nodeUVs[1] = _triaDS->GetNode( nodeIDs[1] ).Coord();
nodeUVs[2] = _triaDS->GetNode( nodeIDs[2] ).Coord();
- if ( _triaDS->GetNode( nodeIDs[0] ).Movability() == BRepMesh_Frontier &&
- _triaDS->GetNode( nodeIDs[1] ).Movability() == BRepMesh_Frontier &&
- _triaDS->GetNode( nodeIDs[2] ).Movability() == BRepMesh_Frontier )
+ SMESH_MeshAlgos::GetBarycentricCoords( uv,
+ nodeUVs[0], nodeUVs[1], nodeUVs[2],
+ bc[0], bc[1] );
+ if ( bc[0] >= 0 && bc[1] >= 0 && bc[0] + bc[1] <= 1 )
{
- SMESH_MeshAlgos::GetBarycentricCoords( uv,
- nodeUVs[0], nodeUVs[1], nodeUVs[2],
- bc[0], bc[1] );
- if ( bc[0] >= 0 && bc[1] >= 0 && bc[0] + bc[1] <= 1 )
+ if ( _triaDS->GetNode( nodeIDs[0] ).Movability() != BRepMesh_Frontier ||
+ _triaDS->GetNode( nodeIDs[1] ).Movability() != BRepMesh_Frontier ||
+ _triaDS->GetNode( nodeIDs[2] ).Movability() != BRepMesh_Frontier )
{
- bc[2] = 1 - bc[0] - bc[1];
- triaNodes[0] = nodeIDs[0] - 1;
- triaNodes[1] = nodeIDs[1] - 1;
- triaNodes[2] = nodeIDs[2] - 1;
- return tria;
+ return 0;
}
+ bc[2] = 1 - bc[0] - bc[1];
+ triaNodes[0] = nodeIDs[0] - 1;
+ triaNodes[1] = nodeIDs[1] - 1;
+ triaNodes[2] = nodeIDs[2] - 1;
+ return tria;
}
// look for a neighbor triangle, which is adjacent to a link intersected
sweeper.myBndColumns.push_back( & u2colIt->second );
}
// load node columns inside the bottom FACE
- TNode2ColumnMap::iterator bot_column = myBotToColumnMap.begin();
sweeper.myIntColumns.reserve( myBotToColumnMap.size() );
+ TNode2ColumnMap::iterator bot_column = myBotToColumnMap.begin();
for ( ; bot_column != myBotToColumnMap.end(); ++bot_column )
sweeper.myIntColumns.push_back( & bot_column->second );
// column nodes; middle part of the column are zero pointers
TNodeColumn& column = bot_column->second;
+ // check if a column is already computed using non-block approach
+ size_t i;
+ for ( i = 0; i < column.size(); ++i )
+ if ( !column[ i ])
+ break;
+ if ( i == column.size() )
+ continue; // all nodes created
+
gp_XYZ botParams, topParams;
if ( !tBotNode.HasParams() )
{
TNode2ColumnMap::iterator bN_col =
myBotToColumnMap.insert( make_pair ( bN, TNodeColumn() )).first;
TNodeColumn & column = bN_col->second;
- column.resize( zSize );
+ column.resize( zSize, 0 );
column.front() = botNode;
column.back() = topNode;
}
// for each internal column find boundary nodes whose error to use for correction
prepareTopBotDelaunay();
- if ( !findDelaunayTriangles())
- return false;
+ bool isErrorCorrectable = findDelaunayTriangles();
// compute coordinates of internal nodes by projecting (transfroming) src and tgt
// nodes towards the central layer
fromSrcBndPnts.swap( toSrcBndPnts );
}
+ // Evaluate an error of boundary points
+
+ if ( !isErrorCorrectable && !allowHighBndError )
+ {
+ for ( size_t iP = 0; iP < myBndColumns.size(); ++iP )
+ {
+ double sumError = 0;
+ for ( size_t z = 1; z < zS; ++z ) // loop on layers
+ sumError += ( bndError[ z-1 ][ iP ].Modulus() +
+ bndError[ zSize-z ][ iP ].Modulus() );
+
+ if ( sumError > tol )
+ return false;
+ }
+ }
+
// Compute two projections of internal points to the central layer
// in order to evaluate an error of internal points
}
}
- //centerIntErrorIsSmall = true; // 3D_mesh_Extrusion_00/A3
if ( !centerIntErrorIsSmall )
{
// Compensate the central error; continue adding projection
return false;
// create nodes along a line
- SMESH_NodeXYZ botP( botNode ), topP( topNode);
+ SMESH_NodeXYZ botP( botNode ), topP( topNode );
for ( size_t iZ = 0; iZ < myZColumns[0].size(); ++iZ )
{
// use barycentric coordinates as weight of Z of boundary columns
}
if ( myBotDelaunay->NbVisitedNodes() < nbInternalNodes )
+ {
+ myTopBotTriangles.clear();
return false;
+ }
myBotDelaunay.reset();
myTopDelaunay.reset();