1 // Copyright (C) 2007-2021 CEA/DEN, EDF R&D, OPEN CASCADE
3 // Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
4 // CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
6 // This library is free software; you can redistribute it and/or
7 // modify it under the terms of the GNU Lesser General Public
8 // License as published by the Free Software Foundation; either
9 // version 2.1 of the License, or (at your option) any later version.
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 // Lesser General Public License for more details.
16 // You should have received a copy of the GNU Lesser General Public
17 // License along with this library; if not, write to the Free Software
18 // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
23 // File : StdMeshers_Regular_1D.cxx
24 // Moved here from SMESH_Regular_1D.cxx
25 // Author : Paul RASCLE, EDF
28 #include "StdMeshers_Regular_1D.hxx"
30 #include "SMDS_MeshElement.hxx"
31 #include "SMDS_MeshNode.hxx"
32 #include "SMESHDS_Mesh.hxx"
33 #include "SMESH_Comment.hxx"
34 #include "SMESH_Gen.hxx"
35 #include "SMESH_HypoFilter.hxx"
36 #include "SMESH_Mesh.hxx"
37 #include "SMESH_subMesh.hxx"
38 #include "SMESH_subMeshEventListener.hxx"
39 #include "StdMeshers_Adaptive1D.hxx"
40 #include "StdMeshers_Arithmetic1D.hxx"
41 #include "StdMeshers_AutomaticLength.hxx"
42 #include "StdMeshers_Geometric1D.hxx"
43 #include "StdMeshers_Deflection1D.hxx"
44 #include "StdMeshers_Distribution.hxx"
45 #include "StdMeshers_FixedPoints1D.hxx"
46 #include "StdMeshers_LocalLength.hxx"
47 #include "StdMeshers_MaxLength.hxx"
48 #include "StdMeshers_NumberOfSegments.hxx"
49 #include "StdMeshers_Propagation.hxx"
50 #include "StdMeshers_SegmentLengthAroundVertex.hxx"
51 #include "StdMeshers_StartEndLength.hxx"
53 #include <Utils_SALOME_Exception.hxx>
54 #include <utilities.h>
56 #include <BRepAdaptor_Curve.hxx>
57 #include <BRep_Tool.hxx>
58 #include <GCPnts_AbscissaPoint.hxx>
59 #include <GCPnts_UniformAbscissa.hxx>
60 #include <GCPnts_UniformDeflection.hxx>
61 #include <Precision.hxx>
63 #include <TopExp_Explorer.hxx>
65 #include <TopoDS_Edge.hxx>
66 #include <TopoDS_Vertex.hxx>
72 using namespace StdMeshers;
74 //=============================================================================
78 //=============================================================================
80 StdMeshers_Regular_1D::StdMeshers_Regular_1D(int hypId,
82 :SMESH_1D_Algo( hypId, gen )
85 _shapeType = (1 << TopAbs_EDGE);
88 _compatibleHypothesis.push_back("LocalLength");
89 _compatibleHypothesis.push_back("MaxLength");
90 _compatibleHypothesis.push_back("NumberOfSegments");
91 _compatibleHypothesis.push_back("StartEndLength");
92 _compatibleHypothesis.push_back("Deflection1D");
93 _compatibleHypothesis.push_back("Arithmetic1D");
94 _compatibleHypothesis.push_back("GeometricProgression");
95 _compatibleHypothesis.push_back("FixedPoints1D");
96 _compatibleHypothesis.push_back("AutomaticLength");
97 _compatibleHypothesis.push_back("Adaptive1D");
99 _compatibleHypothesis.push_back("QuadraticMesh");
100 _compatibleHypothesis.push_back("Propagation");
101 _compatibleHypothesis.push_back("PropagOfDistribution");
104 //=============================================================================
108 //=============================================================================
110 StdMeshers_Regular_1D::~StdMeshers_Regular_1D()
114 //=============================================================================
118 //=============================================================================
120 bool StdMeshers_Regular_1D::CheckHypothesis( SMESH_Mesh& aMesh,
121 const TopoDS_Shape& aShape,
122 Hypothesis_Status& aStatus )
125 _quadraticMesh = false;
126 _onlyUnaryInput = true;
128 // check propagation in a redefined GetUsedHypothesis()
129 const list <const SMESHDS_Hypothesis * > & hyps =
130 GetUsedHypothesis(aMesh, aShape, /*ignoreAuxiliaryHyps=*/false);
132 const SMESH_HypoFilter & propagFilter = StdMeshers_Propagation::GetFilter();
134 // find non-auxiliary hypothesis
135 const SMESHDS_Hypothesis *theHyp = 0;
136 set< string > propagTypes;
137 list <const SMESHDS_Hypothesis * >::const_iterator h = hyps.begin();
138 for ( ; h != hyps.end(); ++h ) {
139 if ( static_cast<const SMESH_Hypothesis*>(*h)->IsAuxiliary() ) {
140 if ( strcmp( "QuadraticMesh", (*h)->GetName() ) == 0 )
141 _quadraticMesh = true;
142 if ( propagFilter.IsOk( static_cast< const SMESH_Hypothesis*>( *h ), aShape ))
143 propagTypes.insert( (*h)->GetName() );
147 theHyp = *h; // use only the first non-auxiliary hypothesis
153 aStatus = SMESH_Hypothesis::HYP_MISSING;
154 return false; // can't work without a hypothesis
157 string hypName = theHyp->GetName();
159 if ( !_mainEdge.IsNull() && _hypType == DISTRIB_PROPAGATION )
161 aStatus = SMESH_Hypothesis::HYP_OK;
163 else if ( hypName == "LocalLength" )
165 const StdMeshers_LocalLength * hyp =
166 dynamic_cast <const StdMeshers_LocalLength * >(theHyp);
168 _value[ BEG_LENGTH_IND ] = hyp->GetLength();
169 _value[ PRECISION_IND ] = hyp->GetPrecision();
170 ASSERT( _value[ BEG_LENGTH_IND ] > 0 );
171 _hypType = LOCAL_LENGTH;
172 aStatus = SMESH_Hypothesis::HYP_OK;
175 else if ( hypName == "MaxLength" )
177 const StdMeshers_MaxLength * hyp =
178 dynamic_cast <const StdMeshers_MaxLength * >(theHyp);
180 _value[ BEG_LENGTH_IND ] = hyp->GetLength();
181 if ( hyp->GetUsePreestimatedLength() ) {
182 if ( int nbSeg = aMesh.GetGen()->GetBoundaryBoxSegmentation() )
183 _value[ BEG_LENGTH_IND ] = aMesh.GetShapeDiagonalSize() / nbSeg;
185 ASSERT( _value[ BEG_LENGTH_IND ] > 0 );
186 _hypType = MAX_LENGTH;
187 aStatus = SMESH_Hypothesis::HYP_OK;
190 else if ( hypName == "NumberOfSegments" )
192 const StdMeshers_NumberOfSegments * hyp =
193 dynamic_cast <const StdMeshers_NumberOfSegments * >(theHyp);
195 _ivalue[ NB_SEGMENTS_IND ] = hyp->GetNumberOfSegments();
196 ASSERT( _ivalue[ NB_SEGMENTS_IND ] > 0 );
197 _ivalue[ DISTR_TYPE_IND ] = (int) hyp->GetDistrType();
198 switch (_ivalue[ DISTR_TYPE_IND ])
200 case StdMeshers_NumberOfSegments::DT_Scale:
201 _value[ SCALE_FACTOR_IND ] = hyp->GetScaleFactor();
202 _revEdgesIDs = hyp->GetReversedEdges();
204 case StdMeshers_NumberOfSegments::DT_TabFunc:
205 _vvalue[ TAB_FUNC_IND ] = hyp->GetTableFunction();
206 _revEdgesIDs = hyp->GetReversedEdges();
208 case StdMeshers_NumberOfSegments::DT_ExprFunc:
209 _svalue[ EXPR_FUNC_IND ] = hyp->GetExpressionFunction();
210 _revEdgesIDs = hyp->GetReversedEdges();
212 case StdMeshers_NumberOfSegments::DT_Regular:
218 if (_ivalue[ DISTR_TYPE_IND ] == StdMeshers_NumberOfSegments::DT_TabFunc ||
219 _ivalue[ DISTR_TYPE_IND ] == StdMeshers_NumberOfSegments::DT_ExprFunc)
220 _ivalue[ CONV_MODE_IND ] = hyp->ConversionMode();
221 _hypType = NB_SEGMENTS;
222 aStatus = SMESH_Hypothesis::HYP_OK;
225 else if ( hypName == "Arithmetic1D" )
227 const StdMeshers_Arithmetic1D * hyp =
228 dynamic_cast <const StdMeshers_Arithmetic1D * >(theHyp);
230 _value[ BEG_LENGTH_IND ] = hyp->GetLength( true );
231 _value[ END_LENGTH_IND ] = hyp->GetLength( false );
232 ASSERT( _value[ BEG_LENGTH_IND ] > 0 && _value[ END_LENGTH_IND ] > 0 );
233 _hypType = ARITHMETIC_1D;
235 _revEdgesIDs = hyp->GetReversedEdges();
237 aStatus = SMESH_Hypothesis::HYP_OK;
240 else if ( hypName == "GeometricProgression" )
242 const StdMeshers_Geometric1D * hyp =
243 dynamic_cast <const StdMeshers_Geometric1D * >(theHyp);
245 _value[ BEG_LENGTH_IND ] = hyp->GetStartLength();
246 _value[ END_LENGTH_IND ] = hyp->GetCommonRatio();
247 ASSERT( _value[ BEG_LENGTH_IND ] > 0 && _value[ END_LENGTH_IND ] > 0 );
248 _hypType = GEOMETRIC_1D;
250 _revEdgesIDs = hyp->GetReversedEdges();
252 aStatus = SMESH_Hypothesis::HYP_OK;
255 else if ( hypName == "FixedPoints1D" ) {
256 _fpHyp = dynamic_cast <const StdMeshers_FixedPoints1D*>(theHyp);
258 _hypType = FIXED_POINTS_1D;
260 _revEdgesIDs = _fpHyp->GetReversedEdges();
262 aStatus = SMESH_Hypothesis::HYP_OK;
265 else if ( hypName == "StartEndLength" )
267 const StdMeshers_StartEndLength * hyp =
268 dynamic_cast <const StdMeshers_StartEndLength * >(theHyp);
270 _value[ BEG_LENGTH_IND ] = hyp->GetLength( true );
271 _value[ END_LENGTH_IND ] = hyp->GetLength( false );
272 ASSERT( _value[ BEG_LENGTH_IND ] > 0 && _value[ END_LENGTH_IND ] > 0 );
273 _hypType = BEG_END_LENGTH;
275 _revEdgesIDs = hyp->GetReversedEdges();
277 aStatus = SMESH_Hypothesis::HYP_OK;
280 else if ( hypName == "Deflection1D" )
282 const StdMeshers_Deflection1D * hyp =
283 dynamic_cast <const StdMeshers_Deflection1D * >(theHyp);
285 _value[ DEFLECTION_IND ] = hyp->GetDeflection();
286 ASSERT( _value[ DEFLECTION_IND ] > 0 );
287 _hypType = DEFLECTION;
288 aStatus = SMESH_Hypothesis::HYP_OK;
291 else if ( hypName == "AutomaticLength" )
293 StdMeshers_AutomaticLength * hyp = const_cast<StdMeshers_AutomaticLength *>
294 (dynamic_cast <const StdMeshers_AutomaticLength * >(theHyp));
296 _value[ BEG_LENGTH_IND ] = _value[ END_LENGTH_IND ] = hyp->GetLength( &aMesh, aShape );
297 ASSERT( _value[ BEG_LENGTH_IND ] > 0 );
298 _hypType = MAX_LENGTH;
299 aStatus = SMESH_Hypothesis::HYP_OK;
301 else if ( hypName == "Adaptive1D" )
303 _adaptiveHyp = dynamic_cast < const StdMeshers_Adaptive1D* >(theHyp);
304 ASSERT(_adaptiveHyp);
306 _onlyUnaryInput = false;
307 aStatus = SMESH_Hypothesis::HYP_OK;
311 aStatus = SMESH_Hypothesis::HYP_INCOMPATIBLE;
314 if ( propagTypes.size() > 1 && aStatus == HYP_OK )
316 // detect concurrent Propagation hyps
317 _usedHypList.clear();
318 list< TopoDS_Shape > assignedTo;
319 if ( aMesh.GetHypotheses( aShape, propagFilter, _usedHypList, true, &assignedTo ) > 1 )
321 // find most simple shape and a hyp on it
322 int simpleShape = TopAbs_COMPOUND;
323 const SMESHDS_Hypothesis* localHyp = 0;
324 list< TopoDS_Shape >::iterator shape = assignedTo.begin();
325 list< const SMESHDS_Hypothesis *>::iterator hyp = _usedHypList.begin();
326 for ( ; shape != assignedTo.end(); ++shape )
327 if ( shape->ShapeType() > simpleShape )
329 simpleShape = shape->ShapeType();
332 // check if there a different hyp on simpleShape
333 shape = assignedTo.begin();
334 hyp = _usedHypList.begin();
335 for ( ; hyp != _usedHypList.end(); ++hyp, ++shape )
336 if ( shape->ShapeType() == simpleShape &&
337 !localHyp->IsSameName( **hyp ))
339 aStatus = HYP_INCOMPAT_HYPS;
340 return error( SMESH_Comment("Hypotheses of both \"")
341 << StdMeshers_Propagation::GetName() << "\" and \""
342 << StdMeshers_PropagOfDistribution::GetName()
343 << "\" types can't be applied to the same edge");
348 return ( aStatus == SMESH_Hypothesis::HYP_OK );
351 static bool computeParamByFunc(Adaptor3d_Curve& C3d,
352 double first, double last, double length,
353 bool theReverse, smIdType nbSeg, Function& func,
354 list<double>& theParams)
357 //OSD::SetSignal( true );
362 smIdType nbPnt = 1 + nbSeg;
363 vector<double> x( nbPnt, 0. );
366 const double eps = Min( 1E-4, 0.01 / double( nbSeg ));
368 if ( !buildDistribution( func, 0.0, 1.0, nbSeg, x, eps ))
371 // apply parameters in range [0,1] to the space of the curve
372 double prevU = first;
380 for ( smIdType i = 1; i < nbSeg; i++ )
382 double curvLength = length * (x[i] - x[i-1]) * sign;
383 double tol = Min( Precision::Confusion(), curvLength / 100. );
384 GCPnts_AbscissaPoint Discret( tol, C3d, curvLength, prevU );
385 if ( !Discret.IsDone() )
387 double U = Discret.Parameter();
388 if ( U > first && U < last )
389 theParams.push_back( U );
401 //================================================================================
403 * \brief adjust internal node parameters so that the last segment length == an
404 * \param a1 - the first segment length
405 * \param an - the last segment length
406 * \param U1 - the first edge parameter
407 * \param Un - the last edge parameter
408 * \param length - the edge length
409 * \param C3d - the edge curve
410 * \param theParams - internal node parameters to adjust
411 * \param adjustNeighbors2an - to adjust length of segments next to the last one
412 * and not to remove parameters
414 //================================================================================
416 static void compensateError(double a1, double an,
417 double U1, double Un,
419 Adaptor3d_Curve& C3d,
420 list<double> & theParams,
421 bool adjustNeighbors2an = false)
423 smIdType i, nPar = theParams.size();
424 if ( a1 + an <= length && nPar > 1 )
426 bool reverse = ( U1 > Un );
427 double tol = Min( Precision::Confusion(), 0.01 * an );
428 GCPnts_AbscissaPoint Discret( tol, C3d, reverse ? an : -an, Un );
429 if ( !Discret.IsDone() )
431 double Utgt = Discret.Parameter(); // target value of the last parameter
432 list<double>::reverse_iterator itU = theParams.rbegin();
433 double Ul = *itU++; // real value of the last parameter
434 double dUn = Utgt - Ul; // parametric error of <an>
435 double dU = Abs( Ul - *itU ); // parametric length of the last but one segment
436 if ( Abs(dUn) <= 1e-3 * dU )
438 if ( adjustNeighbors2an || Abs(dUn) < 0.5 * dU ) { // last segment is a bit shorter than it should
439 // move the last parameter to the edge beginning
441 else { // last segment is much shorter than it should -> remove the last param and
442 theParams.pop_back(); nPar--; // move the rest points toward the edge end
443 dUn = Utgt - theParams.back();
446 if ( !adjustNeighbors2an )
448 double q = dUn / ( Utgt - Un ); // (signed) factor of segment length change
449 for ( itU = theParams.rbegin(), i = 1; i < nPar; i++ ) {
453 dUn = q * (*itU - prevU) * (prevU-U1)/(Un-U1);
456 else if ( nPar == 1 )
458 theParams.back() += dUn;
462 double q = dUn / double( nPar - 1 );
463 theParams.back() += dUn;
464 double sign = reverse ? -1 : 1;
465 double prevU = theParams.back();
466 itU = theParams.rbegin();
467 for ( ++itU, i = 2; i < nPar; ++itU, i++ ) {
468 double newU = *itU + dUn;
469 if ( newU*sign < prevU*sign ) {
473 else { // set U between prevU and next valid param
474 list<double>::reverse_iterator itU2 = itU;
477 while ( (*itU2)*sign > prevU*sign ) {
480 dU = ( *itU2 - prevU ) / nb;
481 while ( itU != itU2 ) {
491 //================================================================================
493 * \brief Class used to clean mesh on edges when 0D hyp modified.
494 * Common approach doesn't work when 0D algo is missing because the 0D hyp is
495 * considered as not participating in computation whereas it is used by 1D algo.
497 //================================================================================
499 // struct VertexEventListener : public SMESH_subMeshEventListener
501 // VertexEventListener():SMESH_subMeshEventListener(0) // won't be deleted by submesh
504 // * \brief Clean mesh on edges
505 // * \param event - algo_event or compute_event itself (of SMESH_subMesh)
506 // * \param eventType - ALGO_EVENT or COMPUTE_EVENT (of SMESH_subMesh)
507 // * \param subMesh - the submesh where the event occurs
509 // void ProcessEvent(const int event, const int eventType, SMESH_subMesh* subMesh,
510 // EventListenerData*, const SMESH_Hypothesis*)
512 // if ( eventType == SMESH_subMesh::ALGO_EVENT) // all algo events
514 // subMesh->ComputeStateEngine( SMESH_subMesh::MODIF_ALGO_STATE );
517 // }; // struct VertexEventListener
519 //=============================================================================
521 * \brief Sets event listener to vertex submeshes
522 * \param subMesh - submesh where algo is set
524 * This method is called when a submesh gets HYP_OK algo_state.
525 * After being set, event listener is notified on each event of a submesh.
527 //=============================================================================
529 void StdMeshers_Regular_1D::SetEventListener(SMESH_subMesh* subMesh)
531 StdMeshers_Propagation::SetPropagationMgr( subMesh );
534 //=============================================================================
537 * \param subMesh - restored submesh
539 * This method is called only if a submesh has HYP_OK algo_state.
541 //=============================================================================
543 void StdMeshers_Regular_1D::SubmeshRestored(SMESH_subMesh* /*subMesh*/)
547 //=============================================================================
549 * \brief Return StdMeshers_SegmentLengthAroundVertex assigned to vertex
551 //=============================================================================
553 const StdMeshers_SegmentLengthAroundVertex*
554 StdMeshers_Regular_1D::getVertexHyp(SMESH_Mesh & theMesh,
555 const TopoDS_Vertex & theV)
557 static SMESH_HypoFilter filter( SMESH_HypoFilter::HasName("SegmentAroundVertex_0D"));
558 if ( const SMESH_Hypothesis * h = theMesh.GetHypothesis( theV, filter, true ))
560 SMESH_Algo* algo = const_cast< SMESH_Algo* >( static_cast< const SMESH_Algo* > ( h ));
561 const list <const SMESHDS_Hypothesis *> & hypList = algo->GetUsedHypothesis( theMesh, theV, 0 );
562 if ( !hypList.empty() && string("SegmentLengthAroundVertex") == hypList.front()->GetName() )
563 return static_cast<const StdMeshers_SegmentLengthAroundVertex*>( hypList.front() );
568 //================================================================================
570 * \brief Divide a curve into equal segments
572 //================================================================================
574 bool StdMeshers_Regular_1D::divideIntoEqualSegments( SMESH_Mesh & theMesh,
575 Adaptor3d_Curve & theC3d,
576 smIdType theNbPoints,
581 std::list<double> & theParameters )
584 if ( theNbPoints < IntegerLast() )
586 int nbPnt = FromSmIdType<int>( theNbPoints );
587 GCPnts_UniformAbscissa discret(theC3d, nbPnt, theFirstU, theLastU, theTol );
588 if ( !discret.IsDone() )
589 return error( "GCPnts_UniformAbscissa failed");
590 if ( discret.NbPoints() < nbPnt )
591 discret.Initialize(theC3d, nbPnt + 1, theFirstU, theLastU, theTol );
593 int nbPoints = Min( discret.NbPoints(), nbPnt );
594 for ( int i = 2; i < nbPoints; i++ ) // skip 1st and last points
596 double param = discret.Parameter(i);
597 theParameters.push_back( param );
601 else // huge nb segments
603 // use FIXED_POINTS_1D method
604 StdMeshers_FixedPoints1D fixedPointsHyp( GetGen()->GetANewId(), GetGen() );
605 _fpHyp = &fixedPointsHyp;
606 std::vector<double> params = { 0., 1. };
607 std::vector<smIdType> nbSegs = { theNbPoints - 1 };
608 fixedPointsHyp.SetPoints( params );
609 fixedPointsHyp.SetNbSegments( nbSegs );
611 HypothesisType curType = _hypType;
612 _hypType = FIXED_POINTS_1D;
614 ok = computeInternalParameters( theMesh, theC3d, theLength, theFirstU, theLastU,
615 theParameters, /*reverse=*/false );
622 //================================================================================
624 * \brief Tune parameters to fit "SegmentLengthAroundVertex" hypothesis
625 * \param theC3d - wire curve
626 * \param theLength - curve length
627 * \param theParameters - internal nodes parameters to modify
628 * \param theVf - 1st vertex
629 * \param theVl - 2nd vertex
631 //================================================================================
633 void StdMeshers_Regular_1D::redistributeNearVertices (SMESH_Mesh & theMesh,
634 Adaptor3d_Curve & theC3d,
636 std::list< double > & theParameters,
637 const TopoDS_Vertex & theVf,
638 const TopoDS_Vertex & theVl)
640 double f = theC3d.FirstParameter(), l = theC3d.LastParameter();
641 size_t nPar = theParameters.size();
642 for ( int isEnd1 = 0; isEnd1 < 2; ++isEnd1 )
644 const TopoDS_Vertex & V = isEnd1 ? theVf : theVl;
645 const StdMeshers_SegmentLengthAroundVertex* hyp = getVertexHyp (theMesh, V );
647 double vertexLength = hyp->GetLength();
648 if ( vertexLength > theLength / 2.0 )
650 if ( isEnd1 ) { // to have a segment of interest at end of theParameters
651 theParameters.reverse();
654 if ( _hypType == NB_SEGMENTS )
656 compensateError(0, vertexLength, f, l, theLength, theC3d, theParameters, true );
658 else if ( nPar <= 3 )
661 vertexLength = -vertexLength;
662 double tol = Min( Precision::Confusion(), 0.01 * vertexLength );
663 GCPnts_AbscissaPoint Discret( tol, theC3d, vertexLength, l );
664 if ( Discret.IsDone() ) {
666 theParameters.push_back( Discret.Parameter());
668 double L = GCPnts_AbscissaPoint::Length( theC3d, theParameters.back(), l);
669 if ( vertexLength < L / 2.0 )
670 theParameters.push_back( Discret.Parameter());
672 compensateError(0, vertexLength, f, l, theLength, theC3d, theParameters, true );
678 // recompute params between the last segment and a middle one.
679 // find size of a middle segment
680 smIdType nHalf = ( nPar-1 ) / 2;
681 list< double >::reverse_iterator itU = theParameters.rbegin();
682 std::advance( itU, nHalf );
684 double Lm = GCPnts_AbscissaPoint::Length( theC3d, Um, *itU);
685 double L = GCPnts_AbscissaPoint::Length( theC3d, *itU, l);
686 static StdMeshers_Regular_1D* auxAlgo = 0;
688 auxAlgo = new StdMeshers_Regular_1D( _gen->GetANewId(), _gen );
689 auxAlgo->_hypType = BEG_END_LENGTH;
691 auxAlgo->_value[ BEG_LENGTH_IND ] = Lm;
692 auxAlgo->_value[ END_LENGTH_IND ] = vertexLength;
693 double from = *itU, to = l;
695 std::swap( from, to );
696 std::swap( auxAlgo->_value[ BEG_LENGTH_IND ], auxAlgo->_value[ END_LENGTH_IND ]);
699 if ( auxAlgo->computeInternalParameters( theMesh, theC3d, L, from, to, params, false ))
701 if ( isEnd1 ) params.reverse();
702 while ( 1 + nHalf-- )
703 theParameters.pop_back();
704 theParameters.splice( theParameters.end(), params );
708 compensateError(0, vertexLength, f, l, theLength, theC3d, theParameters, true );
712 theParameters.reverse();
717 //=============================================================================
721 //=============================================================================
722 bool StdMeshers_Regular_1D::computeInternalParameters(SMESH_Mesh & theMesh,
723 Adaptor3d_Curve& theC3d,
727 list<double> & theParams,
728 const bool theReverse,
729 bool theConsiderPropagation)
733 double f = theFirstU, l = theLastU;
735 // Propagation Of Distribution
737 if ( !_mainEdge.IsNull() && _hypType == DISTRIB_PROPAGATION )
739 TopoDS_Edge mainEdge = TopoDS::Edge( _mainEdge ); // should not be a reference!
740 _gen->Compute( theMesh, mainEdge, SMESH_Gen::SHAPE_ONLY_UPWARD );
742 SMESHDS_SubMesh* smDS = theMesh.GetMeshDS()->MeshElements( mainEdge );
744 return error("No mesh on the source edge of Propagation Of Distribution");
745 if ( smDS->NbNodes() < 1 )
746 return true; // 1 segment
748 map< double, const SMDS_MeshNode* > mainEdgeParamsOfNodes;
749 if ( ! SMESH_Algo::GetSortedNodesOnEdge( theMesh.GetMeshDS(), mainEdge, _quadraticMesh,
750 mainEdgeParamsOfNodes, SMDSAbs_Edge ))
751 return error("Bad node parameters on the source edge of Propagation Of Distribution");
752 vector< double > segLen( mainEdgeParamsOfNodes.size() - 1 );
754 BRepAdaptor_Curve mainEdgeCurve( mainEdge );
755 map< double, const SMDS_MeshNode* >::iterator
756 u_n2 = mainEdgeParamsOfNodes.begin(), u_n1 = u_n2++;
757 for ( size_t i = 1; i < mainEdgeParamsOfNodes.size(); ++i, ++u_n1, ++u_n2 )
759 segLen[ i-1 ] = GCPnts_AbscissaPoint::Length( mainEdgeCurve,
762 totalLen += segLen[ i-1 ];
764 for ( size_t i = 0; i < segLen.size(); ++i )
765 segLen[ i ] *= theLength / totalLen;
767 size_t iSeg = theReverse ? segLen.size()-1 : 0;
768 size_t dSeg = theReverse ? -1 : +1;
769 double param = theFirstU;
771 for ( size_t i = 1; i < segLen.size(); ++i, iSeg += dSeg )
773 double tol = Min( Precision::Confusion(), 0.01 * segLen[ iSeg ]);
774 GCPnts_AbscissaPoint Discret( tol, theC3d, segLen[ iSeg ], param );
775 if ( !Discret.IsDone() ) break;
776 param = Discret.Parameter();
777 theParams.push_back( param );
780 if ( nbParams != segLen.size()-1 )
781 return error( SMESH_Comment("Can't divide into ") << segLen.size() << " segments");
783 compensateError( segLen[ theReverse ? segLen.size()-1 : 0 ],
784 segLen[ theReverse ? 0 : segLen.size()-1 ],
785 f, l, theLength, theC3d, theParams, true );
798 if ( _hypType == MAX_LENGTH )
800 double nbseg = ceil(theLength / _value[ BEG_LENGTH_IND ]); // integer sup
802 nbseg = 1; // degenerated edge
803 eltSize = theLength / nbseg * ( 1. - 1e-9 );
804 nbSegments = ToSmIdType( nbseg );
806 else if ( _hypType == LOCAL_LENGTH )
808 // Local Length hypothesis
809 double nbseg = ceil(theLength / _value[ BEG_LENGTH_IND ]); // integer sup
812 bool isFound = false;
813 if (theConsiderPropagation && !_mainEdge.IsNull()) // propagated from some other edge
815 // Advanced processing to assure equal number of segments in case of Propagation
816 SMESH_subMesh* sm = theMesh.GetSubMeshContaining(_mainEdge);
818 bool computed = sm->IsMeshComputed();
820 if (sm->GetComputeState() == SMESH_subMesh::READY_TO_COMPUTE) {
821 _gen->Compute( theMesh, _mainEdge, /*anUpward=*/true);
822 computed = sm->IsMeshComputed();
826 SMESHDS_SubMesh* smds = sm->GetSubMeshDS();
827 smIdType nb_segments = smds->NbElements();
828 if (nbseg - 1 <= nb_segments && nb_segments <= nbseg + 1) {
830 nbseg = FromSmIdType<double>( nb_segments );
835 if (!isFound) // not found by meshed edge in the propagation chain, use precision
837 double aPrecision = _value[ PRECISION_IND ];
838 double nbseg_prec = ceil((theLength / _value[ BEG_LENGTH_IND ]) - aPrecision);
839 if (nbseg_prec == (nbseg - 1)) nbseg--;
843 nbseg = 1; // degenerated edge
844 eltSize = theLength / nbseg;
845 nbSegments = ToSmIdType( nbseg );
849 // Number Of Segments hypothesis
850 nbSegments = _ivalue[ NB_SEGMENTS_IND ];
851 if ( nbSegments < 1 ) return false;
852 if ( nbSegments == 1 ) return true;
854 switch (_ivalue[ DISTR_TYPE_IND ])
856 case StdMeshers_NumberOfSegments::DT_Scale:
858 double scale = _value[ SCALE_FACTOR_IND ];
860 if (fabs(scale - 1.0) < Precision::Confusion()) {
861 // special case to avoid division by zero
862 for ( smIdType i = 1; i < nbSegments; i++) {
863 double param = f + (l - f) * double( i ) / double( nbSegments );
864 theParams.push_back( param );
867 else { // general case of scale distribution
871 double alpha = pow(scale, 1.0 / double( nbSegments - 1 ));
872 double factor = (l - f) / (1.0 - pow(alpha, nbSegments));
874 for ( smIdType i = 1; i < nbSegments; i++) {
875 double param = f + factor * (1.0 - pow(alpha, i));
876 theParams.push_back( param );
879 const double lenFactor = theLength/(l-f);
880 const double minSegLen = Min( theParams.front() - f, l - theParams.back() );
881 const double tol = Min( Precision::Confusion(), 0.01 * minSegLen );
882 list<double>::iterator u = theParams.begin(), uEnd = theParams.end();
883 for ( ; u != uEnd; ++u )
885 GCPnts_AbscissaPoint Discret( tol, theC3d, ((*u)-f) * lenFactor, f );
886 if ( Discret.IsDone() )
887 *u = Discret.Parameter();
892 case StdMeshers_NumberOfSegments::DT_TabFunc:
894 FunctionTable func(_vvalue[ TAB_FUNC_IND ], FromSmIdType<int>( _ivalue[ CONV_MODE_IND ]));
895 return computeParamByFunc(theC3d, f, l, theLength, theReverse,
896 _ivalue[ NB_SEGMENTS_IND ], func,
900 case StdMeshers_NumberOfSegments::DT_ExprFunc:
902 FunctionExpr func(_svalue[ EXPR_FUNC_IND ].c_str(),
903 FromSmIdType<int>( _ivalue[ CONV_MODE_IND ]));
904 return computeParamByFunc(theC3d, f, l, theLength, theReverse,
905 _ivalue[ NB_SEGMENTS_IND ], func,
909 case StdMeshers_NumberOfSegments::DT_Regular:
910 eltSize = theLength / double( nbSegments );
917 double tol = Min( Precision::Confusion(), 0.01 * eltSize );
918 divideIntoEqualSegments( theMesh, theC3d, nbSegments + 1, tol,
919 theLength, theFirstU, theLastU, theParams );
921 compensateError( eltSize, eltSize, f, l, theLength, theC3d, theParams, true ); // for PAL9899
926 case BEG_END_LENGTH: {
928 // geometric progression: SUM(n) = ( a1 - an * q ) / ( 1 - q ) = theLength
930 double a1 = _value[ BEG_LENGTH_IND ];
931 double an = _value[ END_LENGTH_IND ];
932 double q = ( theLength - a1 ) / ( theLength - an );
933 if ( q < theLength/1e6 || 1.01*theLength < a1 + an)
934 return error ( SMESH_Comment("Invalid segment lengths (")<<a1<<" and "<<an<<") "<<
935 "for an edge of length "<<theLength);
937 double U1 = theReverse ? l : f;
938 double Un = theReverse ? f : l;
940 double eltSize = theReverse ? -a1 : a1;
941 double tol = Min( Precision::Confusion(), 0.01 * Min( a1, an ));
943 // computes a point on a curve <theC3d> at the distance <eltSize>
944 // from the point of parameter <param>.
945 GCPnts_AbscissaPoint Discret( tol, theC3d, eltSize, param );
946 if ( !Discret.IsDone() ) break;
947 param = Discret.Parameter();
948 if ( f < param && param < l )
949 theParams.push_back( param );
954 compensateError( a1, an, U1, Un, theLength, theC3d, theParams );
955 if (theReverse) theParams.reverse(); // NPAL18025
961 // arithmetic progression: SUM(n) = ( an - a1 + q ) * ( a1 + an ) / ( 2 * q ) = theLength
963 double a1 = _value[ BEG_LENGTH_IND ];
964 double an = _value[ END_LENGTH_IND ];
965 if ( 1.01*theLength < a1 + an )
966 return error ( SMESH_Comment("Invalid segment lengths (")<<a1<<" and "<<an<<") "<<
967 "for an edge of length "<<theLength);
969 double q = ( an - a1 ) / ( 2 *theLength/( a1 + an ) - 1 );
970 int n = int(fabs(q) > numeric_limits<double>::min() ? ( 1+( an-a1 )/q ) : ( 1+theLength/a1 ));
972 double U1 = theReverse ? l : f;
973 double Un = theReverse ? f : l;
976 double tol = Min( Precision::Confusion(), 0.01 * Min( a1, an ));
981 while ( n-- > 0 && eltSize * ( Un - U1 ) > 0 ) {
982 // computes a point on a curve <theC3d> at the distance <eltSize>
983 // from the point of parameter <param>.
984 GCPnts_AbscissaPoint Discret( tol, theC3d, eltSize, param );
985 if ( !Discret.IsDone() ) break;
986 param = Discret.Parameter();
987 if ( param > f && param < l )
988 theParams.push_back( param );
993 compensateError( a1, an, U1, Un, theLength, theC3d, theParams );
994 if ( theReverse ) theParams.reverse(); // NPAL18025
1001 double a1 = _value[ BEG_LENGTH_IND ], an = 0;
1002 double q = _value[ END_LENGTH_IND ];
1004 double U1 = theReverse ? l : f;
1005 double Un = theReverse ? f : l;
1007 double eltSize = a1;
1013 // computes a point on a curve <theC3d> at the distance <eltSize>
1014 // from the point of parameter <param>.
1015 double tol = Min( Precision::Confusion(), 0.01 * eltSize );
1016 GCPnts_AbscissaPoint Discret( tol, theC3d, eltSize, param );
1017 if ( !Discret.IsDone() ) break;
1018 param = Discret.Parameter();
1019 if ( f < param && param < l )
1020 theParams.push_back( param );
1026 if ( q < 1. && eltSize < 1e-100 )
1027 return error("Too small common ratio causes too many segments");
1031 if ( Abs( param - Un ) < 0.2 * Abs( param - theParams.back() ))
1033 compensateError( a1, Abs(eltSize), U1, Un, theLength, theC3d, theParams );
1035 else if ( Abs( Un - theParams.back() ) <
1036 0.2 * Abs( theParams.back() - *(++theParams.rbegin())))
1038 theParams.pop_back();
1039 compensateError( a1, Abs(an), U1, Un, theLength, theC3d, theParams );
1042 if (theReverse) theParams.reverse(); // NPAL18025
1047 case FIXED_POINTS_1D:
1049 const std::vector<double>& aPnts = _fpHyp->GetPoints();
1050 std::vector<smIdType> nbsegs = _fpHyp->GetNbSegments();
1052 // sort normalized params, taking into account theReverse
1053 TColStd_SequenceOfReal Params;
1055 for ( size_t i = 0; i < aPnts.size(); i++ )
1057 if( aPnts[i] < tol || aPnts[i] > 1 - tol )
1059 double u = theReverse ? ( 1 - aPnts[i] ) : aPnts[i];
1061 bool IsExist = false;
1062 for ( ; j <= Params.Length() && !IsExist; j++ )
1064 IsExist = ( Abs( u - Params.Value(j) ) < tol );
1065 if ( u < Params.Value(j) ) break;
1067 if ( !IsExist ) Params.InsertBefore( j, u );
1069 Params.InsertBefore( 1, 0.0 );
1070 Params.Append( 1.0 );
1074 if ((int) nbsegs.size() > Params.Length() - 1 )
1075 nbsegs.resize( Params.Length() - 1 );
1076 std::reverse( nbsegs.begin(), nbsegs.end() );
1078 if ( nbsegs.empty() )
1080 nbsegs.push_back( 1 );
1082 if ((int) nbsegs.size() < Params.Length() - 1 )
1083 nbsegs.resize( Params.Length() - 1, nbsegs[0] );
1085 // care of huge nbsegs - additionally divide diapasons
1086 for ( int i = 2; i <= Params.Length(); i++ )
1088 smIdType nbTot = nbsegs[ i-2 ];
1089 if ( nbTot <= IntegerLast() )
1091 smIdType nbDiapason = nbTot / IntegerLast() + 1;
1092 smIdType nbSegPerDiap = nbTot / nbDiapason;
1093 double par0 = Params( i - 1 ), par1 = Params( i );
1094 for ( smIdType iDiap = 0; iDiap < nbDiapason - 1; ++iDiap )
1096 double r = double( nbSegPerDiap * ( iDiap + 1 )) / double( nbTot );
1097 double parI = par0 + ( par1 - par0 ) * r;
1098 Params.InsertBefore( i, parI );
1099 auto it = nbsegs.begin();
1100 smIdType incr_it = i - 2 + iDiap;
1101 nbsegs.insert( it + incr_it, nbSegPerDiap );
1103 nbsegs[ i-2 + nbDiapason - 1 ] = nbSegPerDiap + nbTot % nbDiapason;
1106 // transform normalized Params into real ones
1107 std::vector< double > uVec( Params.Length() );
1108 uVec[ 0 ] = theFirstU;
1110 for ( int i = 2; i < Params.Length(); i++ )
1112 abscissa = Params( i ) * theLength;
1113 tol = Min( Precision::Confusion(), 0.01 * abscissa );
1114 GCPnts_AbscissaPoint APnt( tol, theC3d, abscissa, theFirstU );
1115 if ( !APnt.IsDone() )
1116 return error( "GCPnts_AbscissaPoint failed");
1117 uVec[ i-1 ] = APnt.Parameter();
1119 uVec.back() = theLastU;
1122 double eltSize, segmentSize, par1, par2;
1123 for ( int i = 0; i < (int)uVec.size()-1; i++ )
1127 smIdType nbseg = ( i < (int) nbsegs.size() ) ? nbsegs[i] : nbsegs[0];
1130 segmentSize = ( Params( i+2 ) - Params( i+1 )) * theLength;
1131 eltSize = segmentSize / double( nbseg );
1132 tol = Min( Precision::Confusion(), 0.01 * eltSize );
1133 if ( !divideIntoEqualSegments( theMesh, theC3d, nbseg + 1, tol,
1134 segmentSize, par1, par2, theParams ))
1137 theParams.push_back( par2 );
1139 theParams.pop_back();
1146 GCPnts_UniformDeflection Discret( theC3d, _value[ DEFLECTION_IND ], f, l, true );
1147 if ( !Discret.IsDone() )
1150 int NbPoints = Discret.NbPoints();
1151 for ( int i = 2; i < NbPoints; i++ )
1153 double param = Discret.Parameter(i);
1154 theParams.push_back( param );
1165 //=============================================================================
1169 //=============================================================================
1171 bool StdMeshers_Regular_1D::Compute(SMESH_Mesh & theMesh, const TopoDS_Shape & theShape)
1173 if ( _hypType == NONE )
1176 if ( _hypType == ADAPTIVE )
1178 _adaptiveHyp->GetAlgo()->InitComputeError();
1179 _adaptiveHyp->GetAlgo()->Compute( theMesh, theShape );
1180 return error( _adaptiveHyp->GetAlgo()->GetComputeError() );
1183 SMESHDS_Mesh * meshDS = theMesh.GetMeshDS();
1185 const TopoDS_Edge & EE = TopoDS::Edge(theShape);
1186 TopoDS_Edge E = TopoDS::Edge(EE.Oriented(TopAbs_FORWARD));
1187 int shapeID = meshDS->ShapeToIndex( E );
1190 Handle(Geom_Curve) Curve = BRep_Tool::Curve(E, f, l);
1192 TopoDS_Vertex VFirst, VLast;
1193 TopExp::Vertices(E, VFirst, VLast); // Vfirst corresponds to f and Vlast to l
1195 ASSERT(!VFirst.IsNull());
1196 ASSERT(!VLast.IsNull());
1197 const SMDS_MeshNode * nFirst = SMESH_Algo::VertexNode( VFirst, meshDS );
1198 const SMDS_MeshNode * nLast = SMESH_Algo::VertexNode( VLast, meshDS );
1199 if ( !nFirst || !nLast )
1200 return error( COMPERR_BAD_INPUT_MESH, "No node on vertex");
1202 // remove elements created by e.g. pattern mapping (PAL21999)
1203 // CLEAN event is incorrectly ptopagated seemingly due to Propagation hyp
1204 // so TEMPORARY solution is to clean the submesh manually
1205 if (SMESHDS_SubMesh * subMeshDS = meshDS->MeshElements(theShape))
1207 SMDS_ElemIteratorPtr ite = subMeshDS->GetElements();
1209 meshDS->RemoveFreeElement(ite->next(), subMeshDS);
1210 SMDS_NodeIteratorPtr itn = subMeshDS->GetNodes();
1211 while (itn->more()) {
1212 const SMDS_MeshNode * node = itn->next();
1213 if ( node->NbInverseElements() == 0 )
1214 meshDS->RemoveFreeNode(node, subMeshDS);
1216 meshDS->RemoveNode(node);
1220 double length = EdgeLength( E );
1221 if ( !Curve.IsNull() && length > 0 )
1223 list< double > params;
1224 bool reversed = false;
1225 if ( theMesh.GetShapeToMesh().ShapeType() >= TopAbs_WIRE && _revEdgesIDs.empty() ) {
1226 // if the shape to mesh is WIRE or EDGE
1227 reversed = ( EE.Orientation() == TopAbs_REVERSED );
1229 if ( !_mainEdge.IsNull() ) {
1230 // take into account reversing the edge the hypothesis is propagated from
1231 // (_mainEdge.Orientation() marks mutual orientation of EDGEs in propagation chain)
1232 reversed = ( _mainEdge.Orientation() == TopAbs_REVERSED );
1233 if ( _hypType != DISTRIB_PROPAGATION ) {
1234 int mainID = meshDS->ShapeToIndex(_mainEdge);
1235 if ( std::find( _revEdgesIDs.begin(), _revEdgesIDs.end(), mainID) != _revEdgesIDs.end())
1236 reversed = !reversed;
1239 // take into account this edge reversing
1240 if ( std::find( _revEdgesIDs.begin(), _revEdgesIDs.end(), shapeID) != _revEdgesIDs.end())
1241 reversed = !reversed;
1243 BRepAdaptor_Curve C3d( E );
1244 if ( ! computeInternalParameters( theMesh, C3d, length, f, l, params, reversed, true )) {
1247 redistributeNearVertices( theMesh, C3d, length, params, VFirst, VLast );
1249 // edge extrema (indexes : 1 & NbPoints) already in SMDS (TopoDS_Vertex)
1250 // only internal nodes receive an edge position with param on curve
1252 const SMDS_MeshNode * nPrev = nFirst;
1256 for (list<double>::iterator itU = params.begin(); itU != params.end(); itU++) {
1257 double param = *itU;
1258 gp_Pnt P = Curve->Value(param);
1260 //Add the Node in the DataStructure
1261 SMDS_MeshNode * node = meshDS->AddNode(P.X(), P.Y(), P.Z());
1262 meshDS->SetNodeOnEdge(node, shapeID, param);
1264 if(_quadraticMesh) {
1265 // create medium node
1266 double prm = ( parPrev + param )/2;
1267 gp_Pnt PM = Curve->Value(prm);
1268 SMDS_MeshNode * NM = meshDS->AddNode(PM.X(), PM.Y(), PM.Z());
1269 meshDS->SetNodeOnEdge(NM, shapeID, prm);
1270 SMDS_MeshEdge * edge = meshDS->AddEdge(nPrev, node, NM);
1271 meshDS->SetMeshElementOnShape(edge, shapeID);
1274 SMDS_MeshEdge * edge = meshDS->AddEdge(nPrev, node);
1275 meshDS->SetMeshElementOnShape(edge, shapeID);
1281 if(_quadraticMesh) {
1282 double prm = ( parPrev + parLast )/2;
1283 gp_Pnt PM = Curve->Value(prm);
1284 SMDS_MeshNode * NM = meshDS->AddNode(PM.X(), PM.Y(), PM.Z());
1285 meshDS->SetNodeOnEdge(NM, shapeID, prm);
1286 SMDS_MeshEdge * edge = meshDS->AddEdge(nPrev, nLast, NM);
1287 meshDS->SetMeshElementOnShape(edge, shapeID);
1290 SMDS_MeshEdge* edge = meshDS->AddEdge(nPrev, nLast);
1291 meshDS->SetMeshElementOnShape(edge, shapeID);
1296 // Edge is a degenerated Edge : We put n = 5 points on the edge.
1297 const int NbPoints = 5;
1298 BRep_Tool::Range( E, f, l ); // PAL15185
1299 double du = (l - f) / (NbPoints - 1);
1301 gp_Pnt P = BRep_Tool::Pnt(VFirst);
1303 const SMDS_MeshNode * nPrev = nFirst;
1304 for (int i = 2; i < NbPoints; i++) {
1305 double param = f + (i - 1) * du;
1306 SMDS_MeshNode * node = meshDS->AddNode(P.X(), P.Y(), P.Z());
1307 if(_quadraticMesh) {
1308 // create medium node
1309 double prm = param - du/2.;
1310 SMDS_MeshNode * NM = meshDS->AddNode(P.X(), P.Y(), P.Z());
1311 meshDS->SetNodeOnEdge(NM, shapeID, prm);
1312 SMDS_MeshEdge * edge = meshDS->AddEdge(nPrev, node, NM);
1313 meshDS->SetMeshElementOnShape(edge, shapeID);
1316 SMDS_MeshEdge * edge = meshDS->AddEdge(nPrev, node);
1317 meshDS->SetMeshElementOnShape(edge, shapeID);
1319 meshDS->SetNodeOnEdge(node, shapeID, param);
1322 if(_quadraticMesh) {
1323 // create medium node
1324 double prm = l - du/2.;
1325 SMDS_MeshNode * NM = meshDS->AddNode(P.X(), P.Y(), P.Z());
1326 meshDS->SetNodeOnEdge(NM, shapeID, prm);
1327 SMDS_MeshEdge * edge = meshDS->AddEdge(nPrev, nLast, NM);
1328 meshDS->SetMeshElementOnShape(edge, shapeID);
1331 SMDS_MeshEdge * edge = meshDS->AddEdge(nPrev, nLast);
1332 meshDS->SetMeshElementOnShape(edge, shapeID);
1339 //=============================================================================
1343 //=============================================================================
1345 bool StdMeshers_Regular_1D::Evaluate(SMESH_Mesh & theMesh,
1346 const TopoDS_Shape & theShape,
1347 MapShapeNbElems& theResMap)
1349 if ( _hypType == NONE )
1352 if ( _hypType == ADAPTIVE )
1354 _adaptiveHyp->GetAlgo()->InitComputeError();
1355 _adaptiveHyp->GetAlgo()->Evaluate( theMesh, theShape, theResMap );
1356 return error( _adaptiveHyp->GetAlgo()->GetComputeError() );
1359 const TopoDS_Edge & EE = TopoDS::Edge(theShape);
1360 TopoDS_Edge E = TopoDS::Edge(EE.Oriented(TopAbs_FORWARD));
1363 Handle(Geom_Curve) Curve = BRep_Tool::Curve(E, f, l);
1365 TopoDS_Vertex VFirst, VLast;
1366 TopExp::Vertices(E, VFirst, VLast); // Vfirst corresponds to f and Vlast to l
1368 ASSERT(!VFirst.IsNull());
1369 ASSERT(!VLast.IsNull());
1371 std::vector<smIdType> aVec(SMDSEntity_Last,0);
1373 double length = EdgeLength( E );
1374 if ( !Curve.IsNull() && length > 0 )
1376 list< double > params;
1377 BRepAdaptor_Curve C3d( E );
1378 if ( ! computeInternalParameters( theMesh, C3d, length, f, l, params, false, true )) {
1379 SMESH_subMesh * sm = theMesh.GetSubMesh(theShape);
1380 theResMap.insert(std::make_pair(sm,aVec));
1381 SMESH_ComputeErrorPtr& smError = sm->GetComputeError();
1382 smError.reset( new SMESH_ComputeError(COMPERR_ALGO_FAILED,"Submesh can not be evaluated",this));
1385 redistributeNearVertices( theMesh, C3d, length, params, VFirst, VLast );
1387 if(_quadraticMesh) {
1388 aVec[SMDSEntity_Node ] = 2*params.size() + 1;
1389 aVec[SMDSEntity_Quad_Edge] = params.size() + 1;
1392 aVec[SMDSEntity_Node] = params.size();
1393 aVec[SMDSEntity_Edge] = params.size() + 1;
1398 // Edge is a degenerated Edge : We put n = 5 points on the edge.
1399 if ( _quadraticMesh ) {
1400 aVec[SMDSEntity_Node ] = 11;
1401 aVec[SMDSEntity_Quad_Edge] = 6;
1404 aVec[SMDSEntity_Node] = 5;
1405 aVec[SMDSEntity_Edge] = 6;
1409 SMESH_subMesh * sm = theMesh.GetSubMesh( theShape );
1410 theResMap.insert( std::make_pair( sm, aVec ));
1416 //=============================================================================
1418 * See comments in SMESH_Algo.cxx
1420 //=============================================================================
1422 const list <const SMESHDS_Hypothesis *> &
1423 StdMeshers_Regular_1D::GetUsedHypothesis(SMESH_Mesh & aMesh,
1424 const TopoDS_Shape & aShape,
1425 const bool ignoreAuxiliary)
1427 _usedHypList.clear();
1428 _mainEdge.Nullify();
1430 SMESH_HypoFilter auxiliaryFilter( SMESH_HypoFilter::IsAuxiliary() );
1431 const SMESH_HypoFilter* compatibleFilter = GetCompatibleHypoFilter(/*ignoreAux=*/true );
1433 // get non-auxiliary assigned directly to aShape
1434 int nbHyp = aMesh.GetHypotheses( aShape, *compatibleFilter, _usedHypList, false );
1436 if (nbHyp == 0 && aShape.ShapeType() == TopAbs_EDGE)
1438 // Check, if propagated from some other edge
1439 bool isPropagOfDistribution = false;
1440 _mainEdge = StdMeshers_Propagation::GetPropagationSource( aMesh, aShape,
1441 isPropagOfDistribution );
1442 if ( !_mainEdge.IsNull() )
1444 if ( isPropagOfDistribution )
1445 _hypType = DISTRIB_PROPAGATION;
1446 // Propagation of 1D hypothesis from <aMainEdge> on this edge;
1447 // get non-auxiliary assigned to _mainEdge
1448 nbHyp = aMesh.GetHypotheses( _mainEdge, *compatibleFilter, _usedHypList, true );
1452 if (nbHyp == 0) // nothing propagated nor assigned to aShape
1454 SMESH_Algo::GetUsedHypothesis( aMesh, aShape, ignoreAuxiliary );
1455 nbHyp = (int)_usedHypList.size();
1459 // get auxiliary hyps from aShape
1460 aMesh.GetHypotheses( aShape, auxiliaryFilter, _usedHypList, true );
1462 if ( nbHyp > 1 && ignoreAuxiliary )
1463 _usedHypList.clear(); //only one compatible non-auxiliary hypothesis allowed
1465 return _usedHypList;
1468 //================================================================================
1470 * \brief Pass CancelCompute() to a child algorithm
1472 //================================================================================
1474 void StdMeshers_Regular_1D::CancelCompute()
1476 SMESH_Algo::CancelCompute();
1477 if ( _hypType == ADAPTIVE )
1478 _adaptiveHyp->GetAlgo()->CancelCompute();