1 // Copyright (C) 2007-2013 CEA/DEN, EDF R&D, OPEN CASCADE
3 // Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
4 // CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
6 // This library is free software; you can redistribute it and/or
7 // modify it under the terms of the GNU Lesser General Public
8 // License as published by the Free Software Foundation; either
9 // version 2.1 of the License.
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 // Lesser General Public License for more details.
16 // You should have received a copy of the GNU Lesser General Public
17 // License along with this library; if not, write to the Free Software
18 // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
23 // File : StdMeshers_Quadrangle_2D.cxx
24 // Author : Paul RASCLE, EDF
27 #include "StdMeshers_Quadrangle_2D.hxx"
29 #include "SMDS_EdgePosition.hxx"
30 #include "SMDS_FacePosition.hxx"
31 #include "SMDS_MeshElement.hxx"
32 #include "SMDS_MeshNode.hxx"
33 #include "SMESH_Block.hxx"
34 #include "SMESH_Comment.hxx"
35 #include "SMESH_Gen.hxx"
36 #include "SMESH_HypoFilter.hxx"
37 #include "SMESH_Mesh.hxx"
38 #include "SMESH_MeshAlgos.hxx"
39 #include "SMESH_MesherHelper.hxx"
40 #include "SMESH_subMesh.hxx"
41 #include "StdMeshers_FaceSide.hxx"
42 #include "StdMeshers_QuadrangleParams.hxx"
43 #include "StdMeshers_ViscousLayers2D.hxx"
45 #include <BRepClass_FaceClassifier.hxx>
46 #include <BRep_Tool.hxx>
47 #include <GeomAPI_ProjectPointOnSurf.hxx>
48 #include <Geom_Surface.hxx>
49 #include <NCollection_DefineArray2.hxx>
50 #include <Precision.hxx>
51 #include <Quantity_Parameter.hxx>
52 #include <TColStd_SequenceOfInteger.hxx>
53 #include <TColStd_SequenceOfReal.hxx>
54 #include <TColgp_SequenceOfXY.hxx>
56 #include <TopExp_Explorer.hxx>
57 #include <TopTools_DataMapOfShapeReal.hxx>
58 #include <TopTools_ListIteratorOfListOfShape.hxx>
59 #include <TopTools_MapOfShape.hxx>
62 #include "utilities.h"
63 #include "Utils_ExceptHandlers.hxx"
65 #ifndef StdMeshers_Array2OfNode_HeaderFile
66 #define StdMeshers_Array2OfNode_HeaderFile
67 typedef const SMDS_MeshNode* SMDS_MeshNodePtr;
68 DEFINE_BASECOLLECTION (StdMeshers_BaseCollectionNodePtr, SMDS_MeshNodePtr)
69 DEFINE_ARRAY2(StdMeshers_Array2OfNode,
70 StdMeshers_BaseCollectionNodePtr, SMDS_MeshNodePtr)
76 typedef SMESH_Comment TComm;
78 //=============================================================================
82 //=============================================================================
84 StdMeshers_Quadrangle_2D::StdMeshers_Quadrangle_2D (int hypId, int studyId,
86 : SMESH_2D_Algo(hypId, studyId, gen),
87 myQuadranglePreference(false),
88 myTrianglePreference(false),
92 myQuadType(QUAD_STANDARD),
95 MESSAGE("StdMeshers_Quadrangle_2D::StdMeshers_Quadrangle_2D");
96 _name = "Quadrangle_2D";
97 _shapeType = (1 << TopAbs_FACE);
98 _compatibleHypothesis.push_back("QuadrangleParams");
99 _compatibleHypothesis.push_back("QuadranglePreference");
100 _compatibleHypothesis.push_back("TrianglePreference");
101 _compatibleHypothesis.push_back("ViscousLayers2D");
104 //=============================================================================
108 //=============================================================================
110 StdMeshers_Quadrangle_2D::~StdMeshers_Quadrangle_2D()
112 MESSAGE("StdMeshers_Quadrangle_2D::~StdMeshers_Quadrangle_2D");
115 //=============================================================================
119 //=============================================================================
121 bool StdMeshers_Quadrangle_2D::CheckHypothesis
123 const TopoDS_Shape& aShape,
124 SMESH_Hypothesis::Hypothesis_Status& aStatus)
127 myQuadType = QUAD_STANDARD;
128 myQuadranglePreference = false;
129 myTrianglePreference = false;
130 myHelper = (SMESH_MesherHelper*)NULL;
135 aStatus = SMESH_Hypothesis::HYP_OK;
137 const list <const SMESHDS_Hypothesis * >& hyps =
138 GetUsedHypothesis(aMesh, aShape, false);
139 const SMESHDS_Hypothesis * aHyp = 0;
141 bool isFirstParams = true;
143 // First assigned hypothesis (if any) is processed now
144 if (hyps.size() > 0) {
146 if (strcmp("QuadrangleParams", aHyp->GetName()) == 0)
148 myParams = (const StdMeshers_QuadrangleParams*)aHyp;
149 myTriaVertexID = myParams->GetTriaVertex();
150 myQuadType = myParams->GetQuadType();
151 if (myQuadType == QUAD_QUADRANGLE_PREF ||
152 myQuadType == QUAD_QUADRANGLE_PREF_REVERSED)
153 myQuadranglePreference = true;
154 else if (myQuadType == QUAD_TRIANGLE_PREF)
155 myTrianglePreference = true;
157 else if (strcmp("QuadranglePreference", aHyp->GetName()) == 0) {
158 isFirstParams = false;
159 myQuadranglePreference = true;
161 else if (strcmp("TrianglePreference", aHyp->GetName()) == 0){
162 isFirstParams = false;
163 myTrianglePreference = true;
166 isFirstParams = false;
170 // Second(last) assigned hypothesis (if any) is processed now
171 if (hyps.size() > 1) {
174 if (strcmp("QuadranglePreference", aHyp->GetName()) == 0) {
175 myQuadranglePreference = true;
176 myTrianglePreference = false;
177 myQuadType = QUAD_STANDARD;
179 else if (strcmp("TrianglePreference", aHyp->GetName()) == 0){
180 myQuadranglePreference = false;
181 myTrianglePreference = true;
182 myQuadType = QUAD_STANDARD;
186 const StdMeshers_QuadrangleParams* aHyp2 =
187 (const StdMeshers_QuadrangleParams*)aHyp;
188 myTriaVertexID = aHyp2->GetTriaVertex();
190 if (!myQuadranglePreference && !myTrianglePreference) { // priority of hypos
191 myQuadType = aHyp2->GetQuadType();
192 if (myQuadType == QUAD_QUADRANGLE_PREF ||
193 myQuadType == QUAD_QUADRANGLE_PREF_REVERSED)
194 myQuadranglePreference = true;
195 else if (myQuadType == QUAD_TRIANGLE_PREF)
196 myTrianglePreference = true;
204 //=============================================================================
208 //=============================================================================
210 bool StdMeshers_Quadrangle_2D::Compute (SMESH_Mesh& aMesh,
211 const TopoDS_Shape& aShape)
213 const TopoDS_Face& F = TopoDS::Face(aShape);
214 aMesh.GetSubMesh( F );
216 SMESH_MesherHelper helper (aMesh);
219 myProxyMesh = StdMeshers_ViscousLayers2D::Compute( aMesh, F );
223 _quadraticMesh = myHelper->IsQuadraticSubMesh(aShape);
224 myNeedSmooth = false;
226 FaceQuadStruct::Ptr quad = CheckNbEdges( aMesh, F, /*considerMesh=*/true );
230 myQuadList.push_back( quad );
232 if ( !getEnforcedUV() )
235 updateDegenUV( quad );
237 int n1 = quad->side[0].NbPoints();
238 int n2 = quad->side[1].NbPoints();
239 int n3 = quad->side[2].NbPoints();
240 int n4 = quad->side[3].NbPoints();
242 enum { NOT_COMPUTED = -1, COMPUTE_FAILED = 0, COMPUTE_OK = 1 };
243 int res = NOT_COMPUTED;
244 if (myQuadranglePreference)
246 int nfull = n1+n2+n3+n4;
247 if ((nfull % 2) == 0 && ((n1 != n3) || (n2 != n4)))
249 // special path genarating only quandrangle faces
250 res = computeQuadPref( aMesh, F, quad );
253 else if (myQuadType == QUAD_REDUCED)
257 int n13tmp = n13/2; n13tmp = n13tmp*2;
258 int n24tmp = n24/2; n24tmp = n24tmp*2;
259 if ((n1 == n3 && n2 != n4 && n24tmp == n24) ||
260 (n2 == n4 && n1 != n3 && n13tmp == n13))
262 res = computeReduced( aMesh, F, quad );
266 if ( n1 != n3 && n2 != n4 )
267 error( COMPERR_WARNING,
268 "To use 'Reduced' transition, "
269 "two opposite sides should have same number of segments, "
270 "but actual number of segments is different on all sides. "
271 "'Standard' transion has been used.");
273 error( COMPERR_WARNING,
274 "To use 'Reduced' transition, "
275 "two opposite sides should have an even difference in number of segments. "
276 "'Standard' transion has been used.");
280 if ( res == NOT_COMPUTED )
282 if ( n1 != n3 || n2 != n4 )
283 res = computeTriangles( aMesh, F, quad );
285 res = computeQuadDominant( aMesh, F );
288 if ( res == COMPUTE_OK && myNeedSmooth )
291 return ( res == COMPUTE_OK );
294 //================================================================================
296 * \brief Compute quadrangles and triangles on the quad
298 //================================================================================
300 bool StdMeshers_Quadrangle_2D::computeTriangles(SMESH_Mesh& aMesh,
301 const TopoDS_Face& aFace,
302 FaceQuadStruct::Ptr quad)
304 int nb = quad->side[0].grid->NbPoints();
305 int nr = quad->side[1].grid->NbPoints();
306 int nt = quad->side[2].grid->NbPoints();
307 int nl = quad->side[3].grid->NbPoints();
309 // rotate the quad to have nbNodeOut sides on TOP [and LEFT]
311 quad->shift( nl > nr ? 3 : 2, true );
313 quad->shift( 1, true );
315 quad->shift( nt > nb ? 0 : 3, true );
317 if ( !setNormalizedGrid( quad ))
320 if ( quad->nbNodeOut( QUAD_BOTTOM_SIDE ))
322 splitQuad( quad, 0, 1 );
324 if ( quad->nbNodeOut( QUAD_TOP_SIDE ))
326 splitQuad( quad, 0, quad->jSize-2 );
328 FaceQuadStruct::Ptr newQuad = myQuadList.back();
329 if ( quad != newQuad ) // split done
331 // make quad be a greatest one
332 if ( quad->side[ QUAD_LEFT_SIDE ].NbPoints() == 2 ||
333 quad->side[ QUAD_RIGHT_SIDE ].NbPoints() == 2 )
335 if ( !setNormalizedGrid( quad ))
339 if ( quad->nbNodeOut( QUAD_RIGHT_SIDE ))
341 splitQuad( quad, quad->iSize-2, 0 );
343 if ( quad->nbNodeOut( QUAD_LEFT_SIDE ))
345 splitQuad( quad, 1, 0 );
348 return computeQuadDominant( aMesh, aFace );
351 //================================================================================
353 * \brief Compute quadrangles and possibly triangles on all quads of myQuadList
355 //================================================================================
357 bool StdMeshers_Quadrangle_2D::computeQuadDominant(SMESH_Mesh& aMesh,
358 const TopoDS_Face& aFace)
360 if ( !addEnforcedNodes() )
363 std::list< FaceQuadStruct::Ptr >::iterator quad = myQuadList.begin();
364 for ( ; quad != myQuadList.end(); ++quad )
365 if ( !computeQuadDominant( aMesh, aFace, *quad ))
371 //================================================================================
373 * \brief Compute quadrangles and possibly triangles
375 //================================================================================
377 bool StdMeshers_Quadrangle_2D::computeQuadDominant(SMESH_Mesh& aMesh,
378 const TopoDS_Face& aFace,
379 FaceQuadStruct::Ptr quad)
381 // --- set normalized grid on unit square in parametric domain
383 if ( !setNormalizedGrid( quad ))
386 // --- create nodes on points, and create quadrangles
388 int nbhoriz = quad->iSize;
389 int nbvertic = quad->jSize;
391 // internal mesh nodes
392 SMESHDS_Mesh * meshDS = aMesh.GetMeshDS();
393 Handle(Geom_Surface) S = BRep_Tool::Surface(aFace);
394 int i,j, geomFaceID = meshDS->ShapeToIndex(aFace);
395 for (i = 1; i < nbhoriz - 1; i++)
396 for (j = 1; j < nbvertic - 1; j++)
398 UVPtStruct& uvPnt = quad->UVPt( i, j );
399 gp_Pnt P = S->Value( uvPnt.u, uvPnt.v );
400 uvPnt.node = meshDS->AddNode(P.X(), P.Y(), P.Z());
401 meshDS->SetNodeOnFace( uvPnt.node, geomFaceID, uvPnt.u, uvPnt.v );
407 // --.--.--.--.--.-- nbvertic
413 // ---.----.----.--- 0
414 // 0 > > > > > > > > nbhoriz
419 int iup = nbhoriz - 1;
420 if (quad->nbNodeOut(3)) { ilow++; } else { if (quad->nbNodeOut(1)) iup--; }
423 int jup = nbvertic - 1;
424 if (quad->nbNodeOut(0)) { jlow++; } else { if (quad->nbNodeOut(2)) jup--; }
426 // regular quadrangles
427 for (i = ilow; i < iup; i++) {
428 for (j = jlow; j < jup; j++) {
429 const SMDS_MeshNode *a, *b, *c, *d;
430 a = quad->uv_grid[ j * nbhoriz + i ].node;
431 b = quad->uv_grid[ j * nbhoriz + i + 1].node;
432 c = quad->uv_grid[(j + 1) * nbhoriz + i + 1].node;
433 d = quad->uv_grid[(j + 1) * nbhoriz + i ].node;
434 SMDS_MeshFace* face = myHelper->AddFace(a, b, c, d);
436 meshDS->SetMeshElementOnShape(face, geomFaceID);
441 // Boundary elements (must always be on an outer boundary of the FACE)
443 const vector<UVPtStruct>& uv_e0 = quad->side[0].grid->GetUVPtStruct();
444 const vector<UVPtStruct>& uv_e1 = quad->side[1].grid->GetUVPtStruct();
445 const vector<UVPtStruct>& uv_e2 = quad->side[2].grid->GetUVPtStruct();
446 const vector<UVPtStruct>& uv_e3 = quad->side[3].grid->GetUVPtStruct();
448 if (uv_e0.empty() || uv_e1.empty() || uv_e2.empty() || uv_e3.empty())
449 return error(COMPERR_BAD_INPUT_MESH);
451 double eps = Precision::Confusion();
453 int nbdown = (int) uv_e0.size();
454 int nbup = (int) uv_e2.size();
455 int nbright = (int) uv_e1.size();
456 int nbleft = (int) uv_e3.size();
458 if (quad->nbNodeOut(0) && nbvertic == 2)
462 // |___|___|___|___|___|___|
464 // |___|___|___|___|___|___|
466 // |___|___|___|___|___|___| __ first row of the regular grid
467 // . . . . . . . . . __ down edge nodes
469 // >->->->->->->->->->->->-> -- direction of processing
471 int g = 0; // number of last processed node in the regular grid
473 // number of last node of the down edge to be processed
474 int stop = nbdown - 1;
475 // if right edge is out, we will stop at a node, previous to the last one
476 //if (quad->nbNodeOut(1)) stop--;
477 if ( quad->nbNodeOut( QUAD_RIGHT_SIDE ))
478 quad->UVPt( nbhoriz-1, 1 ).node = uv_e1[1].node;
479 if ( quad->nbNodeOut( QUAD_LEFT_SIDE ))
480 quad->UVPt( 0, 1 ).node = uv_e3[1].node;
482 // for each node of the down edge find nearest node
483 // in the first row of the regular grid and link them
484 for (i = 0; i < stop; i++) {
485 const SMDS_MeshNode *a, *b, *c, *d;
487 b = uv_e0[i + 1].node;
488 gp_Pnt pb (b->X(), b->Y(), b->Z());
490 // find node c in the regular grid, which will be linked with node b
493 // right bound reached, link with the rightmost node
495 c = quad->uv_grid[nbhoriz + iup].node;
498 // find in the grid node c, nearest to the b
499 double mind = RealLast();
500 for (int k = g; k <= iup; k++) {
502 const SMDS_MeshNode *nk;
503 if (k < ilow) // this can be, if left edge is out
504 nk = uv_e3[1].node; // get node from the left edge
506 nk = quad->uv_grid[nbhoriz + k].node; // get one of middle nodes
508 gp_Pnt pnk (nk->X(), nk->Y(), nk->Z());
509 double dist = pb.Distance(pnk);
510 if (dist < mind - eps) {
520 if (near == g) { // make triangle
521 SMDS_MeshFace* face = myHelper->AddFace(a, b, c);
522 if (face) meshDS->SetMeshElementOnShape(face, geomFaceID);
524 else { // make quadrangle
528 d = quad->uv_grid[nbhoriz + near - 1].node;
529 //SMDS_MeshFace* face = meshDS->AddFace(a, b, c, d);
531 if (!myTrianglePreference){
532 SMDS_MeshFace* face = myHelper->AddFace(a, b, c, d);
533 if (face) meshDS->SetMeshElementOnShape(face, geomFaceID);
536 splitQuadFace(meshDS, geomFaceID, a, b, c, d);
539 // if node d is not at position g - make additional triangles
541 for (int k = near - 1; k > g; k--) {
542 c = quad->uv_grid[nbhoriz + k].node;
546 d = quad->uv_grid[nbhoriz + k - 1].node;
547 SMDS_MeshFace* face = myHelper->AddFace(a, c, d);
548 if (face) meshDS->SetMeshElementOnShape(face, geomFaceID);
555 if (quad->nbNodeOut(2) && nbvertic == 2)
559 // <-<-<-<-<-<-<-<-<-<-<-<-< -- direction of processing
561 // . . . . . . . . . __ up edge nodes
562 // ___ ___ ___ ___ ___ ___ __ first row of the regular grid
564 // |___|___|___|___|___|___|
566 // |___|___|___|___|___|___|
569 int g = nbhoriz - 1; // last processed node in the regular grid
575 // if left edge is out, we will stop at a second node
576 //if (quad->nbNodeOut(3)) stop++;
577 if ( quad->nbNodeOut( QUAD_RIGHT_SIDE ))
578 quad->UVPt( nbhoriz-1, 0 ).node = uv_e1[ nbright-2 ].node;
579 if ( quad->nbNodeOut( QUAD_LEFT_SIDE ))
580 quad->UVPt( 0, 0 ).node = uv_e3[ nbleft-2 ].node;
582 // for each node of the up edge find nearest node
583 // in the first row of the regular grid and link them
584 for (i = nbup - 1; i > stop; i--) {
585 const SMDS_MeshNode *a, *b, *c, *d;
587 b = uv_e2[i - 1].node;
588 gp_Pnt pb (b->X(), b->Y(), b->Z());
590 // find node c in the grid, which will be linked with node b
592 if (i == stop + 1) { // left bound reached, link with the leftmost node
593 c = quad->uv_grid[nbhoriz*(nbvertic - 2) + ilow].node;
596 // find node c in the grid, nearest to the b
597 double mind = RealLast();
598 for (int k = g; k >= ilow; k--) {
599 const SMDS_MeshNode *nk;
601 nk = uv_e1[nbright - 2].node;
603 nk = quad->uv_grid[nbhoriz*(nbvertic - 2) + k].node;
604 gp_Pnt pnk (nk->X(), nk->Y(), nk->Z());
605 double dist = pb.Distance(pnk);
606 if (dist < mind - eps) {
616 if (near == g) { // make triangle
617 SMDS_MeshFace* face = myHelper->AddFace(a, b, c);
618 if (face) meshDS->SetMeshElementOnShape(face, geomFaceID);
620 else { // make quadrangle
622 d = uv_e1[nbright - 2].node;
624 d = quad->uv_grid[nbhoriz*(nbvertic - 2) + near + 1].node;
625 //SMDS_MeshFace* face = meshDS->AddFace(a, b, c, d);
626 if (!myTrianglePreference){
627 SMDS_MeshFace* face = myHelper->AddFace(a, b, c, d);
628 if (face) meshDS->SetMeshElementOnShape(face, geomFaceID);
631 splitQuadFace(meshDS, geomFaceID, a, b, c, d);
634 if (near + 1 < g) { // if d is not at g - make additional triangles
635 for (int k = near + 1; k < g; k++) {
636 c = quad->uv_grid[nbhoriz*(nbvertic - 2) + k].node;
638 d = uv_e1[nbright - 2].node;
640 d = quad->uv_grid[nbhoriz*(nbvertic - 2) + k + 1].node;
641 SMDS_MeshFace* face = myHelper->AddFace(a, c, d);
642 if (face) meshDS->SetMeshElementOnShape(face, geomFaceID);
651 // right or left boundary quadrangles
652 if (quad->nbNodeOut( QUAD_RIGHT_SIDE ) && nbhoriz == 2)
654 int g = 0; // last processed node in the grid
655 int stop = nbright - 1;
657 if (quad->side[ QUAD_RIGHT_SIDE ].from != i ) i++;
658 if (quad->side[ QUAD_RIGHT_SIDE ].to != stop ) stop--;
659 for ( ; i < stop; i++) {
660 const SMDS_MeshNode *a, *b, *c, *d;
662 b = uv_e1[i + 1].node;
663 gp_Pnt pb (b->X(), b->Y(), b->Z());
665 // find node c in the grid, nearest to the b
667 if (i == stop - 1) { // up bondary reached
668 c = quad->uv_grid[nbhoriz*(jup + 1) - 2].node;
671 double mind = RealLast();
672 for (int k = g; k <= jup; k++) {
673 const SMDS_MeshNode *nk;
675 nk = uv_e0[nbdown - 2].node;
677 nk = quad->uv_grid[nbhoriz*(k + 1) - 2].node;
678 gp_Pnt pnk (nk->X(), nk->Y(), nk->Z());
679 double dist = pb.Distance(pnk);
680 if (dist < mind - eps) {
690 if (near == g) { // make triangle
691 SMDS_MeshFace* face = myHelper->AddFace(a, b, c);
692 if (face) meshDS->SetMeshElementOnShape(face, geomFaceID);
694 else { // make quadrangle
696 d = uv_e0[nbdown - 2].node;
698 d = quad->uv_grid[nbhoriz*near - 2].node;
699 //SMDS_MeshFace* face = meshDS->AddFace(a, b, c, d);
701 if (!myTrianglePreference){
702 SMDS_MeshFace* face = myHelper->AddFace(a, b, c, d);
703 if (face) meshDS->SetMeshElementOnShape(face, geomFaceID);
706 splitQuadFace(meshDS, geomFaceID, a, b, c, d);
709 if (near - 1 > g) { // if d not is at g - make additional triangles
710 for (int k = near - 1; k > g; k--) {
711 c = quad->uv_grid[nbhoriz*(k + 1) - 2].node;
713 d = uv_e0[nbdown - 2].node;
715 d = quad->uv_grid[nbhoriz*k - 2].node;
716 SMDS_MeshFace* face = myHelper->AddFace(a, c, d);
717 if (face) meshDS->SetMeshElementOnShape(face, geomFaceID);
724 if (quad->nbNodeOut(3) && nbhoriz == 2) {
725 // MESSAGE("left edge is out");
726 int g = nbvertic - 1; // last processed node in the grid
729 if (quad->side[3].from != stop ) stop++;
730 if (quad->side[3].to != i ) i--;
731 for (; i > stop; i--) {
732 const SMDS_MeshNode *a, *b, *c, *d;
734 b = uv_e3[i - 1].node;
735 gp_Pnt pb (b->X(), b->Y(), b->Z());
737 // find node c in the grid, nearest to the b
739 if (i == stop + 1) { // down bondary reached
740 c = quad->uv_grid[nbhoriz*jlow + 1].node;
743 double mind = RealLast();
744 for (int k = g; k >= jlow; k--) {
745 const SMDS_MeshNode *nk;
749 nk = quad->uv_grid[nbhoriz*k + 1].node;
750 gp_Pnt pnk (nk->X(), nk->Y(), nk->Z());
751 double dist = pb.Distance(pnk);
752 if (dist < mind - eps) {
762 if (near == g) { // make triangle
763 SMDS_MeshFace* face = myHelper->AddFace(a, b, c);
764 if (face) meshDS->SetMeshElementOnShape(face, geomFaceID);
766 else { // make quadrangle
770 d = quad->uv_grid[nbhoriz*(near + 1) + 1].node;
771 //SMDS_MeshFace* face = meshDS->AddFace(a, b, c, d);
772 if (!myTrianglePreference){
773 SMDS_MeshFace* face = myHelper->AddFace(a, b, c, d);
774 if (face) meshDS->SetMeshElementOnShape(face, geomFaceID);
777 splitQuadFace(meshDS, geomFaceID, a, b, c, d);
780 if (near + 1 < g) { // if d not is at g - make additional triangles
781 for (int k = near + 1; k < g; k++) {
782 c = quad->uv_grid[nbhoriz*k + 1].node;
786 d = quad->uv_grid[nbhoriz*(k + 1) + 1].node;
787 SMDS_MeshFace* face = myHelper->AddFace(a, c, d);
788 if (face) meshDS->SetMeshElementOnShape(face, geomFaceID);
802 //=============================================================================
806 //=============================================================================
808 bool StdMeshers_Quadrangle_2D::Evaluate(SMESH_Mesh& aMesh,
809 const TopoDS_Shape& aFace,
810 MapShapeNbElems& aResMap)
813 aMesh.GetSubMesh(aFace);
815 std::vector<int> aNbNodes(4);
816 bool IsQuadratic = false;
817 if (!checkNbEdgesForEvaluate(aMesh, aFace, aResMap, aNbNodes, IsQuadratic)) {
818 std::vector<int> aResVec(SMDSEntity_Last);
819 for (int i=SMDSEntity_Node; i<SMDSEntity_Last; i++) aResVec[i] = 0;
820 SMESH_subMesh * sm = aMesh.GetSubMesh(aFace);
821 aResMap.insert(std::make_pair(sm,aResVec));
822 SMESH_ComputeErrorPtr& smError = sm->GetComputeError();
823 smError.reset(new SMESH_ComputeError(COMPERR_ALGO_FAILED,"Submesh can not be evaluated",this));
827 if (myQuadranglePreference) {
828 int n1 = aNbNodes[0];
829 int n2 = aNbNodes[1];
830 int n3 = aNbNodes[2];
831 int n4 = aNbNodes[3];
832 int nfull = n1+n2+n3+n4;
835 if (nfull==ntmp && ((n1!=n3) || (n2!=n4))) {
836 // special path for using only quandrangle faces
837 return evaluateQuadPref(aMesh, aFace, aNbNodes, aResMap, IsQuadratic);
842 int nbdown = aNbNodes[0];
843 int nbup = aNbNodes[2];
845 int nbright = aNbNodes[1];
846 int nbleft = aNbNodes[3];
848 int nbhoriz = Min(nbdown, nbup);
849 int nbvertic = Min(nbright, nbleft);
851 int dh = Max(nbdown, nbup) - nbhoriz;
852 int dv = Max(nbright, nbleft) - nbvertic;
859 int nbNodes = (nbhoriz-2)*(nbvertic-2);
860 //int nbFaces3 = dh + dv + kdh*(nbvertic-1)*2 + kdv*(nbhoriz-1)*2;
861 int nbFaces3 = dh + dv;
862 //if (kdh==1 && kdv==1) nbFaces3 -= 2;
863 //if (dh>0 && dv>0) nbFaces3 -= 2;
864 //int nbFaces4 = (nbhoriz-1-kdh)*(nbvertic-1-kdv);
865 int nbFaces4 = (nbhoriz-1)*(nbvertic-1);
867 std::vector<int> aVec(SMDSEntity_Last);
868 for (int i=SMDSEntity_Node; i<SMDSEntity_Last; i++) aVec[i] = 0;
870 aVec[SMDSEntity_Quad_Triangle] = nbFaces3;
871 aVec[SMDSEntity_Quad_Quadrangle] = nbFaces4;
872 int nbbndedges = nbdown + nbup + nbright + nbleft -4;
873 int nbintedges = (nbFaces4*4 + nbFaces3*3 - nbbndedges) / 2;
874 aVec[SMDSEntity_Node] = nbNodes + nbintedges;
875 if (aNbNodes.size()==5) {
876 aVec[SMDSEntity_Quad_Triangle] = nbFaces3 + aNbNodes[3] -1;
877 aVec[SMDSEntity_Quad_Quadrangle] = nbFaces4 - aNbNodes[3] +1;
881 aVec[SMDSEntity_Node] = nbNodes;
882 aVec[SMDSEntity_Triangle] = nbFaces3;
883 aVec[SMDSEntity_Quadrangle] = nbFaces4;
884 if (aNbNodes.size()==5) {
885 aVec[SMDSEntity_Triangle] = nbFaces3 + aNbNodes[3] - 1;
886 aVec[SMDSEntity_Quadrangle] = nbFaces4 - aNbNodes[3] + 1;
889 SMESH_subMesh * sm = aMesh.GetSubMesh(aFace);
890 aResMap.insert(std::make_pair(sm,aVec));
896 //================================================================================
898 * \brief Return true if only two given edges meat at their common vertex
900 //================================================================================
902 static bool twoEdgesMeatAtVertex(const TopoDS_Edge& e1,
903 const TopoDS_Edge& e2,
907 if (!TopExp::CommonVertex(e1, e2, v))
909 TopTools_ListIteratorOfListOfShape ancestIt(mesh.GetAncestors(v));
910 for (; ancestIt.More() ; ancestIt.Next())
911 if (ancestIt.Value().ShapeType() == TopAbs_EDGE)
912 if (!e1.IsSame(ancestIt.Value()) && !e2.IsSame(ancestIt.Value()))
917 //=============================================================================
921 //=============================================================================
923 FaceQuadStruct::Ptr StdMeshers_Quadrangle_2D::CheckNbEdges(SMESH_Mesh & aMesh,
924 const TopoDS_Shape & aShape,
925 const bool considerMesh)
927 if ( !myQuadList.empty() && myQuadList.front()->face.IsSame( aShape ))
928 return myQuadList.front();
930 TopoDS_Face F = TopoDS::Face(aShape);
931 if ( F.Orientation() >= TopAbs_INTERNAL ) F.Orientation( TopAbs_FORWARD );
932 const bool ignoreMediumNodes = _quadraticMesh;
934 // verify 1 wire only, with 4 edges
935 list< TopoDS_Edge > edges;
936 list< int > nbEdgesInWire;
937 int nbWire = SMESH_Block::GetOrderedEdges (F, edges, nbEdgesInWire);
939 error(COMPERR_BAD_SHAPE, TComm("Wrong number of wires: ") << nbWire);
940 return FaceQuadStruct::Ptr();
943 // find corner vertices of the quad
944 vector<TopoDS_Vertex> corners;
945 int nbDegenEdges, nbSides = getCorners( F, aMesh, edges, corners, nbDegenEdges, considerMesh );
948 return FaceQuadStruct::Ptr();
950 FaceQuadStruct::Ptr quad( new FaceQuadStruct );
951 quad->side.reserve(nbEdgesInWire.front());
954 list< TopoDS_Edge >::iterator edgeIt = edges.begin();
955 if ( nbSides == 3 ) // 3 sides and corners[0] is a vertex with myTriaVertexID
957 for ( int iSide = 0; iSide < 3; ++iSide )
959 list< TopoDS_Edge > sideEdges;
960 TopoDS_Vertex nextSideV = corners[( iSide + 1 ) % 3 ];
961 while ( edgeIt != edges.end() &&
962 !nextSideV.IsSame( SMESH_MesherHelper::IthVertex( 0, *edgeIt )))
963 if ( SMESH_Algo::isDegenerated( *edgeIt ))
966 sideEdges.push_back( *edgeIt++ );
967 if ( !sideEdges.empty() )
968 quad->side.push_back( StdMeshers_FaceSide::New(F, sideEdges, &aMesh, iSide < QUAD_TOP_SIDE,
969 ignoreMediumNodes, myProxyMesh));
973 const vector<UVPtStruct>& UVPSleft = quad->side[0].GetUVPtStruct(true,0);
974 /* vector<UVPtStruct>& UVPStop = */quad->side[1].GetUVPtStruct(false,1);
975 /* vector<UVPtStruct>& UVPSright = */quad->side[2].GetUVPtStruct(true,1);
976 const SMDS_MeshNode* aNode = UVPSleft[0].node;
977 gp_Pnt2d aPnt2d = UVPSleft[0].UV();
978 quad->side.push_back( StdMeshers_FaceSide::New( quad->side[1].grid.get(), aNode, &aPnt2d ));
979 myNeedSmooth = ( nbDegenEdges > 0 );
984 myNeedSmooth = ( corners.size() == 4 && nbDegenEdges > 0 );
985 int iSide = 0, nbUsedDegen = 0, nbLoops = 0;
986 for ( ; edgeIt != edges.end(); ++nbLoops )
988 list< TopoDS_Edge > sideEdges;
989 TopoDS_Vertex nextSideV = corners[( iSide + 1 - nbUsedDegen ) % corners.size() ];
990 while ( edgeIt != edges.end() &&
991 !nextSideV.IsSame( myHelper->IthVertex( 0, *edgeIt )))
993 if ( SMESH_Algo::isDegenerated( *edgeIt ) )
997 ++edgeIt; // no side on the degenerated EDGE
1001 if ( sideEdges.empty() )
1004 sideEdges.push_back( *edgeIt++ ); // a degenerated side
1009 break; // do not append a degenerated EDGE to a regular side
1015 sideEdges.push_back( *edgeIt++ );
1018 if ( !sideEdges.empty() )
1020 quad->side.push_back( StdMeshers_FaceSide::New( F, sideEdges, &aMesh, iSide < QUAD_TOP_SIDE,
1021 ignoreMediumNodes, myProxyMesh ));
1024 else if ( !SMESH_Algo::isDegenerated( *edgeIt ) && // closed EDGE
1025 myHelper->IthVertex( 0, *edgeIt ).IsSame( myHelper->IthVertex( 1, *edgeIt )))
1027 quad->side.push_back( StdMeshers_FaceSide::New( F, *edgeIt++, &aMesh, iSide < QUAD_TOP_SIDE,
1028 ignoreMediumNodes, myProxyMesh));
1031 if ( quad->side.size() == 4 )
1035 error(TComm("Bug: infinite loop in StdMeshers_Quadrangle_2D::CheckNbEdges()"));
1040 if ( quad && quad->side.size() != 4 )
1042 error(TComm("Bug: ") << quad->side.size() << " sides found instead of 4");
1051 //=============================================================================
1055 //=============================================================================
1057 bool StdMeshers_Quadrangle_2D::checkNbEdgesForEvaluate(SMESH_Mesh& aMesh,
1058 const TopoDS_Shape & aShape,
1059 MapShapeNbElems& aResMap,
1060 std::vector<int>& aNbNodes,
1064 const TopoDS_Face & F = TopoDS::Face(aShape);
1066 // verify 1 wire only, with 4 edges
1067 list< TopoDS_Edge > edges;
1068 list< int > nbEdgesInWire;
1069 int nbWire = SMESH_Block::GetOrderedEdges (F, edges, nbEdgesInWire);
1077 list< TopoDS_Edge >::iterator edgeIt = edges.begin();
1078 SMESH_subMesh * sm = aMesh.GetSubMesh(*edgeIt);
1079 MapShapeNbElemsItr anIt = aResMap.find(sm);
1080 if (anIt==aResMap.end()) {
1083 std::vector<int> aVec = (*anIt).second;
1084 IsQuadratic = (aVec[SMDSEntity_Quad_Edge] > aVec[SMDSEntity_Edge]);
1085 if (nbEdgesInWire.front() == 3) { // exactly 3 edges
1086 if (myTriaVertexID>0) {
1087 SMESHDS_Mesh* meshDS = aMesh.GetMeshDS();
1088 TopoDS_Vertex V = TopoDS::Vertex(meshDS->IndexToShape(myTriaVertexID));
1090 TopoDS_Edge E1,E2,E3;
1091 for (; edgeIt != edges.end(); ++edgeIt) {
1092 TopoDS_Edge E = TopoDS::Edge(*edgeIt);
1093 TopoDS_Vertex VF, VL;
1094 TopExp::Vertices(E, VF, VL, true);
1097 else if (VL.IsSame(V))
1102 SMESH_subMesh * sm = aMesh.GetSubMesh(E1);
1103 MapShapeNbElemsItr anIt = aResMap.find(sm);
1104 if (anIt==aResMap.end()) return false;
1105 std::vector<int> aVec = (*anIt).second;
1107 aNbNodes[0] = (aVec[SMDSEntity_Node]-1)/2 + 2;
1109 aNbNodes[0] = aVec[SMDSEntity_Node] + 2;
1110 sm = aMesh.GetSubMesh(E2);
1111 anIt = aResMap.find(sm);
1112 if (anIt==aResMap.end()) return false;
1113 aVec = (*anIt).second;
1115 aNbNodes[1] = (aVec[SMDSEntity_Node]-1)/2 + 2;
1117 aNbNodes[1] = aVec[SMDSEntity_Node] + 2;
1118 sm = aMesh.GetSubMesh(E3);
1119 anIt = aResMap.find(sm);
1120 if (anIt==aResMap.end()) return false;
1121 aVec = (*anIt).second;
1123 aNbNodes[2] = (aVec[SMDSEntity_Node]-1)/2 + 2;
1125 aNbNodes[2] = aVec[SMDSEntity_Node] + 2;
1126 aNbNodes[3] = aNbNodes[1];
1132 if (nbEdgesInWire.front() == 4) { // exactly 4 edges
1133 for (; edgeIt != edges.end(); edgeIt++) {
1134 SMESH_subMesh * sm = aMesh.GetSubMesh(*edgeIt);
1135 MapShapeNbElemsItr anIt = aResMap.find(sm);
1136 if (anIt==aResMap.end()) {
1139 std::vector<int> aVec = (*anIt).second;
1141 aNbNodes[nbSides] = (aVec[SMDSEntity_Node]-1)/2 + 2;
1143 aNbNodes[nbSides] = aVec[SMDSEntity_Node] + 2;
1147 else if (nbEdgesInWire.front() > 4) { // more than 4 edges - try to unite some
1148 list< TopoDS_Edge > sideEdges;
1149 while (!edges.empty()) {
1151 sideEdges.splice(sideEdges.end(), edges, edges.begin()); // edges.front() -> sideEdges.end()
1152 bool sameSide = true;
1153 while (!edges.empty() && sameSide) {
1154 sameSide = SMESH_Algo::IsContinuous(sideEdges.back(), edges.front());
1156 sideEdges.splice(sideEdges.end(), edges, edges.begin());
1158 if (nbSides == 0) { // go backward from the first edge
1160 while (!edges.empty() && sameSide) {
1161 sameSide = SMESH_Algo::IsContinuous(sideEdges.front(), edges.back());
1163 sideEdges.splice(sideEdges.begin(), edges, --edges.end());
1166 list<TopoDS_Edge>::iterator ite = sideEdges.begin();
1167 aNbNodes[nbSides] = 1;
1168 for (; ite!=sideEdges.end(); ite++) {
1169 SMESH_subMesh * sm = aMesh.GetSubMesh(*ite);
1170 MapShapeNbElemsItr anIt = aResMap.find(sm);
1171 if (anIt==aResMap.end()) {
1174 std::vector<int> aVec = (*anIt).second;
1176 aNbNodes[nbSides] += (aVec[SMDSEntity_Node]-1)/2 + 1;
1178 aNbNodes[nbSides] += aVec[SMDSEntity_Node] + 1;
1182 // issue 20222. Try to unite only edges shared by two same faces
1185 SMESH_Block::GetOrderedEdges (F, edges, nbEdgesInWire);
1186 while (!edges.empty()) {
1188 sideEdges.splice(sideEdges.end(), edges, edges.begin());
1189 bool sameSide = true;
1190 while (!edges.empty() && sameSide) {
1192 SMESH_Algo::IsContinuous(sideEdges.back(), edges.front()) &&
1193 twoEdgesMeatAtVertex(sideEdges.back(), edges.front(), aMesh);
1195 sideEdges.splice(sideEdges.end(), edges, edges.begin());
1197 if (nbSides == 0) { // go backward from the first edge
1199 while (!edges.empty() && sameSide) {
1201 SMESH_Algo::IsContinuous(sideEdges.front(), edges.back()) &&
1202 twoEdgesMeatAtVertex(sideEdges.front(), edges.back(), aMesh);
1204 sideEdges.splice(sideEdges.begin(), edges, --edges.end());
1207 list<TopoDS_Edge>::iterator ite = sideEdges.begin();
1208 aNbNodes[nbSides] = 1;
1209 for (; ite!=sideEdges.end(); ite++) {
1210 SMESH_subMesh * sm = aMesh.GetSubMesh(*ite);
1211 MapShapeNbElemsItr anIt = aResMap.find(sm);
1212 if (anIt==aResMap.end()) {
1215 std::vector<int> aVec = (*anIt).second;
1217 aNbNodes[nbSides] += (aVec[SMDSEntity_Node]-1)/2 + 1;
1219 aNbNodes[nbSides] += aVec[SMDSEntity_Node] + 1;
1227 nbSides = nbEdgesInWire.front();
1228 error(COMPERR_BAD_SHAPE, TComm("Face must have 4 sides but not ") << nbSides);
1236 //=============================================================================
1240 //=============================================================================
1243 StdMeshers_Quadrangle_2D::CheckAnd2Dcompute (SMESH_Mesh & aMesh,
1244 const TopoDS_Shape & aShape,
1245 const bool CreateQuadratic)
1247 _quadraticMesh = CreateQuadratic;
1249 FaceQuadStruct::Ptr quad = CheckNbEdges(aMesh, aShape);
1252 // set normalized grid on unit square in parametric domain
1253 if ( ! setNormalizedGrid( quad ))
1261 inline const vector<UVPtStruct>& getUVPtStructIn(FaceQuadStruct::Ptr& quad, int i, int nbSeg)
1263 bool isXConst = (i == QUAD_BOTTOM_SIDE || i == QUAD_TOP_SIDE);
1264 double constValue = (i == QUAD_BOTTOM_SIDE || i == QUAD_LEFT_SIDE) ? 0 : 1;
1266 quad->nbNodeOut(i) ?
1267 quad->side[i].grid->SimulateUVPtStruct(nbSeg,isXConst,constValue) :
1268 quad->side[i].grid->GetUVPtStruct (isXConst,constValue);
1270 inline gp_UV calcUV(double x, double y,
1271 const gp_UV& a0,const gp_UV& a1,const gp_UV& a2,const gp_UV& a3,
1272 const gp_UV& p0,const gp_UV& p1,const gp_UV& p2,const gp_UV& p3)
1275 ((1 - y) * p0 + x * p1 + y * p2 + (1 - x) * p3 ) -
1276 ((1 - x) * (1 - y) * a0 + x * (1 - y) * a1 + x * y * a2 + (1 - x) * y * a3);
1280 //=============================================================================
1284 //=============================================================================
1286 bool StdMeshers_Quadrangle_2D::setNormalizedGrid (FaceQuadStruct::Ptr quad)
1288 if ( !quad->uv_grid.empty() )
1291 // Algorithme décrit dans "Génération automatique de maillages"
1292 // P.L. GEORGE, MASSON, § 6.4.1 p. 84-85
1293 // traitement dans le domaine paramétrique 2d u,v
1294 // transport - projection sur le carré unité
1297 // |<----north-2-------^ a3 -------------> a2
1299 // west-3 east-1 =right | |
1303 // v----south-0--------> a0 -------------> a1
1307 const FaceQuadStruct::Side & bSide = quad->side[0];
1308 const FaceQuadStruct::Side & rSide = quad->side[1];
1309 const FaceQuadStruct::Side & tSide = quad->side[2];
1310 const FaceQuadStruct::Side & lSide = quad->side[3];
1312 int nbhoriz = Min( bSide.NbPoints(), tSide.NbPoints() );
1313 int nbvertic = Min( rSide.NbPoints(), lSide.NbPoints() );
1315 if ( myQuadList.size() == 1 )
1317 // all sub-quads must have NO sides with nbNodeOut > 0
1318 quad->nbNodeOut(0) = Max( 0, bSide.grid->NbPoints() - tSide.grid->NbPoints() );
1319 quad->nbNodeOut(1) = Max( 0, rSide.grid->NbPoints() - lSide.grid->NbPoints() );
1320 quad->nbNodeOut(2) = Max( 0, tSide.grid->NbPoints() - bSide.grid->NbPoints() );
1321 quad->nbNodeOut(3) = Max( 0, lSide.grid->NbPoints() - rSide.grid->NbPoints() );
1323 const vector<UVPtStruct>& uv_e0 = bSide.GetUVPtStruct();
1324 const vector<UVPtStruct>& uv_e1 = rSide.GetUVPtStruct();
1325 const vector<UVPtStruct>& uv_e2 = tSide.GetUVPtStruct();
1326 const vector<UVPtStruct>& uv_e3 = lSide.GetUVPtStruct();
1327 if (uv_e0.empty() || uv_e1.empty() || uv_e2.empty() || uv_e3.empty())
1328 //return error("Can't find nodes on sides");
1329 return error(COMPERR_BAD_INPUT_MESH);
1331 quad->uv_grid.resize( nbvertic * nbhoriz );
1332 quad->iSize = nbhoriz;
1333 quad->jSize = nbvertic;
1334 UVPtStruct *uv_grid = & quad->uv_grid[0];
1336 quad->uv_box.Clear();
1338 // copy data of face boundary
1340 FaceQuadStruct::SideIterator sideIter;
1344 const double x0 = bSide.First().normParam;
1345 const double dx = bSide.Last().normParam - bSide.First().normParam;
1346 for ( sideIter.Init( bSide ); sideIter.More(); sideIter.Next() ) {
1347 sideIter.UVPt().x = ( sideIter.UVPt().normParam - x0 ) / dx;
1348 sideIter.UVPt().y = 0.;
1349 uv_grid[ j * nbhoriz + sideIter.Count() ] = sideIter.UVPt();
1350 quad->uv_box.Add( sideIter.UVPt().UV() );
1354 const int i = nbhoriz - 1;
1355 const double y0 = rSide.First().normParam;
1356 const double dy = rSide.Last().normParam - rSide.First().normParam;
1357 sideIter.Init( rSide );
1358 if ( quad->UVPt( i, sideIter.Count() ).node )
1359 sideIter.Next(); // avoid copying from a split emulated side
1360 for ( ; sideIter.More(); sideIter.Next() ) {
1361 sideIter.UVPt().x = 1.;
1362 sideIter.UVPt().y = ( sideIter.UVPt().normParam - y0 ) / dy;
1363 uv_grid[ sideIter.Count() * nbhoriz + i ] = sideIter.UVPt();
1364 quad->uv_box.Add( sideIter.UVPt().UV() );
1368 const int j = nbvertic - 1;
1369 const double x0 = tSide.First().normParam;
1370 const double dx = tSide.Last().normParam - tSide.First().normParam;
1371 int i = 0, nb = nbhoriz;
1372 sideIter.Init( tSide );
1373 if ( quad->UVPt( nb-1, j ).node ) --nb; // avoid copying from a split emulated side
1374 for ( ; i < nb; i++, sideIter.Next()) {
1375 sideIter.UVPt().x = ( sideIter.UVPt().normParam - x0 ) / dx;
1376 sideIter.UVPt().y = 1.;
1377 uv_grid[ j * nbhoriz + i ] = sideIter.UVPt();
1378 quad->uv_box.Add( sideIter.UVPt().UV() );
1383 const double y0 = lSide.First().normParam;
1384 const double dy = lSide.Last().normParam - lSide.First().normParam;
1385 int j = 0, nb = nbvertic;
1386 sideIter.Init( lSide );
1387 if ( quad->UVPt( i, j ).node )
1388 ++j, sideIter.Next(); // avoid copying from a split emulated side
1389 if ( quad->UVPt( i, nb-1 ).node )
1391 for ( ; j < nb; j++, sideIter.Next()) {
1392 sideIter.UVPt().x = 0.;
1393 sideIter.UVPt().y = ( sideIter.UVPt().normParam - y0 ) / dy;
1394 uv_grid[ j * nbhoriz + i ] = sideIter.UVPt();
1395 quad->uv_box.Add( sideIter.UVPt().UV() );
1399 // normalized 2d parameters on grid
1401 for (int i = 1; i < nbhoriz-1; i++)
1403 const double x0 = quad->UVPt( i, 0 ).x;
1404 const double x1 = quad->UVPt( i, nbvertic-1 ).x;
1405 for (int j = 1; j < nbvertic-1; j++)
1407 const double y0 = quad->UVPt( 0, j ).y;
1408 const double y1 = quad->UVPt( nbhoriz-1, j ).y;
1409 // --- intersection : x=x0+(y0+x(y1-y0))(x1-x0)
1410 double x = (x0 + y0 * (x1 - x0)) / (1 - (y1 - y0) * (x1 - x0));
1411 double y = y0 + x * (y1 - y0);
1412 int ij = j * nbhoriz + i;
1415 uv_grid[ij].node = NULL;
1419 // projection on 2d domain (u,v)
1421 gp_UV a0 = quad->UVPt( 0, 0 ).UV();
1422 gp_UV a1 = quad->UVPt( nbhoriz-1, 0 ).UV();
1423 gp_UV a2 = quad->UVPt( nbhoriz-1, nbvertic-1 ).UV();
1424 gp_UV a3 = quad->UVPt( 0, nbvertic-1 ).UV();
1426 for (int i = 1; i < nbhoriz-1; i++)
1428 gp_UV p0 = quad->UVPt( i, 0 ).UV();
1429 gp_UV p2 = quad->UVPt( i, nbvertic-1 ).UV();
1430 for (int j = 1; j < nbvertic-1; j++)
1432 gp_UV p1 = quad->UVPt( nbhoriz-1, j ).UV();
1433 gp_UV p3 = quad->UVPt( 0, j ).UV();
1435 int ij = j * nbhoriz + i;
1436 double x = uv_grid[ij].x;
1437 double y = uv_grid[ij].y;
1439 gp_UV uv = calcUV(x,y, a0,a1,a2,a3, p0,p1,p2,p3);
1441 uv_grid[ij].u = uv.X();
1442 uv_grid[ij].v = uv.Y();
1448 //=======================================================================
1449 //function : ShiftQuad
1450 //purpose : auxilary function for computeQuadPref
1451 //=======================================================================
1453 static void shiftQuad(FaceQuadStruct::Ptr& quad, const int num)
1455 quad->shift( num, /*ori=*/true );
1458 //================================================================================
1460 * \brief Rotate sides of a quad by given nb of quartes
1461 * \param nb - number of rotation quartes
1462 * \param ori - to keep orientation of sides as in an unit quad or not
1464 //================================================================================
1466 void FaceQuadStruct::shift( size_t nb, bool ori )
1468 if ( nb == 0 ) return;
1470 vector< Side > newSides( side.size() );
1471 vector< Side* > sidePtrs( side.size() );
1472 for (int i = QUAD_BOTTOM_SIDE; i < NB_QUAD_SIDES; ++i)
1474 int id = (i + nb) % NB_QUAD_SIDES;
1477 bool wasForward = (i < QUAD_TOP_SIDE);
1478 bool newForward = (id < QUAD_TOP_SIDE);
1479 if ( wasForward != newForward )
1480 side[ i ].Reverse();
1482 newSides[ id ] = side[ i ];
1483 sidePtrs[ i ] = & side[ i ];
1485 // make newSides refer newSides via Side::Contact's
1486 for ( size_t i = 0; i < newSides.size(); ++i )
1488 FaceQuadStruct::Side& ns = newSides[ i ];
1489 for ( size_t iC = 0; iC < ns.contacts.size(); ++iC )
1491 FaceQuadStruct::Side* oSide = ns.contacts[iC].other_side;
1492 vector< Side* >::iterator sIt = std::find( sidePtrs.begin(), sidePtrs.end(), oSide );
1493 if ( sIt != sidePtrs.end() )
1494 ns.contacts[iC].other_side = & newSides[ *sIt - sidePtrs[0] ];
1497 newSides.swap( side );
1502 //=======================================================================
1504 //purpose : auxilary function for computeQuadPref
1505 //=======================================================================
1507 static gp_UV calcUV(double x0, double x1, double y0, double y1,
1508 FaceQuadStruct::Ptr& quad,
1509 const gp_UV& a0, const gp_UV& a1,
1510 const gp_UV& a2, const gp_UV& a3)
1512 double x = (x0 + y0 * (x1 - x0)) / (1 - (y1 - y0) * (x1 - x0));
1513 double y = y0 + x * (y1 - y0);
1515 gp_UV p0 = quad->side[QUAD_BOTTOM_SIDE].grid->Value2d(x).XY();
1516 gp_UV p1 = quad->side[QUAD_RIGHT_SIDE ].grid->Value2d(y).XY();
1517 gp_UV p2 = quad->side[QUAD_TOP_SIDE ].grid->Value2d(x).XY();
1518 gp_UV p3 = quad->side[QUAD_LEFT_SIDE ].grid->Value2d(y).XY();
1520 gp_UV uv = calcUV(x,y, a0,a1,a2,a3, p0,p1,p2,p3);
1525 //=======================================================================
1526 //function : calcUV2
1527 //purpose : auxilary function for computeQuadPref
1528 //=======================================================================
1530 static gp_UV calcUV2(double x, double y,
1531 FaceQuadStruct::Ptr& quad,
1532 const gp_UV& a0, const gp_UV& a1,
1533 const gp_UV& a2, const gp_UV& a3)
1535 gp_UV p0 = quad->side[QUAD_BOTTOM_SIDE].grid->Value2d(x).XY();
1536 gp_UV p1 = quad->side[QUAD_RIGHT_SIDE ].grid->Value2d(y).XY();
1537 gp_UV p2 = quad->side[QUAD_TOP_SIDE ].grid->Value2d(x).XY();
1538 gp_UV p3 = quad->side[QUAD_LEFT_SIDE ].grid->Value2d(y).XY();
1540 gp_UV uv = calcUV(x,y, a0,a1,a2,a3, p0,p1,p2,p3);
1546 //=======================================================================
1548 * Create only quandrangle faces
1550 //=======================================================================
1552 bool StdMeshers_Quadrangle_2D::computeQuadPref (SMESH_Mesh & aMesh,
1553 const TopoDS_Face& aFace,
1554 FaceQuadStruct::Ptr quad)
1556 const bool OldVersion = (myQuadType == QUAD_QUADRANGLE_PREF_REVERSED);
1557 const bool WisF = true;
1559 SMESHDS_Mesh * meshDS = aMesh.GetMeshDS();
1560 Handle(Geom_Surface) S = BRep_Tool::Surface(aFace);
1561 int i,j, geomFaceID = meshDS->ShapeToIndex(aFace);
1563 int nb = quad->side[0].NbPoints();
1564 int nr = quad->side[1].NbPoints();
1565 int nt = quad->side[2].NbPoints();
1566 int nl = quad->side[3].NbPoints();
1567 int dh = abs(nb-nt);
1568 int dv = abs(nr-nl);
1570 if ( myForcedPnts.empty() )
1572 // rotate sides to be as in the picture below and to have
1573 // dh >= dv and nt > nb
1575 shiftQuad( quad, ( nt > nb ) ? 0 : 2 );
1577 shiftQuad( quad, ( nr > nl ) ? 1 : 3 );
1581 // rotate the quad to have nt > nb [and nr > nl]
1583 quad->shift( nr > nl ? 1 : 2, true );
1585 quad->shift( nb == nt ? 1 : 0, true );
1587 quad->shift( 3, true );
1590 nb = quad->side[0].NbPoints();
1591 nr = quad->side[1].NbPoints();
1592 nt = quad->side[2].NbPoints();
1593 nl = quad->side[3].NbPoints();
1596 int nbh = Max(nb,nt);
1597 int nbv = Max(nr,nl);
1601 // Orientation of face and 3 main domain for future faces
1602 // ----------- Old version ---------------
1608 // left | |__| | rigth
1615 // ----------- New version ---------------
1621 // left |/________\| rigth
1628 const vector<UVPtStruct>& uv_eb_vec = quad->side[0].GetUVPtStruct(true,0);
1629 const vector<UVPtStruct>& uv_er_vec = quad->side[1].GetUVPtStruct(false,1);
1630 const vector<UVPtStruct>& uv_et_vec = quad->side[2].GetUVPtStruct(true,1);
1631 const vector<UVPtStruct>& uv_el_vec = quad->side[3].GetUVPtStruct(false,0);
1632 const int bfrom = quad->side[0].from;
1633 const int rfrom = quad->side[1].from;
1634 const int tfrom = quad->side[2].from;
1635 const int lfrom = quad->side[3].from;
1636 if (uv_eb_vec.size() < nb + bfrom ||
1637 uv_er_vec.size() < nr + rfrom ||
1638 uv_et_vec.size() < nt + tfrom ||
1639 uv_el_vec.size() < nl + lfrom)
1640 return error(COMPERR_BAD_INPUT_MESH);
1642 const UVPtStruct * uv_eb = & uv_eb_vec[0] + bfrom;
1643 const UVPtStruct * uv_er = & uv_er_vec[0] + rfrom;
1644 const UVPtStruct * uv_et = & uv_et_vec[0] + tfrom;
1645 const UVPtStruct * uv_el = & uv_el_vec[0] + lfrom;
1647 gp_UV a0,a1,a2,a3, p0,p1,p2,p3, uv;
1650 a0 = uv_eb[ 0 ].UV();
1651 a1 = uv_er[ 0 ].UV();
1652 a2 = uv_er[ nr-1 ].UV();
1653 a3 = uv_et[ 0 ].UV();
1655 if ( !myForcedPnts.empty() )
1657 if ( dv != 0 && dh != 0 )
1659 const int dmin = Min( dv, dh );
1661 // Make a side separating domains L and Cb
1662 StdMeshers_FaceSidePtr sideLCb;
1663 UVPtStruct p3dom; // a point where 3 domains meat
1665 vector<UVPtStruct> pointsLCb( dmin+1 ); // 1--------1
1666 pointsLCb[0] = uv_eb[0]; // | | |
1667 for ( int i = 1; i <= dmin; ++i ) // | |Ct|
1669 x = uv_et[ i ].normParam; // | |__|
1670 y = uv_er[ i ].normParam; // | / |
1671 p0 = quad->side[0].grid->Value2d( x ).XY(); // | / Cb |dmin
1672 p1 = uv_er[ i ].UV(); // |/ |
1673 p2 = uv_et[ i ].UV(); // 0--------0
1674 p3 = quad->side[3].grid->Value2d( y ).XY();
1675 uv = calcUV( x,y, a0,a1,a2,a3, p0,p1,p2,p3 );
1676 pointsLCb[ i ].u = uv.X();
1677 pointsLCb[ i ].v = uv.Y();
1679 sideLCb = StdMeshers_FaceSide::New( pointsLCb, aFace );
1680 p3dom = pointsLCb.back();
1682 // Make a side separating domains L and Ct
1683 StdMeshers_FaceSidePtr sideLCt;
1685 vector<UVPtStruct> pointsLCt( nl );
1686 pointsLCt[0] = p3dom;
1687 pointsLCt.back() = uv_et[ dmin ];
1688 x = uv_et[ dmin ].normParam;
1689 p0 = quad->side[0].grid->Value2d( x ).XY();
1690 p2 = uv_et[ dmin ].UV();
1691 for ( int i = 1; i < nl; ++i )
1693 y = uv_er[ i + dmin ].normParam;
1694 p1 = uv_er[ i + dmin ].UV();
1695 p3 = quad->side[3].grid->Value2d( y ).XY();
1696 uv = calcUV( x,y, a0,a1,a2,a3, p0,p1,p2,p3 );
1697 pointsLCt[ i ].u = uv.X();
1698 pointsLCt[ i ].v = uv.Y();
1700 sideLCt = StdMeshers_FaceSide::New( pointsLCt, aFace );
1702 // Make a side separating domains Cb and Ct
1703 StdMeshers_FaceSidePtr sideCbCt;
1705 vector<UVPtStruct> pointsCbCt( nb );
1706 pointsCbCt[0] = p3dom;
1707 pointsCbCt.back() = uv_er[ dmin ];
1708 y = uv_er[ dmin ].normParam;
1709 p1 = uv_er[ dmin ].UV();
1710 p3 = quad->side[3].grid->Value2d( y ).XY();
1711 double x0 = uv_et[ dmin ].normParam;
1712 double xn = uv_et[ dmin+nb-1 ].normParam;
1713 double kx = ( 1. - x0 ) / ( xn - x0 );
1714 for ( int i = 1; i < nb-1; ++i )
1716 x = x0 + ( uv_et[ i + dmin ].normParam - x0 ) * kx;
1717 p2 = quad->side[2].grid->Value2d( x ).XY();
1718 p0 = quad->side[0].grid->Value2d( x ).XY();
1719 uv = calcUV( x,y, a0,a1,a2,a3, p0,p1,p2,p3 );
1720 pointsCbCt[ i ].u = uv.X();
1721 pointsCbCt[ i ].v = uv.Y();
1723 sideCbCt = StdMeshers_FaceSide::New( pointsCbCt, aFace );
1726 FaceQuadStruct* qCb = new FaceQuadStruct( quad->face, "Cb" );
1727 myQuadList.push_back( FaceQuadStruct::Ptr( qCb ));
1728 qCb->side.resize(4);
1729 qCb->side[0] = quad->side[0];
1730 qCb->side[1] = quad->side[1];
1731 qCb->side[2] = sideCbCt;
1732 qCb->side[3] = sideLCb;
1733 qCb->side[1].to = dmin+1;
1735 FaceQuadStruct* qL = new FaceQuadStruct( quad->face, "L" );
1736 myQuadList.push_back( FaceQuadStruct::Ptr( qL ));
1738 qL->side[0] = sideLCb;
1739 qL->side[1] = sideLCt;
1740 qL->side[2] = quad->side[2];
1741 qL->side[3] = quad->side[3];
1742 qL->side[2].to = dmin+1;
1743 // Make Ct from the main quad
1744 FaceQuadStruct::Ptr qCt = quad;
1745 qCt->side[0] = sideCbCt;
1746 qCt->side[3] = sideLCt;
1747 qCt->side[1].from = dmin;
1748 qCt->side[2].from = dmin;
1749 qCt->uv_grid.clear();
1753 qCb->side[3].AddContact( dmin, & qCb->side[2], 0 );
1754 qCb->side[3].AddContact( dmin, & qCt->side[3], 0 );
1755 qCt->side[3].AddContact( 0, & qCt->side[0], 0 );
1756 qCt->side[0].AddContact( 0, & qL ->side[0], dmin );
1757 qL ->side[0].AddContact( dmin, & qL ->side[1], 0 );
1758 qL ->side[0].AddContact( dmin, & qCb->side[2], 0 );
1761 return computeQuadDominant( aMesh, aFace );
1763 return computeQuadPref( aMesh, aFace, qCt );
1765 } // if ( dv != 0 && dh != 0 )
1779 const int lw = dh/2; // lateral width
1781 const double lL = quad->side[3].Length();
1782 const double lLwL = quad->side[2].Length( tfrom, tfrom + lw );
1783 const double yCbL = lLwL / ( lLwL + lL );
1785 const double lR = quad->side[1].Length();
1786 const double lLwR = quad->side[2].Length( tfrom + lw + nb-1,
1787 tfrom + lw + nb-1 + lw );
1788 const double yCbR = lLwR / ( lLwR + lR );
1790 // Make sides separating domains Cb and L and R
1791 StdMeshers_FaceSidePtr sideLCb, sideRCb;
1792 UVPtStruct pTBL, pTBR; // points where 3 domains meat
1794 vector<UVPtStruct> pointsLCb( lw+1 ), pointsRCb( lw+1 );
1795 pointsLCb[0] = uv_eb[ 0 ];
1796 pointsRCb[0] = uv_eb[ nb-1 ];
1797 for ( int i = 1, i2 = nt-2; i <= lw; ++i, --i2 )
1799 x = quad->side[2].Param( i );
1801 p0 = quad->side[0].Value2d( x );
1802 p1 = quad->side[1].Value2d( y );
1803 p2 = uv_et[ i ].UV();
1804 p3 = quad->side[3].Value2d( y );
1805 uv = calcUV( x,y, a0,a1,a2,a3, p0,p1,p2,p3 );
1806 pointsLCb[ i ].u = uv.X();
1807 pointsLCb[ i ].v = uv.Y();
1808 pointsLCb[ i ].x = x;
1810 x = quad->side[2].Param( i2 );
1812 p0 = quad->side[0].Value2d( x );
1813 p2 = uv_et[ i2 ].UV();
1814 uv = calcUV( x,y, a0,a1,a2,a3, p0,p1,p2,p3 );
1815 pointsRCb[ i ].u = uv.X();
1816 pointsRCb[ i ].v = uv.Y();
1817 pointsRCb[ i ].x = x;
1819 sideLCb = StdMeshers_FaceSide::New( pointsLCb, aFace );
1820 sideRCb = StdMeshers_FaceSide::New( pointsRCb, aFace );
1821 pTBL = pointsLCb.back();
1822 pTBR = pointsRCb.back();
1824 // Make sides separating domains Ct and L and R
1825 StdMeshers_FaceSidePtr sideLCt, sideRCt;
1827 vector<UVPtStruct> pointsLCt( nl ), pointsRCt( nl );
1828 pointsLCt[0] = pTBL;
1829 pointsLCt.back() = uv_et[ lw ];
1830 pointsRCt[0] = pTBR;
1831 pointsRCt.back() = uv_et[ lw + nb - 1 ];
1833 p0 = quad->side[0].Value2d( x );
1834 p2 = uv_et[ lw ].UV();
1835 int iR = lw + nb - 1;
1837 gp_UV p0R = quad->side[0].Value2d( xR );
1838 gp_UV p2R = uv_et[ iR ].UV();
1839 for ( int i = 1; i < nl-1; ++i )
1841 y = yCbL + ( 1. - yCbL ) * i / (nl-1.);
1842 p1 = quad->side[1].Value2d( y );
1843 p3 = quad->side[3].Value2d( y );
1844 uv = calcUV( x,y, a0,a1,a2,a3, p0,p1,p2,p3 );
1845 pointsLCt[ i ].u = uv.X();
1846 pointsLCt[ i ].v = uv.Y();
1848 y = yCbR + ( 1. - yCbR ) * i / (nl-1.);
1849 p1 = quad->side[1].Value2d( y );
1850 p3 = quad->side[3].Value2d( y );
1851 uv = calcUV( xR,y, a0,a1,a2,a3, p0R,p1,p2R,p3 );
1852 pointsRCt[ i ].u = uv.X();
1853 pointsRCt[ i ].v = uv.Y();
1855 sideLCt = StdMeshers_FaceSide::New( pointsLCt, aFace );
1856 sideRCt = StdMeshers_FaceSide::New( pointsRCt, aFace );
1858 // Make a side separating domains Cb and Ct
1859 StdMeshers_FaceSidePtr sideCbCt;
1861 vector<UVPtStruct> pointsCbCt( nb );
1862 pointsCbCt[0] = pTBL;
1863 pointsCbCt.back() = pTBR;
1864 p1 = quad->side[1].Value2d( yCbR );
1865 p3 = quad->side[3].Value2d( yCbL );
1866 for ( int i = 1; i < nb-1; ++i )
1868 x = quad->side[2].Param( i + lw );
1869 y = yCbL + ( yCbR - yCbL ) * i / (nb-1.);
1870 p2 = uv_et[ i + lw ].UV();
1871 p0 = quad->side[0].Value2d( x );
1872 uv = calcUV( x,y, a0,a1,a2,a3, p0,p1,p2,p3 );
1873 pointsCbCt[ i ].u = uv.X();
1874 pointsCbCt[ i ].v = uv.Y();
1876 sideCbCt = StdMeshers_FaceSide::New( pointsCbCt, aFace );
1879 FaceQuadStruct* qCb = new FaceQuadStruct( quad->face, "Cb" );
1880 myQuadList.push_back( FaceQuadStruct::Ptr( qCb ));
1881 qCb->side.resize(4);
1882 qCb->side[0] = quad->side[0];
1883 qCb->side[1] = sideRCb;
1884 qCb->side[2] = sideCbCt;
1885 qCb->side[3] = sideLCb;
1887 FaceQuadStruct* qL = new FaceQuadStruct( quad->face, "L" );
1888 myQuadList.push_back( FaceQuadStruct::Ptr( qL ));
1890 qL->side[0] = sideLCb;
1891 qL->side[1] = sideLCt;
1892 qL->side[2] = quad->side[2];
1893 qL->side[3] = quad->side[3];
1894 qL->side[2].to = lw + 1 + tfrom;
1896 FaceQuadStruct* qR = new FaceQuadStruct( quad->face, "R" );
1897 myQuadList.push_back( FaceQuadStruct::Ptr( qR ));
1899 qR->side[0] = sideRCb;
1900 qR->side[0].from = lw;
1901 qR->side[0].to = -1;
1902 qR->side[1] = quad->side[1];
1903 qR->side[2] = quad->side[2];
1904 qR->side[2].from = lw + nb-1 + tfrom;
1905 qR->side[3] = sideRCt;
1906 // Make Ct from the main quad
1907 FaceQuadStruct::Ptr qCt = quad;
1908 qCt->side[0] = sideCbCt;
1909 qCt->side[1] = sideRCt;
1910 qCt->side[2].from = lw + tfrom;
1911 qCt->side[2].to = lw + nb + tfrom;
1912 qCt->side[3] = sideLCt;
1913 qCt->uv_grid.clear();
1917 qCb->side[3].AddContact( lw, & qCb->side[2], 0 );
1918 qCb->side[3].AddContact( lw, & qCt->side[3], 0 );
1919 qCt->side[3].AddContact( 0, & qCt->side[0], 0 );
1920 qCt->side[0].AddContact( 0, & qL ->side[0], lw );
1921 qL ->side[0].AddContact( lw, & qL ->side[1], 0 );
1922 qL ->side[0].AddContact( lw, & qCb->side[2], 0 );
1924 qCb->side[1].AddContact( lw, & qCb->side[2], nb-1 );
1925 qCb->side[1].AddContact( lw, & qCt->side[1], 0 );
1926 qCt->side[0].AddContact( nb-1, & qCt->side[1], 0 );
1927 qCt->side[0].AddContact( nb-1, & qR ->side[0], lw );
1928 qR ->side[3].AddContact( 0, & qR ->side[0], lw );
1929 qR ->side[3].AddContact( 0, & qCb->side[2], nb-1 );
1931 return computeQuadDominant( aMesh, aFace );
1933 } // if ( !myForcedPnts.empty() )
1944 // arrays for normalized params
1945 TColStd_SequenceOfReal npb, npr, npt, npl;
1946 for (i=0; i<nb; i++) {
1947 npb.Append(uv_eb[i].normParam);
1949 for (i=0; i<nr; i++) {
1950 npr.Append(uv_er[i].normParam);
1952 for (i=0; i<nt; i++) {
1953 npt.Append(uv_et[i].normParam);
1955 for (i=0; i<nl; i++) {
1956 npl.Append(uv_el[i].normParam);
1961 // add some params to right and left after the first param
1964 double dpr = (npr.Value(2) - npr.Value(1))/(dr+1);
1965 for (i=1; i<=dr; i++) {
1966 npr.InsertAfter(1,npr.Value(2)-dpr);
1970 dpr = (npl.Value(2) - npl.Value(1))/(dl+1);
1971 for (i=1; i<=dl; i++) {
1972 npl.InsertAfter(1,npl.Value(2)-dpr);
1976 int nnn = Min(nr,nl);
1977 // auxilary sequence of XY for creation nodes
1978 // in the bottom part of central domain
1979 // Length of UVL and UVR must be == nbv-nnn
1980 TColgp_SequenceOfXY UVL, UVR, UVT;
1983 // step1: create faces for left domain
1984 StdMeshers_Array2OfNode NodesL(1,dl+1,1,nl);
1986 for (j=1; j<=nl; j++)
1987 NodesL.SetValue(1,j,uv_el[j-1].node);
1990 for (i=1; i<=dl; i++)
1991 NodesL.SetValue(i+1,nl,uv_et[i].node);
1992 // create and add needed nodes
1993 TColgp_SequenceOfXY UVtmp;
1994 for (i=1; i<=dl; i++) {
1995 double x0 = npt.Value(i+1);
1998 double y0 = npl.Value(i+1);
1999 double y1 = npr.Value(i+1);
2000 gp_UV UV = calcUV(x0, x1, y0, y1, quad, a0, a1, a2, a3);
2001 gp_Pnt P = S->Value(UV.X(),UV.Y());
2002 SMDS_MeshNode * N = meshDS->AddNode(P.X(), P.Y(), P.Z());
2003 meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
2004 NodesL.SetValue(i+1,1,N);
2005 if (UVL.Length()<nbv-nnn) UVL.Append(UV);
2007 for (j=2; j<nl; j++) {
2008 double y0 = npl.Value(dl+j);
2009 double y1 = npr.Value(dl+j);
2010 gp_UV UV = calcUV(x0, x1, y0, y1, quad, a0, a1, a2, a3);
2011 gp_Pnt P = S->Value(UV.X(),UV.Y());
2012 SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
2013 meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
2014 NodesL.SetValue(i+1,j,N);
2015 if (i==dl) UVtmp.Append(UV);
2018 for (i=1; i<=UVtmp.Length() && UVL.Length()<nbv-nnn; i++) {
2019 UVL.Append(UVtmp.Value(i));
2022 for (i=1; i<=dl; i++) {
2023 for (j=1; j<nl; j++) {
2026 myHelper->AddFace(NodesL.Value(i,j), NodesL.Value(i+1,j),
2027 NodesL.Value(i+1,j+1), NodesL.Value(i,j+1));
2028 if (F) meshDS->SetMeshElementOnShape(F, geomFaceID);
2034 // fill UVL using c2d
2035 for (i=1; i<npl.Length() && UVL.Length()<nbv-nnn; i++) {
2036 UVL.Append(gp_UV (uv_el[i].u, uv_el[i].v));
2040 // step2: create faces for right domain
2041 StdMeshers_Array2OfNode NodesR(1,dr+1,1,nr);
2043 for (j=1; j<=nr; j++)
2044 NodesR.SetValue(1,j,uv_er[nr-j].node);
2047 for (i=1; i<=dr; i++)
2048 NodesR.SetValue(i+1,1,uv_et[nt-1-i].node);
2049 // create and add needed nodes
2050 TColgp_SequenceOfXY UVtmp;
2051 for (i=1; i<=dr; i++) {
2052 double x0 = npt.Value(nt-i);
2055 double y0 = npl.Value(i+1);
2056 double y1 = npr.Value(i+1);
2057 gp_UV UV = calcUV(x0, x1, y0, y1, quad, a0, a1, a2, a3);
2058 gp_Pnt P = S->Value(UV.X(),UV.Y());
2059 SMDS_MeshNode * N = meshDS->AddNode(P.X(), P.Y(), P.Z());
2060 meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
2061 NodesR.SetValue(i+1,nr,N);
2062 if (UVR.Length()<nbv-nnn) UVR.Append(UV);
2064 for (j=2; j<nr; j++) {
2065 double y0 = npl.Value(nbv-j+1);
2066 double y1 = npr.Value(nbv-j+1);
2067 gp_UV UV = calcUV(x0, x1, y0, y1, quad, a0, a1, a2, a3);
2068 gp_Pnt P = S->Value(UV.X(),UV.Y());
2069 SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
2070 meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
2071 NodesR.SetValue(i+1,j,N);
2072 if (i==dr) UVtmp.Prepend(UV);
2075 for (i=1; i<=UVtmp.Length() && UVR.Length()<nbv-nnn; i++) {
2076 UVR.Append(UVtmp.Value(i));
2079 for (i=1; i<=dr; i++) {
2080 for (j=1; j<nr; j++) {
2083 myHelper->AddFace(NodesR.Value(i,j), NodesR.Value(i+1,j),
2084 NodesR.Value(i+1,j+1), NodesR.Value(i,j+1));
2085 if (F) meshDS->SetMeshElementOnShape(F, geomFaceID);
2091 // fill UVR using c2d
2092 for (i=1; i<npr.Length() && UVR.Length()<nbv-nnn; i++) {
2093 UVR.Append(gp_UV(uv_er[i].u, uv_er[i].v));
2097 // step3: create faces for central domain
2098 StdMeshers_Array2OfNode NodesC(1,nb,1,nbv);
2099 // add first line using NodesL
2100 for (i=1; i<=dl+1; i++)
2101 NodesC.SetValue(1,i,NodesL(i,1));
2102 for (i=2; i<=nl; i++)
2103 NodesC.SetValue(1,dl+i,NodesL(dl+1,i));
2104 // add last line using NodesR
2105 for (i=1; i<=dr+1; i++)
2106 NodesC.SetValue(nb,i,NodesR(i,nr));
2107 for (i=1; i<nr; i++)
2108 NodesC.SetValue(nb,dr+i+1,NodesR(dr+1,nr-i));
2109 // add top nodes (last columns)
2110 for (i=dl+2; i<nbh-dr; i++)
2111 NodesC.SetValue(i-dl,nbv,uv_et[i-1].node);
2112 // add bottom nodes (first columns)
2113 for (i=2; i<nb; i++)
2114 NodesC.SetValue(i,1,uv_eb[i-1].node);
2116 // create and add needed nodes
2117 // add linear layers
2118 for (i=2; i<nb; i++) {
2119 double x0 = npt.Value(dl+i);
2121 for (j=1; j<nnn; j++) {
2122 double y0 = npl.Value(nbv-nnn+j);
2123 double y1 = npr.Value(nbv-nnn+j);
2124 gp_UV UV = calcUV(x0, x1, y0, y1, quad, a0, a1, a2, a3);
2125 gp_Pnt P = S->Value(UV.X(),UV.Y());
2126 SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
2127 meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
2128 NodesC.SetValue(i,nbv-nnn+j,N);
2133 // add diagonal layers
2134 gp_UV A2 = UVR.Value(nbv-nnn);
2135 gp_UV A3 = UVL.Value(nbv-nnn);
2136 for (i=1; i<nbv-nnn; i++) {
2137 gp_UV p1 = UVR.Value(i);
2138 gp_UV p3 = UVL.Value(i);
2139 double y = i / double(nbv-nnn);
2140 for (j=2; j<nb; j++) {
2141 double x = npb.Value(j);
2142 gp_UV p0( uv_eb[j-1].u, uv_eb[j-1].v );
2143 gp_UV p2 = UVT.Value( j-1 );
2144 gp_UV UV = calcUV(x, y, a0, a1, A2, A3, p0,p1,p2,p3 );
2145 gp_Pnt P = S->Value(UV.X(),UV.Y());
2146 SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
2147 meshDS->SetNodeOnFace(N, geomFaceID, UV.X(),UV.Y());
2148 NodesC.SetValue(j,i+1,N);
2152 for (i=1; i<nb; i++) {
2153 for (j=1; j<nbv; j++) {
2156 myHelper->AddFace(NodesC.Value(i,j), NodesC.Value(i+1,j),
2157 NodesC.Value(i+1,j+1), NodesC.Value(i,j+1));
2158 if (F) meshDS->SetMeshElementOnShape(F, geomFaceID);
2164 else { // New version (!OldVersion)
2165 // step1: create faces for bottom rectangle domain
2166 StdMeshers_Array2OfNode NodesBRD(1,nb,1,nnn-1);
2167 // fill UVL and UVR using c2d
2168 for (j=0; j<nb; j++) {
2169 NodesBRD.SetValue(j+1,1,uv_eb[j].node);
2171 for (i=1; i<nnn-1; i++) {
2172 NodesBRD.SetValue(1,i+1,uv_el[i].node);
2173 NodesBRD.SetValue(nb,i+1,uv_er[i].node);
2174 for (j=2; j<nb; j++) {
2175 double x = npb.Value(j);
2176 double y = (1-x) * npl.Value(i+1) + x * npr.Value(i+1);
2177 gp_UV UV = calcUV2(x, y, quad, a0, a1, a2, a3);
2178 gp_Pnt P = S->Value(UV.X(),UV.Y());
2179 SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
2180 meshDS->SetNodeOnFace(N, geomFaceID, UV.X(),UV.Y());
2181 NodesBRD.SetValue(j,i+1,N);
2184 for (j=1; j<nnn-1; j++) {
2185 for (i=1; i<nb; i++) {
2188 myHelper->AddFace(NodesBRD.Value(i,j), NodesBRD.Value(i+1,j),
2189 NodesBRD.Value(i+1,j+1), NodesBRD.Value(i,j+1));
2190 if (F) meshDS->SetMeshElementOnShape(F, geomFaceID);
2194 int drl = abs(nr-nl);
2195 // create faces for region C
2196 StdMeshers_Array2OfNode NodesC(1,nb,1,drl+1+addv);
2197 // add nodes from previous region
2198 for (j=1; j<=nb; j++) {
2199 NodesC.SetValue(j,1,NodesBRD.Value(j,nnn-1));
2201 if ((drl+addv) > 0) {
2206 TColgp_SequenceOfXY UVtmp;
2207 double drparam = npr.Value(nr) - npr.Value(nnn-1);
2208 double dlparam = npl.Value(nnn) - npl.Value(nnn-1);
2210 for (i=1; i<=drl; i++) {
2211 // add existed nodes from right edge
2212 NodesC.SetValue(nb,i+1,uv_er[nnn+i-2].node);
2213 //double dtparam = npt.Value(i+1);
2214 y1 = npr.Value(nnn+i-1); // param on right edge
2215 double dpar = (y1 - npr.Value(nnn-1))/drparam;
2216 y0 = npl.Value(nnn-1) + dpar*dlparam; // param on left edge
2217 double dy = y1 - y0;
2218 for (j=1; j<nb; j++) {
2219 double x = npt.Value(i+1) + npb.Value(j)*(1-npt.Value(i+1));
2220 double y = y0 + dy*x;
2221 gp_UV UV = calcUV2(x, y, quad, a0, a1, a2, a3);
2222 gp_Pnt P = S->Value(UV.X(),UV.Y());
2223 SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
2224 meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
2225 NodesC.SetValue(j,i+1,N);
2228 double dy0 = (1-y0)/(addv+1);
2229 double dy1 = (1-y1)/(addv+1);
2230 for (i=1; i<=addv; i++) {
2231 double yy0 = y0 + dy0*i;
2232 double yy1 = y1 + dy1*i;
2233 double dyy = yy1 - yy0;
2234 for (j=1; j<=nb; j++) {
2235 double x = npt.Value(i+1+drl) +
2236 npb.Value(j) * (npt.Value(nt-i) - npt.Value(i+1+drl));
2237 double y = yy0 + dyy*x;
2238 gp_UV UV = calcUV2(x, y, quad, a0, a1, a2, a3);
2239 gp_Pnt P = S->Value(UV.X(),UV.Y());
2240 SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
2241 meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
2242 NodesC.SetValue(j,i+drl+1,N);
2249 TColgp_SequenceOfXY UVtmp;
2250 double dlparam = npl.Value(nl) - npl.Value(nnn-1);
2251 double drparam = npr.Value(nnn) - npr.Value(nnn-1);
2252 double y0 = npl.Value(nnn-1);
2253 double y1 = npr.Value(nnn-1);
2254 for (i=1; i<=drl; i++) {
2255 // add existed nodes from right edge
2256 NodesC.SetValue(1,i+1,uv_el[nnn+i-2].node);
2257 y0 = npl.Value(nnn+i-1); // param on left edge
2258 double dpar = (y0 - npl.Value(nnn-1))/dlparam;
2259 y1 = npr.Value(nnn-1) + dpar*drparam; // param on right edge
2260 double dy = y1 - y0;
2261 for (j=2; j<=nb; j++) {
2262 double x = npb.Value(j)*npt.Value(nt-i);
2263 double y = y0 + dy*x;
2264 gp_UV UV = calcUV2(x, y, quad, a0, a1, a2, a3);
2265 gp_Pnt P = S->Value(UV.X(),UV.Y());
2266 SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
2267 meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
2268 NodesC.SetValue(j,i+1,N);
2271 double dy0 = (1-y0)/(addv+1);
2272 double dy1 = (1-y1)/(addv+1);
2273 for (i=1; i<=addv; i++) {
2274 double yy0 = y0 + dy0*i;
2275 double yy1 = y1 + dy1*i;
2276 double dyy = yy1 - yy0;
2277 for (j=1; j<=nb; j++) {
2278 double x = npt.Value(i+1) +
2279 npb.Value(j) * (npt.Value(nt-i-drl) - npt.Value(i+1));
2280 double y = yy0 + dyy*x;
2281 gp_UV UV = calcUV2(x, y, quad, a0, a1, a2, a3);
2282 gp_Pnt P = S->Value(UV.X(),UV.Y());
2283 SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
2284 meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
2285 NodesC.SetValue(j,i+drl+1,N);
2290 for (j=1; j<=drl+addv; j++) {
2291 for (i=1; i<nb; i++) {
2294 myHelper->AddFace(NodesC.Value(i,j), NodesC.Value(i+1,j),
2295 NodesC.Value(i+1,j+1), NodesC.Value(i,j+1));
2296 if (F) meshDS->SetMeshElementOnShape(F, geomFaceID);
2301 StdMeshers_Array2OfNode NodesLast(1,nt,1,2);
2302 for (i=1; i<=nt; i++) {
2303 NodesLast.SetValue(i,2,uv_et[i-1].node);
2306 for (i=n1; i<drl+addv+1; i++) {
2308 NodesLast.SetValue(nnn,1,NodesC.Value(1,i));
2310 for (i=1; i<=nb; i++) {
2312 NodesLast.SetValue(nnn,1,NodesC.Value(i,drl+addv+1));
2314 for (i=drl+addv; i>=n2; i--) {
2316 NodesLast.SetValue(nnn,1,NodesC.Value(nb,i));
2318 for (i=1; i<nt; i++) {
2321 myHelper->AddFace(NodesLast.Value(i,1), NodesLast.Value(i+1,1),
2322 NodesLast.Value(i+1,2), NodesLast.Value(i,2));
2323 if (F) meshDS->SetMeshElementOnShape(F, geomFaceID);
2326 } // if ((drl+addv) > 0)
2328 } // end new version implementation
2335 //=======================================================================
2337 * Evaluate only quandrangle faces
2339 //=======================================================================
2341 bool StdMeshers_Quadrangle_2D::evaluateQuadPref(SMESH_Mesh & aMesh,
2342 const TopoDS_Shape& aShape,
2343 std::vector<int>& aNbNodes,
2344 MapShapeNbElems& aResMap,
2347 // Auxilary key in order to keep old variant
2348 // of meshing after implementation new variant
2349 // for bug 0016220 from Mantis.
2350 bool OldVersion = false;
2351 if (myQuadType == QUAD_QUADRANGLE_PREF_REVERSED)
2354 const TopoDS_Face& F = TopoDS::Face(aShape);
2355 Handle(Geom_Surface) S = BRep_Tool::Surface(F);
2357 int nb = aNbNodes[0];
2358 int nr = aNbNodes[1];
2359 int nt = aNbNodes[2];
2360 int nl = aNbNodes[3];
2361 int dh = abs(nb-nt);
2362 int dv = abs(nr-nl);
2366 // it is a base case => not shift
2369 // we have to shift on 2
2378 // we have to shift quad on 1
2385 // we have to shift quad on 3
2395 int nbh = Max(nb,nt);
2396 int nbv = Max(nr,nl);
2411 // add some params to right and left after the first param
2418 int nnn = Min(nr,nl);
2423 // step1: create faces for left domain
2425 nbNodes += dl*(nl-1);
2426 nbFaces += dl*(nl-1);
2428 // step2: create faces for right domain
2430 nbNodes += dr*(nr-1);
2431 nbFaces += dr*(nr-1);
2433 // step3: create faces for central domain
2434 nbNodes += (nb-2)*(nnn-1) + (nbv-nnn-1)*(nb-2);
2435 nbFaces += (nb-1)*(nbv-1);
2437 else { // New version (!OldVersion)
2438 nbNodes += (nnn-2)*(nb-2);
2439 nbFaces += (nnn-2)*(nb-1);
2440 int drl = abs(nr-nl);
2441 nbNodes += drl*(nb-1) + addv*nb;
2442 nbFaces += (drl+addv)*(nb-1) + (nt-1);
2443 } // end new version implementation
2445 std::vector<int> aVec(SMDSEntity_Last);
2446 for (int i=SMDSEntity_Node; i<SMDSEntity_Last; i++) aVec[i] = 0;
2448 aVec[SMDSEntity_Quad_Quadrangle] = nbFaces;
2449 aVec[SMDSEntity_Node] = nbNodes + nbFaces*4;
2450 if (aNbNodes.size()==5) {
2451 aVec[SMDSEntity_Quad_Triangle] = aNbNodes[3] - 1;
2452 aVec[SMDSEntity_Quad_Quadrangle] = nbFaces - aNbNodes[3] + 1;
2456 aVec[SMDSEntity_Node] = nbNodes;
2457 aVec[SMDSEntity_Quadrangle] = nbFaces;
2458 if (aNbNodes.size()==5) {
2459 aVec[SMDSEntity_Triangle] = aNbNodes[3] - 1;
2460 aVec[SMDSEntity_Quadrangle] = nbFaces - aNbNodes[3] + 1;
2463 SMESH_subMesh * sm = aMesh.GetSubMesh(aShape);
2464 aResMap.insert(std::make_pair(sm,aVec));
2469 //=============================================================================
2470 /*! Split quadrangle in to 2 triangles by smallest diagonal
2473 //=============================================================================
2475 void StdMeshers_Quadrangle_2D::splitQuadFace(SMESHDS_Mesh * theMeshDS,
2477 const SMDS_MeshNode* theNode1,
2478 const SMDS_MeshNode* theNode2,
2479 const SMDS_MeshNode* theNode3,
2480 const SMDS_MeshNode* theNode4)
2482 SMDS_MeshFace* face;
2483 if ( SMESH_TNodeXYZ( theNode1 ).SquareDistance( theNode3 ) >
2484 SMESH_TNodeXYZ( theNode2 ).SquareDistance( theNode4 ) )
2486 face = myHelper->AddFace(theNode2, theNode4 , theNode1);
2487 if (face) theMeshDS->SetMeshElementOnShape(face, theFaceID);
2488 face = myHelper->AddFace(theNode2, theNode3, theNode4);
2489 if (face) theMeshDS->SetMeshElementOnShape(face, theFaceID);
2493 face = myHelper->AddFace(theNode1, theNode2 ,theNode3);
2494 if (face) theMeshDS->SetMeshElementOnShape(face, theFaceID);
2495 face = myHelper->AddFace(theNode1, theNode3, theNode4);
2496 if (face) theMeshDS->SetMeshElementOnShape(face, theFaceID);
2502 enum uvPos { UV_A0, UV_A1, UV_A2, UV_A3, UV_B, UV_R, UV_T, UV_L, UV_SIZE };
2504 inline SMDS_MeshNode* makeNode( UVPtStruct & uvPt,
2506 FaceQuadStruct::Ptr& quad,
2508 SMESH_MesherHelper* helper,
2509 Handle(Geom_Surface) S)
2511 const vector<UVPtStruct>& uv_eb = quad->side[QUAD_BOTTOM_SIDE].GetUVPtStruct();
2512 const vector<UVPtStruct>& uv_et = quad->side[QUAD_TOP_SIDE ].GetUVPtStruct();
2513 double rBot = ( uv_eb.size() - 1 ) * uvPt.normParam;
2514 double rTop = ( uv_et.size() - 1 ) * uvPt.normParam;
2515 int iBot = int( rBot );
2516 int iTop = int( rTop );
2517 double xBot = uv_eb[ iBot ].normParam + ( rBot - iBot ) * ( uv_eb[ iBot+1 ].normParam - uv_eb[ iBot ].normParam );
2518 double xTop = uv_et[ iTop ].normParam + ( rTop - iTop ) * ( uv_et[ iTop+1 ].normParam - uv_et[ iTop ].normParam );
2519 double x = xBot + y * ( xTop - xBot );
2521 gp_UV uv = calcUV(/*x,y=*/x, y,
2522 /*a0,...=*/UVs[UV_A0], UVs[UV_A1], UVs[UV_A2], UVs[UV_A3],
2523 /*p0=*/quad->side[QUAD_BOTTOM_SIDE].grid->Value2d( x ).XY(),
2525 /*p2=*/quad->side[QUAD_TOP_SIDE ].grid->Value2d( x ).XY(),
2526 /*p3=*/UVs[ UV_L ]);
2527 gp_Pnt P = S->Value( uv.X(), uv.Y() );
2530 return helper->AddNode(P.X(), P.Y(), P.Z(), 0, uv.X(), uv.Y() );
2533 void reduce42( const vector<UVPtStruct>& curr_base,
2534 vector<UVPtStruct>& next_base,
2536 int & next_base_len,
2537 FaceQuadStruct::Ptr& quad,
2540 SMESH_MesherHelper* helper,
2541 Handle(Geom_Surface)& S)
2543 // add one "HH": nodes a,b,c,d,e and faces 1,2,3,4,5,6
2545 // .-----a-----b i + 1
2556 const SMDS_MeshNode*& Na = next_base[ ++next_base_len ].node;
2558 Na = makeNode( next_base[ next_base_len ], y, quad, UVs, helper, S );
2561 const SMDS_MeshNode*& Nb = next_base[ ++next_base_len ].node;
2563 Nb = makeNode( next_base[ next_base_len ], y, quad, UVs, helper, S );
2566 double u = (curr_base[j + 2].u + next_base[next_base_len - 2].u) / 2.0;
2567 double v = (curr_base[j + 2].v + next_base[next_base_len - 2].v) / 2.0;
2568 gp_Pnt P = S->Value(u,v);
2569 SMDS_MeshNode* Nc = helper->AddNode(P.X(), P.Y(), P.Z(), 0, u, v);
2572 u = (curr_base[j + 2].u + next_base[next_base_len - 1].u) / 2.0;
2573 v = (curr_base[j + 2].v + next_base[next_base_len - 1].v) / 2.0;
2575 SMDS_MeshNode* Nd = helper->AddNode(P.X(), P.Y(), P.Z(), 0, u, v);
2578 u = (curr_base[j + 2].u + next_base[next_base_len].u) / 2.0;
2579 v = (curr_base[j + 2].v + next_base[next_base_len].v) / 2.0;
2581 SMDS_MeshNode* Ne = helper->AddNode(P.X(), P.Y(), P.Z(), 0, u, v);
2584 helper->AddFace(curr_base[j + 0].node,
2585 curr_base[j + 1].node, Nc,
2586 next_base[next_base_len - 2].node);
2588 helper->AddFace(curr_base[j + 1].node,
2589 curr_base[j + 2].node, Nd, Nc);
2591 helper->AddFace(curr_base[j + 2].node,
2592 curr_base[j + 3].node, Ne, Nd);
2594 helper->AddFace(curr_base[j + 3].node,
2595 curr_base[j + 4].node, Nb, Ne);
2597 helper->AddFace(Nc, Nd, Na, next_base[next_base_len - 2].node);
2599 helper->AddFace(Nd, Ne, Nb, Na);
2602 void reduce31( const vector<UVPtStruct>& curr_base,
2603 vector<UVPtStruct>& next_base,
2605 int & next_base_len,
2606 FaceQuadStruct::Ptr& quad,
2609 SMESH_MesherHelper* helper,
2610 Handle(Geom_Surface)& S)
2612 // add one "H": nodes b,c,e and faces 1,2,4,5
2614 // .---------b i + 1
2625 const SMDS_MeshNode*& Nb = next_base[ ++next_base_len ].node;
2627 Nb = makeNode( next_base[ next_base_len ], y, quad, UVs, helper, S );
2630 double u1 = (curr_base[ j ].u + next_base[ next_base_len-1 ].u ) / 2.0;
2631 double u2 = (curr_base[ j+3 ].u + next_base[ next_base_len ].u ) / 2.0;
2632 double u3 = (u2 - u1) / 3.0;
2634 double v1 = (curr_base[ j ].v + next_base[ next_base_len-1 ].v ) / 2.0;
2635 double v2 = (curr_base[ j+3 ].v + next_base[ next_base_len ].v ) / 2.0;
2636 double v3 = (v2 - v1) / 3.0;
2640 gp_Pnt P = S->Value(u,v);
2641 SMDS_MeshNode* Nc = helper->AddNode( P.X(), P.Y(), P.Z(), 0, u, v );
2646 SMDS_MeshNode* Ne = helper->AddNode( P.X(), P.Y(), P.Z(), 0, u, v );
2650 helper->AddFace( curr_base[ j + 0 ].node,
2651 curr_base[ j + 1 ].node,
2653 next_base[ next_base_len - 1 ].node);
2655 helper->AddFace( curr_base[ j + 1 ].node,
2656 curr_base[ j + 2 ].node, Ne, Nc);
2658 helper->AddFace( curr_base[ j + 2 ].node,
2659 curr_base[ j + 3 ].node, Nb, Ne);
2661 helper->AddFace(Nc, Ne, Nb,
2662 next_base[ next_base_len - 1 ].node);
2665 typedef void (* PReduceFunction) ( const vector<UVPtStruct>& curr_base,
2666 vector<UVPtStruct>& next_base,
2668 int & next_base_len,
2669 FaceQuadStruct::Ptr & quad,
2672 SMESH_MesherHelper* helper,
2673 Handle(Geom_Surface)& S);
2677 //=======================================================================
2679 * Implementation of Reduced algorithm (meshing with quadrangles only)
2681 //=======================================================================
2683 bool StdMeshers_Quadrangle_2D::computeReduced (SMESH_Mesh & aMesh,
2684 const TopoDS_Face& aFace,
2685 FaceQuadStruct::Ptr quad)
2687 SMESHDS_Mesh * meshDS = aMesh.GetMeshDS();
2688 Handle(Geom_Surface) S = BRep_Tool::Surface(aFace);
2689 int i,j,geomFaceID = meshDS->ShapeToIndex(aFace);
2691 int nb = quad->side[0].NbPoints(); // bottom
2692 int nr = quad->side[1].NbPoints(); // right
2693 int nt = quad->side[2].NbPoints(); // top
2694 int nl = quad->side[3].NbPoints(); // left
2696 // Simple Reduce 10->8->6->4 (3 steps) Multiple Reduce 10->4 (1 step)
2698 // .-----.-----.-----.-----. .-----.-----.-----.-----.
2699 // | / \ | / \ | | / \ | / \ |
2700 // | / .--.--. \ | | / \ | / \ |
2701 // | / / | \ \ | | / .----.----. \ |
2702 // .---.---.---.---.---.---. | / / \ | / \ \ |
2703 // | / / \ | / \ \ | | / / \ | / \ \ |
2704 // | / / .-.-. \ \ | | / / .---.---. \ \ |
2705 // | / / / | \ \ \ | | / / / \ | / \ \ \ |
2706 // .--.--.--.--.--.--.--.--. | / / / \ | / \ \ \ |
2707 // | / / / \ | / \ \ \ | | / / / .-.-. \ \ \ |
2708 // | / / / .-.-. \ \ \ | | / / / / | \ \ \ \ |
2709 // | / / / / | \ \ \ \ | | / / / / | \ \ \ \ |
2710 // .-.-.-.--.--.--.--.-.-.-. .-.-.-.--.--.--.--.-.-.-.
2712 bool MultipleReduce = false;
2724 else if (nb == nt) {
2725 nr1 = nb; // and == nt
2739 // number of rows and columns
2740 int nrows = nr1 - 1;
2741 int ncol_top = nt1 - 1;
2742 int ncol_bot = nb1 - 1;
2743 // number of rows needed to reduce ncol_bot to ncol_top using simple 3->1 "tree" (see below)
2745 int( ceil( log( double(ncol_bot) / ncol_top) / log( 3.))); // = log x base 3
2746 if ( nrows < nrows_tree31 )
2748 MultipleReduce = true;
2749 error( COMPERR_WARNING,
2750 SMESH_Comment("To use 'Reduced' transition, "
2751 "number of face rows should be at least ")
2752 << nrows_tree31 << ". Actual number of face rows is " << nrows << ". "
2753 "'Quadrangle preference (reversed)' transion has been used.");
2757 if (MultipleReduce) { // == computeQuadPref QUAD_QUADRANGLE_PREF_REVERSED
2758 //==================================================
2759 int dh = abs(nb-nt);
2760 int dv = abs(nr-nl);
2764 // it is a base case => not shift quad but may be replacement is need
2768 // we have to shift quad on 2
2774 // we have to shift quad on 1
2778 // we have to shift quad on 3
2783 nb = quad->side[0].NbPoints();
2784 nr = quad->side[1].NbPoints();
2785 nt = quad->side[2].NbPoints();
2786 nl = quad->side[3].NbPoints();
2789 int nbh = Max(nb,nt);
2790 int nbv = Max(nr,nl);
2803 const vector<UVPtStruct>& uv_eb = quad->side[0].GetUVPtStruct(true,0);
2804 const vector<UVPtStruct>& uv_er = quad->side[1].GetUVPtStruct(false,1);
2805 const vector<UVPtStruct>& uv_et = quad->side[2].GetUVPtStruct(true,1);
2806 const vector<UVPtStruct>& uv_el = quad->side[3].GetUVPtStruct(false,0);
2808 if (uv_eb.size() != nb || uv_er.size() != nr || uv_et.size() != nt || uv_el.size() != nl)
2809 return error(COMPERR_BAD_INPUT_MESH);
2811 // arrays for normalized params
2812 TColStd_SequenceOfReal npb, npr, npt, npl;
2813 for (j = 0; j < nb; j++) {
2814 npb.Append(uv_eb[j].normParam);
2816 for (i = 0; i < nr; i++) {
2817 npr.Append(uv_er[i].normParam);
2819 for (j = 0; j < nt; j++) {
2820 npt.Append(uv_et[j].normParam);
2822 for (i = 0; i < nl; i++) {
2823 npl.Append(uv_el[i].normParam);
2827 // orientation of face and 3 main domain for future faces
2833 // left | | | | rigth
2840 // add some params to right and left after the first param
2843 double dpr = (npr.Value(2) - npr.Value(1))/(dr+1);
2844 for (i=1; i<=dr; i++) {
2845 npr.InsertAfter(1,npr.Value(2)-dpr);
2849 dpr = (npl.Value(2) - npl.Value(1))/(dl+1);
2850 for (i=1; i<=dl; i++) {
2851 npl.InsertAfter(1,npl.Value(2)-dpr);
2854 gp_XY a0 (uv_eb.front().u, uv_eb.front().v);
2855 gp_XY a1 (uv_eb.back().u, uv_eb.back().v);
2856 gp_XY a2 (uv_et.back().u, uv_et.back().v);
2857 gp_XY a3 (uv_et.front().u, uv_et.front().v);
2859 int nnn = Min(nr,nl);
2860 // auxilary sequence of XY for creation of nodes
2861 // in the bottom part of central domain
2862 // it's length must be == nbv-nnn-1
2863 TColgp_SequenceOfXY UVL;
2864 TColgp_SequenceOfXY UVR;
2865 //==================================================
2867 // step1: create faces for left domain
2868 StdMeshers_Array2OfNode NodesL(1,dl+1,1,nl);
2870 for (j=1; j<=nl; j++)
2871 NodesL.SetValue(1,j,uv_el[j-1].node);
2874 for (i=1; i<=dl; i++)
2875 NodesL.SetValue(i+1,nl,uv_et[i].node);
2876 // create and add needed nodes
2877 TColgp_SequenceOfXY UVtmp;
2878 for (i=1; i<=dl; i++) {
2879 double x0 = npt.Value(i+1);
2882 double y0 = npl.Value(i+1);
2883 double y1 = npr.Value(i+1);
2884 gp_UV UV = calcUV(x0, x1, y0, y1, quad, a0, a1, a2, a3);
2885 gp_Pnt P = S->Value(UV.X(),UV.Y());
2886 SMDS_MeshNode * N = meshDS->AddNode(P.X(), P.Y(), P.Z());
2887 meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
2888 NodesL.SetValue(i+1,1,N);
2889 if (UVL.Length()<nbv-nnn-1) UVL.Append(UV);
2891 for (j=2; j<nl; j++) {
2892 double y0 = npl.Value(dl+j);
2893 double y1 = npr.Value(dl+j);
2894 gp_UV UV = calcUV(x0, x1, y0, y1, quad, a0, a1, a2, a3);
2895 gp_Pnt P = S->Value(UV.X(),UV.Y());
2896 SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
2897 meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
2898 NodesL.SetValue(i+1,j,N);
2899 if (i==dl) UVtmp.Append(UV);
2902 for (i=1; i<=UVtmp.Length() && UVL.Length()<nbv-nnn-1; i++) {
2903 UVL.Append(UVtmp.Value(i));
2906 for (i=1; i<=dl; i++) {
2907 for (j=1; j<nl; j++) {
2909 myHelper->AddFace(NodesL.Value(i,j), NodesL.Value(i+1,j),
2910 NodesL.Value(i+1,j+1), NodesL.Value(i,j+1));
2911 if (F) meshDS->SetMeshElementOnShape(F, geomFaceID);
2916 // fill UVL using c2d
2917 for (i=1; i<npl.Length() && UVL.Length()<nbv-nnn-1; i++) {
2918 UVL.Append(gp_UV (uv_el[i].u, uv_el[i].v));
2922 // step2: create faces for right domain
2923 StdMeshers_Array2OfNode NodesR(1,dr+1,1,nr);
2925 for (j=1; j<=nr; j++)
2926 NodesR.SetValue(1,j,uv_er[nr-j].node);
2929 for (i=1; i<=dr; i++)
2930 NodesR.SetValue(i+1,1,uv_et[nt-1-i].node);
2931 // create and add needed nodes
2932 TColgp_SequenceOfXY UVtmp;
2933 for (i=1; i<=dr; i++) {
2934 double x0 = npt.Value(nt-i);
2937 double y0 = npl.Value(i+1);
2938 double y1 = npr.Value(i+1);
2939 gp_UV UV = calcUV(x0, x1, y0, y1, quad, a0, a1, a2, a3);
2940 gp_Pnt P = S->Value(UV.X(),UV.Y());
2941 SMDS_MeshNode * N = meshDS->AddNode(P.X(), P.Y(), P.Z());
2942 meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
2943 NodesR.SetValue(i+1,nr,N);
2944 if (UVR.Length()<nbv-nnn-1) UVR.Append(UV);
2946 for (j=2; j<nr; j++) {
2947 double y0 = npl.Value(nbv-j+1);
2948 double y1 = npr.Value(nbv-j+1);
2949 gp_UV UV = calcUV(x0, x1, y0, y1, quad, a0, a1, a2, a3);
2950 gp_Pnt P = S->Value(UV.X(),UV.Y());
2951 SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
2952 meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
2953 NodesR.SetValue(i+1,j,N);
2954 if (i==dr) UVtmp.Prepend(UV);
2957 for (i=1; i<=UVtmp.Length() && UVR.Length()<nbv-nnn-1; i++) {
2958 UVR.Append(UVtmp.Value(i));
2961 for (i=1; i<=dr; i++) {
2962 for (j=1; j<nr; j++) {
2964 myHelper->AddFace(NodesR.Value(i,j), NodesR.Value(i+1,j),
2965 NodesR.Value(i+1,j+1), NodesR.Value(i,j+1));
2966 if (F) meshDS->SetMeshElementOnShape(F, geomFaceID);
2971 // fill UVR using c2d
2972 for (i=1; i<npr.Length() && UVR.Length()<nbv-nnn-1; i++) {
2973 UVR.Append(gp_UV(uv_er[i].u, uv_er[i].v));
2977 // step3: create faces for central domain
2978 StdMeshers_Array2OfNode NodesC(1,nb,1,nbv);
2979 // add first line using NodesL
2980 for (i=1; i<=dl+1; i++)
2981 NodesC.SetValue(1,i,NodesL(i,1));
2982 for (i=2; i<=nl; i++)
2983 NodesC.SetValue(1,dl+i,NodesL(dl+1,i));
2984 // add last line using NodesR
2985 for (i=1; i<=dr+1; i++)
2986 NodesC.SetValue(nb,i,NodesR(i,nr));
2987 for (i=1; i<nr; i++)
2988 NodesC.SetValue(nb,dr+i+1,NodesR(dr+1,nr-i));
2989 // add top nodes (last columns)
2990 for (i=dl+2; i<nbh-dr; i++)
2991 NodesC.SetValue(i-dl,nbv,uv_et[i-1].node);
2992 // add bottom nodes (first columns)
2993 for (i=2; i<nb; i++)
2994 NodesC.SetValue(i,1,uv_eb[i-1].node);
2996 // create and add needed nodes
2997 // add linear layers
2998 for (i=2; i<nb; i++) {
2999 double x0 = npt.Value(dl+i);
3001 for (j=1; j<nnn; j++) {
3002 double y0 = npl.Value(nbv-nnn+j);
3003 double y1 = npr.Value(nbv-nnn+j);
3004 gp_UV UV = calcUV(x0, x1, y0, y1, quad, a0, a1, a2, a3);
3005 gp_Pnt P = S->Value(UV.X(),UV.Y());
3006 SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
3007 meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
3008 NodesC.SetValue(i,nbv-nnn+j,N);
3011 // add diagonal layers
3012 for (i=1; i<nbv-nnn; i++) {
3013 double du = UVR.Value(i).X() - UVL.Value(i).X();
3014 double dv = UVR.Value(i).Y() - UVL.Value(i).Y();
3015 for (j=2; j<nb; j++) {
3016 double u = UVL.Value(i).X() + du*npb.Value(j);
3017 double v = UVL.Value(i).Y() + dv*npb.Value(j);
3018 gp_Pnt P = S->Value(u,v);
3019 SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
3020 meshDS->SetNodeOnFace(N, geomFaceID, u, v);
3021 NodesC.SetValue(j,i+1,N);
3025 for (i=1; i<nb; i++) {
3026 for (j=1; j<nbv; j++) {
3028 myHelper->AddFace(NodesC.Value(i,j), NodesC.Value(i+1,j),
3029 NodesC.Value(i+1,j+1), NodesC.Value(i,j+1));
3030 if (F) meshDS->SetMeshElementOnShape(F, geomFaceID);
3033 } // end Multiple Reduce implementation
3034 else { // Simple Reduce (!MultipleReduce)
3035 //=========================================================
3038 // it is a base case => not shift quad
3039 //shiftQuad(quad,0,true);
3042 // we have to shift quad on 2
3048 // we have to shift quad on 1
3052 // we have to shift quad on 3
3057 nb = quad->side[0].NbPoints();
3058 nr = quad->side[1].NbPoints();
3059 nt = quad->side[2].NbPoints();
3060 nl = quad->side[3].NbPoints();
3062 // number of rows and columns
3063 int nrows = nr - 1; // and also == nl - 1
3064 int ncol_top = nt - 1;
3065 int ncol_bot = nb - 1;
3066 int npair_top = ncol_top / 2;
3067 // maximum number of bottom elements for "linear" simple reduce 4->2
3068 int max_lin42 = ncol_top + npair_top * 2 * nrows;
3069 // maximum number of bottom elements for "linear" simple reduce 3->1
3070 int max_lin31 = ncol_top + ncol_top * 2 * nrows;
3071 // maximum number of bottom elements for "tree" simple reduce 4->2
3073 // number of rows needed to reduce ncol_bot to ncol_top using simple 4->2 "tree"
3074 int nrows_tree42 = int( log( (double)(ncol_bot / ncol_top) )/log((double)2) ); // needed to avoid overflow at pow(2) while computing max_tree42
3075 if (nrows_tree42 < nrows) {
3076 max_tree42 = npair_top * pow(2.0, nrows + 1);
3077 if ( ncol_top > npair_top * 2 ) {
3078 int delta = ncol_bot - max_tree42;
3079 for (int irow = 1; irow < nrows; irow++) {
3080 int nfour = delta / 4;
3083 if (delta <= (ncol_top - npair_top * 2))
3084 max_tree42 = ncol_bot;
3087 // maximum number of bottom elements for "tree" simple reduce 3->1
3088 //int max_tree31 = ncol_top * pow(3.0, nrows);
3089 bool is_lin_31 = false;
3090 bool is_lin_42 = false;
3091 bool is_tree_31 = false;
3092 bool is_tree_42 = false;
3093 int max_lin = max_lin42;
3094 if (ncol_bot > max_lin42) {
3095 if (ncol_bot <= max_lin31) {
3097 max_lin = max_lin31;
3101 // if ncol_bot is a 3*n or not 2*n
3102 if ((ncol_bot/3)*3 == ncol_bot || (ncol_bot/2)*2 != ncol_bot) {
3104 max_lin = max_lin31;
3110 if (ncol_bot > max_lin) { // not "linear"
3111 is_tree_31 = (ncol_bot > max_tree42);
3112 if (ncol_bot <= max_tree42) {
3113 if ((ncol_bot/3)*3 == ncol_bot || (ncol_bot/2)*2 != ncol_bot) {
3122 const vector<UVPtStruct>& uv_eb = quad->side[0].GetUVPtStruct(true,0);
3123 const vector<UVPtStruct>& uv_er = quad->side[1].GetUVPtStruct(false,1);
3124 const vector<UVPtStruct>& uv_et = quad->side[2].GetUVPtStruct(true,1);
3125 const vector<UVPtStruct>& uv_el = quad->side[3].GetUVPtStruct(false,0);
3127 if (uv_eb.size() != nb || uv_er.size() != nr || uv_et.size() != nt || uv_el.size() != nl)
3128 return error(COMPERR_BAD_INPUT_MESH);
3130 myHelper->SetElementsOnShape( true );
3132 gp_UV uv[ UV_SIZE ];
3133 uv[ UV_A0 ].SetCoord( uv_eb.front().u, uv_eb.front().v);
3134 uv[ UV_A1 ].SetCoord( uv_eb.back().u, uv_eb.back().v );
3135 uv[ UV_A2 ].SetCoord( uv_et.back().u, uv_et.back().v );
3136 uv[ UV_A3 ].SetCoord( uv_et.front().u, uv_et.front().v);
3138 vector<UVPtStruct> curr_base = uv_eb, next_base;
3140 UVPtStruct nullUVPtStruct; nullUVPtStruct.node = 0;
3142 int curr_base_len = nb;
3143 int next_base_len = 0;
3146 { // ------------------------------------------------------------------
3147 // New algorithm implemented by request of IPAL22856
3148 // "2D quadrangle mesher of reduced type works wrong"
3149 // http://bugtracker.opencascade.com/show_bug.cgi?id=22856
3151 // the algorithm is following: all reduces are centred in horizontal
3152 // direction and are distributed among all rows
3154 if (ncol_bot > max_tree42) {
3158 if ((ncol_top/3)*3 == ncol_top ) {
3166 const int col_top_size = is_lin_42 ? 2 : 1;
3167 const int col_base_size = is_lin_42 ? 4 : 3;
3169 // Compute nb of "columns" (like in "linear" simple reducing) in all rows
3171 vector<int> nb_col_by_row;
3173 int delta_all = nb - nt;
3174 int delta_one_col = nrows * 2;
3175 int nb_col = delta_all / delta_one_col;
3176 int remainder = delta_all - nb_col * delta_one_col;
3177 if (remainder > 0) {
3180 if ( nb_col * col_top_size >= nt ) // == "tree" reducing situation
3182 // top row is full (all elements reduced), add "columns" one by one
3183 // in rows below until all bottom elements are reduced
3184 nb_col = ( nt - 1 ) / col_top_size;
3185 nb_col_by_row.resize( nrows, nb_col );
3186 int nbrows_not_full = nrows - 1;
3187 int cur_top_size = nt - 1;
3188 remainder = delta_all - nb_col * delta_one_col;
3189 while ( remainder > 0 )
3191 delta_one_col = nbrows_not_full * 2;
3192 int nb_col_add = remainder / delta_one_col;
3193 cur_top_size += 2 * nb_col_by_row[ nbrows_not_full ];
3194 int nb_col_free = cur_top_size / col_top_size - nb_col_by_row[ nbrows_not_full-1 ];
3195 if ( nb_col_add > nb_col_free )
3196 nb_col_add = nb_col_free;
3197 for ( int irow = 0; irow < nbrows_not_full; ++irow )
3198 nb_col_by_row[ irow ] += nb_col_add;
3200 remainder -= nb_col_add * delta_one_col;
3203 else // == "linear" reducing situation
3205 nb_col_by_row.resize( nrows, nb_col );
3207 for ( int irow = remainder / 2; irow < nrows; ++irow )
3208 nb_col_by_row[ irow ]--;
3213 PReduceFunction reduceFunction = & ( is_lin_42 ? reduce42 : reduce31 );
3215 const int reduce_grp_size = is_lin_42 ? 4 : 3;
3217 for (i = 1; i < nr; i++) // layer by layer
3219 nb_col = nb_col_by_row[ i-1 ];
3220 int nb_next = curr_base_len - nb_col * 2;
3221 if (nb_next < nt) nb_next = nt;
3223 const double y = uv_el[ i ].normParam;
3225 if ( i + 1 == nr ) // top
3232 next_base.resize( nb_next, nullUVPtStruct );
3233 next_base.front() = uv_el[i];
3234 next_base.back() = uv_er[i];
3236 // compute normalized param u
3237 double du = 1. / ( nb_next - 1 );
3238 next_base[0].normParam = 0.;
3239 for ( j = 1; j < nb_next; ++j )
3240 next_base[j].normParam = next_base[j-1].normParam + du;
3242 uv[ UV_L ].SetCoord( next_base.front().u, next_base.front().v );
3243 uv[ UV_R ].SetCoord( next_base.back().u, next_base.back().v );
3245 int free_left = ( curr_base_len - 1 - nb_col * col_base_size ) / 2;
3246 int free_middle = curr_base_len - 1 - nb_col * col_base_size - 2 * free_left;
3248 // not reduced left elements
3249 for (j = 0; j < free_left; j++)
3252 const SMDS_MeshNode*& Nf = next_base[++next_base_len].node;
3254 Nf = makeNode( next_base[ next_base_len ], y, quad, uv, myHelper, S );
3256 myHelper->AddFace(curr_base[ j ].node,
3257 curr_base[ j+1 ].node,
3259 next_base[ next_base_len-1 ].node);
3262 for (int icol = 1; icol <= nb_col; icol++)
3265 reduceFunction( curr_base, next_base, j, next_base_len, quad, uv, y, myHelper, S );
3267 j += reduce_grp_size;
3269 // elements in the middle of "columns" added for symmetry
3270 if ( free_middle > 0 && ( nb_col % 2 == 0 ) && icol == nb_col / 2 )
3272 for (int imiddle = 1; imiddle <= free_middle; imiddle++) {
3273 // f (i + 1, j + imiddle)
3274 const SMDS_MeshNode*& Nf = next_base[++next_base_len].node;
3276 Nf = makeNode( next_base[ next_base_len ], y, quad, uv, myHelper, S );
3278 myHelper->AddFace(curr_base[ j-1+imiddle ].node,
3279 curr_base[ j +imiddle ].node,
3281 next_base[ next_base_len-1 ].node);
3287 // not reduced right elements
3288 for (; j < curr_base_len-1; j++) {
3290 const SMDS_MeshNode*& Nf = next_base[++next_base_len].node;
3292 Nf = makeNode( next_base[ next_base_len ], y, quad, uv, myHelper, S );
3294 myHelper->AddFace(curr_base[ j ].node,
3295 curr_base[ j+1 ].node,
3297 next_base[ next_base_len-1 ].node);
3300 curr_base_len = next_base_len + 1;
3302 curr_base.swap( next_base );
3306 else if ( is_tree_42 || is_tree_31 )
3308 // "tree" simple reduce "42": 2->4->8->16->32->...
3310 // .-------------------------------.-------------------------------. nr
3312 // | \ .---------------.---------------. / |
3314 // .---------------.---------------.---------------.---------------.
3315 // | \ | / | \ | / |
3316 // | \ .-------.-------. / | \ .-------.-------. / |
3317 // | | | | | | | | |
3318 // .-------.-------.-------.-------.-------.-------.-------.-------. i
3319 // |\ | /|\ | /|\ | /|\ | /|
3320 // | \.---.---./ | \.---.---./ | \.---.---./ | \.---.---./ |
3321 // | | | | | | | | | | | | | | | | |
3322 // .---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.
3323 // |\ | /|\ | /|\ | /|\ | /|\ | /|\ | /|\ | /|\ | /|