1 // Copyright (C) 2007-2016 CEA/DEN, EDF R&D, OPEN CASCADE
3 // This library is free software; you can redistribute it and/or
4 // modify it under the terms of the GNU Lesser General Public
5 // License as published by the Free Software Foundation; either
6 // version 2.1 of the License, or (at your option) any later version.
8 // This library is distributed in the hope that it will be useful,
9 // but WITHOUT ANY WARRANTY; without even the implied warranty of
10 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 // Lesser General Public License for more details.
13 // You should have received a copy of the GNU Lesser General Public
14 // License along with this library; if not, write to the Free Software
15 // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
20 // File : StdMeshers_ViscousLayers2D.cxx
21 // Created : 23 Jul 2012
22 // Author : Edward AGAPOV (eap)
24 #include "StdMeshers_ViscousLayers2D.hxx"
26 #include "SMDS_EdgePosition.hxx"
27 #include "SMDS_FaceOfNodes.hxx"
28 #include "SMDS_FacePosition.hxx"
29 #include "SMDS_MeshNode.hxx"
30 #include "SMDS_SetIterator.hxx"
31 #include "SMESHDS_Group.hxx"
32 #include "SMESHDS_Hypothesis.hxx"
33 #include "SMESHDS_Mesh.hxx"
34 #include "SMESH_Algo.hxx"
35 #include "SMESH_ComputeError.hxx"
36 #include "SMESH_ControlsDef.hxx"
37 #include "SMESH_Gen.hxx"
38 #include "SMESH_Group.hxx"
39 #include "SMESH_HypoFilter.hxx"
40 #include "SMESH_Mesh.hxx"
41 #include "SMESH_MesherHelper.hxx"
42 #include "SMESH_ProxyMesh.hxx"
43 #include "SMESH_Quadtree.hxx"
44 #include "SMESH_subMesh.hxx"
45 #include "SMESH_subMeshEventListener.hxx"
46 #include "StdMeshers_FaceSide.hxx"
48 #include "utilities.h"
50 #include <BRepAdaptor_Curve.hxx>
51 #include <BRepAdaptor_Curve2d.hxx>
52 #include <BRep_Tool.hxx>
53 #include <Bnd_B2d.hxx>
54 #include <Bnd_B3d.hxx>
56 #include <GCPnts_AbscissaPoint.hxx>
57 #include <Geom2dAdaptor_Curve.hxx>
58 #include <Geom2dInt_GInter.hxx>
59 #include <Geom2d_Circle.hxx>
60 #include <Geom2d_Line.hxx>
61 #include <Geom2d_TrimmedCurve.hxx>
62 #include <GeomAdaptor_Curve.hxx>
63 #include <Geom_Circle.hxx>
64 #include <Geom_Curve.hxx>
65 #include <Geom_Line.hxx>
66 #include <Geom_TrimmedCurve.hxx>
67 #include <IntRes2d_IntersectionPoint.hxx>
68 #include <Precision.hxx>
69 #include <Standard_ErrorHandler.hxx>
70 #include <TColStd_Array1OfReal.hxx>
72 #include <TopExp_Explorer.hxx>
73 #include <TopTools_IndexedDataMapOfShapeListOfShape.hxx>
74 #include <TopTools_IndexedMapOfShape.hxx>
75 #include <TopTools_ListIteratorOfListOfShape.hxx>
76 #include <TopTools_ListOfShape.hxx>
77 #include <TopTools_MapOfShape.hxx>
79 #include <TopoDS_Edge.hxx>
80 #include <TopoDS_Face.hxx>
81 #include <TopoDS_Vertex.hxx>
97 //================================================================================
102 //--------------------------------------------------------------------------------
104 * \brief Proxy Mesh of FACE with viscous layers. It's needed only to
105 * redefine newSubmesh().
107 struct _ProxyMeshOfFace : public SMESH_ProxyMesh
109 //---------------------------------------------------
110 // Proxy sub-mesh of an EDGE. It contains nodes in _uvPtStructVec.
111 struct _EdgeSubMesh : public SMESH_ProxyMesh::SubMesh
113 _EdgeSubMesh(int index=0): SubMesh(index) {}
114 //virtual int NbElements() const { return _elements.size()+1; }
115 virtual int NbNodes() const { return Max( 0, _uvPtStructVec.size()-2 ); }
116 void SetUVPtStructVec(UVPtStructVec& vec) { _uvPtStructVec.swap( vec ); }
117 UVPtStructVec& GetUVPtStructVec() { return _uvPtStructVec; }
119 _ProxyMeshOfFace(const SMESH_Mesh& mesh): SMESH_ProxyMesh(mesh) {}
120 _EdgeSubMesh* GetEdgeSubMesh(int ID) { return (_EdgeSubMesh*) getProxySubMesh(ID); }
121 virtual SubMesh* newSubmesh(int index=0) const { return new _EdgeSubMesh(index); }
123 //--------------------------------------------------------------------------------
125 * \brief SMESH_subMeshEventListener used to store _ProxyMeshOfFace, computed
126 * by _ViscousBuilder2D, in a SMESH_subMesh of the FACE.
127 * This is to delete _ProxyMeshOfFace when StdMeshers_ViscousLayers2D
128 * hypothesis is modified
130 struct _ProxyMeshHolder : public SMESH_subMeshEventListener
132 _ProxyMeshHolder( const TopoDS_Face& face,
133 SMESH_ProxyMesh::Ptr& mesh)
134 : SMESH_subMeshEventListener( /*deletable=*/true, Name() )
136 SMESH_subMesh* faceSM = mesh->GetMesh()->GetSubMesh( face );
137 faceSM->SetEventListener( this, new _Data( mesh ), faceSM );
139 // Finds a proxy mesh of face
140 static SMESH_ProxyMesh::Ptr FindProxyMeshOfFace( const TopoDS_Shape& face,
143 SMESH_ProxyMesh::Ptr proxy;
144 SMESH_subMesh* faceSM = mesh.GetSubMesh( face );
145 if ( EventListenerData* ld = faceSM->GetEventListenerData( Name() ))
146 proxy = static_cast< _Data* >( ld )->_mesh;
150 void ProcessEvent(const int event,
152 SMESH_subMesh* subMesh,
153 EventListenerData* data,
154 const SMESH_Hypothesis* /*hyp*/)
156 if ( event == SMESH_subMesh::CLEAN && eventType == SMESH_subMesh::COMPUTE_EVENT)
157 ((_Data*) data)->_mesh.reset();
160 // holder of a proxy mesh
161 struct _Data : public SMESH_subMeshEventListenerData
163 SMESH_ProxyMesh::Ptr _mesh;
164 _Data( SMESH_ProxyMesh::Ptr& mesh )
165 :SMESH_subMeshEventListenerData( /*isDeletable=*/true), _mesh( mesh )
168 // Returns identifier string
169 static const char* Name() { return "VISCOUS_2D::_ProxyMeshHolder"; }
173 //--------------------------------------------------------------------------------
175 * \brief Segment connecting inner ends of two _LayerEdge's.
179 const gp_XY* _uv[2]; // poiter to _LayerEdge::_uvIn
180 int _indexInLine; // position in _PolyLine
183 _Segment(const gp_XY& p1, const gp_XY& p2):_indexInLine(-1) { _uv[0] = &p1; _uv[1] = &p2; }
184 const gp_XY& p1() const { return *_uv[0]; }
185 const gp_XY& p2() const { return *_uv[1]; }
187 //--------------------------------------------------------------------------------
189 * \brief Tree of _Segment's used for a faster search of _Segment's.
191 struct _SegmentTree : public SMESH_Quadtree
193 typedef boost::shared_ptr< _SegmentTree > Ptr;
195 _SegmentTree( const vector< _Segment >& segments );
196 void GetSegmentsNear( const _Segment& seg, vector< const _Segment* >& found );
197 void GetSegmentsNear( const gp_Ax2d& ray, vector< const _Segment* >& found );
200 _SegmentTree* newChild() const { return new _SegmentTree; }
201 void buildChildrenData();
202 Bnd_B2d* buildRootBox();
204 static int maxNbSegInLeaf() { return 5; }
207 const _Segment* _seg;
209 void Set( const _Segment& seg )
212 _iMin[0] = ( seg._uv[1]->X() < seg._uv[0]->X() );
213 _iMin[1] = ( seg._uv[1]->Y() < seg._uv[0]->Y() );
215 bool IsOut( const _Segment& seg ) const;
216 bool IsOut( const gp_Ax2d& ray ) const;
218 vector< _SegBox > _segments;
220 //--------------------------------------------------------------------------------
222 * \brief Edge normal to FACE boundary, connecting a point on EDGE (_uvOut)
223 * and a point of a layer internal boundary (_uvIn)
227 gp_XY _uvOut; // UV on the FACE boundary
228 gp_XY _uvIn; // UV inside the FACE
229 double _length2D; // distance between _uvOut and _uvIn
231 bool _isBlocked;// is more inflation possible or not
233 gp_XY _normal2D; // to curve
234 double _len2dTo3dRatio; // to pass 2D <--> 3D
235 gp_Ax2d _ray; // a ray starting at _uvOut
237 vector<gp_XY> _uvRefined; // divisions by layers
239 bool SetNewLength( const double length );
245 //--------------------------------------------------------------------------------
247 * \brief Poly line composed of _Segment's of one EDGE.
248 * It's used to detect intersection of inflated layers by intersecting
253 StdMeshers_FaceSide* _wire;
254 int _edgeInd; // index of my EDGE in _wire
255 bool _advancable; // true if there is a viscous layer on my EDGE
256 bool _isStraight2D;// pcurve type
257 _PolyLine* _leftLine; // lines of neighbour EDGE's
258 _PolyLine* _rightLine;
259 int _firstPntInd; // index in vector<UVPtStruct> of _wire
261 int _index; // index in _ViscousBuilder2D::_polyLineVec
263 vector< _LayerEdge > _lEdges; /* _lEdges[0] is usually is not treated
264 as it is equal to the last one of the _leftLine */
265 vector< _Segment > _segments; // segments connecting _uvIn's of _lEdges
266 _SegmentTree::Ptr _segTree;
268 vector< _PolyLine* > _reachableLines; // lines able to interfere with my layer
270 vector< const SMDS_MeshNode* > _leftNodes; // nodes built from a left VERTEX
271 vector< const SMDS_MeshNode* > _rightNodes; // nodes built from a right VERTEX
273 typedef vector< _Segment >::iterator TSegIterator;
274 typedef vector< _LayerEdge >::iterator TEdgeIterator;
276 TIDSortedElemSet _newFaces; // faces generated from this line
278 bool IsCommonEdgeShared( const _PolyLine& other );
279 size_t FirstLEdge() const
281 return ( _leftLine->_advancable && _lEdges.size() > 2 ) ? 1 : 0;
283 bool IsAdjacent( const _Segment& seg, const _LayerEdge* LE=0 ) const
285 if ( LE /*&& seg._indexInLine < _lEdges.size()*/ )
286 return ( seg._uv[0] == & LE->_uvIn ||
287 seg._uv[1] == & LE->_uvIn );
288 return ( & seg == &_leftLine->_segments.back() ||
289 & seg == &_rightLine->_segments[0] );
291 bool IsConcave() const;
293 //--------------------------------------------------------------------------------
295 * \brief Intersector of _Segment's
297 struct _SegmentIntersection
299 gp_XY _vec1, _vec2; // Vec( _seg.p1(), _seg.p2() )
300 gp_XY _vec21; // Vec( _seg2.p1(), _seg1.p1() )
301 double _D; // _vec1.Crossed( _vec2 )
302 double _param1, _param2; // intersection param on _seg1 and _seg2
304 _SegmentIntersection(): _D(0), _param1(0), _param2(0) {}
306 bool Compute(const _Segment& seg1, const _Segment& seg2, bool seg2IsRay = false )
308 // !!! If seg2IsRay, returns true at any _param2 !!!
309 const double eps = 1e-10;
310 _vec1 = seg1.p2() - seg1.p1();
311 _vec2 = seg2.p2() - seg2.p1();
312 _vec21 = seg1.p1() - seg2.p1();
313 _D = _vec1.Crossed(_vec2);
314 if ( fabs(_D) < std::numeric_limits<double>::min())
316 _param1 = _vec2.Crossed(_vec21) / _D;
317 if (_param1 < -eps || _param1 > 1 + eps )
319 _param2 = _vec1.Crossed(_vec21) / _D;
320 return seg2IsRay || ( _param2 > -eps && _param2 < 1 + eps );
322 bool Compute( const _Segment& seg1, const gp_Ax2d& ray )
324 gp_XY segEnd = ray.Location().XY() + ray.Direction().XY();
325 _Segment seg2( ray.Location().XY(), segEnd );
326 return Compute( seg1, seg2, true );
328 //gp_XY GetPoint() { return _seg1.p1() + _param1 * _vec1; }
330 //--------------------------------------------------------------------------------
332 typedef map< const SMDS_MeshNode*, _LayerEdge*, TIDCompare > TNode2Edge;
333 typedef StdMeshers_ViscousLayers2D THypVL;
335 //--------------------------------------------------------------------------------
337 * \brief Builder of viscous layers
339 class _ViscousBuilder2D
342 _ViscousBuilder2D(SMESH_Mesh& theMesh,
343 const TopoDS_Face& theFace,
344 vector< const THypVL* > & theHyp,
345 vector< TopoDS_Shape > & theHypShapes);
346 SMESH_ComputeErrorPtr GetError() const { return _error; }
348 SMESH_ProxyMesh::Ptr Compute();
352 friend class ::StdMeshers_ViscousLayers2D;
354 bool findEdgesWithLayers();
355 bool makePolyLines();
357 bool fixCollisions();
361 bool toShrinkForAdjacent( const TopoDS_Face& adjFace,
362 const TopoDS_Edge& E,
363 const TopoDS_Vertex& V);
364 void setLenRatio( _LayerEdge& LE, const gp_Pnt& pOut );
365 void setLayerEdgeData( _LayerEdge& lEdge,
367 Handle(Geom2d_Curve)& pcurve,
368 Handle(Geom_Curve)& curve,
371 GeomAPI_ProjectPointOnSurf* faceProj);
372 void adjustCommonEdge( _PolyLine& LL, _PolyLine& LR );
373 void calcLayersHeight(const double totalThick,
374 vector<double>& heights,
376 bool removeMeshFaces(const TopoDS_Shape& face);
378 const THypVL* getLineHypothesis(int iPL);
379 double getLineThickness (int iPL);
381 bool error( const string& text );
382 SMESHDS_Mesh* getMeshDS() { return _mesh->GetMeshDS(); }
383 _ProxyMeshOfFace* getProxyMesh();
386 //void makeGroupOfLE();
393 vector< const THypVL* > _hyps;
394 vector< TopoDS_Shape > _hypShapes;
397 SMESH_ProxyMesh::Ptr _proxyMesh;
398 SMESH_ComputeErrorPtr _error;
401 Handle(Geom_Surface) _surface;
402 SMESH_MesherHelper _helper;
403 TSideVector _faceSideVec; // wires (StdMeshers_FaceSide) of _face
404 vector<_PolyLine> _polyLineVec; // fronts to advance
405 vector< const THypVL* > _hypOfEdge; // a hyp per an EDGE of _faceSideVec
406 bool _is2DIsotropic; // is same U and V resoulution of _face
407 vector<TopoDS_Face> _clearedFaces; // FACEs whose mesh was removed by shrink()
409 //double _fPowN; // to compute thickness of layers
410 double _maxThickness; // max possible layers thickness
412 // sub-shapes of _face
413 set<TGeomID> _ignoreShapeIds; // ids of EDGEs w/o layers
414 set<TGeomID> _noShrinkVert; // ids of VERTEXes that are extremities
415 // of EDGEs along which _LayerEdge can't be inflated because no viscous layers
416 // defined on neighbour FACEs sharing an EDGE. Nonetheless _LayerEdge's
417 // are inflated along such EDGEs but then such _LayerEdge's are turned into
418 // a node on VERTEX, i.e. all nodes on a _LayerEdge are melded into one node.
420 int _nbLE; // for DEBUG
423 //================================================================================
425 * \brief Returns StdMeshers_ViscousLayers2D for the FACE
427 bool findHyps(SMESH_Mesh& theMesh,
428 const TopoDS_Face& theFace,
429 vector< const StdMeshers_ViscousLayers2D* > & theHyps,
430 vector< TopoDS_Shape > & theAssignedTo)
433 theAssignedTo.clear();
434 SMESH_HypoFilter hypFilter
435 ( SMESH_HypoFilter::HasName( StdMeshers_ViscousLayers2D::GetHypType() ));
436 list< const SMESHDS_Hypothesis * > hypList;
437 list< TopoDS_Shape > hypShapes;
438 int nbHyps = theMesh.GetHypotheses
439 ( theFace, hypFilter, hypList, /*ancestors=*/true, &hypShapes );
442 theHyps.reserve( nbHyps );
443 theAssignedTo.reserve( nbHyps );
444 list< const SMESHDS_Hypothesis * >::iterator hyp = hypList.begin();
445 list< TopoDS_Shape >::iterator shape = hypShapes.begin();
446 for ( ; hyp != hypList.end(); ++hyp, ++shape )
448 theHyps.push_back( static_cast< const StdMeshers_ViscousLayers2D* > ( *hyp ));
449 theAssignedTo.push_back( *shape );
455 //================================================================================
457 * \brief Returns ids of EDGEs not to create Viscous Layers on
458 * \param [in] theHyp - the hypothesis, holding edges either to ignore or not to.
459 * \param [in] theFace - the FACE whose EDGEs are checked.
460 * \param [in] theMesh - the mesh.
461 * \param [in,out] theEdgeIds - container returning EDGEs to ignore.
462 * \return int - number of found EDGEs of the FACE.
464 //================================================================================
466 int getEdgesToIgnore( const StdMeshers_ViscousLayers2D* theHyp,
467 const TopoDS_Shape& theFace,
468 const SMESHDS_Mesh* theMesh,
469 set< int > & theEdgeIds)
471 int nbEdgesToIgnore = 0;
472 vector<TGeomID> ids = theHyp->GetBndShapes();
473 if ( theHyp->IsToIgnoreShapes() ) // EDGEs to ignore are given
475 for ( size_t i = 0; i < ids.size(); ++i )
477 const TopoDS_Shape& E = theMesh->IndexToShape( ids[i] );
479 E.ShapeType() == TopAbs_EDGE &&
480 SMESH_MesherHelper::IsSubShape( E, theFace ))
482 theEdgeIds.insert( ids[i] );
487 else // EDGEs to make the Viscous Layers on are given
489 TopExp_Explorer E( theFace, TopAbs_EDGE );
490 for ( ; E.More(); E.Next(), ++nbEdgesToIgnore )
491 theEdgeIds.insert( theMesh->ShapeToIndex( E.Current() ));
493 for ( size_t i = 0; i < ids.size(); ++i )
494 nbEdgesToIgnore -= theEdgeIds.erase( ids[i] );
496 return nbEdgesToIgnore;
499 } // namespace VISCOUS_2D
501 //================================================================================
502 // StdMeshers_ViscousLayers hypothesis
504 StdMeshers_ViscousLayers2D::StdMeshers_ViscousLayers2D(int hypId, int studyId, SMESH_Gen* gen)
505 :StdMeshers_ViscousLayers(hypId, studyId, gen)
507 _name = StdMeshers_ViscousLayers2D::GetHypType();
508 _param_algo_dim = -2; // auxiliary hyp used by 2D algos
510 // --------------------------------------------------------------------------------
511 bool StdMeshers_ViscousLayers2D::SetParametersByMesh(const SMESH_Mesh* theMesh,
512 const TopoDS_Shape& theShape)
517 // --------------------------------------------------------------------------------
519 StdMeshers_ViscousLayers2D::Compute(SMESH_Mesh& theMesh,
520 const TopoDS_Face& theFace)
522 using namespace VISCOUS_2D;
523 vector< const StdMeshers_ViscousLayers2D* > hyps;
524 vector< TopoDS_Shape > hypShapes;
526 SMESH_ProxyMesh::Ptr pm = _ProxyMeshHolder::FindProxyMeshOfFace( theFace, theMesh );
529 if ( findHyps( theMesh, theFace, hyps, hypShapes ))
531 VISCOUS_2D::_ViscousBuilder2D builder( theMesh, theFace, hyps, hypShapes );
532 pm = builder.Compute();
533 SMESH_ComputeErrorPtr error = builder.GetError();
534 if ( error && !error->IsOK() )
535 theMesh.GetSubMesh( theFace )->GetComputeError() = error;
537 pm.reset( new SMESH_ProxyMesh( theMesh ));
538 if ( getenv("__ONLY__VL2D__"))
543 pm.reset( new SMESH_ProxyMesh( theMesh ));
548 // --------------------------------------------------------------------------------
549 void StdMeshers_ViscousLayers2D::SetProxyMeshOfEdge( const StdMeshers_FaceSide& edgeNodes )
551 using namespace VISCOUS_2D;
552 SMESH_ProxyMesh::Ptr pm =
553 _ProxyMeshHolder::FindProxyMeshOfFace( edgeNodes.Face(), *edgeNodes.GetMesh() );
555 _ProxyMeshOfFace* proxyMeshOfFace = new _ProxyMeshOfFace( *edgeNodes.GetMesh() );
556 pm.reset( proxyMeshOfFace );
557 new _ProxyMeshHolder( edgeNodes.Face(), pm );
559 _ProxyMeshOfFace* proxyMeshOfFace = static_cast<_ProxyMeshOfFace*>( pm.get() );
560 _ProxyMeshOfFace::_EdgeSubMesh* sm = proxyMeshOfFace->GetEdgeSubMesh( edgeNodes.EdgeID(0) );
561 sm->GetUVPtStructVec() = edgeNodes.GetUVPtStruct();
563 // --------------------------------------------------------------------------------
564 bool StdMeshers_ViscousLayers2D::HasProxyMesh( const TopoDS_Face& face, SMESH_Mesh& mesh )
566 return VISCOUS_2D::_ProxyMeshHolder::FindProxyMeshOfFace( face, mesh ).get();
568 // --------------------------------------------------------------------------------
569 SMESH_ComputeErrorPtr
570 StdMeshers_ViscousLayers2D::CheckHypothesis(SMESH_Mesh& theMesh,
571 const TopoDS_Shape& theShape,
572 SMESH_Hypothesis::Hypothesis_Status& theStatus)
574 SMESH_ComputeErrorPtr error = SMESH_ComputeError::New(COMPERR_OK);
575 theStatus = SMESH_Hypothesis::HYP_OK;
577 TopExp_Explorer exp( theShape, TopAbs_FACE );
578 for ( ; exp.More() && theStatus == SMESH_Hypothesis::HYP_OK; exp.Next() )
580 const TopoDS_Face& face = TopoDS::Face( exp.Current() );
581 vector< const StdMeshers_ViscousLayers2D* > hyps;
582 vector< TopoDS_Shape > hypShapes;
583 if ( VISCOUS_2D::findHyps( theMesh, face, hyps, hypShapes ))
585 VISCOUS_2D::_ViscousBuilder2D builder( theMesh, face, hyps, hypShapes );
586 builder._faceSideVec =
587 StdMeshers_FaceSide::GetFaceWires( face, theMesh, true, error,
588 NULL, SMESH_ProxyMesh::Ptr(),
589 /*theCheckVertexNodes=*/false);
590 if ( error->IsOK() && !builder.findEdgesWithLayers())
592 error = builder.GetError();
593 if ( error && !error->IsOK() )
594 theStatus = SMESH_Hypothesis::HYP_INCOMPAT_HYPS;
600 // --------------------------------------------------------------------------------
601 void StdMeshers_ViscousLayers2D::RestoreListeners() const
603 StudyContextStruct* sc = _gen->GetStudyContext( _studyId );
604 std::map < int, SMESH_Mesh * >::iterator i_smesh = sc->mapMesh.begin();
605 for ( ; i_smesh != sc->mapMesh.end(); ++i_smesh )
607 SMESH_Mesh* smesh = i_smesh->second;
609 !smesh->HasShapeToMesh() ||
610 !smesh->GetMeshDS() ||
611 !smesh->GetMeshDS()->IsUsedHypothesis( this ))
614 // set event listeners to EDGE's of FACE where this hyp is used
615 TopoDS_Shape shape = i_smesh->second->GetShapeToMesh();
616 for ( TopExp_Explorer face( shape, TopAbs_FACE); face.More(); face.Next() )
617 if ( SMESH_Algo* algo = _gen->GetAlgo( *smesh, face.Current() ))
619 const std::list <const SMESHDS_Hypothesis *> & usedHyps =
620 algo->GetUsedHypothesis( *smesh, face.Current(), /*ignoreAuxiliary=*/false );
621 if ( std::find( usedHyps.begin(), usedHyps.end(), this ) != usedHyps.end() )
622 for ( TopExp_Explorer edge( face.Current(), TopAbs_EDGE); edge.More(); edge.Next() )
623 VISCOUS_3D::ToClearSubWithMain( smesh->GetSubMesh( edge.Current() ), face.Current() );
627 // END StdMeshers_ViscousLayers2D hypothesis
628 //================================================================================
630 using namespace VISCOUS_2D;
632 //================================================================================
634 * \brief Constructor of _ViscousBuilder2D
636 //================================================================================
638 _ViscousBuilder2D::_ViscousBuilder2D(SMESH_Mesh& theMesh,
639 const TopoDS_Face& theFace,
640 vector< const THypVL* > & theHyps,
641 vector< TopoDS_Shape > & theAssignedTo):
642 _mesh( &theMesh ), _face( theFace ), _helper( theMesh )
644 _hyps.swap( theHyps );
645 _hypShapes.swap( theAssignedTo );
647 _helper.SetSubShape( _face );
648 _helper.SetElementsOnShape( true );
650 _face.Orientation( TopAbs_FORWARD ); // 2D logic works only in this case
651 _surface = BRep_Tool::Surface( _face );
653 _error = SMESH_ComputeError::New(COMPERR_OK);
658 //================================================================================
660 * \brief Stores error description and returns false
662 //================================================================================
664 bool _ViscousBuilder2D::error(const string& text )
666 _error->myName = COMPERR_ALGO_FAILED;
667 _error->myComment = string("Viscous layers builder 2D: ") + text;
668 if ( SMESH_subMesh* sm = _mesh->GetSubMesh( _face ) )
670 SMESH_ComputeErrorPtr& smError = sm->GetComputeError();
671 if ( smError && smError->myAlgo )
672 _error->myAlgo = smError->myAlgo;
676 cout << "_ViscousBuilder2D::error " << text << endl;
681 //================================================================================
683 * \brief Does its job
685 //================================================================================
687 SMESH_ProxyMesh::Ptr _ViscousBuilder2D::Compute()
689 _faceSideVec = StdMeshers_FaceSide::GetFaceWires( _face, *_mesh, true, _error, &_helper );
691 if ( !_error->IsOK() )
694 if ( !findEdgesWithLayers() ) // analysis of a shape
697 if ( ! makePolyLines() ) // creation of fronts
700 if ( ! inflate() ) // advance fronts
703 // remove elements and nodes from _face
704 removeMeshFaces( _face );
706 if ( !shrink() ) // shrink segments on edges w/o layers
709 if ( ! refine() ) // make faces
717 //================================================================================
719 * \brief Finds EDGE's to make viscous layers on.
721 //================================================================================
723 bool _ViscousBuilder2D::findEdgesWithLayers()
725 // collect all EDGEs to ignore defined by _hyps
726 typedef std::pair< set<TGeomID>, const THypVL* > TEdgesOfHyp;
727 vector< TEdgesOfHyp > ignoreEdgesOfHyp( _hyps.size() );
728 for ( size_t i = 0; i < _hyps.size(); ++i )
730 ignoreEdgesOfHyp[i].second = _hyps[i];
731 getEdgesToIgnore( _hyps[i], _face, getMeshDS(), ignoreEdgesOfHyp[i].first );
734 // get all shared EDGEs
735 TopTools_MapOfShape sharedEdges;
736 TopTools_IndexedMapOfShape hypFaces; // faces with VL hyps
737 for ( size_t i = 0; i < _hypShapes.size(); ++i )
738 TopExp::MapShapes( _hypShapes[i], TopAbs_FACE, hypFaces );
739 TopTools_IndexedDataMapOfShapeListOfShape facesOfEdgeMap;
740 for ( int iF = 1; iF <= hypFaces.Extent(); ++iF )
741 TopExp::MapShapesAndAncestors( hypFaces(iF), TopAbs_EDGE, TopAbs_FACE, facesOfEdgeMap);
742 for ( int iE = 1; iE <= facesOfEdgeMap.Extent(); ++iE )
743 if ( facesOfEdgeMap( iE ).Extent() > 1 )
744 sharedEdges.Add( facesOfEdgeMap.FindKey( iE ));
747 if ( _hyps.size() > 1 )
749 // check if two hypotheses define different parameters for the same EDGE
750 for ( size_t iWire = 0; iWire < _faceSideVec.size(); ++iWire )
752 StdMeshers_FaceSidePtr wire = _faceSideVec[ iWire ];
753 for ( int iE = 0; iE < wire->NbEdges(); ++iE )
755 const THypVL* hyp = 0;
756 const TGeomID edgeID = wire->EdgeID( iE );
757 if ( !sharedEdges.Contains( wire->Edge( iE )))
759 for ( size_t i = 0; i < ignoreEdgesOfHyp.size(); ++i )
760 if ( ! ignoreEdgesOfHyp[i].first.count( edgeID ))
763 return error(SMESH_Comment("Several hypotheses define "
764 "Viscous Layers on the edge #") << edgeID );
765 hyp = ignoreEdgesOfHyp[i].second;
768 _hypOfEdge.push_back( hyp );
770 _ignoreShapeIds.insert( edgeID );
772 // check if two hypotheses define different number of viscous layers for
774 const THypVL *hyp, *prevHyp = _hypOfEdge.back();
775 size_t iH = _hypOfEdge.size() - wire->NbEdges();
776 for ( ; iH < _hypOfEdge.size(); ++iH )
778 hyp = _hypOfEdge[ iH ];
779 if ( hyp && prevHyp &&
780 hyp->GetNumberLayers() != prevHyp->GetNumberLayers() )
782 return error("Two hypotheses define different number of "
783 "viscous layers on adjacent edges");
789 else if ( _hyps.size() == 1 )
791 _ignoreShapeIds.swap( ignoreEdgesOfHyp[0].first );
794 // check all EDGEs of the _face to fill _ignoreShapeIds and _noShrinkVert
796 int totalNbEdges = 0;
797 for ( size_t iWire = 0; iWire < _faceSideVec.size(); ++iWire )
799 StdMeshers_FaceSidePtr wire = _faceSideVec[ iWire ];
800 totalNbEdges += wire->NbEdges();
801 for ( int iE = 0; iE < wire->NbEdges(); ++iE )
803 if ( sharedEdges.Contains( wire->Edge( iE )))
805 // ignore internal EDGEs (shared by several FACEs)
806 const TGeomID edgeID = wire->EdgeID( iE );
807 _ignoreShapeIds.insert( edgeID );
809 // check if ends of an EDGE are to be added to _noShrinkVert
810 const TopTools_ListOfShape& faceList = facesOfEdgeMap.FindFromKey( wire->Edge( iE ));
811 TopTools_ListIteratorOfListOfShape faceIt( faceList );
812 for ( ; faceIt.More(); faceIt.Next() )
814 const TopoDS_Shape& neighbourFace = faceIt.Value();
815 if ( neighbourFace.IsSame( _face )) continue;
816 SMESH_Algo* algo = _mesh->GetGen()->GetAlgo( *_mesh, neighbourFace );
817 if ( !algo ) continue;
819 const StdMeshers_ViscousLayers2D* viscHyp = 0;
820 const list <const SMESHDS_Hypothesis *> & allHyps =
821 algo->GetUsedHypothesis(*_mesh, neighbourFace, /*noAuxiliary=*/false);
822 list< const SMESHDS_Hypothesis *>::const_iterator hyp = allHyps.begin();
823 for ( ; hyp != allHyps.end() && !viscHyp; ++hyp )
824 viscHyp = dynamic_cast<const StdMeshers_ViscousLayers2D*>( *hyp );
826 // set<TGeomID> neighbourIgnoreEdges;
828 // getEdgesToIgnore( viscHyp, neighbourFace, getMeshDS(), neighbourIgnoreEdges );
830 for ( int iV = 0; iV < 2; ++iV )
832 TopoDS_Vertex vertex = iV ? wire->LastVertex(iE) : wire->FirstVertex(iE);
834 _noShrinkVert.insert( getMeshDS()->ShapeToIndex( vertex ));
837 PShapeIteratorPtr edgeIt = _helper.GetAncestors( vertex, *_mesh, TopAbs_EDGE );
838 while ( const TopoDS_Shape* edge = edgeIt->next() )
839 if ( !edge->IsSame( wire->Edge( iE )) &&
840 _helper.IsSubShape( *edge, neighbourFace ))
842 const TGeomID neighbourID = getMeshDS()->ShapeToIndex( *edge );
843 bool hasVL = !sharedEdges.Contains( *edge );
847 for ( hyp = allHyps.begin(); hyp != allHyps.end() && !hasVL; ++hyp )
848 if (( viscHyp = dynamic_cast<const THypVL*>( *hyp )))
849 hasVL = viscHyp->IsShapeWithLayers( neighbourID );
853 _noShrinkVert.insert( getMeshDS()->ShapeToIndex( vertex ));
864 int nbMyEdgesIgnored = _ignoreShapeIds.size();
866 // add VERTEXes w/o layers to _ignoreShapeIds (this is used by toShrinkForAdjacent())
867 // for ( size_t iWire = 0; iWire < _faceSideVec.size(); ++iWire )
869 // StdMeshers_FaceSidePtr wire = _faceSideVec[ iWire ];
870 // for ( int iE = 0; iE < wire->NbEdges(); ++iE )
872 // TGeomID edge1 = wire->EdgeID( iE );
873 // TGeomID edge2 = wire->EdgeID( iE+1 );
874 // if ( _ignoreShapeIds.count( edge1 ) && _ignoreShapeIds.count( edge2 ))
875 // _ignoreShapeIds.insert( getMeshDS()->ShapeToIndex( wire->LastVertex( iE )));
879 return ( nbMyEdgesIgnored < totalNbEdges );
882 //================================================================================
884 * \brief Create the inner front of the viscous layers and prepare data for inflation
886 //================================================================================
888 bool _ViscousBuilder2D::makePolyLines()
890 // Create _PolyLines and _LayerEdge's
892 // count total nb of EDGEs to allocate _polyLineVec
894 for ( size_t iWire = 0; iWire < _faceSideVec.size(); ++iWire )
896 StdMeshers_FaceSidePtr wire = _faceSideVec[ iWire ];
897 nbEdges += wire->NbEdges();
898 if ( wire->GetUVPtStruct().empty() && wire->NbPoints() > 0 )
899 return error("Invalid node parameters on some EDGE");
901 _polyLineVec.resize( nbEdges );
903 // check if 2D normal should be computed by 3D one by means of projection
904 GeomAPI_ProjectPointOnSurf* faceProj = 0;
908 const UVPtStruct& uv = _faceSideVec[0]->GetUVPtStruct()[0];
909 gp_Pnt p = SMESH_TNodeXYZ( uv.node );
910 tmpLE._uvOut.SetCoord( uv.u, uv.v );
911 tmpLE._normal2D.SetCoord( 1., 0. );
912 setLenRatio( tmpLE, p );
913 const double r1 = tmpLE._len2dTo3dRatio;
914 tmpLE._normal2D.SetCoord( 0., 1. );
915 setLenRatio( tmpLE, p );
916 const double r2 = tmpLE._len2dTo3dRatio;
917 // projection is needed if two _len2dTo3dRatio's differ too much
918 const double maxR = Max( r2, r1 );
919 if ( Abs( r2-r1 )/maxR > 0.2*maxR )
920 faceProj = & _helper.GetProjector( _face, loc );
922 _is2DIsotropic = !faceProj;
924 // Assign data to _PolyLine's
925 // ---------------------------
928 for ( size_t iWire = 0; iWire < _faceSideVec.size(); ++iWire )
930 StdMeshers_FaceSidePtr wire = _faceSideVec[ iWire ];
931 const vector<UVPtStruct>& points = wire->GetUVPtStruct();
933 for ( int iE = 0; iE < wire->NbEdges(); ++iE )
935 _PolyLine& L = _polyLineVec[ iPoLine++ ];
936 L._index = iPoLine-1;
937 L._wire = wire.get();
939 L._advancable = !_ignoreShapeIds.count( wire->EdgeID( iE ));
941 int iRight = iPoLine - (( iE+1 < wire->NbEdges() ) ? 0 : wire->NbEdges() );
942 L._rightLine = &_polyLineVec[ iRight ];
943 _polyLineVec[ iRight ]._leftLine = &L;
945 L._firstPntInd = iPnt;
946 double lastNormPar = wire->LastParameter( iE ) - 1e-10;
947 while ( points[ iPnt ].normParam < lastNormPar )
949 L._lastPntInd = iPnt;
950 L._lEdges.resize( Max( 3, L._lastPntInd - L._firstPntInd + 1 )); // 3 edges minimum
952 // TODO: add more _LayerEdge's to strongly curved EDGEs
953 // in order not to miss collisions
956 Handle(Geom_Curve) curve = BRep_Tool::Curve( L._wire->Edge( iE ), loc, u, u );
957 Handle(Geom2d_Curve) pcurve = L._wire->Curve2d( L._edgeInd );
958 const bool reverse = (( L._wire->Edge( iE ).Orientation() == TopAbs_REVERSED ) ^
959 (_face.Orientation() == TopAbs_REVERSED ));
960 for ( int i = L._firstPntInd; i <= L._lastPntInd; ++i )
962 _LayerEdge& lEdge = L._lEdges[ i - L._firstPntInd ];
963 u = ( i == L._firstPntInd ? wire->FirstU(iE) : points[ i ].param );
964 p = SMESH_TNodeXYZ( points[ i ].node );
965 setLayerEdgeData( lEdge, u, pcurve, curve, p, reverse, faceProj );
966 setLenRatio( lEdge, p );
968 if ( L._lastPntInd - L._firstPntInd + 1 < 3 ) // add 3-d _LayerEdge in the middle
970 L._lEdges[2] = L._lEdges[1];
971 u = 0.5 * ( wire->FirstU(iE) + wire->LastU(iE) );
972 if ( !curve.IsNull() )
973 p = curve->Value( u );
975 p = 0.5 * ( SMESH_TNodeXYZ( points[ L._firstPntInd ].node ) +
976 SMESH_TNodeXYZ( points[ L._lastPntInd ].node ));
977 setLayerEdgeData( L._lEdges[1], u, pcurve, curve, p, reverse, faceProj );
978 setLenRatio( L._lEdges[1], p );
983 // Fill _PolyLine's with _segments
984 // --------------------------------
986 double maxLen2dTo3dRatio = 0;
987 for ( iPoLine = 0; iPoLine < _polyLineVec.size(); ++iPoLine )
989 _PolyLine& L = _polyLineVec[ iPoLine ];
990 L._segments.resize( L._lEdges.size() - 1 );
991 for ( size_t i = 1; i < L._lEdges.size(); ++i )
993 _Segment & S = L._segments[i-1];
994 S._uv[0] = & L._lEdges[i-1]._uvIn;
995 S._uv[1] = & L._lEdges[i ]._uvIn;
996 S._indexInLine = i-1;
997 if ( maxLen2dTo3dRatio < L._lEdges[i]._len2dTo3dRatio )
998 maxLen2dTo3dRatio = L._lEdges[i]._len2dTo3dRatio;
1000 // // connect _PolyLine's with segments, the 1st _LayerEdge of every _PolyLine
1001 // // becomes not connected to any segment
1002 // if ( L._leftLine->_advancable )
1003 // L._segments[0]._uv[0] = & L._leftLine->_lEdges.back()._uvIn;
1005 L._segTree.reset( new _SegmentTree( L._segments ));
1008 // Evaluate max possible _thickness if required layers thickness seems too high
1009 // ----------------------------------------------------------------------------
1011 _maxThickness = _hyps[0]->GetTotalThickness();
1012 for ( size_t iH = 1; iH < _hyps.size(); ++iH )
1013 _maxThickness = Max( _maxThickness, _hyps[iH]->GetTotalThickness() );
1015 _SegmentTree::box_type faceBndBox2D;
1016 for ( iPoLine = 0; iPoLine < _polyLineVec.size(); ++iPoLine )
1017 faceBndBox2D.Add( *_polyLineVec[ iPoLine]._segTree->getBox() );
1018 const double boxTol = 1e-3 * sqrt( faceBndBox2D.SquareExtent() );
1020 if ( _maxThickness * maxLen2dTo3dRatio > sqrt( faceBndBox2D.SquareExtent() ) / 10 )
1022 vector< const _Segment* > foundSegs;
1023 double maxPossibleThick = 0;
1024 _SegmentIntersection intersection;
1025 for ( size_t iL1 = 0; iL1 < _polyLineVec.size(); ++iL1 )
1027 _PolyLine& L1 = _polyLineVec[ iL1 ];
1028 _SegmentTree::box_type boxL1 = * L1._segTree->getBox();
1029 boxL1.Enlarge( boxTol );
1030 // consider case of a circle as well!
1031 for ( size_t iL2 = iL1; iL2 < _polyLineVec.size(); ++iL2 )
1033 _PolyLine& L2 = _polyLineVec[ iL2 ];
1034 _SegmentTree::box_type boxL2 = * L2._segTree->getBox();
1035 boxL2.Enlarge( boxTol );
1036 if ( boxL1.IsOut( boxL2 ))
1038 for ( size_t iLE = 1; iLE < L1._lEdges.size(); ++iLE )
1041 L2._segTree->GetSegmentsNear( L1._lEdges[iLE]._ray, foundSegs );
1042 for ( size_t i = 0; i < foundSegs.size(); ++i )
1043 if ( intersection.Compute( *foundSegs[i], L1._lEdges[iLE]._ray ))
1045 double distToL2 = intersection._param2 / L1._lEdges[iLE]._len2dTo3dRatio;
1046 double psblThick = distToL2 / ( 1 + L1._advancable + L2._advancable );
1047 maxPossibleThick = Max( psblThick, maxPossibleThick );
1052 if ( maxPossibleThick > 0. )
1053 _maxThickness = Min( _maxThickness, maxPossibleThick );
1056 // Adjust _LayerEdge's at _PolyLine's extremities
1057 // -----------------------------------------------
1059 for ( iPoLine = 0; iPoLine < _polyLineVec.size(); ++iPoLine )
1061 _PolyLine& LL = _polyLineVec[ iPoLine ];
1062 _PolyLine& LR = *LL._rightLine;
1063 adjustCommonEdge( LL, LR );
1065 // recreate _segments if some _LayerEdge's have been removed by adjustCommonEdge()
1066 for ( iPoLine = 0; iPoLine < _polyLineVec.size(); ++iPoLine )
1068 _PolyLine& L = _polyLineVec[ iPoLine ];
1069 // if ( L._segments.size() == L._lEdges.size() - 1 )
1071 L._segments.resize( L._lEdges.size() - 1 );
1072 for ( size_t i = 1; i < L._lEdges.size(); ++i )
1074 _Segment & S = L._segments[i-1];
1075 S._uv[0] = & L._lEdges[i-1]._uvIn;
1076 S._uv[1] = & L._lEdges[i ]._uvIn;
1077 S._indexInLine = i-1;
1079 L._segTree.reset( new _SegmentTree( L._segments ));
1081 // connect _PolyLine's with segments, the 1st _LayerEdge of every _PolyLine
1082 // becomes not connected to any segment
1083 for ( iPoLine = 0; iPoLine < _polyLineVec.size(); ++iPoLine )
1085 _PolyLine& L = _polyLineVec[ iPoLine ];
1086 if ( L._leftLine->_advancable )
1087 L._segments[0]._uv[0] = & L._leftLine->_lEdges.back()._uvIn;
1090 // Fill _reachableLines.
1091 // ----------------------
1093 // compute bnd boxes taking into account the layers total thickness
1094 vector< _SegmentTree::box_type > lineBoxes( _polyLineVec.size() );
1095 for ( iPoLine = 0; iPoLine < _polyLineVec.size(); ++iPoLine )
1097 lineBoxes[ iPoLine ] = *_polyLineVec[ iPoLine ]._segTree->getBox();
1098 lineBoxes[ iPoLine ].Enlarge( maxLen2dTo3dRatio * getLineThickness( iPoLine ) *
1099 ( _polyLineVec[ iPoLine ]._advancable ? 2. : 1.2 ));
1102 for ( iPoLine = 0; iPoLine < _polyLineVec.size(); ++iPoLine )
1104 _PolyLine& L1 = _polyLineVec[ iPoLine ];
1105 const double thick1 = getLineThickness( iPoLine );
1106 for ( size_t iL2 = 0; iL2 < _polyLineVec.size(); ++iL2 )
1108 _PolyLine& L2 = _polyLineVec[ iL2 ];
1109 if ( iPoLine == iL2 || lineBoxes[ iPoLine ].IsOut( lineBoxes[ iL2 ]))
1111 if ( !L1._advancable && ( L1._leftLine == &L2 || L1._rightLine == &L2 ))
1113 // check reachability by _LayerEdge's
1114 int iDelta = 1; //Max( 1, L1._lEdges.size() / 100 );
1115 for ( size_t iLE = 1; iLE < L1._lEdges.size(); iLE += iDelta )
1117 _LayerEdge& LE = L1._lEdges[iLE];
1118 if ( !lineBoxes[ iL2 ].IsOut ( LE._uvOut,
1119 LE._uvOut + LE._normal2D * thick1 * LE._len2dTo3dRatio ))
1121 L1._reachableLines.push_back( & L2 );
1126 // add self to _reachableLines
1127 Geom2dAdaptor_Curve pcurve( L1._wire->Curve2d( L1._edgeInd ));
1128 L1._isStraight2D = ( pcurve.GetType() == GeomAbs_Line );
1129 if ( !L1._isStraight2D )
1131 // TODO: check carefully
1132 L1._reachableLines.push_back( & L1 );
1139 //================================================================================
1141 * \brief adjust common _LayerEdge of two adjacent _PolyLine's
1142 * \param LL - left _PolyLine
1143 * \param LR - right _PolyLine
1145 //================================================================================
1147 void _ViscousBuilder2D::adjustCommonEdge( _PolyLine& LL, _PolyLine& LR )
1149 int nbAdvancableL = LL._advancable + LR._advancable;
1150 if ( nbAdvancableL == 0 )
1153 _LayerEdge& EL = LL._lEdges.back();
1154 _LayerEdge& ER = LR._lEdges.front();
1155 gp_XY normL = EL._normal2D;
1156 gp_XY normR = ER._normal2D;
1157 gp_XY tangL ( normL.Y(), -normL.X() );
1159 // set common direction to a VERTEX _LayerEdge shared by two _PolyLine's
1160 gp_XY normCommon = ( normL * int( LL._advancable ) +
1161 normR * int( LR._advancable )).Normalized();
1162 EL._normal2D = normCommon;
1163 EL._ray.SetLocation ( EL._uvOut );
1164 EL._ray.SetDirection( EL._normal2D );
1165 if ( nbAdvancableL == 1 ) { // _normal2D is true normal (not average)
1166 EL._isBlocked = true; // prevent intersecting with _Segments of _advancable line
1169 // update _LayerEdge::_len2dTo3dRatio according to a new direction
1170 const vector<UVPtStruct>& points = LL._wire->GetUVPtStruct();
1171 setLenRatio( EL, SMESH_TNodeXYZ( points[ LL._lastPntInd ].node ));
1175 const double dotNormTang = normR * tangL;
1176 const bool largeAngle = Abs( dotNormTang ) > 0.2;
1177 if ( largeAngle ) // not 180 degrees
1179 // recompute _len2dTo3dRatio to take into account angle between EDGEs
1180 gp_Vec2d oldNorm( LL._advancable ? normL : normR );
1181 double angleFactor = 1. / Max( 0.3, Cos( oldNorm.Angle( normCommon )));
1182 EL._len2dTo3dRatio *= angleFactor;
1183 ER._len2dTo3dRatio = EL._len2dTo3dRatio;
1185 gp_XY normAvg = ( normL + normR ).Normalized(); // average normal at VERTEX
1187 if ( dotNormTang < 0. ) // ---------------------------- CONVEX ANGLE
1189 // Remove _LayerEdge's intersecting the normAvg to avoid collisions
1190 // during inflate().
1192 // find max length of the VERTEX-based _LayerEdge whose direction is normAvg
1193 double maxLen2D = _maxThickness * EL._len2dTo3dRatio;
1194 const gp_XY& pCommOut = ER._uvOut;
1195 gp_XY pCommIn = pCommOut + normAvg * maxLen2D;
1196 _Segment segCommon( pCommOut, pCommIn );
1197 _SegmentIntersection intersection;
1198 vector< const _Segment* > foundSegs;
1199 for ( size_t iL1 = 0; iL1 < _polyLineVec.size(); ++iL1 )
1201 _PolyLine& L1 = _polyLineVec[ iL1 ];
1202 const _SegmentTree::box_type* boxL1 = L1._segTree->getBox();
1203 if ( boxL1->IsOut ( pCommOut, pCommIn ))
1205 for ( size_t iLE = 1; iLE < L1._lEdges.size(); ++iLE )
1208 L1._segTree->GetSegmentsNear( segCommon, foundSegs );
1209 for ( size_t i = 0; i < foundSegs.size(); ++i )
1210 if ( intersection.Compute( *foundSegs[i], segCommon ) &&
1211 intersection._param2 > 1e-10 )
1213 double len2D = intersection._param2 * maxLen2D / ( 2 + L1._advancable );
1214 if ( len2D < maxLen2D ) {
1216 pCommIn = pCommOut + normAvg * maxLen2D; // here length of segCommon changes
1222 // remove _LayerEdge's intersecting segCommon
1223 for ( int isR = 0; isR < 2; ++isR ) // loop on [ LL, LR ]
1225 _PolyLine& L = isR ? LR : LL;
1226 _PolyLine::TEdgeIterator eIt = isR ? L._lEdges.begin()+1 : L._lEdges.end()-2;
1227 int dIt = isR ? +1 : -1;
1228 if ( nbAdvancableL == 1 && L._advancable && normL * normR > -0.01 )
1229 continue; // obtuse internal angle
1230 // at least 3 _LayerEdge's should remain in a _PolyLine
1231 if ( L._lEdges.size() < 4 ) continue;
1233 _SegmentIntersection lastIntersection;
1234 for ( ; iLE < L._lEdges.size(); ++iLE, eIt += dIt )
1236 gp_XY uvIn = eIt->_uvOut + eIt->_normal2D * _maxThickness * eIt->_len2dTo3dRatio;
1237 _Segment segOfEdge( eIt->_uvOut, uvIn );
1238 if ( !intersection.Compute( segCommon, segOfEdge ))
1240 lastIntersection._param1 = intersection._param1;
1241 lastIntersection._param2 = intersection._param2;
1243 if ( iLE >= L._lEdges.size() - 1 )
1245 // all _LayerEdge's intersect the segCommon, limit inflation
1246 // of remaining 3 _LayerEdge's
1247 vector< _LayerEdge > newEdgeVec( Min( 3, L._lEdges.size() ));
1248 newEdgeVec.front() = L._lEdges.front();
1249 newEdgeVec.back() = L._lEdges.back();
1250 if ( newEdgeVec.size() == 3 )
1252 newEdgeVec[1] = L._lEdges[ isR ? (L._lEdges.size() - 2) : 1 ];
1253 newEdgeVec[1]._len2dTo3dRatio *= lastIntersection._param2;
1255 L._lEdges.swap( newEdgeVec );
1256 if ( !isR ) std::swap( lastIntersection._param1 , lastIntersection._param2 );
1257 L._lEdges.front()._len2dTo3dRatio *= lastIntersection._param1; // ??
1258 L._lEdges.back ()._len2dTo3dRatio *= lastIntersection._param2;
1260 else if ( iLE != 1 )
1262 // eIt points to the _LayerEdge not intersecting with segCommon
1264 LR._lEdges.erase( LR._lEdges.begin()+1, eIt );
1266 LL._lEdges.erase( eIt+1, --LL._lEdges.end() );
1267 // eIt = isR ? L._lEdges.begin()+1 : L._lEdges.end()-2;
1268 // for ( size_t i = 1; i < iLE; ++i, eIt += dIt )
1269 // eIt->_isBlocked = true;
1273 else // ------------------------------------------ CONCAVE ANGLE
1275 if ( nbAdvancableL == 1 )
1277 // make that the _LayerEdge at VERTEX is not shared by LL and LR:
1278 // different normals is a sign that they are not shared
1279 _LayerEdge& notSharedEdge = LL._advancable ? LR._lEdges[0] : LL._lEdges.back();
1280 _LayerEdge& sharedEdge = LR._advancable ? LR._lEdges[0] : LL._lEdges.back();
1282 notSharedEdge._normal2D.SetCoord( 0.,0. );
1283 sharedEdge._normal2D = normAvg;
1284 sharedEdge._isBlocked = false;
1285 notSharedEdge._isBlocked = true;
1291 //================================================================================
1293 * \brief initialize data of a _LayerEdge
1295 //================================================================================
1297 void _ViscousBuilder2D::setLayerEdgeData( _LayerEdge& lEdge,
1299 Handle(Geom2d_Curve)& pcurve,
1300 Handle(Geom_Curve)& curve,
1303 GeomAPI_ProjectPointOnSurf* faceProj)
1306 if ( faceProj && !curve.IsNull() )
1308 uv = pcurve->Value( u );
1309 gp_Vec tangent; gp_Pnt p; gp_Vec du, dv;
1310 curve->D1( u, p, tangent );
1313 _surface->D1( uv.X(), uv.Y(), p, du, dv );
1314 gp_Vec faceNorm = du ^ dv;
1315 gp_Vec normal = faceNorm ^ tangent;
1317 p = pOut.XYZ() + normal.XYZ() * /*1e-2 * */_hyps[0]->GetTotalThickness() / _hyps[0]->GetNumberLayers();
1318 faceProj->Perform( p );
1319 if ( !faceProj->IsDone() || faceProj->NbPoints() < 1 )
1320 return setLayerEdgeData( lEdge, u, pcurve, curve, p, reverse, NULL );
1322 faceProj->LowerDistanceParameters(U,V);
1323 lEdge._normal2D.SetCoord( U - uv.X(), V - uv.Y() );
1324 lEdge._normal2D.Normalize();
1329 pcurve->D1( u, uv, tangent );
1330 tangent.Normalize();
1333 lEdge._normal2D.SetCoord( -tangent.Y(), tangent.X() );
1335 lEdge._uvOut = lEdge._uvIn = uv.XY();
1336 lEdge._ray.SetLocation ( lEdge._uvOut );
1337 lEdge._ray.SetDirection( lEdge._normal2D );
1338 lEdge._isBlocked = false;
1339 lEdge._length2D = 0;
1341 lEdge._ID = _nbLE++;
1345 //================================================================================
1347 * \brief Compute and set _LayerEdge::_len2dTo3dRatio
1349 //================================================================================
1351 void _ViscousBuilder2D::setLenRatio( _LayerEdge& LE, const gp_Pnt& pOut )
1353 const double probeLen2d = 1e-3;
1355 gp_Pnt2d p2d = LE._uvOut + LE._normal2D * probeLen2d;
1356 gp_Pnt p3d = _surface->Value( p2d.X(), p2d.Y() );
1357 double len3d = p3d.Distance( pOut );
1358 if ( len3d < std::numeric_limits<double>::min() )
1359 LE._len2dTo3dRatio = std::numeric_limits<double>::min();
1361 LE._len2dTo3dRatio = probeLen2d / len3d;
1364 //================================================================================
1366 * \brief Increase length of _LayerEdge's to reach the required thickness of layers
1368 //================================================================================
1370 bool _ViscousBuilder2D::inflate()
1372 // Limit size of inflation step by geometry size found by
1373 // itersecting _LayerEdge's with _Segment's
1374 double minSize = _maxThickness, maxSize = 0;
1375 vector< const _Segment* > foundSegs;
1376 _SegmentIntersection intersection;
1377 for ( size_t iL1 = 0; iL1 < _polyLineVec.size(); ++iL1 )
1379 _PolyLine& L1 = _polyLineVec[ iL1 ];
1380 for ( size_t iL2 = 0; iL2 < L1._reachableLines.size(); ++iL2 )
1382 _PolyLine& L2 = * L1._reachableLines[ iL2 ];
1383 for ( size_t iLE = 1; iLE < L1._lEdges.size(); ++iLE )
1386 L2._segTree->GetSegmentsNear( L1._lEdges[iLE]._ray, foundSegs );
1387 for ( size_t i = 0; i < foundSegs.size(); ++i )
1388 if ( ! L1.IsAdjacent( *foundSegs[i], & L1._lEdges[iLE] ) &&
1389 intersection.Compute( *foundSegs[i], L1._lEdges[iLE]._ray ))
1391 double distToL2 = intersection._param2 / L1._lEdges[iLE]._len2dTo3dRatio;
1392 double size = distToL2 / ( 1 + L1._advancable + L2._advancable );
1393 if ( 1e-10 < size && size < minSize )
1395 if ( size > maxSize )
1401 if ( minSize > maxSize ) // no collisions possible
1402 maxSize = _maxThickness;
1404 cout << "-- minSize = " << minSize << ", maxSize = " << maxSize << endl;
1407 double curThick = 0, stepSize = minSize;
1409 if ( maxSize > _maxThickness )
1410 maxSize = _maxThickness;
1411 while ( curThick < maxSize )
1413 curThick += stepSize * 1.25;
1414 if ( curThick > _maxThickness )
1415 curThick = _maxThickness;
1417 // Elongate _LayerEdge's
1418 for ( size_t iL = 0; iL < _polyLineVec.size(); ++iL )
1420 _PolyLine& L = _polyLineVec[ iL ];
1421 if ( !L._advancable ) continue;
1422 const double lineThick = Min( curThick, getLineThickness( iL ));
1423 bool lenChange = false;
1424 for ( size_t iLE = L.FirstLEdge(); iLE < L._lEdges.size(); ++iLE )
1425 lenChange |= L._lEdges[iLE].SetNewLength( lineThick );
1426 // for ( int k=0; k<L._segments.size(); ++k)
1427 // cout << "( " << L._segments[k].p1().X() << ", " <<L._segments[k].p1().Y() << " ) "
1428 // << "( " << L._segments[k].p2().X() << ", " <<L._segments[k].p2().Y() << " ) "
1431 L._segTree.reset( new _SegmentTree( L._segments ));
1434 // Avoid intersection of _Segment's
1435 bool allBlocked = fixCollisions();
1438 break; // no more inflating possible
1440 stepSize = Max( stepSize , _maxThickness / 10. );
1444 // if (nbSteps == 0 )
1445 // return error("failed at the very first inflation step");
1448 // remove _LayerEdge's of one line intersecting with each other
1449 for ( size_t iL = 0; iL < _polyLineVec.size(); ++iL )
1451 _PolyLine& L = _polyLineVec[ iL ];
1452 if ( !L._advancable ) continue;
1454 // replace an inactive (1st) _LayerEdge with an active one of a neighbour _PolyLine
1455 if ( /*!L._leftLine->_advancable &&*/ L.IsCommonEdgeShared( *L._leftLine ) ) {
1456 L._lEdges[0] = L._leftLine->_lEdges.back();
1458 if ( !L._rightLine->_advancable && L.IsCommonEdgeShared( *L._rightLine ) ) {
1459 L._lEdges.back() = L._rightLine->_lEdges[0];
1462 _SegmentIntersection intersection;
1463 for ( int isR = 0; ( isR < 2 && L._lEdges.size() > 2 ); ++isR )
1465 int nbRemove = 0, deltaIt = isR ? -1 : +1;
1466 _PolyLine::TEdgeIterator eIt = isR ? L._lEdges.end()-1 : L._lEdges.begin();
1467 if ( eIt->_length2D == 0 ) continue;
1468 _Segment seg1( eIt->_uvOut, eIt->_uvIn );
1469 for ( eIt += deltaIt; nbRemove < (int)L._lEdges.size()-1; eIt += deltaIt )
1471 _Segment seg2( eIt->_uvOut, eIt->_uvIn );
1472 if ( !intersection.Compute( seg1, seg2 ))
1476 if ( nbRemove > 0 ) {
1477 if ( nbRemove == (int)L._lEdges.size()-1 ) // 1st and last _LayerEdge's intersect
1480 _LayerEdge& L0 = L._lEdges.front();
1481 _LayerEdge& L1 = L._lEdges.back();
1482 L0._length2D *= intersection._param1 * 0.5;
1483 L1._length2D *= intersection._param2 * 0.5;
1484 L0._uvIn = L0._uvOut + L0._normal2D * L0._length2D;
1485 L1._uvIn = L1._uvOut + L1._normal2D * L1._length2D;
1486 if ( L.IsCommonEdgeShared( *L._leftLine ))
1487 L._leftLine->_lEdges.back() = L0;
1490 L._lEdges.erase( L._lEdges.end()-nbRemove-1,
1491 L._lEdges.end()-nbRemove );
1493 L._lEdges.erase( L._lEdges.begin()+1,
1494 L._lEdges.begin()+1+nbRemove );
1501 //================================================================================
1503 * \brief Remove intersection of _PolyLine's
1505 //================================================================================
1507 bool _ViscousBuilder2D::fixCollisions()
1509 // look for intersections of _Segment's by intersecting _LayerEdge's with
1511 vector< const _Segment* > foundSegs;
1512 _SegmentIntersection intersection;
1514 list< pair< _LayerEdge*, double > > edgeLenLimitList;
1515 list< _LayerEdge* > blockedEdgesList;
1517 for ( size_t iL1 = 0; iL1 < _polyLineVec.size(); ++iL1 )
1519 _PolyLine& L1 = _polyLineVec[ iL1 ];
1520 //if ( !L1._advancable ) continue;
1521 for ( size_t iL2 = 0; iL2 < L1._reachableLines.size(); ++iL2 )
1523 _PolyLine& L2 = * L1._reachableLines[ iL2 ];
1524 for ( size_t iLE = L1.FirstLEdge(); iLE < L1._lEdges.size(); ++iLE )
1526 _LayerEdge& LE1 = L1._lEdges[iLE];
1527 if ( LE1._isBlocked ) continue;
1529 L2._segTree->GetSegmentsNear( LE1._ray, foundSegs );
1530 for ( size_t i = 0; i < foundSegs.size(); ++i )
1532 if ( ! L1.IsAdjacent( *foundSegs[i], &LE1 ) &&
1533 intersection.Compute( *foundSegs[i], LE1._ray ))
1535 const double dist2DToL2 = intersection._param2;
1536 double newLen2D = dist2DToL2 / 2;
1537 if ( newLen2D < 1.1 * LE1._length2D ) // collision!
1539 if ( newLen2D > 0 || !L1._advancable )
1541 blockedEdgesList.push_back( &LE1 );
1542 if ( L1._advancable && newLen2D > 0 )
1544 edgeLenLimitList.push_back( make_pair( &LE1, newLen2D ));
1545 blockedEdgesList.push_back( &L2._lEdges[ foundSegs[i]->_indexInLine ]);
1546 blockedEdgesList.push_back( &L2._lEdges[ foundSegs[i]->_indexInLine + 1 ]);
1548 else // here dist2DToL2 < 0 and LE1._length2D == 0
1550 _LayerEdge* LE2[2] = { & L2._lEdges[ foundSegs[i]->_indexInLine ],
1551 & L2._lEdges[ foundSegs[i]->_indexInLine + 1 ] };
1552 _Segment outSeg2( LE2[0]->_uvOut, LE2[1]->_uvOut );
1553 intersection.Compute( outSeg2, LE1._ray );
1554 newLen2D = intersection._param2 / 2;
1557 edgeLenLimitList.push_back( make_pair( LE2[0], newLen2D ));
1558 edgeLenLimitList.push_back( make_pair( LE2[1], newLen2D ));
1569 // limit length of _LayerEdge's that are extrema of _PolyLine's
1570 // to avoid intersection of these _LayerEdge's
1571 for ( size_t iL1 = 0; iL1 < _polyLineVec.size(); ++iL1 )
1573 _PolyLine& L = _polyLineVec[ iL1 ];
1574 if ( L._lEdges.size() < 4 ) // all intermediate _LayerEdge's intersect with extremum ones
1576 _LayerEdge& LEL = L._leftLine->_lEdges.back();
1577 _LayerEdge& LER = L._lEdges.back();
1578 _Segment segL( LEL._uvOut, LEL._uvIn );
1579 _Segment segR( LER._uvOut, LER._uvIn );
1580 double newLen2DL, newLen2DR;
1581 if ( intersection.Compute( segL, LER._ray ))
1583 newLen2DR = intersection._param2 / 2;
1584 newLen2DL = LEL._length2D * intersection._param1 / 2;
1586 else if ( intersection.Compute( segR, LEL._ray ))
1588 newLen2DL = intersection._param2 / 2;
1589 newLen2DR = LER._length2D * intersection._param1 / 2;
1595 if ( newLen2DL > 0 && newLen2DR > 0 )
1597 if ( newLen2DL < 1.1 * LEL._length2D )
1598 edgeLenLimitList.push_back( make_pair( &LEL, newLen2DL ));
1599 if ( newLen2DR < 1.1 * LER._length2D )
1600 edgeLenLimitList.push_back( make_pair( &LER, newLen2DR ));
1605 // set limited length to _LayerEdge's
1606 list< pair< _LayerEdge*, double > >::iterator edge2Len = edgeLenLimitList.begin();
1607 for ( ; edge2Len != edgeLenLimitList.end(); ++edge2Len )
1609 _LayerEdge* LE = edge2Len->first;
1610 if ( LE->_length2D > edge2Len->second )
1612 LE->_isBlocked = false;
1613 LE->SetNewLength( edge2Len->second / LE->_len2dTo3dRatio );
1615 LE->_isBlocked = true;
1618 // block inflation of _LayerEdge's
1619 list< _LayerEdge* >::iterator edge = blockedEdgesList.begin();
1620 for ( ; edge != blockedEdgesList.end(); ++edge )
1621 (*edge)->_isBlocked = true;
1623 // find a not blocked _LayerEdge
1624 for ( size_t iL = 0; iL < _polyLineVec.size(); ++iL )
1626 _PolyLine& L = _polyLineVec[ iL ];
1627 if ( !L._advancable ) continue;
1628 for ( size_t iLE = L.FirstLEdge(); iLE < L._lEdges.size(); ++iLE )
1629 if ( !L._lEdges[ iLE ]._isBlocked )
1636 //================================================================================
1638 * \brief Create new edges and shrink edges existing on a non-advancable _PolyLine
1639 * adjacent to an advancable one.
1641 //================================================================================
1643 bool _ViscousBuilder2D::shrink()
1645 gp_Pnt2d uv; //gp_Vec2d tangent;
1646 _SegmentIntersection intersection;
1649 for ( size_t iL1 = 0; iL1 < _polyLineVec.size(); ++iL1 )
1651 _PolyLine& L = _polyLineVec[ iL1 ]; // line with no layers
1652 if ( L._advancable )
1654 const int nbAdvancable = ( L._rightLine->_advancable + L._leftLine->_advancable );
1655 if ( nbAdvancable == 0 )
1658 const TopoDS_Vertex& V1 = L._wire->FirstVertex( L._edgeInd );
1659 const TopoDS_Vertex& V2 = L._wire->LastVertex ( L._edgeInd );
1660 const int v1ID = getMeshDS()->ShapeToIndex( V1 );
1661 const int v2ID = getMeshDS()->ShapeToIndex( V2 );
1662 const bool isShrinkableL = ! _noShrinkVert.count( v1ID ) && L._leftLine->_advancable;
1663 const bool isShrinkableR = ! _noShrinkVert.count( v2ID ) && L._rightLine->_advancable;
1664 if ( !isShrinkableL && !isShrinkableR )
1667 const TopoDS_Edge& E = L._wire->Edge ( L._edgeInd );
1668 const int edgeID = L._wire->EdgeID ( L._edgeInd );
1669 const double edgeLen = L._wire->EdgeLength ( L._edgeInd );
1670 Handle(Geom2d_Curve) pcurve = L._wire->Curve2d ( L._edgeInd );
1671 const bool edgeReversed = ( E.Orientation() == TopAbs_REVERSED );
1673 SMESH_MesherHelper helper( *_mesh ); // to create nodes and edges on E
1674 helper.SetSubShape( E );
1675 helper.SetElementsOnShape( true );
1677 // Check a FACE adjacent to _face by E
1678 bool existingNodesFound = false;
1679 TopoDS_Face adjFace;
1680 PShapeIteratorPtr faceIt = _helper.GetAncestors( E, *_mesh, TopAbs_FACE );
1681 while ( const TopoDS_Shape* f = faceIt->next() )
1682 if ( !_face.IsSame( *f ))
1684 adjFace = TopoDS::Face( *f );
1685 SMESH_ProxyMesh::Ptr pm = _ProxyMeshHolder::FindProxyMeshOfFace( adjFace, *_mesh );
1686 if ( !pm || pm->NbProxySubMeshes() == 0 /*|| !pm->GetProxySubMesh( E )*/)
1688 // There are no viscous layers on an adjacent FACE, clear it's 2D mesh
1689 removeMeshFaces( adjFace );
1690 // if ( removeMeshFaces( adjFace ))
1691 // _clearedFaces.push_back( adjFace ); // to re-compute after all
1695 // There are viscous layers on the adjacent FACE; shrink must be already done;
1699 const vector<UVPtStruct>& points = L._wire->GetUVPtStruct();
1700 int iPFrom = L._firstPntInd, iPTo = L._lastPntInd;
1701 if ( isShrinkableL )
1703 const THypVL* hyp = getLineHypothesis( L._leftLine->_index );
1704 vector<gp_XY>& uvVec = L._lEdges.front()._uvRefined;
1705 for ( int i = 0; i < hyp->GetNumberLayers(); ++i ) {
1706 const UVPtStruct& uvPt = points[ iPFrom + i + 1 ];
1707 L._leftNodes.push_back( uvPt.node );
1708 uvVec.push_back ( pcurve->Value( uvPt.param ).XY() );
1710 iPFrom += hyp->GetNumberLayers();
1712 if ( isShrinkableR )
1714 const THypVL* hyp = getLineHypothesis( L._rightLine->_index );
1715 vector<gp_XY>& uvVec = L._lEdges.back()._uvRefined;
1716 for ( int i = 0; i < hyp->GetNumberLayers(); ++i ) {
1717 const UVPtStruct& uvPt = points[ iPTo - i - 1 ];
1718 L._rightNodes.push_back( uvPt.node );
1719 uvVec.push_back ( pcurve->Value( uvPt.param ).XY() );
1721 iPTo -= hyp->GetNumberLayers();
1723 // make proxy sub-mesh data of present nodes
1725 UVPtStructVec nodeDataVec( & points[ iPFrom ], & points[ iPTo + 1 ]);
1727 double normSize = nodeDataVec.back().normParam - nodeDataVec.front().normParam;
1728 for ( int iP = nodeDataVec.size()-1; iP >= 0 ; --iP )
1729 nodeDataVec[iP].normParam =
1730 ( nodeDataVec[iP].normParam - nodeDataVec[0].normParam ) / normSize;
1732 const SMDS_MeshNode* n = nodeDataVec.front().node;
1733 if ( n->GetPosition()->GetTypeOfPosition() == SMDS_TOP_VERTEX )
1734 nodeDataVec.front().param = L._wire->FirstU( L._edgeInd );
1735 n = nodeDataVec.back().node;
1736 if ( n->GetPosition()->GetTypeOfPosition() == SMDS_TOP_VERTEX )
1737 nodeDataVec.back().param = L._wire->LastU( L._edgeInd );
1739 _ProxyMeshOfFace::_EdgeSubMesh* myEdgeSM = getProxyMesh()->GetEdgeSubMesh( edgeID );
1740 myEdgeSM->SetUVPtStructVec( nodeDataVec );
1742 existingNodesFound = true;
1745 } // loop on FACEs sharing E
1747 // Check if L is an already shrinked seam
1748 if ( adjFace.IsNull() && _helper.IsRealSeam( edgeID ))
1749 if ( L._wire->Edge( L._edgeInd ).Orientation() == TopAbs_FORWARD )
1751 // Commented as a case with a seam EDGE (issue 0052461) is hard to support
1752 // because SMESH_ProxyMesh can't hold different sub-meshes for two
1753 // 2D representations of the seam. But such a case is not a real practice one.
1755 // for ( int iL2 = iL1-1; iL2 > -1; --iL2 )
1757 // _PolyLine& L2 = _polyLineVec[ iL2 ];
1758 // if ( edgeID == L2._wire->EdgeID( L2._edgeInd ))
1760 // // copy layer nodes
1761 // const int seamPar = _helper.GetPeriodicIndex();
1762 // vector<gp_XY>& uvVec = L._lEdges.front()._uvRefined;
1763 // if ( isShrinkableL )
1765 // L._leftNodes = L2._rightNodes;
1766 // uvVec = L2._lEdges.back()._uvRefined;
1768 // if ( isShrinkableR )
1770 // L._rightNodes = L2._leftNodes;
1771 // uvVec = L2._lEdges.front()._uvRefined;
1773 // for ( size_t i = 0; i < uvVec.size(); ++i )
1775 // gp_XY & uv = uvVec[i];
1776 // uv.SetCoord( seamPar, _helper.GetOtherParam( uv.Coord( seamPar )));
1779 // existingNodesFound = true;
1785 if ( existingNodesFound )
1786 continue; // nothing more to do in this case
1788 double u1 = L._wire->FirstU( L._edgeInd ), uf = u1;
1789 double u2 = L._wire->LastU ( L._edgeInd ), ul = u2;
1791 // a ratio to pass 2D <--> 1D
1792 const double len1D = 1e-3;
1793 const double len2D = pcurve->Value(uf).Distance( pcurve->Value(uf+len1D));
1794 double len1dTo2dRatio = len1D / len2D;
1796 // create a vector of proxy nodes
1797 const vector<UVPtStruct>& points = L._wire->GetUVPtStruct();
1798 UVPtStructVec nodeDataVec( & points[ L._firstPntInd ],
1799 & points[ L._lastPntInd + 1 ]);
1800 nodeDataVec.front().param = u1; // U on vertex is correct on only one of shared edges
1801 nodeDataVec.back ().param = u2;
1802 nodeDataVec.front().normParam = 0;
1803 nodeDataVec.back ().normParam = 1;
1805 // Get length of existing segments (from an edge start to a node) and their nodes
1806 vector< double > segLengths( nodeDataVec.size() - 1 );
1807 BRepAdaptor_Curve curve( E );
1808 for ( size_t iP = 1; iP < nodeDataVec.size(); ++iP )
1810 const double len = GCPnts_AbscissaPoint::Length( curve, uf, nodeDataVec[iP].param );
1811 segLengths[ iP-1 ] = len;
1814 // Move first and last parameters on EDGE (U of n1) according to layers' thickness
1815 // and create nodes of layers on EDGE ( -x-x-x )
1819 // x-----x-----x-----x-----
1824 // x-x-x-x-----x-----x----
1827 int isRShrinkedForAdjacent = 0;
1828 UVPtStructVec nodeDataForAdjacent;
1829 for ( int isR = 0; isR < 2; ++isR )
1831 _PolyLine* L2 = isR ? L._rightLine : L._leftLine; // line with layers
1832 if ( !L2->_advancable &&
1833 !toShrinkForAdjacent( adjFace, E, L._wire->FirstVertex( L._edgeInd + isR )))
1835 if ( isR ? !isShrinkableR : !isShrinkableL )
1838 double & u = isR ? u2 : u1; // param to move
1839 double u0 = isR ? ul : uf; // init value of the param to move
1840 int iPEnd = isR ? nodeDataVec.size() - 1 : 0;
1842 _LayerEdge& nearLE = isR ? L._lEdges.back() : L._lEdges.front();
1843 _LayerEdge& farLE = isR ? L._lEdges.front() : L._lEdges.back();
1845 // try to find length of advancement along L by intersecting L with
1846 // an adjacent _Segment of L2
1848 double& length2D = nearLE._length2D;
1849 double length1D = 0;
1850 sign = ( isR ^ edgeReversed ) ? -1. : 1.;
1852 bool isConvex = false;
1853 if ( L2->_advancable )
1855 const uvPtStruct& tang2P1 = points[ isR ? L2->_firstPntInd : L2->_lastPntInd ];
1856 const uvPtStruct& tang2P2 = points[ isR ? L2->_firstPntInd+1 : L2->_lastPntInd-1 ];
1857 gp_XY seg2Dir( tang2P2.u - tang2P1.u,
1858 tang2P2.v - tang2P1.v );
1859 int iFSeg2 = isR ? 0 : L2->_segments.size() - 1;
1860 int iLSeg2 = isR ? 1 : L2->_segments.size() - 2;
1861 gp_XY uvLSeg2In = L2->_lEdges[ iLSeg2 ]._uvIn;
1862 Handle(Geom2d_Line) seg2Line = new Geom2d_Line( uvLSeg2In, seg2Dir );
1864 Geom2dAdaptor_Curve edgeCurve( pcurve, Min( uf, ul ), Max( uf, ul ));
1865 Geom2dAdaptor_Curve seg2Curve( seg2Line );
1866 Geom2dInt_GInter curveInt( edgeCurve, seg2Curve, 1e-7, 1e-7 );
1867 isConvex = ( curveInt.IsDone() && !curveInt.IsEmpty() );
1870 length1D = Abs( u - curveInt.Point( 1 ).ParamOnFirst() );
1871 double maxDist2d = 2 * L2->_lEdges[ iLSeg2 ]._length2D;
1872 isConvex = ( length1D < maxDist2d * len1dTo2dRatio );
1879 if ( !isConvex ) { /* concave VERTEX */ /* o-----o---
1885 length2D = L2->_lEdges[ iFSeg2 ]._length2D;
1886 //if ( L2->_advancable ) continue;
1889 else // L2 is advancable but in the face adjacent by L
1891 length2D = farLE._length2D;
1892 if ( length2D == 0 ) {
1893 _LayerEdge& neighborLE =
1894 ( isR ? L._leftLine->_lEdges.back() : L._rightLine->_lEdges.front() );
1895 length2D = neighborLE._length2D;
1896 if ( length2D == 0 )
1897 length2D = _maxThickness * nearLE._len2dTo3dRatio;
1901 // move u to the internal boundary of layers
1903 // x-x-x-x-----x-----x----
1904 double maxLen3D = Min( _maxThickness, edgeLen / ( 1 + nbAdvancable ));
1905 double maxLen2D = maxLen3D * nearLE._len2dTo3dRatio;
1906 if ( !length2D ) length2D = length1D / len1dTo2dRatio;
1907 if ( Abs( length2D ) > maxLen2D )
1908 length2D = maxLen2D;
1909 nearLE._uvIn = nearLE._uvOut + nearLE._normal2D * length2D;
1911 u += length2D * len1dTo2dRatio * sign;
1912 nodeDataVec[ iPEnd ].param = u;
1914 gp_Pnt2d newUV = pcurve->Value( u );
1915 nodeDataVec[ iPEnd ].u = newUV.X();
1916 nodeDataVec[ iPEnd ].v = newUV.Y();
1918 // compute params of layers on L
1919 vector<double> heights;
1920 const THypVL* hyp = getLineHypothesis( L2->_index );
1921 calcLayersHeight( u - u0, heights, hyp );
1923 vector< double > params( heights.size() );
1924 for ( size_t i = 0; i < params.size(); ++i )
1925 params[ i ] = u0 + heights[ i ];
1927 // create nodes of layers and edges between them
1929 vector< const SMDS_MeshNode* >& layersNode = isR ? L._rightNodes : L._leftNodes;
1930 vector<gp_XY>& nodeUV = ( isR ? L._lEdges.back() : L._lEdges[0] )._uvRefined;
1931 nodeUV.resize ( hyp->GetNumberLayers() );
1932 layersNode.resize( hyp->GetNumberLayers() );
1933 const SMDS_MeshNode* vertexNode = nodeDataVec[ iPEnd ].node;
1934 const SMDS_MeshNode * prevNode = vertexNode;
1935 for ( size_t i = 0; i < params.size(); ++i )
1937 const gp_Pnt p = curve.Value( params[i] );
1938 layersNode[ i ] = helper.AddNode( p.X(), p.Y(), p.Z(), /*id=*/0, params[i] );
1939 nodeUV [ i ] = pcurve->Value( params[i] ).XY();
1940 helper.AddEdge( prevNode, layersNode[ i ] );
1941 prevNode = layersNode[ i ];
1944 // store data of layer nodes made for adjacent FACE
1945 if ( !L2->_advancable )
1947 isRShrinkedForAdjacent = isR;
1948 nodeDataForAdjacent.resize( hyp->GetNumberLayers() );
1950 size_t iFrw = 0, iRev = nodeDataForAdjacent.size()-1, *i = isR ? &iRev : &iFrw;
1951 nodeDataForAdjacent[ *i ] = points[ isR ? L._lastPntInd : L._firstPntInd ];
1952 nodeDataForAdjacent[ *i ].param = u0;
1953 nodeDataForAdjacent[ *i ].normParam = isR;
1954 for ( ++iFrw, --iRev; iFrw < layersNode.size(); ++iFrw, --iRev )
1956 nodeDataForAdjacent[ *i ].node = layersNode[ iFrw - 1 ];
1957 nodeDataForAdjacent[ *i ].u = nodeUV [ iFrw - 1 ].X();
1958 nodeDataForAdjacent[ *i ].v = nodeUV [ iFrw - 1 ].Y();
1959 nodeDataForAdjacent[ *i ].param = params [ iFrw - 1 ];
1962 // replace a node on vertex by a node of last (most internal) layer
1963 // in a segment on E
1964 SMDS_ElemIteratorPtr segIt = vertexNode->GetInverseElementIterator( SMDSAbs_Edge );
1965 const SMDS_MeshNode* segNodes[3];
1966 while ( segIt->more() )
1968 const SMDS_MeshElement* segment = segIt->next();
1969 if ( segment->getshapeId() != edgeID ) continue;
1971 const int nbNodes = segment->NbNodes();
1972 for ( int i = 0; i < nbNodes; ++i )
1974 const SMDS_MeshNode* n = segment->GetNode( i );
1975 segNodes[ i ] = ( n == vertexNode ? layersNode.back() : n );
1977 getMeshDS()->ChangeElementNodes( segment, segNodes, nbNodes );
1980 nodeDataVec[ iPEnd ].node = layersNode.back();
1982 } // loop on the extremities of L
1984 // Shrink edges to fit in between the layers at EDGE ends
1986 double newLength = GCPnts_AbscissaPoint::Length( curve, u1, u2 );
1987 double lenRatio = newLength / edgeLen * ( edgeReversed ? -1. : 1. );
1988 for ( size_t iP = 1; iP < nodeDataVec.size()-1; ++iP )
1990 const SMDS_MeshNode* oldNode = nodeDataVec[iP].node;
1992 GCPnts_AbscissaPoint discret( curve, segLengths[iP-1] * lenRatio, u1 );
1993 if ( !discret.IsDone() )
1994 throw SALOME_Exception(LOCALIZED("GCPnts_AbscissaPoint failed"));
1996 nodeDataVec[iP].param = discret.Parameter();
1997 if ( oldNode->GetPosition()->GetTypeOfPosition() != SMDS_TOP_EDGE )
1998 throw SALOME_Exception(SMESH_Comment("ViscousBuilder2D: not SMDS_TOP_EDGE node position: ")
1999 << oldNode->GetPosition()->GetTypeOfPosition()
2000 << " of node " << oldNode->GetID());
2001 SMDS_EdgePosition* pos = static_cast<SMDS_EdgePosition*>( oldNode->GetPosition() );
2002 pos->SetUParameter( nodeDataVec[iP].param );
2004 gp_Pnt newP = curve.Value( nodeDataVec[iP].param );
2005 getMeshDS()->MoveNode( oldNode, newP.X(), newP.Y(), newP.Z() );
2007 gp_Pnt2d newUV = pcurve->Value( nodeDataVec[iP].param ).XY();
2008 nodeDataVec[iP].u = newUV.X();
2009 nodeDataVec[iP].v = newUV.Y();
2010 nodeDataVec[iP].normParam = segLengths[iP-1] / edgeLen;
2011 // nodeDataVec[iP].x = segLengths[iP-1] / edgeLen;
2012 // nodeDataVec[iP].y = segLengths[iP-1] / edgeLen;
2015 // Add nodeDataForAdjacent to nodeDataVec
2017 if ( !nodeDataForAdjacent.empty() )
2019 const double par1 = isRShrinkedForAdjacent ? u2 : uf;
2020 const double par2 = isRShrinkedForAdjacent ? ul : u1;
2021 const double shrinkLen = GCPnts_AbscissaPoint::Length( curve, par1, par2 );
2023 // compute new normParam for nodeDataVec
2024 for ( size_t iP = 0; iP < nodeDataVec.size()-1; ++iP )
2025 nodeDataVec[iP+1].normParam = segLengths[iP] / ( edgeLen + shrinkLen );
2026 double normDelta = 1 - nodeDataVec.back().normParam;
2027 if ( !isRShrinkedForAdjacent )
2028 for ( size_t iP = 0; iP < nodeDataVec.size(); ++iP )
2029 nodeDataVec[iP].normParam += normDelta;
2031 // compute new normParam for nodeDataForAdjacent
2032 const double deltaR = isRShrinkedForAdjacent ? nodeDataVec.back().normParam : 0;
2033 for ( size_t iP = !isRShrinkedForAdjacent; iP < nodeDataForAdjacent.size(); ++iP )
2035 double lenFromPar1 =
2036 GCPnts_AbscissaPoint::Length( curve, par1, nodeDataForAdjacent[iP].param );
2037 nodeDataForAdjacent[iP].normParam = deltaR + normDelta * lenFromPar1 / shrinkLen;
2039 // concatenate nodeDataVec and nodeDataForAdjacent
2040 nodeDataVec.insert(( isRShrinkedForAdjacent ? nodeDataVec.end() : nodeDataVec.begin() ),
2041 nodeDataForAdjacent.begin(), nodeDataForAdjacent.end() );
2044 // Extend nodeDataVec by a node located at the end of not shared _LayerEdge
2045 /* n - to add to nodeDataVec
2054 for ( int isR = 0; isR < 2; ++isR )
2056 _PolyLine& L2 = *( isR ? L._rightLine : L._leftLine ); // line with layers
2057 if ( ! L2._advancable || L.IsCommonEdgeShared( L2 ) )
2059 vector< const SMDS_MeshNode* >& layerNodes2 = isR ? L2._leftNodes : L2._rightNodes;
2060 _LayerEdge& LE2 = isR ? L2._lEdges.front() : L2._lEdges.back();
2061 if ( layerNodes2.empty() )
2063 // refine the not shared _LayerEdge
2064 vector<double> layersHeight;
2065 calcLayersHeight( LE2._length2D, layersHeight, getLineHypothesis( L2._index ));
2067 vector<gp_XY>& nodeUV2 = LE2._uvRefined;
2068 nodeUV2.resize ( layersHeight.size() );
2069 layerNodes2.resize( layersHeight.size() );
2070 for ( size_t i = 0; i < layersHeight.size(); ++i )
2072 gp_XY uv = LE2._uvOut + LE2._normal2D * layersHeight[i];
2073 gp_Pnt p = _surface->Value( uv.X(), uv.Y() );
2075 layerNodes2[ i ] = _helper.AddNode( p.X(), p.Y(), p.Z(), /*id=*/0, uv.X(), uv.Y() );
2078 UVPtStruct ptOfNode;
2079 ptOfNode.u = LE2._uvRefined.back().X();
2080 ptOfNode.v = LE2._uvRefined.back().Y();
2081 ptOfNode.node = layerNodes2.back();
2082 ptOfNode.param = isR ? ul : uf;
2083 ptOfNode.normParam = isR ? 1 : 0;
2085 nodeDataVec.insert(( isR ? nodeDataVec.end() : nodeDataVec.begin() ), ptOfNode );
2087 // recompute normParam of nodes in nodeDataVec
2088 newLength = GCPnts_AbscissaPoint::Length( curve,
2089 nodeDataVec.front().param,
2090 nodeDataVec.back().param);
2091 for ( size_t iP = 1; iP < nodeDataVec.size(); ++iP )
2093 const double len = GCPnts_AbscissaPoint::Length( curve,
2094 nodeDataVec.front().param,
2095 nodeDataVec[iP].param );
2096 nodeDataVec[iP].normParam = len / newLength;
2100 // create a proxy sub-mesh containing the moved nodes
2101 _ProxyMeshOfFace::_EdgeSubMesh* edgeSM = getProxyMesh()->GetEdgeSubMesh( edgeID );
2102 edgeSM->SetUVPtStructVec( nodeDataVec );
2104 // set a sub-mesh event listener to remove just created edges when
2105 // "ViscousLayers2D" hypothesis is modified
2106 VISCOUS_3D::ToClearSubWithMain( _mesh->GetSubMesh( E ), _face );
2108 } // loop on _polyLineVec
2113 //================================================================================
2115 * \brief Returns true if there will be a shrinked mesh on EDGE E of FACE adjFace
2118 //================================================================================
2120 bool _ViscousBuilder2D::toShrinkForAdjacent( const TopoDS_Face& adjFace,
2121 const TopoDS_Edge& E,
2122 const TopoDS_Vertex& V)
2124 if ( _noShrinkVert.count( getMeshDS()->ShapeToIndex( V )) || adjFace.IsNull() )
2127 vector< const StdMeshers_ViscousLayers2D* > hyps;
2128 vector< TopoDS_Shape > hypShapes;
2129 if ( VISCOUS_2D::findHyps( *_mesh, adjFace, hyps, hypShapes ))
2131 VISCOUS_2D::_ViscousBuilder2D builder( *_mesh, adjFace, hyps, hypShapes );
2132 builder._faceSideVec = StdMeshers_FaceSide::GetFaceWires( adjFace, *_mesh, true, _error );
2133 builder.findEdgesWithLayers();
2135 PShapeIteratorPtr edgeIt = _helper.GetAncestors( V, *_mesh, TopAbs_EDGE );
2136 while ( const TopoDS_Shape* edgeAtV = edgeIt->next() )
2138 if ( !edgeAtV->IsSame( E ) &&
2139 _helper.IsSubShape( *edgeAtV, adjFace ) &&
2140 !builder._ignoreShapeIds.count( getMeshDS()->ShapeToIndex( *edgeAtV )))
2149 //================================================================================
2153 //================================================================================
2155 bool _ViscousBuilder2D::refine()
2157 // find out orientation of faces to create
2159 ( _helper.GetSubShapeOri( _mesh->GetShapeToMesh(), _face ) == TopAbs_REVERSED );
2161 // store a proxyMesh in a sub-mesh
2162 // make faces on each _PolyLine
2163 vector< double > layersHeight;
2164 //double prevLen2D = -1;
2165 for ( size_t iL = 0; iL < _polyLineVec.size(); ++iL )
2167 _PolyLine& L = _polyLineVec[ iL ];
2168 if ( !L._advancable ) continue;
2170 // replace an inactive (1st) _LayerEdge with an active one of a neighbour _PolyLine
2171 //size_t iLE = 0, nbLE = L._lEdges.size();
2172 const bool leftEdgeShared = L.IsCommonEdgeShared( *L._leftLine );
2173 const bool rightEdgeShared = L.IsCommonEdgeShared( *L._rightLine );
2174 if ( /*!L._leftLine->_advancable &&*/ leftEdgeShared )
2176 L._lEdges[0] = L._leftLine->_lEdges.back();
2177 //iLE += int( !L._leftLine->_advancable );
2179 if ( !L._rightLine->_advancable && rightEdgeShared )
2181 L._lEdges.back() = L._rightLine->_lEdges[0];
2185 // limit length of neighbour _LayerEdge's to avoid sharp change of layers thickness
2187 vector< double > segLen( L._lEdges.size() );
2190 // check if length modification is useful: look for _LayerEdge's
2191 // with length limited due to collisions
2192 bool lenLimited = false;
2193 for ( size_t iLE = 1; ( iLE < L._lEdges.size()-1 && !lenLimited ); ++iLE )
2194 lenLimited = L._lEdges[ iLE ]._isBlocked;
2198 for ( size_t i = 1; i < segLen.size(); ++i )
2200 // accumulate length of segments
2201 double sLen = (L._lEdges[i-1]._uvOut - L._lEdges[i]._uvOut ).Modulus();
2202 segLen[i] = segLen[i-1] + sLen;
2204 const double totSegLen = segLen.back();
2205 // normalize the accumulated length
2206 for ( size_t iS = 1; iS < segLen.size(); ++iS )
2207 segLen[iS] /= totSegLen;
2209 for ( int isR = 0; isR < 2; ++isR )
2211 size_t iF = 0, iL = L._lEdges.size()-1;
2212 size_t *i = isR ? &iL : &iF;
2213 _LayerEdge* prevLE = & L._lEdges[ *i ];
2215 for ( ++iF, --iL; iF < L._lEdges.size()-1; ++iF, --iL )
2217 _LayerEdge& LE = L._lEdges[*i];
2218 if ( prevLE->_length2D > 0 )
2220 gp_XY tangent ( LE._normal2D.Y(), -LE._normal2D.X() );
2221 weight += Abs( tangent * ( prevLE->_uvIn - LE._uvIn )) / totSegLen;
2222 // gp_XY prevTang( LE._uvOut - prevLE->_uvOut );
2223 // gp_XY prevNorm( -prevTang.Y(), prevTang.X() );
2224 gp_XY prevNorm = LE._normal2D;
2225 double prevProj = prevNorm * ( prevLE->_uvIn - prevLE->_uvOut );
2226 if ( prevProj > 0 ) {
2227 prevProj /= prevNorm.Modulus();
2228 if ( LE._length2D < prevProj )
2229 weight += 0.75 * ( 1 - weight ); // length decrease is more preferable
2230 LE._length2D = weight * LE._length2D + ( 1 - weight ) * prevProj;
2231 LE._uvIn = LE._uvOut + LE._normal2D * LE._length2D;
2238 // DEBUG: to see _uvRefined. cout can be redirected to hide NETGEN output
2239 // cerr << "import smesh" << endl << "mesh = smesh.Mesh()"<< endl;
2241 const vector<UVPtStruct>& points = L._wire->GetUVPtStruct();
2243 // analyse extremities of the _PolyLine to find existing nodes
2244 const TopoDS_Vertex& V1 = L._wire->FirstVertex( L._edgeInd );
2245 const TopoDS_Vertex& V2 = L._wire->LastVertex ( L._edgeInd );
2246 const int v1ID = getMeshDS()->ShapeToIndex( V1 );
2247 const int v2ID = getMeshDS()->ShapeToIndex( V2 );
2248 const bool isShrinkableL = ! _noShrinkVert.count( v1ID );
2249 const bool isShrinkableR = ! _noShrinkVert.count( v2ID );
2251 bool hasLeftNode = ( !L._leftLine->_rightNodes.empty() && leftEdgeShared );
2252 bool hasRightNode = ( !L._rightLine->_leftNodes.empty() && rightEdgeShared );
2253 bool hasOwnLeftNode = ( !L._leftNodes.empty() );
2254 bool hasOwnRightNode = ( !L._rightNodes.empty() );
2255 bool isClosedEdge = ( points[ L._firstPntInd ].node == points[ L._lastPntInd ].node );
2257 nbN = L._lastPntInd - L._firstPntInd + 1,
2258 iN0 = ( hasLeftNode || hasOwnLeftNode || isClosedEdge || !isShrinkableL ),
2259 iNE = nbN - ( hasRightNode || hasOwnRightNode || !isShrinkableR );
2261 // update _uvIn of end _LayerEdge's by existing nodes
2262 const SMDS_MeshNode *nL = 0, *nR = 0;
2263 if ( hasOwnLeftNode ) nL = L._leftNodes.back();
2264 else if ( hasLeftNode ) nL = L._leftLine->_rightNodes.back();
2265 if ( hasOwnRightNode ) nR = L._rightNodes.back();
2266 else if ( hasRightNode ) nR = L._rightLine->_leftNodes.back();
2268 L._lEdges[0]._uvIn = _helper.GetNodeUV( _face, nL, points[ L._firstPntInd + 1 ].node );
2270 L._lEdges.back()._uvIn = _helper.GetNodeUV( _face, nR, points[ L._lastPntInd - 1 ].node );
2272 // compute normalized [0;1] node parameters of nodes on a _PolyLine
2273 vector< double > normPar( nbN );
2275 normF = L._wire->FirstParameter( L._edgeInd ),
2276 normL = L._wire->LastParameter ( L._edgeInd ),
2277 normDist = normL - normF;
2278 for ( int i = L._firstPntInd; i <= L._lastPntInd; ++i )
2279 normPar[ i - L._firstPntInd ] = ( points[i].normParam - normF ) / normDist;
2281 // Calculate UV of most inner nodes
2283 vector< gp_XY > innerUV( nbN );
2285 // check if innerUV should be interpolated between _LayerEdge::_uvIn's
2286 const size_t nbLE = L._lEdges.size();
2287 bool needInterpol = ( nbN != nbLE );
2288 if ( !needInterpol )
2290 // more check: compare length of inner and outer end segments
2291 double lenIn, lenOut;
2292 for ( int isR = 0; isR < 2 && !needInterpol; ++isR )
2294 const _Segment& segIn = isR ? L._segments.back() : L._segments[0];
2295 const gp_XY& uvIn1 = segIn.p1();
2296 const gp_XY& uvIn2 = segIn.p2();
2297 const gp_XY& uvOut1 = L._lEdges[ isR ? nbLE-1 : 0 ]._uvOut;
2298 const gp_XY& uvOut2 = L._lEdges[ isR ? nbLE-2 : 1 ]._uvOut;
2299 if ( _is2DIsotropic )
2301 lenIn = ( uvIn1 - uvIn2 ).Modulus();
2302 lenOut = ( uvOut1 - uvOut2 ).Modulus();
2306 lenIn = _surface->Value( uvIn1.X(), uvIn1.Y() )
2307 .Distance( _surface->Value( uvIn2.X(), uvIn2.Y() ));
2308 lenOut = _surface->Value( uvOut1.X(), uvOut1.Y() )
2309 .Distance( _surface->Value( uvOut2.X(), uvOut2.Y() ));
2311 needInterpol = ( lenIn < 0.66 * lenOut );
2317 // compute normalized accumulated length of inner segments
2319 if ( _is2DIsotropic )
2320 for ( iS = 1; iS < segLen.size(); ++iS )
2322 double sLen = ( L._lEdges[iS-1]._uvIn - L._lEdges[iS]._uvIn ).Modulus();
2323 segLen[iS] = segLen[iS-1] + sLen;
2326 for ( iS = 1; iS < segLen.size(); ++iS )
2328 const gp_XY& uv1 = L._lEdges[iS-1]._uvIn;
2329 const gp_XY& uv2 = L._lEdges[iS ]._uvIn;
2330 gp_Pnt p1 = _surface->Value( uv1.X(), uv1.Y() );
2331 gp_Pnt p2 = _surface->Value( uv2.X(), uv2.Y() );
2332 double sLen = p1.Distance( p2 );
2333 segLen[iS] = segLen[iS-1] + sLen;
2335 // normalize the accumulated length
2336 for ( iS = 1; iS < segLen.size(); ++iS )
2337 segLen[iS] /= segLen.back();
2339 // calculate UV of most inner nodes according to the normalized node parameters
2341 for ( size_t i = 0; i < innerUV.size(); ++i )
2343 while ( normPar[i] > segLen[iS+1] )
2345 double r = ( normPar[i] - segLen[iS] ) / ( segLen[iS+1] - segLen[iS] );
2346 innerUV[ i ] = r * L._lEdges[iS+1]._uvIn + (1-r) * L._lEdges[iS]._uvIn;
2349 else // ! needInterpol
2351 for ( size_t i = 0; i < nbLE; ++i )
2352 innerUV[ i ] = L._lEdges[i]._uvIn;
2355 // normalized height of layers
2356 const THypVL* hyp = getLineHypothesis( iL );
2357 calcLayersHeight( 1., layersHeight, hyp);
2359 // Create layers of faces
2361 // nodes to create 1 layer of faces
2362 vector< const SMDS_MeshNode* > outerNodes( nbN );
2363 vector< const SMDS_MeshNode* > innerNodes( nbN );
2365 // initialize outerNodes by nodes of the L._wire
2366 for ( int i = L._firstPntInd; i <= L._lastPntInd; ++i )
2367 outerNodes[ i-L._firstPntInd ] = points[i].node;
2369 L._leftNodes .reserve( hyp->GetNumberLayers() );
2370 L._rightNodes.reserve( hyp->GetNumberLayers() );
2371 int cur = 0, prev = -1; // to take into account orientation of _face
2372 if ( isReverse ) std::swap( cur, prev );
2373 for ( int iF = 0; iF < hyp->GetNumberLayers(); ++iF ) // loop on layers of faces
2375 // create innerNodes of a current layer
2376 for ( size_t i = iN0; i < iNE; ++i )
2378 gp_XY uvOut = points[ L._firstPntInd + i ].UV();
2379 gp_XY& uvIn = innerUV[ i ];
2380 gp_XY uv = layersHeight[ iF ] * uvIn + ( 1.-layersHeight[ iF ]) * uvOut;
2381 gp_Pnt p = _surface->Value( uv.X(), uv.Y() );
2382 innerNodes[i] = _helper.AddNode( p.X(), p.Y(), p.Z(), /*id=*/0, uv.X(), uv.Y() );
2384 // use nodes created for adjacent _PolyLine's
2385 if ( hasOwnLeftNode ) innerNodes.front() = L._leftNodes [ iF ];
2386 else if ( hasLeftNode ) innerNodes.front() = L._leftLine->_rightNodes[ iF ];
2387 if ( hasOwnRightNode ) innerNodes.back() = L._rightNodes[ iF ];
2388 else if ( hasRightNode ) innerNodes.back() = L._rightLine->_leftNodes[ iF ];
2389 if ( isClosedEdge ) innerNodes.front() = innerNodes.back(); // circle
2390 if ( !isShrinkableL ) innerNodes.front() = outerNodes.front();
2391 if ( !isShrinkableR ) innerNodes.back() = outerNodes.back();
2392 if ( !hasOwnLeftNode ) L._leftNodes.push_back( innerNodes.front() );
2393 if ( !hasOwnRightNode ) L._rightNodes.push_back( innerNodes.back() );
2396 for ( size_t i = 1; i < innerNodes.size(); ++i )
2397 if ( SMDS_MeshElement* f = _helper.AddFace( outerNodes[ i+prev ], outerNodes[ i+cur ],
2398 innerNodes[ i+cur ], innerNodes[ i+prev ]))
2399 L._newFaces.insert( L._newFaces.end(), f );
2401 outerNodes.swap( innerNodes );
2404 // faces between not shared _LayerEdge's (at concave VERTEX)
2405 for ( int isR = 0; isR < 2; ++isR )
2407 if ( isR ? rightEdgeShared : leftEdgeShared )
2409 vector< const SMDS_MeshNode* > &
2410 lNodes = (isR ? L._rightNodes : L._leftLine->_rightNodes ),
2411 rNodes = (isR ? L._rightLine->_leftNodes : L._leftNodes );
2412 if ( lNodes.empty() || rNodes.empty() || lNodes.size() != rNodes.size() )
2415 for ( size_t i = 1; i < lNodes.size(); ++i )
2416 _helper.AddFace( lNodes[ i+prev ], rNodes[ i+prev ],
2417 rNodes[ i+cur ], lNodes[ i+cur ]);
2419 const UVPtStruct& ptOnVertex = points[ isR ? L._lastPntInd : L._firstPntInd ];
2421 _helper.AddFace( ptOnVertex.node, lNodes[ 0 ], rNodes[ 0 ]);
2423 _helper.AddFace( ptOnVertex.node, rNodes[ 0 ], lNodes[ 0 ]);
2426 // Fill the _ProxyMeshOfFace
2428 UVPtStructVec nodeDataVec( outerNodes.size() ); // outerNodes swapped with innerNodes
2429 for ( size_t i = 0; i < outerNodes.size(); ++i )
2431 gp_XY uv = _helper.GetNodeUV( _face, outerNodes[i] );
2432 nodeDataVec[i].u = uv.X();
2433 nodeDataVec[i].v = uv.Y();
2434 nodeDataVec[i].node = outerNodes[i];
2435 nodeDataVec[i].param = points [i + L._firstPntInd].param;
2436 nodeDataVec[i].normParam = normPar[i];
2437 nodeDataVec[i].x = normPar[i];
2438 nodeDataVec[i].y = normPar[i];
2440 nodeDataVec.front().param = L._wire->FirstU( L._edgeInd );
2441 nodeDataVec.back() .param = L._wire->LastU ( L._edgeInd );
2443 if (( nodeDataVec[0].node == nodeDataVec.back().node ) &&
2444 ( _helper.GetPeriodicIndex() == 1 || _helper.GetPeriodicIndex() == 2 )) // closed EDGE
2446 const int iCoord = _helper.GetPeriodicIndex();
2447 gp_XY uv = nodeDataVec[0].UV();
2448 uv.SetCoord( iCoord, L._lEdges[0]._uvOut.Coord( iCoord ));
2449 nodeDataVec[0].SetUV( uv );
2451 uv = nodeDataVec.back().UV();
2452 uv.SetCoord( iCoord, L._lEdges.back()._uvOut.Coord( iCoord ));
2453 nodeDataVec.back().SetUV( uv );
2456 _ProxyMeshOfFace::_EdgeSubMesh* edgeSM
2457 = getProxyMesh()->GetEdgeSubMesh( L._wire->EdgeID( L._edgeInd ));
2458 edgeSM->SetUVPtStructVec( nodeDataVec );
2460 } // loop on _PolyLine's
2462 // re-compute FACEs whose mesh was removed by shrink()
2463 for ( size_t i = 0; i < _clearedFaces.size(); ++i )
2465 SMESH_subMesh* sm = _mesh->GetSubMesh( _clearedFaces[i] );
2466 if ( sm->GetComputeState() == SMESH_subMesh::READY_TO_COMPUTE )
2467 sm->ComputeStateEngine( SMESH_subMesh::COMPUTE );
2473 //================================================================================
2475 * \brief Improve quality of the created mesh elements
2477 //================================================================================
2479 bool _ViscousBuilder2D::improve()
2484 // fixed nodes on EDGE's
2485 std::set<const SMDS_MeshNode*> fixedNodes;
2486 for ( size_t iWire = 0; iWire < _faceSideVec.size(); ++iWire )
2488 StdMeshers_FaceSidePtr wire = _faceSideVec[ iWire ];
2489 const vector<UVPtStruct>& points = wire->GetUVPtStruct();
2490 for ( size_t i = 0; i < points.size(); ++i )
2491 fixedNodes.insert( fixedNodes.end(), points[i].node );
2493 // fixed proxy nodes
2494 for ( size_t iL = 0; iL < _polyLineVec.size(); ++iL )
2496 _PolyLine& L = _polyLineVec[ iL ];
2497 const TopoDS_Edge& E = L._wire->Edge( L._edgeInd );
2498 if ( const SMESH_ProxyMesh::SubMesh* sm = _proxyMesh->GetProxySubMesh( E ))
2500 const UVPtStructVec& points = sm->GetUVPtStructVec();
2501 for ( size_t i = 0; i < points.size(); ++i )
2502 fixedNodes.insert( fixedNodes.end(), points[i].node );
2504 for ( size_t i = 0; i < L._rightNodes.size(); ++i )
2505 fixedNodes.insert( fixedNodes.end(), L._rightNodes[i] );
2509 SMESH_MeshEditor editor( _mesh );
2510 for ( size_t iL = 0; iL < _polyLineVec.size(); ++iL )
2512 _PolyLine& L = _polyLineVec[ iL ];
2513 if ( L._isStraight2D ) continue;
2514 // SMESH_MeshEditor::SmoothMethod how =
2515 // L._isStraight2D ? SMESH_MeshEditor::LAPLACIAN : SMESH_MeshEditor::CENTROIDAL;
2516 //editor.Smooth( L._newFaces, fixedNodes, how, /*nbIt = */3 );
2517 //editor.Smooth( L._newFaces, fixedNodes, SMESH_MeshEditor::LAPLACIAN, /*nbIt = */1 );
2518 editor.Smooth( L._newFaces, fixedNodes, SMESH_MeshEditor::CENTROIDAL, /*nbIt = */3 );
2523 //================================================================================
2525 * \brief Remove elements and nodes from a face
2527 //================================================================================
2529 bool _ViscousBuilder2D::removeMeshFaces(const TopoDS_Shape& face)
2531 // we don't use SMESH_subMesh::ComputeStateEngine() because of a listener
2532 // which clears EDGEs together with _face.
2533 bool thereWereElems = false;
2534 SMESH_subMesh* sm = _mesh->GetSubMesh( face );
2535 if ( SMESHDS_SubMesh* smDS = sm->GetSubMeshDS() )
2537 SMDS_ElemIteratorPtr eIt = smDS->GetElements();
2538 thereWereElems = eIt->more();
2539 while ( eIt->more() ) getMeshDS()->RemoveFreeElement( eIt->next(), smDS );
2540 SMDS_NodeIteratorPtr nIt = smDS->GetNodes();
2541 while ( nIt->more() ) getMeshDS()->RemoveFreeNode( nIt->next(), smDS );
2543 sm->ComputeStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE );
2545 return thereWereElems;
2548 //================================================================================
2550 * \brief Returns a hypothesis for a _PolyLine
2552 //================================================================================
2554 const StdMeshers_ViscousLayers2D* _ViscousBuilder2D::getLineHypothesis(int iPL)
2556 return iPL < (int)_hypOfEdge.size() ? _hypOfEdge[ iPL ] : _hyps[0];
2559 //================================================================================
2561 * \brief Returns a layers thickness for a _PolyLine
2563 //================================================================================
2565 double _ViscousBuilder2D::getLineThickness(int iPL)
2567 if ( const StdMeshers_ViscousLayers2D* h = getLineHypothesis( iPL ))
2568 return Min( _maxThickness, h->GetTotalThickness() );
2569 return _maxThickness;
2572 //================================================================================
2574 * \brief Creates a _ProxyMeshOfFace and store it in a sub-mesh of FACE
2576 //================================================================================
2578 _ProxyMeshOfFace* _ViscousBuilder2D::getProxyMesh()
2580 if ( _proxyMesh.get() )
2581 return (_ProxyMeshOfFace*) _proxyMesh.get();
2583 _ProxyMeshOfFace* proxyMeshOfFace = new _ProxyMeshOfFace( *_mesh );
2584 _proxyMesh.reset( proxyMeshOfFace );
2585 new _ProxyMeshHolder( _face, _proxyMesh );
2587 return proxyMeshOfFace;
2590 //================================================================================
2592 * \brief Calculate height of layers for the given thickness. Height is measured
2593 * from the outer boundary
2595 //================================================================================
2597 void _ViscousBuilder2D::calcLayersHeight(const double totalThick,
2598 vector<double>& heights,
2601 const double fPowN = pow( hyp->GetStretchFactor(), hyp->GetNumberLayers() );
2602 heights.resize( hyp->GetNumberLayers() );
2604 if ( fPowN - 1 <= numeric_limits<double>::min() )
2605 h0 = totalThick / hyp->GetNumberLayers();
2607 h0 = totalThick * ( hyp->GetStretchFactor() - 1 )/( fPowN - 1 );
2609 double hSum = 0, hi = h0;
2610 for ( int i = 0; i < hyp->GetNumberLayers(); ++i )
2613 heights[ i ] = hSum;
2614 hi *= hyp->GetStretchFactor();
2618 //================================================================================
2620 * \brief Elongate this _LayerEdge
2622 //================================================================================
2624 bool _LayerEdge::SetNewLength( const double length3D )
2626 if ( _isBlocked ) return false;
2628 //_uvInPrev = _uvIn;
2629 _length2D = length3D * _len2dTo3dRatio;
2630 _uvIn = _uvOut + _normal2D * _length2D;
2634 //================================================================================
2636 * \brief Return true if _LayerEdge at a common VERTEX between EDGEs with
2637 * and w/o layer is common to the both _PolyLine's. If this is true, nodes
2638 * of this _LayerEdge are inflated along a _PolyLine w/o layer, else the nodes
2639 * are inflated along _normal2D of _LayerEdge of EDGE with layer
2641 //================================================================================
2643 bool _PolyLine::IsCommonEdgeShared( const _PolyLine& other )
2645 const double tol = 1e-30;
2647 if ( & other == _leftLine )
2648 return _lEdges[0]._normal2D.IsEqual( _leftLine->_lEdges.back()._normal2D, tol );
2650 if ( & other == _rightLine )
2651 return _lEdges.back()._normal2D.IsEqual( _rightLine->_lEdges[0]._normal2D, tol );
2656 //================================================================================
2658 * \brief Return \c true if the EDGE of this _PolyLine is concave
2660 //================================================================================
2662 bool _PolyLine::IsConcave() const
2664 if ( _lEdges.size() < 2 )
2667 gp_Vec2d v1( _lEdges[0]._uvOut, _lEdges[1]._uvOut );
2668 gp_Vec2d v2( _lEdges[0]._uvOut, _lEdges[2]._uvOut );
2669 const double size2 = v2.Magnitude();
2671 return ( v1 ^ v2 ) / size2 < -1e-3 * size2;
2674 //================================================================================
2676 * \brief Constructor of SegmentTree
2678 //================================================================================
2680 _SegmentTree::_SegmentTree( const vector< _Segment >& segments ):
2683 _segments.resize( segments.size() );
2684 for ( size_t i = 0; i < segments.size(); ++i )
2685 _segments[i].Set( segments[i] );
2690 //================================================================================
2692 * \brief Return the maximal bnd box
2694 //================================================================================
2696 _SegmentTree::box_type* _SegmentTree::buildRootBox()
2698 _SegmentTree::box_type* box = new _SegmentTree::box_type;
2699 for ( size_t i = 0; i < _segments.size(); ++i )
2701 box->Add( *_segments[i]._seg->_uv[0] );
2702 box->Add( *_segments[i]._seg->_uv[1] );
2707 //================================================================================
2709 * \brief Redistrubute _segments among children
2711 //================================================================================
2713 void _SegmentTree::buildChildrenData()
2715 for ( size_t i = 0; i < _segments.size(); ++i )
2716 for (int j = 0; j < nbChildren(); j++)
2717 if ( !myChildren[j]->getBox()->IsOut( *_segments[i]._seg->_uv[0],
2718 *_segments[i]._seg->_uv[1] ))
2719 ((_SegmentTree*)myChildren[j])->_segments.push_back( _segments[i]);
2721 SMESHUtils::FreeVector( _segments ); // = _elements.clear() + free memory
2723 for (int j = 0; j < nbChildren(); j++)
2725 _SegmentTree* child = static_cast<_SegmentTree*>( myChildren[j]);
2726 child->myIsLeaf = ((int) child->_segments.size() <= maxNbSegInLeaf() );
2730 //================================================================================
2732 * \brief Return elements which can include the point
2734 //================================================================================
2736 void _SegmentTree::GetSegmentsNear( const _Segment& seg,
2737 vector< const _Segment* >& found )
2739 if ( getBox()->IsOut( *seg._uv[0], *seg._uv[1] ))
2744 for ( size_t i = 0; i < _segments.size(); ++i )
2745 if ( !_segments[i].IsOut( seg ))
2746 found.push_back( _segments[i]._seg );
2750 for (int i = 0; i < nbChildren(); i++)
2751 ((_SegmentTree*) myChildren[i])->GetSegmentsNear( seg, found );
2756 //================================================================================
2758 * \brief Return segments intersecting a ray
2760 //================================================================================
2762 void _SegmentTree::GetSegmentsNear( const gp_Ax2d& ray,
2763 vector< const _Segment* >& found )
2765 if ( getBox()->IsOut( ray ))
2770 for ( size_t i = 0; i < _segments.size(); ++i )
2771 if ( !_segments[i].IsOut( ray ))
2772 found.push_back( _segments[i]._seg );
2776 for (int i = 0; i < nbChildren(); i++)
2777 ((_SegmentTree*) myChildren[i])->GetSegmentsNear( ray, found );
2781 //================================================================================
2783 * \brief Classify a _Segment
2785 //================================================================================
2787 bool _SegmentTree::_SegBox::IsOut( const _Segment& seg ) const
2789 const double eps = std::numeric_limits<double>::min();
2790 for ( int iC = 0; iC < 2; ++iC )
2792 if ( seg._uv[0]->Coord(iC+1) < _seg->_uv[ _iMin[iC]]->Coord(iC+1)+eps &&
2793 seg._uv[1]->Coord(iC+1) < _seg->_uv[ _iMin[iC]]->Coord(iC+1)+eps )
2795 if ( seg._uv[0]->Coord(iC+1) > _seg->_uv[ 1-_iMin[iC]]->Coord(iC+1)-eps &&
2796 seg._uv[1]->Coord(iC+1) > _seg->_uv[ 1-_iMin[iC]]->Coord(iC+1)-eps )
2802 //================================================================================
2804 * \brief Classify a ray
2806 //================================================================================
2808 bool _SegmentTree::_SegBox::IsOut( const gp_Ax2d& ray ) const
2810 double distBoxCenter2Ray =
2811 ray.Direction().XY() ^ ( ray.Location().XY() - 0.5 * (*_seg->_uv[0] + *_seg->_uv[1]));
2813 double boxSectionDiam =
2814 Abs( ray.Direction().X() ) * ( _seg->_uv[1-_iMin[1]]->Y() - _seg->_uv[_iMin[1]]->Y() ) +
2815 Abs( ray.Direction().Y() ) * ( _seg->_uv[1-_iMin[0]]->X() - _seg->_uv[_iMin[0]]->X() );
2817 return Abs( distBoxCenter2Ray ) > 0.5 * boxSectionDiam;