+                print "Error: The threshold value should be of SALOMEDS.Color type"
+                return None
+            pass
         elif CritType in [FT_FreeBorders, FT_FreeEdges, FT_BadOrientedVolume, FT_FreeNodes,
-                          FT_FreeFaces, FT_ElemGeomType, FT_GroupColor]:
+                          FT_FreeFaces, FT_LinearOrQuadratic,
+                          FT_BareBorderFace, FT_BareBorderVolume,
+                          FT_OverConstrainedFace, FT_OverConstrainedVolume]:
             # At this point the treshold is unnecessary
             if aTreshold ==  FT_LogicalNOT:
                 aCriterion.UnaryOp = self.EnumToLong(FT_LogicalNOT)
@@ -790,19 +865,23 @@ class smeshDC(SMESH._objref_SMESH_Gen):
     #  @param Compare  belongs to {FT_LessThan, FT_MoreThan, FT_EqualTo}
     #  @param Treshold the threshold value (range of id ids as string, shape, numeric)
     #  @param UnaryOp  FT_LogicalNOT or FT_Undefined
+    #  @param Tolerance the tolerance used by FT_BelongToGeom, FT_BelongToSurface,
+    #         FT_LyingOnGeom, FT_CoplanarFaces criteria
     #  @return SMESH_Filter
     #  @ingroup l1_controls
     def GetFilter(self,elementType,
                   CritType=FT_Undefined,
                   Compare=FT_EqualTo,
                   Treshold="",
-                  UnaryOp=FT_Undefined):
-        aCriterion = self.GetCriterion(elementType, CritType, Compare, Treshold, UnaryOp, FT_Undefined)
+                  UnaryOp=FT_Undefined,
+                  Tolerance=1e-07):
+        aCriterion = self.GetCriterion(elementType, CritType, Compare, Treshold, UnaryOp, FT_Undefined,Tolerance)
         aFilterMgr = self.CreateFilterManager()
         aFilter = aFilterMgr.CreateFilter()
         aCriteria = []
         aCriteria.append(aCriterion)
         aFilter.SetCriteria(aCriteria)
+        aFilterMgr.Destroy()
         return aFilter
 
     ## Creates a numerical functor by its type
@@ -827,6 +906,10 @@ class smeshDC(SMESH._objref_SMESH_Gen):
             return aFilterMgr.CreateArea()
         elif theCriterion == FT_Volume3D:
             return aFilterMgr.CreateVolume3D()
+        elif theCriterion == FT_MaxElementLength2D:
+            return aFilterMgr.CreateMaxElementLength2D()
+        elif theCriterion == FT_MaxElementLength3D:
+            return aFilterMgr.CreateMaxElementLength3D()
         elif theCriterion == FT_MultiConnection:
             return aFilterMgr.CreateMultiConnection()
         elif theCriterion == FT_MultiConnection2D:
@@ -859,6 +942,110 @@ class smeshDC(SMESH._objref_SMESH_Gen):
             pass
         return d
 
+    ## Get minimum distance between two objects
+    #
+    #  If @a src2 is None, and @a id2 = 0, distance from @a src1 / @a id1 to the origin is computed.
+    #  If @a src2 is None, and @a id2 != 0, it is assumed that both @a id1 and @a id2 belong to @a src1.
+    #
+    #  @param src1 first source object 
+    #  @param src2 second source object
+    #  @param id1 node/element id from the first source
+    #  @param id2 node/element id from the second (or first) source
+    #  @param isElem1 @c True if @a id1 is element id, @c False if it is node id
+    #  @param isElem2 @c True if @a id2 is element id, @c False if it is node id
+    #  @return minimum distance value
+    #  @sa GetMinDistance()
+    #  @ingroup l1_measurements
+    def MinDistance(self, src1, src2=None, id1=0, id2=0, isElem1=False, isElem2=False):
+        result = self.GetMinDistance(src1, src2, id1, id2, isElem1, isElem2)
+        if result is None:
+            result = 0.0
+        else:
+            result = result.value
+        return result
+    
+    ## Get measure structure specifying minimum distance data between two objects
+    #
+    #  If @a src2 is None, and @a id2 = 0, distance from @a src1 / @a id1 to the origin is computed.
+    #  If @a src2 is None, and @a id2 != 0, it is assumed that both @a id1 and @a id2 belong to @a src1.
+    #
+    #  @param src1 first source object 
+    #  @param src2 second source object
+    #  @param id1 node/element id from the first source
+    #  @param id2 node/element id from the second (or first) source
+    #  @param isElem1 @c True if @a id1 is element id, @c False if it is node id
+    #  @param isElem2 @c True if @a id2 is element id, @c False if it is node id
+    #  @return Measure structure or None if input data is invalid
+    #  @sa MinDistance()
+    #  @ingroup l1_measurements
+    def GetMinDistance(self, src1, src2=None, id1=0, id2=0, isElem1=False, isElem2=False):
+        if isinstance(src1, Mesh): src1 = src1.mesh
+        if isinstance(src2, Mesh): src2 = src2.mesh
+        if src2 is None and id2 != 0: src2 = src1
+        if not hasattr(src1, "_narrow"): return None
+        src1 = src1._narrow(SMESH.SMESH_IDSource)
+        if not src1: return None
+        if id1 != 0:
+            m = src1.GetMesh()
+            e = m.GetMeshEditor()
+            if isElem1:
+                src1 = e.MakeIDSource([id1], SMESH.FACE)
+            else:
+                src1 = e.MakeIDSource([id1], SMESH.NODE)
+            pass
+        if hasattr(src2, "_narrow"):
+            src2 = src2._narrow(SMESH.SMESH_IDSource)
+            if src2 and id2 != 0:
+                m = src2.GetMesh()
+                e = m.GetMeshEditor()
+                if isElem2:
+                    src2 = e.MakeIDSource([id2], SMESH.FACE)
+                else:
+                    src2 = e.MakeIDSource([id2], SMESH.NODE)
+                pass
+            pass
+        aMeasurements = self.CreateMeasurements()
+        result = aMeasurements.MinDistance(src1, src2)
+        aMeasurements.Destroy()
+        return result
+    
+    ## Get bounding box of the specified object(s)
+    #  @param objects single source object or list of source objects
+    #  @return tuple of six values (minX, minY, minZ, maxX, maxY, maxZ)
+    #  @sa GetBoundingBox()
+    #  @ingroup l1_measurements
+    def BoundingBox(self, objects):
+        result = self.GetBoundingBox(objects)
+        if result is None:
+            result = (0.0,)*6
+        else:
+            result = (result.minX, result.minY, result.minZ, result.maxX, result.maxY, result.maxZ)
+        return result
+
+    ## Get measure structure specifying bounding box data of the specified object(s)
+    #  @param objects single source object or list of source objects
+    #  @return Measure structure
+    #  @sa BoundingBox()
+    #  @ingroup l1_measurements
+    def GetBoundingBox(self, objects):
+        if isinstance(objects, tuple):
+            objects = list(objects)
+        if not isinstance(objects, list):
+            objects = [objects]
+        srclist = []
+        for o in objects:
+            if isinstance(o, Mesh):
+                srclist.append(o.mesh)
+            elif hasattr(o, "_narrow"):
+                src = o._narrow(SMESH.SMESH_IDSource)
+                if src: srclist.append(src)
+                pass
+            pass
+        aMeasurements = self.CreateMeasurements()
+        result = aMeasurements.BoundingBox(srclist)
+        aMeasurements.Destroy()
+        return result
+
 import omniORB
 #Registering the new proxy for SMESH_Gen
 omniORB.registerObjref(SMESH._objref_SMESH_Gen._NP_RepositoryId, smeshDC)
@@ -1024,6 +1211,24 @@ class Mesh:
         else:
             return Mesh_Segment(self, geom)
 
+    ## Creates 1D algorithm importing segments conatined in groups of other mesh.
+    #  If the optional \a geom parameter is not set, this algorithm is global.
+    #  Otherwise, this algorithm defines a submesh based on \a geom subshape.
+    #  @param geom If defined the subshape is to be meshed
+    #  @return an instance of Mesh_UseExistingElements class
+    #  @ingroup l3_algos_basic
+    def UseExisting1DElements(self, geom=0):
+        return Mesh_UseExistingElements(1,self, geom)
+
+    ## Creates 2D algorithm importing faces conatined in groups of other mesh.
+    #  If the optional \a geom parameter is not set, this algorithm is global.
+    #  Otherwise, this algorithm defines a submesh based on \a geom subshape.
+    #  @param geom If defined the subshape is to be meshed
+    #  @return an instance of Mesh_UseExistingElements class
+    #  @ingroup l3_algos_basic
+    def UseExisting2DElements(self, geom=0):
+        return Mesh_UseExistingElements(2,self, geom)
+
     ## Enables creation of nodes and segments usable by 2D algoritms.
     #  The added nodes and segments must be bound to edges and vertices by
     #  SetNodeOnVertex(), SetNodeOnEdge() and SetMeshElementOnShape()
@@ -1155,7 +1360,9 @@ class Mesh:
         return Mesh_RadialPrism3D(self,  geom)
 
     ## Evaluates size of prospective mesh on a shape
-    #  @return True or False
+    #  @return a list where i-th element is a number of elements of i-th SMESH.EntityType
+    #  To know predicted number of e.g. edges, inquire it this way
+    #  Evaluate()[ EnumToLong( Entity_Edge )]
     def Evaluate(self, geom=0):
         if geom == 0 or not isinstance(geom, geompyDC.GEOM._objref_GEOM_Object):
             if self.geom == 0:
@@ -1166,9 +1373,13 @@ class Mesh:
 
 
     ## Computes the mesh and returns the status of the computation
+    #  @param geom geomtrical shape on which mesh data should be computed
+    #  @param discardModifs if True and the mesh has been edited since
+    #         a last total re-compute and that may prevent successful partial re-compute,
+    #         then the mesh is cleaned before Compute()
     #  @return True or False
     #  @ingroup l2_construct
-    def Compute(self, geom=0):
+    def Compute(self, geom=0, discardModifs=False):
         if geom == 0 or not isinstance(geom, geompyDC.GEOM._objref_GEOM_Object):
             if self.geom == 0:
                 geom = self.mesh.GetShapeToMesh()
@@ -1176,6 +1387,8 @@ class Mesh:
                 geom = self.geom
         ok = False
         try:
+            if discardModifs and self.mesh.HasModificationsToDiscard(): # issue 0020693
+                self.mesh.Clear()
             ok = self.smeshpyD.Compute(self.mesh, geom)
         except SALOME.SALOME_Exception, ex:
             print "Mesh computation failed, exception caught:"
@@ -1185,8 +1398,64 @@ class Mesh:
             print "Mesh computation failed, exception caught:"
             traceback.print_exc()
         if True:#not ok:
-            errors = self.smeshpyD.GetAlgoState( self.mesh, geom )
             allReasons = ""
+
+            # Treat compute errors
+            computeErrors = self.smeshpyD.GetComputeErrors( self.mesh, geom )
+            for err in computeErrors:
+                shapeText = ""
+                if self.mesh.HasShapeToMesh():
+                    try:
+                        mainIOR  = salome.orb.object_to_string(geom)
+                        for sname in salome.myStudyManager.GetOpenStudies():
+                            s = salome.myStudyManager.GetStudyByName(sname)
+                            if not s: continue
+                            mainSO = s.FindObjectIOR(mainIOR)
+                            if not mainSO: continue
+                            if err.subShapeID == 1:
+                                shapeText = ' on "%s"' % mainSO.GetName()
+                            subIt = s.NewChildIterator(mainSO)
+                            while subIt.More():
+                                subSO = subIt.Value()
+                                subIt.Next()
+                                obj = subSO.GetObject()
+                                if not obj: continue
+                                go = obj._narrow( geompyDC.GEOM._objref_GEOM_Object )
+                                if not go: continue
+                                ids = go.GetSubShapeIndices()
+                                if len(ids) == 1 and ids[0] == err.subShapeID:
+                                    shapeText = ' on "%s"' % subSO.GetName()
+                                    break
+                        if not shapeText:
+                            shape = self.geompyD.GetSubShape( geom, [err.subShapeID])
+                            if shape:
+                                shapeText = " on %s #%s" % (shape.GetShapeType(), err.subShapeID)
+                            else:
+                                shapeText = " on subshape #%s" % (err.subShapeID)
+                    except:
+                        shapeText = " on subshape #%s" % (err.subShapeID)
+                errText = ""
+                stdErrors = ["OK",                 #COMPERR_OK            
+                             "Invalid input mesh", #COMPERR_BAD_INPUT_MESH
+                             "std::exception",     #COMPERR_STD_EXCEPTION 
+                             "OCC exception",      #COMPERR_OCC_EXCEPTION 
+                             "SALOME exception",   #COMPERR_SLM_EXCEPTION 
+                             "Unknown exception",  #COMPERR_EXCEPTION     
+                             "Memory allocation problem", #COMPERR_MEMORY_PB     
+                             "Algorithm failed",   #COMPERR_ALGO_FAILED   
+                             "Unexpected geometry"]#COMPERR_BAD_SHAPE
+                if err.code > 0:
+                    if err.code < len(stdErrors): errText = stdErrors[err.code]
+                else:
+                    errText = "code %s" % -err.code
+                if errText: errText += ". "
+                errText += err.comment
+                if allReasons != "":allReasons += "\n"
+                allReasons += '"%s" failed%s. Error: %s' %(err.algoName, shapeText, errText)
+                pass
+
+            # Treat hyp errors
+            errors = self.smeshpyD.GetAlgoState( self.mesh, geom )
             for err in errors:
                 if err.isGlobalAlgo:
                     glob = "global"
@@ -1212,9 +1481,7 @@ class Mesh:
                     reason = "For unknown reason."+\
                              " Revise Mesh.Compute() implementation in smeshDC.py!"
                     pass
-                if allReasons != "":
-                    allReasons += "\n"
-                    pass
+                if allReasons != "":allReasons += "\n"
                 allReasons += reason
                 pass
             if allReasons != "":
@@ -1364,25 +1631,29 @@ class Mesh:
     def Group(self, grp, name=""):
         return self.GroupOnGeom(grp, name)
 
-    ## Deprecated, used only for compatibility! Please, use ExportMED() method instead.
+    ## Deprecated, used only for compatibility! Please, use ExportToMEDX() method instead.
     #  Exports the mesh in a file in MED format and chooses the \a version of MED format
+    ## allowing to overwrite the file if it exists or add the exported data to its contents
     #  @param f the file name
     #  @param version values are SMESH.MED_V2_1, SMESH.MED_V2_2
     #  @param opt boolean parameter for creating/not creating
     #  the groups Group_On_All_Nodes, Group_On_All_Faces, ...
+    #  @param overwrite boolean parameter for overwriting/not overwriting the file
     #  @ingroup l2_impexp
-    def ExportToMED(self, f, version, opt=0):
-        self.mesh.ExportToMED(f, opt, version)
+    def ExportToMED(self, f, version, opt=0, overwrite=1):
+        self.mesh.ExportToMEDX(f, opt, version, overwrite)
 
-    ## Exports the mesh in a file in MED format
+    ## Exports the mesh in a file in MED format and chooses the \a version of MED format
+    ## allowing to overwrite the file if it exists or add the exported data to its contents
     #  @param f is the file name
     #  @param auto_groups boolean parameter for creating/not creating
     #  the groups Group_On_All_Nodes, Group_On_All_Faces, ... ;
     #  the typical use is auto_groups=false.
     #  @param version MED format version(MED_V2_1 or MED_V2_2)
+    #  @param overwrite boolean parameter for overwriting/not overwriting the file
     #  @ingroup l2_impexp
-    def ExportMED(self, f, auto_groups=0, version=MED_V2_2):
-        self.mesh.ExportToMED(f, auto_groups, version)
+    def ExportMED(self, f, auto_groups=0, version=MED_V2_2, overwrite=1):
+        self.mesh.ExportToMEDX(f, auto_groups, version, overwrite)
 
     ## Exports the mesh in a file in DAT format
     #  @param f the file name
@@ -1496,6 +1767,8 @@ class Mesh:
     #  @param Compare belongs to {FT_LessThan, FT_MoreThan, FT_EqualTo}
     #  @param Treshold the threshold value (range of id ids as string, shape, numeric)
     #  @param UnaryOp FT_LogicalNOT or FT_Undefined
+    #  @param Tolerance the tolerance used by FT_BelongToGeom, FT_BelongToSurface,
+    #         FT_LyingOnGeom, FT_CoplanarFaces criteria
     #  @return SMESH_Group
     #  @ingroup l2_grps_create
     def MakeGroup(self,
@@ -1504,8 +1777,9 @@ class Mesh:
                   CritType=FT_Undefined,
                   Compare=FT_EqualTo,
                   Treshold="",
-                  UnaryOp=FT_Undefined):
-        aCriterion = self.smeshpyD.GetCriterion(elementType, CritType, Compare, Treshold, UnaryOp, FT_Undefined)
+                  UnaryOp=FT_Undefined,
+                  Tolerance=1e-07):
+        aCriterion = self.smeshpyD.GetCriterion(elementType, CritType, Compare, Treshold, UnaryOp, FT_Undefined,Tolerance)
         group = self.MakeGroupByCriterion(groupName, aCriterion)
         return group
 
@@ -1521,6 +1795,7 @@ class Mesh:
         aCriteria.append(Criterion)
         aFilter.SetCriteria(aCriteria)
         group = self.MakeGroupByFilter(groupName, aFilter)
+        aFilterMgr.Destroy()
         return group
 
     ## Creates a mesh group by the given criteria (list of criteria)
@@ -1533,6 +1808,7 @@ class Mesh:
         aFilter = aFilterMgr.CreateFilter()
         aFilter.SetCriteria(theCriteria)
         group = self.MakeGroupByFilter(groupName, aFilter)
+        aFilterMgr.Destroy()
         return group
 
     ## Creates a mesh group by the given filter
@@ -1541,9 +1817,9 @@ class Mesh:
     #  @return SMESH_Group
     #  @ingroup l2_grps_create
     def MakeGroupByFilter(self, groupName, theFilter):
-        anIds = theFilter.GetElementsId(self.mesh)
-        anElemType = theFilter.GetElementType()
-        group = self.MakeGroupByIds(groupName, anElemType, anIds)
+        group = self.CreateEmptyGroup(theFilter.GetElementType(), groupName)
+        theFilter.SetMesh( self.mesh )
+        group.AddFrom( theFilter )
         return group
 
     ## Passes mesh elements through the given filter and return IDs of fitting elements
@@ -1551,7 +1827,8 @@ class Mesh:
     #  @return a list of ids
     #  @ingroup l1_controls
     def GetIdsFromFilter(self, theFilter):
-        return theFilter.GetElementsId(self.mesh)
+        theFilter.SetMesh( self.mesh )
+        return theFilter.GetIDs()
 
     ## Verifies whether a 2D mesh element has free edges (edges connected to one face only)\n
     #  Returns a list of special structures (borders).
@@ -1562,6 +1839,7 @@ class Mesh:
         aPredicate = aFilterMgr.CreateFreeEdges()
         aPredicate.SetMesh(self.mesh)
         aBorders = aPredicate.GetBorders()
+        aFilterMgr.Destroy()
         return aBorders
 
     ## Removes a group
@@ -1717,6 +1995,13 @@ class Mesh:
     def GetMeshEditor(self):
         return self.mesh.GetMeshEditor()
 
+    ## Wrap a list of IDs of elements or nodes into SMESH_IDSource which
+    #  can be passed as argument to accepting mesh, group or sub-mesh
+    #  @return an instance of SMESH_IDSource
+    #  @ingroup l1_auxiliary
+    def GetIDSource(self, ids, elemType):
+        return self.GetMeshEditor().MakeIDSource(ids, elemType)
+
     ## Gets MED Mesh
     #  @return an instance of SALOME_MED::MESH
     #  @ingroup l1_auxiliary
@@ -1903,7 +2188,7 @@ class Mesh:
         return self.mesh.GetElementsId()
 
     ## Returns the list of IDs of mesh elements with the given type
-    #  @param elementType  the required type of elements
+    #  @param elementType  the required type of elements (SMESH.NODE, SMESH.EDGE, SMESH.FACE or SMESH.VOLUME)
     #  @return list of integer values
     #  @ingroup l1_meshinfo
     def GetElementsByType(self, elementType):
@@ -2081,6 +2366,95 @@ class Mesh:
         return self.mesh.BaryCenter(id)
 
 
+    # Get mesh measurements information:
+    # ------------------------------------
+
+    ## Get minimum distance between two nodes, elements or distance to the origin
+    #  @param id1 first node/element id
+    #  @param id2 second node/element id (if 0, distance from @a id1 to the origin is computed)
+    #  @param isElem1 @c True if @a id1 is element id, @c False if it is node id
+    #  @param isElem2 @c True if @a id2 is element id, @c False if it is node id
+    #  @return minimum distance value
+    #  @sa GetMinDistance()
+    def MinDistance(self, id1, id2=0, isElem1=False, isElem2=False):
+        aMeasure = self.GetMinDistance(id1, id2, isElem1, isElem2)
+        return aMeasure.value
+    
+    ## Get measure structure specifying minimum distance data between two objects
+    #  @param id1 first node/element id
+    #  @param id2 second node/element id (if 0, distance from @a id1 to the origin is computed)
+    #  @param isElem1 @c True if @a id1 is element id, @c False if it is node id
+    #  @param isElem2 @c True if @a id2 is element id, @c False if it is node id
+    #  @return Measure structure
+    #  @sa MinDistance()
+    def GetMinDistance(self, id1, id2=0, isElem1=False, isElem2=False):
+        if isElem1:
+            id1 = self.editor.MakeIDSource([id1], SMESH.FACE)
+        else:
+            id1 = self.editor.MakeIDSource([id1], SMESH.NODE)
+        if id2 != 0:
+            if isElem2:
+                id2 = self.editor.MakeIDSource([id2], SMESH.FACE)
+            else:
+                id2 = self.editor.MakeIDSource([id2], SMESH.NODE)
+            pass
+        else:
+            id2 = None
+        
+        aMeasurements = self.smeshpyD.CreateMeasurements()
+        aMeasure = aMeasurements.MinDistance(id1, id2)
+        aMeasurements.Destroy()
+        return aMeasure
+    
+    ## Get bounding box of the specified object(s)
+    #  @param objects single source object or list of source objects or list of nodes/elements IDs
+    #  @param isElem if @a objects is a list of IDs, @c True value in this parameters specifies that @a objects are elements,
+    #  @c False specifies that @a objects are nodes
+    #  @return tuple of six values (minX, minY, minZ, maxX, maxY, maxZ)
+    #  @sa GetBoundingBox()
+    def BoundingBox(self, objects=None, isElem=False):
+        result = self.GetBoundingBox(objects, isElem)
+        if result is None:
+            result = (0.0,)*6
+        else:
+            result = (result.minX, result.minY, result.minZ, result.maxX, result.maxY, result.maxZ)
+        return result
+
+    ## Get measure structure specifying bounding box data of the specified object(s)
+    #  @param objects single source object or list of source objects or list of nodes/elements IDs
+    #  @param isElem if @a objects is a list of IDs, @c True value in this parameters specifies that @a objects are elements,
+    #  @c False specifies that @a objects are nodes
+    #  @return Measure structure
+    #  @sa BoundingBox()
+    def GetBoundingBox(self, IDs=None, isElem=False):
+        if IDs is None:
+            IDs = [self.mesh]
+        elif isinstance(IDs, tuple):
+            IDs = list(IDs)
+        if not isinstance(IDs, list):
+            IDs = [IDs]
+        if len(IDs) > 0 and isinstance(IDs[0], int):
+            IDs = [IDs]
+        srclist = []
+        for o in IDs:
+            if isinstance(o, Mesh):
+                srclist.append(o.mesh)
+            elif hasattr(o, "_narrow"):
+                src = o._narrow(SMESH.SMESH_IDSource)
+                if src: srclist.append(src)
+                pass
+            elif isinstance(o, list):
+                if isElem:
+                    srclist.append(self.editor.MakeIDSource(o, SMESH.FACE))
+                else:
+                    srclist.append(self.editor.MakeIDSource(o, SMESH.NODE))
+                pass
+            pass
+        aMeasurements = self.smeshpyD.CreateMeasurements()
+        aMeasure = aMeasurements.BoundingBox(srclist)
+        aMeasurements.Destroy()
+        return aMeasure
+    
     # Mesh edition (SMESH_MeshEditor functionality):
     # ---------------------------------------------
 
@@ -2098,6 +2472,12 @@ class Mesh:
     def RemoveNodes(self, IDsOfNodes):
         return self.editor.RemoveNodes(IDsOfNodes)
 
+    ## Removes all orphan (free) nodes from mesh
+    #  @return number of the removed nodes
+    #  @ingroup l2_modif_del
+    def RemoveOrphanNodes(self):
+        return self.editor.RemoveOrphanNodes()
+
     ## Add a node to the mesh by coordinates
     #  @return Id of the new node
     #  @ingroup l2_modif_add
@@ -2118,7 +2498,7 @@ class Mesh:
     #  @param IDsOfNodes the list of node IDs for creation of the element.
     #  The order of nodes in this list should correspond to the description
     #  of MED. \n This description is located by the following link:
-    #  http://www.salome-platform.org/salome2/web_med_internet/logiciels/medV2.2.2_doc_html/html/modele_de_donnees.html#3.
+    #  http://www.code-aster.org/outils/med/html/modele_de_donnees.html#3.
     #  @return the Id of the new edge
     #  @ingroup l2_modif_add
     def AddEdge(self, IDsOfNodes):
@@ -2129,7 +2509,7 @@ class Mesh:
     #  @param IDsOfNodes the list of node IDs for creation of the element.
     #  The order of nodes in this list should correspond to the description
     #  of MED. \n This description is located by the following link:
-    #  http://www.salome-platform.org/salome2/web_med_internet/logiciels/medV2.2.2_doc_html/html/modele_de_donnees.html#3.
+    #  http://www.code-aster.org/outils/med/html/modele_de_donnees.html#3.
     #  @return the Id of the new face
     #  @ingroup l2_modif_add
     def AddFace(self, IDsOfNodes):
@@ -2147,7 +2527,7 @@ class Mesh:
     #  @param IDsOfNodes the list of node IDs for creation of the element.
     #  The order of nodes in this list should correspond to the description
     #  of MED. \n This description is located by the following link:
-    #  http://www.salome-platform.org/salome2/web_med_internet/logiciels/medV2.2.2_doc_html/html/modele_de_donnees.html#3.
+    #  http://www.code-aster.org/outils/med/html/modele_de_donnees.html#3.
     #  @return the Id of the new volumic element
     #  @ingroup l2_modif_add
     def AddVolume(self, IDsOfNodes):
@@ -2444,13 +2824,14 @@ class Mesh:
 
     ## Splits volumic elements into tetrahedrons
     #  @param elemIDs either list of elements or mesh or group or submesh
-    #  @param method  flags passing splitting method:
-    #         1 - split the hexahedron into 5 tetrahedrons
-    #         2 - split the hexahedron into 6 tetrahedrons
+    #  @param method  flags passing splitting method: Hex_5Tet, Hex_6Tet, Hex_24Tet
+    #         Hex_5Tet - split the hexahedron into 5 tetrahedrons, etc
     #  @ingroup l2_modif_cutquadr
-    def SplitVolumesIntoTetra(self, elemIDs, method=1 ):
+    def SplitVolumesIntoTetra(self, elemIDs, method=Hex_5Tet ):
         if isinstance( elemIDs, Mesh ):
             elemIDs = elemIDs.GetMesh()
+        if ( isinstance( elemIDs, list )):
+            elemIDs = self.editor.MakeIDSource(elemIDs, SMESH.VOLUME)
         self.editor.SplitVolumesIntoTetra(elemIDs, method)
 
     ## Splits quadrangle faces near triangular facets of volumes
@@ -2665,6 +3046,9 @@ class Mesh:
 
     ## Converts the mesh to quadratic, deletes old elements, replacing
     #  them with quadratic with the same id.
+    #  @param theForce3d new node creation method:
+    #         0 - the medium node lies at the geometrical edge from which the mesh element is built
+    #         1 - the medium node lies at the middle of the line segments connecting start and end node of a mesh element
     #  @ingroup l2_modif_tofromqu
     def ConvertToQuadratic(self, theForce3d):
         self.editor.ConvertToQuadratic(theForce3d)
@@ -2682,7 +3066,34 @@ class Mesh:
     #  @ingroup l2_modif_edit
     def  Make2DMeshFrom3D(self):
         return self.editor. Make2DMeshFrom3D()
-        
+
+    ## Creates missing boundary elements
+    #  @param elements - elements whose boundary is to be checked:
+    #                    mesh, group, sub-mesh or list of elements
+    #  @param dimension - defines type of boundary elements to create:
+    #                     SMESH.BND_2DFROM3D, SMESH.BND_1DFROM3D, SMESH.BND_1DFROM2D
+    #  @param groupName - a name of group to store created boundary elements in,
+    #                     "" means not to create the group
+    #  @param meshName - a name of new mesh to store created boundary elements in,
+    #                     "" means not to create the new mesh
+    #  @param toCopyElements - if true, the checked elements will be copied into the new mesh
+    #  @param toCopyExistingBondary - if true, not only new but also pre-existing 
+    #                                boundary elements will be copied into the new mesh
+    #  @return tuple (mesh, group) where bondary elements were added to
+    #  @ingroup l2_modif_edit
+    def MakeBoundaryMesh(self, elements, dimension=SMESH.BND_2DFROM3D, groupName="", meshName="",
+                         toCopyElements=False, toCopyExistingBondary=False):
+        if isinstance( elements, Mesh ):
+            elements = elements.GetMesh()
+        if ( isinstance( elements, list )):
+            elemType = SMESH.ALL
+            if elements: elemType = self.GetElementType( elements[0], iselem=True)
+            elements = self.editor.MakeIDSource(elements, elemType)
+        mesh, group = self.editor.MakeBoundaryMesh(elements,dimension,groupName,meshName,
+                                                   toCopyElements,toCopyExistingBondary)
+        if mesh: mesh = self.smeshpyD.Mesh(mesh)
+        return mesh, group
+
     ## Renumber mesh nodes
     #  @ingroup l2_modif_renumber
     def RenumberNodes(self):
@@ -2835,7 +3246,7 @@ class Mesh:
 
     ## Generates new elements by extrusion of the elements with given ids
     #  @param IDsOfElements the list of elements ids for extrusion
-    #  @param StepVector vector, defining the direction and value of extrusion
+    #  @param StepVector vector or DirStruct, defining the direction and value of extrusion
     #  @param NbOfSteps the number of steps
     #  @param MakeGroups forces the generation of new groups from existing ones
     #  @return the list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
@@ -3312,7 +3723,7 @@ class Mesh:
     ## Scales the object
     #  @param theObject - the object to translate (mesh, submesh, or group)
     #  @param thePoint - base point for scale
-    #  @param theScaleFact - scale factors for axises
+    #  @param theScaleFact - list of 1-3 scale factors for axises
     #  @param Copy - allows copying the translated elements
     #  @param MakeGroups - forces the generation of new groups from existing
     #                      ones (if Copy)
@@ -3322,7 +3733,7 @@ class Mesh:
         if ( isinstance( theObject, Mesh )):
             theObject = theObject.GetMesh()
         if ( isinstance( theObject, list )):
-            theObject = self.editor.MakeIDSource(theObject)
+            theObject = self.GetIDSource(theObject, SMESH.ALL)
 
         thePoint, Parameters = ParsePointStruct(thePoint)
         self.mesh.SetParameters(Parameters)
@@ -3335,7 +3746,7 @@ class Mesh:
     ## Creates a new mesh from the translated object
     #  @param theObject - the object to translate (mesh, submesh, or group)
     #  @param thePoint - base point for scale
-    #  @param theScaleFact - scale factors for axises
+    #  @param theScaleFact - list of 1-3 scale factors for axises
     #  @param MakeGroups - forces the generation of new groups from existing ones
     #  @param NewMeshName - the name of the newly created mesh
     #  @return instance of Mesh class
@@ -3343,7 +3754,7 @@ class Mesh:
         if (isinstance(theObject, Mesh)):
             theObject = theObject.GetMesh()
         if ( isinstance( theObject, list )):
-            theObject = self.editor.MakeIDSource(theObject)
+            theObject = self.GetIDSource(theObject,SMESH.ALL)
 
         mesh = self.editor.ScaleMakeMesh(theObject, thePoint, theScaleFact,
                                          MakeGroups, NewMeshName)
@@ -3468,10 +3879,17 @@ class Mesh:
     ## Finds groups of ajacent nodes within Tolerance.
     #  @param Tolerance the value of tolerance
     #  @param SubMeshOrGroup SubMesh or Group
+    #  @param exceptNodes list of either SubMeshes, Groups or node IDs to exclude from search
     #  @return the list of groups of nodes
     #  @ingroup l2_modif_trsf
-    def FindCoincidentNodesOnPart (self, SubMeshOrGroup, Tolerance):
-        return self.editor.FindCoincidentNodesOnPart(SubMeshOrGroup, Tolerance)
+    def FindCoincidentNodesOnPart (self, SubMeshOrGroup, Tolerance, exceptNodes=[]):
+        if (isinstance( SubMeshOrGroup, Mesh )):
+            SubMeshOrGroup = SubMeshOrGroup.GetMesh()
+        if not isinstance( exceptNodes, list):
+            exceptNodes = [ exceptNodes ]
+        if exceptNodes and isinstance( exceptNodes[0], int):
+            exceptNodes = [ self.GetIDSource( exceptNodes, SMESH.NODE)]
+        return self.editor.FindCoincidentNodesOnPartBut(SubMeshOrGroup, Tolerance,exceptNodes)
 
     ## Merges nodes
     #  @param GroupsOfNodes the list of groups of nodes
@@ -3576,7 +3994,7 @@ class Mesh:
         
     ## Creates a hole in a mesh by doubling the nodes of some particular elements
     #  This method provided for convenience works as DoubleNodes() described above.
-    #  @param theNodes identifiers of node to be doubled
+    #  @param theNodeId identifiers of node to be doubled
     #  @param theModifiedElems identifiers of elements to be updated
     #  @return TRUE if operation has been completed successfully, FALSE otherwise
     #  @ingroup l2_modif_edit
@@ -3587,11 +4005,15 @@ class Mesh:
     #  This method provided for convenience works as DoubleNodes() described above.
     #  @param theNodes group of nodes to be doubled
     #  @param theModifiedElems group of elements to be updated.
-    #  @return TRUE if operation has been completed successfully, FALSE otherwise
+    #  @param theMakeGroup forces the generation of a group containing new nodes.
+    #  @return TRUE or a created group if operation has been completed successfully,
+    #          FALSE or None otherwise
     #  @ingroup l2_modif_edit
-    def DoubleNodeGroup(self, theNodes, theModifiedElems):
+    def DoubleNodeGroup(self, theNodes, theModifiedElems, theMakeGroup=False):
+        if theMakeGroup:
+            return self.editor.DoubleNodeGroupNew(theNodes, theModifiedElems)
         return self.editor.DoubleNodeGroup(theNodes, theModifiedElems)
-        
+
     ## Creates a hole in a mesh by doubling the nodes of some particular elements
     #  This method provided for convenience works as DoubleNodes() described above.
     #  @param theNodes list of groups of nodes to be doubled
@@ -3630,10 +4052,13 @@ class Mesh:
     #  @param theNodesNot - group of nodes not to replicated
     #  @param theAffectedElems - group of elements to which the replicated nodes
     #         should be associated to.
+    #  @param theMakeGroup forces the generation of a group containing new elements.
     #  @ingroup l2_modif_edit
-    def DoubleNodeElemGroup(self, theElems, theNodesNot, theAffectedElems):
+    def DoubleNodeElemGroup(self, theElems, theNodesNot, theAffectedElems, theMakeGroup=False):
+        if theMakeGroup:
+            return self.editor.DoubleNodeElemGroupNew(theElems, theNodesNot, theAffectedElems)
         return self.editor.DoubleNodeElemGroup(theElems, theNodesNot, theAffectedElems)
-        
+
     ## Creates a hole in a mesh by doubling the nodes of some particular elements
     #  This method provided for convenience works as DoubleNodes() described above.
     #  @param theElems - group of of elements (edges or faces) to be replicated
@@ -3668,6 +4093,86 @@ class Mesh:
     def DoubleNodeElemGroupsInRegion(self, theElems, theNodesNot, theShape):
         return self.editor.DoubleNodeElemGroupsInRegion(theElems, theNodesNot, theShape)
 
+    def _valueFromFunctor(self, funcType, elemId):
+        fn = self.smeshpyD.GetFunctor(funcType)
+        fn.SetMesh(self.mesh)
+        if fn.GetElementType() == self.GetElementType(elemId, True):
+            val = fn.GetValue(elemId)
+        else:
+            val = 0
+        return val
+        
+    ## Get length of 1D element.
+    #  @param elemId mesh element ID
+    #  @return element's length value
+    #  @ingroup l1_measurements
+    def GetLength(self, elemId):
+        return self._valueFromFunctor(SMESH.FT_Length, elemId)    
+
+    ## Get area of 2D element.
+    #  @param elemId mesh element ID
+    #  @return element's area value
+    #  @ingroup l1_measurements
+    def GetArea(self, elemId):
+        return self._valueFromFunctor(SMESH.FT_Area, elemId)    
+
+    ## Get volume of 3D element.
+    #  @param elemId mesh element ID
+    #  @return element's volume value
+    #  @ingroup l1_measurements
+    def GetVolume(self, elemId):
+        return self._valueFromFunctor(SMESH.FT_Volume3D, elemId)    
+
+    ## Get maximum element length.
+    #  @param elemId mesh element ID
+    #  @return element's maximum length value
+    #  @ingroup l1_measurements
+    def GetMaxElementLength(self, elemId):
+        if self.GetElementType(elemId, True) == SMESH.VOLUME:
+            ftype = SMESH.FT_MaxElementLength3D
+        else:
+            ftype = SMESH.FT_MaxElementLength2D
+        return self._valueFromFunctor(ftype, elemId)    
+
+    ## Get aspect ratio of 2D or 3D element.
+    #  @param elemId mesh element ID
+    #  @return element's aspect ratio value
+    #  @ingroup l1_measurements
+    def GetAspectRatio(self, elemId):
+        if self.GetElementType(elemId, True) == SMESH.VOLUME:
+            ftype = SMESH.FT_AspectRatio3D
+        else:
+            ftype = SMESH.FT_AspectRatio
+        return self._valueFromFunctor(ftype, elemId)    
+
+    ## Get warping angle of 2D element.
+    #  @param elemId mesh element ID
+    #  @return element's warping angle value
+    #  @ingroup l1_measurements
+    def GetWarping(self, elemId):
+        return self._valueFromFunctor(SMESH.FT_Warping, elemId)
+
+    ## Get minimum angle of 2D element.
+    #  @param elemId mesh element ID
+    #  @return element's minimum angle value
+    #  @ingroup l1_measurements
+    def GetMinimumAngle(self, elemId):
+        return self._valueFromFunctor(SMESH.FT_MinimumAngle, elemId)
+
+    ## Get taper of 2D element.
+    #  @param elemId mesh element ID
+    #  @return element's taper value
+    #  @ingroup l1_measurements
+    def GetTaper(self, elemId):
+        return self._valueFromFunctor(SMESH.FT_Taper, elemId)
+
+    ## Get skew of 2D element.
+    #  @param elemId mesh element ID
+    #  @return element's skew value
+    #  @ingroup l1_measurements
+    def GetSkew(self, elemId):
+        return self._valueFromFunctor(SMESH.FT_Skew, elemId)
+
 ## The mother class to define algorithm, it is not recommended to use it directly.
 #
 #  More details.
@@ -3820,7 +4325,8 @@ class Mesh_Algorithm:
                 pass
             except:
                 name = mesh.geompyD.SubShapeName(geom, piece)
-                mesh.geompyD.addToStudyInFather(piece, geom, name)
+                if not name:
+                    name = "%s_%s"%(geom.GetShapeType(), id(geom%1000))
                 pass
             self.subm = mesh.mesh.GetSubMesh(geom, algo.GetName())
 
@@ -3856,8 +4362,11 @@ class Mesh_Algorithm:
                 pass
             self.mesh.smeshpyD.SetName(hypo, hyp + a)
             pass
+        geomName=""
+        if self.geom:
+            geomName = GetName(self.geom)
         status = self.mesh.mesh.AddHypothesis(self.geom, hypo)
-        TreatHypoStatus( status, GetName(hypo), GetName(self.geom), 0 )
+        TreatHypoStatus( status, GetName(hypo), geomName, 0 )
         return hypo
 
     ## Returns entry of the shape to mesh in the study
@@ -3953,6 +4462,8 @@ class Mesh_Segment(Mesh_Algorithm):
         if not isinstance(reversedEdges,list): #old version script, before adding reversedEdges
             reversedEdges, UseExisting = [], reversedEdges
         entry = self.MainShapeEntry()
+        if reversedEdges and isinstance(reversedEdges[0],geompyDC.GEOM._objref_GEOM_Object):
+            reversedEdges = [ self.mesh.geompyD.GetSubShapeID(self.mesh.geom, e) for e in reversedEdges ]
         if s == []:
             hyp = self.Hypothesis("NumberOfSegments", [n, reversedEdges, entry],
                                   UseExisting=UseExisting,
@@ -3995,6 +4506,8 @@ class Mesh_Segment(Mesh_Algorithm):
     def Arithmetic1D(self, start, end, reversedEdges=[], UseExisting=0):
         if not isinstance(reversedEdges,list): #old version script, before adding reversedEdges
             reversedEdges, UseExisting = [], reversedEdges
+        if reversedEdges and isinstance(reversedEdges[0],geompyDC.GEOM._objref_GEOM_Object):
+            reversedEdges = [ self.mesh.geompyD.GetSubShapeID(self.mesh.geom, e) for e in reversedEdges ]
         entry = self.MainShapeEntry()
         hyp = self.Hypothesis("Arithmetic1D", [start, end, reversedEdges, entry],
                               UseExisting=UseExisting,
@@ -4031,9 +4544,8 @@ class Mesh_Segment(Mesh_Algorithm):
     def FixedPoints1D(self, points, nbSegs=[1], reversedEdges=[], UseExisting=0):
         if not isinstance(reversedEdges,list): #old version script, before adding reversedEdges
             reversedEdges, UseExisting = [], reversedEdges
-        if reversedEdges and isinstance( reversedEdges[0], geompyDC.GEOM._objref_GEOM_Object ):
-            for i in range( len( reversedEdges )):
-                reversedEdges[i] = self.mesh.geompyD.GetSubShapeID(self.mesh.geom, reversedEdges[i] )
+        if reversedEdges and isinstance(reversedEdges[0],geompyDC.GEOM._objref_GEOM_Object):
+            reversedEdges = [ self.mesh.geompyD.GetSubShapeID(self.mesh.geom, e) for e in reversedEdges ]
         entry = self.MainShapeEntry()
         hyp = self.Hypothesis("FixedPoints1D", [points, nbSegs, reversedEdges, entry],
                               UseExisting=UseExisting,
@@ -4068,6 +4580,8 @@ class Mesh_Segment(Mesh_Algorithm):
     def StartEndLength(self, start, end, reversedEdges=[], UseExisting=0):
         if not isinstance(reversedEdges,list): #old version script, before adding reversedEdges
             reversedEdges, UseExisting = [], reversedEdges
+        if reversedEdges and isinstance(reversedEdges[0],geompyDC.GEOM._objref_GEOM_Object):
+            reversedEdges = [ self.mesh.geompyD.GetSubShapeID(self.mesh.geom, e) for e in reversedEdges ]
         entry = self.MainShapeEntry()
         hyp = self.Hypothesis("StartEndLength", [start, end, reversedEdges, entry],
                               UseExisting=UseExisting,
@@ -4327,7 +4841,7 @@ class Mesh_Triangle(Mesh_Algorithm):
         self.Parameters().SetPhyMax(theVal)
 
     ## Sets a way to define maximum angular deflection of mesh from CAD model.
-    #  @param theGeometricMesh is: DefaultGeom or Custom
+    #  @param theGeometricMesh is: 0 (None) or 1 (Custom)
     #  @ingroup l3_hypos_blsurf
     def SetGeometricMesh(self, theGeometricMesh=0):
         #  Parameter of BLSURF algo
@@ -4395,20 +4909,31 @@ class Mesh_Triangle(Mesh_Algorithm):
         self.Parameters().SetOptionValue(optionName,level)
 
     ## Sets QuadAllowed flag.
-    #  Only for algoType == NETGEN || NETGEN_2D || BLSURF
+    #  Only for algoType == NETGEN(NETGEN_1D2D) || NETGEN_2D || BLSURF
     #  @ingroup l3_hypos_netgen l3_hypos_blsurf
     def SetQuadAllowed(self, toAllow=True):
         if self.algoType == NETGEN_2D:
-            if toAllow: # add QuadranglePreference
-                self.Hypothesis("QuadranglePreference", UseExisting=1, CompareMethod=self.CompareEqualHyp)
-            else:       # remove QuadranglePreference
+            if not self.params:
+                # use simple hyps
+                hasSimpleHyps = False
+                simpleHyps = ["QuadranglePreference","LengthFromEdges","MaxElementArea"]
                 for hyp in self.mesh.GetHypothesisList( self.geom ):
-                    if hyp.GetName() == "QuadranglePreference":
-                        self.mesh.RemoveHypothesis( self.geom, hyp )
+                    if hyp.GetName() in simpleHyps:
+                        hasSimpleHyps = True
+                        if hyp.GetName() == "QuadranglePreference":
+                            if not toAllow: # remove QuadranglePreference
+                                self.mesh.RemoveHypothesis( self.geom, hyp )
+                                pass
+                            return
                         pass
                     pass
+                if hasSimpleHyps:
+                    if toAllow: # add QuadranglePreference
+                        self.Hypothesis("QuadranglePreference", UseExisting=1, CompareMethod=self.CompareEqualHyp)
+                        pass
+                    return
                 pass
-            return
+            pass
         if self.Parameters():
             self.params.SetQuadAllowed(toAllow)
             return
@@ -4417,30 +4942,25 @@ class Mesh_Triangle(Mesh_Algorithm):
     #
     #  @ingroup l3_hypos_netgen
     def Parameters(self, which=SOLE):
-        if self.params:
-            return self.params
-        if self.algoType == NETGEN:
-            if which == SIMPLE:
-                self.params = self.Hypothesis("NETGEN_SimpleParameters_2D", [],
+        if not self.params:
+            if self.algoType == NETGEN:
+                if which == SIMPLE:
+                    self.params = self.Hypothesis("NETGEN_SimpleParameters_2D", [],
+                                                  "libNETGENEngine.so", UseExisting=0)
+                else:
+                    self.params = self.Hypothesis("NETGEN_Parameters_2D", [],
+                                                  "libNETGENEngine.so", UseExisting=0)
+            elif self.algoType == MEFISTO:
+                print "Mefisto algo support no multi-parameter hypothesis"
+            elif self.algoType == NETGEN_2D:
+                self.params = self.Hypothesis("NETGEN_Parameters_2D_ONLY", [],
                                               "libNETGENEngine.so", UseExisting=0)
+            elif self.algoType == BLSURF:
+                self.params = self.Hypothesis("BLSURF_Parameters", [],
+                                              "libBLSURFEngine.so", UseExisting=0)
             else:
-                self.params = self.Hypothesis("NETGEN_Parameters_2D", [],
-                                              "libNETGENEngine.so", UseExisting=0)
-            return self.params
-        elif self.algoType == MEFISTO:
-            print "Mefisto algo support no multi-parameter hypothesis"
-            return None
-        elif self.algoType == NETGEN_2D:
-            print "NETGEN_2D_ONLY algo support no multi-parameter hypothesis"
-            print "NETGEN_2D_ONLY uses 'MaxElementArea' and 'LengthFromEdges' ones"
-            return None
-        elif self.algoType == BLSURF:
-            self.params = self.Hypothesis("BLSURF_Parameters", [],
-                                          "libBLSURFEngine.so", UseExisting=0)
-            return self.params
-        else:
-            print "Mesh_Triangle with algo type %s does not have such a parameter, check algo type"%self.algoType
-        return None
+                print "Mesh_Triangle with algo type %s does not have such a parameter, check algo type"%self.algoType
+        return self.params
 
     ## Sets MaxSize
     #
@@ -4525,46 +5045,96 @@ class Mesh_Triangle(Mesh_Algorithm):
 #  @ingroup l3_algos_basic
 class Mesh_Quadrangle(Mesh_Algorithm):
 
+    params=0
+
     ## Private constructor.
     def __init__(self, mesh, geom=0):
         Mesh_Algorithm.__init__(self)
         self.Create(mesh, geom, "Quadrangle_2D")
+        return
 
-    ## Defines "QuadranglePreference" hypothesis, forcing construction
-    #  of quadrangles if the number of nodes on the opposite edges is not the same
-    #  while the total number of nodes on edges is even
-    #
-    #  @ingroup l3_hypos_additi
-    def QuadranglePreference(self):
-        hyp = self.Hypothesis("QuadranglePreference", UseExisting=1,
-                              CompareMethod=self.CompareEqualHyp)
-        return hyp
-
-    ## Defines "TrianglePreference" hypothesis, forcing construction
-    #  of triangles in the refinement area if the number of nodes
-    #  on the opposite edges is not the same
-    #
-    #  @ingroup l3_hypos_additi
-    def TrianglePreference(self):
-        hyp = self.Hypothesis("TrianglePreference", UseExisting=1,
-                              CompareMethod=self.CompareEqualHyp)
-        return hyp
+    ## Defines "QuadrangleParameters" hypothesis
+    #  @param quadType defines the algorithm of transition between differently descretized
+    #                  sides of a geometrical face:
+    #  - QUAD_STANDARD - both triangles and quadrangles are possible in the transition
+    #                    area along the finer meshed sides. 
+    #  - QUAD_TRIANGLE_PREF - only triangles are built in the transition area along the
+    #                    finer meshed sides.
+    #  - QUAD_QUADRANGLE_PREF - only quadrangles are built in the transition area along
+    #                    the finer meshed sides, iff the total quantity of segments on
+    #                    all four sides of the face is even (divisible by 2).
+    #  - QUAD_QUADRANGLE_PREF_REVERSED - same as QUAD_QUADRANGLE_PREF but the transition
+    #                    area is located along the coarser meshed sides. 
+    #  - QUAD_REDUCED - only quadrangles are built and the transition between the sides
+    #                    is made gradually, layer by layer. This type has a limitation on
+    #                    the number of segments: one pair of opposite sides must have the
+    #                    same number of segments, the other pair must have an even difference
+    #                    between the numbers of segments on the sides.
+    #  @param triangleVertex: vertex of a trilateral geometrical face, around which triangles
+    #                  will be created while other elements will be quadrangles.
+    #                  Vertex can be either a GEOM_Object or a vertex ID within the
+    #                  shape to mesh
+    #  @param UseExisting: if ==true - searches for the existing hypothesis created with
+    #                  the same parameters, else (default) - creates a new one
+    #  @ingroup l3_hypos_quad
+    def QuadrangleParameters(self, quadType=StdMeshers.QUAD_STANDARD, triangleVertex=0, UseExisting=0):
+        vertexID = triangleVertex
+        if isinstance( triangleVertex, geompyDC.GEOM._objref_GEOM_Object ):
+            vertexID = self.mesh.geompyD.GetSubShapeID( self.mesh.geom, triangleVertex )
+        if not self.params:
+            compFun = lambda hyp,args: \
+                      hyp.GetQuadType() == args[0] and \
+                      ( hyp.GetTriaVertex()==args[1] or ( hyp.GetTriaVertex()<1 and args[1]<1))
+            self.params = self.Hypothesis("QuadrangleParams", [quadType,vertexID],
+                                          UseExisting = UseExisting, CompareMethod=compFun)
+            pass
+        if self.params.GetQuadType() != quadType:
+            self.params.SetQuadType(quadType)
+        if vertexID > 0:
+            self.params.SetTriaVertex( vertexID )
+        return self.params
 
-    ## Defines "QuadrangleParams" hypothesis
+    ## Defines "QuadrangleParams" hypothesis with a type of quadrangulation that only
+    #   quadrangles are built in the transition area along the finer meshed sides,
+    #   iff the total quantity of segments on all four sides of the face is even.
+    #  @param reversed if True, transition area is located along the coarser meshed sides.
+    #  @param UseExisting: if ==true - searches for the existing hypothesis created with
+    #                  the same parameters, else (default) - creates a new one
+    #  @ingroup l3_hypos_quad
+    def QuadranglePreference(self, reversed=False, UseExisting=0):
+        if reversed:
+            return self.QuadrangleParameters(QUAD_QUADRANGLE_PREF_REVERSED,UseExisting=UseExisting)
+        return self.QuadrangleParameters(QUAD_QUADRANGLE_PREF,UseExisting=UseExisting)
+
+    ## Defines "QuadrangleParams" hypothesis with a type of quadrangulation that only
+    #   triangles are built in the transition area along the finer meshed sides.
+    #  @param UseExisting: if ==true - searches for the existing hypothesis created with
+    #                  the same parameters, else (default) - creates a new one
+    #  @ingroup l3_hypos_quad
+    def TrianglePreference(self, UseExisting=0):
+        return self.QuadrangleParameters(QUAD_TRIANGLE_PREF,UseExisting=UseExisting)
+
+    ## Defines "QuadrangleParams" hypothesis with a type of quadrangulation that only
+    #   quadrangles are built and the transition between the sides is made gradually,
+    #   layer by layer. This type has a limitation on the number of segments: one pair
+    #   of opposite sides must have the same number of segments, the other pair must
+    #   have an even difference between the numbers of segments on the sides.
+    #  @param UseExisting: if ==true - searches for the existing hypothesis created with
+    #                  the same parameters, else (default) - creates a new one
+    #  @ingroup l3_hypos_quad
+    def Reduced(self, UseExisting=0):
+        return self.QuadrangleParameters(QUAD_REDUCED,UseExisting=UseExisting)
+
+    ## Defines "QuadrangleParams" hypothesis with QUAD_STANDARD type of quadrangulation
     #  @param vertex: vertex of a trilateral geometrical face, around which triangles
     #                 will be created while other elements will be quadrangles.
     #                 Vertex can be either a GEOM_Object or a vertex ID within the
     #                 shape to mesh
-    #
-    #  @ingroup l3_hypos_additi
+    #  @param UseExisting: if ==true - searches for the existing hypothesis created with
+    #                   the same parameters, else (default) - creates a new one
+    #  @ingroup l3_hypos_quad
     def TriangleVertex(self, vertex, UseExisting=0):
-        vertexID = vertex
-        if isinstance( vertexID, geompyDC.GEOM._objref_GEOM_Object ):
-            vertexID = self.mesh.geompyD.GetSubShapeID( self.mesh.geom, vertex )
-        hyp = self.Hypothesis("QuadrangleParams", [vertexID], UseExisting = UseExisting,
-                              CompareMethod=lambda hyp,args: hyp.GetTriaVertex()==args[0])
-        hyp.SetTriaVertex( vertexID )
-        return hyp
+        return self.QuadrangleParameters(QUAD_STANDARD,vertex,UseExisting)
 
 
 # Public class: Mesh_Tetrahedron
@@ -4627,33 +5197,34 @@ class Mesh_Tetrahedron(Mesh_Algorithm):
     #
     #  @ingroup l3_hypos_netgen
     def Parameters(self, which=SOLE):
-        if self.params:
-            return self.params
+        if not self.params:
 
-        if self.algoType == FULL_NETGEN:
-            if which == SIMPLE:
-                self.params = self.Hypothesis("NETGEN_SimpleParameters_3D", [],
-                                              "libNETGENEngine.so", UseExisting=0)
-            else:
-                self.params = self.Hypothesis("NETGEN_Parameters", [],
+            if self.algoType == FULL_NETGEN:
+                if which == SIMPLE:
+                    self.params = self.Hypothesis("NETGEN_SimpleParameters_3D", [],
+                                                  "libNETGENEngine.so", UseExisting=0)
+                else:
+                    self.params = self.Hypothesis("NETGEN_Parameters", [],
+                                                  "libNETGENEngine.so", UseExisting=0)
+
+            if self.algoType == NETGEN:
+                self.params = self.Hypothesis("NETGEN_Parameters_3D", [],
                                               "libNETGENEngine.so", UseExisting=0)
-            return self.params
 
-        if self.algoType == GHS3D:
-            self.params = self.Hypothesis("GHS3D_Parameters", [],
-                                          "libGHS3DEngine.so", UseExisting=0)
-            return self.params
+            elif self.algoType == GHS3D:
+                self.params = self.Hypothesis("GHS3D_Parameters", [],
+                                              "libGHS3DEngine.so", UseExisting=0)
 
-        if self.algoType == GHS3DPRL:
-            self.params = self.Hypothesis("GHS3DPRL_Parameters", [],
-                                          "libGHS3DPRLEngine.so", UseExisting=0)
-            return self.params
+            elif self.algoType == GHS3DPRL:
+                self.params = self.Hypothesis("GHS3DPRL_Parameters", [],
+                                              "libGHS3DPRLEngine.so", UseExisting=0)
+            else:
+                print "Algo supports no multi-parameter hypothesis"
 
-        print "Algo supports no multi-parameter hypothesis"
-        return None
+        return self.params
 
     ## Sets MaxSize
-    #  Parameter of FULL_NETGEN
+    #  Parameter of FULL_NETGEN and NETGEN
     #  @ingroup l3_hypos_netgen
     def SetMaxSize(self, theSize):
         self.Parameters().SetMaxSize(theSize)
@@ -4665,7 +5236,7 @@ class Mesh_Tetrahedron(Mesh_Algorithm):
         self.Parameters().SetSecondOrder(theVal)
 
     ## Sets Optimize flag
-    #  Parameter of FULL_NETGEN
+    #  Parameter of FULL_NETGEN and NETGEN
     #  @ingroup l3_hypos_netgen
     def SetOptimize(self, theVal):
         self.Parameters().SetOptimize(theVal)
@@ -5241,6 +5812,73 @@ class Mesh_RadialQuadrangle1D2D(Mesh_Algorithm):
         return hyp
 
 
+# Public class: Mesh_UseExistingElements
+# --------------------------------------
+## Defines a Radial Quadrangle 1D2D algorithm
+#  @ingroup l3_algos_basic
+#
+class Mesh_UseExistingElements(Mesh_Algorithm):
+
+    def __init__(self, dim, mesh, geom=0):
+        if dim == 1:
+            self.Create(mesh, geom, "Import_1D")
+        else:
+            self.Create(mesh, geom, "Import_1D2D")
+        return
+
+    ## Defines "Source edges" hypothesis, specifying groups of edges to import
+    #  @param groups list of groups of edges
+    #  @param toCopyMesh if True, the whole mesh \a groups belong to is imported
+    #  @param toCopyGroups if True, all groups of the mesh \a groups belong to are imported
+    #  @param UseExisting if ==true - searches for the existing hypothesis created with
+    #                     the same parameters, else (default) - creates a new one
+    def SourceEdges(self, groups, toCopyMesh=False, toCopyGroups=False, UseExisting=False):
+        if self.algo.GetName() == "Import_2D":
+            raise ValueError, "algoritm dimension mismatch"
+        hyp = self.Hypothesis("ImportSource1D", [groups, toCopyMesh, toCopyGroups],
+                              UseExisting=UseExisting, CompareMethod=self._compareHyp)
+        hyp.SetSourceEdges(groups)
+        hyp.SetCopySourceMesh(toCopyMesh, toCopyGroups)
+        return hyp
+
+    ## Defines "Source faces" hypothesis, specifying groups of faces to import
+    #  @param groups list of groups of faces
+    #  @param toCopyMesh if True, the whole mesh \a groups belong to is imported
+    #  @param toCopyGroups if True, all groups of the mesh \a groups belong to are imported
+    #  @param UseExisting if ==true - searches for the existing hypothesis created with
+    #                     the same parameters, else (default) - creates a new one
+    def SourceFaces(self, groups, toCopyMesh=False, toCopyGroups=False, UseExisting=False):
+        if self.algo.GetName() == "Import_1D":
+            raise ValueError, "algoritm dimension mismatch"
+        hyp = self.Hypothesis("ImportSource2D", [groups, toCopyMesh, toCopyGroups],
+                              UseExisting=UseExisting, CompareMethod=self._compareHyp)
+        hyp.SetSourceFaces(groups)
+        hyp.SetCopySourceMesh(toCopyMesh, toCopyGroups)
+        return hyp
+
+    def _compareHyp(self,hyp,args):
+        if hasattr( hyp, "GetSourceEdges"):
+            entries = hyp.GetSourceEdges()
+        else:
+            entries = hyp.GetSourceFaces()
+        groups = args[0]
+        toCopyMesh,toCopyGroups = hyp.GetCopySourceMesh()
+        if len(entries)==len(groups) and toCopyMesh==args[1] and toCopyGroups==args[2]:
+            entries2 = []
+            study = self.mesh.smeshpyD.GetCurrentStudy()
+            if study:
+                for g in groups:
+                    ior  = salome.orb.object_to_string(g)
+                    sobj = study.FindObjectIOR(ior)
+                    if sobj: entries2.append( sobj.GetID() )
+                    pass
+                pass
+            entries.sort()
+            entries2.sort()
+            return entries == entries2
+        return False
+
+
 # Private class: Mesh_UseExisting
 # -------------------------------
 class Mesh_UseExisting(Mesh_Algorithm):