Salome HOME
[PY3] 2to3 results
[modules/smesh.git] / doc / salome / examples / cartesian_algo.py
index b15455f2824bec19b4d8a553cb3f01cbe5cbf617..179b9bb3f5f1c15fc047786d09ab542965098fe4 100644 (file)
@@ -1,34 +1,44 @@
 # Usage of Body Fitting algorithm
 
-from smesh import *
-SetCurrentStudy(salome.myStudy)
+
+import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
+
+import SMESH, SALOMEDS
+from salome.smesh import smeshBuilder
+smesh =  smeshBuilder.New(salome.myStudy)
+import salome_notebook
+
 
 # create a sphere
 sphere = geompy.MakeSphereR( 50 )
 geompy.addToStudy( sphere, "sphere" )
 
 # create a mesh and assign a "Body Fitting" algo
-mesh = Mesh( sphere )
+mesh = smesh.Mesh( sphere )
 cartAlgo = mesh.BodyFitted()
 
 # define a cartesian grid using Coordinates
-coords = range(-100,100,10)
+coords = list(range(-100,100,10))
 cartHyp = cartAlgo.SetGrid( coords,coords,coords, 1000000)
 
 # compute the mesh
 mesh.Compute()
-print "nb hexahedra",mesh.NbHexas()
-print "nb tetrahedra",mesh.NbTetras()
-print "nb polyhedra",mesh.NbPolyhedrons()
-print
+print("nb hexahedra",mesh.NbHexas())
+print("nb tetrahedra",mesh.NbTetras())
+print("nb polyhedra",mesh.NbPolyhedrons())
+print()
 
 # define the grid by setting constant spacing
 cartHyp = cartAlgo.SetGrid( "10","10","10", 1000000)
 
 mesh.Compute()
-print "nb hexahedra",mesh.NbHexas()
-print "nb tetrahedra",mesh.NbTetras()
-print "nb polyhedra",mesh.NbPolyhedrons()
+print("nb hexahedra",mesh.NbHexas())
+print("nb tetrahedra",mesh.NbTetras())
+print("nb polyhedra",mesh.NbPolyhedrons())
 
 
 # define the grid by setting different spacing in 2 sub-ranges of geometry
@@ -36,7 +46,44 @@ spaceFuns = ["5","10+10*t"]
 cartAlgo.SetGrid( [spaceFuns, [0.5]], [spaceFuns, [0.5]], [spaceFuns, [0.25]], 10 )
 
 mesh.Compute()
-print "nb hexahedra",mesh.NbHexas()
-print "nb tetrahedra",mesh.NbTetras()
-print "nb polyhedra",mesh.NbPolyhedrons()
-print
+print("nb hexahedra",mesh.NbHexas())
+print("nb tetrahedra",mesh.NbTetras())
+print("nb polyhedra",mesh.NbPolyhedrons())
+print()
+
+# Example of customization of dirtections of the grid axes
+
+# make a box with non-orthogonal edges
+xDir = geompy.MakeVectorDXDYDZ( 1.0, 0.1, 0.0, "xDir" )
+yDir = geompy.MakeVectorDXDYDZ(-0.1, 1.0, 0.0, "yDir"  )
+zDir = geompy.MakeVectorDXDYDZ( 0.2, 0.3, 1.0, "zDir"  )
+face = geompy.MakePrismVecH( xDir, yDir, 1.0 )
+box  = geompy.MakePrismVecH( face, zDir, 1.0, theName="box" )
+
+spc = "0.1" # spacing
+
+# default axes
+mesh = smesh.Mesh( box, "custom axes")
+algo = mesh.BodyFitted()
+algo.SetGrid( spc, spc, spc, 10000 )
+mesh.Compute()
+print("Default axes")
+print("   nb hex:",mesh.NbHexas())
+
+# set axes using edges of the box
+algo.SetAxesDirs( xDir, [-0.1,1,0], zDir )
+mesh.Compute()
+print("Manual axes")
+print("   nb hex:",mesh.NbHexas())
+
+# set optimal orthogonal axes
+algo.SetOptimalAxesDirs( isOrthogonal=True )
+mesh.Compute()
+print("Optimal orthogonal axes")
+print("   nb hex:",mesh.NbHexas())
+
+# set optimal non-orthogonal axes
+algo.SetOptimalAxesDirs( isOrthogonal=False )
+mesh.Compute()
+print("Optimal non-orthogonal axes")
+print("   nb hex:",mesh.NbHexas())