Salome HOME
6fd23f521dd909670da7f9cb9689a3675b682eba
[modules/smesh.git] / doc / salome / gui / SMESH / input / 1d_meshing_hypo.doc
1 /*!
2
3 \page a1d_meshing_hypo_page 1D Meshing Hypotheses
4
5 <br>
6 <ul>
7 <li>\ref arithmetic_1d_anchor "Arithmetic 1D"</li>
8 <li>\ref average_length_anchor "Average Length"</li>
9 <li>\ref deflection_1d_anchor "Deflection 1D"</li>
10 <li>\ref number_of_segments_anchor "Number of segments"</li>
11 <li>\ref start_and_end_length_anchor "Start and end length"</li>
12 <li>\ref automatic_length_anchor "Automatic Length"</li>
13 </ul>
14
15 <br>
16 \anchor arithmetic_1d_anchor
17 <h2>Arithmetic 1D hypothesis</h2>
18
19 <b>Arithmetic 1D</b> hypothesis allows to split edges into segments with a
20 length that changes in arithmetic progression (Lk = Lk-1 + d)
21 beginning from a given starting length and up to a given end length.
22
23 \image html a-arithmetic1d.png
24
25 \image html b-ithmetic1d.png
26
27 <b>See Also</b> a sample TUI Script of a 
28 \ref tui_1d_arithmetic "Defining Arithmetic 1D hypothesis" operation.  
29
30 <br>
31 \anchor deflection_1d_anchor
32 <h2>Deflection 1D hypothesis</h2>
33
34 <b>Deflection 1D</b> hypothesis can be applied for meshing curvilinear edges
35 composing your geometrical object. It uses only one parameter: the
36 value of deflection.  
37 \n A geometrical edge is divided into equal segments. The maximum
38 distance between a point on the edge within a segment and the line
39 connecting the ends of the segment should not exceed the specified
40 value of deflection . Then mesh nodes are constructed at end segment
41 locations and 1D mesh elements are constructed on segments.
42
43 \image html a-deflection1d.png
44
45 \image html b-flection1d.png
46
47 <b>See Also</b> a sample TUI Script of a 
48 \ref tui_deflection_1d "Defining Deflection 1D hypothesis" operation.
49
50 <br>
51 \anchor average_length_anchor
52 <h2>Average Length hypothesis</h2>
53
54 <b>Average Length</b> hypothesis can be applied for meshing of edges
55 composing your geometrical object. Definition of this hypothesis
56 consists of setting the \b length of segments, which will split these
57 edges. The points on the edges generated by these segments will
58 represent nodes of your mesh. Later these nodes will be used for
59 meshing of the faces abutting to these edges.
60
61 \image html image41.gif
62
63 \image html a-averagelength.png
64
65 \image html b-erage_length.png
66
67 <b>See Also</b> a sample TUI Script of a 
68 \ref tui_average_length "Defining Average Length" hypothesis
69 operation.
70
71 <br>
72 \anchor number_of_segments_anchor
73 <h2>Number of segments hypothesis</h2>
74
75 <b>Number of segments</b> hypothesis can be applied for meshing of edges
76 composing your geometrical object. Definition of this hypothesis
77 consists of setting the number of segments, which will split these
78 edges. In other words your edges will be split into a definite number
79 of segments with approximately the same length. The points on the
80 edges generated by these segments will represent nodes of your
81 mesh. Later these nodes will be used for meshing of the faces abutting
82 to these edges.
83
84 \image html image46.gif
85
86 You can set the type of distribution for this hypothesis in the
87 <b>Hypothesis Construction</b> dialog bog :
88
89 \image html a-nbsegments1.png
90
91 <br><b>Equidistant Distribution</b> - all segments will have the same
92 length, you define only the <b>Number of Segments</b>.
93
94 \image html b-mberofsegments.png
95
96 <br><b>Scale Distribution</b> - each next segment differs from the
97 previous according to the formula: <b>A</b>i+1 = <b>A</b>i * k, where \b k is a
98 <b>Scale Factor</b>.
99
100 \image html a-nbsegments2.png
101
102 <br><b>Distribution with Table Density</b> - you input a number of
103 pairs <b>t - F(t)</b>, where \b t ranges from 0 to 1,  and the module computes the
104 formula, which will rule the change of length of segments and shows
105 the curve in the plot. You can select the <b>Conversion mode</b> from
106 \b Exponent and <b>Cut negative</b>.
107
108 \image html distributionwithtabledensity.png
109
110 <br><b>Distribution with Analytic Density</b> - you input the formula,
111 which will rule the change of length of segments and the module shows
112 the curve in the plot.
113
114 \image html distributionwithanalyticdensity.png
115
116 <b>See Also</b> a sample TUI Script of a 
117 \ref tui_deflection_1d "Defining Number of Segments" hypothesis
118 operation.
119
120 <br>
121 \anchor start_and_end_length_anchor
122 <h2>Start and End Length hypothesis</h2>
123
124 <b>Start and End Length</b> hypothesis allows to divide a geometrical edge
125 into segments so that the first and the last segments have a specified
126 length. The length of each but the first segment differs from length
127 of the previous one by a constant factor. Then mesh nodes are
128 constructed at segment ends location and 1D mesh elements are
129 constructed on them.
130
131 \image html a-startendlength.png
132
133 \image html b-art_end_length.png
134
135 <b>See Also</b> a sample TUI Script of a 
136 \ref tui_start_and_end_length "Defining Start and End Length"
137 hypothesis operation.
138
139 <br>
140 \anchor automatic_length_anchor
141 <h2>Automatic Length</h2>
142
143 This hypothesis is automatically applied when you select <b>Assign a
144 set of hypotheses</b> option in Create Mesh menu.
145
146 \image html automaticlength.png
147
148 The dialog box prompts you to define the quality of the future mesh by
149 only one parameter, which is \b Fineness, ranging from 0 (coarse mesh,
150 low number of elements) to 1 (extremely fine mesh, great number of
151 elements). Compare one and the same object (sphere) meshed with
152 minimum and maximum value of this parameter.
153
154 \image html image147.gif
155
156 \image html image148.gif
157
158 */