1 // Copyright (C) 2007-2020 CEA/DEN, EDF R&D, OPEN CASCADE
3 // This library is free software; you can redistribute it and/or
4 // modify it under the terms of the GNU Lesser General Public
5 // License as published by the Free Software Foundation; either
6 // version 2.1 of the License, or (at your option) any later version.
8 // This library is distributed in the hope that it will be useful,
9 // but WITHOUT ANY WARRANTY; without even the implied warranty of
10 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 // Lesser General Public License for more details.
13 // You should have received a copy of the GNU Lesser General Public
14 // License along with this library; if not, write to the Free Software
15 // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
20 // File : StdMeshers_ViscousLayers2D.cxx
21 // Created : 23 Jul 2012
22 // Author : Edward AGAPOV (eap)
24 #include "StdMeshers_ViscousLayers2D.hxx"
26 #include "SMDS_EdgePosition.hxx"
27 #include "SMDS_FaceOfNodes.hxx"
28 #include "SMDS_FacePosition.hxx"
29 #include "SMDS_MeshNode.hxx"
30 #include "SMDS_SetIterator.hxx"
31 #include "SMESHDS_Group.hxx"
32 #include "SMESHDS_Hypothesis.hxx"
33 #include "SMESHDS_Mesh.hxx"
34 #include "SMESH_Algo.hxx"
35 #include "SMESH_ComputeError.hxx"
36 #include "SMESH_ControlsDef.hxx"
37 #include "SMESH_Gen.hxx"
38 #include "SMESH_Group.hxx"
39 #include "SMESH_HypoFilter.hxx"
40 #include "SMESH_Mesh.hxx"
41 #include "SMESH_MeshEditor.hxx"
42 #include "SMESH_MesherHelper.hxx"
43 #include "SMESH_ProxyMesh.hxx"
44 #include "SMESH_Quadtree.hxx"
45 #include "SMESH_subMesh.hxx"
46 #include "SMESH_subMeshEventListener.hxx"
47 #include "StdMeshers_FaceSide.hxx"
49 #include "utilities.h"
51 #include <BRepAdaptor_Curve.hxx>
52 #include <BRepAdaptor_Curve2d.hxx>
53 #include <BRep_Tool.hxx>
54 #include <Bnd_B2d.hxx>
55 #include <Bnd_B3d.hxx>
57 #include <GCPnts_AbscissaPoint.hxx>
58 #include <Geom2dAdaptor_Curve.hxx>
59 #include <Geom2dInt_GInter.hxx>
60 #include <Geom2d_Circle.hxx>
61 #include <Geom2d_Line.hxx>
62 #include <Geom2d_TrimmedCurve.hxx>
63 #include <GeomAdaptor_Curve.hxx>
64 #include <Geom_Circle.hxx>
65 #include <Geom_Curve.hxx>
66 #include <Geom_Line.hxx>
67 #include <Geom_TrimmedCurve.hxx>
68 #include <IntRes2d_IntersectionPoint.hxx>
69 #include <Precision.hxx>
70 #include <Standard_ErrorHandler.hxx>
71 #include <TColStd_Array1OfReal.hxx>
73 #include <TopExp_Explorer.hxx>
74 #include <TopTools_IndexedDataMapOfShapeListOfShape.hxx>
75 #include <TopTools_IndexedMapOfShape.hxx>
76 #include <TopTools_ListIteratorOfListOfShape.hxx>
77 #include <TopTools_ListOfShape.hxx>
78 #include <TopTools_MapOfShape.hxx>
80 #include <TopoDS_Edge.hxx>
81 #include <TopoDS_Face.hxx>
82 #include <TopoDS_Vertex.hxx>
98 //================================================================================
103 //--------------------------------------------------------------------------------
105 * \brief Proxy Mesh of FACE with viscous layers. It's needed only to
106 * redefine newSubmesh().
108 struct _ProxyMeshOfFace : public SMESH_ProxyMesh
110 //---------------------------------------------------
111 // Proxy sub-mesh of an EDGE. It contains nodes in _uvPtStructVec.
112 struct _EdgeSubMesh : public SMESH_ProxyMesh::SubMesh
114 _EdgeSubMesh(const SMDS_Mesh* mesh, int index=0): SubMesh(mesh,index) {}
115 //virtual int NbElements() const { return _elements.size()+1; }
116 virtual int NbNodes() const { return Max( 0, _uvPtStructVec.size()-2 ); }
117 void SetUVPtStructVec(UVPtStructVec& vec) { _uvPtStructVec.swap( vec ); }
118 UVPtStructVec& GetUVPtStructVec() { return _uvPtStructVec; }
120 _ProxyMeshOfFace(const SMESH_Mesh& mesh): SMESH_ProxyMesh(mesh) {}
121 _EdgeSubMesh* GetEdgeSubMesh(int ID) { return (_EdgeSubMesh*) getProxySubMesh(ID); }
122 virtual SubMesh* newSubmesh(int index=0) const { return new _EdgeSubMesh( GetMeshDS(), index); }
124 //--------------------------------------------------------------------------------
126 * \brief SMESH_subMeshEventListener used to store _ProxyMeshOfFace, computed
127 * by _ViscousBuilder2D, in a SMESH_subMesh of the FACE.
128 * This is to delete _ProxyMeshOfFace when StdMeshers_ViscousLayers2D
129 * hypothesis is modified
131 struct _ProxyMeshHolder : public SMESH_subMeshEventListener
133 _ProxyMeshHolder( const TopoDS_Face& face,
134 SMESH_ProxyMesh::Ptr& mesh)
135 : SMESH_subMeshEventListener( /*deletable=*/true, Name() )
137 SMESH_subMesh* faceSM = mesh->GetMesh()->GetSubMesh( face );
138 faceSM->SetEventListener( this, new _Data( mesh ), faceSM );
140 // Finds a proxy mesh of face
141 static SMESH_ProxyMesh::Ptr FindProxyMeshOfFace( const TopoDS_Shape& face,
144 SMESH_ProxyMesh::Ptr proxy;
145 SMESH_subMesh* faceSM = mesh.GetSubMesh( face );
146 if ( EventListenerData* ld = faceSM->GetEventListenerData( Name() ))
147 proxy = static_cast< _Data* >( ld )->_mesh;
151 void ProcessEvent(const int event,
153 SMESH_subMesh* /*subMesh*/,
154 EventListenerData* data,
155 const SMESH_Hypothesis* /*hyp*/)
157 if ( event == SMESH_subMesh::CLEAN && eventType == SMESH_subMesh::COMPUTE_EVENT)
158 ((_Data*) data)->_mesh.reset();
161 // holder of a proxy mesh
162 struct _Data : public SMESH_subMeshEventListenerData
164 SMESH_ProxyMesh::Ptr _mesh;
165 _Data( SMESH_ProxyMesh::Ptr& mesh )
166 :SMESH_subMeshEventListenerData( /*isDeletable=*/true), _mesh( mesh )
169 // Returns identifier string
170 static const char* Name() { return "VISCOUS_2D::_ProxyMeshHolder"; }
174 //--------------------------------------------------------------------------------
176 * \brief Segment connecting inner ends of two _LayerEdge's.
180 const gp_XY* _uv[2]; // pointer to _LayerEdge::_uvIn
181 int _indexInLine; // position in _PolyLine
184 _Segment(const gp_XY& p1, const gp_XY& p2):_indexInLine(-1) { _uv[0] = &p1; _uv[1] = &p2; }
185 const gp_XY& p1() const { return *_uv[0]; }
186 const gp_XY& p2() const { return *_uv[1]; }
188 //--------------------------------------------------------------------------------
190 * \brief Tree of _Segment's used for a faster search of _Segment's.
192 struct _SegmentTree : public SMESH_Quadtree
194 typedef boost::shared_ptr< _SegmentTree > Ptr;
196 _SegmentTree( const vector< _Segment >& segments );
197 void GetSegmentsNear( const _Segment& seg, vector< const _Segment* >& found );
198 void GetSegmentsNear( const gp_Ax2d& ray, vector< const _Segment* >& found );
201 _SegmentTree* newChild() const { return new _SegmentTree; }
202 void buildChildrenData();
203 Bnd_B2d* buildRootBox();
205 static int maxNbSegInLeaf() { return 5; }
208 const _Segment* _seg;
210 void Set( const _Segment& seg )
213 _iMin[0] = ( seg._uv[1]->X() < seg._uv[0]->X() );
214 _iMin[1] = ( seg._uv[1]->Y() < seg._uv[0]->Y() );
216 bool IsOut( const _Segment& seg ) const;
217 bool IsOut( const gp_Ax2d& ray ) const;
219 vector< _SegBox > _segments;
221 //--------------------------------------------------------------------------------
223 * \brief Edge normal to FACE boundary, connecting a point on EDGE (_uvOut)
224 * and a point of a layer internal boundary (_uvIn)
228 gp_XY _uvOut; // UV on the FACE boundary
229 gp_XY _uvIn; // UV inside the FACE
230 double _length2D; // distance between _uvOut and _uvIn
232 bool _isBlocked;// is more inflation possible or not
234 gp_XY _normal2D; // to curve
235 double _len2dTo3dRatio; // to pass 2D <--> 3D
236 gp_Ax2d _ray; // a ray starting at _uvOut
238 vector<gp_XY> _uvRefined; // divisions by layers
240 bool SetNewLength( const double length );
246 //--------------------------------------------------------------------------------
248 * \brief Poly line composed of _Segment's of one EDGE.
249 * It's used to detect intersection of inflated layers by intersecting
254 StdMeshers_FaceSide* _wire;
255 int _edgeInd; // index of my EDGE in _wire
256 bool _advancable; // true if there is a viscous layer on my EDGE
257 bool _isStraight2D;// pcurve type
258 _PolyLine* _leftLine; // lines of neighbour EDGE's
259 _PolyLine* _rightLine;
260 int _firstPntInd; // index in vector<UVPtStruct> of _wire
262 int _index; // index in _ViscousBuilder2D::_polyLineVec
264 vector< _LayerEdge > _lEdges; /* _lEdges[0] is usually is not treated
265 as it is equal to the last one of the _leftLine */
266 vector< _Segment > _segments; // segments connecting _uvIn's of _lEdges
267 _SegmentTree::Ptr _segTree;
269 vector< _PolyLine* > _reachableLines; // lines able to interfere with my layer
271 vector< const SMDS_MeshNode* > _leftNodes; // nodes built from a left VERTEX
272 vector< const SMDS_MeshNode* > _rightNodes; // nodes built from a right VERTEX
274 typedef vector< _Segment >::iterator TSegIterator;
275 typedef vector< _LayerEdge >::iterator TEdgeIterator;
277 TIDSortedElemSet _newFaces; // faces generated from this line
279 bool IsCommonEdgeShared( const _PolyLine& other );
280 size_t FirstLEdge() const
282 return ( _leftLine->_advancable && _lEdges.size() > 2 ) ? 1 : 0;
284 bool IsAdjacent( const _Segment& seg, const _LayerEdge* LE=0 ) const
286 if ( LE /*&& seg._indexInLine < _lEdges.size()*/ )
287 return ( seg._uv[0] == & LE->_uvIn ||
288 seg._uv[1] == & LE->_uvIn );
289 return ( & seg == &_leftLine->_segments.back() ||
290 & seg == &_rightLine->_segments[0] );
292 bool IsConcave() const;
294 //--------------------------------------------------------------------------------
296 * \brief Intersector of _Segment's
298 struct _SegmentIntersection
300 gp_XY _vec1, _vec2; // Vec( _seg.p1(), _seg.p2() )
301 gp_XY _vec21; // Vec( _seg2.p1(), _seg1.p1() )
302 double _D; // _vec1.Crossed( _vec2 )
303 double _param1, _param2; // intersection param on _seg1 and _seg2
305 _SegmentIntersection(): _D(0), _param1(0), _param2(0) {}
307 bool Compute(const _Segment& seg1, const _Segment& seg2, bool seg2IsRay = false )
309 // !!! If seg2IsRay, returns true at any _param2 !!!
310 const double eps = 1e-10;
311 _vec1 = seg1.p2() - seg1.p1();
312 _vec2 = seg2.p2() - seg2.p1();
313 _vec21 = seg1.p1() - seg2.p1();
314 _D = _vec1.Crossed(_vec2);
315 if ( fabs(_D) < std::numeric_limits<double>::min())
317 _param1 = _vec2.Crossed(_vec21) / _D;
318 if (_param1 < -eps || _param1 > 1 + eps )
320 _param2 = _vec1.Crossed(_vec21) / _D;
321 return seg2IsRay || ( _param2 > -eps && _param2 < 1 + eps );
323 bool Compute( const _Segment& seg1, const gp_Ax2d& ray )
325 gp_XY segEnd = ray.Location().XY() + ray.Direction().XY();
326 _Segment seg2( ray.Location().XY(), segEnd );
327 return Compute( seg1, seg2, true );
329 //gp_XY GetPoint() { return _seg1.p1() + _param1 * _vec1; }
331 //--------------------------------------------------------------------------------
333 typedef map< const SMDS_MeshNode*, _LayerEdge*, TIDCompare > TNode2Edge;
334 typedef StdMeshers_ViscousLayers2D THypVL;
336 //--------------------------------------------------------------------------------
338 * \brief Builder of viscous layers
340 class _ViscousBuilder2D
343 _ViscousBuilder2D(SMESH_Mesh& theMesh,
344 const TopoDS_Face& theFace,
345 vector< const THypVL* > & theHyp,
346 vector< TopoDS_Shape > & theHypShapes);
347 SMESH_ComputeErrorPtr GetError() const { return _error; }
349 SMESH_ProxyMesh::Ptr Compute();
353 friend class ::StdMeshers_ViscousLayers2D;
355 bool findEdgesWithLayers();
356 bool makePolyLines();
358 bool fixCollisions();
362 bool toShrinkForAdjacent( const TopoDS_Face& adjFace,
363 const TopoDS_Edge& E,
364 const TopoDS_Vertex& V);
365 void setLenRatio( _LayerEdge& LE, const gp_Pnt& pOut );
366 void setLayerEdgeData( _LayerEdge& lEdge,
368 Handle(Geom2d_Curve)& pcurve,
369 Handle(Geom_Curve)& curve,
372 GeomAPI_ProjectPointOnSurf* faceProj);
373 void adjustCommonEdge( _PolyLine& LL, _PolyLine& LR );
374 void calcLayersHeight(const double totalThick,
375 vector<double>& heights,
377 bool removeMeshFaces(const TopoDS_Shape& face);
379 const THypVL* getLineHypothesis(int iPL);
380 double getLineThickness (int iPL);
382 bool error( const string& text );
383 SMESHDS_Mesh* getMeshDS() { return _mesh->GetMeshDS(); }
384 _ProxyMeshOfFace* getProxyMesh();
387 //void makeGroupOfLE();
394 vector< const THypVL* > _hyps;
395 vector< TopoDS_Shape > _hypShapes;
398 SMESH_ProxyMesh::Ptr _proxyMesh;
399 SMESH_ComputeErrorPtr _error;
402 Handle(Geom_Surface) _surface;
403 SMESH_MesherHelper _helper;
404 TSideVector _faceSideVec; // wires (StdMeshers_FaceSide) of _face
405 vector<_PolyLine> _polyLineVec; // fronts to advance
406 vector< const THypVL* > _hypOfEdge; // a hyp per an EDGE of _faceSideVec
407 bool _is2DIsotropic; // is same U and V resoulution of _face
408 vector<TopoDS_Face> _clearedFaces; // FACEs whose mesh was removed by shrink()
410 //double _fPowN; // to compute thickness of layers
411 double _maxThickness; // max possible layers thickness
413 // sub-shapes of _face
414 set<TGeomID> _ignoreShapeIds; // ids of EDGEs w/o layers
415 set<TGeomID> _noShrinkVert; // ids of VERTEXes that are extremities
416 // of EDGEs along which _LayerEdge can't be inflated because no viscous layers
417 // defined on neighbour FACEs sharing an EDGE. Nonetheless _LayerEdge's
418 // are inflated along such EDGEs but then such _LayerEdge's are turned into
419 // a node on VERTEX, i.e. all nodes on a _LayerEdge are melded into one node.
421 int _nbLE; // for DEBUG
424 //================================================================================
426 * \brief Returns StdMeshers_ViscousLayers2D for the FACE
428 bool findHyps(SMESH_Mesh& theMesh,
429 const TopoDS_Face& theFace,
430 vector< const StdMeshers_ViscousLayers2D* > & theHyps,
431 vector< TopoDS_Shape > & theAssignedTo)
434 theAssignedTo.clear();
435 SMESH_HypoFilter hypFilter
436 ( SMESH_HypoFilter::HasName( StdMeshers_ViscousLayers2D::GetHypType() ));
437 list< const SMESHDS_Hypothesis * > hypList;
438 list< TopoDS_Shape > hypShapes;
439 int nbHyps = theMesh.GetHypotheses
440 ( theFace, hypFilter, hypList, /*ancestors=*/true, &hypShapes );
443 theHyps.reserve( nbHyps );
444 theAssignedTo.reserve( nbHyps );
445 list< const SMESHDS_Hypothesis * >::iterator hyp = hypList.begin();
446 list< TopoDS_Shape >::iterator shape = hypShapes.begin();
447 for ( ; hyp != hypList.end(); ++hyp, ++shape )
449 theHyps.push_back( static_cast< const StdMeshers_ViscousLayers2D* > ( *hyp ));
450 theAssignedTo.push_back( *shape );
456 //================================================================================
458 * \brief Returns ids of EDGEs not to create Viscous Layers on
459 * \param [in] theHyp - the hypothesis, holding edges either to ignore or not to.
460 * \param [in] theFace - the FACE whose EDGEs are checked.
461 * \param [in] theMesh - the mesh.
462 * \param [in,out] theEdgeIds - container returning EDGEs to ignore.
463 * \return int - number of found EDGEs of the FACE.
465 //================================================================================
467 int getEdgesToIgnore( const StdMeshers_ViscousLayers2D* theHyp,
468 const TopoDS_Shape& theFace,
469 const SMESHDS_Mesh* theMesh,
470 set< int > & theEdgeIds)
472 int nbEdgesToIgnore = 0;
473 vector<TGeomID> ids = theHyp->GetBndShapes();
474 if ( theHyp->IsToIgnoreShapes() ) // EDGEs to ignore are given
476 for ( size_t i = 0; i < ids.size(); ++i )
478 const TopoDS_Shape& E = theMesh->IndexToShape( ids[i] );
480 E.ShapeType() == TopAbs_EDGE &&
481 SMESH_MesherHelper::IsSubShape( E, theFace ))
483 theEdgeIds.insert( ids[i] );
488 else // EDGEs to make the Viscous Layers on are given
490 TopExp_Explorer E( theFace, TopAbs_EDGE );
491 for ( ; E.More(); E.Next(), ++nbEdgesToIgnore )
492 theEdgeIds.insert( theMesh->ShapeToIndex( E.Current() ));
494 for ( size_t i = 0; i < ids.size(); ++i )
495 nbEdgesToIgnore -= theEdgeIds.erase( ids[i] );
497 return nbEdgesToIgnore;
500 } // namespace VISCOUS_2D
502 //================================================================================
503 // StdMeshers_ViscousLayers hypothesis
505 StdMeshers_ViscousLayers2D::StdMeshers_ViscousLayers2D(int hypId, SMESH_Gen* gen)
506 :StdMeshers_ViscousLayers(hypId, gen)
508 _name = StdMeshers_ViscousLayers2D::GetHypType();
509 _param_algo_dim = -2; // auxiliary hyp used by 2D algos
511 // --------------------------------------------------------------------------------
512 bool StdMeshers_ViscousLayers2D::SetParametersByMesh(const SMESH_Mesh* /*theMesh*/,
513 const TopoDS_Shape& /*theShape*/)
518 // --------------------------------------------------------------------------------
520 StdMeshers_ViscousLayers2D::Compute(SMESH_Mesh& theMesh,
521 const TopoDS_Face& theFace)
523 using namespace VISCOUS_2D;
524 vector< const StdMeshers_ViscousLayers2D* > hyps;
525 vector< TopoDS_Shape > hypShapes;
527 SMESH_ProxyMesh::Ptr pm = _ProxyMeshHolder::FindProxyMeshOfFace( theFace, theMesh );
530 if ( findHyps( theMesh, theFace, hyps, hypShapes ))
532 VISCOUS_2D::_ViscousBuilder2D builder( theMesh, theFace, hyps, hypShapes );
533 pm = builder.Compute();
534 SMESH_ComputeErrorPtr error = builder.GetError();
535 if ( error && !error->IsOK() )
536 theMesh.GetSubMesh( theFace )->GetComputeError() = error;
538 pm.reset( new SMESH_ProxyMesh( theMesh ));
539 if ( getenv("__ONLY__VL2D__"))
544 pm.reset( new SMESH_ProxyMesh( theMesh ));
549 // --------------------------------------------------------------------------------
550 void StdMeshers_ViscousLayers2D::SetProxyMeshOfEdge( const StdMeshers_FaceSide& edgeNodes )
552 using namespace VISCOUS_2D;
553 SMESH_ProxyMesh::Ptr pm =
554 _ProxyMeshHolder::FindProxyMeshOfFace( edgeNodes.Face(), *edgeNodes.GetMesh() );
556 _ProxyMeshOfFace* proxyMeshOfFace = new _ProxyMeshOfFace( *edgeNodes.GetMesh() );
557 pm.reset( proxyMeshOfFace );
558 new _ProxyMeshHolder( edgeNodes.Face(), pm );
560 _ProxyMeshOfFace* proxyMeshOfFace = static_cast<_ProxyMeshOfFace*>( pm.get() );
561 _ProxyMeshOfFace::_EdgeSubMesh* sm = proxyMeshOfFace->GetEdgeSubMesh( edgeNodes.EdgeID(0) );
562 sm->GetUVPtStructVec() = edgeNodes.GetUVPtStruct();
564 // --------------------------------------------------------------------------------
565 bool StdMeshers_ViscousLayers2D::HasProxyMesh( const TopoDS_Face& face, SMESH_Mesh& mesh )
567 return VISCOUS_2D::_ProxyMeshHolder::FindProxyMeshOfFace( face, mesh ).get();
569 // --------------------------------------------------------------------------------
570 SMESH_ComputeErrorPtr
571 StdMeshers_ViscousLayers2D::CheckHypothesis(SMESH_Mesh& theMesh,
572 const TopoDS_Shape& theShape,
573 SMESH_Hypothesis::Hypothesis_Status& theStatus)
575 SMESH_ComputeErrorPtr error = SMESH_ComputeError::New(COMPERR_OK);
576 theStatus = SMESH_Hypothesis::HYP_OK;
578 TopExp_Explorer exp( theShape, TopAbs_FACE );
579 for ( ; exp.More() && theStatus == SMESH_Hypothesis::HYP_OK; exp.Next() )
581 const TopoDS_Face& face = TopoDS::Face( exp.Current() );
582 vector< const StdMeshers_ViscousLayers2D* > hyps;
583 vector< TopoDS_Shape > hypShapes;
584 if ( VISCOUS_2D::findHyps( theMesh, face, hyps, hypShapes ))
586 VISCOUS_2D::_ViscousBuilder2D builder( theMesh, face, hyps, hypShapes );
587 builder._faceSideVec =
588 StdMeshers_FaceSide::GetFaceWires( face, theMesh, true, error,
589 NULL, SMESH_ProxyMesh::Ptr(),
590 /*theCheckVertexNodes=*/false);
591 if ( error->IsOK() && !builder.findEdgesWithLayers())
593 error = builder.GetError();
594 if ( error && !error->IsOK() )
595 theStatus = SMESH_Hypothesis::HYP_INCOMPAT_HYPS;
601 // --------------------------------------------------------------------------------
602 void StdMeshers_ViscousLayers2D::RestoreListeners() const
604 StudyContextStruct* sc = _gen->GetStudyContext();
605 std::map < int, SMESH_Mesh * >::iterator i_smesh = sc->mapMesh.begin();
606 for ( ; i_smesh != sc->mapMesh.end(); ++i_smesh )
608 SMESH_Mesh* smesh = i_smesh->second;
610 !smesh->HasShapeToMesh() ||
611 !smesh->GetMeshDS() ||
612 !smesh->GetMeshDS()->IsUsedHypothesis( this ))
615 // set event listeners to EDGE's of FACE where this hyp is used
616 TopoDS_Shape shape = i_smesh->second->GetShapeToMesh();
617 for ( TopExp_Explorer face( shape, TopAbs_FACE); face.More(); face.Next() )
618 if ( SMESH_Algo* algo = _gen->GetAlgo( *smesh, face.Current() ))
620 const std::list <const SMESHDS_Hypothesis *> & usedHyps =
621 algo->GetUsedHypothesis( *smesh, face.Current(), /*ignoreAuxiliary=*/false );
622 if ( std::find( usedHyps.begin(), usedHyps.end(), this ) != usedHyps.end() )
623 for ( TopExp_Explorer edge( face.Current(), TopAbs_EDGE); edge.More(); edge.Next() )
624 VISCOUS_3D::ToClearSubWithMain( smesh->GetSubMesh( edge.Current() ), face.Current() );
628 // END StdMeshers_ViscousLayers2D hypothesis
629 //================================================================================
631 using namespace VISCOUS_2D;
633 //================================================================================
635 * \brief Constructor of _ViscousBuilder2D
637 //================================================================================
639 _ViscousBuilder2D::_ViscousBuilder2D(SMESH_Mesh& theMesh,
640 const TopoDS_Face& theFace,
641 vector< const THypVL* > & theHyps,
642 vector< TopoDS_Shape > & theAssignedTo):
643 _mesh( &theMesh ), _face( theFace ), _helper( theMesh )
645 _hyps.swap( theHyps );
646 _hypShapes.swap( theAssignedTo );
648 _helper.SetSubShape( _face );
649 _helper.SetElementsOnShape( true );
651 _face.Orientation( TopAbs_FORWARD ); // 2D logic works only in this case
652 _surface = BRep_Tool::Surface( _face );
654 _error = SMESH_ComputeError::New(COMPERR_OK);
659 //================================================================================
661 * \brief Stores error description and returns false
663 //================================================================================
665 bool _ViscousBuilder2D::error(const string& text )
667 _error->myName = COMPERR_ALGO_FAILED;
668 _error->myComment = string("Viscous layers builder 2D: ") + text;
669 if ( SMESH_subMesh* sm = _mesh->GetSubMesh( _face ) )
671 SMESH_ComputeErrorPtr& smError = sm->GetComputeError();
672 if ( smError && smError->myAlgo )
673 _error->myAlgo = smError->myAlgo;
677 cout << "_ViscousBuilder2D::error " << text << endl;
682 //================================================================================
684 * \brief Does its job
686 //================================================================================
688 SMESH_ProxyMesh::Ptr _ViscousBuilder2D::Compute()
690 _faceSideVec = StdMeshers_FaceSide::GetFaceWires( _face, *_mesh, true, _error, &_helper );
692 if ( !_error->IsOK() )
695 if ( !findEdgesWithLayers() ) // analysis of a shape
698 if ( ! makePolyLines() ) // creation of fronts
701 if ( ! inflate() ) // advance fronts
704 // remove elements and nodes from _face
705 removeMeshFaces( _face );
707 if ( !shrink() ) // shrink segments on edges w/o layers
710 if ( ! refine() ) // make faces
718 //================================================================================
720 * \brief Finds EDGE's to make viscous layers on.
722 //================================================================================
724 bool _ViscousBuilder2D::findEdgesWithLayers()
726 // collect all EDGEs to ignore defined by _hyps
727 typedef std::pair< set<TGeomID>, const THypVL* > TEdgesOfHyp;
728 vector< TEdgesOfHyp > ignoreEdgesOfHyp( _hyps.size() );
729 for ( size_t i = 0; i < _hyps.size(); ++i )
731 ignoreEdgesOfHyp[i].second = _hyps[i];
732 getEdgesToIgnore( _hyps[i], _face, getMeshDS(), ignoreEdgesOfHyp[i].first );
735 // get all shared EDGEs
736 TopTools_MapOfShape sharedEdges;
737 TopTools_IndexedMapOfShape hypFaces; // faces with VL hyps
738 for ( size_t i = 0; i < _hypShapes.size(); ++i )
739 TopExp::MapShapes( _hypShapes[i], TopAbs_FACE, hypFaces );
740 TopTools_IndexedDataMapOfShapeListOfShape facesOfEdgeMap;
741 for ( int iF = 1; iF <= hypFaces.Extent(); ++iF )
742 TopExp::MapShapesAndAncestors( hypFaces(iF), TopAbs_EDGE, TopAbs_FACE, facesOfEdgeMap);
743 for ( int iE = 1; iE <= facesOfEdgeMap.Extent(); ++iE )
744 if ( facesOfEdgeMap( iE ).Extent() > 1 )
745 sharedEdges.Add( facesOfEdgeMap.FindKey( iE ));
748 if ( _hyps.size() > 1 )
750 // check if two hypotheses define different parameters for the same EDGE
751 for ( size_t iWire = 0; iWire < _faceSideVec.size(); ++iWire )
753 StdMeshers_FaceSidePtr wire = _faceSideVec[ iWire ];
754 for ( int iE = 0; iE < wire->NbEdges(); ++iE )
756 const THypVL* hyp = 0;
757 const TGeomID edgeID = wire->EdgeID( iE );
758 if ( !sharedEdges.Contains( wire->Edge( iE )))
760 for ( size_t i = 0; i < ignoreEdgesOfHyp.size(); ++i )
761 if ( ! ignoreEdgesOfHyp[i].first.count( edgeID ))
764 return error(SMESH_Comment("Several hypotheses define "
765 "Viscous Layers on the edge #") << edgeID );
766 hyp = ignoreEdgesOfHyp[i].second;
769 _hypOfEdge.push_back( hyp );
771 _ignoreShapeIds.insert( edgeID );
773 // check if two hypotheses define different number of viscous layers for
775 const THypVL *hyp, *prevHyp = _hypOfEdge.back();
776 size_t iH = _hypOfEdge.size() - wire->NbEdges();
777 for ( ; iH < _hypOfEdge.size(); ++iH )
779 hyp = _hypOfEdge[ iH ];
780 if ( hyp && prevHyp &&
781 hyp->GetNumberLayers() != prevHyp->GetNumberLayers() )
783 return error("Two hypotheses define different number of "
784 "viscous layers on adjacent edges");
790 else if ( _hyps.size() == 1 )
792 _ignoreShapeIds.swap( ignoreEdgesOfHyp[0].first );
795 // check all EDGEs of the _face to fill _ignoreShapeIds and _noShrinkVert
797 int totalNbEdges = 0;
798 for ( size_t iWire = 0; iWire < _faceSideVec.size(); ++iWire )
800 StdMeshers_FaceSidePtr wire = _faceSideVec[ iWire ];
801 totalNbEdges += wire->NbEdges();
802 for ( int iE = 0; iE < wire->NbEdges(); ++iE )
804 if ( sharedEdges.Contains( wire->Edge( iE )))
806 // ignore internal EDGEs (shared by several FACEs)
807 const TGeomID edgeID = wire->EdgeID( iE );
808 _ignoreShapeIds.insert( edgeID );
810 // check if ends of an EDGE are to be added to _noShrinkVert
811 const TopTools_ListOfShape& faceList = facesOfEdgeMap.FindFromKey( wire->Edge( iE ));
812 TopTools_ListIteratorOfListOfShape faceIt( faceList );
813 for ( ; faceIt.More(); faceIt.Next() )
815 const TopoDS_Shape& neighbourFace = faceIt.Value();
816 if ( neighbourFace.IsSame( _face )) continue;
817 SMESH_Algo* algo = _mesh->GetGen()->GetAlgo( *_mesh, neighbourFace );
818 if ( !algo ) continue;
820 const StdMeshers_ViscousLayers2D* viscHyp = 0;
821 const list <const SMESHDS_Hypothesis *> & allHyps =
822 algo->GetUsedHypothesis(*_mesh, neighbourFace, /*noAuxiliary=*/false);
823 list< const SMESHDS_Hypothesis *>::const_iterator hyp = allHyps.begin();
824 for ( ; hyp != allHyps.end() && !viscHyp; ++hyp )
825 viscHyp = dynamic_cast<const StdMeshers_ViscousLayers2D*>( *hyp );
827 // set<TGeomID> neighbourIgnoreEdges;
829 // getEdgesToIgnore( viscHyp, neighbourFace, getMeshDS(), neighbourIgnoreEdges );
831 for ( int iV = 0; iV < 2; ++iV )
833 TopoDS_Vertex vertex = iV ? wire->LastVertex(iE) : wire->FirstVertex(iE);
835 _noShrinkVert.insert( getMeshDS()->ShapeToIndex( vertex ));
838 PShapeIteratorPtr edgeIt = _helper.GetAncestors( vertex, *_mesh, TopAbs_EDGE );
839 while ( const TopoDS_Shape* edge = edgeIt->next() )
840 if ( !edge->IsSame( wire->Edge( iE )) &&
841 _helper.IsSubShape( *edge, neighbourFace ))
843 const TGeomID neighbourID = getMeshDS()->ShapeToIndex( *edge );
844 bool hasVL = !sharedEdges.Contains( *edge );
848 for ( hyp = allHyps.begin(); hyp != allHyps.end() && !hasVL; ++hyp )
849 if (( viscHyp = dynamic_cast<const THypVL*>( *hyp )))
850 hasVL = viscHyp->IsShapeWithLayers( neighbourID );
854 _noShrinkVert.insert( getMeshDS()->ShapeToIndex( vertex ));
865 int nbMyEdgesIgnored = _ignoreShapeIds.size();
867 // add VERTEXes w/o layers to _ignoreShapeIds (this is used by toShrinkForAdjacent())
868 // for ( size_t iWire = 0; iWire < _faceSideVec.size(); ++iWire )
870 // StdMeshers_FaceSidePtr wire = _faceSideVec[ iWire ];
871 // for ( int iE = 0; iE < wire->NbEdges(); ++iE )
873 // TGeomID edge1 = wire->EdgeID( iE );
874 // TGeomID edge2 = wire->EdgeID( iE+1 );
875 // if ( _ignoreShapeIds.count( edge1 ) && _ignoreShapeIds.count( edge2 ))
876 // _ignoreShapeIds.insert( getMeshDS()->ShapeToIndex( wire->LastVertex( iE )));
880 return ( nbMyEdgesIgnored < totalNbEdges );
883 //================================================================================
885 * \brief Create the inner front of the viscous layers and prepare data for inflation
887 //================================================================================
889 bool _ViscousBuilder2D::makePolyLines()
891 // Create _PolyLines and _LayerEdge's
893 // count total nb of EDGEs to allocate _polyLineVec
895 for ( size_t iWire = 0; iWire < _faceSideVec.size(); ++iWire )
897 StdMeshers_FaceSidePtr wire = _faceSideVec[ iWire ];
898 nbEdges += wire->NbEdges();
899 if ( wire->GetUVPtStruct().empty() && wire->NbPoints() > 0 )
900 return error("Invalid node parameters on some EDGE");
902 _polyLineVec.resize( nbEdges );
904 // check if 2D normal should be computed by 3D one by means of projection
905 GeomAPI_ProjectPointOnSurf* faceProj = 0;
909 const UVPtStruct& uv = _faceSideVec[0]->GetUVPtStruct()[0];
910 gp_Pnt p = SMESH_TNodeXYZ( uv.node );
911 tmpLE._uvOut.SetCoord( uv.u, uv.v );
912 tmpLE._normal2D.SetCoord( 1., 0. );
913 setLenRatio( tmpLE, p );
914 const double r1 = tmpLE._len2dTo3dRatio;
915 tmpLE._normal2D.SetCoord( 0., 1. );
916 setLenRatio( tmpLE, p );
917 const double r2 = tmpLE._len2dTo3dRatio;
918 // projection is needed if two _len2dTo3dRatio's differ too much
919 const double maxR = Max( r2, r1 );
920 if ( Abs( r2-r1 )/maxR > 0.2*maxR )
921 faceProj = & _helper.GetProjector( _face, loc );
923 _is2DIsotropic = !faceProj;
925 // Assign data to _PolyLine's
926 // ---------------------------
929 for ( size_t iWire = 0; iWire < _faceSideVec.size(); ++iWire )
931 StdMeshers_FaceSidePtr wire = _faceSideVec[ iWire ];
932 const vector<UVPtStruct>& points = wire->GetUVPtStruct();
934 for ( int iE = 0; iE < wire->NbEdges(); ++iE )
936 _PolyLine& L = _polyLineVec[ iPoLine++ ];
937 L._index = iPoLine-1;
938 L._wire = wire.get();
940 L._advancable = !_ignoreShapeIds.count( wire->EdgeID( iE ));
942 int iRight = iPoLine - (( iE+1 < wire->NbEdges() ) ? 0 : wire->NbEdges() );
943 L._rightLine = &_polyLineVec[ iRight ];
944 _polyLineVec[ iRight ]._leftLine = &L;
946 L._firstPntInd = iPnt;
947 double lastNormPar = wire->LastParameter( iE ) - 1e-10;
948 while ( points[ iPnt ].normParam < lastNormPar )
950 L._lastPntInd = iPnt;
951 L._lEdges.resize( Max( 3, L._lastPntInd - L._firstPntInd + 1 )); // 3 edges minimum
953 // TODO: add more _LayerEdge's to strongly curved EDGEs
954 // in order not to miss collisions
957 Handle(Geom_Curve) curve = BRep_Tool::Curve( L._wire->Edge( iE ), loc, u, u );
958 Handle(Geom2d_Curve) pcurve = L._wire->Curve2d( L._edgeInd );
959 const bool reverse = (( L._wire->Edge( iE ).Orientation() == TopAbs_REVERSED ) ^
960 (_face.Orientation() == TopAbs_REVERSED ));
961 for ( int i = L._firstPntInd; i <= L._lastPntInd; ++i )
963 _LayerEdge& lEdge = L._lEdges[ i - L._firstPntInd ];
964 u = ( i == L._firstPntInd ? wire->FirstU(iE) : points[ i ].param );
965 p = SMESH_TNodeXYZ( points[ i ].node );
966 setLayerEdgeData( lEdge, u, pcurve, curve, p, reverse, faceProj );
967 setLenRatio( lEdge, p );
969 if ( L._lastPntInd - L._firstPntInd + 1 < 3 ) // add 3-d _LayerEdge in the middle
971 L._lEdges[2] = L._lEdges[1];
972 u = 0.5 * ( wire->FirstU(iE) + wire->LastU(iE) );
973 if ( !curve.IsNull() )
974 p = curve->Value( u );
976 p = 0.5 * ( SMESH_TNodeXYZ( points[ L._firstPntInd ].node ) +
977 SMESH_TNodeXYZ( points[ L._lastPntInd ].node ));
978 setLayerEdgeData( L._lEdges[1], u, pcurve, curve, p, reverse, faceProj );
979 setLenRatio( L._lEdges[1], p );
984 // Fill _PolyLine's with _segments
985 // --------------------------------
987 double maxLen2dTo3dRatio = 0;
988 for ( iPoLine = 0; iPoLine < _polyLineVec.size(); ++iPoLine )
990 _PolyLine& L = _polyLineVec[ iPoLine ];
991 L._segments.resize( L._lEdges.size() - 1 );
992 for ( size_t i = 1; i < L._lEdges.size(); ++i )
994 _Segment & S = L._segments[i-1];
995 S._uv[0] = & L._lEdges[i-1]._uvIn;
996 S._uv[1] = & L._lEdges[i ]._uvIn;
997 S._indexInLine = i-1;
998 if ( maxLen2dTo3dRatio < L._lEdges[i]._len2dTo3dRatio )
999 maxLen2dTo3dRatio = L._lEdges[i]._len2dTo3dRatio;
1001 // // connect _PolyLine's with segments, the 1st _LayerEdge of every _PolyLine
1002 // // becomes not connected to any segment
1003 // if ( L._leftLine->_advancable )
1004 // L._segments[0]._uv[0] = & L._leftLine->_lEdges.back()._uvIn;
1006 L._segTree.reset( new _SegmentTree( L._segments ));
1009 // Evaluate max possible _thickness if required layers thickness seems too high
1010 // ----------------------------------------------------------------------------
1012 _maxThickness = _hyps[0]->GetTotalThickness();
1013 for ( size_t iH = 1; iH < _hyps.size(); ++iH )
1014 _maxThickness = Max( _maxThickness, _hyps[iH]->GetTotalThickness() );
1016 _SegmentTree::box_type faceBndBox2D;
1017 for ( iPoLine = 0; iPoLine < _polyLineVec.size(); ++iPoLine )
1018 faceBndBox2D.Add( *_polyLineVec[ iPoLine]._segTree->getBox() );
1019 const double boxTol = 1e-3 * sqrt( faceBndBox2D.SquareExtent() );
1021 if ( _maxThickness * maxLen2dTo3dRatio > sqrt( faceBndBox2D.SquareExtent() ) / 10 )
1023 vector< const _Segment* > foundSegs;
1024 double maxPossibleThick = 0;
1025 _SegmentIntersection intersection;
1026 for ( size_t iL1 = 0; iL1 < _polyLineVec.size(); ++iL1 )
1028 _PolyLine& L1 = _polyLineVec[ iL1 ];
1029 _SegmentTree::box_type boxL1 = * L1._segTree->getBox();
1030 boxL1.Enlarge( boxTol );
1031 // consider case of a circle as well!
1032 for ( size_t iL2 = iL1; iL2 < _polyLineVec.size(); ++iL2 )
1034 _PolyLine& L2 = _polyLineVec[ iL2 ];
1035 _SegmentTree::box_type boxL2 = * L2._segTree->getBox();
1036 boxL2.Enlarge( boxTol );
1037 if ( boxL1.IsOut( boxL2 ))
1039 for ( size_t iLE = 1; iLE < L1._lEdges.size(); ++iLE )
1042 L2._segTree->GetSegmentsNear( L1._lEdges[iLE]._ray, foundSegs );
1043 for ( size_t i = 0; i < foundSegs.size(); ++i )
1044 if ( intersection.Compute( *foundSegs[i], L1._lEdges[iLE]._ray ))
1046 double distToL2 = intersection._param2 / L1._lEdges[iLE]._len2dTo3dRatio;
1047 double psblThick = distToL2 / ( 1 + L1._advancable + L2._advancable );
1048 maxPossibleThick = Max( psblThick, maxPossibleThick );
1053 if ( maxPossibleThick > 0. )
1054 _maxThickness = Min( _maxThickness, maxPossibleThick );
1057 // Adjust _LayerEdge's at _PolyLine's extremities
1058 // -----------------------------------------------
1060 for ( iPoLine = 0; iPoLine < _polyLineVec.size(); ++iPoLine )
1062 _PolyLine& LL = _polyLineVec[ iPoLine ];
1063 _PolyLine& LR = *LL._rightLine;
1064 adjustCommonEdge( LL, LR );
1066 // recreate _segments if some _LayerEdge's have been removed by adjustCommonEdge()
1067 for ( iPoLine = 0; iPoLine < _polyLineVec.size(); ++iPoLine )
1069 _PolyLine& L = _polyLineVec[ iPoLine ];
1070 // if ( L._segments.size() == L._lEdges.size() - 1 )
1072 L._segments.resize( L._lEdges.size() - 1 );
1073 for ( size_t i = 1; i < L._lEdges.size(); ++i )
1075 _Segment & S = L._segments[i-1];
1076 S._uv[0] = & L._lEdges[i-1]._uvIn;
1077 S._uv[1] = & L._lEdges[i ]._uvIn;
1078 S._indexInLine = i-1;
1080 L._segTree.reset( new _SegmentTree( L._segments ));
1082 // connect _PolyLine's with segments, the 1st _LayerEdge of every _PolyLine
1083 // becomes not connected to any segment
1084 for ( iPoLine = 0; iPoLine < _polyLineVec.size(); ++iPoLine )
1086 _PolyLine& L = _polyLineVec[ iPoLine ];
1087 if ( L._leftLine->_advancable )
1088 L._segments[0]._uv[0] = & L._leftLine->_lEdges.back()._uvIn;
1091 // Fill _reachableLines.
1092 // ----------------------
1094 // compute bnd boxes taking into account the layers total thickness
1095 vector< _SegmentTree::box_type > lineBoxes( _polyLineVec.size() );
1096 for ( iPoLine = 0; iPoLine < _polyLineVec.size(); ++iPoLine )
1098 lineBoxes[ iPoLine ] = *_polyLineVec[ iPoLine ]._segTree->getBox();
1099 lineBoxes[ iPoLine ].Enlarge( maxLen2dTo3dRatio * getLineThickness( iPoLine ) *
1100 ( _polyLineVec[ iPoLine ]._advancable ? 2. : 1.2 ));
1103 for ( iPoLine = 0; iPoLine < _polyLineVec.size(); ++iPoLine )
1105 _PolyLine& L1 = _polyLineVec[ iPoLine ];
1106 const double thick1 = getLineThickness( iPoLine );
1107 for ( size_t iL2 = 0; iL2 < _polyLineVec.size(); ++iL2 )
1109 _PolyLine& L2 = _polyLineVec[ iL2 ];
1110 if ( iPoLine == iL2 || lineBoxes[ iPoLine ].IsOut( lineBoxes[ iL2 ]))
1112 if ( !L1._advancable && ( L1._leftLine == &L2 || L1._rightLine == &L2 ))
1114 // check reachability by _LayerEdge's
1115 int iDelta = 1; //Max( 1, L1._lEdges.size() / 100 );
1116 for ( size_t iLE = 1; iLE < L1._lEdges.size(); iLE += iDelta )
1118 _LayerEdge& LE = L1._lEdges[iLE];
1119 if ( !lineBoxes[ iL2 ].IsOut ( LE._uvOut,
1120 LE._uvOut + LE._normal2D * thick1 * LE._len2dTo3dRatio ))
1122 L1._reachableLines.push_back( & L2 );
1127 // add self to _reachableLines
1128 Geom2dAdaptor_Curve pcurve( L1._wire->Curve2d( L1._edgeInd ));
1129 L1._isStraight2D = ( pcurve.GetType() == GeomAbs_Line );
1130 if ( !L1._isStraight2D )
1132 // TODO: check carefully
1133 L1._reachableLines.push_back( & L1 );
1140 //================================================================================
1142 * \brief adjust common _LayerEdge of two adjacent _PolyLine's
1143 * \param LL - left _PolyLine
1144 * \param LR - right _PolyLine
1146 //================================================================================
1148 void _ViscousBuilder2D::adjustCommonEdge( _PolyLine& LL, _PolyLine& LR )
1150 int nbAdvancableL = LL._advancable + LR._advancable;
1151 if ( nbAdvancableL == 0 )
1154 _LayerEdge& EL = LL._lEdges.back();
1155 _LayerEdge& ER = LR._lEdges.front();
1156 gp_XY normL = EL._normal2D;
1157 gp_XY normR = ER._normal2D;
1158 gp_XY tangL ( normL.Y(), -normL.X() );
1160 // set common direction to a VERTEX _LayerEdge shared by two _PolyLine's
1161 gp_XY normCommon = ( normL * int( LL._advancable ) +
1162 normR * int( LR._advancable )).Normalized();
1163 EL._normal2D = normCommon;
1164 EL._ray.SetLocation ( EL._uvOut );
1165 EL._ray.SetDirection( EL._normal2D );
1166 if ( nbAdvancableL == 1 ) { // _normal2D is true normal (not average)
1167 EL._isBlocked = true; // prevent intersecting with _Segments of _advancable line
1170 // update _LayerEdge::_len2dTo3dRatio according to a new direction
1171 const vector<UVPtStruct>& points = LL._wire->GetUVPtStruct();
1172 setLenRatio( EL, SMESH_TNodeXYZ( points[ LL._lastPntInd ].node ));
1176 const double dotNormTang = normR * tangL;
1177 const bool largeAngle = Abs( dotNormTang ) > 0.2;
1178 if ( largeAngle ) // not 180 degrees
1180 // recompute _len2dTo3dRatio to take into account angle between EDGEs
1181 gp_Vec2d oldNorm( LL._advancable ? normL : normR );
1182 double angleFactor = 1. / Max( 0.3, Cos( oldNorm.Angle( normCommon )));
1183 EL._len2dTo3dRatio *= angleFactor;
1184 ER._len2dTo3dRatio = EL._len2dTo3dRatio;
1186 gp_XY normAvg = ( normL + normR ).Normalized(); // average normal at VERTEX
1188 if ( dotNormTang < 0. ) // ---------------------------- CONVEX ANGLE
1190 // Remove _LayerEdge's intersecting the normAvg to avoid collisions
1191 // during inflate().
1193 // find max length of the VERTEX-based _LayerEdge whose direction is normAvg
1194 double maxLen2D = _maxThickness * EL._len2dTo3dRatio;
1195 const gp_XY& pCommOut = ER._uvOut;
1196 gp_XY pCommIn = pCommOut + normAvg * maxLen2D;
1197 _Segment segCommon( pCommOut, pCommIn );
1198 _SegmentIntersection intersection;
1199 vector< const _Segment* > foundSegs;
1200 for ( size_t iL1 = 0; iL1 < _polyLineVec.size(); ++iL1 )
1202 _PolyLine& L1 = _polyLineVec[ iL1 ];
1203 const _SegmentTree::box_type* boxL1 = L1._segTree->getBox();
1204 if ( boxL1->IsOut ( pCommOut, pCommIn ))
1206 for ( size_t iLE = 1; iLE < L1._lEdges.size(); ++iLE )
1209 L1._segTree->GetSegmentsNear( segCommon, foundSegs );
1210 for ( size_t i = 0; i < foundSegs.size(); ++i )
1211 if ( intersection.Compute( *foundSegs[i], segCommon ) &&
1212 intersection._param2 > 1e-10 )
1214 double len2D = intersection._param2 * maxLen2D / ( 2 + L1._advancable );
1215 if ( len2D < maxLen2D ) {
1217 pCommIn = pCommOut + normAvg * maxLen2D; // here length of segCommon changes
1223 // remove _LayerEdge's intersecting segCommon
1224 for ( int isR = 0; isR < 2; ++isR ) // loop on [ LL, LR ]
1226 _PolyLine& L = isR ? LR : LL;
1227 _PolyLine::TEdgeIterator eIt = isR ? L._lEdges.begin()+1 : L._lEdges.end()-2;
1228 int dIt = isR ? +1 : -1;
1229 if ( nbAdvancableL == 1 && L._advancable && normL * normR > -0.01 )
1230 continue; // obtuse internal angle
1231 // at least 3 _LayerEdge's should remain in a _PolyLine
1232 if ( L._lEdges.size() < 4 ) continue;
1234 _SegmentIntersection lastIntersection;
1235 for ( ; iLE < L._lEdges.size(); ++iLE, eIt += dIt )
1237 gp_XY uvIn = eIt->_uvOut + eIt->_normal2D * _maxThickness * eIt->_len2dTo3dRatio;
1238 _Segment segOfEdge( eIt->_uvOut, uvIn );
1239 if ( !intersection.Compute( segCommon, segOfEdge ))
1241 lastIntersection._param1 = intersection._param1;
1242 lastIntersection._param2 = intersection._param2;
1244 if ( iLE >= L._lEdges.size() - 1 )
1246 // all _LayerEdge's intersect the segCommon, limit inflation
1247 // of remaining 3 _LayerEdge's
1248 vector< _LayerEdge > newEdgeVec( Min( 3, L._lEdges.size() ));
1249 newEdgeVec.front() = L._lEdges.front();
1250 newEdgeVec.back() = L._lEdges.back();
1251 if ( newEdgeVec.size() == 3 )
1253 newEdgeVec[1] = L._lEdges[ isR ? (L._lEdges.size() - 2) : 1 ];
1254 newEdgeVec[1]._len2dTo3dRatio *= lastIntersection._param2;
1256 L._lEdges.swap( newEdgeVec );
1257 if ( !isR ) std::swap( lastIntersection._param1 , lastIntersection._param2 );
1258 L._lEdges.front()._len2dTo3dRatio *= lastIntersection._param1; // ??
1259 L._lEdges.back ()._len2dTo3dRatio *= lastIntersection._param2;
1261 else if ( iLE != 1 )
1263 // eIt points to the _LayerEdge not intersecting with segCommon
1265 LR._lEdges.erase( LR._lEdges.begin()+1, eIt );
1267 LL._lEdges.erase( eIt+1, --LL._lEdges.end() );
1268 // eIt = isR ? L._lEdges.begin()+1 : L._lEdges.end()-2;
1269 // for ( size_t i = 1; i < iLE; ++i, eIt += dIt )
1270 // eIt->_isBlocked = true;
1274 else // ------------------------------------------ CONCAVE ANGLE
1276 if ( nbAdvancableL == 1 )
1278 // make that the _LayerEdge at VERTEX is not shared by LL and LR:
1279 // different normals is a sign that they are not shared
1280 _LayerEdge& notSharedEdge = LL._advancable ? LR._lEdges[0] : LL._lEdges.back();
1281 _LayerEdge& sharedEdge = LR._advancable ? LR._lEdges[0] : LL._lEdges.back();
1283 notSharedEdge._normal2D.SetCoord( 0.,0. );
1284 sharedEdge._normal2D = normAvg;
1285 sharedEdge._isBlocked = false;
1286 notSharedEdge._isBlocked = true;
1292 //================================================================================
1294 * \brief initialize data of a _LayerEdge
1296 //================================================================================
1298 void _ViscousBuilder2D::setLayerEdgeData( _LayerEdge& lEdge,
1300 Handle(Geom2d_Curve)& pcurve,
1301 Handle(Geom_Curve)& curve,
1304 GeomAPI_ProjectPointOnSurf* faceProj)
1307 if ( faceProj && !curve.IsNull() )
1309 uv = pcurve->Value( u );
1310 gp_Vec tangent; gp_Pnt p; gp_Vec du, dv;
1311 curve->D1( u, p, tangent );
1314 _surface->D1( uv.X(), uv.Y(), p, du, dv );
1315 gp_Vec faceNorm = du ^ dv;
1316 gp_Vec normal = faceNorm ^ tangent;
1318 p = pOut.XYZ() + normal.XYZ() * /*1e-2 * */_hyps[0]->GetTotalThickness() / _hyps[0]->GetNumberLayers();
1319 faceProj->Perform( p );
1320 if ( !faceProj->IsDone() || faceProj->NbPoints() < 1 )
1321 return setLayerEdgeData( lEdge, u, pcurve, curve, p, reverse, NULL );
1323 faceProj->LowerDistanceParameters(U,V);
1324 lEdge._normal2D.SetCoord( U - uv.X(), V - uv.Y() );
1325 lEdge._normal2D.Normalize();
1330 pcurve->D1( u, uv, tangent );
1331 tangent.Normalize();
1334 lEdge._normal2D.SetCoord( -tangent.Y(), tangent.X() );
1336 lEdge._uvOut = lEdge._uvIn = uv.XY();
1337 lEdge._ray.SetLocation ( lEdge._uvOut );
1338 lEdge._ray.SetDirection( lEdge._normal2D );
1339 lEdge._isBlocked = false;
1340 lEdge._length2D = 0;
1342 lEdge._ID = _nbLE++;
1346 //================================================================================
1348 * \brief Compute and set _LayerEdge::_len2dTo3dRatio
1350 //================================================================================
1352 void _ViscousBuilder2D::setLenRatio( _LayerEdge& LE, const gp_Pnt& pOut )
1354 const double probeLen2d = 1e-3;
1356 gp_Pnt2d p2d = LE._uvOut + LE._normal2D * probeLen2d;
1357 gp_Pnt p3d = _surface->Value( p2d.X(), p2d.Y() );
1358 double len3d = p3d.Distance( pOut );
1359 if ( len3d < std::numeric_limits<double>::min() )
1360 LE._len2dTo3dRatio = std::numeric_limits<double>::min();
1362 LE._len2dTo3dRatio = probeLen2d / len3d;
1365 //================================================================================
1367 * \brief Increase length of _LayerEdge's to reach the required thickness of layers
1369 //================================================================================
1371 bool _ViscousBuilder2D::inflate()
1373 // Limit size of inflation step by geometry size found by
1374 // itersecting _LayerEdge's with _Segment's
1375 double minSize = _maxThickness, maxSize = 0;
1376 vector< const _Segment* > foundSegs;
1377 _SegmentIntersection intersection;
1378 for ( size_t iL1 = 0; iL1 < _polyLineVec.size(); ++iL1 )
1380 _PolyLine& L1 = _polyLineVec[ iL1 ];
1381 for ( size_t iL2 = 0; iL2 < L1._reachableLines.size(); ++iL2 )
1383 _PolyLine& L2 = * L1._reachableLines[ iL2 ];
1384 for ( size_t iLE = 1; iLE < L1._lEdges.size(); ++iLE )
1387 L2._segTree->GetSegmentsNear( L1._lEdges[iLE]._ray, foundSegs );
1388 for ( size_t i = 0; i < foundSegs.size(); ++i )
1389 if ( ! L1.IsAdjacent( *foundSegs[i], & L1._lEdges[iLE] ) &&
1390 intersection.Compute( *foundSegs[i], L1._lEdges[iLE]._ray ))
1392 double distToL2 = intersection._param2 / L1._lEdges[iLE]._len2dTo3dRatio;
1393 double size = distToL2 / ( 1 + L1._advancable + L2._advancable );
1394 if ( 1e-10 < size && size < minSize )
1396 if ( size > maxSize )
1402 if ( minSize > maxSize ) // no collisions possible
1403 maxSize = _maxThickness;
1405 cout << "-- minSize = " << minSize << ", maxSize = " << maxSize << endl;
1408 double curThick = 0, stepSize = minSize;
1410 if ( maxSize > _maxThickness )
1411 maxSize = _maxThickness;
1412 while ( curThick < maxSize )
1414 curThick += stepSize * 1.25;
1415 if ( curThick > _maxThickness )
1416 curThick = _maxThickness;
1418 // Elongate _LayerEdge's
1419 for ( size_t iL = 0; iL < _polyLineVec.size(); ++iL )
1421 _PolyLine& L = _polyLineVec[ iL ];
1422 if ( !L._advancable ) continue;
1423 const double lineThick = Min( curThick, getLineThickness( iL ));
1424 bool lenChange = false;
1425 for ( size_t iLE = L.FirstLEdge(); iLE < L._lEdges.size(); ++iLE )
1426 lenChange |= L._lEdges[iLE].SetNewLength( lineThick );
1427 // for ( int k=0; k<L._segments.size(); ++k)
1428 // cout << "( " << L._segments[k].p1().X() << ", " <<L._segments[k].p1().Y() << " ) "
1429 // << "( " << L._segments[k].p2().X() << ", " <<L._segments[k].p2().Y() << " ) "
1432 L._segTree.reset( new _SegmentTree( L._segments ));
1435 // Avoid intersection of _Segment's
1436 bool allBlocked = fixCollisions();
1439 break; // no more inflating possible
1441 stepSize = Max( stepSize , _maxThickness / 10. );
1445 // if (nbSteps == 0 )
1446 // return error("failed at the very first inflation step");
1449 // remove _LayerEdge's of one line intersecting with each other
1450 for ( size_t iL = 0; iL < _polyLineVec.size(); ++iL )
1452 _PolyLine& L = _polyLineVec[ iL ];
1453 if ( !L._advancable ) continue;
1455 // replace an inactive (1st) _LayerEdge with an active one of a neighbour _PolyLine
1456 if ( /*!L._leftLine->_advancable &&*/ L.IsCommonEdgeShared( *L._leftLine ) ) {
1457 L._lEdges[0] = L._leftLine->_lEdges.back();
1459 if ( !L._rightLine->_advancable && L.IsCommonEdgeShared( *L._rightLine ) ) {
1460 L._lEdges.back() = L._rightLine->_lEdges[0];
1463 _SegmentIntersection intersection;
1464 for ( int isR = 0; ( isR < 2 && L._lEdges.size() > 2 ); ++isR )
1466 int nbRemove = 0, deltaIt = isR ? -1 : +1;
1467 _PolyLine::TEdgeIterator eIt = isR ? L._lEdges.end()-1 : L._lEdges.begin();
1468 if ( eIt->_length2D == 0 ) continue;
1469 _Segment seg1( eIt->_uvOut, eIt->_uvIn );
1470 for ( eIt += deltaIt; nbRemove < (int)L._lEdges.size()-1; eIt += deltaIt )
1472 _Segment seg2( eIt->_uvOut, eIt->_uvIn );
1473 if ( !intersection.Compute( seg1, seg2 ))
1477 if ( nbRemove > 0 ) {
1478 if ( nbRemove == (int)L._lEdges.size()-1 ) // 1st and last _LayerEdge's intersect
1481 _LayerEdge& L0 = L._lEdges.front();
1482 _LayerEdge& L1 = L._lEdges.back();
1483 L0._length2D *= intersection._param1 * 0.5;
1484 L1._length2D *= intersection._param2 * 0.5;
1485 L0._uvIn = L0._uvOut + L0._normal2D * L0._length2D;
1486 L1._uvIn = L1._uvOut + L1._normal2D * L1._length2D;
1487 if ( L.IsCommonEdgeShared( *L._leftLine ))
1488 L._leftLine->_lEdges.back() = L0;
1491 L._lEdges.erase( L._lEdges.end()-nbRemove-1,
1492 L._lEdges.end()-nbRemove );
1494 L._lEdges.erase( L._lEdges.begin()+1,
1495 L._lEdges.begin()+1+nbRemove );
1502 //================================================================================
1504 * \brief Remove intersection of _PolyLine's
1506 //================================================================================
1508 bool _ViscousBuilder2D::fixCollisions()
1510 // look for intersections of _Segment's by intersecting _LayerEdge's with
1512 vector< const _Segment* > foundSegs;
1513 _SegmentIntersection intersection;
1515 list< pair< _LayerEdge*, double > > edgeLenLimitList;
1516 list< _LayerEdge* > blockedEdgesList;
1518 for ( size_t iL1 = 0; iL1 < _polyLineVec.size(); ++iL1 )
1520 _PolyLine& L1 = _polyLineVec[ iL1 ];
1521 //if ( !L1._advancable ) continue;
1522 for ( size_t iL2 = 0; iL2 < L1._reachableLines.size(); ++iL2 )
1524 _PolyLine& L2 = * L1._reachableLines[ iL2 ];
1525 for ( size_t iLE = L1.FirstLEdge(); iLE < L1._lEdges.size(); ++iLE )
1527 _LayerEdge& LE1 = L1._lEdges[iLE];
1528 if ( LE1._isBlocked ) continue;
1530 L2._segTree->GetSegmentsNear( LE1._ray, foundSegs );
1531 for ( size_t i = 0; i < foundSegs.size(); ++i )
1533 if ( ! L1.IsAdjacent( *foundSegs[i], &LE1 ) &&
1534 intersection.Compute( *foundSegs[i], LE1._ray ))
1536 const double dist2DToL2 = intersection._param2;
1537 double newLen2D = dist2DToL2 / 2;
1538 if ( newLen2D < 1.1 * LE1._length2D ) // collision!
1540 if ( newLen2D > 0 || !L1._advancable )
1542 blockedEdgesList.push_back( &LE1 );
1543 if ( L1._advancable && newLen2D > 0 )
1545 edgeLenLimitList.push_back( make_pair( &LE1, newLen2D ));
1546 blockedEdgesList.push_back( &L2._lEdges[ foundSegs[i]->_indexInLine ]);
1547 blockedEdgesList.push_back( &L2._lEdges[ foundSegs[i]->_indexInLine + 1 ]);
1549 else // here dist2DToL2 < 0 and LE1._length2D == 0
1551 _LayerEdge* LE2[2] = { & L2._lEdges[ foundSegs[i]->_indexInLine ],
1552 & L2._lEdges[ foundSegs[i]->_indexInLine + 1 ] };
1553 _Segment outSeg2( LE2[0]->_uvOut, LE2[1]->_uvOut );
1554 intersection.Compute( outSeg2, LE1._ray );
1555 newLen2D = intersection._param2 / 2;
1558 edgeLenLimitList.push_back( make_pair( LE2[0], newLen2D ));
1559 edgeLenLimitList.push_back( make_pair( LE2[1], newLen2D ));
1570 // limit length of _LayerEdge's that are extrema of _PolyLine's
1571 // to avoid intersection of these _LayerEdge's
1572 for ( size_t iL1 = 0; iL1 < _polyLineVec.size(); ++iL1 )
1574 _PolyLine& L = _polyLineVec[ iL1 ];
1575 if ( L._lEdges.size() < 4 ) // all intermediate _LayerEdge's intersect with extremum ones
1577 _LayerEdge& LEL = L._leftLine->_lEdges.back();
1578 _LayerEdge& LER = L._lEdges.back();
1579 _Segment segL( LEL._uvOut, LEL._uvIn );
1580 _Segment segR( LER._uvOut, LER._uvIn );
1581 double newLen2DL, newLen2DR;
1582 if ( intersection.Compute( segL, LER._ray ))
1584 newLen2DR = intersection._param2 / 2;
1585 newLen2DL = LEL._length2D * intersection._param1 / 2;
1587 else if ( intersection.Compute( segR, LEL._ray ))
1589 newLen2DL = intersection._param2 / 2;
1590 newLen2DR = LER._length2D * intersection._param1 / 2;
1596 if ( newLen2DL > 0 && newLen2DR > 0 )
1598 if ( newLen2DL < 1.1 * LEL._length2D )
1599 edgeLenLimitList.push_back( make_pair( &LEL, newLen2DL ));
1600 if ( newLen2DR < 1.1 * LER._length2D )
1601 edgeLenLimitList.push_back( make_pair( &LER, newLen2DR ));
1606 // set limited length to _LayerEdge's
1607 list< pair< _LayerEdge*, double > >::iterator edge2Len = edgeLenLimitList.begin();
1608 for ( ; edge2Len != edgeLenLimitList.end(); ++edge2Len )
1610 _LayerEdge* LE = edge2Len->first;
1611 if ( LE->_length2D > edge2Len->second )
1613 LE->_isBlocked = false;
1614 LE->SetNewLength( edge2Len->second / LE->_len2dTo3dRatio );
1616 LE->_isBlocked = true;
1619 // block inflation of _LayerEdge's
1620 list< _LayerEdge* >::iterator edge = blockedEdgesList.begin();
1621 for ( ; edge != blockedEdgesList.end(); ++edge )
1622 (*edge)->_isBlocked = true;
1624 // find a not blocked _LayerEdge
1625 for ( size_t iL = 0; iL < _polyLineVec.size(); ++iL )
1627 _PolyLine& L = _polyLineVec[ iL ];
1628 if ( !L._advancable ) continue;
1629 for ( size_t iLE = L.FirstLEdge(); iLE < L._lEdges.size(); ++iLE )
1630 if ( !L._lEdges[ iLE ]._isBlocked )
1637 //================================================================================
1639 * \brief Create new edges and shrink edges existing on a non-advancable _PolyLine
1640 * adjacent to an advancable one.
1642 //================================================================================
1644 bool _ViscousBuilder2D::shrink()
1646 gp_Pnt2d uv; //gp_Vec2d tangent;
1647 _SegmentIntersection intersection;
1650 for ( size_t iL1 = 0; iL1 < _polyLineVec.size(); ++iL1 )
1652 _PolyLine& L = _polyLineVec[ iL1 ]; // line with no layers
1653 if ( L._advancable )
1655 const int nbAdvancable = ( L._rightLine->_advancable + L._leftLine->_advancable );
1656 if ( nbAdvancable == 0 )
1659 const TopoDS_Vertex& V1 = L._wire->FirstVertex( L._edgeInd );
1660 const TopoDS_Vertex& V2 = L._wire->LastVertex ( L._edgeInd );
1661 const int v1ID = getMeshDS()->ShapeToIndex( V1 );
1662 const int v2ID = getMeshDS()->ShapeToIndex( V2 );
1663 const bool isShrinkableL = ! _noShrinkVert.count( v1ID ) && L._leftLine->_advancable;
1664 const bool isShrinkableR = ! _noShrinkVert.count( v2ID ) && L._rightLine->_advancable;
1665 if ( !isShrinkableL && !isShrinkableR )
1668 const TopoDS_Edge& E = L._wire->Edge ( L._edgeInd );
1669 const int edgeID = L._wire->EdgeID ( L._edgeInd );
1670 const double edgeLen = L._wire->EdgeLength ( L._edgeInd );
1671 Handle(Geom2d_Curve) pcurve = L._wire->Curve2d ( L._edgeInd );
1672 const bool edgeReversed = ( E.Orientation() == TopAbs_REVERSED );
1674 SMESH_MesherHelper helper( *_mesh ); // to create nodes and edges on E
1675 helper.SetSubShape( E );
1676 helper.SetElementsOnShape( true );
1678 // Check a FACE adjacent to _face by E
1679 bool existingNodesFound = false;
1680 TopoDS_Face adjFace;
1681 PShapeIteratorPtr faceIt = _helper.GetAncestors( E, *_mesh, TopAbs_FACE );
1682 while ( const TopoDS_Shape* f = faceIt->next() )
1683 if ( !_face.IsSame( *f ))
1685 adjFace = TopoDS::Face( *f );
1686 SMESH_ProxyMesh::Ptr pm = _ProxyMeshHolder::FindProxyMeshOfFace( adjFace, *_mesh );
1687 if ( !pm || pm->NbProxySubMeshes() == 0 /*|| !pm->GetProxySubMesh( E )*/)
1689 // There are no viscous layers on an adjacent FACE, clear it's 2D mesh
1690 removeMeshFaces( adjFace );
1691 // if ( removeMeshFaces( adjFace ))
1692 // _clearedFaces.push_back( adjFace ); // to re-compute after all
1696 // There are viscous layers on the adjacent FACE; shrink must be already done;
1700 const vector<UVPtStruct>& points = L._wire->GetUVPtStruct();
1701 int iPFrom = L._firstPntInd, iPTo = L._lastPntInd;
1702 if ( isShrinkableL )
1704 const THypVL* hyp = getLineHypothesis( L._leftLine->_index );
1705 vector<gp_XY>& uvVec = L._lEdges.front()._uvRefined;
1706 for ( int i = 0; i < hyp->GetNumberLayers(); ++i ) {
1707 const UVPtStruct& uvPt = points[ iPFrom + i + 1 ];
1708 L._leftNodes.push_back( uvPt.node );
1709 uvVec.push_back ( pcurve->Value( uvPt.param ).XY() );
1711 iPFrom += hyp->GetNumberLayers();
1713 if ( isShrinkableR )
1715 const THypVL* hyp = getLineHypothesis( L._rightLine->_index );
1716 vector<gp_XY>& uvVec = L._lEdges.back()._uvRefined;
1717 for ( int i = 0; i < hyp->GetNumberLayers(); ++i ) {
1718 const UVPtStruct& uvPt = points[ iPTo - i - 1 ];
1719 L._rightNodes.push_back( uvPt.node );
1720 uvVec.push_back ( pcurve->Value( uvPt.param ).XY() );
1722 iPTo -= hyp->GetNumberLayers();
1724 // make proxy sub-mesh data of present nodes
1726 UVPtStructVec nodeDataVec( & points[ iPFrom ], & points[ iPTo + 1 ]);
1728 double normSize = nodeDataVec.back().normParam - nodeDataVec.front().normParam;
1729 for ( int iP = nodeDataVec.size()-1; iP >= 0 ; --iP )
1730 nodeDataVec[iP].normParam =
1731 ( nodeDataVec[iP].normParam - nodeDataVec[0].normParam ) / normSize;
1733 const SMDS_MeshNode* n = nodeDataVec.front().node;
1734 if ( n->GetPosition()->GetTypeOfPosition() == SMDS_TOP_VERTEX )
1735 nodeDataVec.front().param = L._wire->FirstU( L._edgeInd );
1736 n = nodeDataVec.back().node;
1737 if ( n->GetPosition()->GetTypeOfPosition() == SMDS_TOP_VERTEX )
1738 nodeDataVec.back().param = L._wire->LastU( L._edgeInd );
1740 _ProxyMeshOfFace::_EdgeSubMesh* myEdgeSM = getProxyMesh()->GetEdgeSubMesh( edgeID );
1741 myEdgeSM->SetUVPtStructVec( nodeDataVec );
1743 existingNodesFound = true;
1746 } // loop on FACEs sharing E
1748 // Check if L is an already shrinked seam
1749 if ( adjFace.IsNull() && _helper.IsRealSeam( edgeID ))
1750 if ( L._wire->Edge( L._edgeInd ).Orientation() == TopAbs_FORWARD )
1752 // Commented as a case with a seam EDGE (issue 0052461) is hard to support
1753 // because SMESH_ProxyMesh can't hold different sub-meshes for two
1754 // 2D representations of the seam. But such a case is not a real practice one.
1756 // for ( int iL2 = iL1-1; iL2 > -1; --iL2 )
1758 // _PolyLine& L2 = _polyLineVec[ iL2 ];
1759 // if ( edgeID == L2._wire->EdgeID( L2._edgeInd ))
1761 // // copy layer nodes
1762 // const int seamPar = _helper.GetPeriodicIndex();
1763 // vector<gp_XY>& uvVec = L._lEdges.front()._uvRefined;
1764 // if ( isShrinkableL )
1766 // L._leftNodes = L2._rightNodes;
1767 // uvVec = L2._lEdges.back()._uvRefined;
1769 // if ( isShrinkableR )
1771 // L._rightNodes = L2._leftNodes;
1772 // uvVec = L2._lEdges.front()._uvRefined;
1774 // for ( size_t i = 0; i < uvVec.size(); ++i )
1776 // gp_XY & uv = uvVec[i];
1777 // uv.SetCoord( seamPar, _helper.GetOtherParam( uv.Coord( seamPar )));
1780 // existingNodesFound = true;
1786 if ( existingNodesFound )
1787 continue; // nothing more to do in this case
1789 double u1 = L._wire->FirstU( L._edgeInd ), uf = u1;
1790 double u2 = L._wire->LastU ( L._edgeInd ), ul = u2;
1792 // a ratio to pass 2D <--> 1D
1793 const double len1D = 1e-3;
1794 const double len2D = pcurve->Value(uf).Distance( pcurve->Value(uf+len1D));
1795 double len1dTo2dRatio = len1D / len2D;
1797 // create a vector of proxy nodes
1798 const vector<UVPtStruct>& points = L._wire->GetUVPtStruct();
1799 UVPtStructVec nodeDataVec( & points[ L._firstPntInd ],
1800 & points[ L._lastPntInd + 1 ]);
1801 nodeDataVec.front().param = u1; // U on vertex is correct on only one of shared edges
1802 nodeDataVec.back ().param = u2;
1803 nodeDataVec.front().normParam = 0;
1804 nodeDataVec.back ().normParam = 1;
1806 // Get length of existing segments (from an edge start to a node) and their nodes
1807 vector< double > segLengths( nodeDataVec.size() - 1 );
1808 BRepAdaptor_Curve curve( E );
1809 for ( size_t iP = 1; iP < nodeDataVec.size(); ++iP )
1811 const double len = GCPnts_AbscissaPoint::Length( curve, uf, nodeDataVec[iP].param );
1812 segLengths[ iP-1 ] = len;
1815 // Move first and last parameters on EDGE (U of n1) according to layers' thickness
1816 // and create nodes of layers on EDGE ( -x-x-x )
1820 // x-----x-----x-----x-----
1825 // x-x-x-x-----x-----x----
1828 int isRShrinkedForAdjacent = 0;
1829 UVPtStructVec nodeDataForAdjacent;
1830 for ( int isR = 0; isR < 2; ++isR )
1832 _PolyLine* L2 = isR ? L._rightLine : L._leftLine; // line with layers
1833 if ( !L2->_advancable &&
1834 !toShrinkForAdjacent( adjFace, E, L._wire->FirstVertex( L._edgeInd + isR )))
1836 if ( isR ? !isShrinkableR : !isShrinkableL )
1839 double & u = isR ? u2 : u1; // param to move
1840 double u0 = isR ? ul : uf; // init value of the param to move
1841 int iPEnd = isR ? nodeDataVec.size() - 1 : 0;
1843 _LayerEdge& nearLE = isR ? L._lEdges.back() : L._lEdges.front();
1844 _LayerEdge& farLE = isR ? L._lEdges.front() : L._lEdges.back();
1846 // try to find length of advancement along L by intersecting L with
1847 // an adjacent _Segment of L2
1849 double& length2D = nearLE._length2D;
1850 double length1D = 0;
1851 sign = ( isR ^ edgeReversed ) ? -1. : 1.;
1853 bool isConvex = false;
1854 if ( L2->_advancable )
1856 const uvPtStruct& tang2P1 = points[ isR ? L2->_firstPntInd : L2->_lastPntInd ];
1857 const uvPtStruct& tang2P2 = points[ isR ? L2->_firstPntInd+1 : L2->_lastPntInd-1 ];
1858 gp_XY seg2Dir( tang2P2.u - tang2P1.u,
1859 tang2P2.v - tang2P1.v );
1860 int iFSeg2 = isR ? 0 : L2->_segments.size() - 1;
1861 int iLSeg2 = isR ? 1 : L2->_segments.size() - 2;
1862 gp_XY uvLSeg2In = L2->_lEdges[ iLSeg2 ]._uvIn;
1863 Handle(Geom2d_Line) seg2Line = new Geom2d_Line( uvLSeg2In, seg2Dir );
1865 Geom2dAdaptor_Curve edgeCurve( pcurve, Min( uf, ul ), Max( uf, ul ));
1866 Geom2dAdaptor_Curve seg2Curve( seg2Line );
1867 Geom2dInt_GInter curveInt( edgeCurve, seg2Curve, 1e-7, 1e-7 );
1868 isConvex = ( curveInt.IsDone() && !curveInt.IsEmpty() );
1871 length1D = Abs( u - curveInt.Point( 1 ).ParamOnFirst() );
1872 double maxDist2d = 2 * L2->_lEdges[ iLSeg2 ]._length2D;
1873 isConvex = ( length1D < maxDist2d * len1dTo2dRatio );
1880 if ( !isConvex ) { /* concave VERTEX */ /* o-----o---
1886 length2D = L2->_lEdges[ iFSeg2 ]._length2D;
1887 //if ( L2->_advancable ) continue;
1890 else // L2 is advancable but in the face adjacent by L
1892 length2D = farLE._length2D;
1893 if ( length2D == 0 ) {
1894 _LayerEdge& neighborLE =
1895 ( isR ? L._leftLine->_lEdges.back() : L._rightLine->_lEdges.front() );
1896 length2D = neighborLE._length2D;
1897 if ( length2D == 0 )
1898 length2D = _maxThickness * nearLE._len2dTo3dRatio;
1902 // move u to the internal boundary of layers
1904 // x-x-x-x-----x-----x----
1905 double maxLen3D = Min( _maxThickness, edgeLen / ( 1 + nbAdvancable ));
1906 double maxLen2D = maxLen3D * nearLE._len2dTo3dRatio;
1907 if ( !length2D ) length2D = length1D / len1dTo2dRatio;
1908 if ( Abs( length2D ) > maxLen2D )
1909 length2D = maxLen2D;
1910 nearLE._uvIn = nearLE._uvOut + nearLE._normal2D * length2D;
1912 u += length2D * len1dTo2dRatio * sign;
1913 nodeDataVec[ iPEnd ].param = u;
1915 gp_Pnt2d newUV = pcurve->Value( u );
1916 nodeDataVec[ iPEnd ].u = newUV.X();
1917 nodeDataVec[ iPEnd ].v = newUV.Y();
1919 // compute params of layers on L
1920 vector<double> heights;
1921 const THypVL* hyp = getLineHypothesis( L2->_index );
1922 calcLayersHeight( u - u0, heights, hyp );
1924 vector< double > params( heights.size() );
1925 for ( size_t i = 0; i < params.size(); ++i )
1926 params[ i ] = u0 + heights[ i ];
1928 // create nodes of layers and edges between them
1930 vector< const SMDS_MeshNode* >& layersNode = isR ? L._rightNodes : L._leftNodes;
1931 vector<gp_XY>& nodeUV = ( isR ? L._lEdges.back() : L._lEdges[0] )._uvRefined;
1932 nodeUV.resize ( hyp->GetNumberLayers() );
1933 layersNode.resize( hyp->GetNumberLayers() );
1934 const SMDS_MeshNode* vertexNode = nodeDataVec[ iPEnd ].node;
1935 const SMDS_MeshNode * prevNode = vertexNode;
1936 for ( size_t i = 0; i < params.size(); ++i )
1938 const gp_Pnt p = curve.Value( params[i] );
1939 layersNode[ i ] = helper.AddNode( p.X(), p.Y(), p.Z(), /*id=*/0, params[i] );
1940 nodeUV [ i ] = pcurve->Value( params[i] ).XY();
1941 helper.AddEdge( prevNode, layersNode[ i ] );
1942 prevNode = layersNode[ i ];
1945 // store data of layer nodes made for adjacent FACE
1946 if ( !L2->_advancable )
1948 isRShrinkedForAdjacent = isR;
1949 nodeDataForAdjacent.resize( hyp->GetNumberLayers() );
1951 size_t iFrw = 0, iRev = nodeDataForAdjacent.size()-1, *i = isR ? &iRev : &iFrw;
1952 nodeDataForAdjacent[ *i ] = points[ isR ? L._lastPntInd : L._firstPntInd ];
1953 nodeDataForAdjacent[ *i ].param = u0;
1954 nodeDataForAdjacent[ *i ].normParam = isR;
1955 for ( ++iFrw, --iRev; iFrw < layersNode.size(); ++iFrw, --iRev )
1957 nodeDataForAdjacent[ *i ].node = layersNode[ iFrw - 1 ];
1958 nodeDataForAdjacent[ *i ].u = nodeUV [ iFrw - 1 ].X();
1959 nodeDataForAdjacent[ *i ].v = nodeUV [ iFrw - 1 ].Y();
1960 nodeDataForAdjacent[ *i ].param = params [ iFrw - 1 ];
1963 // replace a node on vertex by a node of last (most internal) layer
1964 // in a segment on E
1965 SMDS_ElemIteratorPtr segIt = vertexNode->GetInverseElementIterator( SMDSAbs_Edge );
1966 const SMDS_MeshNode* segNodes[3];
1967 while ( segIt->more() )
1969 const SMDS_MeshElement* segment = segIt->next();
1970 if ( segment->getshapeId() != edgeID ) continue;
1972 const int nbNodes = segment->NbNodes();
1973 for ( int i = 0; i < nbNodes; ++i )
1975 const SMDS_MeshNode* n = segment->GetNode( i );
1976 segNodes[ i ] = ( n == vertexNode ? layersNode.back() : n );
1978 getMeshDS()->ChangeElementNodes( segment, segNodes, nbNodes );
1981 nodeDataVec[ iPEnd ].node = layersNode.back();
1983 } // loop on the extremities of L
1985 // Shrink edges to fit in between the layers at EDGE ends
1987 double newLength = GCPnts_AbscissaPoint::Length( curve, u1, u2 );
1988 double lenRatio = newLength / edgeLen * ( edgeReversed ? -1. : 1. );
1989 for ( size_t iP = 1; iP < nodeDataVec.size()-1; ++iP )
1991 const SMDS_MeshNode* oldNode = nodeDataVec[iP].node;
1993 GCPnts_AbscissaPoint discret( curve, segLengths[iP-1] * lenRatio, u1 );
1994 if ( !discret.IsDone() )
1995 throw SALOME_Exception(LOCALIZED("GCPnts_AbscissaPoint failed"));
1997 nodeDataVec[iP].param = discret.Parameter();
1998 if ( oldNode->GetPosition()->GetTypeOfPosition() != SMDS_TOP_EDGE )
1999 throw SALOME_Exception(SMESH_Comment("ViscousBuilder2D: not SMDS_TOP_EDGE node position: ")
2000 << oldNode->GetPosition()->GetTypeOfPosition()
2001 << " of node " << oldNode->GetID());
2002 SMDS_EdgePositionPtr pos = oldNode->GetPosition();
2003 pos->SetUParameter( nodeDataVec[iP].param );
2005 gp_Pnt newP = curve.Value( nodeDataVec[iP].param );
2006 getMeshDS()->MoveNode( oldNode, newP.X(), newP.Y(), newP.Z() );
2008 gp_Pnt2d newUV = pcurve->Value( nodeDataVec[iP].param ).XY();
2009 nodeDataVec[iP].u = newUV.X();
2010 nodeDataVec[iP].v = newUV.Y();
2011 nodeDataVec[iP].normParam = segLengths[iP-1] / edgeLen;
2012 // nodeDataVec[iP].x = segLengths[iP-1] / edgeLen;
2013 // nodeDataVec[iP].y = segLengths[iP-1] / edgeLen;
2016 // Add nodeDataForAdjacent to nodeDataVec
2018 if ( !nodeDataForAdjacent.empty() )
2020 const double par1 = isRShrinkedForAdjacent ? u2 : uf;
2021 const double par2 = isRShrinkedForAdjacent ? ul : u1;
2022 const double shrinkLen = GCPnts_AbscissaPoint::Length( curve, par1, par2 );
2024 // compute new normParam for nodeDataVec
2025 for ( size_t iP = 0; iP < nodeDataVec.size()-1; ++iP )
2026 nodeDataVec[iP+1].normParam = segLengths[iP] / ( edgeLen + shrinkLen );
2027 double normDelta = 1 - nodeDataVec.back().normParam;
2028 if ( !isRShrinkedForAdjacent )
2029 for ( size_t iP = 0; iP < nodeDataVec.size(); ++iP )
2030 nodeDataVec[iP].normParam += normDelta;
2032 // compute new normParam for nodeDataForAdjacent
2033 const double deltaR = isRShrinkedForAdjacent ? nodeDataVec.back().normParam : 0;
2034 for ( size_t iP = !isRShrinkedForAdjacent; iP < nodeDataForAdjacent.size(); ++iP )
2036 double lenFromPar1 =
2037 GCPnts_AbscissaPoint::Length( curve, par1, nodeDataForAdjacent[iP].param );
2038 nodeDataForAdjacent[iP].normParam = deltaR + normDelta * lenFromPar1 / shrinkLen;
2040 // concatenate nodeDataVec and nodeDataForAdjacent
2041 nodeDataVec.insert(( isRShrinkedForAdjacent ? nodeDataVec.end() : nodeDataVec.begin() ),
2042 nodeDataForAdjacent.begin(), nodeDataForAdjacent.end() );
2045 // Extend nodeDataVec by a node located at the end of not shared _LayerEdge
2046 /* n - to add to nodeDataVec
2055 for ( int isR = 0; isR < 2; ++isR )
2057 _PolyLine& L2 = *( isR ? L._rightLine : L._leftLine ); // line with layers
2058 if ( ! L2._advancable || L.IsCommonEdgeShared( L2 ) )
2060 vector< const SMDS_MeshNode* >& layerNodes2 = isR ? L2._leftNodes : L2._rightNodes;
2061 _LayerEdge& LE2 = isR ? L2._lEdges.front() : L2._lEdges.back();
2062 if ( layerNodes2.empty() )
2064 // refine the not shared _LayerEdge
2065 vector<double> layersHeight;
2066 calcLayersHeight( LE2._length2D, layersHeight, getLineHypothesis( L2._index ));
2068 vector<gp_XY>& nodeUV2 = LE2._uvRefined;
2069 nodeUV2.resize ( layersHeight.size() );
2070 layerNodes2.resize( layersHeight.size() );
2071 for ( size_t i = 0; i < layersHeight.size(); ++i )
2073 gp_XY uv = LE2._uvOut + LE2._normal2D * layersHeight[i];
2074 gp_Pnt p = _surface->Value( uv.X(), uv.Y() );
2076 layerNodes2[ i ] = _helper.AddNode( p.X(), p.Y(), p.Z(), /*id=*/0, uv.X(), uv.Y() );
2079 UVPtStruct ptOfNode;
2080 ptOfNode.u = LE2._uvRefined.back().X();
2081 ptOfNode.v = LE2._uvRefined.back().Y();
2082 ptOfNode.node = layerNodes2.back();
2083 ptOfNode.param = isR ? ul : uf;
2084 ptOfNode.normParam = isR ? 1 : 0;
2086 nodeDataVec.insert(( isR ? nodeDataVec.end() : nodeDataVec.begin() ), ptOfNode );
2088 // recompute normParam of nodes in nodeDataVec
2089 newLength = GCPnts_AbscissaPoint::Length( curve,
2090 nodeDataVec.front().param,
2091 nodeDataVec.back().param);
2092 for ( size_t iP = 1; iP < nodeDataVec.size(); ++iP )
2094 const double len = GCPnts_AbscissaPoint::Length( curve,
2095 nodeDataVec.front().param,
2096 nodeDataVec[iP].param );
2097 nodeDataVec[iP].normParam = len / newLength;
2101 // create a proxy sub-mesh containing the moved nodes
2102 _ProxyMeshOfFace::_EdgeSubMesh* edgeSM = getProxyMesh()->GetEdgeSubMesh( edgeID );
2103 edgeSM->SetUVPtStructVec( nodeDataVec );
2105 // set a sub-mesh event listener to remove just created edges when
2106 // "ViscousLayers2D" hypothesis is modified
2107 VISCOUS_3D::ToClearSubWithMain( _mesh->GetSubMesh( E ), _face );
2109 } // loop on _polyLineVec
2114 //================================================================================
2116 * \brief Returns true if there will be a shrinked mesh on EDGE E of FACE adjFace
2119 //================================================================================
2121 bool _ViscousBuilder2D::toShrinkForAdjacent( const TopoDS_Face& adjFace,
2122 const TopoDS_Edge& E,
2123 const TopoDS_Vertex& V)
2125 if ( _noShrinkVert.count( getMeshDS()->ShapeToIndex( V )) || adjFace.IsNull() )
2128 vector< const StdMeshers_ViscousLayers2D* > hyps;
2129 vector< TopoDS_Shape > hypShapes;
2130 if ( VISCOUS_2D::findHyps( *_mesh, adjFace, hyps, hypShapes ))
2132 VISCOUS_2D::_ViscousBuilder2D builder( *_mesh, adjFace, hyps, hypShapes );
2133 builder._faceSideVec = StdMeshers_FaceSide::GetFaceWires( adjFace, *_mesh, true, _error );
2134 builder.findEdgesWithLayers();
2136 PShapeIteratorPtr edgeIt = _helper.GetAncestors( V, *_mesh, TopAbs_EDGE );
2137 while ( const TopoDS_Shape* edgeAtV = edgeIt->next() )
2139 if ( !edgeAtV->IsSame( E ) &&
2140 _helper.IsSubShape( *edgeAtV, adjFace ) &&
2141 !builder._ignoreShapeIds.count( getMeshDS()->ShapeToIndex( *edgeAtV )))
2150 //================================================================================
2154 //================================================================================
2156 bool _ViscousBuilder2D::refine()
2158 // find out orientation of faces to create
2160 ( _helper.GetSubShapeOri( _mesh->GetShapeToMesh(), _face ) == TopAbs_REVERSED );
2162 // store a proxyMesh in a sub-mesh
2163 // make faces on each _PolyLine
2164 vector< double > layersHeight;
2165 //double prevLen2D = -1;
2166 for ( size_t iL = 0; iL < _polyLineVec.size(); ++iL )
2168 _PolyLine& L = _polyLineVec[ iL ];
2169 if ( !L._advancable ) continue;
2171 // replace an inactive (1st) _LayerEdge with an active one of a neighbour _PolyLine
2172 //size_t iLE = 0, nbLE = L._lEdges.size();
2173 const bool leftEdgeShared = L.IsCommonEdgeShared( *L._leftLine );
2174 const bool rightEdgeShared = L.IsCommonEdgeShared( *L._rightLine );
2175 if ( /*!L._leftLine->_advancable &&*/ leftEdgeShared )
2177 L._lEdges[0] = L._leftLine->_lEdges.back();
2178 //iLE += int( !L._leftLine->_advancable );
2180 if ( !L._rightLine->_advancable && rightEdgeShared )
2182 L._lEdges.back() = L._rightLine->_lEdges[0];
2186 // limit length of neighbour _LayerEdge's to avoid sharp change of layers thickness
2188 vector< double > segLen( L._lEdges.size() );
2191 // check if length modification is useful: look for _LayerEdge's
2192 // with length limited due to collisions
2193 bool lenLimited = false;
2194 for ( size_t iLE = 1; ( iLE < L._lEdges.size()-1 && !lenLimited ); ++iLE )
2195 lenLimited = L._lEdges[ iLE ]._isBlocked;
2199 for ( size_t i = 1; i < segLen.size(); ++i )
2201 // accumulate length of segments
2202 double sLen = (L._lEdges[i-1]._uvOut - L._lEdges[i]._uvOut ).Modulus();
2203 segLen[i] = segLen[i-1] + sLen;
2205 const double totSegLen = segLen.back();
2206 // normalize the accumulated length
2207 for ( size_t iS = 1; iS < segLen.size(); ++iS )
2208 segLen[iS] /= totSegLen;
2210 for ( int isR = 0; isR < 2; ++isR )
2212 size_t iF = 0, iL = L._lEdges.size()-1;
2213 size_t *i = isR ? &iL : &iF;
2214 _LayerEdge* prevLE = & L._lEdges[ *i ];
2216 for ( ++iF, --iL; iF < L._lEdges.size()-1; ++iF, --iL )
2218 _LayerEdge& LE = L._lEdges[*i];
2219 if ( prevLE->_length2D > 0 )
2221 gp_XY tangent ( LE._normal2D.Y(), -LE._normal2D.X() );
2222 weight += Abs( tangent * ( prevLE->_uvIn - LE._uvIn )) / totSegLen;
2223 // gp_XY prevTang( LE._uvOut - prevLE->_uvOut );
2224 // gp_XY prevNorm( -prevTang.Y(), prevTang.X() );
2225 gp_XY prevNorm = LE._normal2D;
2226 double prevProj = prevNorm * ( prevLE->_uvIn - prevLE->_uvOut );
2227 if ( prevProj > 0 ) {
2228 prevProj /= prevNorm.Modulus();
2229 if ( LE._length2D < prevProj )
2230 weight += 0.75 * ( 1 - weight ); // length decrease is more preferable
2231 LE._length2D = weight * LE._length2D + ( 1 - weight ) * prevProj;
2232 LE._uvIn = LE._uvOut + LE._normal2D * LE._length2D;
2239 // DEBUG: to see _uvRefined. cout can be redirected to hide NETGEN output
2240 // cerr << "import smesh" << endl << "mesh = smesh.Mesh()"<< endl;
2242 const vector<UVPtStruct>& points = L._wire->GetUVPtStruct();
2244 // analyse extremities of the _PolyLine to find existing nodes
2245 const TopoDS_Vertex& V1 = L._wire->FirstVertex( L._edgeInd );
2246 const TopoDS_Vertex& V2 = L._wire->LastVertex ( L._edgeInd );
2247 const int v1ID = getMeshDS()->ShapeToIndex( V1 );
2248 const int v2ID = getMeshDS()->ShapeToIndex( V2 );
2249 const bool isShrinkableL = ! _noShrinkVert.count( v1ID );
2250 const bool isShrinkableR = ! _noShrinkVert.count( v2ID );
2252 bool hasLeftNode = ( !L._leftLine->_rightNodes.empty() && leftEdgeShared );
2253 bool hasRightNode = ( !L._rightLine->_leftNodes.empty() && rightEdgeShared );
2254 bool hasOwnLeftNode = ( !L._leftNodes.empty() );
2255 bool hasOwnRightNode = ( !L._rightNodes.empty() );
2256 bool isClosedEdge = ( points[ L._firstPntInd ].node == points[ L._lastPntInd ].node );
2258 nbN = L._lastPntInd - L._firstPntInd + 1,
2259 iN0 = ( hasLeftNode || hasOwnLeftNode || isClosedEdge || !isShrinkableL ),
2260 iNE = nbN - ( hasRightNode || hasOwnRightNode || !isShrinkableR );
2262 // update _uvIn of end _LayerEdge's by existing nodes
2263 const SMDS_MeshNode *nL = 0, *nR = 0;
2264 if ( hasOwnLeftNode ) nL = L._leftNodes.back();
2265 else if ( hasLeftNode ) nL = L._leftLine->_rightNodes.back();
2266 if ( hasOwnRightNode ) nR = L._rightNodes.back();
2267 else if ( hasRightNode ) nR = L._rightLine->_leftNodes.back();
2269 L._lEdges[0]._uvIn = _helper.GetNodeUV( _face, nL, points[ L._firstPntInd + 1 ].node );
2271 L._lEdges.back()._uvIn = _helper.GetNodeUV( _face, nR, points[ L._lastPntInd - 1 ].node );
2273 // compute normalized [0;1] node parameters of nodes on a _PolyLine
2274 vector< double > normPar( nbN );
2276 normF = L._wire->FirstParameter( L._edgeInd ),
2277 normL = L._wire->LastParameter ( L._edgeInd ),
2278 normDist = normL - normF;
2279 for ( int i = L._firstPntInd; i <= L._lastPntInd; ++i )
2280 normPar[ i - L._firstPntInd ] = ( points[i].normParam - normF ) / normDist;
2282 // Calculate UV of most inner nodes
2284 vector< gp_XY > innerUV( nbN );
2286 // check if innerUV should be interpolated between _LayerEdge::_uvIn's
2287 const size_t nbLE = L._lEdges.size();
2288 bool needInterpol = ( nbN != nbLE );
2289 if ( !needInterpol )
2291 // more check: compare length of inner and outer end segments
2292 double lenIn, lenOut;
2293 for ( int isR = 0; isR < 2 && !needInterpol; ++isR )
2295 const _Segment& segIn = isR ? L._segments.back() : L._segments[0];
2296 const gp_XY& uvIn1 = segIn.p1();
2297 const gp_XY& uvIn2 = segIn.p2();
2298 const gp_XY& uvOut1 = L._lEdges[ isR ? nbLE-1 : 0 ]._uvOut;
2299 const gp_XY& uvOut2 = L._lEdges[ isR ? nbLE-2 : 1 ]._uvOut;
2300 if ( _is2DIsotropic )
2302 lenIn = ( uvIn1 - uvIn2 ).Modulus();
2303 lenOut = ( uvOut1 - uvOut2 ).Modulus();
2307 lenIn = _surface->Value( uvIn1.X(), uvIn1.Y() )
2308 .Distance( _surface->Value( uvIn2.X(), uvIn2.Y() ));
2309 lenOut = _surface->Value( uvOut1.X(), uvOut1.Y() )
2310 .Distance( _surface->Value( uvOut2.X(), uvOut2.Y() ));
2312 needInterpol = ( lenIn < 0.66 * lenOut );
2318 // compute normalized accumulated length of inner segments
2320 if ( _is2DIsotropic )
2321 for ( iS = 1; iS < segLen.size(); ++iS )
2323 double sLen = ( L._lEdges[iS-1]._uvIn - L._lEdges[iS]._uvIn ).Modulus();
2324 segLen[iS] = segLen[iS-1] + sLen;
2327 for ( iS = 1; iS < segLen.size(); ++iS )
2329 const gp_XY& uv1 = L._lEdges[iS-1]._uvIn;
2330 const gp_XY& uv2 = L._lEdges[iS ]._uvIn;
2331 gp_Pnt p1 = _surface->Value( uv1.X(), uv1.Y() );
2332 gp_Pnt p2 = _surface->Value( uv2.X(), uv2.Y() );
2333 double sLen = p1.Distance( p2 );
2334 segLen[iS] = segLen[iS-1] + sLen;
2336 // normalize the accumulated length
2337 for ( iS = 1; iS < segLen.size(); ++iS )
2338 segLen[iS] /= segLen.back();
2340 // calculate UV of most inner nodes according to the normalized node parameters
2342 for ( size_t i = 0; i < innerUV.size(); ++i )
2344 while ( normPar[i] > segLen[iS+1] )
2346 double r = ( normPar[i] - segLen[iS] ) / ( segLen[iS+1] - segLen[iS] );
2347 innerUV[ i ] = r * L._lEdges[iS+1]._uvIn + (1-r) * L._lEdges[iS]._uvIn;
2350 else // ! needInterpol
2352 for ( size_t i = 0; i < nbLE; ++i )
2353 innerUV[ i ] = L._lEdges[i]._uvIn;
2356 // normalized height of layers
2357 const THypVL* hyp = getLineHypothesis( iL );
2358 calcLayersHeight( 1., layersHeight, hyp);
2360 // Create layers of faces
2362 // nodes to create 1 layer of faces
2363 vector< const SMDS_MeshNode* > outerNodes( nbN );
2364 vector< const SMDS_MeshNode* > innerNodes( nbN );
2366 // initialize outerNodes by nodes of the L._wire
2367 for ( int i = L._firstPntInd; i <= L._lastPntInd; ++i )
2368 outerNodes[ i-L._firstPntInd ] = points[i].node;
2370 L._leftNodes .reserve( hyp->GetNumberLayers() );
2371 L._rightNodes.reserve( hyp->GetNumberLayers() );
2372 int cur = 0, prev = -1; // to take into account orientation of _face
2373 if ( isReverse ) std::swap( cur, prev );
2374 for ( int iF = 0; iF < hyp->GetNumberLayers(); ++iF ) // loop on layers of faces
2376 // create innerNodes of a current layer
2377 for ( size_t i = iN0; i < iNE; ++i )
2379 gp_XY uvOut = points[ L._firstPntInd + i ].UV();
2380 gp_XY& uvIn = innerUV[ i ];
2381 gp_XY uv = layersHeight[ iF ] * uvIn + ( 1.-layersHeight[ iF ]) * uvOut;
2382 gp_Pnt p = _surface->Value( uv.X(), uv.Y() );
2383 innerNodes[i] = _helper.AddNode( p.X(), p.Y(), p.Z(), /*id=*/0, uv.X(), uv.Y() );
2385 // use nodes created for adjacent _PolyLine's
2386 if ( hasOwnLeftNode ) innerNodes.front() = L._leftNodes [ iF ];
2387 else if ( hasLeftNode ) innerNodes.front() = L._leftLine->_rightNodes[ iF ];
2388 if ( hasOwnRightNode ) innerNodes.back() = L._rightNodes[ iF ];
2389 else if ( hasRightNode ) innerNodes.back() = L._rightLine->_leftNodes[ iF ];
2390 if ( isClosedEdge ) innerNodes.front() = innerNodes.back(); // circle
2391 if ( !isShrinkableL ) innerNodes.front() = outerNodes.front();
2392 if ( !isShrinkableR ) innerNodes.back() = outerNodes.back();
2393 if ( !hasOwnLeftNode ) L._leftNodes.push_back( innerNodes.front() );
2394 if ( !hasOwnRightNode ) L._rightNodes.push_back( innerNodes.back() );
2397 for ( size_t i = 1; i < innerNodes.size(); ++i )
2398 if ( SMDS_MeshElement* f = _helper.AddFace( outerNodes[ i+prev ], outerNodes[ i+cur ],
2399 innerNodes[ i+cur ], innerNodes[ i+prev ]))
2400 L._newFaces.insert( L._newFaces.end(), f );
2402 outerNodes.swap( innerNodes );
2405 // Add faces to a group
2406 SMDS_MeshGroup* group = StdMeshers_ViscousLayers::CreateGroup( hyp->GetGroupName(),
2411 TIDSortedElemSet::iterator fIt = L._newFaces.begin();
2412 for ( ; fIt != L._newFaces.end(); ++fIt )
2416 // faces between not shared _LayerEdge's (at concave VERTEX)
2417 for ( int isR = 0; isR < 2; ++isR )
2419 if ( isR ? rightEdgeShared : leftEdgeShared )
2421 vector< const SMDS_MeshNode* > &
2422 lNodes = (isR ? L._rightNodes : L._leftLine->_rightNodes ),
2423 rNodes = (isR ? L._rightLine->_leftNodes : L._leftNodes );
2424 if ( lNodes.empty() || rNodes.empty() || lNodes.size() != rNodes.size() )
2427 const SMDS_MeshElement* face = 0;
2428 for ( size_t i = 1; i < lNodes.size(); ++i )
2430 face = _helper.AddFace( lNodes[ i+prev ], rNodes[ i+prev ],
2431 rNodes[ i+cur ], lNodes[ i+cur ]);
2436 const UVPtStruct& ptOnVertex = points[ isR ? L._lastPntInd : L._firstPntInd ];
2438 face = _helper.AddFace( ptOnVertex.node, lNodes[ 0 ], rNodes[ 0 ]);
2440 face = _helper.AddFace( ptOnVertex.node, rNodes[ 0 ], lNodes[ 0 ]);
2445 // Fill the _ProxyMeshOfFace
2447 UVPtStructVec nodeDataVec( outerNodes.size() ); // outerNodes swapped with innerNodes
2448 for ( size_t i = 0; i < outerNodes.size(); ++i )
2450 gp_XY uv = _helper.GetNodeUV( _face, outerNodes[i] );
2451 nodeDataVec[i].u = uv.X();
2452 nodeDataVec[i].v = uv.Y();
2453 nodeDataVec[i].node = outerNodes[i];
2454 nodeDataVec[i].param = points [i + L._firstPntInd].param;
2455 nodeDataVec[i].normParam = normPar[i];
2456 nodeDataVec[i].x = normPar[i];
2457 nodeDataVec[i].y = normPar[i];
2459 nodeDataVec.front().param = L._wire->FirstU( L._edgeInd );
2460 nodeDataVec.back() .param = L._wire->LastU ( L._edgeInd );
2462 if (( nodeDataVec[0].node == nodeDataVec.back().node ) &&
2463 ( _helper.GetPeriodicIndex() == 1 || _helper.GetPeriodicIndex() == 2 )) // closed EDGE
2465 const int iCoord = _helper.GetPeriodicIndex();
2466 gp_XY uv = nodeDataVec[0].UV();
2467 uv.SetCoord( iCoord, L._lEdges[0]._uvOut.Coord( iCoord ));
2468 nodeDataVec[0].SetUV( uv );
2470 uv = nodeDataVec.back().UV();
2471 uv.SetCoord( iCoord, L._lEdges.back()._uvOut.Coord( iCoord ));
2472 nodeDataVec.back().SetUV( uv );
2475 _ProxyMeshOfFace::_EdgeSubMesh* edgeSM
2476 = getProxyMesh()->GetEdgeSubMesh( L._wire->EdgeID( L._edgeInd ));
2477 edgeSM->SetUVPtStructVec( nodeDataVec );
2479 } // loop on _PolyLine's
2481 // re-compute FACEs whose mesh was removed by shrink()
2482 for ( size_t i = 0; i < _clearedFaces.size(); ++i )
2484 SMESH_subMesh* sm = _mesh->GetSubMesh( _clearedFaces[i] );
2485 if ( sm->GetComputeState() == SMESH_subMesh::READY_TO_COMPUTE )
2486 sm->ComputeStateEngine( SMESH_subMesh::COMPUTE );
2492 //================================================================================
2494 * \brief Improve quality of the created mesh elements
2496 //================================================================================
2498 bool _ViscousBuilder2D::improve()
2503 // fixed nodes on EDGE's
2504 std::set<const SMDS_MeshNode*> fixedNodes;
2505 for ( size_t iWire = 0; iWire < _faceSideVec.size(); ++iWire )
2507 StdMeshers_FaceSidePtr wire = _faceSideVec[ iWire ];
2508 const vector<UVPtStruct>& points = wire->GetUVPtStruct();
2509 for ( size_t i = 0; i < points.size(); ++i )
2510 fixedNodes.insert( fixedNodes.end(), points[i].node );
2512 // fixed proxy nodes
2513 for ( size_t iL = 0; iL < _polyLineVec.size(); ++iL )
2515 _PolyLine& L = _polyLineVec[ iL ];
2516 const TopoDS_Edge& E = L._wire->Edge( L._edgeInd );
2517 if ( const SMESH_ProxyMesh::SubMesh* sm = _proxyMesh->GetProxySubMesh( E ))
2519 const UVPtStructVec& points = sm->GetUVPtStructVec();
2520 for ( size_t i = 0; i < points.size(); ++i )
2521 fixedNodes.insert( fixedNodes.end(), points[i].node );
2523 for ( size_t i = 0; i < L._rightNodes.size(); ++i )
2524 fixedNodes.insert( fixedNodes.end(), L._rightNodes[i] );
2528 SMESH_MeshEditor editor( _mesh );
2529 for ( size_t iL = 0; iL < _polyLineVec.size(); ++iL )
2531 _PolyLine& L = _polyLineVec[ iL ];
2532 if ( L._isStraight2D ) continue;
2533 // SMESH_MeshEditor::SmoothMethod how =
2534 // L._isStraight2D ? SMESH_MeshEditor::LAPLACIAN : SMESH_MeshEditor::CENTROIDAL;
2535 //editor.Smooth( L._newFaces, fixedNodes, how, /*nbIt = */3 );
2536 //editor.Smooth( L._newFaces, fixedNodes, SMESH_MeshEditor::LAPLACIAN, /*nbIt = */1 );
2537 editor.Smooth( L._newFaces, fixedNodes, SMESH_MeshEditor::CENTROIDAL, /*nbIt = */3 );
2542 //================================================================================
2544 * \brief Remove elements and nodes from a face
2546 //================================================================================
2548 bool _ViscousBuilder2D::removeMeshFaces(const TopoDS_Shape& face)
2550 // we don't use SMESH_subMesh::ComputeStateEngine() because of a listener
2551 // which clears EDGEs together with _face.
2552 bool thereWereElems = false;
2553 SMESH_subMesh* sm = _mesh->GetSubMesh( face );
2554 if ( SMESHDS_SubMesh* smDS = sm->GetSubMeshDS() )
2556 SMDS_ElemIteratorPtr eIt = smDS->GetElements();
2557 thereWereElems = eIt->more();
2558 while ( eIt->more() ) getMeshDS()->RemoveFreeElement( eIt->next(), smDS );
2559 SMDS_NodeIteratorPtr nIt = smDS->GetNodes();
2560 while ( nIt->more() ) getMeshDS()->RemoveFreeNode( nIt->next(), smDS );
2562 sm->ComputeStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE );
2564 return thereWereElems;
2567 //================================================================================
2569 * \brief Returns a hypothesis for a _PolyLine
2571 //================================================================================
2573 const StdMeshers_ViscousLayers2D* _ViscousBuilder2D::getLineHypothesis(int iPL)
2575 return iPL < (int)_hypOfEdge.size() ? _hypOfEdge[ iPL ] : _hyps[0];
2578 //================================================================================
2580 * \brief Returns a layers thickness for a _PolyLine
2582 //================================================================================
2584 double _ViscousBuilder2D::getLineThickness(int iPL)
2586 if ( const StdMeshers_ViscousLayers2D* h = getLineHypothesis( iPL ))
2587 return Min( _maxThickness, h->GetTotalThickness() );
2588 return _maxThickness;
2591 //================================================================================
2593 * \brief Creates a _ProxyMeshOfFace and store it in a sub-mesh of FACE
2595 //================================================================================
2597 _ProxyMeshOfFace* _ViscousBuilder2D::getProxyMesh()
2599 if ( _proxyMesh.get() )
2600 return (_ProxyMeshOfFace*) _proxyMesh.get();
2602 _ProxyMeshOfFace* proxyMeshOfFace = new _ProxyMeshOfFace( *_mesh );
2603 _proxyMesh.reset( proxyMeshOfFace );
2604 new _ProxyMeshHolder( _face, _proxyMesh );
2606 return proxyMeshOfFace;
2609 //================================================================================
2611 * \brief Calculate height of layers for the given thickness. Height is measured
2612 * from the outer boundary
2614 //================================================================================
2616 void _ViscousBuilder2D::calcLayersHeight(const double totalThick,
2617 vector<double>& heights,
2620 const double fPowN = pow( hyp->GetStretchFactor(), hyp->GetNumberLayers() );
2621 heights.resize( hyp->GetNumberLayers() );
2623 if ( fPowN - 1 <= numeric_limits<double>::min() )
2624 h0 = totalThick / hyp->GetNumberLayers();
2626 h0 = totalThick * ( hyp->GetStretchFactor() - 1 )/( fPowN - 1 );
2628 double hSum = 0, hi = h0;
2629 for ( int i = 0; i < hyp->GetNumberLayers(); ++i )
2632 heights[ i ] = hSum;
2633 hi *= hyp->GetStretchFactor();
2637 //================================================================================
2639 * \brief Elongate this _LayerEdge
2641 //================================================================================
2643 bool _LayerEdge::SetNewLength( const double length3D )
2645 if ( _isBlocked ) return false;
2647 //_uvInPrev = _uvIn;
2648 _length2D = length3D * _len2dTo3dRatio;
2649 _uvIn = _uvOut + _normal2D * _length2D;
2653 //================================================================================
2655 * \brief Return true if _LayerEdge at a common VERTEX between EDGEs with
2656 * and w/o layer is common to the both _PolyLine's. If this is true, nodes
2657 * of this _LayerEdge are inflated along a _PolyLine w/o layer, else the nodes
2658 * are inflated along _normal2D of _LayerEdge of EDGE with layer
2660 //================================================================================
2662 bool _PolyLine::IsCommonEdgeShared( const _PolyLine& other )
2664 const double tol = 1e-30;
2666 if ( & other == _leftLine )
2667 return _lEdges[0]._normal2D.IsEqual( _leftLine->_lEdges.back()._normal2D, tol );
2669 if ( & other == _rightLine )
2670 return _lEdges.back()._normal2D.IsEqual( _rightLine->_lEdges[0]._normal2D, tol );
2675 //================================================================================
2677 * \brief Return \c true if the EDGE of this _PolyLine is concave
2679 //================================================================================
2681 bool _PolyLine::IsConcave() const
2683 if ( _lEdges.size() < 2 )
2686 gp_Vec2d v1( _lEdges[0]._uvOut, _lEdges[1]._uvOut );
2687 gp_Vec2d v2( _lEdges[0]._uvOut, _lEdges[2]._uvOut );
2688 const double size2 = v2.Magnitude();
2690 return ( v1 ^ v2 ) / size2 < -1e-3 * size2;
2693 //================================================================================
2695 * \brief Constructor of SegmentTree
2697 //================================================================================
2699 _SegmentTree::_SegmentTree( const vector< _Segment >& segments ):
2702 _segments.resize( segments.size() );
2703 for ( size_t i = 0; i < segments.size(); ++i )
2704 _segments[i].Set( segments[i] );
2709 //================================================================================
2711 * \brief Return the maximal bnd box
2713 //================================================================================
2715 _SegmentTree::box_type* _SegmentTree::buildRootBox()
2717 _SegmentTree::box_type* box = new _SegmentTree::box_type;
2718 for ( size_t i = 0; i < _segments.size(); ++i )
2720 box->Add( *_segments[i]._seg->_uv[0] );
2721 box->Add( *_segments[i]._seg->_uv[1] );
2726 //================================================================================
2728 * \brief Redistrubute _segments among children
2730 //================================================================================
2732 void _SegmentTree::buildChildrenData()
2734 for ( size_t i = 0; i < _segments.size(); ++i )
2735 for (int j = 0; j < nbChildren(); j++)
2736 if ( !myChildren[j]->getBox()->IsOut( *_segments[i]._seg->_uv[0],
2737 *_segments[i]._seg->_uv[1] ))
2738 ((_SegmentTree*)myChildren[j])->_segments.push_back( _segments[i]);
2740 SMESHUtils::FreeVector( _segments ); // = _elements.clear() + free memory
2742 for (int j = 0; j < nbChildren(); j++)
2744 _SegmentTree* child = static_cast<_SegmentTree*>( myChildren[j]);
2745 child->myIsLeaf = ((int) child->_segments.size() <= maxNbSegInLeaf() );
2749 //================================================================================
2751 * \brief Return elements which can include the point
2753 //================================================================================
2755 void _SegmentTree::GetSegmentsNear( const _Segment& seg,
2756 vector< const _Segment* >& found )
2758 if ( getBox()->IsOut( *seg._uv[0], *seg._uv[1] ))
2763 for ( size_t i = 0; i < _segments.size(); ++i )
2764 if ( !_segments[i].IsOut( seg ))
2765 found.push_back( _segments[i]._seg );
2769 for (int i = 0; i < nbChildren(); i++)
2770 ((_SegmentTree*) myChildren[i])->GetSegmentsNear( seg, found );
2775 //================================================================================
2777 * \brief Return segments intersecting a ray
2779 //================================================================================
2781 void _SegmentTree::GetSegmentsNear( const gp_Ax2d& ray,
2782 vector< const _Segment* >& found )
2784 if ( getBox()->IsOut( ray ))
2789 for ( size_t i = 0; i < _segments.size(); ++i )
2790 if ( !_segments[i].IsOut( ray ))
2791 found.push_back( _segments[i]._seg );
2795 for (int i = 0; i < nbChildren(); i++)
2796 ((_SegmentTree*) myChildren[i])->GetSegmentsNear( ray, found );
2800 //================================================================================
2802 * \brief Classify a _Segment
2804 //================================================================================
2806 bool _SegmentTree::_SegBox::IsOut( const _Segment& seg ) const
2808 const double eps = std::numeric_limits<double>::min();
2809 for ( int iC = 0; iC < 2; ++iC )
2811 if ( seg._uv[0]->Coord(iC+1) < _seg->_uv[ _iMin[iC]]->Coord(iC+1)+eps &&
2812 seg._uv[1]->Coord(iC+1) < _seg->_uv[ _iMin[iC]]->Coord(iC+1)+eps )
2814 if ( seg._uv[0]->Coord(iC+1) > _seg->_uv[ 1-_iMin[iC]]->Coord(iC+1)-eps &&
2815 seg._uv[1]->Coord(iC+1) > _seg->_uv[ 1-_iMin[iC]]->Coord(iC+1)-eps )
2821 //================================================================================
2823 * \brief Classify a ray
2825 //================================================================================
2827 bool _SegmentTree::_SegBox::IsOut( const gp_Ax2d& ray ) const
2829 double distBoxCenter2Ray =
2830 ray.Direction().XY() ^ ( ray.Location().XY() - 0.5 * (*_seg->_uv[0] + *_seg->_uv[1]));
2832 double boxSectionDiam =
2833 Abs( ray.Direction().X() ) * ( _seg->_uv[1-_iMin[1]]->Y() - _seg->_uv[_iMin[1]]->Y() ) +
2834 Abs( ray.Direction().Y() ) * ( _seg->_uv[1-_iMin[0]]->X() - _seg->_uv[_iMin[0]]->X() );
2836 return Abs( distBoxCenter2Ray ) > 0.5 * boxSectionDiam;