#include "SMESH_Algo.hxx"
#include "SMESH_ControlsDef.hxx"
#include "SMESH_Group.hxx"
+#include "SMESH_MeshAlgos.hxx"
#include "SMESH_MesherHelper.hxx"
#include "SMESH_OctreeNode.hxx"
#include "SMESH_subMesh.hxx"
#include <Extrema_GenExtPS.hxx>
#include <Extrema_POnCurv.hxx>
#include <Extrema_POnSurf.hxx>
-#include <GC_MakeSegment.hxx>
#include <Geom2d_Curve.hxx>
-#include <GeomAPI_ExtremaCurveCurve.hxx>
#include <GeomAdaptor_Surface.hxx>
#include <Geom_Curve.hxx>
-#include <Geom_Line.hxx>
#include <Geom_Surface.hxx>
-#include <IntAna_IntConicQuad.hxx>
-#include <IntAna_Quadric.hxx>
#include <Precision.hxx>
#include <TColStd_ListOfInteger.hxx>
#include <TopAbs_State.hxx>
else e = mesh->AddFace (node[0], node[1], node[2], node[3],
node[4], node[5] );
}
+ else if (nbnode == 7) {
+ if ( ID >= 1 ) e = mesh->AddFaceWithID(node[0], node[1], node[2], node[3],
+ node[4], node[5], node[6], ID);
+ else e = mesh->AddFace (node[0], node[1], node[2], node[3],
+ node[4], node[5], node[6] );
+ }
else if (nbnode == 8) {
if ( ID >= 1 ) e = mesh->AddFaceWithID(node[0], node[1], node[2], node[3],
node[4], node[5], node[6], node[7], ID);
}
//=======================================================================
-//function : ShiftNodesQuadTria
-//purpose : auxilary
-// Shift nodes in the array corresponded to quadratic triangle
+//function : shiftNodesQuadTria
+//purpose : Shift nodes in the array corresponded to quadratic triangle
// example: (0,1,2,3,4,5) -> (1,2,0,4,5,3)
//=======================================================================
-static void ShiftNodesQuadTria(const SMDS_MeshNode* aNodes[])
+
+static void shiftNodesQuadTria(vector< const SMDS_MeshNode* >& aNodes)
{
const SMDS_MeshNode* nd1 = aNodes[0];
aNodes[0] = aNodes[1];
}
//=======================================================================
-//function : edgeConnectivity
-//purpose : auxilary
-// return number of the edges connected with the theNode.
+//function : nbEdgeConnectivity
+//purpose : return number of the edges connected with the theNode.
// if theEdges has connections with the other type of the
// elements, return -1
//=======================================================================
+
static int nbEdgeConnectivity(const SMDS_MeshNode* theNode)
{
- SMDS_ElemIteratorPtr elemIt = theNode->GetInverseElementIterator();
- int nb=0;
- while(elemIt->more()) {
- elemIt->next();
- nb++;
- }
- return nb;
+ // SMDS_ElemIteratorPtr elemIt = theNode->GetInverseElementIterator();
+ // int nb=0;
+ // while(elemIt->more()) {
+ // elemIt->next();
+ // nb++;
+ // }
+ // return nb;
+ return theNode->NbInverseElements();
}
-
//=======================================================================
-//function : GetNodesFromTwoTria
-//purpose : auxilary
-// Shift nodes in the array corresponded to quadratic triangle
-// example: (0,1,2,3,4,5) -> (1,2,0,4,5,3)
+//function : getNodesFromTwoTria
+//purpose :
//=======================================================================
-static bool GetNodesFromTwoTria(const SMDS_MeshElement * theTria1,
+
+static bool getNodesFromTwoTria(const SMDS_MeshElement * theTria1,
const SMDS_MeshElement * theTria2,
- const SMDS_MeshNode* N1[],
- const SMDS_MeshNode* N2[])
+ vector< const SMDS_MeshNode*>& N1,
+ vector< const SMDS_MeshNode*>& N2)
{
- SMDS_ElemIteratorPtr it = theTria1->nodesIterator();
- int i=0;
- while(i<6) {
- N1[i] = static_cast<const SMDS_MeshNode*>( it->next() );
- i++;
- }
- if(it->more()) return false;
- it = theTria2->nodesIterator();
- i=0;
- while(i<6) {
- N2[i] = static_cast<const SMDS_MeshNode*>( it->next() );
- i++;
- }
- if(it->more()) return false;
+ N1.assign( theTria1->begin_nodes(), theTria1->end_nodes() );
+ if ( N1.size() < 6 ) return false;
+ N2.assign( theTria2->begin_nodes(), theTria2->end_nodes() );
+ if ( N2.size() < 6 ) return false;
int sames[3] = {-1,-1,-1};
int nbsames = 0;
- int j;
+ int i, j;
for(i=0; i<3; i++) {
for(j=0; j<3; j++) {
if(N1[i]==N2[j]) {
}
if(nbsames!=2) return false;
if(sames[0]>-1) {
- ShiftNodesQuadTria(N1);
+ shiftNodesQuadTria(N1);
if(sames[1]>-1) {
- ShiftNodesQuadTria(N1);
+ shiftNodesQuadTria(N1);
}
}
i = sames[0] + sames[1] + sames[2];
for(; i<2; i++) {
- ShiftNodesQuadTria(N2);
+ shiftNodesQuadTria(N2);
}
- // now we receive following N1 and N2 (using numeration as above image)
+ // now we receive following N1 and N2 (using numeration as in the image below)
// tria1 : (1 2 4 5 9 7) and tria2 : (3 4 2 8 9 6)
- // i.e. first nodes from both arrays determ new diagonal
+ // i.e. first nodes from both arrays form a new diagonal
return true;
}
} // end if(F1 && F2)
// check case of quadratic faces
- if (theTria1->GetEntityType() != SMDSEntity_Quad_Triangle)
+ if (theTria1->GetEntityType() != SMDSEntity_Quad_Triangle &&
+ theTria1->GetEntityType() != SMDSEntity_BiQuad_Triangle)
return false;
- if (theTria2->GetEntityType() != SMDSEntity_Quad_Triangle)
+ if (theTria2->GetEntityType() != SMDSEntity_Quad_Triangle&&
+ theTria2->GetEntityType() != SMDSEntity_BiQuad_Triangle)
return false;
// 5
// 4 +--+--+ 3
// 8
- const SMDS_MeshNode* N1 [6];
- const SMDS_MeshNode* N2 [6];
- if(!GetNodesFromTwoTria(theTria1,theTria2,N1,N2))
+ vector< const SMDS_MeshNode* > N1;
+ vector< const SMDS_MeshNode* > N2;
+ if(!getNodesFromTwoTria(theTria1,theTria2,N1,N2))
return false;
// now we receive following N1 and N2 (using numeration as above image)
// tria1 : (1 2 4 5 9 7) and tria2 : (3 4 2 8 9 6)
// i.e. first nodes from both arrays determ new diagonal
- const SMDS_MeshNode* N1new [6];
- const SMDS_MeshNode* N2new [6];
- N1new[0] = N1[0];
- N1new[1] = N2[0];
- N1new[2] = N2[1];
- N1new[3] = N1[4];
- N1new[4] = N2[3];
- N1new[5] = N1[5];
- N2new[0] = N1[0];
- N2new[1] = N1[1];
- N2new[2] = N2[0];
- N2new[3] = N1[3];
- N2new[4] = N2[5];
- N2new[5] = N1[4];
- // replaces nodes in faces
- GetMeshDS()->ChangeElementNodes( theTria1, N1new, 6 );
- GetMeshDS()->ChangeElementNodes( theTria2, N2new, 6 );
-
+ vector< const SMDS_MeshNode*> N1new( N1.size() );
+ vector< const SMDS_MeshNode*> N2new( N2.size() );
+ N1new.back() = N1.back(); // central node of biquadratic
+ N2new.back() = N2.back();
+ N1new[0] = N1[0]; N2new[0] = N1[0];
+ N1new[1] = N2[0]; N2new[1] = N1[1];
+ N1new[2] = N2[1]; N2new[2] = N2[0];
+ N1new[3] = N1[4]; N2new[3] = N1[3];
+ N1new[4] = N2[3]; N2new[4] = N2[5];
+ N1new[5] = N1[5]; N2new[5] = N1[4];
+ // change nodes in faces
+ GetMeshDS()->ChangeElementNodes( theTria1, &N1new[0], N1new.size() );
+ GetMeshDS()->ChangeElementNodes( theTria2, &N2new[0], N2new.size() );
+
+ // move the central node of biquadratic triangle
+ SMESH_MesherHelper helper( *GetMesh() );
+ for ( int is2nd = 0; is2nd < 2; ++is2nd )
+ {
+ const SMDS_MeshElement* tria = is2nd ? theTria2 : theTria1;
+ vector< const SMDS_MeshNode*>& nodes = is2nd ? N2new : N1new;
+ if ( nodes.size() < 7 )
+ continue;
+ helper.SetSubShape( tria->getshapeId() );
+ const TopoDS_Face& F = TopoDS::Face( helper.GetSubShape() );
+ gp_Pnt xyz;
+ if ( F.IsNull() )
+ {
+ xyz = ( SMESH_TNodeXYZ( nodes[3] ) +
+ SMESH_TNodeXYZ( nodes[4] ) +
+ SMESH_TNodeXYZ( nodes[5] )) / 3.;
+ }
+ else
+ {
+ bool checkUV;
+ gp_XY uv = ( helper.GetNodeUV( F, nodes[3], nodes[2], &checkUV ) +
+ helper.GetNodeUV( F, nodes[4], nodes[0], &checkUV ) +
+ helper.GetNodeUV( F, nodes[5], nodes[1], &checkUV )) / 3.;
+ TopLoc_Location loc;
+ Handle(Geom_Surface) S = BRep_Tool::Surface(F,loc);
+ xyz = S->Value( uv.X(), uv.Y() );
+ xyz.Transform( loc );
+ if ( nodes[6]->GetPosition()->GetTypeOfPosition() == SMDS_TOP_FACE && // set UV
+ nodes[6]->getshapeId() > 0 )
+ GetMeshDS()->SetNodeOnFace( nodes[6], nodes[6]->getshapeId(), uv.X(), uv.Y() );
+ }
+ GetMeshDS()->MoveNode( nodes[6], xyz.X(), xyz.Y(), xyz.Z() );
+ }
return true;
}
SMDS_ElemIteratorPtr it = theNode1->GetInverseElementIterator(SMDSAbs_Face);
while (it->more()) {
const SMDS_MeshElement* elem = it->next();
- if ( elem->NbNodes() == 3 )
+ if ( elem->NbCornerNodes() == 3 )
emap.insert( elem );
}
it = theNode2->GetInverseElementIterator(SMDSAbs_Face);
while (it->more()) {
const SMDS_MeshElement* elem = it->next();
- if ( emap.find( elem ) != emap.end() ) {
- if ( theTria1 ) {
- // theTria1 must be element with minimum ID
- if( theTria1->GetID() < elem->GetID() ) {
- theTria2 = elem;
- }
- else {
- theTria2 = theTria1;
- theTria1 = elem;
- }
- break;
- }
- else {
+ if ( emap.count( elem )) {
+ if ( !theTria1 )
+ {
theTria1 = elem;
}
+ else
+ {
+ theTria2 = elem;
+ // theTria1 must be element with minimum ID
+ if ( theTria2->GetID() < theTria1->GetID() )
+ std::swap( theTria2, theTria1 );
+ return true;
+ }
}
}
- return ( theTria1 && theTria2 );
+ return false;
}
//=======================================================================
// 4 +--+--+ 3
// 8
- const SMDS_MeshNode* N1 [6];
- const SMDS_MeshNode* N2 [6];
- if(!GetNodesFromTwoTria(tr1,tr2,N1,N2))
+ vector< const SMDS_MeshNode* > N1;
+ vector< const SMDS_MeshNode* > N2;
+ if(!getNodesFromTwoTria(tr1,tr2,N1,N2))
return false;
// now we receive following N1 and N2 (using numeration as above image)
// tria1 : (1 2 4 5 9 7) and tria2 : (3 4 2 8 9 6)
if ( !it || !it->more() )
return false;
- switch ( theElem->GetType() ) {
+ const SMDSAbs_ElementType type = theElem->GetType();
+ if ( type < SMDSAbs_Edge || type > SMDSAbs_Volume )
+ return false;
- case SMDSAbs_Edge:
- case SMDSAbs_Face: {
- if(!theElem->IsQuadratic()) {
- int i = theElem->NbNodes();
- vector<const SMDS_MeshNode*> aNodes( i );
- while ( it->more() )
- aNodes[ --i ]= static_cast<const SMDS_MeshNode*>( it->next() );
- return GetMeshDS()->ChangeElementNodes( theElem, &aNodes[0], theElem->NbNodes() );
- }
- else {
- // quadratic elements
- if(theElem->GetType()==SMDSAbs_Edge) {
- vector<const SMDS_MeshNode*> aNodes(3);
- aNodes[1]= static_cast<const SMDS_MeshNode*>( it->next() );
- aNodes[0]= static_cast<const SMDS_MeshNode*>( it->next() );
- aNodes[2]= static_cast<const SMDS_MeshNode*>( it->next() );
- return GetMeshDS()->ChangeElementNodes( theElem, &aNodes[0], 3 );
- }
- else {
- int nbn = theElem->NbNodes();
- vector<const SMDS_MeshNode*> aNodes(nbn);
- aNodes[0]= static_cast<const SMDS_MeshNode*>( it->next() );
- int i=1;
- for(; i<nbn/2; i++) {
- aNodes[nbn/2-i]= static_cast<const SMDS_MeshNode*>( it->next() );
- }
- for(i=0; i<nbn/2; i++) {
- aNodes[nbn-i-1]= static_cast<const SMDS_MeshNode*>( it->next() );
- }
- return GetMeshDS()->ChangeElementNodes( theElem, &aNodes[0], nbn );
- }
+ const SMDSAbs_EntityType geomType = theElem->GetEntityType();
+ if ( geomType == SMDSEntity_Polyhedra ) // polyhedron
+ {
+ const SMDS_VtkVolume* aPolyedre =
+ dynamic_cast<const SMDS_VtkVolume*>( theElem );
+ if (!aPolyedre) {
+ MESSAGE("Warning: bad volumic element");
+ return false;
}
- }
- case SMDSAbs_Volume: {
- if (theElem->IsPoly()) {
- // TODO reorient vtk polyhedron
- MESSAGE("reorient vtk polyhedron ?");
- const SMDS_VtkVolume* aPolyedre =
- dynamic_cast<const SMDS_VtkVolume*>( theElem );
- if (!aPolyedre) {
- MESSAGE("Warning: bad volumic element");
- return false;
- }
-
- int nbFaces = aPolyedre->NbFaces();
- vector<const SMDS_MeshNode *> poly_nodes;
- vector<int> quantities (nbFaces);
+ const int nbFaces = aPolyedre->NbFaces();
+ vector<const SMDS_MeshNode *> poly_nodes;
+ vector<int> quantities (nbFaces);
- // reverse each face of the polyedre
- for (int iface = 1; iface <= nbFaces; iface++) {
- int inode, nbFaceNodes = aPolyedre->NbFaceNodes(iface);
- quantities[iface - 1] = nbFaceNodes;
+ // reverse each face of the polyedre
+ for (int iface = 1; iface <= nbFaces; iface++) {
+ int inode, nbFaceNodes = aPolyedre->NbFaceNodes(iface);
+ quantities[iface - 1] = nbFaceNodes;
- for (inode = nbFaceNodes; inode >= 1; inode--) {
- const SMDS_MeshNode* curNode = aPolyedre->GetFaceNode(iface, inode);
- poly_nodes.push_back(curNode);
- }
+ for (inode = nbFaceNodes; inode >= 1; inode--) {
+ const SMDS_MeshNode* curNode = aPolyedre->GetFaceNode(iface, inode);
+ poly_nodes.push_back(curNode);
}
-
- return GetMeshDS()->ChangePolyhedronNodes( theElem, poly_nodes, quantities );
-
- }
- else {
- SMDS_VolumeTool vTool;
- if ( !vTool.Set( theElem ))
- return false;
- vTool.Inverse();
- MESSAGE("ChangeElementNodes reorient: check vTool.Inverse");
- return GetMeshDS()->ChangeElementNodes( theElem, vTool.GetNodes(), vTool.NbNodes() );
}
+ return GetMeshDS()->ChangePolyhedronNodes( theElem, poly_nodes, quantities );
}
- default:;
+ else // other elements
+ {
+ vector<const SMDS_MeshNode*> nodes( theElem->begin_nodes(), theElem->end_nodes() );
+ const std::vector<int>& interlace = SMDS_MeshCell::reverseSmdsOrder( geomType );
+ if ( interlace.empty() )
+ {
+ std::reverse( nodes.begin(), nodes.end() ); // polygon
+ }
+ else if ( interlace.size() > 1 )
+ {
+ SMDS_MeshCell::applyInterlace( interlace, nodes );
+ }
+ return GetMeshDS()->ChangeElementNodes( theElem, &nodes[0], nodes.size() );
}
-
return false;
}
// orient theFace according to theDirection
gp_XYZ normal;
- SMESH_Algo::FaceNormal( theFace, normal, /*normalized=*/false );
+ SMESH_MeshAlgos::FaceNormal( theFace, normal, /*normalized=*/false );
if ( normal * theDirection.XYZ() < 0 )
nbReori += Reorient( theFace );
{
facesNearLink.clear();
nodeIndsOfFace.clear();
- while (( otherFace = FindFaceInSet( link.first, link.second,
- theFaces, avoidSet, &nodeInd1, &nodeInd2 )))
+ while (( otherFace = SMESH_MeshAlgos::FindFaceInSet( link.first, link.second,
+ theFaces, avoidSet,
+ &nodeInd1, &nodeInd2 )))
if ( otherFace != theFace)
{
facesNearLink.push_back( otherFace );
// select a face most co-directed with theFace,
// other faces won't be visited this time
gp_XYZ NF, NOF;
- SMESH_Algo::FaceNormal( theFace, NF, /*normalized=*/false );
+ SMESH_MeshAlgos::FaceNormal( theFace, NF, /*normalized=*/false );
double proj, maxProj = -1;
for ( size_t i = 0; i < facesNearLink.size(); ++i ) {
- SMESH_Algo::FaceNormal( facesNearLink[i], NOF, /*normalized=*/false );
+ SMESH_MeshAlgos::FaceNormal( facesNearLink[i], NOF, /*normalized=*/false );
if (( proj = Abs( NF * NOF )) > maxProj ) {
maxProj = proj;
otherFace = facesNearLink[i];
SMESH_MesherHelper helper( *GetMesh() );
TIDSortedElemSet::iterator itElem;
- for ( itElem = theElems.begin(); itElem != theElems.end(); itElem++ ) {
+ for ( itElem = theElems.begin(); itElem != theElems.end(); itElem++ )
+ {
const SMDS_MeshElement* elem = *itElem;
if ( !elem || elem->GetType() != SMDSAbs_Face )
continue;
SMDS_FaceOfNodes tr4 ( aNodes[3], aNodes[0], aNodes[1] );
aBadRate2 = getBadRate( &tr3, theCrit ) + getBadRate( &tr4, theCrit );
- int aShapeId = FindShape( elem );
+ const int aShapeId = FindShape( elem );
const SMDS_MeshElement* newElem1 = 0;
const SMDS_MeshElement* newElem2 = 0;
- if( !elem->IsQuadratic() ) {
-
- // split liner quadrangle
+ if ( !elem->IsQuadratic() ) // split liner quadrangle
+ {
// for MaxElementLength2D functor we return minimum diagonal for splitting,
// because aBadRate1=2*len(diagonal 1-3); aBadRate2=2*len(diagonal 2-4)
if ( aBadRate1 <= aBadRate2 ) {
newElem2 = aMesh->AddFace( aNodes[3], aNodes[1], aNodes[2] );
}
}
- else {
-
- // split quadratic quadrangle
+ else // split quadratic quadrangle
+ {
+ helper.SetIsQuadratic( true );
+ helper.SetIsBiQuadratic( aNodes.size() == 9 );
- // get surface elem is on
- if ( aShapeId != helper.GetSubShapeID() ) {
- surface.Nullify();
- TopoDS_Shape shape;
- if ( aShapeId > 0 )
- shape = aMesh->IndexToShape( aShapeId );
- if ( !shape.IsNull() && shape.ShapeType() == TopAbs_FACE ) {
- TopoDS_Face face = TopoDS::Face( shape );
- surface = BRep_Tool::Surface( face );
- if ( !surface.IsNull() )
- helper.SetSubShape( shape );
- }
- }
- // find middle point for (0,1,2,3)
- // and create a node in this point;
- const SMDS_MeshNode* newN = 0;
+ helper.AddTLinks( static_cast< const SMDS_MeshFace* >( elem ));
if ( aNodes.size() == 9 )
{
- // SMDSEntity_BiQuad_Quadrangle
- newN = aNodes.back();
- }
- else
- {
- gp_XYZ p( 0,0,0 );
- if ( surface.IsNull() )
- {
- for ( int i = 0; i < 4; i++ )
- p += gp_XYZ(aNodes[i]->X(), aNodes[i]->Y(), aNodes[i]->Z() );
- p /= 4;
- }
+ helper.SetIsBiQuadratic( true );
+ if ( aBadRate1 <= aBadRate2 )
+ helper.AddTLinkNode( aNodes[0], aNodes[2], aNodes[8] );
else
- {
- const SMDS_MeshNode* inFaceNode = 0;
- if ( helper.GetNodeUVneedInFaceNode() )
- for ( size_t i = 0; i < aNodes.size() && !inFaceNode; ++i )
- if ( aNodes[ i ]->GetPosition()->GetTypeOfPosition() == SMDS_TOP_FACE )
- inFaceNode = aNodes[ i ];
-
- TopoDS_Face face = TopoDS::Face( helper.GetSubShape() );
- gp_XY uv( 0,0 );
- for ( int i = 0; i < 4; i++ )
- uv += helper.GetNodeUV( face, aNodes[i], inFaceNode );
- uv /= 4.;
- p = surface->Value( uv.X(), uv.Y() ).XYZ();
- }
- newN = aMesh->AddNode( p.X(), p.Y(), p.Z() );
- myLastCreatedNodes.Append(newN);
+ helper.AddTLinkNode( aNodes[1], aNodes[3], aNodes[8] );
}
// create a new element
if ( aBadRate1 <= aBadRate2 ) {
- newElem1 = aMesh->AddFace(aNodes[2], aNodes[3], aNodes[0],
- aNodes[6], aNodes[7], newN );
- newElem2 = aMesh->AddFace(aNodes[2], aNodes[0], aNodes[1],
- newN, aNodes[4], aNodes[5] );
+ newElem1 = helper.AddFace( aNodes[2], aNodes[3], aNodes[0] );
+ newElem2 = helper.AddFace( aNodes[2], aNodes[0], aNodes[1] );
}
else {
- newElem1 = aMesh->AddFace(aNodes[3], aNodes[0], aNodes[1],
- aNodes[7], aNodes[4], newN );
- newElem2 = aMesh->AddFace(aNodes[3], aNodes[1], aNodes[2],
- newN, aNodes[5], aNodes[6] );
+ newElem1 = helper.AddFace( aNodes[3], aNodes[0], aNodes[1] );
+ newElem2 = helper.AddFace( aNodes[3], aNodes[1], aNodes[2] );
}
} // quadratic case
// put a new triangle on the same shape
if ( aShapeId )
- {
- aMesh->SetMeshElementOnShape( newElem1, aShapeId );
- aMesh->SetMeshElementOnShape( newElem2, aShapeId );
- }
+ aMesh->SetMeshElementOnShape( newElem1, aShapeId );
+ aMesh->SetMeshElementOnShape( newElem2, aShapeId );
+
aMesh->RemoveElement( elem );
}
return true;
map< const SMDS_MeshElement*, set< SMESH_TLink > >::iterator itEL;
TIDSortedElemSet::iterator itElem;
- for ( itElem = theElems.begin(); itElem != theElems.end(); itElem++ ) {
+ for ( itElem = theElems.begin(); itElem != theElems.end(); itElem++ )
+ {
const SMDS_MeshElement* elem = *itElem;
if(!elem || elem->GetType() != SMDSAbs_Face ) continue;
- bool IsTria = elem->NbNodes()==3 || (elem->NbNodes()==6 && elem->IsQuadratic());
- if(!IsTria) continue;
+ bool IsTria = ( elem->NbCornerNodes()==3 );
+ if (!IsTria) continue;
// retrieve element nodes
const SMDS_MeshNode* aNodes [4];
- SMDS_ElemIteratorPtr itN = elem->nodesIterator();
+ SMDS_NodeIteratorPtr itN = elem->nodeIterator();
int i = 0;
- while ( i<3 )
- aNodes[ i++ ] = cast2Node( itN->next() );
+ while ( i < 3 )
+ aNodes[ i++ ] = itN->next();
aNodes[ 3 ] = aNodes[ 0 ];
// fill maps
}
// Make quadrangles
- // and remove fused elems and removed links from the maps
+ // and remove fused elems and remove links from the maps
mapEl_setLi.erase( tr1 );
- if ( Ok12 ) {
+ if ( Ok12 )
+ {
mapEl_setLi.erase( tr2 );
mapLi_listEl.erase( *link12 );
- if(tr1->NbNodes()==3) {
+ if ( tr1->NbNodes() == 3 )
+ {
const SMDS_MeshElement* newElem = 0;
newElem = aMesh->AddFace(n12[0], n12[1], n12[2], n12[3] );
myLastCreatedElems.Append(newElem);
AddToSameGroups( newElem, tr1, aMesh );
int aShapeId = tr1->getshapeId();
if ( aShapeId )
- {
- aMesh->SetMeshElementOnShape( newElem, aShapeId );
- }
+ aMesh->SetMeshElementOnShape( newElem, aShapeId );
aMesh->RemoveElement( tr1 );
aMesh->RemoveElement( tr2 );
}
else {
- const SMDS_MeshNode* N1 [6];
- const SMDS_MeshNode* N2 [6];
- GetNodesFromTwoTria(tr1,tr2,N1,N2);
- // now we receive following N1 and N2 (using numeration as above image)
+ vector< const SMDS_MeshNode* > N1;
+ vector< const SMDS_MeshNode* > N2;
+ getNodesFromTwoTria(tr1,tr2,N1,N2);
+ // now we receive following N1 and N2 (using numeration as in image in InverseDiag())
// tria1 : (1 2 4 5 9 7) and tria2 : (3 4 2 8 9 6)
- // i.e. first nodes from both arrays determ new diagonal
+ // i.e. first nodes from both arrays form a new diagonal
const SMDS_MeshNode* aNodes[8];
aNodes[0] = N1[0];
aNodes[1] = N1[1];
aNodes[6] = N2[3];
aNodes[7] = N1[5];
const SMDS_MeshElement* newElem = 0;
- newElem = aMesh->AddFace(aNodes[0], aNodes[1], aNodes[2], aNodes[3],
- aNodes[4], aNodes[5], aNodes[6], aNodes[7]);
+ if ( N1.size() == 7 || N2.size() == 7 ) // biquadratic
+ newElem = aMesh->AddFace(aNodes[0], aNodes[1], aNodes[2], aNodes[3],
+ aNodes[4], aNodes[5], aNodes[6], aNodes[7], N1[4]);
+ else
+ newElem = aMesh->AddFace(aNodes[0], aNodes[1], aNodes[2], aNodes[3],
+ aNodes[4], aNodes[5], aNodes[6], aNodes[7]);
myLastCreatedElems.Append(newElem);
AddToSameGroups( newElem, tr1, aMesh );
int aShapeId = tr1->getshapeId();
if ( aShapeId )
- {
- aMesh->SetMeshElementOnShape( newElem, aShapeId );
- }
+ aMesh->SetMeshElementOnShape( newElem, aShapeId );
aMesh->RemoveElement( tr1 );
aMesh->RemoveElement( tr2 );
// remove middle node (9)
- GetMeshDS()->RemoveNode( N1[4] );
+ if ( N1[4]->NbInverseElements() == 0 )
+ aMesh->RemoveNode( N1[4] );
+ if ( N1.size() == 7 && N1[6]->NbInverseElements() == 0 )
+ aMesh->RemoveNode( N1[6] );
+ if ( N2.size() == 7 && N2[6]->NbInverseElements() == 0 )
+ aMesh->RemoveNode( N2[6] );
}
}
- else if ( Ok13 ) {
+ else if ( Ok13 )
+ {
mapEl_setLi.erase( tr3 );
mapLi_listEl.erase( *link13 );
- if(tr1->NbNodes()==3) {
+ if ( tr1->NbNodes() == 3 ) {
const SMDS_MeshElement* newElem = 0;
newElem = aMesh->AddFace(n13[0], n13[1], n13[2], n13[3] );
myLastCreatedElems.Append(newElem);
AddToSameGroups( newElem, tr1, aMesh );
int aShapeId = tr1->getshapeId();
if ( aShapeId )
- {
- aMesh->SetMeshElementOnShape( newElem, aShapeId );
- }
+ aMesh->SetMeshElementOnShape( newElem, aShapeId );
aMesh->RemoveElement( tr1 );
aMesh->RemoveElement( tr3 );
}
else {
- const SMDS_MeshNode* N1 [6];
- const SMDS_MeshNode* N2 [6];
- GetNodesFromTwoTria(tr1,tr3,N1,N2);
+ vector< const SMDS_MeshNode* > N1;
+ vector< const SMDS_MeshNode* > N2;
+ getNodesFromTwoTria(tr1,tr3,N1,N2);
// now we receive following N1 and N2 (using numeration as above image)
// tria1 : (1 2 4 5 9 7) and tria2 : (3 4 2 8 9 6)
- // i.e. first nodes from both arrays determ new diagonal
+ // i.e. first nodes from both arrays form a new diagonal
const SMDS_MeshNode* aNodes[8];
aNodes[0] = N1[0];
aNodes[1] = N1[1];
aNodes[6] = N2[3];
aNodes[7] = N1[5];
const SMDS_MeshElement* newElem = 0;
- newElem = aMesh->AddFace(aNodes[0], aNodes[1], aNodes[2], aNodes[3],
- aNodes[4], aNodes[5], aNodes[6], aNodes[7]);
+ if ( N1.size() == 7 || N2.size() == 7 ) // biquadratic
+ newElem = aMesh->AddFace(aNodes[0], aNodes[1], aNodes[2], aNodes[3],
+ aNodes[4], aNodes[5], aNodes[6], aNodes[7], N1[4]);
+ else
+ newElem = aMesh->AddFace(aNodes[0], aNodes[1], aNodes[2], aNodes[3],
+ aNodes[4], aNodes[5], aNodes[6], aNodes[7]);
myLastCreatedElems.Append(newElem);
AddToSameGroups( newElem, tr1, aMesh );
int aShapeId = tr1->getshapeId();
if ( aShapeId )
- {
- aMesh->SetMeshElementOnShape( newElem, aShapeId );
- }
+ aMesh->SetMeshElementOnShape( newElem, aShapeId );
aMesh->RemoveElement( tr1 );
aMesh->RemoveElement( tr3 );
// remove middle node (9)
- GetMeshDS()->RemoveNode( N1[4] );
+ if ( N1[4]->NbInverseElements() == 0 )
+ aMesh->RemoveNode( N1[4] );
+ if ( N1.size() == 7 && N1[6]->NbInverseElements() == 0 )
+ aMesh->RemoveNode( N1[6] );
+ if ( N2.size() == 7 && N2[6]->NbInverseElements() == 0 )
+ aMesh->RemoveNode( N2[6] );
}
}
if ( isQuadratic )
{
SMESH_MesherHelper helper( *GetMesh() );
- if ( !face.IsNull() )
- helper.SetSubShape( face );
+ helper.SetSubShape( face );
+ vector<const SMDS_MeshNode*> nodes;
+ bool checkUV;
list< const SMDS_MeshElement* >::iterator elemIt = elemsOnFace.begin();
- for ( ; elemIt != elemsOnFace.end(); ++elemIt ) {
- const SMDS_VtkFace* QF =
- dynamic_cast<const SMDS_VtkFace*> (*elemIt);
- if(QF && QF->IsQuadratic()) {
- vector<const SMDS_MeshNode*> Ns;
- Ns.reserve(QF->NbNodes()+1);
- SMDS_ElemIteratorPtr anIter = QF->interlacedNodesElemIterator();
- while ( anIter->more() )
- Ns.push_back( cast2Node(anIter->next()) );
- Ns.push_back( Ns[0] );
- double x, y, z;
- for(int i=0; i<QF->NbNodes(); i=i+2) {
- if ( !surface.IsNull() ) {
- gp_XY uv1 = helper.GetNodeUV( face, Ns[i], Ns[i+2] );
- gp_XY uv2 = helper.GetNodeUV( face, Ns[i+2], Ns[i] );
- gp_XY uv = ( uv1 + uv2 ) / 2.;
- gp_Pnt xyz = surface->Value( uv.X(), uv.Y() );
- x = xyz.X(); y = xyz.Y(); z = xyz.Z();
+ for ( ; elemIt != elemsOnFace.end(); ++elemIt )
+ {
+ const SMDS_MeshElement* QF = *elemIt;
+ if ( QF->IsQuadratic() )
+ {
+ nodes.assign( SMDS_MeshElement::iterator( QF->interlacedNodesElemIterator() ),
+ SMDS_MeshElement::iterator() );
+ nodes.push_back( nodes[0] );
+ gp_Pnt xyz;
+ for (size_t i = 1; i < nodes.size(); i += 2 ) // i points to a medium node
+ {
+ if ( !surface.IsNull() )
+ {
+ gp_XY uv1 = helper.GetNodeUV( face, nodes[i-1], nodes[i+1], &checkUV );
+ gp_XY uv2 = helper.GetNodeUV( face, nodes[i+1], nodes[i-1], &checkUV );
+ gp_XY uv = helper.GetMiddleUV( surface, uv1, uv2 );
+ xyz = surface->Value( uv.X(), uv.Y() );
}
else {
- x = (Ns[i]->X() + Ns[i+2]->X())/2;
- y = (Ns[i]->Y() + Ns[i+2]->Y())/2;
- z = (Ns[i]->Z() + Ns[i+2]->Z())/2;
- }
- if( fabs( Ns[i+1]->X() - x ) > disttol ||
- fabs( Ns[i+1]->Y() - y ) > disttol ||
- fabs( Ns[i+1]->Z() - z ) > disttol ) {
- // we have to move i+1 node
- aMesh->MoveNode( Ns[i+1], x, y, z );
+ xyz = 0.5 * ( SMESH_TNodeXYZ( nodes[i-1] ) + SMESH_TNodeXYZ( nodes[i+1] ));
}
+ if (( SMESH_TNodeXYZ( nodes[i] ) - xyz.XYZ() ).Modulus() > disttol )
+ // we have to move a medium node
+ aMesh->MoveNode( nodes[i], xyz.X(), xyz.Y(), xyz.Z() );
}
}
}
SMESH_TNodeXYZ pP = prevNodes[ iNotSame ];
SMESH_TNodeXYZ pN = nextNodes[ iNotSame ];
gp_XYZ extrDir( pN - pP ), faceNorm;
- SMESH_Algo::FaceNormal( face, faceNorm, /*normalized=*/false );
+ SMESH_MeshAlgos::FaceNormal( face, faceNorm, /*normalized=*/false );
return faceNorm * extrDir < 0.0;
}
}
break;
}
- case SMDSEntity_Quad_Triangle: { // sweep Quadratic TRIANGLE --->
+ case SMDSEntity_Quad_Triangle: // sweep (Bi)Quadratic TRIANGLE --->
+ case SMDSEntity_BiQuad_Triangle: /* ??? */ {
if ( nbDouble+nbSame != 3 ) break;
if(nbSame==0) {
// ---> pentahedron with 15 nodes
ASSERT( newElemsMap.size() == elemNewNodesMap.size() );
SMESHDS_Mesh* aMesh = GetMeshDS();
- // Find nodes belonging to only one initial element - sweep them to get edges.
+ // Find nodes belonging to only one initial element - sweep them into edges.
TNodeOfNodeListMapItr nList = mapNewNodes.begin();
for ( ; nList != mapNewNodes.end(); nList++ )
const SMDS_MeshNode* n1 = vecNewNodes[ iNode ]->first;
const SMDS_MeshNode* n2 = vecNewNodes[ iNext ]->first;
// check if a link n1-n2 is free
- if ( ! SMESH_MeshEditor::FindFaceInSet ( n1, n2, elemSet, avoidSet )) {
+ if ( ! SMESH_MeshAlgos::FindFaceInSet ( n1, n2, elemSet, avoidSet )) {
hasFreeLinks = true;
// make a new edge and a ceiling for a new edge
const SMDS_MeshElement* edge;
const SMDS_MeshNode* n2 = vecNewNodes[ iNext ]->first;
const SMDS_MeshNode* n3 = vecNewNodes[ iNode+nbn ]->first;
// check if a link is free
- if ( ! SMESH_MeshEditor::FindFaceInSet ( n1, n2, elemSet, avoidSet ) &&
- ! SMESH_MeshEditor::FindFaceInSet ( n1, n3, elemSet, avoidSet ) &&
- ! SMESH_MeshEditor::FindFaceInSet ( n3, n2, elemSet, avoidSet ) ) {
+ if ( ! SMESH_MeshAlgos::FindFaceInSet ( n1, n2, elemSet, avoidSet ) &&
+ ! SMESH_MeshAlgos::FindFaceInSet ( n1, n3, elemSet, avoidSet ) &&
+ ! SMESH_MeshAlgos::FindFaceInSet ( n3, n2, elemSet, avoidSet ) ) {
hasFreeLinks = true;
// make an edge and a ceiling for a new edge
// find medium node
int iVol, volNb, nbVolumesByStep = newVolumes.size() / nbSteps;
set<const SMDS_MeshNode*> initNodeSet, topNodeSet, faceNodeSet;
+ set<const SMDS_MeshNode*> initNodeSetNoCenter/*, topNodeSetNoCenter*/;
for ( iNode = 0; iNode < nbNodes; iNode++ ) {
initNodeSet.insert( vecNewNodes[ iNode ]->first );
topNodeSet .insert( vecNewNodes[ iNode ]->second.back() );
}
+ if ( isQuadratic && nbNodes % 2 ) { // node set for the case of a biquadratic
+ initNodeSetNoCenter = initNodeSet; // swept face and a not biquadratic volume
+ initNodeSetNoCenter.erase( vecNewNodes.back()->first );
+ }
for ( volNb = 0; volNb < nbVolumesByStep; volNb++ ) {
list<const SMDS_MeshElement*>::iterator v = newVolumes.begin();
std::advance( v, volNb );
{
if ( nbSteps == 1 && faceNodeSet == topNodeSet )
continue;
+ if ( faceNodeSet == initNodeSetNoCenter )
+ continue;
freeInd.push_back( iF );
// find source edge of a free face iF
vector<const SMDS_MeshNode*> commonNodes; // shared by the initial and free faces
// Make a ceiling face with a normal external to a volume
+ // use SMDS_VolumeTool to get a correctly ordered nodes of a ceiling face
SMDS_VolumeTool lastVol( itElem->second.back(), /*ignoreCentralNodes=*/false );
-
int iF = lastVol.GetFaceIndex( aFaceLastNodes );
+
+ if ( iF < 0 && isQuadratic && nbNodes % 2 ) { // remove a central node of biquadratic
+ aFaceLastNodes.erase( vecNewNodes.back()->second.back() );
+ iF = lastVol.GetFaceIndex( aFaceLastNodes );
+ }
if ( iF >= 0 ) {
lastVol.SetExternalNormal();
const SMDS_MeshNode** nodes = lastVol.GetFaceNodes( iF );
int nbn = lastVol.NbFaceNodes( iF );
- if ( nbn == 3 ) {
- if (!hasFreeLinks ||
- !aMesh->FindFace( nodes[ 0 ], nodes[ 1 ], nodes[ 2 ]))
- myLastCreatedElems.Append(aMesh->AddFace( nodes[ 0 ], nodes[ 1 ], nodes[ 2 ] ));
- }
- else if ( nbn == 4 )
+ // we do not use this->AddElement() because nodes are interlaced
+ vector<const SMDS_MeshNode*> nodeVec( nodes, nodes+nbn );
+ if ( !hasFreeLinks ||
+ !aMesh->FindElement( nodeVec, SMDSAbs_Face, /*noMedium=*/false) )
{
- if (!hasFreeLinks ||
- !aMesh->FindFace( nodes[ 0 ], nodes[ 1 ], nodes[ 2 ], nodes[ 3 ]))
- myLastCreatedElems.Append(aMesh->AddFace( nodes[ 0 ], nodes[ 1 ], nodes[ 2 ], nodes[ 3 ]));
- }
- else if ( nbn == 6 && isQuadratic )
- {
- if (!hasFreeLinks ||
- !aMesh->FindFace(nodes[0], nodes[2], nodes[4], nodes[1], nodes[3], nodes[5]) )
- myLastCreatedElems.Append(aMesh->AddFace(nodes[0], nodes[2], nodes[4],
- nodes[1], nodes[3], nodes[5]));
- }
- else if ( nbn == 8 && isQuadratic )
- {
- if (!hasFreeLinks ||
- !aMesh->FindFace(nodes[0], nodes[2], nodes[4], nodes[6],
- nodes[1], nodes[3], nodes[5], nodes[7]) )
- myLastCreatedElems.Append(aMesh->AddFace(nodes[0], nodes[2], nodes[4], nodes[6],
- nodes[1], nodes[3], nodes[5], nodes[7]));
- }
- else if ( nbn == 9 && isQuadratic )
- {
- if (!hasFreeLinks ||
- !aMesh->FindElement(vector<const SMDS_MeshNode*>( nodes, nodes+nbn ),
- SMDSAbs_Face, /*noMedium=*/false) )
- myLastCreatedElems.Append(aMesh->AddFace(nodes[0], nodes[2], nodes[4], nodes[6],
- nodes[1], nodes[3], nodes[5], nodes[7],
- nodes[8]));
- }
- else {
- vector<const SMDS_MeshNode*> polygon_nodes ( nodes, nodes + nbn );
- if (!hasFreeLinks || !aMesh->FindFace(polygon_nodes))
- myLastCreatedElems.Append(aMesh->AddPolygonalFace(polygon_nodes));
- }
+ if ( nbn == 3 )
+ myLastCreatedElems.Append(aMesh->AddFace( nodes[0], nodes[1], nodes[2] ));
+
+ else if ( nbn == 4 )
+ myLastCreatedElems.Append(aMesh->AddFace( nodes[0], nodes[1], nodes[2], nodes[3]));
+
+ else if ( nbn == 6 && isQuadratic )
+ myLastCreatedElems.Append(aMesh->AddFace( nodes[0], nodes[2], nodes[4],
+ nodes[1], nodes[3], nodes[5]));
+ else if ( nbn == 7 && isQuadratic )
+ myLastCreatedElems.Append(aMesh->AddFace( nodes[0], nodes[2], nodes[4],
+ nodes[1], nodes[3], nodes[5], nodes[6]));
+ else if ( nbn == 8 && isQuadratic )
+ myLastCreatedElems.Append(aMesh->AddFace( nodes[0], nodes[2], nodes[4], nodes[6],
+ nodes[1], nodes[3], nodes[5], nodes[7]));
+ else if ( nbn == 9 && isQuadratic )
+ myLastCreatedElems.Append(aMesh->AddFace( nodes[0], nodes[2], nodes[4], nodes[6],
+ nodes[1], nodes[3], nodes[5], nodes[7],
+ nodes[8]));
+ else
+ myLastCreatedElems.Append(aMesh->AddPolygonalFace( nodeVec ));
- while ( srcElements.Length() < myLastCreatedElems.Length() )
- srcElements.Append( elem );
+ while ( srcElements.Length() < myLastCreatedElems.Length() )
+ srcElements.Append( elem );
+ }
}
} // loop on swept elements
}
SMESH_OctreeNode::FindCoincidentNodes ( theNodes, &theGroupsOfNodes, theTolerance);
}
-
//=======================================================================
-/*!
- * \brief Implementation of search for the node closest to point
- */
+//function : SimplifyFace
+//purpose :
//=======================================================================
-struct SMESH_NodeSearcherImpl: public SMESH_NodeSearcher
+int SMESH_MeshEditor::SimplifyFace (const vector<const SMDS_MeshNode *>& faceNodes,
+ vector<const SMDS_MeshNode *>& poly_nodes,
+ vector<int>& quantities) const
{
- //---------------------------------------------------------------------
- /*!
- * \brief Constructor
- */
- SMESH_NodeSearcherImpl( const SMESHDS_Mesh* theMesh )
- {
- myMesh = ( SMESHDS_Mesh* ) theMesh;
+ int nbNodes = faceNodes.size();
- TIDSortedNodeSet nodes;
- if ( theMesh ) {
- SMDS_NodeIteratorPtr nIt = theMesh->nodesIterator(/*idInceasingOrder=*/true);
- while ( nIt->more() )
- nodes.insert( nodes.end(), nIt->next() );
- }
- myOctreeNode = new SMESH_OctreeNode(nodes) ;
+ if (nbNodes < 3)
+ return 0;
- // get max size of a leaf box
- SMESH_OctreeNode* tree = myOctreeNode;
- while ( !tree->isLeaf() )
- {
- SMESH_OctreeNodeIteratorPtr cIt = tree->GetChildrenIterator();
- if ( cIt->more() )
- tree = cIt->next();
+ set<const SMDS_MeshNode*> nodeSet;
+
+ // get simple seq of nodes
+ //const SMDS_MeshNode* simpleNodes[ nbNodes ];
+ vector<const SMDS_MeshNode*> simpleNodes( nbNodes );
+ int iSimple = 0, nbUnique = 0;
+
+ simpleNodes[iSimple++] = faceNodes[0];
+ nbUnique++;
+ for (int iCur = 1; iCur < nbNodes; iCur++) {
+ if (faceNodes[iCur] != simpleNodes[iSimple - 1]) {
+ simpleNodes[iSimple++] = faceNodes[iCur];
+ if (nodeSet.insert( faceNodes[iCur] ).second)
+ nbUnique++;
}
- myHalfLeafSize = tree->maxSize() / 2.;
}
-
- //---------------------------------------------------------------------
- /*!
- * \brief Move node and update myOctreeNode accordingly
- */
- void MoveNode( const SMDS_MeshNode* node, const gp_Pnt& toPnt )
- {
- myOctreeNode->UpdateByMoveNode( node, toPnt );
- myMesh->MoveNode( node, toPnt.X(), toPnt.Y(), toPnt.Z() );
+ int nbSimple = iSimple;
+ if (simpleNodes[nbSimple - 1] == simpleNodes[0]) {
+ nbSimple--;
+ iSimple--;
}
- //---------------------------------------------------------------------
- /*!
- * \brief Do it's job
- */
- const SMDS_MeshNode* FindClosestTo( const gp_Pnt& thePnt )
- {
- map<double, const SMDS_MeshNode*> dist2Nodes;
- myOctreeNode->NodesAround( thePnt.Coord(), dist2Nodes, myHalfLeafSize );
- if ( !dist2Nodes.empty() )
- return dist2Nodes.begin()->second;
- list<const SMDS_MeshNode*> nodes;
- //myOctreeNode->NodesAround( &tgtNode, &nodes, myHalfLeafSize );
-
- double minSqDist = DBL_MAX;
- if ( nodes.empty() ) // get all nodes of OctreeNode's closest to thePnt
- {
- // sort leafs by their distance from thePnt
- typedef map< double, SMESH_OctreeNode* > TDistTreeMap;
- TDistTreeMap treeMap;
- list< SMESH_OctreeNode* > treeList;
- list< SMESH_OctreeNode* >::iterator trIt;
- treeList.push_back( myOctreeNode );
-
- gp_XYZ pointNode( thePnt.X(), thePnt.Y(), thePnt.Z() );
- bool pointInside = myOctreeNode->isInside( pointNode, myHalfLeafSize );
- for ( trIt = treeList.begin(); trIt != treeList.end(); ++trIt)
- {
- SMESH_OctreeNode* tree = *trIt;
- if ( !tree->isLeaf() ) // put children to the queue
- {
- if ( pointInside && !tree->isInside( pointNode, myHalfLeafSize )) continue;
- SMESH_OctreeNodeIteratorPtr cIt = tree->GetChildrenIterator();
- while ( cIt->more() )
- treeList.push_back( cIt->next() );
+ if (nbUnique < 3)
+ return 0;
+
+ // separate loops
+ int nbNew = 0;
+ bool foundLoop = (nbSimple > nbUnique);
+ while (foundLoop) {
+ foundLoop = false;
+ set<const SMDS_MeshNode*> loopSet;
+ for (iSimple = 0; iSimple < nbSimple && !foundLoop; iSimple++) {
+ const SMDS_MeshNode* n = simpleNodes[iSimple];
+ if (!loopSet.insert( n ).second) {
+ foundLoop = true;
+
+ // separate loop
+ int iC = 0, curLast = iSimple;
+ for (; iC < curLast; iC++) {
+ if (simpleNodes[iC] == n) break;
}
- else if ( tree->NbNodes() ) // put a tree to the treeMap
- {
- const Bnd_B3d& box = *tree->getBox();
- double sqDist = thePnt.SquareDistance( 0.5 * ( box.CornerMin() + box.CornerMax() ));
- pair<TDistTreeMap::iterator,bool> it_in = treeMap.insert( make_pair( sqDist, tree ));
- if ( !it_in.second ) // not unique distance to box center
- treeMap.insert( it_in.first, make_pair( sqDist + 1e-13*treeMap.size(), tree ));
- }
- }
- // find distance after which there is no sense to check tree's
- double sqLimit = DBL_MAX;
- TDistTreeMap::iterator sqDist_tree = treeMap.begin();
- if ( treeMap.size() > 5 ) {
- SMESH_OctreeNode* closestTree = sqDist_tree->second;
- const Bnd_B3d& box = *closestTree->getBox();
- double limit = sqrt( sqDist_tree->first ) + sqrt ( box.SquareExtent() );
- sqLimit = limit * limit;
- }
- // get all nodes from trees
- for ( ; sqDist_tree != treeMap.end(); ++sqDist_tree) {
- if ( sqDist_tree->first > sqLimit )
- break;
- SMESH_OctreeNode* tree = sqDist_tree->second;
- tree->NodesAround( tree->GetNodeIterator()->next(), &nodes );
- }
- }
- // find closest among nodes
- minSqDist = DBL_MAX;
- const SMDS_MeshNode* closestNode = 0;
- list<const SMDS_MeshNode*>::iterator nIt = nodes.begin();
- for ( ; nIt != nodes.end(); ++nIt ) {
- double sqDist = thePnt.SquareDistance( SMESH_TNodeXYZ( *nIt ) );
- if ( minSqDist > sqDist ) {
- closestNode = *nIt;
- minSqDist = sqDist;
+ int loopLen = curLast - iC;
+ if (loopLen > 2) {
+ // create sub-element
+ nbNew++;
+ quantities.push_back(loopLen);
+ for (; iC < curLast; iC++) {
+ poly_nodes.push_back(simpleNodes[iC]);
+ }
+ }
+ // shift the rest nodes (place from the first loop position)
+ for (iC = curLast + 1; iC < nbSimple; iC++) {
+ simpleNodes[iC - loopLen] = simpleNodes[iC];
+ }
+ nbSimple -= loopLen;
+ iSimple -= loopLen;
}
- }
- return closestNode;
- }
-
- //---------------------------------------------------------------------
- /*!
- * \brief Destructor
- */
- ~SMESH_NodeSearcherImpl() { delete myOctreeNode; }
+ } // for (iSimple = 0; iSimple < nbSimple; iSimple++)
+ } // while (foundLoop)
- //---------------------------------------------------------------------
- /*!
- * \brief Return the node tree
- */
- const SMESH_OctreeNode* getTree() const { return myOctreeNode; }
+ if (iSimple > 2) {
+ nbNew++;
+ quantities.push_back(iSimple);
+ for (int i = 0; i < iSimple; i++)
+ poly_nodes.push_back(simpleNodes[i]);
+ }
-private:
- SMESH_OctreeNode* myOctreeNode;
- SMESHDS_Mesh* myMesh;
- double myHalfLeafSize; // max size of a leaf box
-};
-
-//=======================================================================
-/*!
- * \brief Return SMESH_NodeSearcher
- */
-//=======================================================================
-
-SMESH_NodeSearcher* SMESH_MeshEditor::GetNodeSearcher()
-{
- return new SMESH_NodeSearcherImpl( GetMeshDS() );
-}
-
-// ========================================================================
-namespace // Utils used in SMESH_ElementSearcherImpl::FindElementsByPoint()
-{
- const int MaxNbElemsInLeaf = 10; // maximal number of elements in a leaf of tree
- const int MaxLevel = 7; // maximal tree height -> nb terminal boxes: 8^7 = 2097152
- const double NodeRadius = 1e-9; // to enlarge bnd box of element
-
- //=======================================================================
- /*!
- * \brief Octal tree of bounding boxes of elements
- */
- //=======================================================================
-
- class ElementBndBoxTree : public SMESH_Octree
- {
- public:
-
- ElementBndBoxTree(const SMDS_Mesh& mesh,
- SMDSAbs_ElementType elemType,
- SMDS_ElemIteratorPtr theElemIt = SMDS_ElemIteratorPtr(),
- double tolerance = NodeRadius );
- void getElementsNearPoint( const gp_Pnt& point, TIDSortedElemSet& foundElems );
- void getElementsNearLine ( const gp_Ax1& line, TIDSortedElemSet& foundElems);
- void getElementsInSphere ( const gp_XYZ& center,
- const double radius, TIDSortedElemSet& foundElems);
- size_t getSize() { return std::max( _size, _elements.size() ); }
- ~ElementBndBoxTree();
-
- protected:
- ElementBndBoxTree():_size(0) {}
- SMESH_Octree* newChild() const { return new ElementBndBoxTree; }
- void buildChildrenData();
- Bnd_B3d* buildRootBox();
- private:
- //!< Bounding box of element
- struct ElementBox : public Bnd_B3d
- {
- const SMDS_MeshElement* _element;
- int _refCount; // an ElementBox can be included in several tree branches
- ElementBox(const SMDS_MeshElement* elem, double tolerance);
- };
- vector< ElementBox* > _elements;
- size_t _size;
- };
-
- //================================================================================
- /*!
- * \brief ElementBndBoxTree creation
- */
- //================================================================================
-
- ElementBndBoxTree::ElementBndBoxTree(const SMDS_Mesh& mesh, SMDSAbs_ElementType elemType, SMDS_ElemIteratorPtr theElemIt, double tolerance)
- :SMESH_Octree( new SMESH_TreeLimit( MaxLevel, /*minSize=*/0. ))
- {
- int nbElems = mesh.GetMeshInfo().NbElements( elemType );
- _elements.reserve( nbElems );
-
- SMDS_ElemIteratorPtr elemIt = theElemIt ? theElemIt : mesh.elementsIterator( elemType );
- while ( elemIt->more() )
- _elements.push_back( new ElementBox( elemIt->next(),tolerance ));
-
- compute();
- }
-
- //================================================================================
- /*!
- * \brief Destructor
- */
- //================================================================================
-
- ElementBndBoxTree::~ElementBndBoxTree()
- {
- for ( int i = 0; i < _elements.size(); ++i )
- if ( --_elements[i]->_refCount <= 0 )
- delete _elements[i];
- }
-
- //================================================================================
- /*!
- * \brief Return the maximal box
- */
- //================================================================================
-
- Bnd_B3d* ElementBndBoxTree::buildRootBox()
- {
- Bnd_B3d* box = new Bnd_B3d;
- for ( int i = 0; i < _elements.size(); ++i )
- box->Add( *_elements[i] );
- return box;
- }
-
- //================================================================================
- /*!
- * \brief Redistrubute element boxes among children
- */
- //================================================================================
-
- void ElementBndBoxTree::buildChildrenData()
- {
- for ( int i = 0; i < _elements.size(); ++i )
- {
- for (int j = 0; j < 8; j++)
- {
- if ( !_elements[i]->IsOut( *myChildren[j]->getBox() ))
- {
- _elements[i]->_refCount++;
- ((ElementBndBoxTree*)myChildren[j])->_elements.push_back( _elements[i]);
- }
- }
- _elements[i]->_refCount--;
- }
- _size = _elements.size();
- SMESHUtils::FreeVector( _elements ); // = _elements.clear() + free memory
-
- for (int j = 0; j < 8; j++)
- {
- ElementBndBoxTree* child = static_cast<ElementBndBoxTree*>( myChildren[j]);
- if ( child->_elements.size() <= MaxNbElemsInLeaf )
- child->myIsLeaf = true;
-
- if ( child->_elements.capacity() - child->_elements.size() > 1000 )
- SMESHUtils::CompactVector( child->_elements );
- }
- }
-
- //================================================================================
- /*!
- * \brief Return elements which can include the point
- */
- //================================================================================
-
- void ElementBndBoxTree::getElementsNearPoint( const gp_Pnt& point,
- TIDSortedElemSet& foundElems)
- {
- if ( getBox()->IsOut( point.XYZ() ))
- return;
-
- if ( isLeaf() )
- {
- for ( int i = 0; i < _elements.size(); ++i )
- if ( !_elements[i]->IsOut( point.XYZ() ))
- foundElems.insert( _elements[i]->_element );
- }
- else
- {
- for (int i = 0; i < 8; i++)
- ((ElementBndBoxTree*) myChildren[i])->getElementsNearPoint( point, foundElems );
- }
- }
-
- //================================================================================
- /*!
- * \brief Return elements which can be intersected by the line
- */
- //================================================================================
-
- void ElementBndBoxTree::getElementsNearLine( const gp_Ax1& line,
- TIDSortedElemSet& foundElems)
- {
- if ( getBox()->IsOut( line ))
- return;
-
- if ( isLeaf() )
- {
- for ( int i = 0; i < _elements.size(); ++i )
- if ( !_elements[i]->IsOut( line ))
- foundElems.insert( _elements[i]->_element );
- }
- else
- {
- for (int i = 0; i < 8; i++)
- ((ElementBndBoxTree*) myChildren[i])->getElementsNearLine( line, foundElems );
- }
- }
-
- //================================================================================
- /*!
- * \brief Return elements from leaves intersecting the sphere
- */
- //================================================================================
-
- void ElementBndBoxTree::getElementsInSphere ( const gp_XYZ& center,
- const double radius,
- TIDSortedElemSet& foundElems)
- {
- if ( getBox()->IsOut( center, radius ))
- return;
-
- if ( isLeaf() )
- {
- for ( int i = 0; i < _elements.size(); ++i )
- if ( !_elements[i]->IsOut( center, radius ))
- foundElems.insert( _elements[i]->_element );
- }
- else
- {
- for (int i = 0; i < 8; i++)
- ((ElementBndBoxTree*) myChildren[i])->getElementsInSphere( center, radius, foundElems );
- }
- }
-
- //================================================================================
- /*!
- * \brief Construct the element box
- */
- //================================================================================
-
- ElementBndBoxTree::ElementBox::ElementBox(const SMDS_MeshElement* elem, double tolerance)
- {
- _element = elem;
- _refCount = 1;
- SMDS_ElemIteratorPtr nIt = elem->nodesIterator();
- while ( nIt->more() )
- Add( SMESH_TNodeXYZ( nIt->next() ));
- Enlarge( tolerance );
- }
-
-} // namespace
-
-//=======================================================================
-/*!
- * \brief Implementation of search for the elements by point and
- * of classification of point in 2D mesh
- */
-//=======================================================================
-
-struct SMESH_ElementSearcherImpl: public SMESH_ElementSearcher
-{
- SMESHDS_Mesh* _mesh;
- SMDS_ElemIteratorPtr _meshPartIt;
- ElementBndBoxTree* _ebbTree;
- SMESH_NodeSearcherImpl* _nodeSearcher;
- SMDSAbs_ElementType _elementType;
- double _tolerance;
- bool _outerFacesFound;
- set<const SMDS_MeshElement*> _outerFaces; // empty means "no internal faces at all"
-
- SMESH_ElementSearcherImpl( SMESHDS_Mesh& mesh, SMDS_ElemIteratorPtr elemIt=SMDS_ElemIteratorPtr())
- : _mesh(&mesh),_meshPartIt(elemIt),_ebbTree(0),_nodeSearcher(0),_tolerance(-1),_outerFacesFound(false) {}
- ~SMESH_ElementSearcherImpl()
- {
- if ( _ebbTree ) delete _ebbTree; _ebbTree = 0;
- if ( _nodeSearcher ) delete _nodeSearcher; _nodeSearcher = 0;
- }
- virtual int FindElementsByPoint(const gp_Pnt& point,
- SMDSAbs_ElementType type,
- vector< const SMDS_MeshElement* >& foundElements);
- virtual TopAbs_State GetPointState(const gp_Pnt& point);
- virtual const SMDS_MeshElement* FindClosestTo( const gp_Pnt& point,
- SMDSAbs_ElementType type );
-
- void GetElementsNearLine( const gp_Ax1& line,
- SMDSAbs_ElementType type,
- vector< const SMDS_MeshElement* >& foundElems);
- double getTolerance();
- bool getIntersParamOnLine(const gp_Lin& line, const SMDS_MeshElement* face,
- const double tolerance, double & param);
- void findOuterBoundary(const SMDS_MeshElement* anyOuterFace);
- bool isOuterBoundary(const SMDS_MeshElement* face) const
- {
- return _outerFaces.empty() || _outerFaces.count(face);
- }
- struct TInters //!< data of intersection of the line and the mesh face (used in GetPointState())
- {
- const SMDS_MeshElement* _face;
- gp_Vec _faceNorm;
- bool _coincides; //!< the line lays in face plane
- TInters(const SMDS_MeshElement* face, const gp_Vec& faceNorm, bool coinc=false)
- : _face(face), _faceNorm( faceNorm ), _coincides( coinc ) {}
- };
- struct TFaceLink //!< link and faces sharing it (used in findOuterBoundary())
- {
- SMESH_TLink _link;
- TIDSortedElemSet _faces;
- TFaceLink( const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, const SMDS_MeshElement* face)
- : _link( n1, n2 ), _faces( &face, &face + 1) {}
- };
-};
-
-ostream& operator<< (ostream& out, const SMESH_ElementSearcherImpl::TInters& i)
-{
- return out << "TInters(face=" << ( i._face ? i._face->GetID() : 0)
- << ", _coincides="<<i._coincides << ")";
-}
-
-//=======================================================================
-/*!
- * \brief define tolerance for search
- */
-//=======================================================================
-
-double SMESH_ElementSearcherImpl::getTolerance()
-{
- if ( _tolerance < 0 )
- {
- const SMDS_MeshInfo& meshInfo = _mesh->GetMeshInfo();
-
- _tolerance = 0;
- if ( _nodeSearcher && meshInfo.NbNodes() > 1 )
- {
- double boxSize = _nodeSearcher->getTree()->maxSize();
- _tolerance = 1e-8 * boxSize/* / meshInfo.NbNodes()*/;
- }
- else if ( _ebbTree && meshInfo.NbElements() > 0 )
- {
- double boxSize = _ebbTree->maxSize();
- _tolerance = 1e-8 * boxSize/* / meshInfo.NbElements()*/;
- }
- if ( _tolerance == 0 )
- {
- // define tolerance by size of a most complex element
- int complexType = SMDSAbs_Volume;
- while ( complexType > SMDSAbs_All &&
- meshInfo.NbElements( SMDSAbs_ElementType( complexType )) < 1 )
- --complexType;
- if ( complexType == SMDSAbs_All ) return 0; // empty mesh
- double elemSize;
- if ( complexType == int( SMDSAbs_Node ))
- {
- SMDS_NodeIteratorPtr nodeIt = _mesh->nodesIterator();
- elemSize = 1;
- if ( meshInfo.NbNodes() > 2 )
- elemSize = SMESH_TNodeXYZ( nodeIt->next() ).Distance( nodeIt->next() );
- }
- else
- {
- SMDS_ElemIteratorPtr elemIt =
- _mesh->elementsIterator( SMDSAbs_ElementType( complexType ));
- const SMDS_MeshElement* elem = elemIt->next();
- SMDS_ElemIteratorPtr nodeIt = elem->nodesIterator();
- SMESH_TNodeXYZ n1( cast2Node( nodeIt->next() ));
- elemSize = 0;
- while ( nodeIt->more() )
- {
- double dist = n1.Distance( cast2Node( nodeIt->next() ));
- elemSize = max( dist, elemSize );
- }
- }
- _tolerance = 1e-4 * elemSize;
- }
- }
- return _tolerance;
-}
-
-//================================================================================
-/*!
- * \brief Find intersection of the line and an edge of face and return parameter on line
- */
-//================================================================================
-
-bool SMESH_ElementSearcherImpl::getIntersParamOnLine(const gp_Lin& line,
- const SMDS_MeshElement* face,
- const double tol,
- double & param)
-{
- int nbInts = 0;
- param = 0;
-
- GeomAPI_ExtremaCurveCurve anExtCC;
- Handle(Geom_Curve) lineCurve = new Geom_Line( line );
-
- int nbNodes = face->IsQuadratic() ? face->NbNodes()/2 : face->NbNodes();
- for ( int i = 0; i < nbNodes && nbInts < 2; ++i )
- {
- GC_MakeSegment edge( SMESH_TNodeXYZ( face->GetNode( i )),
- SMESH_TNodeXYZ( face->GetNode( (i+1)%nbNodes) ));
- anExtCC.Init( lineCurve, edge);
- if ( anExtCC.NbExtrema() > 0 && anExtCC.LowerDistance() <= tol)
- {
- Quantity_Parameter pl, pe;
- anExtCC.LowerDistanceParameters( pl, pe );
- param += pl;
- if ( ++nbInts == 2 )
- break;
- }
- }
- if ( nbInts > 0 ) param /= nbInts;
- return nbInts > 0;
-}
-//================================================================================
-/*!
- * \brief Find all faces belonging to the outer boundary of mesh
- */
-//================================================================================
-
-void SMESH_ElementSearcherImpl::findOuterBoundary(const SMDS_MeshElement* outerFace)
-{
- if ( _outerFacesFound ) return;
-
- // Collect all outer faces by passing from one outer face to another via their links
- // and BTW find out if there are internal faces at all.
-
- // checked links and links where outer boundary meets internal one
- set< SMESH_TLink > visitedLinks, seamLinks;
-
- // links to treat with already visited faces sharing them
- list < TFaceLink > startLinks;
-
- // load startLinks with the first outerFace
- startLinks.push_back( TFaceLink( outerFace->GetNode(0), outerFace->GetNode(1), outerFace));
- _outerFaces.insert( outerFace );
-
- TIDSortedElemSet emptySet;
- while ( !startLinks.empty() )
- {
- const SMESH_TLink& link = startLinks.front()._link;
- TIDSortedElemSet& faces = startLinks.front()._faces;
-
- outerFace = *faces.begin();
- // find other faces sharing the link
- const SMDS_MeshElement* f;
- while (( f = SMESH_MeshEditor::FindFaceInSet(link.node1(), link.node2(), emptySet, faces )))
- faces.insert( f );
-
- // select another outer face among the found
- const SMDS_MeshElement* outerFace2 = 0;
- if ( faces.size() == 2 )
- {
- outerFace2 = (outerFace == *faces.begin() ? *faces.rbegin() : *faces.begin());
- }
- else if ( faces.size() > 2 )
- {
- seamLinks.insert( link );
-
- // link direction within the outerFace
- gp_Vec n1n2( SMESH_TNodeXYZ( link.node1()),
- SMESH_TNodeXYZ( link.node2()));
- int i1 = outerFace->GetNodeIndex( link.node1() );
- int i2 = outerFace->GetNodeIndex( link.node2() );
- bool rev = ( abs(i2-i1) == 1 ? i1 > i2 : i2 > i1 );
- if ( rev ) n1n2.Reverse();
- // outerFace normal
- gp_XYZ ofNorm, fNorm;
- if ( SMESH_Algo::FaceNormal( outerFace, ofNorm, /*normalized=*/false ))
- {
- // direction from the link inside outerFace
- gp_Vec dirInOF = gp_Vec( ofNorm ) ^ n1n2;
- // sort all other faces by angle with the dirInOF
- map< double, const SMDS_MeshElement* > angle2Face;
- set< const SMDS_MeshElement*, TIDCompare >::const_iterator face = faces.begin();
- for ( ; face != faces.end(); ++face )
- {
- if ( !SMESH_Algo::FaceNormal( *face, fNorm, /*normalized=*/false ))
- continue;
- gp_Vec dirInF = gp_Vec( fNorm ) ^ n1n2;
- double angle = dirInOF.AngleWithRef( dirInF, n1n2 );
- if ( angle < 0 ) angle += 2. * M_PI;
- angle2Face.insert( make_pair( angle, *face ));
- }
- if ( !angle2Face.empty() )
- outerFace2 = angle2Face.begin()->second;
- }
- }
- // store the found outer face and add its links to continue seaching from
- if ( outerFace2 )
- {
- _outerFaces.insert( outerFace );
- int nbNodes = outerFace2->NbNodes()/( outerFace2->IsQuadratic() ? 2 : 1 );
- for ( int i = 0; i < nbNodes; ++i )
- {
- SMESH_TLink link2( outerFace2->GetNode(i), outerFace2->GetNode((i+1)%nbNodes));
- if ( visitedLinks.insert( link2 ).second )
- startLinks.push_back( TFaceLink( link2.node1(), link2.node2(), outerFace2 ));
- }
- }
- startLinks.pop_front();
- }
- _outerFacesFound = true;
-
- if ( !seamLinks.empty() )
- {
- // There are internal boundaries touching the outher one,
- // find all faces of internal boundaries in order to find
- // faces of boundaries of holes, if any.
-
- }
- else
- {
- _outerFaces.clear();
- }
-}
-
-//=======================================================================
-/*!
- * \brief Find elements of given type where the given point is IN or ON.
- * Returns nb of found elements and elements them-selves.
- *
- * 'ALL' type means elements of any type excluding nodes, balls and 0D elements
- */
-//=======================================================================
-
-int SMESH_ElementSearcherImpl::
-FindElementsByPoint(const gp_Pnt& point,
- SMDSAbs_ElementType type,
- vector< const SMDS_MeshElement* >& foundElements)
-{
- foundElements.clear();
-
- double tolerance = getTolerance();
-
- // =================================================================================
- if ( type == SMDSAbs_Node || type == SMDSAbs_0DElement || type == SMDSAbs_Ball)
- {
- if ( !_nodeSearcher )
- _nodeSearcher = new SMESH_NodeSearcherImpl( _mesh );
-
- const SMDS_MeshNode* closeNode = _nodeSearcher->FindClosestTo( point );
- if ( !closeNode ) return foundElements.size();
-
- if ( point.Distance( SMESH_TNodeXYZ( closeNode )) > tolerance )
- return foundElements.size(); // to far from any node
-
- if ( type == SMDSAbs_Node )
- {
- foundElements.push_back( closeNode );
- }
- else
- {
- SMDS_ElemIteratorPtr elemIt = closeNode->GetInverseElementIterator( type );
- while ( elemIt->more() )
- foundElements.push_back( elemIt->next() );
- }
- }
- // =================================================================================
- else // elements more complex than 0D
- {
- if ( !_ebbTree || _elementType != type )
- {
- if ( _ebbTree ) delete _ebbTree;
- _ebbTree = new ElementBndBoxTree( *_mesh, _elementType = type, _meshPartIt, tolerance );
- }
- TIDSortedElemSet suspectElems;
- _ebbTree->getElementsNearPoint( point, suspectElems );
- TIDSortedElemSet::iterator elem = suspectElems.begin();
- for ( ; elem != suspectElems.end(); ++elem )
- if ( !SMESH_MeshEditor::IsOut( *elem, point, tolerance ))
- foundElements.push_back( *elem );
- }
- return foundElements.size();
-}
-
-//=======================================================================
-/*!
- * \brief Find an element of given type most close to the given point
- *
- * WARNING: Only face search is implemeneted so far
- */
-//=======================================================================
-
-const SMDS_MeshElement*
-SMESH_ElementSearcherImpl::FindClosestTo( const gp_Pnt& point,
- SMDSAbs_ElementType type )
-{
- const SMDS_MeshElement* closestElem = 0;
-
- if ( type == SMDSAbs_Face )
- {
- if ( !_ebbTree || _elementType != type )
- {
- if ( _ebbTree ) delete _ebbTree;
- _ebbTree = new ElementBndBoxTree( *_mesh, _elementType = type, _meshPartIt );
- }
- TIDSortedElemSet suspectElems;
- _ebbTree->getElementsNearPoint( point, suspectElems );
-
- if ( suspectElems.empty() && _ebbTree->maxSize() > 0 )
- {
- gp_Pnt boxCenter = 0.5 * ( _ebbTree->getBox()->CornerMin() +
- _ebbTree->getBox()->CornerMax() );
- double radius;
- if ( _ebbTree->getBox()->IsOut( point.XYZ() ))
- radius = point.Distance( boxCenter ) - 0.5 * _ebbTree->maxSize();
- else
- radius = _ebbTree->maxSize() / pow( 2., _ebbTree->getHeight()) / 2;
- while ( suspectElems.empty() )
- {
- _ebbTree->getElementsInSphere( point.XYZ(), radius, suspectElems );
- radius *= 1.1;
- }
- }
- double minDist = std::numeric_limits<double>::max();
- multimap< double, const SMDS_MeshElement* > dist2face;
- TIDSortedElemSet::iterator elem = suspectElems.begin();
- for ( ; elem != suspectElems.end(); ++elem )
- {
- double dist = SMESH_MeshEditor::GetDistance( dynamic_cast<const SMDS_MeshFace*>(*elem),
- point );
- if ( dist < minDist + 1e-10)
- {
- minDist = dist;
- dist2face.insert( dist2face.begin(), make_pair( dist, *elem ));
- }
- }
- if ( !dist2face.empty() )
- {
- multimap< double, const SMDS_MeshElement* >::iterator d2f = dist2face.begin();
- closestElem = d2f->second;
- // if there are several elements at the same distance, select one
- // with GC closest to the point
- typedef SMDS_StdIterator< SMESH_TNodeXYZ, SMDS_ElemIteratorPtr > TXyzIterator;
- double minDistToGC = 0;
- for ( ++d2f; d2f != dist2face.end() && fabs( d2f->first - minDist ) < 1e-10; ++d2f )
- {
- if ( minDistToGC == 0 )
- {
- gp_XYZ gc(0,0,0);
- gc = accumulate( TXyzIterator(closestElem->nodesIterator()),
- TXyzIterator(), gc ) / closestElem->NbNodes();
- minDistToGC = point.SquareDistance( gc );
- }
- gp_XYZ gc(0,0,0);
- gc = accumulate( TXyzIterator( d2f->second->nodesIterator()),
- TXyzIterator(), gc ) / d2f->second->NbNodes();
- double d = point.SquareDistance( gc );
- if ( d < minDistToGC )
- {
- minDistToGC = d;
- closestElem = d2f->second;
- }
- }
- // cout << "FindClosestTo( " <<point.X()<<", "<<point.Y()<<", "<<point.Z()<<" ) FACE "
- // <<closestElem->GetID() << " DIST " << minDist << endl;
- }
- }
- else
- {
- // NOT IMPLEMENTED SO FAR
- }
- return closestElem;
-}
-
-
-//================================================================================
-/*!
- * \brief Classify the given point in the closed 2D mesh
- */
-//================================================================================
-
-TopAbs_State SMESH_ElementSearcherImpl::GetPointState(const gp_Pnt& point)
-{
- double tolerance = getTolerance();
- if ( !_ebbTree || _elementType != SMDSAbs_Face )
- {
- if ( _ebbTree ) delete _ebbTree;
- _ebbTree = new ElementBndBoxTree( *_mesh, _elementType = SMDSAbs_Face, _meshPartIt );
- }
- // Algo: analyse transition of a line starting at the point through mesh boundary;
- // try three lines parallel to axis of the coordinate system and perform rough
- // analysis. If solution is not clear perform thorough analysis.
-
- const int nbAxes = 3;
- gp_Dir axisDir[ nbAxes ] = { gp::DX(), gp::DY(), gp::DZ() };
- map< double, TInters > paramOnLine2TInters[ nbAxes ];
- list< TInters > tangentInters[ nbAxes ]; // of faces whose plane includes the line
- multimap< int, int > nbInt2Axis; // to find the simplest case
- for ( int axis = 0; axis < nbAxes; ++axis )
- {
- gp_Ax1 lineAxis( point, axisDir[axis]);
- gp_Lin line ( lineAxis );
-
- TIDSortedElemSet suspectFaces; // faces possibly intersecting the line
- _ebbTree->getElementsNearLine( lineAxis, suspectFaces );
-
- // Intersect faces with the line
-
- map< double, TInters > & u2inters = paramOnLine2TInters[ axis ];
- TIDSortedElemSet::iterator face = suspectFaces.begin();
- for ( ; face != suspectFaces.end(); ++face )
- {
- // get face plane
- gp_XYZ fNorm;
- if ( !SMESH_Algo::FaceNormal( *face, fNorm, /*normalized=*/false)) continue;
- gp_Pln facePlane( SMESH_TNodeXYZ( (*face)->GetNode(0)), fNorm );
-
- // perform intersection
- IntAna_IntConicQuad intersection( line, IntAna_Quadric( facePlane ));
- if ( !intersection.IsDone() )
- continue;
- if ( intersection.IsInQuadric() )
- {
- tangentInters[ axis ].push_back( TInters( *face, fNorm, true ));
- }
- else if ( ! intersection.IsParallel() && intersection.NbPoints() > 0 )
- {
- gp_Pnt intersectionPoint = intersection.Point(1);
- if ( !SMESH_MeshEditor::IsOut( *face, intersectionPoint, tolerance ))
- u2inters.insert(make_pair( intersection.ParamOnConic(1), TInters( *face, fNorm )));
- }
- }
- // Analyse intersections roughly
-
- int nbInter = u2inters.size();
- if ( nbInter == 0 )
- return TopAbs_OUT;
-
- double f = u2inters.begin()->first, l = u2inters.rbegin()->first;
- if ( nbInter == 1 ) // not closed mesh
- return fabs( f ) < tolerance ? TopAbs_ON : TopAbs_UNKNOWN;
-
- if ( fabs( f ) < tolerance || fabs( l ) < tolerance )
- return TopAbs_ON;
-
- if ( (f<0) == (l<0) )
- return TopAbs_OUT;
-
- int nbIntBeforePoint = std::distance( u2inters.begin(), u2inters.lower_bound(0));
- int nbIntAfterPoint = nbInter - nbIntBeforePoint;
- if ( nbIntBeforePoint == 1 || nbIntAfterPoint == 1 )
- return TopAbs_IN;
-
- nbInt2Axis.insert( make_pair( min( nbIntBeforePoint, nbIntAfterPoint ), axis ));
-
- if ( _outerFacesFound ) break; // pass to thorough analysis
-
- } // three attempts - loop on CS axes
-
- // Analyse intersections thoroughly.
- // We make two loops maximum, on the first one we only exclude touching intersections,
- // on the second, if situation is still unclear, we gather and use information on
- // position of faces (internal or outer). If faces position is already gathered,
- // we make the second loop right away.
-
- for ( int hasPositionInfo = _outerFacesFound; hasPositionInfo < 2; ++hasPositionInfo )
- {
- multimap< int, int >::const_iterator nb_axis = nbInt2Axis.begin();
- for ( ; nb_axis != nbInt2Axis.end(); ++nb_axis )
- {
- int axis = nb_axis->second;
- map< double, TInters > & u2inters = paramOnLine2TInters[ axis ];
-
- gp_Ax1 lineAxis( point, axisDir[axis]);
- gp_Lin line ( lineAxis );
-
- // add tangent intersections to u2inters
- double param;
- list< TInters >::const_iterator tgtInt = tangentInters[ axis ].begin();
- for ( ; tgtInt != tangentInters[ axis ].end(); ++tgtInt )
- if ( getIntersParamOnLine( line, tgtInt->_face, tolerance, param ))
- u2inters.insert(make_pair( param, *tgtInt ));
- tangentInters[ axis ].clear();
-
- // Count intersections before and after the point excluding touching ones.
- // If hasPositionInfo we count intersections of outer boundary only
-
- int nbIntBeforePoint = 0, nbIntAfterPoint = 0;
- double f = numeric_limits<double>::max(), l = -numeric_limits<double>::max();
- map< double, TInters >::iterator u_int1 = u2inters.begin(), u_int2 = u_int1;
- bool ok = ! u_int1->second._coincides;
- while ( ok && u_int1 != u2inters.end() )
- {
- double u = u_int1->first;
- bool touchingInt = false;
- if ( ++u_int2 != u2inters.end() )
- {
- // skip intersections at the same point (if the line passes through edge or node)
- int nbSamePnt = 0;
- while ( u_int2 != u2inters.end() && fabs( u_int2->first - u ) < tolerance )
- {
- ++nbSamePnt;
- ++u_int2;
- }
-
- // skip tangent intersections
- int nbTgt = 0;
- const SMDS_MeshElement* prevFace = u_int1->second._face;
- while ( ok && u_int2->second._coincides )
- {
- if ( SMESH_Algo::GetCommonNodes(prevFace , u_int2->second._face).empty() )
- ok = false;
- else
- {
- nbTgt++;
- u_int2++;
- ok = ( u_int2 != u2inters.end() );
- }
- }
- if ( !ok ) break;
-
- // skip intersections at the same point after tangent intersections
- if ( nbTgt > 0 )
- {
- double u2 = u_int2->first;
- ++u_int2;
- while ( u_int2 != u2inters.end() && fabs( u_int2->first - u2 ) < tolerance )
- {
- ++nbSamePnt;
- ++u_int2;
- }
- }
- // decide if we skipped a touching intersection
- if ( nbSamePnt + nbTgt > 0 )
- {
- double minDot = numeric_limits<double>::max(), maxDot = -numeric_limits<double>::max();
- map< double, TInters >::iterator u_int = u_int1;
- for ( ; u_int != u_int2; ++u_int )
- {
- if ( u_int->second._coincides ) continue;
- double dot = u_int->second._faceNorm * line.Direction();
- if ( dot > maxDot ) maxDot = dot;
- if ( dot < minDot ) minDot = dot;
- }
- touchingInt = ( minDot*maxDot < 0 );
- }
- }
- if ( !touchingInt )
- {
- if ( !hasPositionInfo || isOuterBoundary( u_int1->second._face ))
- {
- if ( u < 0 )
- ++nbIntBeforePoint;
- else
- ++nbIntAfterPoint;
- }
- if ( u < f ) f = u;
- if ( u > l ) l = u;
- }
-
- u_int1 = u_int2; // to next intersection
-
- } // loop on intersections with one line
-
- if ( ok )
- {
- if ( fabs( f ) < tolerance || fabs( l ) < tolerance )
- return TopAbs_ON;
-
- if ( nbIntBeforePoint == 0 || nbIntAfterPoint == 0)
- return TopAbs_OUT;
-
- if ( nbIntBeforePoint + nbIntAfterPoint == 1 ) // not closed mesh
- return fabs( f ) < tolerance ? TopAbs_ON : TopAbs_UNKNOWN;
-
- if ( nbIntBeforePoint == 1 || nbIntAfterPoint == 1 )
- return TopAbs_IN;
-
- if ( (f<0) == (l<0) )
- return TopAbs_OUT;
-
- if ( hasPositionInfo )
- return nbIntBeforePoint % 2 ? TopAbs_IN : TopAbs_OUT;
- }
- } // loop on intersections of the tree lines - thorough analysis
-
- if ( !hasPositionInfo )
- {
- // gather info on faces position - is face in the outer boundary or not
- map< double, TInters > & u2inters = paramOnLine2TInters[ 0 ];
- findOuterBoundary( u2inters.begin()->second._face );
- }
-
- } // two attempts - with and w/o faces position info in the mesh
-
- return TopAbs_UNKNOWN;
-}
-
-//=======================================================================
-/*!
- * \brief Return elements possibly intersecting the line
- */
-//=======================================================================
-
-void SMESH_ElementSearcherImpl::GetElementsNearLine( const gp_Ax1& line,
- SMDSAbs_ElementType type,
- vector< const SMDS_MeshElement* >& foundElems)
-{
- if ( !_ebbTree || _elementType != type )
- {
- if ( _ebbTree ) delete _ebbTree;
- _ebbTree = new ElementBndBoxTree( *_mesh, _elementType = type, _meshPartIt );
- }
- TIDSortedElemSet suspectFaces; // elements possibly intersecting the line
- _ebbTree->getElementsNearLine( line, suspectFaces );
- foundElems.assign( suspectFaces.begin(), suspectFaces.end());
-}
-
-//=======================================================================
-/*!
- * \brief Return SMESH_ElementSearcher
- */
-//=======================================================================
-
-SMESH_ElementSearcher* SMESH_MeshEditor::GetElementSearcher()
-{
- return new SMESH_ElementSearcherImpl( *GetMeshDS() );
-}
-
-//=======================================================================
-/*!
- * \brief Return SMESH_ElementSearcher acting on a sub-set of elements
- */
-//=======================================================================
-
-SMESH_ElementSearcher* SMESH_MeshEditor::GetElementSearcher(SMDS_ElemIteratorPtr elemIt)
-{
- return new SMESH_ElementSearcherImpl( *GetMeshDS(), elemIt );
-}
-
-//=======================================================================
-/*!
- * \brief Return true if the point is IN or ON of the element
- */
-//=======================================================================
-
-bool SMESH_MeshEditor::IsOut( const SMDS_MeshElement* element, const gp_Pnt& point, double tol )
-{
- if ( element->GetType() == SMDSAbs_Volume)
- {
- return SMDS_VolumeTool( element ).IsOut( point.X(), point.Y(), point.Z(), tol );
- }
-
- // get ordered nodes
-
- vector< gp_XYZ > xyz;
- vector<const SMDS_MeshNode*> nodeList;
-
- SMDS_ElemIteratorPtr nodeIt = element->nodesIterator();
- if ( element->IsQuadratic() ) {
- if (const SMDS_VtkFace* f=dynamic_cast<const SMDS_VtkFace*>(element))
- nodeIt = f->interlacedNodesElemIterator();
- else if (const SMDS_VtkEdge* e =dynamic_cast<const SMDS_VtkEdge*>(element))
- nodeIt = e->interlacedNodesElemIterator();
- }
- while ( nodeIt->more() )
- {
- const SMDS_MeshNode* node = cast2Node( nodeIt->next() );
- xyz.push_back( SMESH_TNodeXYZ(node) );
- nodeList.push_back(node);
- }
-
- int i, nbNodes = element->NbNodes();
-
- if ( element->GetType() == SMDSAbs_Face ) // --------------------------------------------------
- {
- // compute face normal
- gp_Vec faceNorm(0,0,0);
- xyz.push_back( xyz.front() );
- nodeList.push_back( nodeList.front() );
- for ( i = 0; i < nbNodes; ++i )
- {
- gp_Vec edge1( xyz[i+1], xyz[i]);
- gp_Vec edge2( xyz[i+1], xyz[(i+2)%nbNodes] );
- faceNorm += edge1 ^ edge2;
- }
- double normSize = faceNorm.Magnitude();
- if ( normSize <= tol )
- {
- // degenerated face: point is out if it is out of all face edges
- for ( i = 0; i < nbNodes; ++i )
- {
- SMDS_LinearEdge edge( nodeList[i], nodeList[i+1] );
- if ( !IsOut( &edge, point, tol ))
- return false;
- }
- return true;
- }
- faceNorm /= normSize;
-
- // check if the point lays on face plane
- gp_Vec n2p( xyz[0], point );
- if ( fabs( n2p * faceNorm ) > tol )
- return true; // not on face plane
-
- // check if point is out of face boundary:
- // define it by closest transition of a ray point->infinity through face boundary
- // on the face plane.
- // First, find normal of a plane perpendicular to face plane, to be used as a cutting tool
- // to find intersections of the ray with the boundary.
- gp_Vec ray = n2p;
- gp_Vec plnNorm = ray ^ faceNorm;
- normSize = plnNorm.Magnitude();
- if ( normSize <= tol ) return false; // point coincides with the first node
- plnNorm /= normSize;
- // for each node of the face, compute its signed distance to the plane
- vector<double> dist( nbNodes + 1);
- for ( i = 0; i < nbNodes; ++i )
- {
- gp_Vec n2p( xyz[i], point );
- dist[i] = n2p * plnNorm;
- }
- dist.back() = dist.front();
- // find the closest intersection
- int iClosest = -1;
- double rClosest, distClosest = 1e100;;
- gp_Pnt pClosest;
- for ( i = 0; i < nbNodes; ++i )
- {
- double r;
- if ( fabs( dist[i]) < tol )
- r = 0.;
- else if ( fabs( dist[i+1]) < tol )
- r = 1.;
- else if ( dist[i] * dist[i+1] < 0 )
- r = dist[i] / ( dist[i] - dist[i+1] );
- else
- continue; // no intersection
- gp_Pnt pInt = xyz[i] * (1.-r) + xyz[i+1] * r;
- gp_Vec p2int ( point, pInt);
- if ( p2int * ray > -tol ) // right half-space
- {
- double intDist = p2int.SquareMagnitude();
- if ( intDist < distClosest )
- {
- iClosest = i;
- rClosest = r;
- pClosest = pInt;
- distClosest = intDist;
- }
- }
- }
- if ( iClosest < 0 )
- return true; // no intesections - out
-
- // analyse transition
- gp_Vec edge( xyz[iClosest], xyz[iClosest+1] );
- gp_Vec edgeNorm = -( edge ^ faceNorm ); // normal to intersected edge pointing out of face
- gp_Vec p2int ( point, pClosest );
- bool out = (edgeNorm * p2int) < -tol;
- if ( rClosest > 0. && rClosest < 1. ) // not node intersection
- return out;
-
- // ray pass through a face node; analyze transition through an adjacent edge
- gp_Pnt p1 = xyz[ (rClosest == 0.) ? ((iClosest+nbNodes-1) % nbNodes) : (iClosest+1) ];
- gp_Pnt p2 = xyz[ (rClosest == 0.) ? iClosest : ((iClosest+2) % nbNodes) ];
- gp_Vec edgeAdjacent( p1, p2 );
- gp_Vec edgeNorm2 = -( edgeAdjacent ^ faceNorm );
- bool out2 = (edgeNorm2 * p2int) < -tol;
-
- bool covexCorner = ( edgeNorm * edgeAdjacent * (rClosest==1. ? 1. : -1.)) < 0;
- return covexCorner ? (out || out2) : (out && out2);
- }
- if ( element->GetType() == SMDSAbs_Edge ) // --------------------------------------------------
- {
- // point is out of edge if it is NOT ON any straight part of edge
- // (we consider quadratic edge as being composed of two straight parts)
- for ( i = 1; i < nbNodes; ++i )
- {
- gp_Vec edge( xyz[i-1], xyz[i]);
- gp_Vec n1p ( xyz[i-1], point);
- double dist = ( edge ^ n1p ).Magnitude() / edge.Magnitude();
- if ( dist > tol )
- continue;
- gp_Vec n2p( xyz[i], point );
- if ( fabs( edge.Magnitude() - n1p.Magnitude() - n2p.Magnitude()) > tol )
- continue;
- return false; // point is ON this part
- }
- return true;
- }
- // Node or 0D element -------------------------------------------------------------------------
- {
- gp_Vec n2p ( xyz[0], point );
- return n2p.Magnitude() <= tol;
- }
- return true;
-}
-
-//=======================================================================
-
-namespace
-{
- // Position of a point relative to a segment
- // . .
- // . LEFT .
- // . .
- // VERTEX 1 o----ON-----> VERTEX 2
- // . .
- // . RIGHT .
- // . .
- enum PositionName { POS_LEFT = 1, POS_VERTEX = 2, POS_RIGHT = 4, //POS_ON = 8,
- POS_ALL = POS_LEFT | POS_RIGHT | POS_VERTEX };
- struct PointPos
- {
- PositionName _name;
- int _index; // index of vertex or segment
-
- PointPos( PositionName n, int i=-1 ): _name(n), _index(i) {}
- bool operator < (const PointPos& other ) const
- {
- if ( _name == other._name )
- return ( _index < 0 || other._index < 0 ) ? false : _index < other._index;
- return _name < other._name;
- }
- };
-
- //================================================================================
- /*!
- * \brief Return of a point relative to a segment
- * \param point2D - the point to analyze position of
- * \param xyVec - end points of segments
- * \param index0 - 0-based index of the first point of segment
- * \param posToFindOut - flags of positions to detect
- * \retval PointPos - point position
- */
- //================================================================================
-
- PointPos getPointPosition( const gp_XY& point2D,
- const gp_XY* segEnds,
- const int index0 = 0,
- const int posToFindOut = POS_ALL)
- {
- const gp_XY& p1 = segEnds[ index0 ];
- const gp_XY& p2 = segEnds[ index0+1 ];
- const gp_XY grad = p2 - p1;
-
- if ( posToFindOut & POS_VERTEX )
- {
- // check if the point2D is at "vertex 1" zone
- gp_XY pp1[2] = { p1, gp_XY( p1.X() - grad.Y(),
- p1.Y() + grad.X() ) };
- if ( getPointPosition( point2D, pp1, 0, POS_LEFT|POS_RIGHT )._name == POS_LEFT )
- return PointPos( POS_VERTEX, index0 );
-
- // check if the point2D is at "vertex 2" zone
- gp_XY pp2[2] = { p2, gp_XY( p2.X() - grad.Y(),
- p2.Y() + grad.X() ) };
- if ( getPointPosition( point2D, pp2, 0, POS_LEFT|POS_RIGHT )._name == POS_RIGHT )
- return PointPos( POS_VERTEX, index0 + 1);
- }
- double edgeEquation =
- ( point2D.X() - p1.X() ) * grad.Y() - ( point2D.Y() - p1.Y() ) * grad.X();
- return PointPos( edgeEquation < 0 ? POS_LEFT : POS_RIGHT, index0 );
- }
-}
-
-//=======================================================================
-/*!
- * \brief Return minimal distance from a point to a face
- *
- * Currently we ignore non-planarity and 2nd order of face
- */
-//=======================================================================
-
-double SMESH_MeshEditor::GetDistance( const SMDS_MeshFace* face,
- const gp_Pnt& point )
-{
- double badDistance = -1;
- if ( !face ) return badDistance;
-
- // coordinates of nodes (medium nodes, if any, ignored)
- typedef SMDS_StdIterator< SMESH_TNodeXYZ, SMDS_ElemIteratorPtr > TXyzIterator;
- vector<gp_XYZ> xyz( TXyzIterator( face->nodesIterator()), TXyzIterator() );
- xyz.resize( face->NbCornerNodes()+1 );
-
- // transformation to get xyz[0] lies on the origin, xyz[1] lies on the Z axis,
- // and xyz[2] lies in the XZ plane. This is to pass to 2D space on XZ plane.
- gp_Trsf trsf;
- gp_Vec OZ ( xyz[0], xyz[1] );
- gp_Vec OX ( xyz[0], xyz[2] );
- if ( OZ.Magnitude() < std::numeric_limits<double>::min() )
- {
- if ( xyz.size() < 4 ) return badDistance;
- OZ = gp_Vec ( xyz[0], xyz[2] );
- OX = gp_Vec ( xyz[0], xyz[3] );
- }
- gp_Ax3 tgtCS;
- try {
- tgtCS = gp_Ax3( xyz[0], OZ, OX );
- }
- catch ( Standard_Failure ) {
- return badDistance;
- }
- trsf.SetTransformation( tgtCS );
-
- // move all the nodes to 2D
- vector<gp_XY> xy( xyz.size() );
- for ( size_t i = 0;i < xyz.size()-1; ++i )
- {
- gp_XYZ p3d = xyz[i];
- trsf.Transforms( p3d );
- xy[i].SetCoord( p3d.X(), p3d.Z() );
- }
- xyz.back() = xyz.front();
- xy.back() = xy.front();
-
- // // move the point in 2D
- gp_XYZ tmpPnt = point.XYZ();
- trsf.Transforms( tmpPnt );
- gp_XY point2D( tmpPnt.X(), tmpPnt.Z() );
-
- // loop on segments of the face to analyze point position ralative to the face
- set< PointPos > pntPosSet;
- for ( size_t i = 1; i < xy.size(); ++i )
- {
- PointPos pos = getPointPosition( point2D, &xy[0], i-1 );
- pntPosSet.insert( pos );
- }
-
- // compute distance
- PointPos pos = *pntPosSet.begin();
- // cout << "Face " << face->GetID() << " DIST: ";
- switch ( pos._name )
- {
- case POS_LEFT: {
- // point is most close to a segment
- gp_Vec p0p1( point, xyz[ pos._index ] );
- gp_Vec p1p2( xyz[ pos._index ], xyz[ pos._index+1 ]); // segment vector
- p1p2.Normalize();
- double projDist = p0p1 * p1p2; // distance projected to the segment
- gp_Vec projVec = p1p2 * projDist;
- gp_Vec distVec = p0p1 - projVec;
- // cout << distVec.Magnitude() << ", SEG " << face->GetNode(pos._index)->GetID()
- // << " - " << face->GetNodeWrap(pos._index+1)->GetID() << endl;
- return distVec.Magnitude();
- }
- case POS_RIGHT: {
- // point is inside the face
- double distToFacePlane = tmpPnt.Y();
- // cout << distToFacePlane << ", INSIDE " << endl;
- return Abs( distToFacePlane );
- }
- case POS_VERTEX: {
- // point is most close to a node
- gp_Vec distVec( point, xyz[ pos._index ]);
- // cout << distVec.Magnitude() << " VERTEX " << face->GetNode(pos._index)->GetID() << endl;
- return distVec.Magnitude();
- }
- }
- return badDistance;
-}
-
-//=======================================================================
-//function : SimplifyFace
-//purpose :
-//=======================================================================
-int SMESH_MeshEditor::SimplifyFace (const vector<const SMDS_MeshNode *> faceNodes,
- vector<const SMDS_MeshNode *>& poly_nodes,
- vector<int>& quantities) const
-{
- int nbNodes = faceNodes.size();
-
- if (nbNodes < 3)
- return 0;
-
- set<const SMDS_MeshNode*> nodeSet;
-
- // get simple seq of nodes
- //const SMDS_MeshNode* simpleNodes[ nbNodes ];
- vector<const SMDS_MeshNode*> simpleNodes( nbNodes );
- int iSimple = 0, nbUnique = 0;
-
- simpleNodes[iSimple++] = faceNodes[0];
- nbUnique++;
- for (int iCur = 1; iCur < nbNodes; iCur++) {
- if (faceNodes[iCur] != simpleNodes[iSimple - 1]) {
- simpleNodes[iSimple++] = faceNodes[iCur];
- if (nodeSet.insert( faceNodes[iCur] ).second)
- nbUnique++;
- }
- }
- int nbSimple = iSimple;
- if (simpleNodes[nbSimple - 1] == simpleNodes[0]) {
- nbSimple--;
- iSimple--;
- }
-
- if (nbUnique < 3)
- return 0;
-
- // separate loops
- int nbNew = 0;
- bool foundLoop = (nbSimple > nbUnique);
- while (foundLoop) {
- foundLoop = false;
- set<const SMDS_MeshNode*> loopSet;
- for (iSimple = 0; iSimple < nbSimple && !foundLoop; iSimple++) {
- const SMDS_MeshNode* n = simpleNodes[iSimple];
- if (!loopSet.insert( n ).second) {
- foundLoop = true;
-
- // separate loop
- int iC = 0, curLast = iSimple;
- for (; iC < curLast; iC++) {
- if (simpleNodes[iC] == n) break;
- }
- int loopLen = curLast - iC;
- if (loopLen > 2) {
- // create sub-element
- nbNew++;
- quantities.push_back(loopLen);
- for (; iC < curLast; iC++) {
- poly_nodes.push_back(simpleNodes[iC]);
- }
- }
- // shift the rest nodes (place from the first loop position)
- for (iC = curLast + 1; iC < nbSimple; iC++) {
- simpleNodes[iC - loopLen] = simpleNodes[iC];
- }
- nbSimple -= loopLen;
- iSimple -= loopLen;
- }
- } // for (iSimple = 0; iSimple < nbSimple; iSimple++)
- } // while (foundLoop)
-
- if (iSimple > 2) {
- nbNew++;
- quantities.push_back(iSimple);
- for (int i = 0; i < iSimple; i++)
- poly_nodes.push_back(simpleNodes[i]);
- }
-
- return nbNew;
-}
+ return nbNew;
+}
//=======================================================================
//function : MergeNodes
MergeElements(aGroupsOfElementsID);
}
-//=======================================================================
-//function : FindFaceInSet
-//purpose : Return a face having linked nodes n1 and n2 and which is
-// - not in avoidSet,
-// - in elemSet provided that !elemSet.empty()
-// i1 and i2 optionally returns indices of n1 and n2
-//=======================================================================
-
-const SMDS_MeshElement*
-SMESH_MeshEditor::FindFaceInSet(const SMDS_MeshNode* n1,
- const SMDS_MeshNode* n2,
- const TIDSortedElemSet& elemSet,
- const TIDSortedElemSet& avoidSet,
- int* n1ind,
- int* n2ind)
-
-{
- int i1, i2;
- const SMDS_MeshElement* face = 0;
-
- SMDS_ElemIteratorPtr invElemIt = n1->GetInverseElementIterator(SMDSAbs_Face);
- //MESSAGE("n1->GetInverseElementIterator(SMDSAbs_Face) " << invElemIt);
- while ( invElemIt->more() && !face ) // loop on inverse faces of n1
- {
- //MESSAGE("in while ( invElemIt->more() && !face )");
- const SMDS_MeshElement* elem = invElemIt->next();
- if (avoidSet.count( elem ))
- continue;
- if ( !elemSet.empty() && !elemSet.count( elem ))
- continue;
- // index of n1
- i1 = elem->GetNodeIndex( n1 );
- // find a n2 linked to n1
- int nbN = elem->IsQuadratic() ? elem->NbNodes()/2 : elem->NbNodes();
- for ( int di = -1; di < 2 && !face; di += 2 )
- {
- i2 = (i1+di+nbN) % nbN;
- if ( elem->GetNode( i2 ) == n2 )
- face = elem;
- }
- if ( !face && elem->IsQuadratic())
- {
- // analysis for quadratic elements using all nodes
- const SMDS_VtkFace* F =
- dynamic_cast<const SMDS_VtkFace*>(elem);
- if (!F) throw SALOME_Exception(LOCALIZED("not an SMDS_VtkFace"));
- // use special nodes iterator
- SMDS_ElemIteratorPtr anIter = F->interlacedNodesElemIterator();
- const SMDS_MeshNode* prevN = cast2Node( anIter->next() );
- for ( i1 = -1, i2 = 0; anIter->more() && !face; i1++, i2++ )
- {
- const SMDS_MeshNode* n = cast2Node( anIter->next() );
- if ( n1 == prevN && n2 == n )
- {
- face = elem;
- }
- else if ( n2 == prevN && n1 == n )
- {
- face = elem; swap( i1, i2 );
- }
- prevN = n;
- }
- }
- }
- if ( n1ind ) *n1ind = i1;
- if ( n2ind ) *n2ind = i2;
- return face;
-}
-
//=======================================================================
//function : findAdjacentFace
//purpose :
TIDSortedElemSet elemSet, avoidSet;
if ( elem )
avoidSet.insert ( elem );
- return SMESH_MeshEditor::FindFaceInSet( n1, n2, elemSet, avoidSet );
+ return SMESH_MeshAlgos::FindFaceInSet( n1, n2, elemSet, avoidSet );
}
//=======================================================================
cNL = & contNodes[ contNodes[0].empty() ? 0 : 1 ];
cFL = & contFaces[ contFaces[0].empty() ? 0 : 1 ];
// find one more free border
- if ( ! FindFreeBorder( nStart, *nStartIt, theLastNode, *cNL, *cFL )) {
+ if ( ! SMESH_MeshEditor::FindFreeBorder( nStart, *nStartIt, theLastNode, *cNL, *cFL )) {
cNL->clear();
cFL->clear();
}
const SMDS_MeshElement* elem = ElemItr->next();
if( !elem ) continue;
+ // analyse a necessity of conversion
+ const SMDSAbs_ElementType aType = elem->GetType();
+ if ( aType < SMDSAbs_Edge || aType > SMDSAbs_Volume )
+ continue;
const SMDSAbs_EntityType aGeomType = elem->GetEntityType();
+ bool hasCentralNodes = false;
if ( elem->IsQuadratic() )
{
bool alreadyOK;
switch ( aGeomType ) {
+ case SMDSEntity_Quad_Triangle:
case SMDSEntity_Quad_Quadrangle:
- case SMDSEntity_Quad_Hexa: alreadyOK = !theHelper.GetIsBiQuadratic(); break;
+ case SMDSEntity_Quad_Hexa:
+ alreadyOK = !theHelper.GetIsBiQuadratic(); break;
+
+ case SMDSEntity_BiQuad_Triangle:
case SMDSEntity_BiQuad_Quadrangle:
- case SMDSEntity_TriQuad_Hexa: alreadyOK = theHelper.GetIsBiQuadratic(); break;
- default: alreadyOK = true;
- }
- if ( alreadyOK ) continue;
+ case SMDSEntity_TriQuad_Hexa:
+ alreadyOK = theHelper.GetIsBiQuadratic();
+ hasCentralNodes = true;
+ break;
+ default:
+ alreadyOK = true;
+ }
+ // take into account already present modium nodes
+ switch ( aType ) {
+ case SMDSAbs_Volume:
+ theHelper.AddTLinks( static_cast< const SMDS_MeshVolume* >( elem )); break;
+ case SMDSAbs_Face:
+ theHelper.AddTLinks( static_cast< const SMDS_MeshFace* >( elem )); break;
+ case SMDSAbs_Edge:
+ theHelper.AddTLinks( static_cast< const SMDS_MeshEdge* >( elem )); break;
+ default:;
+ }
+ if ( alreadyOK )
+ continue;
}
// get elem data needed to re-create it
//
- const int id = elem->GetID();
- const int nbNodes = elem->NbCornerNodes();
- const SMDSAbs_ElementType aType = elem->GetType();
+ const int id = elem->GetID();
+ const int nbNodes = elem->NbCornerNodes();
nodes.assign(elem->begin_nodes(), elem->end_nodes());
if ( aGeomType == SMDSEntity_Polyhedra )
nbNodeInFaces = static_cast<const SMDS_VtkVolume* >( elem )->GetQuantities();
// remove a linear element
GetMeshDS()->RemoveFreeElement(elem, theSm, /*fromGroups=*/false);
+ // remove central nodes of biquadratic elements (biquad->quad convertion)
+ if ( hasCentralNodes )
+ for ( size_t i = nbNodes * 2; i < nodes.size(); ++i )
+ if ( nodes[i]->NbInverseElements() == 0 )
+ GetMeshDS()->RemoveFreeNode( nodes[i], theSm, /*fromGroups=*/true );
+
const SMDS_MeshElement* NewElem = 0;
switch( aType )
break;
default:
NewElem = theHelper.AddPolygonalFace(nodes, id, theForce3d);
- continue;
}
break;
}
continue;
}
ReplaceElemInGroups( elem, NewElem, GetMeshDS());
- if( NewElem )
+ if( NewElem && NewElem->getshapeId() < 1 )
theSm->AddElement( NewElem );
}
return nbElem;
aHelper.SetIsBiQuadratic( theToBiQuad );
aHelper.SetElementsOnShape(true);
+ // convert elements assigned to sub-meshes
int nbCheckedElems = 0;
if ( myMesh->HasShapeToMesh() )
{
}
}
}
+
+ // convert elements NOT assigned to sub-meshes
int totalNbElems = meshDS->NbEdges() + meshDS->NbFaces() + meshDS->NbVolumes();
- if ( nbCheckedElems < totalNbElems ) // not all elements are in submeshes
+ if ( nbCheckedElems < totalNbElems ) // not all elements are in sub-meshes
{
aHelper.SetElementsOnShape(false);
SMESHDS_SubMesh *smDS = 0;
+
+ // convert edges
SMDS_EdgeIteratorPtr aEdgeItr = meshDS->edgesIterator();
- while(aEdgeItr->more())
+ while( aEdgeItr->more() )
{
const SMDS_MeshEdge* edge = aEdgeItr->next();
- if(edge && !edge->IsQuadratic())
+ if ( !edge->IsQuadratic() )
{
- int id = edge->GetID();
- //MESSAGE("edge->GetID() " << id);
+ int id = edge->GetID();
const SMDS_MeshNode* n1 = edge->GetNode(0);
const SMDS_MeshNode* n2 = edge->GetNode(1);
const SMDS_MeshEdge* NewEdge = aHelper.AddEdge(n1, n2, id, theForce3d);
ReplaceElemInGroups( edge, NewEdge, GetMeshDS());
}
+ else
+ {
+ aHelper.AddTLinks( static_cast< const SMDS_MeshEdge* >( edge ));
+ }
}
+
+ // convert faces
SMDS_FaceIteratorPtr aFaceItr = meshDS->facesIterator();
- while(aFaceItr->more())
+ while( aFaceItr->more() )
{
const SMDS_MeshFace* face = aFaceItr->next();
if ( !face ) continue;
const SMDSAbs_EntityType type = face->GetEntityType();
- if (( theToBiQuad && type == SMDSEntity_BiQuad_Quadrangle ) ||
- ( !theToBiQuad && type == SMDSEntity_Quad_Quadrangle ))
+ bool alreadyOK;
+ switch( type )
+ {
+ case SMDSEntity_Quad_Triangle:
+ case SMDSEntity_Quad_Quadrangle:
+ alreadyOK = !theToBiQuad;
+ aHelper.AddTLinks( static_cast< const SMDS_MeshFace* >( face ));
+ break;
+ case SMDSEntity_BiQuad_Triangle:
+ case SMDSEntity_BiQuad_Quadrangle:
+ alreadyOK = theToBiQuad;
+ aHelper.AddTLinks( static_cast< const SMDS_MeshFace* >( face ));
+ break;
+ default: alreadyOK = false;
+ }
+ if ( alreadyOK )
continue;
const int id = face->GetID();
switch( type )
{
case SMDSEntity_Triangle:
+ case SMDSEntity_Quad_Triangle:
+ case SMDSEntity_BiQuad_Triangle:
NewFace = aHelper.AddFace(nodes[0], nodes[1], nodes[2], id, theForce3d);
+ if ( nodes.size() == 7 && nodes[6]->NbInverseElements() == 0 ) // rm a central node
+ GetMeshDS()->RemoveFreeNode( nodes[6], /*sm=*/0, /*fromGroups=*/true );
break;
+
case SMDSEntity_Quadrangle:
+ case SMDSEntity_Quad_Quadrangle:
+ case SMDSEntity_BiQuad_Quadrangle:
NewFace = aHelper.AddFace(nodes[0], nodes[1], nodes[2], nodes[3], id, theForce3d);
+ if ( nodes.size() == 9 && nodes[8]->NbInverseElements() == 0 ) // rm a central node
+ GetMeshDS()->RemoveFreeNode( nodes[8], /*sm=*/0, /*fromGroups=*/true );
break;
- default:
+
+ default:;
NewFace = aHelper.AddPolygonalFace(nodes, id, theForce3d);
}
ReplaceElemInGroups( face, NewFace, GetMeshDS());
}
+
+ // convert volumes
vector<int> nbNodeInFaces;
SMDS_VolumeIteratorPtr aVolumeItr = meshDS->volumesIterator();
while(aVolumeItr->more())
{
const SMDS_MeshVolume* volume = aVolumeItr->next();
- if(!volume || volume->IsQuadratic() ) continue;
+ if ( !volume ) continue;
const SMDSAbs_EntityType type = volume->GetEntityType();
if (( theToBiQuad && type == SMDSEntity_TriQuad_Hexa ) ||
( !theToBiQuad && type == SMDSEntity_Quad_Hexa ))
+ {
+ aHelper.AddTLinks( static_cast< const SMDS_MeshVolume* >( volume ));
continue;
-
+ }
const int id = volume->GetID();
vector<const SMDS_MeshNode *> nodes (volume->begin_nodes(), volume->end_nodes());
if ( type == SMDSEntity_Polyhedra )
case SMDSEntity_TriQuad_Hexa:
NewVolume = aHelper.AddVolume(nodes[0], nodes[1], nodes[2], nodes[3],
nodes[4], nodes[5], nodes[6], nodes[7], id, theForce3d);
+ for ( size_t i = 20; i < nodes.size(); ++i ) // rm central nodes
+ if ( nodes[i]->NbInverseElements() == 0 )
+ GetMeshDS()->RemoveFreeNode( nodes[i], /*sm=*/0, /*fromGroups=*/true );
break;
case SMDSEntity_Pyramid:
NewVolume = aHelper.AddVolume(nodes[0], nodes[1], nodes[2],
if ( !theForce3d )
{ // setenv NO_FixQuadraticElements to know if FixQuadraticElements() is guilty of bad conversion
- aHelper.SetSubShape(0); // apply FixQuadraticElements() to the whole mesh
- aHelper.FixQuadraticElements(myError);
+ // aHelper.SetSubShape(0); // apply FixQuadraticElements() to the whole mesh
+ // aHelper.FixQuadraticElements(myError);
+ SMESH_MesherHelper( *myMesh ).FixQuadraticElements(myError);
}
}
SMDS_ElemIteratorPtr invIt = n->GetInverseElementIterator();
while ( invIt->more() )
{
- const SMDS_MeshElement* e = invIt->next();
+ const SMDS_MeshElement* e = invIt->next();
+ const SMDSAbs_ElementType type = e->GetType();
if ( e->IsQuadratic() )
{
+ quadAdjacentElems[ type ].insert( e );
+
bool alreadyOK;
switch ( e->GetEntityType() ) {
+ case SMDSEntity_Quad_Triangle:
case SMDSEntity_Quad_Quadrangle:
case SMDSEntity_Quad_Hexa: alreadyOK = !theToBiQuad; break;
+ case SMDSEntity_BiQuad_Triangle:
case SMDSEntity_BiQuad_Quadrangle:
case SMDSEntity_TriQuad_Hexa: alreadyOK = theToBiQuad; break;
default: alreadyOK = true;
}
if ( alreadyOK )
- {
- quadAdjacentElems[ e->GetType() ].insert( e );
continue;
- }
- }
- if ( e->GetType() >= elemType )
- {
- continue; // same type of more complex linear element
}
+ if ( type >= elemType )
+ continue; // same type or more complex linear element
- if ( !checkedAdjacentElems[ e->GetType() ].insert( e ).second )
+ if ( !checkedAdjacentElems[ type ].insert( e ).second )
continue; // e is already checked
// check nodes
bool allIn = true;
- SMDS_ElemIteratorPtr nodeIt = e->nodesIterator();
+ SMDS_NodeIteratorPtr nodeIt = e->nodeIterator();
while ( nodeIt->more() && allIn )
- allIn = allNodes.count( cast2Node( nodeIt->next() ));
+ allIn = allNodes.count( nodeIt->next() );
if ( allIn )
theElements.insert(e );
}
for ( eIt = theElements.begin(); eIt != theElements.end(); ++eIt )
{
const SMDS_MeshElement* elem = *eIt;
- if( elem->NbNodes() < 2 || elem->IsPoly() )
- continue;
- if ( elem->IsQuadratic() )
- {
- bool alreadyOK;
- switch ( elem->GetEntityType() ) {
- case SMDSEntity_Quad_Quadrangle:
- case SMDSEntity_Quad_Hexa: alreadyOK = !theToBiQuad; break;
- case SMDSEntity_BiQuad_Quadrangle:
- case SMDSEntity_TriQuad_Hexa: alreadyOK = theToBiQuad; break;
- default: alreadyOK = true;
- }
- if ( alreadyOK ) continue;
- }
+ bool alreadyOK;
+ int nbCentralNodes = 0;
+ switch ( elem->GetEntityType() ) {
+ // linear convertible
+ case SMDSEntity_Edge:
+ case SMDSEntity_Triangle:
+ case SMDSEntity_Quadrangle:
+ case SMDSEntity_Tetra:
+ case SMDSEntity_Pyramid:
+ case SMDSEntity_Hexa:
+ case SMDSEntity_Penta: alreadyOK = false; nbCentralNodes = 0; break;
+ // quadratic that can become bi-quadratic
+ case SMDSEntity_Quad_Triangle:
+ case SMDSEntity_Quad_Quadrangle:
+ case SMDSEntity_Quad_Hexa: alreadyOK =!theToBiQuad; nbCentralNodes = 0; break;
+ // bi-quadratic
+ case SMDSEntity_BiQuad_Triangle:
+ case SMDSEntity_BiQuad_Quadrangle: alreadyOK = theToBiQuad; nbCentralNodes = 1; break;
+ case SMDSEntity_TriQuad_Hexa: alreadyOK = theToBiQuad; nbCentralNodes = 7; break;
+ // the rest
+ default: alreadyOK = true;
+ }
+ if ( alreadyOK ) continue;
const SMDSAbs_ElementType type = elem->GetType();
const int id = elem->GetID();
const int nbNodes = elem->NbCornerNodes();
vector<const SMDS_MeshNode *> nodes ( elem->begin_nodes(), elem->end_nodes());
+ helper.SetSubShape( elem->getshapeId() );
+
if ( !smDS || !smDS->Contains( elem ))
smDS = meshDS->MeshElements( elem->getshapeId() );
meshDS->RemoveFreeElement(elem, smDS, /*fromGroups=*/false);
ReplaceElemInGroups( elem, newElem, meshDS);
if( newElem && smDS )
smDS->AddElement( newElem );
- }
- if ( !theForce3d && !getenv("NO_FixQuadraticElements"))
+ // remove central nodes
+ for ( size_t i = nodes.size() - nbCentralNodes; i < nodes.size(); ++i )
+ if ( nodes[i]->NbInverseElements() == 0 )
+ meshDS->RemoveFreeNode( nodes[i], smDS, /*fromGroups=*/true );
+
+ } // loop on theElements
+
+ if ( !theForce3d )
{ // setenv NO_FixQuadraticElements to know if FixQuadraticElements() is guilty of bad conversion
- helper.SetSubShape(0); // apply FixQuadraticElements() to the whole mesh
- helper.FixQuadraticElements( myError );
+ // helper.SetSubShape(0); // apply FixQuadraticElements() to the whole mesh
+ // helper.FixQuadraticElements( myError );
+ SMESH_MesherHelper( *myMesh ).FixQuadraticElements(myError);
}
}
const SMDS_MeshElement* eComplex = invIt2->next();
if ( eComplex->IsQuadratic() && !allMediumNodesIn( eComplex, mediumNodes))
{
- int nbCommonNodes = SMESH_Algo::GetCommonNodes( e, eComplex ).size();
+ int nbCommonNodes = SMESH_MeshAlgos::GetCommonNodes( e, eComplex ).size();
if ( nbCommonNodes == e->NbNodes())
{
complexFound = true;
//cout << "Side " << iSide << " ";
//cout << "L( " << n1->GetID() << ", " << n2->GetID() << " ) " << endl;
// find a face by two link nodes
- face[ iSide ] = FindFaceInSet( n1, n2, *faceSetPtr[ iSide ], avoidSet,
- &iLinkNode[iSide][0], &iLinkNode[iSide][1] );
+ face[ iSide ] = SMESH_MeshAlgos::FindFaceInSet( n1, n2,
+ *faceSetPtr[ iSide ], avoidSet,
+ &iLinkNode[iSide][0],
+ &iLinkNode[iSide][1] );
if ( face[ iSide ])
{
//cout << " F " << face[ iSide]->GetID() <<endl;
while (eIt->more())
{
const SMDS_MeshElement* elem = eIt->next();
- const int iQuad = elem->IsQuadratic();
+ const int iQuad = elem->IsQuadratic();
// ------------------------------------------------------------------------------------
// 1. For an elem, get present bnd elements and connectivities of missing bnd elements
// ------------------------------------------------------------------------------------
vector<const SMDS_MeshElement*> presentBndElems;
vector<TConnectivity> missingBndElems;
- TConnectivity nodes;
+ TConnectivity nodes, elemNodes;
if ( vTool.Set(elem, /*ignoreCentralNodes=*/true) ) // elem is a volume --------------
{
vTool.SetExternalNormal();
if ( !vTool.IsFreeFace(iface, &otherVol) &&
( !aroundElements || elements.count( otherVol )))
continue;
- const int nbFaceNodes = vTool.NbFaceNodes(iface);
const SMDS_MeshNode** nn = vTool.GetFaceNodes(iface);
+ const int nbFaceNodes = vTool.NbFaceNodes (iface);
if ( missType == SMDSAbs_Edge ) // boundary edges
{
nodes.resize( 2+iQuad );
{
nodes.clear();
for ( inode = 0; inode < nbFaceNodes; inode += 1+iQuad)
- nodes.push_back( nn[inode] );
- if (iQuad) // add medium nodes
+ nodes.push_back( nn[inode] ); // add corner nodes
+ if (iQuad)
for ( inode = 1; inode < nbFaceNodes; inode += 2)
- nodes.push_back( nn[inode] );
+ nodes.push_back( nn[inode] ); // add medium nodes
int iCenter = vTool.GetCenterNodeIndex(iface); // for HEX27
if ( iCenter > 0 )
nodes.push_back( vTool.GetNodes()[ iCenter ] );
}
}
}
- else // elem is a face ------------------------------------------
+ else if ( elem->GetType() == SMDSAbs_Face ) // elem is a face ------------------------
{
avoidSet.clear(), avoidSet.insert( elem );
- int nbNodes = elem->NbCornerNodes();
- nodes.resize( 2 /*+ iQuad*/);
- for ( int i = 0; i < nbNodes; i++ )
+ elemNodes.assign( SMDS_MeshElement::iterator( elem->interlacedNodesElemIterator() ),
+ SMDS_MeshElement::iterator() );
+ elemNodes.push_back( elemNodes[0] );
+ nodes.resize( 2 + iQuad );
+ const int nbLinks = elem->NbCornerNodes();
+ for ( int i = 0, iN = 0; i < nbLinks; i++, iN += 1+iQuad )
{
- nodes[0] = elem->GetNode(i);
- nodes[1] = elem->GetNode((i+1)%nbNodes);
- if ( FindFaceInSet( nodes[0], nodes[1], *elemSet, avoidSet))
+ nodes[0] = elemNodes[iN];
+ nodes[1] = elemNodes[iN+1+iQuad];
+ if ( SMESH_MeshAlgos::FindFaceInSet( nodes[0], nodes[1], *elemSet, avoidSet))
continue; // not free link
- //if ( iQuad )
- //nodes[2] = elem->GetNode( i + nbNodes );
+ if ( iQuad ) nodes[2] = elemNodes[iN+1];
if ( const SMDS_MeshElement* edge =
- aMesh->FindElement(nodes,SMDSAbs_Edge,/*noMedium=*/true))
+ aMesh->FindElement(nodes,SMDSAbs_Edge,/*noMedium=*/false))
presentBndElems.push_back( edge );
else
missingBndElems.push_back( nodes );