Salome HOME
PR: merged from V5_1_4rc1
[modules/smesh.git] / src / SMESH / SMESH_MeshEditor.cxx
index 851108365593725e2d1f9d01ca315750d5ea3c22..b8a52e1759f3bbd2ba130b34e183f2c3cee564ff 100644 (file)
@@ -1,4 +1,4 @@
-//  Copyright (C) 2007-2008  CEA/DEN, EDF R&D, OPEN CASCADE
+//  Copyright (C) 2007-2010  CEA/DEN, EDF R&D, OPEN CASCADE
 //
 //  Copyright (C) 2003-2007  OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
 //  CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
@@ -19,6 +19,7 @@
 //
 //  See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
 //
+
 //  SMESH SMESH : idl implementation based on 'SMESH' unit's classes
 // File      : SMESH_MeshEditor.cxx
 // Created   : Mon Apr 12 16:10:22 2004
 #include "SMDS_SpacePosition.hxx"
 #include "SMDS_QuadraticFaceOfNodes.hxx"
 #include "SMDS_MeshGroup.hxx"
+#include "SMDS_LinearEdge.hxx"
 
 #include "SMESHDS_Group.hxx"
 #include "SMESHDS_Mesh.hxx"
 
-#include "SMESH_subMesh.hxx"
+#include "SMESH_Algo.hxx"
 #include "SMESH_ControlsDef.hxx"
+#include "SMESH_Group.hxx"
 #include "SMESH_MesherHelper.hxx"
 #include "SMESH_OctreeNode.hxx"
-#include "SMESH_Group.hxx"
+#include "SMESH_subMesh.hxx"
 
 #include "utilities.h"
 
-#include <BRep_Tool.hxx>
+#include <BRepAdaptor_Surface.hxx>
 #include <BRepClass3d_SolidClassifier.hxx>
+#include <BRep_Tool.hxx>
 #include <ElCLib.hxx>
 #include <Extrema_GenExtPS.hxx>
+#include <Extrema_POnCurv.hxx>
 #include <Extrema_POnSurf.hxx>
+#include <GC_MakeSegment.hxx>
 #include <Geom2d_Curve.hxx>
+#include <GeomAPI_ExtremaCurveCurve.hxx>
 #include <GeomAdaptor_Surface.hxx>
 #include <Geom_Curve.hxx>
+#include <Geom_Line.hxx>
 #include <Geom_Surface.hxx>
+#include <IntAna_IntConicQuad.hxx>
+#include <IntAna_Quadric.hxx>
 #include <Precision.hxx>
 #include <TColStd_ListOfInteger.hxx>
 #include <TopAbs_State.hxx>
@@ -74,6 +84,7 @@
 #include <gp_Vec.hxx>
 #include <gp_XY.hxx>
 #include <gp_XYZ.hxx>
+
 #include <math.h>
 
 #include <map>
@@ -88,28 +99,6 @@ using namespace SMESH::Controls;
 
 typedef map<const SMDS_MeshElement*, list<const SMDS_MeshNode*> >    TElemOfNodeListMap;
 typedef map<const SMDS_MeshElement*, list<const SMDS_MeshElement*> > TElemOfElemListMap;
-//typedef map<const SMDS_MeshNode*, vector<const SMDS_MeshNode*> >     TNodeOfNodeVecMap;
-//typedef TNodeOfNodeVecMap::iterator                                  TNodeOfNodeVecMapItr;
-//typedef map<const SMDS_MeshElement*, vector<TNodeOfNodeVecMapItr> >  TElemOfVecOfMapNodesMap;
-
-//=======================================================================
-/*!
- * \brief SMDS_MeshNode -> gp_XYZ convertor
- */
-//=======================================================================
-
-struct TNodeXYZ : public gp_XYZ
-{
-  TNodeXYZ( const SMDS_MeshNode* n ):gp_XYZ( n->X(), n->Y(), n->Z() ) {}
-  double Distance( const SMDS_MeshNode* n )
-  {
-    return gp_Vec( *this, TNodeXYZ( n )).Magnitude();
-  }
-  double SquareDistance( const SMDS_MeshNode* n )
-  {
-    return gp_Vec( *this, TNodeXYZ( n )).SquareMagnitude();
-  }
-};
 
 //=======================================================================
 //function : SMESH_MeshEditor
@@ -137,6 +126,11 @@ SMESH_MeshEditor::AddElement(const vector<const SMDS_MeshNode*> & node,
   int nbnode = node.size();
   SMESHDS_Mesh* mesh = GetMeshDS();
   switch ( type ) {
+  case SMDSAbs_0DElement:
+    if ( nbnode == 1 )
+      if ( ID ) e = mesh->Add0DElementWithID(node[0], ID);
+      else      e = mesh->Add0DElement      (node[0] );
+    break;
   case SMDSAbs_Edge:
     if ( nbnode == 2 )
       if ( ID ) e = mesh->AddEdgeWithID(node[0], node[1], ID);
@@ -1123,6 +1117,7 @@ bool SMESH_MeshEditor::QuadToTri (TIDSortedElemSet &                   theElems,
 //function : BestSplit
 //purpose  : Find better diagonal for cutting.
 //=======================================================================
+
 int SMESH_MeshEditor::BestSplit (const SMDS_MeshElement*              theQuad,
                                  SMESH::Controls::NumericalFunctorPtr theCrit)
 {
@@ -1164,6 +1159,453 @@ int SMESH_MeshEditor::BestSplit (const SMDS_MeshElement*              theQuad,
   return -1;
 }
 
+namespace
+{
+  // Methods of splitting volumes into tetra
+
+  const int theHexTo5_1[5*4+1] =
+    {
+      0, 1, 2, 5,    0, 4, 5, 7,     0, 2, 3, 7,    2, 5, 6, 7,     0, 5, 2, 7,   -1
+    };
+  const int theHexTo5_2[5*4+1] =
+    {
+      1, 2, 3, 6,    1, 4, 5, 6,     0, 1, 3, 4,    3, 4, 6, 7,     1, 3, 4, 6,   -1
+    };
+  const int* theHexTo5[2] = { theHexTo5_1, theHexTo5_2 };
+
+  const int theHexTo6_1[6*4+1] =
+    {
+      1, 5, 6, 0,    0, 1, 2, 6,     0, 4, 5, 6,    0, 4, 6, 7,     0, 2, 3, 6,   0, 3, 7, 6,  -1
+    };
+  const int theHexTo6_2[6*4+1] =
+    {
+      2, 6, 7, 1,    1, 2, 3, 7,     1, 5, 6, 7,    1, 5, 7, 4,     1, 3, 0, 7,   1, 0, 4, 7,  -1
+    };
+  const int theHexTo6_3[6*4+1] =
+    {
+      3, 7, 4, 2,    2, 3, 0, 4,     2, 6, 7, 4,    2, 6, 4, 5,     2, 0, 1, 4,   2, 1, 5, 4,  -1
+    };
+  const int theHexTo6_4[6*4+1] =
+    {
+      0, 4, 5, 3,    3, 0, 1, 5,     3, 7, 4, 5,    3, 7, 5, 6,     3, 1, 2, 5,   3, 2, 6, 5,  -1
+    };
+  const int* theHexTo6[4] = { theHexTo6_1, theHexTo6_2, theHexTo6_3, theHexTo6_4 };
+
+  const int thePyraTo2_1[2*4+1] =
+    {
+      0, 1, 2, 4,    0, 2, 3, 4,   -1
+    };
+  const int thePyraTo2_2[2*4+1] =
+    {
+      1, 2, 3, 4,    1, 3, 0, 4,   -1
+    };
+  const int* thePyraTo2[2] = { thePyraTo2_1, thePyraTo2_2 };
+
+  const int thePentaTo3_1[3*4+1] =
+    {
+      0, 1, 2, 3,    1, 3, 4, 2,     2, 3, 4, 5,    -1
+    };
+  const int thePentaTo3_2[3*4+1] =
+    {
+      1, 2, 0, 4,    2, 4, 5, 0,     0, 4, 5, 3,    -1
+    };
+  const int thePentaTo3_3[3*4+1] =
+    {
+      2, 0, 1, 5,    0, 5, 3, 1,     1, 5, 3, 4,    -1
+    };
+  const int thePentaTo3_4[3*4+1] =
+    {
+      0, 1, 2, 3,    1, 3, 4, 5,     2, 3, 1, 5,    -1
+    };
+  const int thePentaTo3_5[3*4+1] =
+    {
+      1, 2, 0, 4,    2, 4, 5, 3,     0, 4, 2, 3,    -1
+    };
+  const int thePentaTo3_6[3*4+1] =
+    {
+      2, 0, 1, 5,    0, 5, 3, 4,     1, 5, 0, 4,    -1
+    };
+  const int* thePentaTo3[6] = { thePentaTo3_1, thePentaTo3_2, thePentaTo3_3,
+                                thePentaTo3_4, thePentaTo3_5, thePentaTo3_6 };
+
+  struct TTriangleFacet //!< stores indices of three nodes of tetra facet
+  {
+    int _n1, _n2, _n3;
+    TTriangleFacet(int n1, int n2, int n3): _n1(n1), _n2(n2), _n3(n3) {}
+    bool contains(int n) const { return ( n == _n1 || n == _n2 || n == _n3 ); }
+    bool hasAdjacentTetra( const SMDS_MeshElement* elem ) const;
+  };
+  struct TSplitMethod
+  {
+    int        _nbTetra;
+    const int* _connectivity; //!< foursomes of tetra connectivy finished by -1
+    bool       _baryNode;     //!< additional node is to be created at cell barycenter
+    bool       _ownConn;      //!< to delete _connectivity in destructor
+
+    TSplitMethod( int nbTet=0, const int* conn=0, bool addNode=false)
+      : _nbTetra(nbTet), _connectivity(conn), _baryNode(addNode), _ownConn(false) {}
+    ~TSplitMethod() { if ( _ownConn ) delete [] _connectivity; _connectivity = 0; }
+    bool hasFacet( const TTriangleFacet& facet ) const
+    {
+      const int* tetConn = _connectivity;
+      for ( ; tetConn[0] >= 0; tetConn += 4 )
+        if (( facet.contains( tetConn[0] ) +
+              facet.contains( tetConn[1] ) +
+              facet.contains( tetConn[2] ) +
+              facet.contains( tetConn[3] )) == 3 )
+          return true;
+      return false;
+    }
+  };
+
+  //=======================================================================
+  /*!
+   * \brief return TSplitMethod for the given element
+   */
+  //=======================================================================
+
+  TSplitMethod getSplitMethod( SMDS_VolumeTool& vol, const int theMethodFlags)
+  {
+    int iQ = vol.Element()->IsQuadratic() ? 2 : 1;
+
+    // Find out how adjacent volumes are split
+
+    vector < list< TTriangleFacet > > triaSplitsByFace( vol.NbFaces() ); // splits of each side
+    int hasAdjacentSplits = 0, maxTetConnSize = 0;
+    for ( int iF = 0; iF < vol.NbFaces(); ++iF )
+    {
+      int nbNodes = vol.NbFaceNodes( iF ) / iQ;
+      maxTetConnSize += 4 * ( nbNodes - 2 );
+      if ( nbNodes < 4 ) continue;
+
+      list< TTriangleFacet >& triaSplits = triaSplitsByFace[ iF ];
+      const int* nInd = vol.GetFaceNodesIndices( iF );
+      if ( nbNodes == 4 )
+      {
+        TTriangleFacet t012( nInd[0*iQ], nInd[1*iQ], nInd[2*iQ] );
+        TTriangleFacet t123( nInd[1*iQ], nInd[2*iQ], nInd[3*iQ] );
+        if      ( t012.hasAdjacentTetra( vol.Element() )) triaSplits.push_back( t012 );
+        else if ( t123.hasAdjacentTetra( vol.Element() )) triaSplits.push_back( t123 );
+      }
+      else
+      {
+        int iCom = 0; // common node of triangle faces to split into
+        for ( int iVar = 0; iVar < nbNodes; ++iVar, ++iCom )
+        {
+          TTriangleFacet t012( nInd[ iQ * ( iCom             )],
+                               nInd[ iQ * ( (iCom+1)%nbNodes )],
+                               nInd[ iQ * ( (iCom+2)%nbNodes )]);
+          TTriangleFacet t023( nInd[ iQ * ( iCom             )],
+                               nInd[ iQ * ( (iCom+2)%nbNodes )],
+                               nInd[ iQ * ( (iCom+3)%nbNodes )]);
+          if ( t012.hasAdjacentTetra( vol.Element() ) && t023.hasAdjacentTetra( vol.Element() ))
+          {
+            triaSplits.push_back( t012 );
+            triaSplits.push_back( t023 );
+            break;
+          }
+        }
+      }
+      if ( !triaSplits.empty() )
+        hasAdjacentSplits = true;
+    }
+
+    // Among variants of split method select one compliant with adjacent volumes
+
+    TSplitMethod method;
+    if ( !vol.Element()->IsPoly() )
+    {
+      int nbVariants = 2, nbTet = 0;
+      const int** connVariants = 0;
+      switch ( vol.Element()->GetEntityType() )
+      {
+      case SMDSEntity_Hexa:
+      case SMDSEntity_Quad_Hexa:
+        if ( theMethodFlags & SMESH_MeshEditor::HEXA_TO_5 )
+          connVariants = theHexTo5, nbTet = 5;
+        else
+          connVariants = theHexTo6, nbTet = 6, nbVariants = 4;
+        break;
+      case SMDSEntity_Pyramid:
+      case SMDSEntity_Quad_Pyramid:
+        connVariants = thePyraTo2;  nbTet = 2;
+        break;
+      case SMDSEntity_Penta:
+      case SMDSEntity_Quad_Penta:
+        connVariants = thePentaTo3; nbTet = 3; nbVariants = 6;
+        break;
+      default:
+        nbVariants = 0;
+      }
+      for ( int variant = 0; variant < nbVariants && method._nbTetra == 0; ++variant )
+      {
+        // check method compliancy with adjacent tetras,
+        // all found splits must be among facets of tetras described by this method
+        method = TSplitMethod( nbTet, connVariants[variant] );
+        if ( hasAdjacentSplits && method._nbTetra > 0 )
+        {
+          bool facetCreated = true;
+          for ( int iF = 0; facetCreated && iF < triaSplitsByFace.size(); ++iF )
+          {
+            list< TTriangleFacet >::const_iterator facet = triaSplitsByFace[iF].begin();
+            for ( ; facetCreated && facet != triaSplitsByFace[iF].end(); ++facet )
+              facetCreated = method.hasFacet( *facet );
+          }
+          if ( !facetCreated )
+            method = TSplitMethod(0); // incompatible method
+        }
+      }
+    }
+    if ( method._nbTetra < 1 )
+    {
+      // No standard method is applicable, use a generic solution:
+      // each facet of a volume is split into triangles and
+      // each of triangles and a volume barycenter form a tetrahedron.
+
+      int* connectivity = new int[ maxTetConnSize + 1 ];
+      method._connectivity = connectivity;
+      method._ownConn = true;
+      method._baryNode = true;
+
+      int connSize = 0;
+      int baryCenInd = vol.NbNodes();
+      for ( int iF = 0; iF < vol.NbFaces(); ++iF )
+      {
+        const int nbNodes = vol.NbFaceNodes( iF ) / iQ;
+        const int*   nInd = vol.GetFaceNodesIndices( iF );
+        // find common node of triangle facets of tetra to create
+        int iCommon = 0; // index in linear numeration
+        const list< TTriangleFacet >& triaSplits = triaSplitsByFace[ iF ];
+        if ( !triaSplits.empty() )
+        {
+          // by found facets
+          const TTriangleFacet* facet = &triaSplits.front();
+          for ( ; iCommon < nbNodes-1 ; ++iCommon )
+            if ( facet->contains( nInd[ iQ * iCommon ]) &&
+                 facet->contains( nInd[ iQ * ((iCommon+2)%nbNodes) ]))
+              break;
+        }
+        else if ( nbNodes > 3 )
+        {
+          // find the best method of splitting into triangles by aspect ratio
+          SMESH::Controls::NumericalFunctorPtr aspectRatio( new SMESH::Controls::AspectRatio);
+          map< double, int > badness2iCommon;
+          const SMDS_MeshNode** nodes = vol.GetFaceNodes( iF );
+          int nbVariants = ( nbNodes == 4 ? 2 : nbNodes );
+          for ( int iVar = 0; iVar < nbVariants; ++iVar, ++iCommon )
+            for ( int iLast = iCommon+2; iLast < iCommon+nbNodes; ++iLast )
+            {
+              SMDS_FaceOfNodes tria ( nodes[ iQ*( iCommon         )],
+                                      nodes[ iQ*((iLast-1)%nbNodes)],
+                                      nodes[ iQ*((iLast  )%nbNodes)]);
+              double badness = getBadRate( &tria, aspectRatio );
+              badness2iCommon.insert( make_pair( badness, iCommon ));
+            }
+          // use iCommon with lowest badness
+          iCommon = badness2iCommon.begin()->second;
+        }
+        if ( iCommon >= nbNodes )
+          iCommon = 0; // something wrong
+        // fill connectivity of tetra
+        int nbTet = nbNodes - 2;
+        for ( int i = 0; i < nbTet; ++i )
+        {
+          int i1 = (iCommon+1+i) % nbNodes, i2 = (iCommon+2+i) % nbNodes;
+          if ( !vol.IsFaceExternal( iF )) swap( i1, i2 );
+          connectivity[ connSize++ ] = nInd[ iQ * iCommon ];
+          connectivity[ connSize++ ] = nInd[ iQ * i1 ];
+          connectivity[ connSize++ ] = nInd[ iQ * i2 ];
+          connectivity[ connSize++ ] = baryCenInd;
+          ++method._nbTetra;
+        }
+      }
+      connectivity[ connSize++ ] = -1;
+    }
+    return method;
+  }
+  //================================================================================
+  /*!
+   * \brief Check if there is a tetraherdon adjacent to the given element via this facet
+   */
+  //================================================================================
+
+  bool TTriangleFacet::hasAdjacentTetra( const SMDS_MeshElement* elem ) const
+  {
+    // find the tetrahedron including the three nodes of facet
+    const SMDS_MeshNode* n1 = elem->GetNode(_n1);
+    const SMDS_MeshNode* n2 = elem->GetNode(_n2);
+    const SMDS_MeshNode* n3 = elem->GetNode(_n3);
+    SMDS_ElemIteratorPtr volIt1 = n1->GetInverseElementIterator(SMDSAbs_Volume);
+    while ( volIt1->more() )
+    {
+      const SMDS_MeshElement* v = volIt1->next();
+      if ( v->GetEntityType() != ( v->IsQuadratic() ? SMDSEntity_Quad_Tetra : SMDSEntity_Tetra ))
+        continue;
+      SMDS_ElemIteratorPtr volIt2 = n2->GetInverseElementIterator(SMDSAbs_Volume);
+      while ( volIt2->more() )
+        if ( v != volIt2->next() )
+          continue;
+      SMDS_ElemIteratorPtr volIt3 = n3->GetInverseElementIterator(SMDSAbs_Volume);
+      while ( volIt3->more() )
+        if ( v == volIt3->next() )
+          return true;
+    }
+    return false;
+  }
+} // namespace
+
+//=======================================================================
+//function : SplitVolumesIntoTetra
+//purpose  : Split volumic elements into tetrahedra.
+//=======================================================================
+
+void SMESH_MeshEditor::SplitVolumesIntoTetra (const TIDSortedElemSet & theElems,
+                                              const int                theMethodFlags)
+{
+  // std-like iterator on coordinates of nodes of mesh element
+  typedef SMDS_StdIterator< TNodeXYZ, SMDS_ElemIteratorPtr > NXyzIterator;
+  NXyzIterator xyzEnd;
+
+  SMDS_VolumeTool    volTool;
+  SMESH_MesherHelper helper( *GetMesh());
+
+  SMESHDS_SubMesh* subMesh = GetMeshDS()->MeshElements(1);
+  SMESHDS_SubMesh* fSubMesh = subMesh;
+  
+  SMESH_SequenceOfElemPtr newNodes, newElems;
+
+  TIDSortedElemSet::const_iterator elem = theElems.begin();
+  for ( ; elem != theElems.end(); ++elem )
+  {
+    SMDSAbs_EntityType geomType = (*elem)->GetEntityType();
+    if ( geomType <= SMDSEntity_Quad_Tetra )
+      continue; // tetra or face or ...
+
+    if ( !volTool.Set( *elem )) continue; // not volume? strange...
+
+    TSplitMethod splitMethod = getSplitMethod( volTool, theMethodFlags );
+    if ( splitMethod._nbTetra < 1 ) continue;
+
+    // find submesh to add new tetras in
+    if ( !subMesh || !subMesh->Contains( *elem ))
+    {
+      int shapeID = FindShape( *elem );
+      helper.SetSubShape( shapeID ); // helper will add tetras to the found submesh
+      subMesh = GetMeshDS()->MeshElements( shapeID );
+    }
+    int iQ;
+    if ( (*elem)->IsQuadratic() )
+    {
+      iQ = 2;
+      // add quadratic links to the helper
+      for ( int iF = 0; iF < volTool.NbFaces(); ++iF )
+      {
+        const SMDS_MeshNode** fNodes = volTool.GetFaceNodes( iF );
+        for ( int iN = 0; iN < volTool.NbFaceNodes( iF ); iN += iQ )
+          helper.AddTLinkNode( fNodes[iF], fNodes[iF+2], fNodes[iF+1] );
+      }
+      helper.SetIsQuadratic( true );
+    }
+    else
+    {
+      iQ = 1;
+      helper.SetIsQuadratic( false );
+    }
+    vector<const SMDS_MeshNode*> nodes( (*elem)->begin_nodes(), (*elem)->end_nodes() );
+    if ( splitMethod._baryNode )
+    {
+      // make a node at barycenter
+      gp_XYZ gc( 0,0,0 );
+      gc = accumulate( NXyzIterator((*elem)->nodesIterator()), xyzEnd, gc ) / nodes.size();
+      SMDS_MeshNode* gcNode = helper.AddNode( gc.X(), gc.Y(), gc.Z() );
+      nodes.push_back( gcNode );
+      newNodes.Append( gcNode );
+    }
+
+    // make tetras
+    helper.SetElementsOnShape( true );
+    vector<const SMDS_MeshElement* > tetras( splitMethod._nbTetra ); // splits of a volume
+    const int* tetConn = splitMethod._connectivity;
+    for ( int i = 0; i < splitMethod._nbTetra; ++i, tetConn += 4 )
+      newElems.Append( tetras[ i ] = helper.AddVolume( nodes[ tetConn[0] ],
+                                                       nodes[ tetConn[1] ],
+                                                       nodes[ tetConn[2] ],
+                                                       nodes[ tetConn[3] ]));
+
+    ReplaceElemInGroups( *elem, tetras, GetMeshDS() );
+
+    // Split faces on sides of the split volume
+
+    const SMDS_MeshNode** volNodes = volTool.GetNodes();
+    for ( int iF = 0; iF < volTool.NbFaces(); ++iF )
+    {
+      const int nbNodes = volTool.NbFaceNodes( iF ) / iQ;
+      if ( nbNodes < 4 ) continue;
+
+      // find an existing face
+      vector<const SMDS_MeshNode*> fNodes( volTool.GetFaceNodes( iF ),
+                                           volTool.GetFaceNodes( iF ) + nbNodes*iQ );
+      while ( const SMDS_MeshElement* face = GetMeshDS()->FindFace( fNodes ))
+      {
+        // among possible triangles create ones discribed by split method
+        const int* nInd = volTool.GetFaceNodesIndices( iF );
+        int nbVariants = ( nbNodes == 4 ? 2 : nbNodes );
+        int iCom = 0; // common node of triangle faces to split into
+        list< TTriangleFacet > facets;
+        for ( int iVar = 0; iVar < nbVariants; ++iVar, ++iCom )
+        {
+          TTriangleFacet t012( nInd[ iQ * ( iCom                )],
+                               nInd[ iQ * ( (iCom+1)%nbNodes )],
+                               nInd[ iQ * ( (iCom+2)%nbNodes )]);
+          TTriangleFacet t023( nInd[ iQ * ( iCom                )],
+                               nInd[ iQ * ( (iCom+2)%nbNodes )],
+                               nInd[ iQ * ( (iCom+3)%nbNodes )]);
+          if ( splitMethod.hasFacet( t012 ) && splitMethod.hasFacet( t023 ))
+          {
+            facets.push_back( t012 );
+            facets.push_back( t023 );
+            for ( int iLast = iCom+4; iLast < iCom+nbNodes; ++iLast )
+              facets.push_back( TTriangleFacet( nInd[ iQ * ( iCom             )],
+                                                nInd[ iQ * ((iLast-1)%nbNodes )],
+                                                nInd[ iQ * ((iLast  )%nbNodes )]));
+            break;
+          }
+        }
+        // find submesh to add new faces in
+        if ( !fSubMesh || !fSubMesh->Contains( face ))
+        {
+          int shapeID = FindShape( face );
+          fSubMesh = GetMeshDS()->MeshElements( shapeID );
+        }
+        // make triangles
+        helper.SetElementsOnShape( false );
+        vector< const SMDS_MeshElement* > triangles;
+        list< TTriangleFacet >::iterator facet = facets.begin();
+        for ( ; facet != facets.end(); ++facet )
+        {
+          if ( !volTool.IsFaceExternal( iF ))
+            swap( facet->_n2, facet->_n3 );
+          triangles.push_back( helper.AddFace( volNodes[ facet->_n1 ],
+                                               volNodes[ facet->_n2 ],
+                                               volNodes[ facet->_n3 ]));
+          if ( triangles.back() && fSubMesh )
+            fSubMesh->AddElement( triangles.back());
+          newElems.Append( triangles.back() );
+        }
+        ReplaceElemInGroups( face, triangles, GetMeshDS() );
+        GetMeshDS()->RemoveFreeElement( face, fSubMesh, /*fromGroups=*/false );
+      }
+
+    } // loop on volume faces to split them into triangles
+
+    GetMeshDS()->RemoveFreeElement( *elem, subMesh, /*fromGroups=*/false );
+
+  } // loop on volumes to split
+
+  myLastCreatedNodes = newNodes;
+  myLastCreatedElems = newElems;
+}
+
 //=======================================================================
 //function : AddToSameGroups
 //purpose  : add elemToAdd to the groups the elemInGroups belongs to
@@ -1205,10 +1647,11 @@ void SMESH_MeshEditor::RemoveElemFromGroups (const SMDS_MeshElement* removeelem,
   }
 }
 
-//=======================================================================
-//function : ReplaceElemInGroups
-//purpose  : replace elemToRm by elemToAdd in the all groups
-//=======================================================================
+//================================================================================
+/*!
+ * \brief Replace elemToRm by elemToAdd in the all groups
+ */
+//================================================================================
 
 void SMESH_MeshEditor::ReplaceElemInGroups (const SMDS_MeshElement* elemToRm,
                                             const SMDS_MeshElement* elemToAdd,
@@ -1225,6 +1668,29 @@ void SMESH_MeshEditor::ReplaceElemInGroups (const SMDS_MeshElement* elemToRm,
   }
 }
 
+//================================================================================
+/*!
+ * \brief Replace elemToRm by elemToAdd in the all groups
+ */
+//================================================================================
+
+void SMESH_MeshEditor::ReplaceElemInGroups (const SMDS_MeshElement*                elemToRm,
+                                            const vector<const SMDS_MeshElement*>& elemToAdd,
+                                            SMESHDS_Mesh *                         aMesh)
+{
+  const set<SMESHDS_GroupBase*>& groups = aMesh->GetGroups();
+  if (!groups.empty())
+  {
+    set<SMESHDS_GroupBase*>::const_iterator grIt = groups.begin();
+    for ( ; grIt != groups.end(); grIt++ ) {
+      SMESHDS_Group* group = dynamic_cast<SMESHDS_Group*>( *grIt );
+      if ( group && group->SMDSGroup().Remove( elemToRm ) )
+        for ( int i = 0; i < elemToAdd.size(); ++i )
+          group->SMDSGroup().Add( elemToAdd[ i ] );
+    }
+  }
+}
+
 //=======================================================================
 //function : QuadToTri
 //purpose  : Cut quadrangles into triangles.
@@ -4957,68 +5423,393 @@ SMESH_MeshEditor::Transform (TIDSortedElemSet & theElems,
   return newGroupIDs;
 }
 
+
 //=======================================================================
-/*!
- * \brief Create groups of elements made during transformation
- * \param nodeGens - nodes making corresponding myLastCreatedNodes
- * \param elemGens - elements making corresponding myLastCreatedElems
- * \param postfix - to append to names of new groups
- */
+//function : Scale
+//purpose  :
 //=======================================================================
 
 SMESH_MeshEditor::PGroupIDs
-SMESH_MeshEditor::generateGroups(const SMESH_SequenceOfElemPtr& nodeGens,
-                                 const SMESH_SequenceOfElemPtr& elemGens,
-                                 const std::string&             postfix,
-                                 SMESH_Mesh*                    targetMesh)
+SMESH_MeshEditor::Scale (TIDSortedElemSet & theElems,
+                         const gp_Pnt&            thePoint,
+                         const std::list<double>& theScaleFact,
+                         const bool         theCopy,
+                         const bool         theMakeGroups,
+                         SMESH_Mesh*        theTargetMesh)
 {
-  PGroupIDs newGroupIDs( new list<int> );
-  SMESH_Mesh* mesh = targetMesh ? targetMesh : GetMesh();
+  myLastCreatedElems.Clear();
+  myLastCreatedNodes.Clear();
 
-  // Sort existing groups by types and collect their names
+  SMESH_MeshEditor targetMeshEditor( theTargetMesh );
+  SMESHDS_Mesh* aTgtMesh = theTargetMesh ? theTargetMesh->GetMeshDS() : 0;
+  SMESHDS_Mesh* aMesh    = GetMeshDS();
 
-  // to store an old group and a generated new one
-  typedef pair< SMESHDS_GroupBase*, SMDS_MeshGroup* > TOldNewGroup;
-  vector< list< TOldNewGroup > > groupsByType( SMDSAbs_NbElementTypes );
-  // group names
-  set< string > groupNames;
-  //
-  SMDS_MeshGroup* nullNewGroup = (SMDS_MeshGroup*) 0;
-  SMESH_Mesh::GroupIteratorPtr groupIt = GetMesh()->GetGroups();
-  while ( groupIt->more() ) {
-    SMESH_Group * group = groupIt->next();
-    if ( !group ) continue;
-    SMESHDS_GroupBase* groupDS = group->GetGroupDS();
-    if ( !groupDS || groupDS->IsEmpty() ) continue;
-    groupNames.insert( group->GetName() );
-    groupDS->SetStoreName( group->GetName() );
-    groupsByType[ groupDS->GetType() ].push_back( make_pair( groupDS, nullNewGroup ));
-  }
+  double scaleX=1.0, scaleY=1.0, scaleZ=1.0;
+  std::list<double>::const_iterator itS = theScaleFact.begin();
+  scaleX = (*itS);
+  if(theScaleFact.size()==1) {
+    scaleY = (*itS);
+    scaleZ= (*itS);
+  }
+  if(theScaleFact.size()==2) {
+    itS++;
+    scaleY = (*itS);
+    scaleZ= (*itS);
+  }
+  if(theScaleFact.size()>2) {
+    itS++;
+    scaleY = (*itS);
+    itS++;
+    scaleZ= (*itS);
+  }
+  
+  // map old node to new one
+  TNodeNodeMap nodeMap;
 
-  // Groups creation
+  // elements sharing moved nodes; those of them which have all
+  // nodes mirrored but are not in theElems are to be reversed
+  TIDSortedElemSet inverseElemSet;
 
-  // loop on nodes and elements
-  for ( int isNodes = 0; isNodes < 2; ++isNodes )
-  {
-    const SMESH_SequenceOfElemPtr& gens  = isNodes ? nodeGens : elemGens;
-    const SMESH_SequenceOfElemPtr& elems = isNodes ? myLastCreatedNodes : myLastCreatedElems;
-    if ( gens.Length() != elems.Length() )
-      throw SALOME_Exception(LOCALIZED("invalid args"));
+  // source elements for each generated one
+  SMESH_SequenceOfElemPtr srcElems, srcNodes;
 
-    // loop on created elements
-    for (int iElem = 1; iElem <= elems.Length(); ++iElem )
-    {
-      const SMDS_MeshElement* sourceElem = gens( iElem );
-      if ( !sourceElem ) {
-        MESSAGE("generateGroups(): NULL source element");
-        continue;
-      }
-      list< TOldNewGroup > & groupsOldNew = groupsByType[ sourceElem->GetType() ];
-      if ( groupsOldNew.empty() ) {
-        while ( iElem < gens.Length() && gens( iElem+1 ) == sourceElem )
-          ++iElem; // skip all elements made by sourceElem
-        continue;
-      }
+  // loop on theElems
+  TIDSortedElemSet::iterator itElem;
+  for ( itElem = theElems.begin(); itElem != theElems.end(); itElem++ ) {
+    const SMDS_MeshElement* elem = *itElem;
+    if ( !elem )
+      continue;
+
+    // loop on elem nodes
+    SMDS_ElemIteratorPtr itN = elem->nodesIterator();
+    while ( itN->more() ) {
+
+      // check if a node has been already transformed
+      const SMDS_MeshNode* node = cast2Node( itN->next() );
+      pair<TNodeNodeMap::iterator,bool> n2n_isnew =
+        nodeMap.insert( make_pair ( node, node ));
+      if ( !n2n_isnew.second )
+        continue;
+
+      //double coord[3];
+      //coord[0] = node->X();
+      //coord[1] = node->Y();
+      //coord[2] = node->Z();
+      //theTrsf.Transforms( coord[0], coord[1], coord[2] );
+      double dx = (node->X() - thePoint.X()) * scaleX;
+      double dy = (node->Y() - thePoint.Y()) * scaleY;
+      double dz = (node->Z() - thePoint.Z()) * scaleZ;
+      if ( theTargetMesh ) {
+        //const SMDS_MeshNode * newNode = aTgtMesh->AddNode( coord[0], coord[1], coord[2] );
+        const SMDS_MeshNode * newNode =
+          aTgtMesh->AddNode( thePoint.X()+dx, thePoint.Y()+dy, thePoint.Z()+dz );
+        n2n_isnew.first->second = newNode;
+        myLastCreatedNodes.Append(newNode);
+        srcNodes.Append( node );
+      }
+      else if ( theCopy ) {
+        //const SMDS_MeshNode * newNode = aMesh->AddNode( coord[0], coord[1], coord[2] );
+        const SMDS_MeshNode * newNode =
+          aMesh->AddNode( thePoint.X()+dx, thePoint.Y()+dy, thePoint.Z()+dz );
+        n2n_isnew.first->second = newNode;
+        myLastCreatedNodes.Append(newNode);
+        srcNodes.Append( node );
+      }
+      else {
+        //aMesh->MoveNode( node, coord[0], coord[1], coord[2] );
+        aMesh->MoveNode( node, thePoint.X()+dx, thePoint.Y()+dy, thePoint.Z()+dz );
+        // node position on shape becomes invalid
+        const_cast< SMDS_MeshNode* > ( node )->SetPosition
+          ( SMDS_SpacePosition::originSpacePosition() );
+      }
+
+      // keep inverse elements
+      //if ( !theCopy && !theTargetMesh && needReverse ) {
+      //  SMDS_ElemIteratorPtr invElemIt = node->GetInverseElementIterator();
+      //  while ( invElemIt->more() ) {
+      //    const SMDS_MeshElement* iel = invElemIt->next();
+      //    inverseElemSet.insert( iel );
+      //  }
+      //}
+    }
+  }
+
+  // either create new elements or reverse mirrored ones
+  //if ( !theCopy && !needReverse && !theTargetMesh )
+  if ( !theCopy && !theTargetMesh )
+    return PGroupIDs();
+
+  TIDSortedElemSet::iterator invElemIt = inverseElemSet.begin();
+  for ( ; invElemIt != inverseElemSet.end(); invElemIt++ )
+    theElems.insert( *invElemIt );
+
+  // replicate or reverse elements
+
+  enum {
+    REV_TETRA   = 0,  //  = nbNodes - 4
+    REV_PYRAMID = 1,  //  = nbNodes - 4
+    REV_PENTA   = 2,  //  = nbNodes - 4
+    REV_FACE    = 3,
+    REV_HEXA    = 4,  //  = nbNodes - 4
+    FORWARD     = 5
+  };
+  int index[][8] = {
+    { 2, 1, 0, 3, 4, 0, 0, 0 },  // REV_TETRA
+    { 2, 1, 0, 3, 4, 0, 0, 0 },  // REV_PYRAMID
+    { 2, 1, 0, 5, 4, 3, 0, 0 },  // REV_PENTA
+    { 2, 1, 0, 3, 0, 0, 0, 0 },  // REV_FACE
+    { 2, 1, 0, 3, 6, 5, 4, 7 },  // REV_HEXA
+    { 0, 1, 2, 3, 4, 5, 6, 7 }   // FORWARD
+  };
+
+  for ( itElem = theElems.begin(); itElem != theElems.end(); itElem++ )
+  {
+    const SMDS_MeshElement* elem = *itElem;
+    if ( !elem || elem->GetType() == SMDSAbs_Node )
+      continue;
+
+    int nbNodes = elem->NbNodes();
+    int elemType = elem->GetType();
+
+    if (elem->IsPoly()) {
+      // Polygon or Polyhedral Volume
+      switch ( elemType ) {
+      case SMDSAbs_Face:
+        {
+          vector<const SMDS_MeshNode*> poly_nodes (nbNodes);
+          int iNode = 0;
+          SMDS_ElemIteratorPtr itN = elem->nodesIterator();
+          while (itN->more()) {
+            const SMDS_MeshNode* node =
+              static_cast<const SMDS_MeshNode*>(itN->next());
+            TNodeNodeMap::iterator nodeMapIt = nodeMap.find(node);
+            if (nodeMapIt == nodeMap.end())
+              break; // not all nodes transformed
+            //if (needReverse) {
+            //  // reverse mirrored faces and volumes
+            //  poly_nodes[nbNodes - iNode - 1] = (*nodeMapIt).second;
+            //} else {
+            poly_nodes[iNode] = (*nodeMapIt).second;
+            //}
+            iNode++;
+          }
+          if ( iNode != nbNodes )
+            continue; // not all nodes transformed
+
+          if ( theTargetMesh ) {
+            myLastCreatedElems.Append(aTgtMesh->AddPolygonalFace(poly_nodes));
+            srcElems.Append( elem );
+          }
+          else if ( theCopy ) {
+            myLastCreatedElems.Append(aMesh->AddPolygonalFace(poly_nodes));
+            srcElems.Append( elem );
+          }
+          else {
+            aMesh->ChangePolygonNodes(elem, poly_nodes);
+          }
+        }
+        break;
+      case SMDSAbs_Volume:
+        {
+          // ATTENTION: Reversing is not yet done!!!
+          const SMDS_PolyhedralVolumeOfNodes* aPolyedre =
+            dynamic_cast<const SMDS_PolyhedralVolumeOfNodes*>( elem );
+          if (!aPolyedre) {
+            MESSAGE("Warning: bad volumic element");
+            continue;
+          }
+
+          vector<const SMDS_MeshNode*> poly_nodes;
+          vector<int> quantities;
+
+          bool allTransformed = true;
+          int nbFaces = aPolyedre->NbFaces();
+          for (int iface = 1; iface <= nbFaces && allTransformed; iface++) {
+            int nbFaceNodes = aPolyedre->NbFaceNodes(iface);
+            for (int inode = 1; inode <= nbFaceNodes && allTransformed; inode++) {
+              const SMDS_MeshNode* node = aPolyedre->GetFaceNode(iface, inode);
+              TNodeNodeMap::iterator nodeMapIt = nodeMap.find(node);
+              if (nodeMapIt == nodeMap.end()) {
+                allTransformed = false; // not all nodes transformed
+              } else {
+                poly_nodes.push_back((*nodeMapIt).second);
+              }
+            }
+            quantities.push_back(nbFaceNodes);
+          }
+          if ( !allTransformed )
+            continue; // not all nodes transformed
+
+          if ( theTargetMesh ) {
+            myLastCreatedElems.Append(aTgtMesh->AddPolyhedralVolume(poly_nodes, quantities));
+            srcElems.Append( elem );
+          }
+          else if ( theCopy ) {
+            myLastCreatedElems.Append(aMesh->AddPolyhedralVolume(poly_nodes, quantities));
+            srcElems.Append( elem );
+          }
+          else {
+            aMesh->ChangePolyhedronNodes(elem, poly_nodes, quantities);
+          }
+        }
+        break;
+      default:;
+      }
+      continue;
+    }
+
+    // Regular elements
+    int* i = index[ FORWARD ];
+    //if ( needReverse && nbNodes > 2) // reverse mirrored faces and volumes
+    //  if ( elemType == SMDSAbs_Face )
+    //    i = index[ REV_FACE ];
+    //  else
+    //    i = index[ nbNodes - 4 ];
+
+    if(elem->IsQuadratic()) {
+      static int anIds[] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19};
+      i = anIds;
+      //if(needReverse) {
+      //  if(nbNodes==3) { // quadratic edge
+      //    static int anIds[] = {1,0,2};
+      //    i = anIds;
+      //  }
+      //  else if(nbNodes==6) { // quadratic triangle
+      //    static int anIds[] = {0,2,1,5,4,3};
+      //    i = anIds;
+      //  }
+      //  else if(nbNodes==8) { // quadratic quadrangle
+      //    static int anIds[] = {0,3,2,1,7,6,5,4};
+      //    i = anIds;
+      //  }
+      //  else if(nbNodes==10) { // quadratic tetrahedron of 10 nodes
+      //    static int anIds[] = {0,2,1,3,6,5,4,7,9,8};
+      //    i = anIds;
+      //  }
+      //  else if(nbNodes==13) { // quadratic pyramid of 13 nodes
+      //    static int anIds[] = {0,3,2,1,4,8,7,6,5,9,12,11,10};
+      //    i = anIds;
+      //  }
+      //  else if(nbNodes==15) { // quadratic pentahedron with 15 nodes
+      //    static int anIds[] = {0,2,1,3,5,4,8,7,6,11,10,9,12,14,13};
+      //    i = anIds;
+      //  }
+      //  else { // nbNodes==20 - quadratic hexahedron with 20 nodes
+      //    static int anIds[] = {0,3,2,1,4,7,6,5,11,10,9,8,15,14,13,12,16,19,18,17};
+      //    i = anIds;
+      //  }
+      //}
+    }
+
+    // find transformed nodes
+    vector<const SMDS_MeshNode*> nodes(nbNodes);
+    int iNode = 0;
+    SMDS_ElemIteratorPtr itN = elem->nodesIterator();
+    while ( itN->more() ) {
+      const SMDS_MeshNode* node =
+        static_cast<const SMDS_MeshNode*>( itN->next() );
+      TNodeNodeMap::iterator nodeMapIt = nodeMap.find( node );
+      if ( nodeMapIt == nodeMap.end() )
+        break; // not all nodes transformed
+      nodes[ i [ iNode++ ]] = (*nodeMapIt).second;
+    }
+    if ( iNode != nbNodes )
+      continue; // not all nodes transformed
+
+    if ( theTargetMesh ) {
+      if ( SMDS_MeshElement* copy =
+           targetMeshEditor.AddElement( nodes, elem->GetType(), elem->IsPoly() )) {
+        myLastCreatedElems.Append( copy );
+        srcElems.Append( elem );
+      }
+    }
+    else if ( theCopy ) {
+      if ( SMDS_MeshElement* copy = AddElement( nodes, elem->GetType(), elem->IsPoly() )) {
+        myLastCreatedElems.Append( copy );
+        srcElems.Append( elem );
+      }
+    }
+    else {
+      // reverse element as it was reversed by transformation
+      if ( nbNodes > 2 )
+        aMesh->ChangeElementNodes( elem, &nodes[0], nbNodes );
+    }
+  }
+
+  PGroupIDs newGroupIDs;
+
+  if ( theMakeGroups && theCopy ||
+       theMakeGroups && theTargetMesh ) {
+    string groupPostfix = "scaled";
+    newGroupIDs = generateGroups( srcNodes, srcElems, groupPostfix, theTargetMesh );
+  }
+
+  return newGroupIDs;
+}
+
+
+//=======================================================================
+/*!
+ * \brief Create groups of elements made during transformation
+ * \param nodeGens - nodes making corresponding myLastCreatedNodes
+ * \param elemGens - elements making corresponding myLastCreatedElems
+ * \param postfix - to append to names of new groups
+ */
+//=======================================================================
+
+SMESH_MeshEditor::PGroupIDs
+SMESH_MeshEditor::generateGroups(const SMESH_SequenceOfElemPtr& nodeGens,
+                                 const SMESH_SequenceOfElemPtr& elemGens,
+                                 const std::string&             postfix,
+                                 SMESH_Mesh*                    targetMesh)
+{
+  PGroupIDs newGroupIDs( new list<int> );
+  SMESH_Mesh* mesh = targetMesh ? targetMesh : GetMesh();
+
+  // Sort existing groups by types and collect their names
+
+  // to store an old group and a generated new one
+  typedef pair< SMESHDS_GroupBase*, SMDS_MeshGroup* > TOldNewGroup;
+  vector< list< TOldNewGroup > > groupsByType( SMDSAbs_NbElementTypes );
+  // group names
+  set< string > groupNames;
+  //
+  SMDS_MeshGroup* nullNewGroup = (SMDS_MeshGroup*) 0;
+  SMESH_Mesh::GroupIteratorPtr groupIt = GetMesh()->GetGroups();
+  while ( groupIt->more() ) {
+    SMESH_Group * group = groupIt->next();
+    if ( !group ) continue;
+    SMESHDS_GroupBase* groupDS = group->GetGroupDS();
+    if ( !groupDS || groupDS->IsEmpty() ) continue;
+    groupNames.insert( group->GetName() );
+    groupDS->SetStoreName( group->GetName() );
+    groupsByType[ groupDS->GetType() ].push_back( make_pair( groupDS, nullNewGroup ));
+  }
+
+  // Groups creation
+
+  // loop on nodes and elements
+  for ( int isNodes = 0; isNodes < 2; ++isNodes )
+  {
+    const SMESH_SequenceOfElemPtr& gens  = isNodes ? nodeGens : elemGens;
+    const SMESH_SequenceOfElemPtr& elems = isNodes ? myLastCreatedNodes : myLastCreatedElems;
+    if ( gens.Length() != elems.Length() )
+      throw SALOME_Exception(LOCALIZED("invalid args"));
+
+    // loop on created elements
+    for (int iElem = 1; iElem <= elems.Length(); ++iElem )
+    {
+      const SMDS_MeshElement* sourceElem = gens( iElem );
+      if ( !sourceElem ) {
+        MESSAGE("generateGroups(): NULL source element");
+        continue;
+      }
+      list< TOldNewGroup > & groupsOldNew = groupsByType[ sourceElem->GetType() ];
+      if ( groupsOldNew.empty() ) {
+        while ( iElem < gens.Length() && gens( iElem+1 ) == sourceElem )
+          ++iElem; // skip all elements made by sourceElem
+        continue;
+      }
       // collect all elements made by sourceElem
       list< const SMDS_MeshElement* > resultElems;
       if ( const SMDS_MeshElement* resElem = elems( iElem ))
@@ -5223,7 +6014,7 @@ struct SMESH_NodeSearcherImpl: public SMESH_NodeSearcher
     const SMDS_MeshNode* closestNode = 0;
     list<const SMDS_MeshNode*>::iterator nIt = nodes.begin();
     for ( ; nIt != nodes.end(); ++nIt ) {
-      double sqDist = thePnt.SquareDistance( TNodeXYZ( *nIt ) );
+      double sqDist = thePnt.SquareDistance( SMESH_MeshEditor::TNodeXYZ( *nIt ) );
       if ( minSqDist > sqDist ) {
         closestNode = *nIt;
         minSqDist = sqDist;
@@ -5280,6 +6071,7 @@ namespace // Utils used in SMESH_ElementSearcherImpl::FindElementsByPoint()
 
     ElementBndBoxTree(const SMDS_Mesh& mesh, SMDSAbs_ElementType elemType);
     void getElementsNearPoint( const gp_Pnt& point, TIDSortedElemSet& foundElems);
+    void getElementsNearLine ( const gp_Ax1& line, TIDSortedElemSet& foundElems);
     ~ElementBndBoxTree();
 
   protected:
@@ -5395,13 +6187,38 @@ namespace // Utils used in SMESH_ElementSearcherImpl::FindElementsByPoint()
     if ( isLeaf() )
     {
       for ( int i = 0; i < _elements.size(); ++i )
-        if ( !_elements[i]->IsOut( point.XYZ() ))
+        if ( !_elements[i]->IsOut( point.XYZ() ))
+          foundElems.insert( _elements[i]->_element );
+    }
+    else
+    {
+      for (int i = 0; i < 8; i++)
+        ((ElementBndBoxTree*) myChildren[i])->getElementsNearPoint( point, foundElems );
+    }
+  }
+
+  //================================================================================
+  /*!
+   * \brief Return elements which can be intersected by the line
+   */
+  //================================================================================
+
+  void ElementBndBoxTree::getElementsNearLine( const gp_Ax1&     line,
+                                               TIDSortedElemSet& foundElems)
+  {
+    if ( level() && getBox().IsOut( line ))
+      return;
+
+    if ( isLeaf() )
+    {
+      for ( int i = 0; i < _elements.size(); ++i )
+        if ( !_elements[i]->IsOut( line ))
           foundElems.insert( _elements[i]->_element );
     }
     else
     {
       for (int i = 0; i < 8; i++)
-        ((ElementBndBoxTree*) myChildren[i])->getElementsNearPoint( point, foundElems );
+        ((ElementBndBoxTree*) myChildren[i])->getElementsNearLine( line, foundElems );
     }
   }
 
@@ -5417,7 +6234,7 @@ namespace // Utils used in SMESH_ElementSearcherImpl::FindElementsByPoint()
     _refCount = 1;
     SMDS_ElemIteratorPtr nIt = elem->nodesIterator();
     while ( nIt->more() )
-      Add( TNodeXYZ( cast2Node( nIt->next() )));
+      Add( SMESH_MeshEditor::TNodeXYZ( cast2Node( nIt->next() )));
     Enlarge( NodeRadius );
   }
 
@@ -5425,59 +6242,95 @@ namespace // Utils used in SMESH_ElementSearcherImpl::FindElementsByPoint()
 
 //=======================================================================
 /*!
- * \brief Implementation of search for the elements by point
+ * \brief Implementation of search for the elements by point and
+ *        of classification of point in 2D mesh
  */
 //=======================================================================
 
 struct SMESH_ElementSearcherImpl: public SMESH_ElementSearcher
 {
-  SMESHDS_Mesh*           _mesh;
-  ElementBndBoxTree*      _ebbTree;
-  SMESH_NodeSearcherImpl* _nodeSearcher;
-  SMDSAbs_ElementType     _elementType;
-
-  SMESH_ElementSearcherImpl( SMESHDS_Mesh& mesh ): _mesh(&mesh),_ebbTree(0),_nodeSearcher(0) {}
+  SMESHDS_Mesh*                _mesh;
+  ElementBndBoxTree*           _ebbTree;
+  SMESH_NodeSearcherImpl*      _nodeSearcher;
+  SMDSAbs_ElementType          _elementType;
+  double                       _tolerance;
+  bool                         _outerFacesFound;
+  set<const SMDS_MeshElement*> _outerFaces; // empty means "no internal faces at all"
+
+  SMESH_ElementSearcherImpl( SMESHDS_Mesh& mesh )
+    : _mesh(&mesh),_ebbTree(0),_nodeSearcher(0), _tolerance(-1), _outerFacesFound(false) {}
   ~SMESH_ElementSearcherImpl()
   {
     if ( _ebbTree )      delete _ebbTree;      _ebbTree      = 0;
     if ( _nodeSearcher ) delete _nodeSearcher; _nodeSearcher = 0;
   }
+  virtual int FindElementsByPoint(const gp_Pnt&                      point,
+                                  SMDSAbs_ElementType                type,
+                                  vector< const SMDS_MeshElement* >& foundElements);
+  virtual TopAbs_State GetPointState(const gp_Pnt& point);
 
-  /*!
-   * \brief Return elements of given type where the given point is IN or ON.
-   *
-   * 'ALL' type means elements of any type excluding nodes and 0D elements
-   */
-  void FindElementsByPoint(const gp_Pnt&                      point,
-                           SMDSAbs_ElementType                type,
-                           vector< const SMDS_MeshElement* >& foundElements)
+  double getTolerance();
+  bool getIntersParamOnLine(const gp_Lin& line, const SMDS_MeshElement* face,
+                            const double tolerance, double & param);
+  void findOuterBoundary(const SMDS_MeshElement* anyOuterFace);
+  bool isOuterBoundary(const SMDS_MeshElement* face) const
+  {
+    return _outerFaces.empty() || _outerFaces.count(face);
+  }
+  struct TInters //!< data of intersection of the line and the mesh face used in GetPointState()
+  {
+    const SMDS_MeshElement* _face;
+    gp_Vec                  _faceNorm;
+    bool                    _coincides; //!< the line lays in face plane
+    TInters(const SMDS_MeshElement* face, const gp_Vec& faceNorm, bool coinc=false)
+      : _face(face), _faceNorm( faceNorm ), _coincides( coinc ) {}
+  };
+  struct TFaceLink //!< link and faces sharing it (used in findOuterBoundary())
   {
-    foundElements.clear();
+    SMESH_TLink      _link;
+    TIDSortedElemSet _faces;
+    TFaceLink( const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, const SMDS_MeshElement* face)
+      : _link( n1, n2 ), _faces( &face, &face + 1) {}
+  };
+};
+
+ostream& operator<< (ostream& out, const SMESH_ElementSearcherImpl::TInters& i)
+{
+  return out << "TInters(face=" << ( i._face ? i._face->GetID() : 0)
+             << ", _coincides="<<i._coincides << ")";
+}
+
+//=======================================================================
+/*!
+ * \brief define tolerance for search
+ */
+//=======================================================================
 
+double SMESH_ElementSearcherImpl::getTolerance()
+{
+  if ( _tolerance < 0 )
+  {
     const SMDS_MeshInfo& meshInfo = _mesh->GetMeshInfo();
 
-    // -----------------
-    // define tolerance
-    // -----------------
-    double tolerance = 0;
+    _tolerance = 0;
     if ( _nodeSearcher && meshInfo.NbNodes() > 1 )
     {
       double boxSize = _nodeSearcher->getTree()->maxSize();
-      tolerance = 1e-8 * boxSize/* / meshInfo.NbNodes()*/;
+      _tolerance = 1e-8 * boxSize/* / meshInfo.NbNodes()*/;
     }
     else if ( _ebbTree && meshInfo.NbElements() > 0 )
     {
       double boxSize = _ebbTree->maxSize();
-      tolerance = 1e-8 * boxSize/* / meshInfo.NbElements()*/;
+      _tolerance = 1e-8 * boxSize/* / meshInfo.NbElements()*/;
     }
-    if ( tolerance == 0 )
+    if ( _tolerance == 0 )
     {
       // define tolerance by size of a most complex element
       int complexType = SMDSAbs_Volume;
       while ( complexType > SMDSAbs_All &&
               meshInfo.NbElements( SMDSAbs_ElementType( complexType )) < 1 )
         --complexType;
-      if ( complexType == SMDSAbs_All ) return; // empty mesh
+      if ( complexType == SMDSAbs_All ) return 0; // empty mesh
 
       double elemSize;
       if ( complexType == int( SMDSAbs_Node ))
@@ -5485,63 +6338,445 @@ struct SMESH_ElementSearcherImpl: public SMESH_ElementSearcher
         SMDS_NodeIteratorPtr nodeIt = _mesh->nodesIterator();
         elemSize = 1;
         if ( meshInfo.NbNodes() > 2 )
-          elemSize = TNodeXYZ( nodeIt->next() ).Distance( nodeIt->next() );
+          elemSize = SMESH_MeshEditor::TNodeXYZ( nodeIt->next() ).Distance( nodeIt->next() );
       }
       else
       {
         const SMDS_MeshElement* elem =
           _mesh->elementsIterator( SMDSAbs_ElementType( complexType ))->next();
         SMDS_ElemIteratorPtr nodeIt = elem->nodesIterator();
-        TNodeXYZ n1( cast2Node( nodeIt->next() ));
+        SMESH_MeshEditor::TNodeXYZ n1( cast2Node( nodeIt->next() ));
         while ( nodeIt->more() )
         {
           double dist = n1.Distance( cast2Node( nodeIt->next() ));
           elemSize = max( dist, elemSize );
         }
       }
-      tolerance = 1e-6 * elemSize;
+      _tolerance = 1e-6 * elemSize;
     }
+  }
+  return _tolerance;
+}
+
+//================================================================================
+/*!
+ * \brief Find intersection of the line and an edge of face and return parameter on line
+ */
+//================================================================================
 
-    // =================================================================================
-    if ( type == SMDSAbs_Node || type == SMDSAbs_0DElement )
+bool SMESH_ElementSearcherImpl::getIntersParamOnLine(const gp_Lin&           line,
+                                                     const SMDS_MeshElement* face,
+                                                     const double            tol,
+                                                     double &                param)
+{
+  int nbInts = 0;
+  param = 0;
+
+  GeomAPI_ExtremaCurveCurve anExtCC;
+  Handle(Geom_Curve) lineCurve = new Geom_Line( line );
+  
+  int nbNodes = face->IsQuadratic() ? face->NbNodes()/2 : face->NbNodes();
+  for ( int i = 0; i < nbNodes && nbInts < 2; ++i )
+  {
+    GC_MakeSegment edge( SMESH_MeshEditor::TNodeXYZ( face->GetNode( i )),
+                         SMESH_MeshEditor::TNodeXYZ( face->GetNode( (i+1)%nbNodes) )); 
+    anExtCC.Init( lineCurve, edge);
+    if ( anExtCC.NbExtrema() > 0 && anExtCC.LowerDistance() <= tol)
     {
-      if ( !_nodeSearcher )
-        _nodeSearcher = new SMESH_NodeSearcherImpl( _mesh );
+      Quantity_Parameter pl, pe;
+      anExtCC.LowerDistanceParameters( pl, pe );
+      param += pl;
+      if ( ++nbInts == 2 )
+        break;
+    }
+  }
+  if ( nbInts > 0 ) param /= nbInts;
+  return nbInts > 0;
+}
+//================================================================================
+/*!
+ * \brief Find all faces belonging to the outer boundary of mesh
+ */
+//================================================================================
+
+void SMESH_ElementSearcherImpl::findOuterBoundary(const SMDS_MeshElement* outerFace)
+{
+  if ( _outerFacesFound ) return;
 
-      const SMDS_MeshNode* closeNode = _nodeSearcher->FindClosestTo( point );
-      if ( !closeNode ) return;
+  // Collect all outer faces by passing from one outer face to another via their links
+  // and BTW find out if there are internal faces at all.
 
-      if ( point.Distance( TNodeXYZ( closeNode )) > tolerance )
-        return; // to far from any node
+  // checked links and links where outer boundary meets internal one
+  set< SMESH_TLink > visitedLinks, seamLinks;
 
-      if ( type == SMDSAbs_Node )
+  // links to treat with already visited faces sharing them
+  list < TFaceLink > startLinks;
+
+  // load startLinks with the first outerFace
+  startLinks.push_back( TFaceLink( outerFace->GetNode(0), outerFace->GetNode(1), outerFace));
+  _outerFaces.insert( outerFace );
+
+  TIDSortedElemSet emptySet;
+  while ( !startLinks.empty() )
+  {
+    const SMESH_TLink& link  = startLinks.front()._link;
+    TIDSortedElemSet&  faces = startLinks.front()._faces;
+
+    outerFace = *faces.begin();
+    // find other faces sharing the link
+    const SMDS_MeshElement* f;
+    while (( f = SMESH_MeshEditor::FindFaceInSet(link.node1(), link.node2(), emptySet, faces )))
+      faces.insert( f );
+
+    // select another outer face among the found 
+    const SMDS_MeshElement* outerFace2 = 0;
+    if ( faces.size() == 2 )
+    {
+      outerFace2 = (outerFace == *faces.begin() ? *faces.rbegin() : *faces.begin());
+    }
+    else if ( faces.size() > 2 )
+    {
+      seamLinks.insert( link );
+
+      // link direction within the outerFace
+      gp_Vec n1n2( SMESH_MeshEditor::TNodeXYZ( link.node1()),
+                   SMESH_MeshEditor::TNodeXYZ( link.node2()));
+      int i1 = outerFace->GetNodeIndex( link.node1() );
+      int i2 = outerFace->GetNodeIndex( link.node2() );
+      bool rev = ( abs(i2-i1) == 1 ? i1 > i2 : i2 > i1 );
+      if ( rev ) n1n2.Reverse();
+      // outerFace normal
+      gp_XYZ ofNorm, fNorm;
+      if ( SMESH_Algo::FaceNormal( outerFace, ofNorm, /*normalized=*/false ))
       {
-        foundElements.push_back( closeNode );
+        // direction from the link inside outerFace
+        gp_Vec dirInOF = gp_Vec( ofNorm ) ^ n1n2;
+        // sort all other faces by angle with the dirInOF
+        map< double, const SMDS_MeshElement* > angle2Face;
+        set< const SMDS_MeshElement*, TIDCompare >::const_iterator face = faces.begin();
+        for ( ; face != faces.end(); ++face )
+        {
+          if ( !SMESH_Algo::FaceNormal( *face, fNorm, /*normalized=*/false ))
+            continue;
+          gp_Vec dirInF = gp_Vec( fNorm ) ^ n1n2;
+          double angle = dirInOF.AngleWithRef( dirInF, n1n2 );
+          if ( angle < 0 ) angle += 2*PI;
+          angle2Face.insert( make_pair( angle, *face ));
+        }
+        if ( !angle2Face.empty() )
+          outerFace2 = angle2Face.begin()->second;
       }
-      else
+    }
+    // store the found outer face and add its links to continue seaching from
+    if ( outerFace2 )
+    {
+      _outerFaces.insert( outerFace );
+      int nbNodes = outerFace2->NbNodes()/( outerFace2->IsQuadratic() ? 2 : 1 );
+      for ( int i = 0; i < nbNodes; ++i )
       {
-        SMDS_ElemIteratorPtr elemIt = closeNode->GetInverseElementIterator( SMDSAbs_0DElement );
-        while ( elemIt->more() )
-          foundElements.push_back( elemIt->next() );
+        SMESH_TLink link2( outerFace2->GetNode(i), outerFace2->GetNode((i+1)%nbNodes));
+        if ( visitedLinks.insert( link2 ).second )
+          startLinks.push_back( TFaceLink( link2.node1(), link2.node2(), outerFace2 ));
       }
     }
-    // =================================================================================
-    else // elements more complex than 0D
+    startLinks.pop_front();
+  }
+  _outerFacesFound = true;
+
+  if ( !seamLinks.empty() )
+  {
+    // There are internal boundaries touching the outher one,
+    // find all faces of internal boundaries in order to find
+    // faces of boundaries of holes, if any.
+    
+  }
+  else
+  {
+    _outerFaces.clear();
+  }
+}
+
+//=======================================================================
+/*!
+ * \brief Find elements of given type where the given point is IN or ON.
+ *        Returns nb of found elements and elements them-selves.
+ *
+ * 'ALL' type means elements of any type excluding nodes and 0D elements
+ */
+//=======================================================================
+
+int SMESH_ElementSearcherImpl::
+FindElementsByPoint(const gp_Pnt&                      point,
+                    SMDSAbs_ElementType                type,
+                    vector< const SMDS_MeshElement* >& foundElements)
+{
+  foundElements.clear();
+
+  double tolerance = getTolerance();
+
+  // =================================================================================
+  if ( type == SMDSAbs_Node || type == SMDSAbs_0DElement )
+  {
+    if ( !_nodeSearcher )
+      _nodeSearcher = new SMESH_NodeSearcherImpl( _mesh );
+
+    const SMDS_MeshNode* closeNode = _nodeSearcher->FindClosestTo( point );
+    if ( !closeNode ) return foundElements.size();
+
+    if ( point.Distance( SMESH_MeshEditor::TNodeXYZ( closeNode )) > tolerance )
+      return foundElements.size(); // to far from any node
+
+    if ( type == SMDSAbs_Node )
+    {
+      foundElements.push_back( closeNode );
+    }
+    else
+    {
+      SMDS_ElemIteratorPtr elemIt = closeNode->GetInverseElementIterator( SMDSAbs_0DElement );
+      while ( elemIt->more() )
+        foundElements.push_back( elemIt->next() );
+    }
+  }
+  // =================================================================================
+  else // elements more complex than 0D
+  {
+    if ( !_ebbTree || _elementType != type )
+    {
+      if ( _ebbTree ) delete _ebbTree;
+      _ebbTree = new ElementBndBoxTree( *_mesh, _elementType = type );
+    }
+    TIDSortedElemSet suspectElems;
+    _ebbTree->getElementsNearPoint( point, suspectElems );
+    TIDSortedElemSet::iterator elem = suspectElems.begin();
+    for ( ; elem != suspectElems.end(); ++elem )
+      if ( !SMESH_MeshEditor::isOut( *elem, point, tolerance ))
+        foundElements.push_back( *elem );
+  }
+  return foundElements.size();
+}
+
+//================================================================================
+/*!
+ * \brief Classify the given point in the closed 2D mesh
+ */
+//================================================================================
+
+TopAbs_State SMESH_ElementSearcherImpl::GetPointState(const gp_Pnt& point)
+{
+  double tolerance = getTolerance();
+  if ( !_ebbTree || _elementType != SMDSAbs_Face )
+  {
+    if ( _ebbTree ) delete _ebbTree;
+    _ebbTree = new ElementBndBoxTree( *_mesh, _elementType = SMDSAbs_Face );
+  }
+  // Algo: analyse transition of a line starting at the point through mesh boundary;
+  // try three lines parallel to axis of the coordinate system and perform rough
+  // analysis. If solution is not clear perform thorough analysis.
+
+  const int nbAxes = 3;
+  gp_Dir axisDir[ nbAxes ] = { gp::DX(), gp::DY(), gp::DZ() };
+  map< double, TInters >   paramOnLine2TInters[ nbAxes ];
+  list< TInters > tangentInters[ nbAxes ]; // of faces whose plane includes the line
+  multimap< int, int > nbInt2Axis; // to find the simplest case
+  for ( int axis = 0; axis < nbAxes; ++axis )
+  {
+    gp_Ax1 lineAxis( point, axisDir[axis]);
+    gp_Lin line    ( lineAxis );
+
+    TIDSortedElemSet suspectFaces; // faces possibly intersecting the line
+    _ebbTree->getElementsNearLine( lineAxis, suspectFaces );
+
+    // Intersect faces with the line
+
+    map< double, TInters > & u2inters = paramOnLine2TInters[ axis ];
+    TIDSortedElemSet::iterator face = suspectFaces.begin();
+    for ( ; face != suspectFaces.end(); ++face )
     {
-      if ( !_ebbTree || _elementType != type )
+      // get face plane
+      gp_XYZ fNorm;
+      if ( !SMESH_Algo::FaceNormal( *face, fNorm, /*normalized=*/false)) continue;
+      gp_Pln facePlane( SMESH_MeshEditor::TNodeXYZ( (*face)->GetNode(0)), fNorm );
+
+      // perform intersection
+      IntAna_IntConicQuad intersection( line, IntAna_Quadric( facePlane ));
+      if ( !intersection.IsDone() )
+        continue;
+      if ( intersection.IsInQuadric() )
+      {
+        tangentInters[ axis ].push_back( TInters( *face, fNorm, true ));
+      }
+      else if ( ! intersection.IsParallel() && intersection.NbPoints() > 0 )
       {
-        if ( _ebbTree ) delete _ebbTree;
-        _ebbTree = new ElementBndBoxTree( *_mesh, _elementType = type );
+        gp_Pnt intersectionPoint = intersection.Point(1);
+        if ( !SMESH_MeshEditor::isOut( *face, intersectionPoint, tolerance ))
+          u2inters.insert(make_pair( intersection.ParamOnConic(1), TInters( *face, fNorm )));
       }
-      TIDSortedElemSet suspectElems;
-      _ebbTree->getElementsNearPoint( point, suspectElems );
-      TIDSortedElemSet::iterator elem = suspectElems.begin();
-      for ( ; elem != suspectElems.end(); ++elem )
-        if ( !SMESH_MeshEditor::isOut( *elem, point, tolerance ))
-          foundElements.push_back( *elem );
     }
-  }
-}; // struct SMESH_ElementSearcherImpl
+    // Analyse intersections roughly
+
+    int nbInter = u2inters.size();
+    if ( nbInter == 0 )
+      return TopAbs_OUT; 
+
+    double f = u2inters.begin()->first, l = u2inters.rbegin()->first;
+    if ( nbInter == 1 ) // not closed mesh
+      return fabs( f ) < tolerance ? TopAbs_ON : TopAbs_UNKNOWN;
+
+    if ( fabs( f ) < tolerance || fabs( l ) < tolerance )
+      return TopAbs_ON;
+
+    if ( (f<0) == (l<0) )
+      return TopAbs_OUT;
+
+    int nbIntBeforePoint = std::distance( u2inters.begin(), u2inters.lower_bound(0));
+    int nbIntAfterPoint  = nbInter - nbIntBeforePoint;
+    if ( nbIntBeforePoint == 1 || nbIntAfterPoint == 1 )
+      return TopAbs_IN;
+
+    nbInt2Axis.insert( make_pair( min( nbIntBeforePoint, nbIntAfterPoint ), axis ));
+
+    if ( _outerFacesFound ) break; // pass to thorough analysis
+
+  } // three attempts - loop on CS axes
+
+  // Analyse intersections thoroughly.
+  // We make two loops maximum, on the first one we only exclude touching intersections,
+  // on the second, if situation is still unclear, we gather and use information on
+  // position of faces (internal or outer). If faces position is already gathered,
+  // we make the second loop right away.
+
+  for ( int hasPositionInfo = _outerFacesFound; hasPositionInfo < 2; ++hasPositionInfo )
+  {
+    multimap< int, int >::const_iterator nb_axis = nbInt2Axis.begin();
+    for ( ; nb_axis != nbInt2Axis.end(); ++nb_axis )
+    {
+      int axis = nb_axis->second;
+      map< double, TInters > & u2inters = paramOnLine2TInters[ axis ];
+
+      gp_Ax1 lineAxis( point, axisDir[axis]);
+      gp_Lin line    ( lineAxis );
+
+      // add tangent intersections to u2inters
+      double param;
+      list< TInters >::const_iterator tgtInt = tangentInters[ axis ].begin();
+      for ( ; tgtInt != tangentInters[ axis ].end(); ++tgtInt )
+        if ( getIntersParamOnLine( line, tgtInt->_face, tolerance, param ))
+          u2inters.insert(make_pair( param, *tgtInt ));
+      tangentInters[ axis ].clear();
+
+      // Count intersections before and after the point excluding touching ones.
+      // If hasPositionInfo we count intersections of outer boundary only
+
+      int nbIntBeforePoint = 0, nbIntAfterPoint = 0;
+      double f = numeric_limits<double>::max(), l = -numeric_limits<double>::max();
+      map< double, TInters >::iterator u_int1 = u2inters.begin(), u_int2 = u_int1;
+      bool ok = ! u_int1->second._coincides;
+      while ( ok && u_int1 != u2inters.end() )
+      {
+        double u = u_int1->first;
+        bool touchingInt = false;
+        if ( ++u_int2 != u2inters.end() )
+        {
+          // skip intersections at the same point (if the line passes through edge or node)
+          int nbSamePnt = 0;
+          while ( u_int2 != u2inters.end() && fabs( u_int2->first - u ) < tolerance )
+          {
+            ++nbSamePnt;
+            ++u_int2;
+          }
+
+          // skip tangent intersections
+          int nbTgt = 0;
+          const SMDS_MeshElement* prevFace = u_int1->second._face;
+          while ( ok && u_int2->second._coincides )
+          {
+            if ( SMESH_Algo::GetCommonNodes(prevFace , u_int2->second._face).empty() )
+              ok = false;
+            else
+            {
+              nbTgt++;
+              u_int2++;
+              ok = ( u_int2 != u2inters.end() );
+            }
+          }
+          if ( !ok ) break;
+
+          // skip intersections at the same point after tangent intersections
+          if ( nbTgt > 0 )
+          {
+            double u2 = u_int2->first;
+            ++u_int2;
+            while ( u_int2 != u2inters.end() && fabs( u_int2->first - u2 ) < tolerance )
+            {
+              ++nbSamePnt;
+              ++u_int2;
+            }
+          }
+          // decide if we skipped a touching intersection
+          if ( nbSamePnt + nbTgt > 0 )
+          {
+            double minDot = numeric_limits<double>::max(), maxDot = -numeric_limits<double>::max();
+            map< double, TInters >::iterator u_int = u_int1;
+            for ( ; u_int != u_int2; ++u_int )
+            {
+              if ( u_int->second._coincides ) continue;
+              double dot = u_int->second._faceNorm * line.Direction();
+              if ( dot > maxDot ) maxDot = dot;
+              if ( dot < minDot ) minDot = dot;
+            }
+            touchingInt = ( minDot*maxDot < 0 );
+          }
+        }
+        if ( !touchingInt )
+        {
+          if ( !hasPositionInfo || isOuterBoundary( u_int1->second._face ))
+          {
+            if ( u < 0 )
+              ++nbIntBeforePoint;
+            else
+              ++nbIntAfterPoint;
+          }
+          if ( u < f ) f = u;
+          if ( u > l ) l = u;
+        }
+
+        u_int1 = u_int2; // to next intersection
+
+      } // loop on intersections with one line
+
+      if ( ok )
+      {
+        if ( fabs( f ) < tolerance || fabs( l ) < tolerance )
+          return TopAbs_ON;
+
+        if ( nbIntBeforePoint == 0  || nbIntAfterPoint == 0)
+          return TopAbs_OUT; 
+
+        if ( nbIntBeforePoint + nbIntAfterPoint == 1 ) // not closed mesh
+          return fabs( f ) < tolerance ? TopAbs_ON : TopAbs_UNKNOWN;
+
+        if ( nbIntBeforePoint == 1 || nbIntAfterPoint == 1 )
+          return TopAbs_IN;
+
+        if ( (f<0) == (l<0) )
+          return TopAbs_OUT;
+
+        if ( hasPositionInfo )
+          return nbIntBeforePoint % 2 ? TopAbs_IN : TopAbs_OUT;
+      }
+    } // loop on intersections of the tree lines - thorough analysis
+
+    if ( !hasPositionInfo )
+    {
+      // gather info on faces position - is face in the outer boundary or not
+      map< double, TInters > & u2inters = paramOnLine2TInters[ 0 ];
+      findOuterBoundary( u2inters.begin()->second._face );
+    }
+
+  } // two attempts - with and w/o faces position info in the mesh
+
+  return TopAbs_UNKNOWN;
+}
 
 //=======================================================================
 /*!
@@ -5581,75 +6816,125 @@ bool SMESH_MeshEditor::isOut( const SMDS_MeshElement* element, const gp_Pnt& poi
   while ( nodeIt->more() )
     xyz.push_back( TNodeXYZ( cast2Node( nodeIt->next() )));
 
+  int i, nbNodes = element->NbNodes();
+
   if ( element->GetType() == SMDSAbs_Face ) // --------------------------------------------------
   {
-    // gravity center
-    gp_XYZ gc(0,0,0);
-    gc = accumulate( xyz.begin(), xyz.end(), gc );
-    gc /= element->NbNodes();
-
-    // compute face normal using gc
-    gp_Vec normal(0,0,0);
+    // compute face normal
+    gp_Vec faceNorm(0,0,0);
     xyz.push_back( xyz.front() );
-    for ( int i = 0; i < element->NbNodes(); ++i )
+    for ( i = 0; i < nbNodes; ++i )
     {
-      gp_Vec edge( xyz[i], xyz[i+1]);
-      gp_Vec n2gc( xyz[i], gc );
-      normal += edge ^ n2gc;
+      gp_Vec edge1( xyz[i+1], xyz[i]);
+      gp_Vec edge2( xyz[i+1], xyz[(i+2)%nbNodes] );
+      faceNorm += edge1 ^ edge2;
+    }
+    double normSize = faceNorm.Magnitude();
+    if ( normSize <= tol )
+    {
+      // degenerated face: point is out if it is out of all face edges
+      for ( i = 0; i < nbNodes; ++i )
+      {
+        SMDS_MeshNode n1( xyz[i].X(),   xyz[i].Y(),   xyz[i].Z() );
+        SMDS_MeshNode n2( xyz[i+1].X(), xyz[i+1].Y(), xyz[i+1].Z() );
+        SMDS_LinearEdge edge( &n1, &n2 );
+        if ( !isOut( &edge, point, tol ))
+          return false;
+      }
+      return true;
     }
-    double faceDoubleArea = normal.Magnitude();
-    if ( faceDoubleArea <= numeric_limits<double>::min() )
-      return true; // invalid face
-    normal /= faceDoubleArea;
+    faceNorm /= normSize;
 
     // check if the point lays on face plane
     gp_Vec n2p( xyz[0], point );
-    if ( fabs( n2p * normal ) > tol )
+    if ( fabs( n2p * faceNorm ) > tol )
       return true; // not on face plane
 
-    // check if point is out of face boundary
-    int i, out = false;
-    for ( i = 0; !out && i < element->NbNodes(); ++i )
+    // check if point is out of face boundary:
+    // define it by closest transition of a ray point->infinity through face boundary
+    // on the face plane.
+    // First, find normal of a plane perpendicular to face plane, to be used as a cutting tool
+    // to find intersections of the ray with the boundary.
+    gp_Vec ray = n2p;
+    gp_Vec plnNorm = ray ^ faceNorm;
+    normSize = plnNorm.Magnitude();
+    if ( normSize <= tol ) return false; // point coincides with the first node
+    plnNorm /= normSize;
+    // for each node of the face, compute its signed distance to the plane
+    vector<double> dist( nbNodes + 1);
+    for ( i = 0; i < nbNodes; ++i )
     {
-      gp_Vec edge( xyz[i], xyz[i+1]);
-      gp_Vec n2p ( xyz[i], point );
-      gp_Vec cross = edge ^ n2p;
-      out = ( cross * normal < -tol );
-    }
-    if ( out && element->IsPoly() )
+      gp_Vec n2p( xyz[i], point );
+      dist[i] = n2p * plnNorm;
+    }
+    dist.back() = dist.front();
+    // find the closest intersection
+    int    iClosest = -1;
+    double rClosest, distClosest = 1e100;;
+    gp_Pnt pClosest;
+    for ( i = 0; i < nbNodes; ++i )
     {
-      // define point position by the closest edge
-      double minDist = numeric_limits<double>::max();
-      int iMinDist;
-      for ( i = 0; i < element->NbNodes(); ++i )
+      double r;
+      if ( fabs( dist[i]) < tol )
+        r = 0.;
+      else if ( fabs( dist[i+1]) < tol )
+        r = 1.;
+      else if ( dist[i] * dist[i+1] < 0 )
+        r = dist[i] / ( dist[i] - dist[i+1] );
+      else
+        continue; // no intersection
+      gp_Pnt pInt = xyz[i] * (1.-r) + xyz[i+1] * r;
+      gp_Vec p2int ( point, pInt);
+      if ( p2int * ray > -tol ) // right half-space
       {
-        gp_Vec edge( xyz[i], xyz[i+1]);
-        gp_Vec n1p ( xyz[i], point);
-        double dist = ( edge ^ n1p ).Magnitude() / edge.Magnitude();
-        if ( dist < minDist )
-          iMinDist = i;
+        double intDist = p2int.SquareMagnitude();
+        if ( intDist < distClosest )
+        {
+          iClosest = i;
+          rClosest = r;
+          pClosest = pInt;
+          distClosest = intDist;
+        }
       }
-      gp_Vec edge( xyz[iMinDist], xyz[iMinDist+1]);
-      gp_Vec n2p ( xyz[iMinDist], point );
-      gp_Vec cross = edge ^ n2p;
-      out = ( cross * normal < -tol );
     }
-    return out;
+    if ( iClosest < 0 )
+      return true; // no intesections - out
+
+    // analyse transition
+    gp_Vec edge( xyz[iClosest], xyz[iClosest+1] );
+    gp_Vec edgeNorm = -( edge ^ faceNorm ); // normal to intersected edge pointing out of face
+    gp_Vec p2int ( point, pClosest );
+    bool out = (edgeNorm * p2int) < -tol;
+    if ( rClosest > 0. && rClosest < 1. ) // not node intersection
+      return out;
+
+    // ray pass through a face node; analyze transition through an adjacent edge
+    gp_Pnt p1 = xyz[ (rClosest == 0.) ? ((iClosest+nbNodes-1) % nbNodes) : (iClosest+1) ];
+    gp_Pnt p2 = xyz[ (rClosest == 0.) ? iClosest : ((iClosest+2) % nbNodes) ];
+    gp_Vec edgeAdjacent( p1, p2 );
+    gp_Vec edgeNorm2 = -( edgeAdjacent ^ faceNorm );
+    bool out2 = (edgeNorm2 * p2int) < -tol;
+
+    bool covexCorner = ( edgeNorm * edgeAdjacent * (rClosest==1. ? 1. : -1.)) < 0;
+    return covexCorner ? (out || out2) : (out && out2);
   }
   if ( element->GetType() == SMDSAbs_Edge ) // --------------------------------------------------
   {
-    for ( int i = 1; i < element->NbNodes(); ++i )
+    // point is out of edge if it is NOT ON any straight part of edge
+    // (we consider quadratic edge as being composed of two straight parts)
+    for ( i = 1; i < nbNodes; ++i )
     {
       gp_Vec edge( xyz[i-1], xyz[i]);
       gp_Vec n1p ( xyz[i-1], point);
       double dist = ( edge ^ n1p ).Magnitude() / edge.Magnitude();
       if ( dist > tol )
-        return true;
+        continue;
       gp_Vec n2p( xyz[i], point );
       if ( fabs( edge.Magnitude() - n1p.Magnitude() - n2p.Magnitude()) > tol )
-        return true;
+        continue;
+      return false; // point is ON this part
     }
-    return false;
+    return true;
   }
   // Node or 0D element -------------------------------------------------------------------------
   {
@@ -6447,83 +7732,65 @@ void SMESH_MeshEditor::MergeEqualElements()
 //purpose  : Return a face having linked nodes n1 and n2 and which is
 //           - not in avoidSet,
 //           - in elemSet provided that !elemSet.empty()
+//           i1 and i2 optionally returns indices of n1 and n2
 //=======================================================================
 
 const SMDS_MeshElement*
 SMESH_MeshEditor::FindFaceInSet(const SMDS_MeshNode*    n1,
                                 const SMDS_MeshNode*    n2,
                                 const TIDSortedElemSet& elemSet,
-                                const TIDSortedElemSet& avoidSet)
+                                const TIDSortedElemSet& avoidSet,
+                                int*                    n1ind,
+                                int*                    n2ind)
 
 {
+  int i1, i2;
+  const SMDS_MeshElement* face = 0;
+
   SMDS_ElemIteratorPtr invElemIt = n1->GetInverseElementIterator(SMDSAbs_Face);
-  while ( invElemIt->more() ) { // loop on inverse elements of n1
+  while ( invElemIt->more() && !face ) // loop on inverse faces of n1
+  {
     const SMDS_MeshElement* elem = invElemIt->next();
-    if (avoidSet.find( elem ) != avoidSet.end() )
+    if (avoidSet.count( elem ))
       continue;
-    if ( !elemSet.empty() && elemSet.find( elem ) == elemSet.end())
+    if ( !elemSet.empty() && !elemSet.count( elem ))
       continue;
-    // get face nodes and find index of n1
-    int i1, nbN = elem->NbNodes(), iNode = 0;
-    //const SMDS_MeshNode* faceNodes[ nbN ], *n;
-    vector<const SMDS_MeshNode*> faceNodes( nbN );
-    const SMDS_MeshNode* n;
-    SMDS_ElemIteratorPtr nIt = elem->nodesIterator();
-    while ( nIt->more() ) {
-      faceNodes[ iNode ] = static_cast<const SMDS_MeshNode*>( nIt->next() );
-      if ( faceNodes[ iNode++ ] == n1 )
-        i1 = iNode - 1;
-    }
+    // index of n1
+    i1 = elem->GetNodeIndex( n1 );
     // find a n2 linked to n1
-    if(!elem->IsQuadratic()) {
-      for ( iNode = 0; iNode < 2; iNode++ ) {
-        if ( iNode ) // node before n1
-          n = faceNodes[ i1 == 0 ? nbN - 1 : i1 - 1 ];
-        else         // node after n1
-          n = faceNodes[ i1 + 1 == nbN ? 0 : i1 + 1 ];
-        if ( n == n2 )
-          return elem;
-      }
-    }
-    else { // analysis for quadratic elements
-      bool IsFind = false;
-      // check using only corner nodes
-      for ( iNode = 0; iNode < 2; iNode++ ) {
-        if ( iNode ) // node before n1
-          n = faceNodes[ i1 == 0 ? nbN/2 - 1 : i1 - 1 ];
-        else         // node after n1
-          n = faceNodes[ i1 + 1 == nbN/2 ? 0 : i1 + 1 ];
-        if ( n == n2 )
-          IsFind = true;
-      }
-      if(IsFind) {
-        return elem;
-      }
-      else {
-        // check using all nodes
-        const SMDS_QuadraticFaceOfNodes* F =
-          static_cast<const SMDS_QuadraticFaceOfNodes*>(elem);
-        // use special nodes iterator
-        iNode = 0;
-        SMDS_NodeIteratorPtr anIter = F->interlacedNodesIterator();
-        while ( anIter->more() ) {
-          faceNodes[iNode] = static_cast<const SMDS_MeshNode*>(anIter->next());
-          if ( faceNodes[ iNode++ ] == n1 )
-            i1 = iNode - 1;
-        }
-        for ( iNode = 0; iNode < 2; iNode++ ) {
-          if ( iNode ) // node before n1
-            n = faceNodes[ i1 == 0 ? nbN - 1 : i1 - 1 ];
-          else         // node after n1
-            n = faceNodes[ i1 + 1 == nbN ? 0 : i1 + 1 ];
-          if ( n == n2 ) {
-            return elem;
-          }
+    int nbN = elem->IsQuadratic() ? elem->NbNodes()/2 : elem->NbNodes();
+    for ( int di = -1; di < 2 && !face; di += 2 )
+    {
+      i2 = (i1+di+nbN) % nbN;
+      if ( elem->GetNode( i2 ) == n2 )
+        face = elem;
+    }
+    if ( !face && elem->IsQuadratic())
+    {
+      // analysis for quadratic elements using all nodes
+      const SMDS_QuadraticFaceOfNodes* F =
+        static_cast<const SMDS_QuadraticFaceOfNodes*>(elem);
+      // use special nodes iterator
+      SMDS_NodeIteratorPtr anIter = F->interlacedNodesIterator();
+      const SMDS_MeshNode* prevN = cast2Node( anIter->next() );
+      for ( i1 = -1, i2 = 0; anIter->more() && !face; i1++, i2++ )
+      {
+        const SMDS_MeshNode* n = cast2Node( anIter->next() );
+        if ( n1 == prevN && n2 == n )
+        {
+          face = elem;
+        }
+        else if ( n2 == prevN && n1 == n )
+        {
+          face = elem; swap( i1, i2 );
         }
+        prevN = n;
       }
-    } // end analysis for quadratic elements
+    }
   }
-  return 0;
+  if ( n1ind ) *n1ind = i1;
+  if ( n2ind ) *n2ind = i2;
+  return face;
 }
 
 //=======================================================================
@@ -8655,6 +9922,7 @@ SMESH_MeshEditor::FindMatchingNodes(set<const SMDS_MeshElement*>& theSide1,
   return SEW_OK;
 }
 
+//================================================================================
 /*!
   \brief Creates a hole in a mesh by doubling the nodes of some particular elements
   \param theElems - the list of elements (edges or faces) to be replicated
@@ -8664,6 +9932,8 @@ SMESH_MeshEditor::FindMatchingNodes(set<const SMDS_MeshElement*>& theSide1,
   replicated nodes should be associated to.
   \return TRUE if operation has been completed successfully, FALSE otherwise
 */
+//================================================================================
+
 bool SMESH_MeshEditor::DoubleNodes( const TIDSortedElemSet& theElems,
                                     const TIDSortedElemSet& theNodesNot,
                                     const TIDSortedElemSet& theAffectedElems )
@@ -8687,6 +9957,7 @@ bool SMESH_MeshEditor::DoubleNodes( const TIDSortedElemSet& theElems,
   return res;
 }
 
+//================================================================================
 /*!
   \brief Creates a hole in a mesh by doubling the nodes of some particular elements
   \param theMeshDS - mesh instance
@@ -8696,6 +9967,8 @@ bool SMESH_MeshEditor::DoubleNodes( const TIDSortedElemSet& theElems,
   \param theIsDoubleElem - flag os to replicate element or modify
   \return TRUE if operation has been completed successfully, FALSE otherwise
 */
+//================================================================================
+
 bool SMESH_MeshEditor::doubleNodes( SMESHDS_Mesh*     theMeshDS,
                                     const TIDSortedElemSet& theElems,
                                     const TIDSortedElemSet& theNodesNot,
@@ -8747,28 +10020,7 @@ bool SMESH_MeshEditor::doubleNodes( SMESHDS_Mesh*     theMeshDS,
   return res;
 }
 
-/*!
-  \brief Check if element located inside shape
-  \return TRUE if IN or ON shape, FALSE otherwise
-*/
-
-static bool isInside(const SMDS_MeshElement* theElem,
-                     BRepClass3d_SolidClassifier& theBsc3d,
-                     const double theTol)
-{
-  gp_XYZ centerXYZ (0, 0, 0);
-  SMDS_ElemIteratorPtr aNodeItr = theElem->nodesIterator();
-  while (aNodeItr->more())
-  {
-    SMDS_MeshNode* aNode = (SMDS_MeshNode*)aNodeItr->next();
-    centerXYZ += gp_XYZ(aNode->X(), aNode->Y(), aNode->Z());
-  }
-  gp_Pnt aPnt(centerXYZ);
-  theBsc3d.Perform(aPnt, theTol);
-  TopAbs_State aState = theBsc3d.State();
-  return (aState == TopAbs_IN || aState == TopAbs_ON );
-}
-
+//================================================================================
 /*!
   \brief Creates a hole in a mesh by doubling the nodes of some particular elements
   \param theNodes - identifiers of nodes to be doubled
@@ -8777,6 +10029,8 @@ static bool isInside(const SMDS_MeshElement* theElem,
          they not assigned to elements
   \return TRUE if operation has been completed successfully, FALSE otherwise
 */
+//================================================================================
+
 bool SMESH_MeshEditor::DoubleNodes( const std::list< int >& theListOfNodes, 
                                     const std::list< int >& theListOfModifiedElems )
 {
@@ -8858,15 +10112,77 @@ bool SMESH_MeshEditor::DoubleNodes( const std::list< int >& theListOfNodes,
   return true;
 }
 
+namespace {
+
+  //================================================================================
+  /*!
+  \brief Check if element located inside shape
+  \return TRUE if IN or ON shape, FALSE otherwise
+  */
+  //================================================================================
+
+  template<class Classifier>
+  bool isInside(const SMDS_MeshElement* theElem,
+                Classifier&             theClassifier,
+                const double            theTol)
+  {
+    gp_XYZ centerXYZ (0, 0, 0);
+    SMDS_ElemIteratorPtr aNodeItr = theElem->nodesIterator();
+    while (aNodeItr->more())
+      centerXYZ += SMESH_MeshEditor::TNodeXYZ(cast2Node( aNodeItr->next()));
+
+    gp_Pnt aPnt = centerXYZ / theElem->NbNodes();
+    theClassifier.Perform(aPnt, theTol);
+    TopAbs_State aState = theClassifier.State();
+    return (aState == TopAbs_IN || aState == TopAbs_ON );
+  }
+
+  //================================================================================
+  /*!
+   * \brief Classifier of the 3D point on the TopoDS_Face
+   *        with interaface suitable for isInside()
+   */
+  //================================================================================
+
+  struct _FaceClassifier
+  {
+    Extrema_ExtPS       _extremum;
+    BRepAdaptor_Surface _surface;
+    TopAbs_State        _state;
+
+    _FaceClassifier(const TopoDS_Face& face):_extremum(),_surface(face),_state(TopAbs_OUT)
+    {
+      _extremum.Initialize( _surface,
+                            _surface.FirstUParameter(), _surface.LastUParameter(),
+                            _surface.FirstVParameter(), _surface.LastVParameter(),
+                            _surface.Tolerance(), _surface.Tolerance() );
+    }
+    void Perform(const gp_Pnt& aPnt, double theTol)
+    {
+      _state = TopAbs_OUT;
+      _extremum.Perform(aPnt);
+      if ( _extremum.IsDone() )
+        for ( int iSol = 1; iSol <= _extremum.NbExt() && _state == TopAbs_OUT; ++iSol)
+          _state = ( _extremum.Value(iSol) <= theTol ? TopAbs_IN : TopAbs_OUT );
+    }
+    TopAbs_State State() const
+    {
+      return _state;
+    }
+  };
+}
+
+//================================================================================
 /*!
   \brief Creates a hole in a mesh by doubling the nodes of some particular elements
   \param theElems - group of of elements (edges or faces) to be replicated
-  \param theNodesNot - group of nodes not to replicated
+  \param theNodesNot - group of nodes not to replicate
   \param theShape - shape to detect affected elements (element which geometric center
   located on or inside shape).
   The replicated nodes should be associated to affected elements.
   \return TRUE if operation has been completed successfully, FALSE otherwise
 */
+//================================================================================
 
 bool SMESH_MeshEditor::DoubleNodesInRegion( const TIDSortedElemSet& theElems,
                                             const TIDSortedElemSet& theNodesNot,
@@ -8876,8 +10192,17 @@ bool SMESH_MeshEditor::DoubleNodesInRegion( const TIDSortedElemSet& theElems,
     return false;
 
   const double aTol = Precision::Confusion();
-  BRepClass3d_SolidClassifier bsc3d(theShape);
-  bsc3d.PerformInfinitePoint(aTol);
+  auto_ptr< BRepClass3d_SolidClassifier> bsc3d;
+  auto_ptr<_FaceClassifier>              aFaceClassifier;
+  if ( theShape.ShapeType() == TopAbs_SOLID )
+  {
+    bsc3d.reset( new BRepClass3d_SolidClassifier(theShape));;
+    bsc3d->PerformInfinitePoint(aTol);
+  }
+  else if (theShape.ShapeType() == TopAbs_FACE )
+  {
+    aFaceClassifier.reset( new _FaceClassifier(TopoDS::Face(theShape)));
+  }
 
   // iterates on indicated elements and get elements by back references from their nodes
   TIDSortedElemSet anAffected;
@@ -8891,15 +10216,17 @@ bool SMESH_MeshEditor::DoubleNodesInRegion( const TIDSortedElemSet& theElems,
     SMDS_ElemIteratorPtr nodeItr = anElem->nodesIterator();
     while ( nodeItr->more() )
     {
-      const SMDS_MeshNode* aNode = static_cast<const SMDS_MeshNode*>(nodeItr->next());
+      const SMDS_MeshNode* aNode = cast2Node(nodeItr->next());
       if ( !aNode || theNodesNot.find(aNode) != theNodesNot.end() )
         continue;
       SMDS_ElemIteratorPtr backElemItr = aNode->GetInverseElementIterator();
       while ( backElemItr->more() )
       {
-        SMDS_MeshElement* curElem = (SMDS_MeshElement*)backElemItr->next();
+        const SMDS_MeshElement* curElem = backElemItr->next();
         if ( curElem && theElems.find(curElem) == theElems.end() &&
-             isInside( curElem, bsc3d, aTol ) )
+             ( bsc3d.get() ?
+               isInside( curElem, *bsc3d, aTol ) :
+               isInside( curElem, *aFaceClassifier, aTol )))
           anAffected.insert( curElem );
       }
     }
@@ -8907,11 +10234,13 @@ bool SMESH_MeshEditor::DoubleNodesInRegion( const TIDSortedElemSet& theElems,
   return DoubleNodes( theElems, theNodesNot, anAffected );
 }
 
+//================================================================================
 /*!
  * \brief Generated skin mesh (containing 2D cells) from 3D mesh
  * The created 2D mesh elements based on nodes of free faces of boundary volumes
  * \return TRUE if operation has been completed successfully, FALSE otherwise
  */
+//================================================================================
 
 bool SMESH_MeshEditor::Make2DMeshFrom3D()
 {
@@ -8919,46 +10248,39 @@ bool SMESH_MeshEditor::Make2DMeshFrom3D()
   SMESHDS_Mesh* aMesh = GetMeshDS();
   if (!aMesh)
     return false;
-  bool res = false;
+  //bool res = false;
+  int nbFree = 0, nbExisted = 0, nbCreated = 0;
   SMDS_VolumeIteratorPtr vIt = aMesh->volumesIterator();
   while(vIt->more())
   {
     const SMDS_MeshVolume* volume = vIt->next();
     SMDS_VolumeTool vTool( volume );
+    vTool.SetExternalNormal();
     const bool isPoly = volume->IsPoly();
     const bool isQuad = volume->IsQuadratic();
     for ( int iface = 0, n = vTool.NbFaces(); iface < n; iface++ )
     {
       if (!vTool.IsFreeFace(iface))
         continue;
+      nbFree++;
       vector<const SMDS_MeshNode *> nodes;
       int nbFaceNodes = vTool.NbFaceNodes(iface);
       const SMDS_MeshNode** faceNodes = vTool.GetFaceNodes(iface);
-      if (vTool.IsFaceExternal(iface)) 
-      {
-        int inode = 0;
-        for ( ; inode < nbFaceNodes; inode += isQuad ? 2 : 1)
-          nodes.push_back(faceNodes[inode]);
-        if (isQuad)
-          for ( inode = 1; inode < nbFaceNodes; inode += 2)
-            nodes.push_back(faceNodes[inode]);
-      }
-      else
-      {
-        int inode = nbFaceNodes-1;
-        for ( ; inode >=0; inode -= isQuad ? 2 : 1)
+      int inode = 0;
+      for ( ; inode < nbFaceNodes; inode += isQuad ? 2 : 1)
+        nodes.push_back(faceNodes[inode]);
+      if (isQuad)
+        for ( inode = 1; inode < nbFaceNodes; inode += 2)
           nodes.push_back(faceNodes[inode]);
-        if (isQuad)
-          for ( inode = nbFaceNodes-2; inode >=0; inode -= 2)
-            nodes.push_back(faceNodes[inode]);
-      }
 
       // add new face based on volume nodes
-      if (aMesh->FindFace( nodes ) )
+      if (aMesh->FindFace( nodes ) ) {
+        nbExisted++;
         continue; // face already exsist
+      }
       myLastCreatedElems.Append( AddElement(nodes, SMDSAbs_Face, isPoly && iface == 1) );
-      res = true;
+      nbCreated++;
     }
   }
-  return res;
+  return ( nbFree==(nbExisted+nbCreated) );
 }