1 // Copyright (C) 2007-2021 CEA/DEN, EDF R&D, OPEN CASCADE
3 // Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
4 // CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
6 // This library is free software; you can redistribute it and/or
7 // modify it under the terms of the GNU Lesser General Public
8 // License as published by the Free Software Foundation; either
9 // version 2.1 of the License, or (at your option) any later version.
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 // Lesser General Public License for more details.
16 // You should have received a copy of the GNU Lesser General Public
17 // License along with this library; if not, write to the Free Software
18 // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
23 // File : StdMeshers_Quadrangle_2D.cxx
24 // Author : Paul RASCLE, EDF
27 #include "StdMeshers_Quadrangle_2D.hxx"
29 #include "SMDS_EdgePosition.hxx"
30 #include "SMDS_FacePosition.hxx"
31 #include "SMDS_MeshElement.hxx"
32 #include "SMDS_MeshNode.hxx"
33 #include "SMESHDS_Mesh.hxx"
34 #include "SMESH_Block.hxx"
35 #include "SMESH_Comment.hxx"
36 #include "SMESH_Gen.hxx"
37 #include "SMESH_HypoFilter.hxx"
38 #include "SMESH_Mesh.hxx"
39 #include "SMESH_MeshAlgos.hxx"
40 #include "SMESH_MesherHelper.hxx"
41 #include "SMESH_subMesh.hxx"
42 #include "StdMeshers_FaceSide.hxx"
43 #include "StdMeshers_QuadrangleParams.hxx"
44 #include "StdMeshers_ViscousLayers2D.hxx"
46 #include <BRepBndLib.hxx>
47 #include <BRepClass_FaceClassifier.hxx>
48 #include <BRep_Tool.hxx>
49 #include <Bnd_Box.hxx>
50 #include <GeomAPI_ProjectPointOnSurf.hxx>
51 #include <Geom_Surface.hxx>
52 #include <NCollection_DefineArray2.hxx>
53 #include <Precision.hxx>
54 #include <ShapeAnalysis.hxx>
55 #include <TColStd_SequenceOfInteger.hxx>
56 #include <TColStd_SequenceOfReal.hxx>
57 #include <TColgp_SequenceOfXY.hxx>
59 #include <TopExp_Explorer.hxx>
60 #include <TopTools_DataMapOfShapeReal.hxx>
61 #include <TopTools_ListIteratorOfListOfShape.hxx>
62 #include <TopTools_MapOfShape.hxx>
65 #include "utilities.h"
66 #include "Utils_ExceptHandlers.hxx"
68 #include <boost/container/flat_set.hpp>
69 #include <boost/intrusive/circular_list_algorithms.hpp>
71 typedef NCollection_Array2<const SMDS_MeshNode*> StdMeshers_Array2OfNode;
74 typedef SMESH_Comment TComm;
78 //=============================================================================
82 //=============================================================================
84 StdMeshers_Quadrangle_2D::StdMeshers_Quadrangle_2D (int hypId,
86 : SMESH_2D_Algo(hypId, gen),
87 myQuadranglePreference(false),
88 myTrianglePreference(false),
93 myQuadType(QUAD_STANDARD),
96 _name = "Quadrangle_2D";
97 _shapeType = (1 << TopAbs_FACE);
98 _compatibleHypothesis.push_back("QuadrangleParams");
99 _compatibleHypothesis.push_back("QuadranglePreference");
100 _compatibleHypothesis.push_back("TrianglePreference");
101 _compatibleHypothesis.push_back("ViscousLayers2D");
104 //=============================================================================
108 //=============================================================================
110 StdMeshers_Quadrangle_2D::~StdMeshers_Quadrangle_2D()
114 //=============================================================================
118 //=============================================================================
120 bool StdMeshers_Quadrangle_2D::CheckHypothesis
122 const TopoDS_Shape& aShape,
123 SMESH_Hypothesis::Hypothesis_Status& aStatus)
126 myQuadType = QUAD_STANDARD;
127 myQuadranglePreference = false;
128 myTrianglePreference = false;
129 myHelper = (SMESH_MesherHelper*)NULL;
134 aStatus = SMESH_Hypothesis::HYP_OK;
136 const list <const SMESHDS_Hypothesis * >& hyps =
137 GetUsedHypothesis(aMesh, aShape, false);
138 const SMESHDS_Hypothesis * aHyp = 0;
140 bool isFirstParams = true;
142 // First assigned hypothesis (if any) is processed now
143 if (hyps.size() > 0) {
145 if (strcmp("QuadrangleParams", aHyp->GetName()) == 0)
147 myParams = (const StdMeshers_QuadrangleParams*)aHyp;
148 myTriaVertexID = myParams->GetTriaVertex();
149 myQuadType = myParams->GetQuadType();
150 if (myQuadType == QUAD_QUADRANGLE_PREF ||
151 myQuadType == QUAD_QUADRANGLE_PREF_REVERSED)
152 myQuadranglePreference = true;
153 else if (myQuadType == QUAD_TRIANGLE_PREF)
154 myTrianglePreference = true;
156 else if (strcmp("QuadranglePreference", aHyp->GetName()) == 0) {
157 isFirstParams = false;
158 myQuadranglePreference = true;
160 else if (strcmp("TrianglePreference", aHyp->GetName()) == 0){
161 isFirstParams = false;
162 myTrianglePreference = true;
165 isFirstParams = false;
169 // Second(last) assigned hypothesis (if any) is processed now
170 if (hyps.size() > 1) {
173 if (strcmp("QuadranglePreference", aHyp->GetName()) == 0) {
174 myQuadranglePreference = true;
175 myTrianglePreference = false;
176 myQuadType = QUAD_STANDARD;
178 else if (strcmp("TrianglePreference", aHyp->GetName()) == 0){
179 myQuadranglePreference = false;
180 myTrianglePreference = true;
181 myQuadType = QUAD_STANDARD;
184 else if (const StdMeshers_QuadrangleParams* aHyp2 =
185 dynamic_cast<const StdMeshers_QuadrangleParams*>( aHyp ))
187 myTriaVertexID = aHyp2->GetTriaVertex();
189 if (!myQuadranglePreference && !myTrianglePreference) { // priority of hypos
190 myQuadType = aHyp2->GetQuadType();
191 if (myQuadType == QUAD_QUADRANGLE_PREF ||
192 myQuadType == QUAD_QUADRANGLE_PREF_REVERSED)
193 myQuadranglePreference = true;
194 else if (myQuadType == QUAD_TRIANGLE_PREF)
195 myTrianglePreference = true;
200 error( StdMeshers_ViscousLayers2D::CheckHypothesis( aMesh, aShape, aStatus ));
202 return aStatus == HYP_OK;
205 //=============================================================================
207 * Compute the mesh on the given shape
209 //=============================================================================
211 bool StdMeshers_Quadrangle_2D::Compute( SMESH_Mesh& aMesh,
212 const TopoDS_Shape& aShape )
214 const TopoDS_Face& F = TopoDS::Face(aShape);
215 aMesh.GetSubMesh( F );
217 // do not initialize my fields before this as StdMeshers_ViscousLayers2D
218 // can call Compute() recursively
219 SMESH_ProxyMesh::Ptr proxyMesh = StdMeshers_ViscousLayers2D::Compute( aMesh, F );
223 myProxyMesh = proxyMesh;
225 SMESH_MesherHelper helper (aMesh);
228 _quadraticMesh = myHelper->IsQuadraticSubMesh(aShape);
229 myHelper->SetElementsOnShape( true );
230 myNeedSmooth = false;
233 FaceQuadStruct::Ptr quad = CheckNbEdges( aMesh, F, /*considerMesh=*/true, myHelper );
237 myQuadList.push_back( quad );
239 if ( !getEnforcedUV() )
242 updateDegenUV( quad );
244 int n1 = quad->side[0].NbPoints();
245 int n2 = quad->side[1].NbPoints();
246 int n3 = quad->side[2].NbPoints();
247 int n4 = quad->side[3].NbPoints();
249 enum { NOT_COMPUTED = -1, COMPUTE_FAILED = 0, COMPUTE_OK = 1 };
250 int res = NOT_COMPUTED;
251 if ( myQuadranglePreference )
253 int nfull = n1+n2+n3+n4;
254 if ((nfull % 2) == 0 && ((n1 != n3) || (n2 != n4)))
256 // special path generating only quandrangle faces
257 res = computeQuadPref( aMesh, F, quad );
260 else if ( myQuadType == QUAD_REDUCED )
264 int n13tmp = n13/2; n13tmp = n13tmp*2;
265 int n24tmp = n24/2; n24tmp = n24tmp*2;
266 if ((n1 == n3 && n2 != n4 && n24tmp == n24) ||
267 (n2 == n4 && n1 != n3 && n13tmp == n13))
269 res = computeReduced( aMesh, F, quad );
273 if ( n1 != n3 && n2 != n4 )
274 error( COMPERR_WARNING,
275 "To use 'Reduced' transition, "
276 "two opposite sides should have same number of segments, "
277 "but actual number of segments is different on all sides. "
278 "'Standard' transion has been used.");
279 else if ( ! ( n1 == n3 && n2 == n4 ))
280 error( COMPERR_WARNING,
281 "To use 'Reduced' transition, "
282 "two opposite sides should have an even difference in number of segments. "
283 "'Standard' transion has been used.");
287 if ( res == NOT_COMPUTED )
289 if ( n1 != n3 || n2 != n4 )
290 res = computeTriangles( aMesh, F, quad );
292 res = computeQuadDominant( aMesh, F );
295 if ( res == COMPUTE_OK && myNeedSmooth )
298 if ( res == COMPUTE_OK )
301 return ( res == COMPUTE_OK );
304 //================================================================================
306 * \brief Compute quadrangles and triangles on the quad
308 //================================================================================
310 bool StdMeshers_Quadrangle_2D::computeTriangles(SMESH_Mesh& aMesh,
311 const TopoDS_Face& aFace,
312 FaceQuadStruct::Ptr quad)
314 int nb = quad->side[0].grid->NbPoints();
315 int nr = quad->side[1].grid->NbPoints();
316 int nt = quad->side[2].grid->NbPoints();
317 int nl = quad->side[3].grid->NbPoints();
319 // rotate the quad to have nbNodeOut sides on TOP [and LEFT]
321 quad->shift( nl > nr ? 3 : 2, true );
323 quad->shift( 1, true );
325 quad->shift( nt > nb ? 0 : 3, true );
327 if ( !setNormalizedGrid( quad ))
330 if ( quad->nbNodeOut( QUAD_TOP_SIDE ))
332 splitQuad( quad, 0, quad->jSize-2 );
334 if ( quad->nbNodeOut( QUAD_BOTTOM_SIDE )) // this should not happen
336 splitQuad( quad, 0, 1 );
338 FaceQuadStruct::Ptr newQuad = myQuadList.back();
339 if ( quad != newQuad ) // split done
341 { // update left side limit till where to make triangles
342 FaceQuadStruct::Ptr botQuad = // a bottom part
343 ( quad->side[ QUAD_LEFT_SIDE ].from == 0 ) ? quad : newQuad;
344 if ( botQuad->nbNodeOut( QUAD_LEFT_SIDE ) > 0 )
345 botQuad->side[ QUAD_LEFT_SIDE ].to += botQuad->nbNodeOut( QUAD_LEFT_SIDE );
346 else if ( botQuad->nbNodeOut( QUAD_RIGHT_SIDE ) > 0 )
347 botQuad->side[ QUAD_RIGHT_SIDE ].to += botQuad->nbNodeOut( QUAD_RIGHT_SIDE );
349 // make quad be a greatest one
350 if ( quad->side[ QUAD_LEFT_SIDE ].NbPoints() == 2 ||
351 quad->side[ QUAD_RIGHT_SIDE ].NbPoints() == 2 )
353 if ( !setNormalizedGrid( quad ))
357 if ( quad->nbNodeOut( QUAD_RIGHT_SIDE ))
359 splitQuad( quad, quad->iSize-2, 0 );
361 if ( quad->nbNodeOut( QUAD_LEFT_SIDE ))
363 splitQuad( quad, 1, 0 );
365 if ( quad->nbNodeOut( QUAD_TOP_SIDE ))
367 newQuad = myQuadList.back();
368 if ( newQuad == quad ) // too narrow to split
370 // update left side limit till where to make triangles
371 quad->side[ QUAD_LEFT_SIDE ].to--;
375 FaceQuadStruct::Ptr leftQuad =
376 ( quad->side[ QUAD_BOTTOM_SIDE ].from == 0 ) ? quad : newQuad;
377 leftQuad->nbNodeOut( QUAD_TOP_SIDE ) = 0;
382 if ( ! computeQuadDominant( aMesh, aFace ))
385 // try to fix zero-area triangles near straight-angle corners
390 //================================================================================
392 * \brief Compute quadrangles and possibly triangles on all quads of myQuadList
394 //================================================================================
396 bool StdMeshers_Quadrangle_2D::computeQuadDominant(SMESH_Mesh& aMesh,
397 const TopoDS_Face& aFace)
399 if ( !addEnforcedNodes() )
402 std::list< FaceQuadStruct::Ptr >::iterator quad = myQuadList.begin();
403 for ( ; quad != myQuadList.end(); ++quad )
404 if ( !computeQuadDominant( aMesh, aFace, *quad ))
410 //================================================================================
412 * \brief Compute quadrangles and possibly triangles
414 //================================================================================
416 bool StdMeshers_Quadrangle_2D::computeQuadDominant(SMESH_Mesh& aMesh,
417 const TopoDS_Face& aFace,
418 FaceQuadStruct::Ptr quad)
420 // --- set normalized grid on unit square in parametric domain
422 if ( !setNormalizedGrid( quad ))
425 // --- create nodes on points, and create quadrangles
427 int nbhoriz = quad->iSize;
428 int nbvertic = quad->jSize;
430 // internal mesh nodes
431 SMESHDS_Mesh * meshDS = aMesh.GetMeshDS();
432 Handle(Geom_Surface) S = BRep_Tool::Surface(aFace);
433 int i,j, geomFaceID = meshDS->ShapeToIndex(aFace);
434 for (i = 1; i < nbhoriz - 1; i++)
435 for (j = 1; j < nbvertic - 1; j++)
437 UVPtStruct& uvPnt = quad->UVPt( i, j );
438 gp_Pnt P = S->Value( uvPnt.u, uvPnt.v );
439 uvPnt.node = meshDS->AddNode(P.X(), P.Y(), P.Z());
440 meshDS->SetNodeOnFace( uvPnt.node, geomFaceID, uvPnt.u, uvPnt.v );
446 // --.--.--.--.--.-- nbvertic
452 // ---.----.----.--- 0
453 // 0 > > > > > > > > nbhoriz
458 int iup = nbhoriz - 1;
459 if (quad->nbNodeOut(3)) { ilow++; } else { if (quad->nbNodeOut(1)) iup--; }
462 int jup = nbvertic - 1;
463 if (quad->nbNodeOut(0)) { jlow++; } else { if (quad->nbNodeOut(2)) jup--; }
465 // regular quadrangles
466 for (i = ilow; i < iup; i++) {
467 for (j = jlow; j < jup; j++) {
468 const SMDS_MeshNode *a, *b, *c, *d;
469 a = quad->uv_grid[ j * nbhoriz + i ].node;
470 b = quad->uv_grid[ j * nbhoriz + i + 1].node;
471 c = quad->uv_grid[(j + 1) * nbhoriz + i + 1].node;
472 d = quad->uv_grid[(j + 1) * nbhoriz + i ].node;
473 myHelper->AddFace(a, b, c, d);
477 // Boundary elements (must always be on an outer boundary of the FACE)
479 const vector<UVPtStruct>& uv_e0 = quad->side[0].grid->GetUVPtStruct();
480 const vector<UVPtStruct>& uv_e1 = quad->side[1].grid->GetUVPtStruct();
481 const vector<UVPtStruct>& uv_e2 = quad->side[2].grid->GetUVPtStruct();
482 const vector<UVPtStruct>& uv_e3 = quad->side[3].grid->GetUVPtStruct();
484 if (uv_e0.empty() || uv_e1.empty() || uv_e2.empty() || uv_e3.empty())
485 return error(COMPERR_BAD_INPUT_MESH);
487 double eps = Precision::Confusion();
489 int nbdown = (int) uv_e0.size();
490 int nbup = (int) uv_e2.size();
491 int nbright = (int) uv_e1.size();
492 int nbleft = (int) uv_e3.size();
494 if (quad->nbNodeOut(0) && nbvertic == 2) // this should not occur
498 // |___|___|___|___|___|___|
500 // |___|___|___|___|___|___|
502 // |___|___|___|___|___|___| __ first row of the regular grid
503 // . . . . . . . . . __ down edge nodes
505 // >->->->->->->->->->->->-> -- direction of processing
507 int g = 0; // number of last processed node in the regular grid
509 // number of last node of the down edge to be processed
510 int stop = nbdown - 1;
511 // if right edge is out, we will stop at a node, previous to the last one
512 //if (quad->nbNodeOut(1)) stop--;
513 if ( quad->nbNodeOut( QUAD_RIGHT_SIDE ))
514 quad->UVPt( nbhoriz-1, 1 ).node = uv_e1[1].node;
515 if ( quad->nbNodeOut( QUAD_LEFT_SIDE ))
516 quad->UVPt( 0, 1 ).node = uv_e3[1].node;
518 // for each node of the down edge find nearest node
519 // in the first row of the regular grid and link them
520 for (i = 0; i < stop; i++) {
521 const SMDS_MeshNode *a, *b, *c=0, *d;
523 b = uv_e0[i + 1].node;
524 gp_Pnt pb (b->X(), b->Y(), b->Z());
526 // find node c in the regular grid, which will be linked with node b
529 // right bound reached, link with the rightmost node
531 c = quad->uv_grid[nbhoriz + iup].node;
534 // find in the grid node c, nearest to the b
536 double mind = RealLast();
537 for (int k = g; k <= iup; k++) {
539 const SMDS_MeshNode *nk;
540 if (k < ilow) // this can be, if left edge is out
541 nk = uv_e3[1].node; // get node from the left edge
543 nk = quad->uv_grid[nbhoriz + k].node; // get one of middle nodes
545 gp_Pnt pnk (nk->X(), nk->Y(), nk->Z());
546 double dist = pb.Distance(pnk);
547 if (dist < mind - eps) {
557 if (near == g) { // make triangle
558 myHelper->AddFace(a, b, c);
560 else { // make quadrangle
564 d = quad->uv_grid[nbhoriz + near - 1].node;
565 //SMDS_MeshFace* face = meshDS->AddFace(a, b, c, d);
567 if (!myTrianglePreference){
568 myHelper->AddFace(a, b, c, d);
571 splitQuadFace(meshDS, geomFaceID, a, b, c, d);
574 // if node d is not at position g - make additional triangles
576 for (int k = near - 1; k > g; k--) {
577 c = quad->uv_grid[nbhoriz + k].node;
581 d = quad->uv_grid[nbhoriz + k - 1].node;
582 myHelper->AddFace(a, c, d);
589 if (quad->nbNodeOut(2) && nbvertic == 2)
593 // <-<-<-<-<-<-<-<-<-<-<-<-< -- direction of processing
595 // . . . . . . . . . __ up edge nodes
596 // ___ ___ ___ ___ ___ ___ __ first row of the regular grid
598 // |___|___|___|___|___|___|
600 // |___|___|___|___|___|___|
603 int g = nbhoriz - 1; // last processed node in the regular grid
609 if ( quad->side[3].grid->Edge(0).IsNull() ) // left side is simulated one
611 if ( nbright == 2 ) // quad divided at I but not at J (2D_mesh_QuadranglePreference_01/B1)
612 stop++; // we stop at a second node
616 if ( quad->nbNodeOut( QUAD_RIGHT_SIDE ))
617 quad->UVPt( nbhoriz-1, 0 ).node = uv_e1[ nbright-2 ].node;
618 if ( quad->nbNodeOut( QUAD_LEFT_SIDE ))
619 quad->UVPt( 0, 0 ).node = uv_e3[ nbleft-2 ].node;
621 if ( nbright > 2 ) // there was a split at J
622 quad->nbNodeOut( QUAD_LEFT_SIDE ) = 0;
624 const SMDS_MeshNode *a, *b, *c, *d;
626 // avoid creating zero-area triangles near a straight-angle corner
630 c = uv_e1[nbright-2].node;
631 SMESH_TNodeXYZ pa( a ), pb( b ), pc( c );
632 double area = 0.5 * (( pb - pa ) ^ ( pc - pa )).Modulus();
633 if ( Abs( area ) < 1e-20 )
636 d = quad->UVPt( g, nbvertic-2 ).node;
637 if ( myTrianglePreference )
639 myHelper->AddFace(a, d, c);
643 if ( SMDS_MeshFace* face = myHelper->AddFace(a, b, d, c))
645 SMESH_ComputeErrorPtr& err = aMesh.GetSubMesh( aFace )->GetComputeError();
646 if ( !err || err->IsOK() || err->myName < COMPERR_WARNING )
648 SMESH_BadInputElements* badElems =
649 new SMESH_BadInputElements( meshDS, COMPERR_WARNING,
650 "Bad quality quad created");
651 badElems->add( face );
652 err.reset( badElems );
659 // for each node of the up edge find nearest node
660 // in the first row of the regular grid and link them
661 for ( ; i > stop; i--)
664 b = uv_e2[i - 1].node;
665 gp_Pnt pb = SMESH_TNodeXYZ( b );
667 // find node c in the grid, which will be linked with node b
669 if (i == stop + 1) { // left bound reached, link with the leftmost node
670 c = quad->uv_grid[nbhoriz*(nbvertic - 2) + ilow].node;
673 // find node c in the grid, nearest to the b
674 double mind = RealLast();
675 for (int k = g; k >= ilow; k--) {
676 const SMDS_MeshNode *nk;
678 nk = uv_e1[nbright - 2].node;
680 nk = quad->uv_grid[nbhoriz*(nbvertic - 2) + k].node;
681 gp_Pnt pnk = SMESH_TNodeXYZ( nk );
682 double dist = pb.Distance(pnk);
683 if (dist < mind - eps) {
693 if (near == g) { // make triangle
694 myHelper->AddFace(a, b, c);
696 else { // make quadrangle
698 d = uv_e1[nbright - 2].node;
700 d = quad->uv_grid[nbhoriz*(nbvertic - 2) + near + 1].node;
701 //SMDS_MeshFace* face = meshDS->AddFace(a, b, c, d);
702 if (!myTrianglePreference){
703 myHelper->AddFace(a, b, c, d);
706 splitQuadFace(meshDS, geomFaceID, a, b, c, d);
709 if (near + 1 < g) { // if d is not at g - make additional triangles
710 for (int k = near + 1; k < g; k++) {
711 c = quad->uv_grid[nbhoriz*(nbvertic - 2) + k].node;
713 d = uv_e1[nbright - 2].node;
715 d = quad->uv_grid[nbhoriz*(nbvertic - 2) + k + 1].node;
716 myHelper->AddFace(a, c, d);
725 // right or left boundary quadrangles
726 if (quad->nbNodeOut( QUAD_RIGHT_SIDE ) && nbhoriz == 2) // this should not occur
728 int g = 0; // last processed node in the grid
729 int stop = nbright - 1;
731 if (quad->side[ QUAD_RIGHT_SIDE ].from != i ) i++;
732 if (quad->side[ QUAD_RIGHT_SIDE ].to != stop ) stop--;
733 for ( ; i < stop; i++) {
734 const SMDS_MeshNode *a, *b, *c, *d;
736 b = uv_e1[i + 1].node;
737 gp_Pnt pb (b->X(), b->Y(), b->Z());
739 // find node c in the grid, nearest to the b
742 if (i == stop - 1) { // up boundary reached
743 c = quad->uv_grid[nbhoriz*(jup + 1) - 2].node;
746 double mind = RealLast();
747 for (int k = g; k <= jup; k++) {
748 const SMDS_MeshNode *nk;
750 nk = uv_e0[nbdown - 2].node;
752 nk = quad->uv_grid[nbhoriz*(k + 1) - 2].node;
753 gp_Pnt pnk (nk->X(), nk->Y(), nk->Z());
754 double dist = pb.Distance(pnk);
755 if (dist < mind - eps) {
765 if (near == g) { // make triangle
766 myHelper->AddFace(a, b, c);
768 else { // make quadrangle
770 d = uv_e0[nbdown - 2].node;
772 d = quad->uv_grid[nbhoriz*near - 2].node;
773 //SMDS_MeshFace* face = meshDS->AddFace(a, b, c, d);
775 if (!myTrianglePreference){
776 myHelper->AddFace(a, b, c, d);
779 splitQuadFace(meshDS, geomFaceID, a, b, c, d);
782 if (near - 1 > g) { // if d not is at g - make additional triangles
783 for (int k = near - 1; k > g; k--) {
784 c = quad->uv_grid[nbhoriz*(k + 1) - 2].node;
786 d = uv_e0[nbdown - 2].node;
788 d = quad->uv_grid[nbhoriz*k - 2].node;
789 myHelper->AddFace(a, c, d);
796 if (quad->nbNodeOut(3) && nbhoriz == 2)
798 int g = nbvertic - 1; // last processed node in the grid
800 i = quad->side[ QUAD_LEFT_SIDE ].to-1; // nbleft - 1;
802 const SMDS_MeshNode *a, *b, *c, *d;
803 // avoid creating zero-area triangles near a straight-angle corner
807 c = quad->UVPt( 1, g ).node;
808 SMESH_TNodeXYZ pa( a ), pb( b ), pc( c );
809 double area = 0.5 * (( pb - pa ) ^ ( pc - pa )).Modulus();
810 if ( Abs( area ) < 1e-20 )
813 d = quad->UVPt( 1, g ).node;
814 if ( myTrianglePreference )
816 myHelper->AddFace(a, d, c);
820 if ( SMDS_MeshFace* face = myHelper->AddFace(a, b, d, c))
822 SMESH_ComputeErrorPtr& err = aMesh.GetSubMesh( aFace )->GetComputeError();
823 if ( !err || err->IsOK() || err->myName < COMPERR_WARNING )
825 SMESH_BadInputElements* badElems =
826 new SMESH_BadInputElements( meshDS, COMPERR_WARNING,
827 "Bad quality quad created");
828 badElems->add( face );
829 err.reset( badElems );
836 for (; i > stop; i--) // loop on nodes on the left side
839 b = uv_e3[i - 1].node;
840 gp_Pnt pb (b->X(), b->Y(), b->Z());
842 // find node c in the grid, nearest to the b
844 if (i == stop + 1) { // down boundary reached
845 c = quad->uv_grid[nbhoriz*jlow + 1].node;
849 double mind = RealLast();
850 for (int k = g; k >= jlow; k--) {
851 const SMDS_MeshNode *nk;
853 nk = quad->uv_grid[nbhoriz*jup + 1].node; //uv_e2[1].node;
855 nk = quad->uv_grid[nbhoriz*k + 1].node;
856 gp_Pnt pnk (nk->X(), nk->Y(), nk->Z());
857 double dist = pb.Distance(pnk);
858 if (dist < mind - eps) {
868 if (near == g) { // make triangle
869 myHelper->AddFace(a, b, c);
871 else { // make quadrangle
873 d = quad->uv_grid[nbhoriz*jup + 1].node; //uv_e2[1].node;
875 d = quad->uv_grid[nbhoriz*(near + 1) + 1].node;
876 if (!myTrianglePreference) {
877 myHelper->AddFace(a, b, c, d);
880 splitQuadFace(meshDS, geomFaceID, a, b, c, d);
883 if (near + 1 < g) { // if d not is at g - make additional triangles
884 for (int k = near + 1; k < g; k++) {
885 c = quad->uv_grid[nbhoriz*k + 1].node;
887 d = quad->uv_grid[nbhoriz*jup + 1].node; //uv_e2[1].node;
889 d = quad->uv_grid[nbhoriz*(k + 1) + 1].node;
890 myHelper->AddFace(a, c, d);
904 //=============================================================================
908 //=============================================================================
910 bool StdMeshers_Quadrangle_2D::Evaluate(SMESH_Mesh& aMesh,
911 const TopoDS_Shape& aFace,
912 MapShapeNbElems& aResMap)
915 aMesh.GetSubMesh(aFace);
917 std::vector<int> aNbNodes(4);
918 bool IsQuadratic = false;
919 if (!checkNbEdgesForEvaluate(aMesh, aFace, aResMap, aNbNodes, IsQuadratic)) {
920 std::vector<int> aResVec(SMDSEntity_Last);
921 for (int i=SMDSEntity_Node; i<SMDSEntity_Last; i++) aResVec[i] = 0;
922 SMESH_subMesh * sm = aMesh.GetSubMesh(aFace);
923 aResMap.insert(std::make_pair(sm,aResVec));
924 SMESH_ComputeErrorPtr& smError = sm->GetComputeError();
925 smError.reset(new SMESH_ComputeError(COMPERR_ALGO_FAILED,"Submesh can not be evaluated",this));
929 if (myQuadranglePreference) {
930 int n1 = aNbNodes[0];
931 int n2 = aNbNodes[1];
932 int n3 = aNbNodes[2];
933 int n4 = aNbNodes[3];
934 int nfull = n1+n2+n3+n4;
937 if (nfull==ntmp && ((n1!=n3) || (n2!=n4))) {
938 // special path for using only quandrangle faces
939 return evaluateQuadPref(aMesh, aFace, aNbNodes, aResMap, IsQuadratic);
944 int nbdown = aNbNodes[0];
945 int nbup = aNbNodes[2];
947 int nbright = aNbNodes[1];
948 int nbleft = aNbNodes[3];
950 int nbhoriz = Min(nbdown, nbup);
951 int nbvertic = Min(nbright, nbleft);
953 int dh = Max(nbdown, nbup) - nbhoriz;
954 int dv = Max(nbright, nbleft) - nbvertic;
961 int nbNodes = (nbhoriz-2)*(nbvertic-2);
962 //int nbFaces3 = dh + dv + kdh*(nbvertic-1)*2 + kdv*(nbhoriz-1)*2;
963 int nbFaces3 = dh + dv;
964 //if (kdh==1 && kdv==1) nbFaces3 -= 2;
965 //if (dh>0 && dv>0) nbFaces3 -= 2;
966 //int nbFaces4 = (nbhoriz-1-kdh)*(nbvertic-1-kdv);
967 int nbFaces4 = (nbhoriz-1)*(nbvertic-1);
969 std::vector<int> aVec(SMDSEntity_Last,0);
971 aVec[SMDSEntity_Quad_Triangle] = nbFaces3;
972 aVec[SMDSEntity_Quad_Quadrangle] = nbFaces4;
973 int nbbndedges = nbdown + nbup + nbright + nbleft -4;
974 int nbintedges = (nbFaces4*4 + nbFaces3*3 - nbbndedges) / 2;
975 aVec[SMDSEntity_Node] = nbNodes + nbintedges;
976 if (aNbNodes.size()==5) {
977 aVec[SMDSEntity_Quad_Triangle] = nbFaces3 + aNbNodes[3] -1;
978 aVec[SMDSEntity_Quad_Quadrangle] = nbFaces4 - aNbNodes[3] +1;
982 aVec[SMDSEntity_Node] = nbNodes;
983 aVec[SMDSEntity_Triangle] = nbFaces3;
984 aVec[SMDSEntity_Quadrangle] = nbFaces4;
985 if (aNbNodes.size()==5) {
986 aVec[SMDSEntity_Triangle] = nbFaces3 + aNbNodes[3] - 1;
987 aVec[SMDSEntity_Quadrangle] = nbFaces4 - aNbNodes[3] + 1;
990 SMESH_subMesh * sm = aMesh.GetSubMesh(aFace);
991 aResMap.insert(std::make_pair(sm,aVec));
996 //================================================================================
998 * \brief Return true if the algorithm can mesh this shape
999 * \param [in] aShape - shape to check
1000 * \param [in] toCheckAll - if true, this check returns OK if all shapes are OK,
1001 * else, returns OK if at least one shape is OK
1003 //================================================================================
1005 bool StdMeshers_Quadrangle_2D::IsApplicable( const TopoDS_Shape & aShape, bool toCheckAll )
1007 int nbFoundFaces = 0;
1008 for (TopExp_Explorer exp( aShape, TopAbs_FACE ); exp.More(); exp.Next(), ++nbFoundFaces )
1010 const TopoDS_Shape& aFace = exp.Current();
1011 int nbWire = SMESH_MesherHelper::Count( aFace, TopAbs_WIRE, false );
1012 if ( nbWire != 1 ) {
1013 if ( toCheckAll ) return false;
1017 int nbNoDegenEdges = 0, totalNbEdges = 0;
1018 TopExp_Explorer eExp( aFace, TopAbs_EDGE );
1019 for ( ; eExp.More() && nbNoDegenEdges < 3; eExp.Next(), ++totalNbEdges ) {
1020 if ( !SMESH_Algo::isDegenerated( TopoDS::Edge( eExp.Current() )))
1023 if ( toCheckAll && ( totalNbEdges < 4 && nbNoDegenEdges < 3 )) return false;
1024 if ( !toCheckAll && ( totalNbEdges >= 4 || nbNoDegenEdges >= 3 )) return true;
1026 return ( toCheckAll && nbFoundFaces != 0 );
1031 //================================================================================
1033 * \brief Return true if only two given edges meat at their common vertex
1035 //================================================================================
1037 bool twoEdgesMeatAtVertex(const TopoDS_Edge& e1,
1038 const TopoDS_Edge& e2,
1042 if (!TopExp::CommonVertex(e1, e2, v))
1044 TopTools_ListIteratorOfListOfShape ancestIt(mesh.GetAncestors(v));
1045 for (; ancestIt.More() ; ancestIt.Next())
1046 if (ancestIt.Value().ShapeType() == TopAbs_EDGE)
1047 if (!e1.IsSame(ancestIt.Value()) && !e2.IsSame(ancestIt.Value()))
1052 //================================================================================
1054 * \brief Return angle between mesh segments of given EDGEs meeting at theVertexNode
1056 //================================================================================
1058 double getAngleByNodes( const int theE1Index,
1059 const int theE2Index,
1060 const SMDS_MeshNode* theVertexNode,
1061 const StdMeshers_FaceSide& theFaceSide,
1062 const gp_Vec& theFaceNormal)
1064 int eID1 = theFaceSide.EdgeID( theE1Index );
1065 int eID2 = theFaceSide.EdgeID( theE2Index );
1067 const SMDS_MeshNode *n1 = 0, *n2 = 0;
1069 SMDS_ElemIteratorPtr segIt = theVertexNode->GetInverseElementIterator( SMDSAbs_Edge );
1070 while ( segIt->more() )
1072 const SMDS_MeshElement* seg = segIt->next();
1073 int shapeID = seg->GetShapeID();
1074 if ( shapeID == eID1 )
1076 else if ( shapeID == eID2 )
1080 ( is1st ? n1 : n2 ) = seg->GetNodeWrap( 1 + seg->GetNodeIndex( theVertexNode ));
1085 std::vector<const SMDS_MeshNode*> nodes;
1086 for ( int is2nd = 0; is2nd < 2; ++is2nd )
1088 const SMDS_MeshNode* & n = is2nd ? n2 : n1;
1091 if ( is2nd ) theFaceSide.GetEdgeNodes( theE2Index, nodes );
1092 else theFaceSide.GetEdgeNodes( theE1Index, nodes );
1093 if ( nodes.size() >= 2 )
1095 if ( nodes[0] == theVertexNode )
1098 n = nodes[ nodes.size() - 2 ];
1102 double angle = -2 * M_PI;
1105 SMESH_NodeXYZ p1 = n1, p2 = theVertexNode, p3 = n2;
1106 gp_Vec v1( p1, p2 ), v2( p2, p3 );
1109 angle = v1.AngleWithRef( v2, theFaceNormal );
1114 if ( std::isnan( angle ))
1120 //--------------------------------------------------------------------------------
1122 * \brief EDGE of a FACE
1127 TopoDS_Vertex my1stVertex;
1129 bool myIsCorner; // is fixed corner
1130 double myAngle; // angle at my1stVertex
1131 int myNbSegments; // discretization
1132 Edge* myPrev; // preceding EDGE
1133 Edge* myNext; // next EDGE
1135 // traits used by boost::intrusive::circular_list_algorithms
1137 typedef Edge * node_ptr;
1138 typedef const Edge * const_node_ptr;
1139 static node_ptr get_next(const_node_ptr n) { return n->myNext; }
1140 static void set_next(node_ptr n, node_ptr next) { n->myNext = next; }
1141 static node_ptr get_previous(const_node_ptr n) { return n->myPrev; }
1142 static void set_previous(node_ptr n, node_ptr prev){ n->myPrev = prev; }
1145 //--------------------------------------------------------------------------------
1147 * \brief Four sides of a quadrangle evaluating its quality
1151 typedef std::set< QuadQuality, QuadQuality > set;
1156 // quality criteria to minimize
1158 int myIsFixedCorner;
1162 // Compute quality criateria and add self to the set of variants
1164 void AddSelf( QuadQuality::set& theVariants )
1166 if ( myCornerE[2] == myCornerE[1] || // exclude invalid variants
1167 myCornerE[2] == myCornerE[3] ||
1168 myCornerE[0] == myCornerE[3] )
1171 // count nb segments between corners
1173 double totNbSeg = 0;
1174 for ( int i1 = 3, i2 = 0; i2 < 4; i1 = i2++ )
1177 for ( Edge* e = myCornerE[ i1 ]; e != myCornerE[ i2 ]; e = e->myNext )
1178 myNbSeg[ i1 ] += e->myNbSegments;
1179 mySumAngle -= myCornerE[ i1 ]->myAngle / M_PI; // [-1,1]
1180 totNbSeg += myNbSeg[ i1 ];
1183 myOppDiff = ( Abs( myNbSeg[0] - myNbSeg[2] ) +
1184 Abs( myNbSeg[1] - myNbSeg[3] ));
1186 myIsFixedCorner = - totNbSeg * ( myCornerE[0]->myIsCorner +
1187 myCornerE[1]->myIsCorner +
1188 myCornerE[2]->myIsCorner +
1189 myCornerE[3]->myIsCorner );
1191 double nbSideIdeal = totNbSeg / 4.;
1192 myQuartDiff = -( Min( Min( myNbSeg[0], myNbSeg[1] ),
1193 Min( myNbSeg[2], myNbSeg[3] )) / nbSideIdeal );
1195 theVariants.insert( *this );
1198 if ( theVariants.size() > 1 ) // erase a worse variant
1199 theVariants.erase( ++theVariants.begin() );
1203 // first criterion - equality of nbSeg of opposite sides
1204 int crit1() const { return myOppDiff + myIsFixedCorner; }
1206 // second criterion - equality of nbSeg of adjacent sides and sharpness of angles
1207 double crit2() const { return myQuartDiff + mySumAngle; }
1209 bool operator () ( const QuadQuality& q1, const QuadQuality& q2) const
1211 if ( q1.crit1() < q2.crit1() )
1213 if ( q1.crit1() > q2.crit1() )
1215 return q1.crit2() < q2.crit2();
1219 //================================================================================
1221 * \brief Unite EDGEs to get a required number of sides
1222 * \param [in] theNbCorners - the required number of sides, 3 or 4
1223 * \param [in] theConsiderMesh - to considered only meshed VERTEXes
1224 * \param [in] theFaceSide - the FACE EDGEs
1225 * \param [in] theFixedVertices - VERTEXes to be used as corners
1226 * \param [out] theVertices - the found corner vertices
1227 * \param [out] theHaveConcaveVertices - return if there are concave vertices
1229 //================================================================================
1231 void uniteEdges( const int theNbCorners,
1232 const bool theConsiderMesh,
1233 const StdMeshers_FaceSide& theFaceSide,
1234 const TopTools_MapOfShape& theFixedVertices,
1235 std::vector<TopoDS_Vertex>& theVertices,
1236 bool& theHaveConcaveVertices)
1238 // form a circular list of EDGEs
1239 std::vector< Edge > edges( theFaceSide.NbEdges() );
1240 boost::intrusive::circular_list_algorithms< Edge > circularList;
1241 circularList.init_header( &edges[0] );
1242 edges[0].myEdge = theFaceSide.Edge( 0 );
1243 edges[0].myIndex = 0;
1244 edges[0].myNbSegments = 0;
1245 for ( int i = 1; i < theFaceSide.NbEdges(); ++i )
1247 edges[ i ].myEdge = theFaceSide.Edge( i );
1248 edges[ i ].myIndex = i;
1249 edges[ i ].myNbSegments = 0;
1250 circularList.link_after( &edges[ i-1 ], &edges[ i ] );
1252 // remove degenerated edges
1253 int nbEdges = edges.size();
1254 Edge* edge0 = &edges[0];
1255 for ( size_t i = 0; i < edges.size(); ++i )
1256 if ( SMESH_Algo::isDegenerated( edges[i].myEdge ))
1258 edge0 = circularList.unlink( &edges[i] );
1262 // sort edges by angle
1263 std::multimap< double, Edge* > edgeByAngle;
1264 int i, nbConvexAngles = 0, nbSharpAngles = 0;
1265 const SMDS_MeshNode* vertNode = 0;
1267 const double angTol = 5. / 180 * M_PI;
1268 const double sharpAngle = 0.5 * M_PI - angTol;
1270 for ( i = 0; i < nbEdges; ++i, e = e->myNext )
1272 e->my1stVertex = SMESH_MesherHelper::IthVertex( 0, e->myEdge );
1273 e->myIsCorner = theFixedVertices.Contains( e->my1stVertex );
1275 e->myAngle = -2 * M_PI;
1276 if ( !theConsiderMesh || ( vertNode = theFaceSide.VertexNode( e->myIndex )))
1278 e->myAngle = SMESH_MesherHelper::GetAngle( e->myPrev->myEdge, e->myEdge,
1279 theFaceSide.Face(), e->my1stVertex,
1281 if ( e->myAngle > 2 * M_PI ) // GetAngle() failed
1283 else if ( vertNode && ( 0. <= e->myAngle ) && ( e->myAngle <= angTol ))
1284 e->myAngle = getAngleByNodes( e->myPrev->myIndex, e->myIndex,
1285 vertNode, theFaceSide, faceNormal );
1287 edgeByAngle.insert( std::make_pair( e->myAngle, e ));
1288 nbConvexAngles += ( e->myAngle > angTol );
1289 nbSharpAngles += ( e->myAngle > sharpAngle );
1292 theHaveConcaveVertices = ( nbConvexAngles < nbEdges );
1294 if ((int) theVertices.size() == theNbCorners )
1297 theVertices.clear();
1299 if ( !theConsiderMesh || theNbCorners < 4 ||
1300 nbConvexAngles <= theNbCorners ||
1301 nbSharpAngles == theNbCorners )
1303 if ( nbEdges == theNbCorners ) // return all vertices
1305 for ( e = edge0; (int) theVertices.size() < theNbCorners; e = e->myNext )
1306 theVertices.push_back( e->my1stVertex );
1310 // return corners with maximal angles
1312 std::set< int > cornerIndices;
1313 if ( !theFixedVertices.IsEmpty() )
1314 for ( i = 0, e = edge0; i < nbEdges; ++i, e = e->myNext )
1315 if ( e->myIsCorner )
1316 cornerIndices.insert( e->myIndex );
1318 std::multimap< double, Edge* >::reverse_iterator a2e = edgeByAngle.rbegin();
1319 for (; (int) cornerIndices.size() < theNbCorners; ++a2e )
1320 cornerIndices.insert( a2e->second->myIndex );
1322 std::set< int >::iterator i = cornerIndices.begin();
1323 for ( ; i != cornerIndices.end(); ++i )
1324 theVertices.push_back( edges[ *i ].my1stVertex );
1329 // get nb of segments
1330 int totNbSeg = 0; // tatal nb segments
1331 std::vector<const SMDS_MeshNode*> nodes;
1332 for ( i = 0, e = edge0; i < nbEdges; ++i, e = e->myNext )
1335 theFaceSide.GetEdgeNodes( e->myIndex, nodes, /*addVertex=*/true, true );
1336 if ( nodes.size() == 2 && nodes[0] == nodes[1] ) // all nodes merged
1338 e->myAngle = -1; // to remove
1342 e->myNbSegments += nodes.size() - 1;
1343 totNbSeg += nodes.size() - 1;
1346 // join with the previous edge those edges with concave angles
1347 if ( e->myAngle <= 0 )
1349 e->myPrev->myNbSegments += e->myNbSegments;
1350 e = circularList.unlink( e )->myPrev;
1356 if ( edge0->myNext->myPrev != edge0 ) // edge0 removed, find another edge0
1357 for ( size_t i = 0; i < edges.size(); ++i )
1358 if ( edges[i].myNext->myPrev == & edges[i] )
1365 // sort different variants by quality
1367 QuadQuality::set quadVariants;
1369 // find index of a corner most opposite to corner of edge0
1370 int iOpposite0, nbHalf = 0;
1371 for ( e = edge0; nbHalf <= totNbSeg / 2; e = e->myNext )
1372 nbHalf += e->myNbSegments;
1373 iOpposite0 = e->myIndex;
1375 // compose different variants of quadrangles
1377 for ( ; edge0->myIndex != iOpposite0; edge0 = edge0->myNext )
1379 quad.myCornerE[ 0 ] = edge0;
1381 // find opposite corner 2
1382 for ( nbHalf = 0, e = edge0; nbHalf < totNbSeg / 2; e = e->myNext )
1383 nbHalf += e->myNbSegments;
1384 if ( e == edge0->myNext ) // no space for corner 1
1386 quad.myCornerE[ 2 ] = e;
1388 bool moreVariants2 = ( totNbSeg % 2 || nbHalf != totNbSeg / 2 );
1390 // enumerate different variants of corners 1 and 3
1391 for ( Edge* e1 = edge0->myNext; e1 != quad.myCornerE[ 2 ]; e1 = e1->myNext )
1393 quad.myCornerE[ 1 ] = e1;
1395 // find opposite corner 3
1396 for ( nbHalf = 0, e = e1; nbHalf < totNbSeg / 2; e = e->myNext )
1397 nbHalf += e->myNbSegments;
1398 if ( e == quad.myCornerE[ 2 ] )
1400 quad.myCornerE[ 3 ] = e;
1402 bool moreVariants3 = ( totNbSeg % 2 || nbHalf != totNbSeg / 2 );
1404 quad.AddSelf( quadVariants );
1407 if ( moreVariants2 )
1409 quad.myCornerE[ 2 ] = quad.myCornerE[ 2 ]->myPrev;
1410 quad.AddSelf( quadVariants );
1411 quad.myCornerE[ 2 ] = quad.myCornerE[ 2 ]->myNext;
1413 if ( moreVariants3 )
1415 quad.myCornerE[ 3 ] = quad.myCornerE[ 3 ]->myPrev;
1416 quad.AddSelf( quadVariants );
1418 if ( moreVariants2 )
1420 quad.myCornerE[ 2 ] = quad.myCornerE[ 2 ]->myPrev;
1421 quad.AddSelf( quadVariants );
1422 quad.myCornerE[ 2 ] = quad.myCornerE[ 2 ]->myNext;
1428 const QuadQuality& bestQuad = *quadVariants.begin();
1429 theVertices.resize( 4 );
1430 theVertices[ 0 ] = bestQuad.myCornerE[ 0 ]->my1stVertex;
1431 theVertices[ 1 ] = bestQuad.myCornerE[ 1 ]->my1stVertex;
1432 theVertices[ 2 ] = bestQuad.myCornerE[ 2 ]->my1stVertex;
1433 theVertices[ 3 ] = bestQuad.myCornerE[ 3 ]->my1stVertex;
1438 //================================================================================
1440 * \brief Remove a seam and degenerated edge from a wire if the shape is
1441 * a quadrangle with a seam inside.
1443 //================================================================================
1445 bool removeInternalSeam( std::list<TopoDS_Edge>& theWire,
1446 SMESH_MesherHelper& theHelper)
1448 if ( !theHelper.HasRealSeam() ||
1449 theHelper.NbDegeneratedEdges() != 2 ) // 1 EDGE + 1 VERTEX
1452 typedef std::list<TopoDS_Edge>::iterator TEdgeIter;
1453 std::vector< TEdgeIter > edgesToRemove;
1454 edgesToRemove.reserve( 5 );
1455 for ( TEdgeIter eIt = theWire.begin(); eIt != theWire.end(); ++eIt )
1457 int eID = theHelper.ShapeToIndex( *eIt );
1458 if ( theHelper.IsRealSeam( eID ) || theHelper.IsDegenShape( eID ))
1459 edgesToRemove.push_back( eIt );
1462 if ( theWire.size() - edgesToRemove.size() < 4 )
1463 return false; // cone e.g.
1465 for ( size_t i = 0; i < edgesToRemove.size(); ++i )
1466 theWire.erase( edgesToRemove[ i ]);
1473 //================================================================================
1475 * \brief Finds vertices at the most sharp face corners
1476 * \param [in] theFace - the FACE
1477 * \param [in,out] theWire - the ordered edges of the face. It can be modified to
1478 * have the first VERTEX of the first EDGE in \a vertices
1479 * \param [out] theVertices - the found corner vertices in the order corresponding to
1480 * the order of EDGEs in \a theWire
1481 * \param [out] theNbDegenEdges - nb of degenerated EDGEs in theFace
1482 * \param [in] theConsiderMesh - if \c true, only meshed VERTEXes are considered
1483 * as possible corners
1484 * \return int - number of quad sides found: 0, 3 or 4
1486 //================================================================================
1488 int StdMeshers_Quadrangle_2D::getCorners(const TopoDS_Face& theFace,
1489 SMESH_Mesh & theMesh,
1490 std::list<TopoDS_Edge>& theWire,
1491 std::vector<TopoDS_Vertex>& theVertices,
1492 int & theNbDegenEdges,
1493 const bool theConsiderMesh)
1495 theNbDegenEdges = 0;
1497 SMESH_MesherHelper helper( theMesh );
1499 helper.CopySubShapeInfo( *myHelper );
1501 if ( removeInternalSeam( theWire, helper ))
1502 theNbDegenEdges = 1;
1504 StdMeshers_FaceSide faceSide( theFace, theWire, &theMesh,
1505 /*isFwd=*/true, /*skipMedium=*/true, &helper );
1507 // count degenerated EDGEs and possible corner VERTEXes
1508 for ( int iE = 0; iE < faceSide.NbEdges(); ++iE )
1510 if ( SMESH_Algo::isDegenerated( faceSide.Edge( iE )))
1512 else if ( !theConsiderMesh || faceSide.VertexNode( iE ))
1513 theVertices.push_back( faceSide.FirstVertex( iE ));
1516 // find out required nb of corners (3 or 4)
1518 TopoDS_Shape triaVertex = helper.GetMeshDS()->IndexToShape( myTriaVertexID );
1519 if ( !triaVertex.IsNull() &&
1520 triaVertex.ShapeType() == TopAbs_VERTEX &&
1521 helper.IsSubShape( triaVertex, theFace ) &&
1522 theVertices.size() != 4 )
1525 triaVertex.Nullify();
1527 // check nb of available EDGEs
1528 if ( faceSide.NbEdges() < nbCorners )
1529 return error(COMPERR_BAD_SHAPE,
1530 TComm("Face must have 4 sides but not ") << faceSide.NbEdges() );
1532 if ( theConsiderMesh )
1534 const int nbSegments = Max( faceSide.NbPoints()-1, faceSide.NbSegments() );
1535 if ( nbSegments < nbCorners )
1536 return error(COMPERR_BAD_INPUT_MESH, TComm("Too few boundary nodes: ") << nbSegments);
1539 if ( nbCorners == 3 )
1541 if ( theVertices.size() < 3 )
1542 return error(COMPERR_BAD_SHAPE,
1543 TComm("Face must have 3 meshed sides but not ") << theVertices.size() );
1545 else // triaVertex not defined or invalid
1547 if ( theVertices.size() == 3 && theNbDegenEdges == 0 )
1549 if ( myTriaVertexID < 1 )
1550 return error(COMPERR_BAD_PARMETERS,
1551 "No Base vertex provided for a trilateral geometrical face");
1553 TComm comment("Invalid Base vertex: ");
1554 comment << myTriaVertexID << ", which is not in [ ";
1555 comment << helper.GetMeshDS()->ShapeToIndex( faceSide.FirstVertex(0) ) << ", ";
1556 comment << helper.GetMeshDS()->ShapeToIndex( faceSide.FirstVertex(1) ) << ", ";
1557 comment << helper.GetMeshDS()->ShapeToIndex( faceSide.FirstVertex(2) ) << " ]";
1558 return error(COMPERR_BAD_PARMETERS, comment );
1560 if ( theVertices.size() + theNbDegenEdges < 4 )
1561 return error(COMPERR_BAD_SHAPE,
1562 TComm("Face must have 4 meshed sides but not ") << theVertices.size() );
1566 if ( theVertices.size() > 3 )
1568 TopTools_MapOfShape fixedVertices;
1569 if ( !triaVertex.IsNull() )
1570 fixedVertices.Add( triaVertex );
1573 const std::vector< int >& vIDs = myParams->GetCorners();
1574 for ( size_t i = 0; i < vIDs.size(); ++i )
1576 const TopoDS_Shape& vertex = helper.GetMeshDS()->IndexToShape( vIDs[ i ]);
1577 if ( !vertex.IsNull() )
1578 fixedVertices.Add( vertex );
1581 uniteEdges( nbCorners, theConsiderMesh, faceSide, fixedVertices, theVertices, myCheckOri );
1584 if ( nbCorners == 3 && !triaVertex.IsSame( theVertices[0] ))
1586 // make theVertices begin from triaVertex
1587 for ( size_t i = 0; i < theVertices.size(); ++i )
1588 if ( triaVertex.IsSame( theVertices[i] ))
1590 theVertices.erase( theVertices.begin(), theVertices.begin() + i );
1595 theVertices.push_back( theVertices[i] );
1599 // make theWire begin from the 1st corner vertex
1600 while ( !theVertices[0].IsSame( helper.IthVertex( 0, theWire.front() )) ||
1601 SMESH_Algo::isDegenerated( theWire.front() ))
1602 theWire.splice( theWire.end(), theWire, theWire.begin() );
1607 //=============================================================================
1609 * Return FaceQuadStruct where sides ordered CCW, top and left sides
1610 * reversed to be co-directed with bottom and right sides
1612 //=============================================================================
1614 FaceQuadStruct::Ptr StdMeshers_Quadrangle_2D::CheckNbEdges(SMESH_Mesh & aMesh,
1615 const TopoDS_Shape & aShape,
1616 const bool considerMesh,
1617 SMESH_MesherHelper* aFaceHelper)
1619 if ( !myQuadList.empty() && myQuadList.front()->face.IsSame( aShape ))
1620 return myQuadList.front();
1622 TopoDS_Face F = TopoDS::Face(aShape);
1623 if ( F.Orientation() >= TopAbs_INTERNAL ) F.Orientation( TopAbs_FORWARD );
1624 const bool ignoreMediumNodes = _quadraticMesh;
1626 // verify 1 wire only
1627 list< TopoDS_Edge > edges;
1628 list< int > nbEdgesInWire;
1629 int nbWire = SMESH_Block::GetOrderedEdges (F, edges, nbEdgesInWire);
1631 error(COMPERR_BAD_SHAPE, TComm("Wrong number of wires: ") << nbWire);
1632 return FaceQuadStruct::Ptr();
1635 // find corner vertices of the quad
1636 myHelper = ( aFaceHelper && aFaceHelper->GetSubShape() == aShape ) ? aFaceHelper : NULL;
1637 vector<TopoDS_Vertex> corners;
1638 int nbDegenEdges, nbSides = getCorners( F, aMesh, edges, corners, nbDegenEdges, considerMesh );
1641 return FaceQuadStruct::Ptr();
1643 FaceQuadStruct::Ptr quad( new FaceQuadStruct );
1644 quad->side.reserve(nbEdgesInWire.front());
1647 list< TopoDS_Edge >::iterator edgeIt = edges.begin();
1648 if ( nbSides == 3 ) // 3 sides and corners[0] is a vertex with myTriaVertexID
1650 for ( int iSide = 0; iSide < 3; ++iSide )
1652 list< TopoDS_Edge > sideEdges;
1653 TopoDS_Vertex nextSideV = corners[( iSide + 1 ) % 3 ];
1654 while ( edgeIt != edges.end() &&
1655 !nextSideV.IsSame( SMESH_MesherHelper::IthVertex( 0, *edgeIt )))
1656 if ( SMESH_Algo::isDegenerated( *edgeIt ))
1659 sideEdges.push_back( *edgeIt++ );
1660 if ( !sideEdges.empty() )
1661 quad->side.push_back( StdMeshers_FaceSide::New(F, sideEdges, &aMesh, iSide < QUAD_TOP_SIDE,
1662 ignoreMediumNodes, myHelper, myProxyMesh));
1666 const vector<UVPtStruct>& UVPSleft = quad->side[0].GetUVPtStruct(true,0);
1667 /* vector<UVPtStruct>& UVPStop = */quad->side[1].GetUVPtStruct(false,1);
1668 /* vector<UVPtStruct>& UVPSright = */quad->side[2].GetUVPtStruct(true,1);
1669 const SMDS_MeshNode* aNode = UVPSleft[0].node;
1670 gp_Pnt2d aPnt2d = UVPSleft[0].UV();
1671 quad->side.push_back( StdMeshers_FaceSide::New( quad->side[1].grid.get(), aNode, &aPnt2d ));
1672 myNeedSmooth = ( nbDegenEdges > 0 );
1677 myNeedSmooth = ( corners.size() == 4 && nbDegenEdges > 0 );
1678 int iSide = 0, nbUsedDegen = 0, nbLoops = 0;
1679 for ( ; edgeIt != edges.end(); ++nbLoops )
1681 list< TopoDS_Edge > sideEdges;
1682 TopoDS_Vertex nextSideV = corners[( iSide + 1 - nbUsedDegen ) % corners.size() ];
1683 bool nextSideVReached = false;
1686 const TopoDS_Edge& edge = *edgeIt;
1687 nextSideVReached = nextSideV.IsSame( myHelper->IthVertex( 1, edge ));
1688 if ( SMESH_Algo::isDegenerated( edge ))
1690 if ( !myNeedSmooth ) // need to make a side on a degen edge
1692 if ( sideEdges.empty() )
1694 sideEdges.push_back( edge );
1696 nextSideVReached = true;
1704 else //if ( !myHelper || !myHelper->IsRealSeam( edge ))
1706 sideEdges.push_back( edge );
1710 while ( edgeIt != edges.end() && !nextSideVReached );
1712 if ( !sideEdges.empty() )
1714 quad->side.push_back
1715 ( StdMeshers_FaceSide::New( F, sideEdges, &aMesh, iSide < QUAD_TOP_SIDE,
1716 ignoreMediumNodes, myHelper, myProxyMesh ));
1719 if ( quad->side.size() == 4 )
1723 error(TComm("Bug: infinite loop in StdMeshers_Quadrangle_2D::CheckNbEdges()"));
1728 if ( quad && quad->side.size() != 4 )
1730 error(TComm("Bug: ") << quad->side.size() << " sides found instead of 4");
1739 //=============================================================================
1743 //=============================================================================
1745 bool StdMeshers_Quadrangle_2D::checkNbEdgesForEvaluate(SMESH_Mesh& aMesh,
1746 const TopoDS_Shape & aShape,
1747 MapShapeNbElems& aResMap,
1748 std::vector<int>& aNbNodes,
1752 const TopoDS_Face & F = TopoDS::Face(aShape);
1754 // verify 1 wire only, with 4 edges
1755 list< TopoDS_Edge > edges;
1756 list< int > nbEdgesInWire;
1757 int nbWire = SMESH_Block::GetOrderedEdges (F, edges, nbEdgesInWire);
1765 list< TopoDS_Edge >::iterator edgeIt = edges.begin();
1766 SMESH_subMesh * sm = aMesh.GetSubMesh(*edgeIt);
1767 MapShapeNbElemsItr anIt = aResMap.find(sm);
1768 if (anIt==aResMap.end()) {
1771 std::vector<int> aVec = (*anIt).second;
1772 IsQuadratic = (aVec[SMDSEntity_Quad_Edge] > aVec[SMDSEntity_Edge]);
1773 if (nbEdgesInWire.front() == 3) { // exactly 3 edges
1774 if (myTriaVertexID>0) {
1775 SMESHDS_Mesh* meshDS = aMesh.GetMeshDS();
1776 TopoDS_Vertex V = TopoDS::Vertex(meshDS->IndexToShape(myTriaVertexID));
1778 TopoDS_Edge E1,E2,E3;
1779 for (; edgeIt != edges.end(); ++edgeIt) {
1780 TopoDS_Edge E = TopoDS::Edge(*edgeIt);
1781 TopoDS_Vertex VF, VL;
1782 TopExp::Vertices(E, VF, VL, true);
1785 else if (VL.IsSame(V))
1790 SMESH_subMesh * sm = aMesh.GetSubMesh(E1);
1791 MapShapeNbElemsItr anIt = aResMap.find(sm);
1792 if (anIt==aResMap.end()) return false;
1793 std::vector<int> aVec = (*anIt).second;
1795 aNbNodes[0] = (aVec[SMDSEntity_Node]-1)/2 + 2;
1797 aNbNodes[0] = aVec[SMDSEntity_Node] + 2;
1798 sm = aMesh.GetSubMesh(E2);
1799 anIt = aResMap.find(sm);
1800 if (anIt==aResMap.end()) return false;
1801 aVec = (*anIt).second;
1803 aNbNodes[1] = (aVec[SMDSEntity_Node]-1)/2 + 2;
1805 aNbNodes[1] = aVec[SMDSEntity_Node] + 2;
1806 sm = aMesh.GetSubMesh(E3);
1807 anIt = aResMap.find(sm);
1808 if (anIt==aResMap.end()) return false;
1809 aVec = (*anIt).second;
1811 aNbNodes[2] = (aVec[SMDSEntity_Node]-1)/2 + 2;
1813 aNbNodes[2] = aVec[SMDSEntity_Node] + 2;
1814 aNbNodes[3] = aNbNodes[1];
1820 if (nbEdgesInWire.front() == 4) { // exactly 4 edges
1821 for (; edgeIt != edges.end(); edgeIt++) {
1822 SMESH_subMesh * sm = aMesh.GetSubMesh(*edgeIt);
1823 MapShapeNbElemsItr anIt = aResMap.find(sm);
1824 if (anIt==aResMap.end()) {
1827 std::vector<int> aVec = (*anIt).second;
1829 aNbNodes[nbSides] = (aVec[SMDSEntity_Node]-1)/2 + 2;
1831 aNbNodes[nbSides] = aVec[SMDSEntity_Node] + 2;
1835 else if (nbEdgesInWire.front() > 4) { // more than 4 edges - try to unite some
1836 list< TopoDS_Edge > sideEdges;
1837 while (!edges.empty()) {
1839 sideEdges.splice(sideEdges.end(), edges, edges.begin()); // edges.front() -> sideEdges.end()
1840 bool sameSide = true;
1841 while (!edges.empty() && sameSide) {
1842 sameSide = SMESH_Algo::IsContinuous(sideEdges.back(), edges.front());
1844 sideEdges.splice(sideEdges.end(), edges, edges.begin());
1846 if (nbSides == 0) { // go backward from the first edge
1848 while (!edges.empty() && sameSide) {
1849 sameSide = SMESH_Algo::IsContinuous(sideEdges.front(), edges.back());
1851 sideEdges.splice(sideEdges.begin(), edges, --edges.end());
1854 list<TopoDS_Edge>::iterator ite = sideEdges.begin();
1855 if ( nbSides >= (int)aNbNodes.size() )
1857 aNbNodes[nbSides] = 1;
1858 for (; ite!=sideEdges.end(); ite++) {
1859 SMESH_subMesh * sm = aMesh.GetSubMesh(*ite);
1860 MapShapeNbElemsItr anIt = aResMap.find(sm);
1861 if (anIt==aResMap.end()) {
1864 std::vector<int> aVec = (*anIt).second;
1866 aNbNodes[nbSides] += (aVec[SMDSEntity_Node]-1)/2 + 1;
1868 aNbNodes[nbSides] += aVec[SMDSEntity_Node] + 1;
1872 // issue 20222. Try to unite only edges shared by two same faces
1875 SMESH_Block::GetOrderedEdges (F, edges, nbEdgesInWire);
1876 while (!edges.empty()) {
1878 sideEdges.splice(sideEdges.end(), edges, edges.begin());
1879 bool sameSide = true;
1880 while (!edges.empty() && sameSide) {
1882 SMESH_Algo::IsContinuous(sideEdges.back(), edges.front()) &&
1883 twoEdgesMeatAtVertex(sideEdges.back(), edges.front(), aMesh);
1885 sideEdges.splice(sideEdges.end(), edges, edges.begin());
1887 if (nbSides == 0) { // go backward from the first edge
1889 while (!edges.empty() && sameSide) {
1891 SMESH_Algo::IsContinuous(sideEdges.front(), edges.back()) &&
1892 twoEdgesMeatAtVertex(sideEdges.front(), edges.back(), aMesh);
1894 sideEdges.splice(sideEdges.begin(), edges, --edges.end());
1897 list<TopoDS_Edge>::iterator ite = sideEdges.begin();
1898 aNbNodes[nbSides] = 1;
1899 for (; ite!=sideEdges.end(); ite++) {
1900 SMESH_subMesh * sm = aMesh.GetSubMesh(*ite);
1901 MapShapeNbElemsItr anIt = aResMap.find(sm);
1902 if (anIt==aResMap.end()) {
1905 std::vector<int> aVec = (*anIt).second;
1907 aNbNodes[nbSides] += (aVec[SMDSEntity_Node]-1)/2 + 1;
1909 aNbNodes[nbSides] += aVec[SMDSEntity_Node] + 1;
1917 nbSides = nbEdgesInWire.front();
1918 error(COMPERR_BAD_SHAPE, TComm("Face must have 4 sides but not ") << nbSides);
1926 //=============================================================================
1930 //=============================================================================
1933 StdMeshers_Quadrangle_2D::CheckAnd2Dcompute (SMESH_Mesh & aMesh,
1934 const TopoDS_Shape & aShape,
1935 const bool CreateQuadratic)
1937 _quadraticMesh = CreateQuadratic;
1939 FaceQuadStruct::Ptr quad = CheckNbEdges(aMesh, aShape);
1942 // set normalized grid on unit square in parametric domain
1943 if ( ! setNormalizedGrid( quad ))
1951 inline const vector<UVPtStruct>& getUVPtStructIn(FaceQuadStruct::Ptr& quad, int i, int nbSeg)
1953 bool isXConst = (i == QUAD_BOTTOM_SIDE || i == QUAD_TOP_SIDE);
1954 double constValue = (i == QUAD_BOTTOM_SIDE || i == QUAD_LEFT_SIDE) ? 0 : 1;
1956 quad->nbNodeOut(i) ?
1957 quad->side[i].grid->SimulateUVPtStruct(nbSeg,isXConst,constValue) :
1958 quad->side[i].grid->GetUVPtStruct (isXConst,constValue);
1960 inline gp_UV calcUV(double x, double y,
1961 const gp_UV& a0,const gp_UV& a1,const gp_UV& a2,const gp_UV& a3,
1962 const gp_UV& p0,const gp_UV& p1,const gp_UV& p2,const gp_UV& p3)
1965 ((1 - y) * p0 + x * p1 + y * p2 + (1 - x) * p3 ) -
1966 ((1 - x) * (1 - y) * a0 + x * (1 - y) * a1 + x * y * a2 + (1 - x) * y * a3);
1970 //=============================================================================
1974 //=============================================================================
1976 bool StdMeshers_Quadrangle_2D::setNormalizedGrid (FaceQuadStruct::Ptr quad)
1978 if ( !quad->uv_grid.empty() )
1981 // Algorithme décrit dans "Génération automatique de maillages"
1982 // P.L. GEORGE, MASSON, § 6.4.1 p. 84-85
1983 // traitement dans le domaine paramétrique 2d u,v
1984 // transport - projection sur le carré unité
1987 // |<----north-2-------^ a3 -------------> a2
1989 // west-3 east-1 =right | |
1993 // v----south-0--------> a0 -------------> a1
1997 const FaceQuadStruct::Side & bSide = quad->side[0];
1998 const FaceQuadStruct::Side & rSide = quad->side[1];
1999 const FaceQuadStruct::Side & tSide = quad->side[2];
2000 const FaceQuadStruct::Side & lSide = quad->side[3];
2002 int nbhoriz = Min( bSide.NbPoints(), tSide.NbPoints() );
2003 int nbvertic = Min( rSide.NbPoints(), lSide.NbPoints() );
2004 if ( nbhoriz < 1 || nbvertic < 1 )
2005 return error("Algo error: empty quad");
2007 if ( myQuadList.size() == 1 )
2009 // all sub-quads must have NO sides with nbNodeOut > 0
2010 quad->nbNodeOut(0) = Max( 0, bSide.grid->NbPoints() - tSide.grid->NbPoints() );
2011 quad->nbNodeOut(1) = Max( 0, rSide.grid->NbPoints() - lSide.grid->NbPoints() );
2012 quad->nbNodeOut(2) = Max( 0, tSide.grid->NbPoints() - bSide.grid->NbPoints() );
2013 quad->nbNodeOut(3) = Max( 0, lSide.grid->NbPoints() - rSide.grid->NbPoints() );
2015 const vector<UVPtStruct>& uv_e0 = bSide.GetUVPtStruct();
2016 const vector<UVPtStruct>& uv_e1 = rSide.GetUVPtStruct();
2017 const vector<UVPtStruct>& uv_e2 = tSide.GetUVPtStruct();
2018 const vector<UVPtStruct>& uv_e3 = lSide.GetUVPtStruct();
2019 if (uv_e0.empty() || uv_e1.empty() || uv_e2.empty() || uv_e3.empty())
2020 //return error("Can't find nodes on sides");
2021 return error(COMPERR_BAD_INPUT_MESH);
2023 quad->uv_grid.resize( nbvertic * nbhoriz );
2024 quad->iSize = nbhoriz;
2025 quad->jSize = nbvertic;
2026 UVPtStruct *uv_grid = & quad->uv_grid[0];
2028 quad->uv_box.Clear();
2030 // copy data of face boundary
2032 FaceQuadStruct::SideIterator sideIter;
2036 const double x0 = bSide.First().normParam;
2037 const double dx = bSide.Last().normParam - bSide.First().normParam;
2038 for ( sideIter.Init( bSide ); sideIter.More(); sideIter.Next() ) {
2039 sideIter.UVPt().x = ( sideIter.UVPt().normParam - x0 ) / dx;
2040 sideIter.UVPt().y = 0.;
2041 uv_grid[ j * nbhoriz + sideIter.Count() ] = sideIter.UVPt();
2042 quad->uv_box.Add( sideIter.UVPt().UV() );
2046 const int i = nbhoriz - 1;
2047 const double y0 = rSide.First().normParam;
2048 const double dy = rSide.Last().normParam - rSide.First().normParam;
2049 sideIter.Init( rSide );
2050 if ( quad->UVPt( i, sideIter.Count() ).node )
2051 sideIter.Next(); // avoid copying from a split emulated side
2052 for ( ; sideIter.More(); sideIter.Next() ) {
2053 sideIter.UVPt().x = 1.;
2054 sideIter.UVPt().y = ( sideIter.UVPt().normParam - y0 ) / dy;
2055 uv_grid[ sideIter.Count() * nbhoriz + i ] = sideIter.UVPt();
2056 quad->uv_box.Add( sideIter.UVPt().UV() );
2060 const int j = nbvertic - 1;
2061 const double x0 = tSide.First().normParam;
2062 const double dx = tSide.Last().normParam - tSide.First().normParam;
2063 int i = 0, nb = nbhoriz;
2064 sideIter.Init( tSide );
2065 if ( quad->UVPt( nb-1, j ).node ) --nb; // avoid copying from a split emulated side
2066 for ( ; i < nb; i++, sideIter.Next()) {
2067 sideIter.UVPt().x = ( sideIter.UVPt().normParam - x0 ) / dx;
2068 sideIter.UVPt().y = 1.;
2069 uv_grid[ j * nbhoriz + i ] = sideIter.UVPt();
2070 quad->uv_box.Add( sideIter.UVPt().UV() );
2075 const double y0 = lSide.First().normParam;
2076 const double dy = lSide.Last().normParam - lSide.First().normParam;
2077 int j = 0, nb = nbvertic;
2078 sideIter.Init( lSide );
2079 if ( quad->UVPt( i, j ).node )
2080 ++j, sideIter.Next(); // avoid copying from a split emulated side
2081 if ( quad->UVPt( i, nb-1 ).node )
2083 for ( ; j < nb; j++, sideIter.Next()) {
2084 sideIter.UVPt().x = 0.;
2085 sideIter.UVPt().y = ( sideIter.UVPt().normParam - y0 ) / dy;
2086 uv_grid[ j * nbhoriz + i ] = sideIter.UVPt();
2087 quad->uv_box.Add( sideIter.UVPt().UV() );
2091 // normalized 2d parameters on grid
2093 for (int i = 1; i < nbhoriz-1; i++)
2095 const double x0 = quad->UVPt( i, 0 ).x;
2096 const double x1 = quad->UVPt( i, nbvertic-1 ).x;
2097 for (int j = 1; j < nbvertic-1; j++)
2099 const double y0 = quad->UVPt( 0, j ).y;
2100 const double y1 = quad->UVPt( nbhoriz-1, j ).y;
2101 // --- intersection : x=x0+(y0+x(y1-y0))(x1-x0)
2102 double x = (x0 + y0 * (x1 - x0)) / (1 - (y1 - y0) * (x1 - x0));
2103 double y = y0 + x * (y1 - y0);
2104 int ij = j * nbhoriz + i;
2107 uv_grid[ij].node = NULL;
2111 // projection on 2d domain (u,v)
2113 gp_UV a0 = quad->UVPt( 0, 0 ).UV();
2114 gp_UV a1 = quad->UVPt( nbhoriz-1, 0 ).UV();
2115 gp_UV a2 = quad->UVPt( nbhoriz-1, nbvertic-1 ).UV();
2116 gp_UV a3 = quad->UVPt( 0, nbvertic-1 ).UV();
2118 for (int i = 1; i < nbhoriz-1; i++)
2120 gp_UV p0 = quad->UVPt( i, 0 ).UV();
2121 gp_UV p2 = quad->UVPt( i, nbvertic-1 ).UV();
2122 for (int j = 1; j < nbvertic-1; j++)
2124 gp_UV p1 = quad->UVPt( nbhoriz-1, j ).UV();
2125 gp_UV p3 = quad->UVPt( 0, j ).UV();
2127 int ij = j * nbhoriz + i;
2128 double x = uv_grid[ij].x;
2129 double y = uv_grid[ij].y;
2131 gp_UV uv = calcUV(x,y, a0,a1,a2,a3, p0,p1,p2,p3);
2133 uv_grid[ij].u = uv.X();
2134 uv_grid[ij].v = uv.Y();
2140 //=======================================================================
2141 //function : ShiftQuad
2142 //purpose : auxiliary function for computeQuadPref
2143 //=======================================================================
2145 void StdMeshers_Quadrangle_2D::shiftQuad(FaceQuadStruct::Ptr& quad, const int num )
2147 quad->shift( num, /*ori=*/true, /*keepGrid=*/myQuadList.size() > 1 );
2150 //================================================================================
2152 * \brief Rotate sides of a quad CCW by given nb of quartes
2153 * \param nb - number of rotation quartes
2154 * \param ori - to keep orientation of sides as in an unit quad or not
2155 * \param keepGrid - if \c true Side::grid is not changed, Side::from and Side::to
2156 * are altered instead
2158 //================================================================================
2160 void FaceQuadStruct::shift( size_t nb, bool ori, bool keepGrid )
2162 if ( nb == 0 ) return;
2164 nb = nb % NB_QUAD_SIDES;
2166 vector< Side > newSides( side.size() );
2167 vector< Side* > sidePtrs( side.size() );
2168 for (int i = QUAD_BOTTOM_SIDE; i < NB_QUAD_SIDES; ++i)
2170 int id = (i + nb) % NB_QUAD_SIDES;
2173 bool wasForward = (i < QUAD_TOP_SIDE);
2174 bool newForward = (id < QUAD_TOP_SIDE);
2175 if ( wasForward != newForward )
2176 side[ i ].Reverse( keepGrid );
2178 newSides[ id ] = side[ i ];
2179 sidePtrs[ i ] = & side[ i ];
2181 // make newSides refer newSides via Side::Contact's
2182 for ( size_t i = 0; i < newSides.size(); ++i )
2184 FaceQuadStruct::Side& ns = newSides[ i ];
2185 for ( size_t iC = 0; iC < ns.contacts.size(); ++iC )
2187 FaceQuadStruct::Side* oSide = ns.contacts[iC].other_side;
2188 vector< Side* >::iterator sIt = std::find( sidePtrs.begin(), sidePtrs.end(), oSide );
2189 if ( sIt != sidePtrs.end() )
2190 ns.contacts[iC].other_side = & newSides[ *sIt - sidePtrs[0] ];
2193 newSides.swap( side );
2195 if ( keepGrid && !uv_grid.empty() )
2197 if ( nb == 2 ) // "PI"
2199 std::reverse( uv_grid.begin(), uv_grid.end() );
2203 FaceQuadStruct newQuad;
2204 newQuad.uv_grid.resize( uv_grid.size() );
2205 newQuad.iSize = jSize;
2206 newQuad.jSize = iSize;
2207 int i, j, iRev, jRev;
2208 int *iNew = ( nb == 1 ) ? &jRev : &j;
2209 int *jNew = ( nb == 1 ) ? &i : &iRev;
2210 for ( i = 0, iRev = iSize-1; i < iSize; ++i, --iRev )
2211 for ( j = 0, jRev = jSize-1; j < jSize; ++j, --jRev )
2212 newQuad.UVPt( *iNew, *jNew ) = UVPt( i, j );
2214 std::swap( iSize, jSize );
2215 std::swap( uv_grid, newQuad.uv_grid );
2224 //=======================================================================
2226 //purpose : auxiliary function for computeQuadPref
2227 //=======================================================================
2229 static gp_UV calcUV(double x0, double x1, double y0, double y1,
2230 FaceQuadStruct::Ptr& quad,
2231 const gp_UV& a0, const gp_UV& a1,
2232 const gp_UV& a2, const gp_UV& a3)
2234 double x = (x0 + y0 * (x1 - x0)) / (1 - (y1 - y0) * (x1 - x0));
2235 double y = y0 + x * (y1 - y0);
2237 gp_UV p0 = quad->side[QUAD_BOTTOM_SIDE].grid->Value2d(x).XY();
2238 gp_UV p1 = quad->side[QUAD_RIGHT_SIDE ].grid->Value2d(y).XY();
2239 gp_UV p2 = quad->side[QUAD_TOP_SIDE ].grid->Value2d(x).XY();
2240 gp_UV p3 = quad->side[QUAD_LEFT_SIDE ].grid->Value2d(y).XY();
2242 gp_UV uv = calcUV(x,y, a0,a1,a2,a3, p0,p1,p2,p3);
2247 //=======================================================================
2248 //function : calcUV2
2249 //purpose : auxiliary function for computeQuadPref
2250 //=======================================================================
2252 static gp_UV calcUV2(double x, double y,
2253 FaceQuadStruct::Ptr& quad,
2254 const gp_UV& a0, const gp_UV& a1,
2255 const gp_UV& a2, const gp_UV& a3)
2257 gp_UV p0 = quad->side[QUAD_BOTTOM_SIDE].grid->Value2d(x).XY();
2258 gp_UV p1 = quad->side[QUAD_RIGHT_SIDE ].grid->Value2d(y).XY();
2259 gp_UV p2 = quad->side[QUAD_TOP_SIDE ].grid->Value2d(x).XY();
2260 gp_UV p3 = quad->side[QUAD_LEFT_SIDE ].grid->Value2d(y).XY();
2262 gp_UV uv = calcUV(x,y, a0,a1,a2,a3, p0,p1,p2,p3);
2268 //=======================================================================
2270 * Create only quandrangle faces
2272 //=======================================================================
2274 bool StdMeshers_Quadrangle_2D::computeQuadPref (SMESH_Mesh & aMesh,
2275 const TopoDS_Face& aFace,
2276 FaceQuadStruct::Ptr quad)
2278 const bool OldVersion = (myQuadType == QUAD_QUADRANGLE_PREF_REVERSED);
2279 const bool WisF = true;
2281 SMESHDS_Mesh * meshDS = aMesh.GetMeshDS();
2282 Handle(Geom_Surface) S = BRep_Tool::Surface(aFace);
2283 int i,j, geomFaceID = meshDS->ShapeToIndex(aFace);
2285 int nb = quad->side[0].NbPoints();
2286 int nr = quad->side[1].NbPoints();
2287 int nt = quad->side[2].NbPoints();
2288 int nl = quad->side[3].NbPoints();
2289 int dh = abs(nb-nt);
2290 int dv = abs(nr-nl);
2292 if ( myForcedPnts.empty() )
2294 // rotate sides to be as in the picture below and to have
2295 // dh >= dv and nt > nb
2297 shiftQuad( quad, ( nt > nb ) ? 0 : 2 );
2299 shiftQuad( quad, ( nr > nl ) ? 1 : 3 );
2303 // rotate the quad to have nt > nb [and nr > nl]
2305 shiftQuad ( quad, nr > nl ? 1 : 2 );
2307 shiftQuad( quad, nb == nt ? 1 : 0 );
2309 shiftQuad( quad, 3 );
2312 nb = quad->side[0].NbPoints();
2313 nr = quad->side[1].NbPoints();
2314 nt = quad->side[2].NbPoints();
2315 nl = quad->side[3].NbPoints();
2318 int nbh = Max(nb,nt);
2319 int nbv = Max(nr,nl);
2323 // Orientation of face and 3 main domain for future faces
2324 // ----------- Old version ---------------
2330 // left | |__| | right
2337 // ----------- New version ---------------
2343 // left |/________\| right
2351 //const int bfrom = quad->side[0].from;
2352 //const int rfrom = quad->side[1].from;
2353 const int tfrom = quad->side[2].from;
2354 //const int lfrom = quad->side[3].from;
2356 const vector<UVPtStruct>& uv_eb_vec = quad->side[0].GetUVPtStruct(true,0);
2357 const vector<UVPtStruct>& uv_er_vec = quad->side[1].GetUVPtStruct(false,1);
2358 const vector<UVPtStruct>& uv_et_vec = quad->side[2].GetUVPtStruct(true,1);
2359 const vector<UVPtStruct>& uv_el_vec = quad->side[3].GetUVPtStruct(false,0);
2360 if (uv_eb_vec.empty() ||
2361 uv_er_vec.empty() ||
2362 uv_et_vec.empty() ||
2364 return error(COMPERR_BAD_INPUT_MESH);
2366 FaceQuadStruct::SideIterator uv_eb, uv_er, uv_et, uv_el;
2367 uv_eb.Init( quad->side[0] );
2368 uv_er.Init( quad->side[1] );
2369 uv_et.Init( quad->side[2] );
2370 uv_el.Init( quad->side[3] );
2372 gp_UV a0,a1,a2,a3, p0,p1,p2,p3, uv;
2375 a0 = uv_eb[ 0 ].UV();
2376 a1 = uv_er[ 0 ].UV();
2377 a2 = uv_er[ nr-1 ].UV();
2378 a3 = uv_et[ 0 ].UV();
2380 if ( !myForcedPnts.empty() )
2382 if ( dv != 0 && dh != 0 ) // here myQuadList.size() == 1
2384 const int dmin = Min( dv, dh );
2386 // Make a side separating domains L and Cb
2387 StdMeshers_FaceSidePtr sideLCb;
2388 UVPtStruct p3dom; // a point where 3 domains meat
2390 vector<UVPtStruct> pointsLCb( dmin+1 ); // 1--------1
2391 pointsLCb[0] = uv_eb[0]; // | | |
2392 for ( int i = 1; i <= dmin; ++i ) // | |Ct|
2394 x = uv_et[ i ].normParam; // | |__|
2395 y = uv_er[ i ].normParam; // | / |
2396 p0 = quad->side[0].grid->Value2d( x ).XY(); // | / Cb |dmin
2397 p1 = uv_er[ i ].UV(); // |/ |
2398 p2 = uv_et[ i ].UV(); // 0--------0
2399 p3 = quad->side[3].grid->Value2d( y ).XY();
2400 uv = calcUV( x,y, a0,a1,a2,a3, p0,p1,p2,p3 );
2401 pointsLCb[ i ].u = uv.X();
2402 pointsLCb[ i ].v = uv.Y();
2404 sideLCb = StdMeshers_FaceSide::New( pointsLCb, aFace );
2405 p3dom = pointsLCb.back();
2407 gp_Pnt xyz = S->Value( p3dom.u, p3dom.v );
2408 p3dom.node = myHelper->AddNode( xyz.X(), xyz.Y(), xyz.Z(), 0, p3dom.u, p3dom.v );
2409 pointsLCb.back() = p3dom;
2411 // Make a side separating domains L and Ct
2412 StdMeshers_FaceSidePtr sideLCt;
2414 vector<UVPtStruct> pointsLCt( nl );
2415 pointsLCt[0] = p3dom;
2416 pointsLCt.back() = uv_et[ dmin ];
2417 x = uv_et[ dmin ].normParam;
2418 p0 = quad->side[0].grid->Value2d( x ).XY();
2419 p2 = uv_et[ dmin ].UV();
2420 double y0 = uv_er[ dmin ].normParam;
2421 for ( int i = 1; i < nl-1; ++i )
2423 y = y0 + i / ( nl-1. ) * ( 1. - y0 );
2424 p1 = quad->side[1].grid->Value2d( y ).XY();
2425 p3 = quad->side[3].grid->Value2d( y ).XY();
2426 uv = calcUV( x,y, a0,a1,a2,a3, p0,p1,p2,p3 );
2427 pointsLCt[ i ].u = uv.X();
2428 pointsLCt[ i ].v = uv.Y();
2430 sideLCt = StdMeshers_FaceSide::New( pointsLCt, aFace );
2432 // Make a side separating domains Cb and Ct
2433 StdMeshers_FaceSidePtr sideCbCt;
2435 vector<UVPtStruct> pointsCbCt( nb );
2436 pointsCbCt[0] = p3dom;
2437 pointsCbCt.back() = uv_er[ dmin ];
2438 y = uv_er[ dmin ].normParam;
2439 p1 = uv_er[ dmin ].UV();
2440 p3 = quad->side[3].grid->Value2d( y ).XY();
2441 double x0 = uv_et[ dmin ].normParam;
2442 for ( int i = 1; i < nb-1; ++i )
2444 x = x0 + i / ( nb-1. ) * ( 1. - x0 );
2445 p2 = quad->side[2].grid->Value2d( x ).XY();
2446 p0 = quad->side[0].grid->Value2d( x ).XY();
2447 uv = calcUV( x,y, a0,a1,a2,a3, p0,p1,p2,p3 );
2448 pointsCbCt[ i ].u = uv.X();
2449 pointsCbCt[ i ].v = uv.Y();
2451 sideCbCt = StdMeshers_FaceSide::New( pointsCbCt, aFace );
2454 FaceQuadStruct* qCb = new FaceQuadStruct( quad->face, "Cb" );
2455 myQuadList.push_back( FaceQuadStruct::Ptr( qCb ));
2456 qCb->side.resize(4);
2457 qCb->side[0] = quad->side[0];
2458 qCb->side[1] = quad->side[1];
2459 qCb->side[2] = sideCbCt;
2460 qCb->side[3] = sideLCb;
2461 qCb->side[1].to = dmin+1;
2463 FaceQuadStruct* qL = new FaceQuadStruct( quad->face, "L" );
2464 myQuadList.push_back( FaceQuadStruct::Ptr( qL ));
2466 qL->side[0] = sideLCb;
2467 qL->side[1] = sideLCt;
2468 qL->side[2] = quad->side[2];
2469 qL->side[3] = quad->side[3];
2470 qL->side[2].to = dmin+1;
2471 // Make Ct from the main quad
2472 FaceQuadStruct::Ptr qCt = quad;
2473 qCt->side[0] = sideCbCt;
2474 qCt->side[3] = sideLCt;
2475 qCt->side[1].from = dmin;
2476 qCt->side[2].from = dmin;
2477 qCt->uv_grid.clear();
2481 qCb->side[3].AddContact( dmin, & qCb->side[2], 0 );
2482 qCb->side[3].AddContact( dmin, & qCt->side[3], 0 );
2483 qCt->side[3].AddContact( 0, & qCt->side[0], 0 );
2484 qCt->side[0].AddContact( 0, & qL ->side[0], dmin );
2485 qL ->side[0].AddContact( dmin, & qL ->side[1], 0 );
2486 qL ->side[0].AddContact( dmin, & qCb->side[2], 0 );
2489 return computeQuadDominant( aMesh, aFace );
2491 return computeQuadPref( aMesh, aFace, qCt );
2493 } // if ( dv != 0 && dh != 0 )
2495 //const int db = quad->side[0].IsReversed() ? -1 : +1;
2496 //const int dr = quad->side[1].IsReversed() ? -1 : +1;
2497 const int dt = quad->side[2].IsReversed() ? -1 : +1;
2498 //const int dl = quad->side[3].IsReversed() ? -1 : +1;
2500 // Case dv == 0, here possibly myQuadList.size() > 1
2512 const int lw = dh/2; // lateral width
2516 double lL = quad->side[3].Length();
2517 double lLwL = quad->side[2].Length( tfrom,
2518 tfrom + ( lw ) * dt );
2519 yCbL = lLwL / ( lLwL + lL );
2521 double lR = quad->side[1].Length();
2522 double lLwR = quad->side[2].Length( tfrom + ( lw + nb-1 ) * dt,
2523 tfrom + ( lw + nb-1 + lw ) * dt);
2524 yCbR = lLwR / ( lLwR + lR );
2526 // Make sides separating domains Cb and L and R
2527 StdMeshers_FaceSidePtr sideLCb, sideRCb;
2528 UVPtStruct pTBL, pTBR; // points where 3 domains meat
2530 vector<UVPtStruct> pointsLCb( lw+1 ), pointsRCb( lw+1 );
2531 pointsLCb[0] = uv_eb[ 0 ];
2532 pointsRCb[0] = uv_eb[ nb-1 ];
2533 for ( int i = 1, i2 = nt-2; i <= lw; ++i, --i2 )
2535 x = quad->side[2].Param( i );
2537 p0 = quad->side[0].Value2d( x );
2538 p1 = quad->side[1].Value2d( y );
2539 p2 = uv_et[ i ].UV();
2540 p3 = quad->side[3].Value2d( y );
2541 uv = calcUV( x,y, a0,a1,a2,a3, p0,p1,p2,p3 );
2542 pointsLCb[ i ].u = uv.X();
2543 pointsLCb[ i ].v = uv.Y();
2544 pointsLCb[ i ].x = x;
2546 x = quad->side[2].Param( i2 );
2548 p1 = quad->side[1].Value2d( y );
2549 p0 = quad->side[0].Value2d( x );
2550 p2 = uv_et[ i2 ].UV();
2551 p3 = quad->side[3].Value2d( y );
2552 uv = calcUV( x,y, a0,a1,a2,a3, p0,p1,p2,p3 );
2553 pointsRCb[ i ].u = uv.X();
2554 pointsRCb[ i ].v = uv.Y();
2555 pointsRCb[ i ].x = x;
2557 sideLCb = StdMeshers_FaceSide::New( pointsLCb, aFace );
2558 sideRCb = StdMeshers_FaceSide::New( pointsRCb, aFace );
2559 pTBL = pointsLCb.back();
2560 pTBR = pointsRCb.back();
2562 gp_Pnt xyz = S->Value( pTBL.u, pTBL.v );
2563 pTBL.node = myHelper->AddNode( xyz.X(), xyz.Y(), xyz.Z(), 0, pTBL.u, pTBL.v );
2564 pointsLCb.back() = pTBL;
2567 gp_Pnt xyz = S->Value( pTBR.u, pTBR.v );
2568 pTBR.node = myHelper->AddNode( xyz.X(), xyz.Y(), xyz.Z(), 0, pTBR.u, pTBR.v );
2569 pointsRCb.back() = pTBR;
2572 // Make sides separating domains Ct and L and R
2573 StdMeshers_FaceSidePtr sideLCt, sideRCt;
2575 vector<UVPtStruct> pointsLCt( nl ), pointsRCt( nl );
2576 pointsLCt[0] = pTBL;
2577 pointsLCt.back() = uv_et[ lw ];
2578 pointsRCt[0] = pTBR;
2579 pointsRCt.back() = uv_et[ lw + nb - 1 ];
2581 p0 = quad->side[0].Value2d( x );
2582 p2 = uv_et[ lw ].UV();
2583 int iR = lw + nb - 1;
2585 gp_UV p0R = quad->side[0].Value2d( xR );
2586 gp_UV p2R = uv_et[ iR ].UV();
2587 for ( int i = 1; i < nl-1; ++i )
2589 y = yCbL + ( 1. - yCbL ) * i / (nl-1.);
2590 p1 = quad->side[1].Value2d( y );
2591 p3 = quad->side[3].Value2d( y );
2592 uv = calcUV( x,y, a0,a1,a2,a3, p0,p1,p2,p3 );
2593 pointsLCt[ i ].u = uv.X();
2594 pointsLCt[ i ].v = uv.Y();
2596 y = yCbR + ( 1. - yCbR ) * i / (nl-1.);
2597 p1 = quad->side[1].Value2d( y );
2598 p3 = quad->side[3].Value2d( y );
2599 uv = calcUV( xR,y, a0,a1,a2,a3, p0R,p1,p2R,p3 );
2600 pointsRCt[ i ].u = uv.X();
2601 pointsRCt[ i ].v = uv.Y();
2603 sideLCt = StdMeshers_FaceSide::New( pointsLCt, aFace );
2604 sideRCt = StdMeshers_FaceSide::New( pointsRCt, aFace );
2606 // Make a side separating domains Cb and Ct
2607 StdMeshers_FaceSidePtr sideCbCt;
2609 vector<UVPtStruct> pointsCbCt( nb );
2610 pointsCbCt[0] = pTBL;
2611 pointsCbCt.back() = pTBR;
2612 p1 = quad->side[1].Value2d( yCbR );
2613 p3 = quad->side[3].Value2d( yCbL );
2614 for ( int i = 1; i < nb-1; ++i )
2616 x = quad->side[2].Param( i + lw );
2617 y = yCbL + ( yCbR - yCbL ) * i / (nb-1.);
2618 p2 = uv_et[ i + lw ].UV();
2619 p0 = quad->side[0].Value2d( x );
2620 uv = calcUV( x,y, a0,a1,a2,a3, p0,p1,p2,p3 );
2621 pointsCbCt[ i ].u = uv.X();
2622 pointsCbCt[ i ].v = uv.Y();
2624 sideCbCt = StdMeshers_FaceSide::New( pointsCbCt, aFace );
2627 FaceQuadStruct* qCb = new FaceQuadStruct( quad->face, "Cb" );
2628 myQuadList.push_back( FaceQuadStruct::Ptr( qCb ));
2629 qCb->side.resize(4);
2630 qCb->side[0] = quad->side[0];
2631 qCb->side[1] = sideRCb;
2632 qCb->side[2] = sideCbCt;
2633 qCb->side[3] = sideLCb;
2635 FaceQuadStruct* qL = new FaceQuadStruct( quad->face, "L" );
2636 myQuadList.push_back( FaceQuadStruct::Ptr( qL ));
2638 qL->side[0] = sideLCb;
2639 qL->side[1] = sideLCt;
2640 qL->side[2] = quad->side[2];
2641 qL->side[3] = quad->side[3];
2642 qL->side[2].to = ( lw + 1 ) * dt + tfrom;
2644 FaceQuadStruct* qR = new FaceQuadStruct( quad->face, "R" );
2645 myQuadList.push_back( FaceQuadStruct::Ptr( qR ));
2647 qR->side[0] = sideRCb;
2648 qR->side[0].from = lw;
2649 qR->side[0].to = -1;
2650 qR->side[0].di = -1;
2651 qR->side[1] = quad->side[1];
2652 qR->side[2] = quad->side[2];
2653 qR->side[2].from = ( lw + nb-1 ) * dt + tfrom;
2654 qR->side[3] = sideRCt;
2655 // Make Ct from the main quad
2656 FaceQuadStruct::Ptr qCt = quad;
2657 qCt->side[0] = sideCbCt;
2658 qCt->side[1] = sideRCt;
2659 qCt->side[2].from = ( lw ) * dt + tfrom;
2660 qCt->side[2].to = ( lw + nb ) * dt + tfrom;
2661 qCt->side[3] = sideLCt;
2662 qCt->uv_grid.clear();
2666 qCb->side[3].AddContact( lw, & qCb->side[2], 0 );
2667 qCb->side[3].AddContact( lw, & qCt->side[3], 0 );
2668 qCt->side[3].AddContact( 0, & qCt->side[0], 0 );
2669 qCt->side[0].AddContact( 0, & qL ->side[0], lw );
2670 qL ->side[0].AddContact( lw, & qL ->side[1], 0 );
2671 qL ->side[0].AddContact( lw, & qCb->side[2], 0 );
2673 qCb->side[1].AddContact( lw, & qCb->side[2], nb-1 );
2674 qCb->side[1].AddContact( lw, & qCt->side[1], 0 );
2675 qCt->side[0].AddContact( nb-1, & qCt->side[1], 0 );
2676 qCt->side[0].AddContact( nb-1, & qR ->side[0], lw );
2677 qR ->side[3].AddContact( 0, & qR ->side[0], lw );
2678 qR ->side[3].AddContact( 0, & qCb->side[2], nb-1 );
2680 return computeQuadDominant( aMesh, aFace );
2682 } // if ( !myForcedPnts.empty() )
2693 // arrays for normalized params
2694 TColStd_SequenceOfReal npb, npr, npt, npl;
2695 for (i=0; i<nb; i++) {
2696 npb.Append(uv_eb[i].normParam);
2698 for (i=0; i<nr; i++) {
2699 npr.Append(uv_er[i].normParam);
2701 for (i=0; i<nt; i++) {
2702 npt.Append(uv_et[i].normParam);
2704 for (i=0; i<nl; i++) {
2705 npl.Append(uv_el[i].normParam);
2710 // add some params to right and left after the first param
2713 double dpr = (npr.Value(2) - npr.Value(1))/(dr+1);
2714 for (i=1; i<=dr; i++) {
2715 npr.InsertAfter(1,npr.Value(2)-dpr);
2719 dpr = (npl.Value(2) - npl.Value(1))/(dl+1);
2720 for (i=1; i<=dl; i++) {
2721 npl.InsertAfter(1,npl.Value(2)-dpr);
2725 int nnn = Min(nr,nl);
2726 // auxiliary sequence of XY for creation nodes
2727 // in the bottom part of central domain
2728 // Length of UVL and UVR must be == nbv-nnn
2729 TColgp_SequenceOfXY UVL, UVR, UVT;
2732 // step1: create faces for left domain
2733 StdMeshers_Array2OfNode NodesL(1,dl+1,1,nl);
2735 for (j=1; j<=nl; j++)
2736 NodesL.SetValue(1,j,uv_el[j-1].node);
2739 for (i=1; i<=dl; i++)
2740 NodesL.SetValue(i+1,nl,uv_et[i].node);
2741 // create and add needed nodes
2742 TColgp_SequenceOfXY UVtmp;
2743 for (i=1; i<=dl; i++) {
2744 double x0 = npt.Value(i+1);
2747 double y0 = npl.Value(i+1);
2748 double y1 = npr.Value(i+1);
2749 gp_UV UV = calcUV(x0, x1, y0, y1, quad, a0, a1, a2, a3);
2750 gp_Pnt P = S->Value(UV.X(),UV.Y());
2751 SMDS_MeshNode * N = meshDS->AddNode(P.X(), P.Y(), P.Z());
2752 meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
2753 NodesL.SetValue(i+1,1,N);
2754 if (UVL.Length()<nbv-nnn) UVL.Append(UV);
2756 for (j=2; j<nl; j++) {
2757 double y0 = npl.Value(dl+j);
2758 double y1 = npr.Value(dl+j);
2759 gp_UV UV = calcUV(x0, x1, y0, y1, quad, a0, a1, a2, a3);
2760 gp_Pnt P = S->Value(UV.X(),UV.Y());
2761 SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
2762 meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
2763 NodesL.SetValue(i+1,j,N);
2764 if (i==dl) UVtmp.Append(UV);
2767 for (i=1; i<=UVtmp.Length() && UVL.Length()<nbv-nnn; i++) {
2768 UVL.Append(UVtmp.Value(i));
2771 for (i=1; i<=dl; i++) {
2772 for (j=1; j<nl; j++) {
2774 myHelper->AddFace(NodesL.Value(i,j), NodesL.Value(i+1,j),
2775 NodesL.Value(i+1,j+1), NodesL.Value(i,j+1));
2781 // fill UVL using c2d
2782 for (i=1; i<npl.Length() && UVL.Length()<nbv-nnn; i++) {
2783 UVL.Append(gp_UV (uv_el[i].u, uv_el[i].v));
2787 // step2: create faces for right domain
2788 StdMeshers_Array2OfNode NodesR(1,dr+1,1,nr);
2790 for (j=1; j<=nr; j++)
2791 NodesR.SetValue(1,j,uv_er[nr-j].node);
2794 for (i=1; i<=dr; i++)
2795 NodesR.SetValue(i+1,1,uv_et[nt-1-i].node);
2796 // create and add needed nodes
2797 TColgp_SequenceOfXY UVtmp;
2798 for (i=1; i<=dr; i++) {
2799 double x0 = npt.Value(nt-i);
2802 double y0 = npl.Value(i+1);
2803 double y1 = npr.Value(i+1);
2804 gp_UV UV = calcUV(x0, x1, y0, y1, quad, a0, a1, a2, a3);
2805 gp_Pnt P = S->Value(UV.X(),UV.Y());
2806 SMDS_MeshNode * N = meshDS->AddNode(P.X(), P.Y(), P.Z());
2807 meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
2808 NodesR.SetValue(i+1,nr,N);
2809 if (UVR.Length()<nbv-nnn) UVR.Append(UV);
2811 for (j=2; j<nr; j++) {
2812 double y0 = npl.Value(nbv-j+1);
2813 double y1 = npr.Value(nbv-j+1);
2814 gp_UV UV = calcUV(x0, x1, y0, y1, quad, a0, a1, a2, a3);
2815 gp_Pnt P = S->Value(UV.X(),UV.Y());
2816 SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
2817 meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
2818 NodesR.SetValue(i+1,j,N);
2819 if (i==dr) UVtmp.Prepend(UV);
2822 for (i=1; i<=UVtmp.Length() && UVR.Length()<nbv-nnn; i++) {
2823 UVR.Append(UVtmp.Value(i));
2826 for (i=1; i<=dr; i++) {
2827 for (j=1; j<nr; j++) {
2829 myHelper->AddFace(NodesR.Value(i,j), NodesR.Value(i+1,j),
2830 NodesR.Value(i+1,j+1), NodesR.Value(i,j+1));
2836 // fill UVR using c2d
2837 for (i=1; i<npr.Length() && UVR.Length()<nbv-nnn; i++) {
2838 UVR.Append(gp_UV(uv_er[i].u, uv_er[i].v));
2842 // step3: create faces for central domain
2843 StdMeshers_Array2OfNode NodesC(1,nb,1,nbv);
2844 // add first line using NodesL
2845 for (i=1; i<=dl+1; i++)
2846 NodesC.SetValue(1,i,NodesL(i,1));
2847 for (i=2; i<=nl; i++)
2848 NodesC.SetValue(1,dl+i,NodesL(dl+1,i));
2849 // add last line using NodesR
2850 for (i=1; i<=dr+1; i++)
2851 NodesC.SetValue(nb,i,NodesR(i,nr));
2852 for (i=1; i<nr; i++)
2853 NodesC.SetValue(nb,dr+i+1,NodesR(dr+1,nr-i));
2854 // add top nodes (last columns)
2855 for (i=dl+2; i<nbh-dr; i++)
2856 NodesC.SetValue(i-dl,nbv,uv_et[i-1].node);
2857 // add bottom nodes (first columns)
2858 for (i=2; i<nb; i++)
2859 NodesC.SetValue(i,1,uv_eb[i-1].node);
2861 // create and add needed nodes
2862 // add linear layers
2863 for (i=2; i<nb; i++) {
2864 double x0 = npt.Value(dl+i);
2866 for (j=1; j<nnn; j++) {
2867 double y0 = npl.Value(nbv-nnn+j);
2868 double y1 = npr.Value(nbv-nnn+j);
2869 gp_UV UV = calcUV(x0, x1, y0, y1, quad, a0, a1, a2, a3);
2870 gp_Pnt P = S->Value(UV.X(),UV.Y());
2871 SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
2872 meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
2873 NodesC.SetValue(i,nbv-nnn+j,N);
2878 // add diagonal layers
2879 gp_UV A2 = UVR.Value(nbv-nnn);
2880 gp_UV A3 = UVL.Value(nbv-nnn);
2881 for (i=1; i<nbv-nnn; i++) {
2882 gp_UV p1 = UVR.Value(i);
2883 gp_UV p3 = UVL.Value(i);
2884 double y = i / double(nbv-nnn);
2885 for (j=2; j<nb; j++) {
2886 double x = npb.Value(j);
2887 gp_UV p0( uv_eb[j-1].u, uv_eb[j-1].v );
2888 gp_UV p2 = UVT.Value( j-1 );
2889 gp_UV UV = calcUV(x, y, a0, a1, A2, A3, p0,p1,p2,p3 );
2890 gp_Pnt P = S->Value(UV.X(),UV.Y());
2891 SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
2892 meshDS->SetNodeOnFace(N, geomFaceID, UV.X(),UV.Y());
2893 NodesC.SetValue(j,i+1,N);
2897 for (i=1; i<nb; i++) {
2898 for (j=1; j<nbv; j++) {
2900 myHelper->AddFace(NodesC.Value(i,j), NodesC.Value(i+1,j),
2901 NodesC.Value(i+1,j+1), NodesC.Value(i,j+1));
2907 else { // New version (!OldVersion)
2908 // step1: create faces for bottom rectangle domain
2909 StdMeshers_Array2OfNode NodesBRD(1,nb,1,nnn-1);
2910 // fill UVL and UVR using c2d
2911 for (j=0; j<nb; j++) {
2912 NodesBRD.SetValue(j+1,1,uv_eb[j].node);
2914 for (i=1; i<nnn-1; i++) {
2915 NodesBRD.SetValue(1,i+1,uv_el[i].node);
2916 NodesBRD.SetValue(nb,i+1,uv_er[i].node);
2917 for (j=2; j<nb; j++) {
2918 double x = npb.Value(j);
2919 double y = (1-x) * npl.Value(i+1) + x * npr.Value(i+1);
2920 gp_UV UV = calcUV2(x, y, quad, a0, a1, a2, a3);
2921 gp_Pnt P = S->Value(UV.X(),UV.Y());
2922 SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
2923 meshDS->SetNodeOnFace(N, geomFaceID, UV.X(),UV.Y());
2924 NodesBRD.SetValue(j,i+1,N);
2927 for (j=1; j<nnn-1; j++) {
2928 for (i=1; i<nb; i++) {
2930 myHelper->AddFace(NodesBRD.Value(i,j), NodesBRD.Value(i+1,j),
2931 NodesBRD.Value(i+1,j+1), NodesBRD.Value(i,j+1));
2935 int drl = abs(nr-nl);
2936 // create faces for region C
2937 StdMeshers_Array2OfNode NodesC(1,nb,1,drl+1+addv);
2938 // add nodes from previous region
2939 for (j=1; j<=nb; j++) {
2940 NodesC.SetValue(j,1,NodesBRD.Value(j,nnn-1));
2942 if ((drl+addv) > 0) {
2947 TColgp_SequenceOfXY UVtmp;
2948 double drparam = npr.Value(nr) - npr.Value(nnn-1);
2949 double dlparam = npl.Value(nnn) - npl.Value(nnn-1);
2950 double y0 = 0, y1 = 0;
2951 for (i=1; i<=drl; i++) {
2952 // add existed nodes from right edge
2953 NodesC.SetValue(nb,i+1,uv_er[nnn+i-2].node);
2954 //double dtparam = npt.Value(i+1);
2955 y1 = npr.Value(nnn+i-1); // param on right edge
2956 double dpar = (y1 - npr.Value(nnn-1))/drparam;
2957 y0 = npl.Value(nnn-1) + dpar*dlparam; // param on left edge
2958 double dy = y1 - y0;
2959 for (j=1; j<nb; j++) {
2960 double x = npt.Value(i+1) + npb.Value(j)*(1-npt.Value(i+1));
2961 double y = y0 + dy*x;
2962 gp_UV UV = calcUV2(x, y, quad, a0, a1, a2, a3);
2963 gp_Pnt P = S->Value(UV.X(),UV.Y());
2964 SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
2965 meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
2966 NodesC.SetValue(j,i+1,N);
2969 double dy0 = (1-y0)/(addv+1);
2970 double dy1 = (1-y1)/(addv+1);
2971 for (i=1; i<=addv; i++) {
2972 double yy0 = y0 + dy0*i;
2973 double yy1 = y1 + dy1*i;
2974 double dyy = yy1 - yy0;
2975 for (j=1; j<=nb; j++) {
2976 double x = npt.Value(i+1+drl) +
2977 npb.Value(j) * (npt.Value(nt-i) - npt.Value(i+1+drl));
2978 double y = yy0 + dyy*x;
2979 gp_UV UV = calcUV2(x, y, quad, a0, a1, a2, a3);
2980 gp_Pnt P = S->Value(UV.X(),UV.Y());
2981 SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
2982 meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
2983 NodesC.SetValue(j,i+drl+1,N);
2990 TColgp_SequenceOfXY UVtmp;
2991 double dlparam = npl.Value(nl) - npl.Value(nnn-1);
2992 double drparam = npr.Value(nnn) - npr.Value(nnn-1);
2993 double y0 = npl.Value(nnn-1);
2994 double y1 = npr.Value(nnn-1);
2995 for (i=1; i<=drl; i++) {
2996 // add existed nodes from right edge
2997 NodesC.SetValue(1,i+1,uv_el[nnn+i-2].node);
2998 y0 = npl.Value(nnn+i-1); // param on left edge
2999 double dpar = (y0 - npl.Value(nnn-1))/dlparam;
3000 y1 = npr.Value(nnn-1) + dpar*drparam; // param on right edge
3001 double dy = y1 - y0;
3002 for (j=2; j<=nb; j++) {
3003 double x = npb.Value(j)*npt.Value(nt-i);
3004 double y = y0 + dy*x;
3005 gp_UV UV = calcUV2(x, y, quad, a0, a1, a2, a3);
3006 gp_Pnt P = S->Value(UV.X(),UV.Y());
3007 SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
3008 meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
3009 NodesC.SetValue(j,i+1,N);
3012 double dy0 = (1-y0)/(addv+1);
3013 double dy1 = (1-y1)/(addv+1);
3014 for (i=1; i<=addv; i++) {
3015 double yy0 = y0 + dy0*i;
3016 double yy1 = y1 + dy1*i;
3017 double dyy = yy1 - yy0;
3018 for (j=1; j<=nb; j++) {
3019 double x = npt.Value(i+1) +
3020 npb.Value(j) * (npt.Value(nt-i-drl) - npt.Value(i+1));
3021 double y = yy0 + dyy*x;
3022 gp_UV UV = calcUV2(x, y, quad, a0, a1, a2, a3);
3023 gp_Pnt P = S->Value(UV.X(),UV.Y());
3024 SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
3025 meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
3026 NodesC.SetValue(j,i+drl+1,N);
3031 for (j=1; j<=drl+addv; j++) {
3032 for (i=1; i<nb; i++) {
3034 myHelper->AddFace(NodesC.Value(i,j), NodesC.Value(i+1,j),
3035 NodesC.Value(i+1,j+1), NodesC.Value(i,j+1));
3040 StdMeshers_Array2OfNode NodesLast(1,nt,1,2);
3041 for (i=1; i<=nt; i++) {
3042 NodesLast.SetValue(i,2,uv_et[i-1].node);
3045 for (i=n1; i<drl+addv+1; i++) {
3047 NodesLast.SetValue(nnn,1,NodesC.Value(1,i));
3049 for (i=1; i<=nb; i++) {
3051 NodesLast.SetValue(nnn,1,NodesC.Value(i,drl+addv+1));
3053 for (i=drl+addv; i>=n2; i--) {
3055 NodesLast.SetValue(nnn,1,NodesC.Value(nb,i));
3057 for (i=1; i<nt; i++) {
3059 myHelper->AddFace(NodesLast.Value(i,1), NodesLast.Value(i+1,1),
3060 NodesLast.Value(i+1,2), NodesLast.Value(i,2));
3063 } // if ((drl+addv) > 0)
3065 } // end new version implementation
3072 //=======================================================================
3074 * Evaluate only quandrangle faces
3076 //=======================================================================
3078 bool StdMeshers_Quadrangle_2D::evaluateQuadPref(SMESH_Mesh & aMesh,
3079 const TopoDS_Shape& aShape,
3080 std::vector<int>& aNbNodes,
3081 MapShapeNbElems& aResMap,
3084 // Auxiliary key in order to keep old variant
3085 // of meshing after implementation new variant
3086 // for bug 0016220 from Mantis.
3087 bool OldVersion = false;
3088 if (myQuadType == QUAD_QUADRANGLE_PREF_REVERSED)
3091 const TopoDS_Face& F = TopoDS::Face(aShape);
3092 Handle(Geom_Surface) S = BRep_Tool::Surface(F);
3094 int nb = aNbNodes[0];
3095 int nr = aNbNodes[1];
3096 int nt = aNbNodes[2];
3097 int nl = aNbNodes[3];
3098 int dh = abs(nb-nt);
3099 int dv = abs(nr-nl);
3103 // it is a base case => not shift
3106 // we have to shift on 2
3115 // we have to shift quad on 1
3122 // we have to shift quad on 3
3132 int nbh = Max(nb,nt);
3133 int nbv = Max(nr,nl);
3148 // add some params to right and left after the first param
3155 int nnn = Min(nr,nl);
3160 // step1: create faces for left domain
3162 nbNodes += dl*(nl-1);
3163 nbFaces += dl*(nl-1);
3165 // step2: create faces for right domain
3167 nbNodes += dr*(nr-1);
3168 nbFaces += dr*(nr-1);
3170 // step3: create faces for central domain
3171 nbNodes += (nb-2)*(nnn-1) + (nbv-nnn-1)*(nb-2);
3172 nbFaces += (nb-1)*(nbv-1);
3174 else { // New version (!OldVersion)
3175 nbNodes += (nnn-2)*(nb-2);
3176 nbFaces += (nnn-2)*(nb-1);
3177 int drl = abs(nr-nl);
3178 nbNodes += drl*(nb-1) + addv*nb;
3179 nbFaces += (drl+addv)*(nb-1) + (nt-1);
3180 } // end new version implementation
3182 std::vector<int> aVec(SMDSEntity_Last);
3183 for (int i=SMDSEntity_Node; i<SMDSEntity_Last; i++) aVec[i] = 0;
3185 aVec[SMDSEntity_Quad_Quadrangle] = nbFaces;
3186 aVec[SMDSEntity_Node] = nbNodes + nbFaces*4;
3187 if (aNbNodes.size()==5) {
3188 aVec[SMDSEntity_Quad_Triangle] = aNbNodes[3] - 1;
3189 aVec[SMDSEntity_Quad_Quadrangle] = nbFaces - aNbNodes[3] + 1;
3193 aVec[SMDSEntity_Node] = nbNodes;
3194 aVec[SMDSEntity_Quadrangle] = nbFaces;
3195 if (aNbNodes.size()==5) {
3196 aVec[SMDSEntity_Triangle] = aNbNodes[3] - 1;
3197 aVec[SMDSEntity_Quadrangle] = nbFaces - aNbNodes[3] + 1;
3200 SMESH_subMesh * sm = aMesh.GetSubMesh(aShape);
3201 aResMap.insert(std::make_pair(sm,aVec));
3206 //=============================================================================
3207 /*! Split quadrangle in to 2 triangles by smallest diagonal
3210 //=============================================================================
3212 void StdMeshers_Quadrangle_2D::splitQuadFace(SMESHDS_Mesh * /*theMeshDS*/,
3214 const SMDS_MeshNode* theNode1,
3215 const SMDS_MeshNode* theNode2,
3216 const SMDS_MeshNode* theNode3,
3217 const SMDS_MeshNode* theNode4)
3219 if ( SMESH_TNodeXYZ( theNode1 ).SquareDistance( theNode3 ) >
3220 SMESH_TNodeXYZ( theNode2 ).SquareDistance( theNode4 ) )
3222 myHelper->AddFace(theNode2, theNode4 , theNode1);
3223 myHelper->AddFace(theNode2, theNode3, theNode4);
3227 myHelper->AddFace(theNode1, theNode2 ,theNode3);
3228 myHelper->AddFace(theNode1, theNode3, theNode4);
3234 enum uvPos { UV_A0, UV_A1, UV_A2, UV_A3, UV_B, UV_R, UV_T, UV_L, UV_SIZE };
3236 inline SMDS_MeshNode* makeNode( UVPtStruct & uvPt,
3238 FaceQuadStruct::Ptr& quad,
3240 SMESH_MesherHelper* helper,
3241 Handle(Geom_Surface) S)
3243 const vector<UVPtStruct>& uv_eb = quad->side[QUAD_BOTTOM_SIDE].GetUVPtStruct();
3244 const vector<UVPtStruct>& uv_et = quad->side[QUAD_TOP_SIDE ].GetUVPtStruct();
3245 double rBot = ( uv_eb.size() - 1 ) * uvPt.normParam;
3246 double rTop = ( uv_et.size() - 1 ) * uvPt.normParam;
3247 int iBot = int( rBot );
3248 int iTop = int( rTop );
3249 double xBot = uv_eb[ iBot ].normParam + ( rBot - iBot ) * ( uv_eb[ iBot+1 ].normParam - uv_eb[ iBot ].normParam );
3250 double xTop = uv_et[ iTop ].normParam + ( rTop - iTop ) * ( uv_et[ iTop+1 ].normParam - uv_et[ iTop ].normParam );
3251 double x = xBot + y * ( xTop - xBot );
3253 gp_UV uv = calcUV(/*x,y=*/x, y,
3254 /*a0,...=*/UVs[UV_A0], UVs[UV_A1], UVs[UV_A2], UVs[UV_A3],
3255 /*p0=*/quad->side[QUAD_BOTTOM_SIDE].grid->Value2d( x ).XY(),
3257 /*p2=*/quad->side[QUAD_TOP_SIDE ].grid->Value2d( x ).XY(),
3258 /*p3=*/UVs[ UV_L ]);
3259 gp_Pnt P = S->Value( uv.X(), uv.Y() );
3262 return helper->AddNode(P.X(), P.Y(), P.Z(), 0, uv.X(), uv.Y() );
3265 void reduce42( const vector<UVPtStruct>& curr_base,
3266 vector<UVPtStruct>& next_base,
3268 int & next_base_len,
3269 FaceQuadStruct::Ptr& quad,
3272 SMESH_MesherHelper* helper,
3273 Handle(Geom_Surface)& S)
3275 // add one "HH": nodes a,b,c,d,e and faces 1,2,3,4,5,6
3277 // .-----a-----b i + 1
3288 const SMDS_MeshNode*& Na = next_base[ ++next_base_len ].node;
3290 Na = makeNode( next_base[ next_base_len ], y, quad, UVs, helper, S );
3293 const SMDS_MeshNode*& Nb = next_base[ ++next_base_len ].node;
3295 Nb = makeNode( next_base[ next_base_len ], y, quad, UVs, helper, S );
3298 double u = (curr_base[j + 2].u + next_base[next_base_len - 2].u) / 2.0;
3299 double v = (curr_base[j + 2].v + next_base[next_base_len - 2].v) / 2.0;
3300 gp_Pnt P = S->Value(u,v);
3301 SMDS_MeshNode* Nc = helper->AddNode(P.X(), P.Y(), P.Z(), 0, u, v);
3304 u = (curr_base[j + 2].u + next_base[next_base_len - 1].u) / 2.0;
3305 v = (curr_base[j + 2].v + next_base[next_base_len - 1].v) / 2.0;
3307 SMDS_MeshNode* Nd = helper->AddNode(P.X(), P.Y(), P.Z(), 0, u, v);
3310 u = (curr_base[j + 2].u + next_base[next_base_len].u) / 2.0;
3311 v = (curr_base[j + 2].v + next_base[next_base_len].v) / 2.0;
3313 SMDS_MeshNode* Ne = helper->AddNode(P.X(), P.Y(), P.Z(), 0, u, v);
3316 helper->AddFace(curr_base[j + 0].node,
3317 curr_base[j + 1].node, Nc,
3318 next_base[next_base_len - 2].node);
3320 helper->AddFace(curr_base[j + 1].node,
3321 curr_base[j + 2].node, Nd, Nc);
3323 helper->AddFace(curr_base[j + 2].node,
3324 curr_base[j + 3].node, Ne, Nd);
3326 helper->AddFace(curr_base[j + 3].node,
3327 curr_base[j + 4].node, Nb, Ne);
3329 helper->AddFace(Nc, Nd, Na, next_base[next_base_len - 2].node);
3331 helper->AddFace(Nd, Ne, Nb, Na);
3334 void reduce31( const vector<UVPtStruct>& curr_base,
3335 vector<UVPtStruct>& next_base,
3337 int & next_base_len,
3338 FaceQuadStruct::Ptr& quad,
3341 SMESH_MesherHelper* helper,
3342 Handle(Geom_Surface)& S)
3344 // add one "H": nodes b,c,e and faces 1,2,4,5
3346 // .---------b i + 1
3357 const SMDS_MeshNode*& Nb = next_base[ ++next_base_len ].node;
3359 Nb = makeNode( next_base[ next_base_len ], y, quad, UVs, helper, S );
3362 double u1 = (curr_base[ j ].u + next_base[ next_base_len-1 ].u ) / 2.0;
3363 double u2 = (curr_base[ j+3 ].u + next_base[ next_base_len ].u ) / 2.0;
3364 double u3 = (u2 - u1) / 3.0;
3366 double v1 = (curr_base[ j ].v + next_base[ next_base_len-1 ].v ) / 2.0;
3367 double v2 = (curr_base[ j+3 ].v + next_base[ next_base_len ].v ) / 2.0;
3368 double v3 = (v2 - v1) / 3.0;
3372 gp_Pnt P = S->Value(u,v);
3373 SMDS_MeshNode* Nc = helper->AddNode( P.X(), P.Y(), P.Z(), 0, u, v );
3378 SMDS_MeshNode* Ne = helper->AddNode( P.X(), P.Y(), P.Z(), 0, u, v );
3382 helper->AddFace( curr_base[ j + 0 ].node,
3383 curr_base[ j + 1 ].node,
3385 next_base[ next_base_len - 1 ].node);
3387 helper->AddFace( curr_base[ j + 1 ].node,
3388 curr_base[ j + 2 ].node, Ne, Nc);
3390 helper->AddFace( curr_base[ j + 2 ].node,
3391 curr_base[ j + 3 ].node, Nb, Ne);
3393 helper->AddFace(Nc, Ne, Nb,
3394 next_base[ next_base_len - 1 ].node);
3397 typedef void (* PReduceFunction) ( const vector<UVPtStruct>& curr_base,
3398 vector<UVPtStruct>& next_base,
3400 int & next_base_len,
3401 FaceQuadStruct::Ptr & quad,
3404 SMESH_MesherHelper* helper,
3405 Handle(Geom_Surface)& S);
3409 //=======================================================================
3411 * Implementation of Reduced algorithm (meshing with quadrangles only)
3413 //=======================================================================
3415 bool StdMeshers_Quadrangle_2D::computeReduced (SMESH_Mesh & aMesh,
3416 const TopoDS_Face& aFace,
3417 FaceQuadStruct::Ptr quad)
3419 SMESHDS_Mesh * meshDS = aMesh.GetMeshDS();
3420 Handle(Geom_Surface) S = BRep_Tool::Surface(aFace);
3421 int i,j,geomFaceID = meshDS->ShapeToIndex(aFace);
3423 int nb = quad->side[0].NbPoints(); // bottom
3424 int nr = quad->side[1].NbPoints(); // right
3425 int nt = quad->side[2].NbPoints(); // top
3426 int nl = quad->side[3].NbPoints(); // left
3428 // Simple Reduce 10->8->6->4 (3 steps) Multiple Reduce 10->4 (1 step)
3430 // .-----.-----.-----.-----. .-----.-----.-----.-----.
3431 // | / \ | / \ | | / \ | / \ |
3432 // | / .--.--. \ | | / \ | / \ |
3433 // | / / | \ \ | | / .----.----. \ |
3434 // .---.---.---.---.---.---. | / / \ | / \ \ |
3435 // | / / \ | / \ \ | | / / \ | / \ \ |
3436 // | / / .-.-. \ \ | | / / .---.---. \ \ |
3437 // | / / / | \ \ \ | | / / / \ | / \ \ \ |
3438 // .--.--.--.--.--.--.--.--. | / / / \ | / \ \ \ |
3439 // | / / / \ | / \ \ \ | | / / / .-.-. \ \ \ |
3440 // | / / / .-.-. \ \ \ | | / / / / | \ \ \ \ |
3441 // | / / / / | \ \ \ \ | | / / / / | \ \ \ \ |
3442 // .-.-.-.--.--.--.--.-.-.-. .-.-.-.--.--.--.--.-.-.-.
3444 bool MultipleReduce = false;
3456 else if (nb == nt) {
3457 nr1 = nb; // and == nt
3471 // number of rows and columns
3472 int nrows = nr1 - 1;
3473 int ncol_top = nt1 - 1;
3474 int ncol_bot = nb1 - 1;
3475 // number of rows needed to reduce ncol_bot to ncol_top using simple 3->1 "tree" (see below)
3477 int( ceil( log( double(ncol_bot) / ncol_top) / log( 3.))); // = log x base 3
3478 if ( nrows < nrows_tree31 )
3480 MultipleReduce = true;
3481 error( COMPERR_WARNING,
3482 SMESH_Comment("To use 'Reduced' transition, "
3483 "number of face rows should be at least ")
3484 << nrows_tree31 << ". Actual number of face rows is " << nrows << ". "
3485 "'Quadrangle preference (reversed)' transion has been used.");
3489 if (MultipleReduce) { // == computeQuadPref QUAD_QUADRANGLE_PREF_REVERSED
3490 //==================================================
3491 int dh = abs(nb-nt);
3492 int dv = abs(nr-nl);
3496 // it is a base case => not shift quad but may be replacement is need
3500 // we have to shift quad on 2
3506 // we have to shift quad on 1
3510 // we have to shift quad on 3
3515 nb = quad->side[0].NbPoints();
3516 nr = quad->side[1].NbPoints();
3517 nt = quad->side[2].NbPoints();
3518 nl = quad->side[3].NbPoints();
3521 int nbh = Max(nb,nt);
3522 int nbv = Max(nr,nl);
3535 const vector<UVPtStruct>& uv_eb = quad->side[0].GetUVPtStruct(true,0);
3536 const vector<UVPtStruct>& uv_er = quad->side[1].GetUVPtStruct(false,1);
3537 const vector<UVPtStruct>& uv_et = quad->side[2].GetUVPtStruct(true,1);
3538 const vector<UVPtStruct>& uv_el = quad->side[3].GetUVPtStruct(false,0);
3540 if ((int) uv_eb.size() != nb || (int) uv_er.size() != nr ||
3541 (int) uv_et.size() != nt || (int) uv_el.size() != nl)
3542 return error(COMPERR_BAD_INPUT_MESH);
3544 // arrays for normalized params
3545 TColStd_SequenceOfReal npb, npr, npt, npl;
3546 for (j = 0; j < nb; j++) {
3547 npb.Append(uv_eb[j].normParam);
3549 for (i = 0; i < nr; i++) {
3550 npr.Append(uv_er[i].normParam);
3552 for (j = 0; j < nt; j++) {
3553 npt.Append(uv_et[j].normParam);
3555 for (i = 0; i < nl; i++) {
3556 npl.Append(uv_el[i].normParam);
3560 // orientation of face and 3 main domain for future faces
3566 // left | | | | right
3573 // add some params to right and left after the first param
3576 double dpr = (npr.Value(2) - npr.Value(1))/(dr+1);
3577 for (i=1; i<=dr; i++) {
3578 npr.InsertAfter(1,npr.Value(2)-dpr);
3582 dpr = (npl.Value(2) - npl.Value(1))/(dl+1);
3583 for (i=1; i<=dl; i++) {
3584 npl.InsertAfter(1,npl.Value(2)-dpr);
3587 gp_XY a0 (uv_eb.front().u, uv_eb.front().v);
3588 gp_XY a1 (uv_eb.back().u, uv_eb.back().v);
3589 gp_XY a2 (uv_et.back().u, uv_et.back().v);
3590 gp_XY a3 (uv_et.front().u, uv_et.front().v);
3592 int nnn = Min(nr,nl);
3593 // auxiliary sequence of XY for creation of nodes
3594 // in the bottom part of central domain
3595 // it's length must be == nbv-nnn-1
3596 TColgp_SequenceOfXY UVL;
3597 TColgp_SequenceOfXY UVR;
3598 //==================================================
3600 // step1: create faces for left domain
3601 StdMeshers_Array2OfNode NodesL(1,dl+1,1,nl);
3603 for (j=1; j<=nl; j++)
3604 NodesL.SetValue(1,j,uv_el[j-1].node);
3607 for (i=1; i<=dl; i++)
3608 NodesL.SetValue(i+1,nl,uv_et[i].node);
3609 // create and add needed nodes
3610 TColgp_SequenceOfXY UVtmp;
3611 for (i=1; i<=dl; i++) {
3612 double x0 = npt.Value(i+1);
3615 double y0 = npl.Value(i+1);
3616 double y1 = npr.Value(i+1);
3617 gp_UV UV = calcUV(x0, x1, y0, y1, quad, a0, a1, a2, a3);
3618 gp_Pnt P = S->Value(UV.X(),UV.Y());
3619 SMDS_MeshNode * N = meshDS->AddNode(P.X(), P.Y(), P.Z());
3620 meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
3621 NodesL.SetValue(i+1,1,N);
3622 if (UVL.Length()<nbv-nnn-1) UVL.Append(UV);
3624 for (j=2; j<nl; j++) {
3625 double y0 = npl.Value(dl+j);
3626 double y1 = npr.Value(dl+j);
3627 gp_UV UV = calcUV(x0, x1, y0, y1, quad, a0, a1, a2, a3);
3628 gp_Pnt P = S->Value(UV.X(),UV.Y());
3629 SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
3630 meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
3631 NodesL.SetValue(i+1,j,N);
3632 if (i==dl) UVtmp.Append(UV);
3635 for (i=1; i<=UVtmp.Length() && UVL.Length()<nbv-nnn-1; i++) {
3636 UVL.Append(UVtmp.Value(i));
3639 for (i=1; i<=dl; i++) {
3640 for (j=1; j<nl; j++) {
3641 myHelper->AddFace(NodesL.Value(i,j), NodesL.Value(i+1,j),
3642 NodesL.Value(i+1,j+1), NodesL.Value(i,j+1));
3647 // fill UVL using c2d
3648 for (i=1; i<npl.Length() && UVL.Length()<nbv-nnn-1; i++) {
3649 UVL.Append(gp_UV (uv_el[i].u, uv_el[i].v));
3653 // step2: create faces for right domain
3654 StdMeshers_Array2OfNode NodesR(1,dr+1,1,nr);
3656 for (j=1; j<=nr; j++)
3657 NodesR.SetValue(1,j,uv_er[nr-j].node);
3660 for (i=1; i<=dr; i++)
3661 NodesR.SetValue(i+1,1,uv_et[nt-1-i].node);
3662 // create and add needed nodes
3663 TColgp_SequenceOfXY UVtmp;
3664 for (i=1; i<=dr; i++) {
3665 double x0 = npt.Value(nt-i);
3668 double y0 = npl.Value(i+1);
3669 double y1 = npr.Value(i+1);
3670 gp_UV UV = calcUV(x0, x1, y0, y1, quad, a0, a1, a2, a3);
3671 gp_Pnt P = S->Value(UV.X(),UV.Y());
3672 SMDS_MeshNode * N = meshDS->AddNode(P.X(), P.Y(), P.Z());
3673 meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
3674 NodesR.SetValue(i+1,nr,N);
3675 if (UVR.Length()<nbv-nnn-1) UVR.Append(UV);
3677 for (j=2; j<nr; j++) {
3678 double y0 = npl.Value(nbv-j+1);
3679 double y1 = npr.Value(nbv-j+1);
3680 gp_UV UV = calcUV(x0, x1, y0, y1, quad, a0, a1, a2, a3);
3681 gp_Pnt P = S->Value(UV.X(),UV.Y());
3682 SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
3683 meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
3684 NodesR.SetValue(i+1,j,N);
3685 if (i==dr) UVtmp.Prepend(UV);
3688 for (i=1; i<=UVtmp.Length() && UVR.Length()<nbv-nnn-1; i++) {
3689 UVR.Append(UVtmp.Value(i));
3692 for (i=1; i<=dr; i++) {
3693 for (j=1; j<nr; j++) {
3694 myHelper->AddFace(NodesR.Value(i,j), NodesR.Value(i+1,j),
3695 NodesR.Value(i+1,j+1), NodesR.Value(i,j+1));
3700 // fill UVR using c2d
3701 for (i=1; i<npr.Length() && UVR.Length()<nbv-nnn-1; i++) {
3702 UVR.Append(gp_UV(uv_er[i].u, uv_er[i].v));
3706 // step3: create faces for central domain
3707 StdMeshers_Array2OfNode NodesC(1,nb,1,nbv);
3708 // add first line using NodesL
3709 for (i=1; i<=dl+1; i++)
3710 NodesC.SetValue(1,i,NodesL(i,1));
3711 for (i=2; i<=nl; i++)
3712 NodesC.SetValue(1,dl+i,NodesL(dl+1,i));
3713 // add last line using NodesR
3714 for (i=1; i<=dr+1; i++)
3715 NodesC.SetValue(nb,i,NodesR(i,nr));
3716 for (i=1; i<nr; i++)
3717 NodesC.SetValue(nb,dr+i+1,NodesR(dr+1,nr-i));
3718 // add top nodes (last columns)
3719 for (i=dl+2; i<nbh-dr; i++)
3720 NodesC.SetValue(i-dl,nbv,uv_et[i-1].node);
3721 // add bottom nodes (first columns)
3722 for (i=2; i<nb; i++)
3723 NodesC.SetValue(i,1,uv_eb[i-1].node);
3725 // create and add needed nodes
3726 // add linear layers
3727 for (i=2; i<nb; i++) {
3728 double x0 = npt.Value(dl+i);
3730 for (j=1; j<nnn; j++) {
3731 double y0 = npl.Value(nbv-nnn+j);
3732 double y1 = npr.Value(nbv-nnn+j);
3733 gp_UV UV = calcUV(x0, x1, y0, y1, quad, a0, a1, a2, a3);
3734 gp_Pnt P = S->Value(UV.X(),UV.Y());
3735 SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
3736 meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
3737 NodesC.SetValue(i,nbv-nnn+j,N);
3740 // add diagonal layers
3741 for (i=1; i<nbv-nnn; i++) {
3742 double du = UVR.Value(i).X() - UVL.Value(i).X();
3743 double dv = UVR.Value(i).Y() - UVL.Value(i).Y();
3744 for (j=2; j<nb; j++) {
3745 double u = UVL.Value(i).X() + du*npb.Value(j);
3746 double v = UVL.Value(i).Y() + dv*npb.Value(j);
3747 gp_Pnt P = S->Value(u,v);
3748 SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
3749 meshDS->SetNodeOnFace(N, geomFaceID, u, v);
3750 NodesC.SetValue(j,i+1,N);
3754 for (i=1; i<nb; i++) {
3755 for (j=1; j<nbv; j++) {
3756 myHelper->AddFace(NodesC.Value(i,j), NodesC.Value(i+1,j),
3757 NodesC.Value(i+1,j+1), NodesC.Value(i,j+1));
3760 } // end Multiple Reduce implementation
3761 else { // Simple Reduce (!MultipleReduce)
3762 //=========================================================
3765 // it is a base case => not shift quad
3766 //shiftQuad(quad,0,true);
3769 // we have to shift quad on 2
3775 // we have to shift quad on 1
3779 // we have to shift quad on 3
3784 nb = quad->side[0].NbPoints();
3785 nr = quad->side[1].NbPoints();
3786 nt = quad->side[2].NbPoints();
3787 nl = quad->side[3].NbPoints();
3789 // number of rows and columns
3790 int nrows = nr - 1; // and also == nl - 1
3791 int ncol_top = nt - 1;
3792 int ncol_bot = nb - 1;
3793 int npair_top = ncol_top / 2;
3794 // maximum number of bottom elements for "linear" simple reduce 4->2
3795 int max_lin42 = ncol_top + npair_top * 2 * nrows;
3796 // maximum number of bottom elements for "linear" simple reduce 3->1
3797 int max_lin31 = ncol_top + ncol_top * 2 * nrows;
3798 // maximum number of bottom elements for "tree" simple reduce 4->2
3800 // number of rows needed to reduce ncol_bot to ncol_top using simple 4->2 "tree"
3801 int nrows_tree42 = int( log( (double)(ncol_bot / ncol_top) )/log((double)2) ); // needed to avoid overflow at pow(2) while computing max_tree42
3802 if (nrows_tree42 < nrows) {
3803 max_tree42 = npair_top * pow(2.0, nrows + 1);
3804 if ( ncol_top > npair_top * 2 ) {
3805 int delta = ncol_bot - max_tree42;
3806 for (int irow = 1; irow < nrows; irow++) {
3807 int nfour = delta / 4;
3810 if (delta <= (ncol_top - npair_top * 2))
3811 max_tree42 = ncol_bot;
3814 // maximum number of bottom elements for "tree" simple reduce 3->1
3815 //int max_tree31 = ncol_top * pow(3.0, nrows);
3816 bool is_lin_31 = false;
3817 bool is_lin_42 = false;
3818 bool is_tree_31 = false;
3819 bool is_tree_42 = false;
3820 int max_lin = max_lin42;
3821 if (ncol_bot > max_lin42) {
3822 if (ncol_bot <= max_lin31) {
3824 max_lin = max_lin31;
3828 // if ncol_bot is a 3*n or not 2*n
3829 if ((ncol_bot/3)*3 == ncol_bot || (ncol_bot/2)*2 != ncol_bot) {
3831 max_lin = max_lin31;
3837 if (ncol_bot > max_lin) { // not "linear"
3838 is_tree_31 = (ncol_bot > max_tree42);
3839 if (ncol_bot <= max_tree42) {
3840 if ((ncol_bot/3)*3 == ncol_bot || (ncol_bot/2)*2 != ncol_bot) {
3849 const vector<UVPtStruct>& uv_eb = quad->side[0].GetUVPtStruct(true,0);
3850 const vector<UVPtStruct>& uv_er = quad->side[1].GetUVPtStruct(false,1);
3851 const vector<UVPtStruct>& uv_et = quad->side[2].GetUVPtStruct(true,1);
3852 const vector<UVPtStruct>& uv_el = quad->side[3].GetUVPtStruct(false,0);
3854 if ((int) uv_eb.size() != nb || (int) uv_er.size() != nr ||
3855 (int) uv_et.size() != nt || (int) uv_el.size() != nl)
3856 return error(COMPERR_BAD_INPUT_MESH);
3858 gp_UV uv[ UV_SIZE ];
3859 uv[ UV_A0 ].SetCoord( uv_eb.front().u, uv_eb.front().v);
3860 uv[ UV_A1 ].SetCoord( uv_eb.back().u, uv_eb.back().v );
3861 uv[ UV_A2 ].SetCoord( uv_et.back().u, uv_et.back().v );
3862 uv[ UV_A3 ].SetCoord( uv_et.front().u, uv_et.front().v);
3864 vector<UVPtStruct> curr_base = uv_eb, next_base;
3866 UVPtStruct nullUVPtStruct;
3867 nullUVPtStruct.node = 0;
3868 nullUVPtStruct.x = nullUVPtStruct.y = nullUVPtStruct.u = nullUVPtStruct.v = 0;
3869 nullUVPtStruct.param = 0;
3872 int curr_base_len = nb;
3873 int next_base_len = 0;
3876 { // ------------------------------------------------------------------
3877 // New algorithm implemented by request of IPAL22856
3878 // "2D quadrangle mesher of reduced type works wrong"
3879 // http://bugtracker.opencascade.com/show_bug.cgi?id=22856
3881 // the algorithm is following: all reduces are centred in horizontal
3882 // direction and are distributed among all rows
3884 if (ncol_bot > max_tree42) {
3888 if ((ncol_top/3)*3 == ncol_top ) {
3896 const int col_top_size = is_lin_42 ? 2 : 1;
3897 const int col_base_size = is_lin_42 ? 4 : 3;
3899 // Compute nb of "columns" (like in "linear" simple reducing) in all rows
3901 vector<int> nb_col_by_row;
3903 int delta_all = nb - nt;
3904 int delta_one_col = nrows * 2;
3905 int nb_col = delta_all / delta_one_col;
3906 int remainder = delta_all - nb_col * delta_one_col;
3907 if (remainder > 0) {
3910 if ( nb_col * col_top_size >= nt ) // == "tree" reducing situation
3912 // top row is full (all elements reduced), add "columns" one by one
3913 // in rows below until all bottom elements are reduced
3914 nb_col = ( nt - 1 ) / col_top_size;
3915 nb_col_by_row.resize( nrows, nb_col );
3916 int nbrows_not_full = nrows - 1;
3917 int cur_top_size = nt - 1;
3918 remainder = delta_all - nb_col * delta_one_col;
3919 while ( remainder > 0 )
3921 delta_one_col = nbrows_not_full * 2;
3922 int nb_col_add = remainder / delta_one_col;
3923 cur_top_size += 2 * nb_col_by_row[ nbrows_not_full ];
3924 int nb_col_free = cur_top_size / col_top_size - nb_col_by_row[ nbrows_not_full-1 ];
3925 if ( nb_col_add > nb_col_free )
3926 nb_col_add = nb_col_free;
3927 for ( int irow = 0; irow < nbrows_not_full; ++irow )
3928 nb_col_by_row[ irow ] += nb_col_add;
3930 remainder -= nb_col_add * delta_one_col;
3933 else // == "linear" reducing situation
3935 nb_col_by_row.resize( nrows, nb_col );
3937 for ( int irow = remainder / 2; irow < nrows; ++irow )
3938 nb_col_by_row[ irow ]--;
3943 PReduceFunction reduceFunction = & ( is_lin_42 ? reduce42 : reduce31 );
3945 const int reduce_grp_size = is_lin_42 ? 4 : 3;
3947 for (i = 1; i < nr; i++) // layer by layer
3949 nb_col = nb_col_by_row[ i-1 ];
3950 int nb_next = curr_base_len - nb_col * 2;
3951 if (nb_next < nt) nb_next = nt;
3953 const double y = uv_el[ i ].normParam;
3955 if ( i + 1 == nr ) // top
3962 next_base.resize( nb_next, nullUVPtStruct );
3963 next_base.front() = uv_el[i];
3964 next_base.back() = uv_er[i];
3966 // compute normalized param u
3967 double du = 1. / ( nb_next - 1 );
3968 next_base[0].normParam = 0.;
3969 for ( j = 1; j < nb_next; ++j )
3970 next_base[j].normParam = next_base[j-1].normParam + du;
3972 uv[ UV_L ].SetCoord( next_base.front().u, next_base.front().v );
3973 uv[ UV_R ].SetCoord( next_base.back().u, next_base.back().v );
3975 int free_left = ( curr_base_len - 1 - nb_col * col_base_size ) / 2;
3976 int free_middle = curr_base_len - 1 - nb_col * col_base_size - 2 * free_left;
3978 // not reduced left elements
3979 for (j = 0; j < free_left; j++)
3982 const SMDS_MeshNode*& Nf = next_base[++next_base_len].node;
3984 Nf = makeNode( next_base[ next_base_len ], y, quad, uv, myHelper, S );
3986 myHelper->AddFace(curr_base[ j ].node,
3987 curr_base[ j+1 ].node,
3989 next_base[ next_base_len-1 ].node);
3992 for (int icol = 1; icol <= nb_col; icol++)
3995 reduceFunction( curr_base, next_base, j, next_base_len, quad, uv, y, myHelper, S );
3997 j += reduce_grp_size;
3999 // elements in the middle of "columns" added for symmetry
4000 if ( free_middle > 0 && ( nb_col % 2 == 0 ) && icol == nb_col / 2 )
4002 for (int imiddle = 1; imiddle <= free_middle; imiddle++) {
4003 // f (i + 1, j + imiddle)
4004 const SMDS_MeshNode*& Nf = next_base[++next_base_len].node;
4006 Nf = makeNode( next_base[ next_base_len ], y, quad, uv, myHelper, S );
4008 myHelper->AddFace(curr_base[ j-1+imiddle ].node,
4009 curr_base[ j +imiddle ].node,
4011 next_base[ next_base_len-1 ].node);
4017 // not reduced right elements
4018 for (; j < curr_base_len-1; j++) {
4020 const SMDS_MeshNode*& Nf = next_base[++next_base_len].node;
4022 Nf = makeNode( next_base[ next_base_len ], y, quad, uv, myHelper, S );
4024 myHelper->AddFace(curr_base[ j ].node,
4025 curr_base[ j+1 ].node,
4027 next_base[ next_base_len-1 ].node);
4030 curr_base_len = next_base_len + 1;
4032 curr_base.swap( next_base );
4036 else if ( is_tree_42 || is_tree_31 )
4038 // "tree" simple reduce "42": 2->4->8->16->32->...
4040 // .-------------------------------.-------------------------------. nr
4042 // | \ .---------------.---------------. / |
4044 // .---------------.---------------.---------------.---------------.
4045 // | \ | / | \ | / |
4046 // | \ .-------.-------. / | \ .-------.-------. / |
4047 // | | | | | | | | |
4048 // .-------.-------.-------.-------.-------.-------.-------.-------. i
4049 // |\ | /|\ | /|\ | /|\ | /|
4050 // | \.---.---./ | \.---.---./ | \.---.---./ | \.---.---./ |
4051 // | | | | | | | | | | | | | | | | |
4052 // .---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.
4053 // |\ | /|\ | /|\ | /|\ | /|\ | /|\ | /|\ | /|\ | /|
4054 // | .-.-. | .-.-. | .-.-. | .-.-. | .-.-. | .-.-. | .-.-. | .-.-. |
4055 // | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
4056 // .-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-. 1
4059 // "tree" simple reduce "31": 1->3->9->27->...
4061 // .-----------------------------------------------------. nr
4063 // | .-----------------. |
4065 // .-----------------.-----------------.-----------------.
4066 // | \ / | \ / | \ / |
4067 // | .-----. | .-----. | .-----. | i
4068 // | | | | | | | | | |
4069 // .-----.-----.-----.-----.-----.-----.-----.-----.-----.
4070 // |\ /|\ /|\ /|\ /|\ /|\ /|\ /|\ /|\ /|
4071 // | .-. | .-. | .-. | .-. | .-. | .-. | .-. | .-. | .-. |
4072 // | | | | | | | | | | | | | | | | | | | | | | | | | | | |
4073 // .-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-. 1
4076 PReduceFunction reduceFunction = & ( is_tree_42 ? reduce42 : reduce31 );
4078 const int reduce_grp_size = is_tree_42 ? 4 : 3;
4080 for (i = 1; i < nr; i++) // layer by layer
4082 // to stop reducing, if number of nodes reaches nt
4083 int delta = curr_base_len - nt;
4085 // to calculate normalized parameter, we must know number of points in next layer
4086 int nb_reduce_groups = (curr_base_len - 1) / reduce_grp_size;
4087 int nb_next = nb_reduce_groups * (reduce_grp_size-2) + (curr_base_len - nb_reduce_groups*reduce_grp_size);
4088 if (nb_next < nt) nb_next = nt;
4090 const double y = uv_el[ i ].normParam;
4092 if ( i + 1 == nr ) // top
4099 next_base.resize( nb_next, nullUVPtStruct );
4100 next_base.front() = uv_el[i];
4101 next_base.back() = uv_er[i];
4103 // compute normalized param u
4104 double du = 1. / ( nb_next - 1 );
4105 next_base[0].normParam = 0.;
4106 for ( j = 1; j < nb_next; ++j )
4107 next_base[j].normParam = next_base[j-1].normParam + du;
4109 uv[ UV_L ].SetCoord( next_base.front().u, next_base.front().v );
4110 uv[ UV_R ].SetCoord( next_base.back().u, next_base.back().v );
4112 for (j = 0; j+reduce_grp_size < curr_base_len && delta > 0; j+=reduce_grp_size, delta-=2)
4114 reduceFunction( curr_base, next_base, j, next_base_len, quad, uv, y, myHelper, S );
4117 // not reduced side elements (if any)
4118 for (; j < curr_base_len-1; j++)
4121 const SMDS_MeshNode*& Nf = next_base[++next_base_len].node;
4123 Nf = makeNode( next_base[ next_base_len ], y, quad, uv, myHelper, S );
4125 myHelper->AddFace(curr_base[ j ].node,
4126 curr_base[ j+1 ].node,
4128 next_base[ next_base_len-1 ].node);
4130 curr_base_len = next_base_len + 1;
4132 curr_base.swap( next_base );
4134 } // end "tree" simple reduce
4136 else if ( is_lin_42 || is_lin_31 ) {
4137 // "linear" simple reduce "31": 2->6->10->14
4139 // .-----------------------------.-----------------------------. nr
4141 // | .---------. | .---------. |
4143 // .---------.---------.---------.---------.---------.---------.
4144 // | / \ / \ | / \ / \ |
4145 // | / .-----. \ | / .-----. \ | i
4146 // | / | | \ | / | | \ |
4147 // .-----.-----.-----.-----.-----.-----.-----.-----.-----.-----.
4148 // | / / \ / \ \ | / / \ / \ \ |
4149 // | / / .-. \ \ | / / .-. \ \ |
4150 // | / / / \ \ \ | / / / \ \ \ |
4151 // .--.----.---.-----.---.-----.-.--.----.---.-----.---.-----.-. 1
4154 // "linear" simple reduce "42": 4->8->12->16
4156 // .---------------.---------------.---------------.---------------. nr
4157 // | \ | / | \ | / |
4158 // | \ .-------.-------. / | \ .-------.-------. / |
4159 // | | | | | | | | |
4160 // .-------.-------.-------.-------.-------.-------.-------.-------.
4161 // | / \ | / \ | / \ | / \ |
4162 // | / \.----.----./ \ | / \.----.----./ \ | i
4163 // | / | | | \ | / | | | \ |
4164 // .-----.----.----.----.----.-----.-----.----.----.----.----.-----.
4165 // | / / \ | / \ \ | / / \ | / \ \ |
4166 // | / / .-.-. \ \ | / / .-.-. \ \ |
4167 // | / / / | \ \ \ | / / / | \ \ \ |
4168 // .---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---. 1
4171 // nt = 5, nb = 7, nr = 4
4172 //int delta_all = 2;
4173 //int delta_one_col = 6;
4175 //int remainder = 2;
4176 //if (remainder > 0) nb_col++;
4178 //int free_left = 1;
4180 //int free_middle = 4;
4182 int delta_all = nb - nt;
4183 int delta_one_col = (nr - 1) * 2;
4184 int nb_col = delta_all / delta_one_col;
4185 int remainder = delta_all - nb_col * delta_one_col;
4186 if (remainder > 0) {
4189 const int col_top_size = is_lin_42 ? 2 : 1;
4190 int free_left = ((nt - 1) - nb_col * col_top_size) / 2;
4191 free_left += nr - 2;
4192 int free_middle = (nr - 2) * 2;
4193 if (remainder > 0 && nb_col == 1) {
4194 int nb_rows_short_col = remainder / 2;
4195 int nb_rows_thrown = (nr - 1) - nb_rows_short_col;
4196 free_left -= nb_rows_thrown;
4199 // nt = 5, nb = 17, nr = 4
4200 //int delta_all = 12;
4201 //int delta_one_col = 6;
4203 //int remainder = 0;
4204 //int free_left = 2;
4205 //int free_middle = 4;
4207 PReduceFunction reduceFunction = & ( is_lin_42 ? reduce42 : reduce31 );
4209 const int reduce_grp_size = is_lin_42 ? 4 : 3;
4211 for (i = 1; i < nr; i++, free_middle -= 2, free_left -= 1) // layer by layer
4213 // to calculate normalized parameter, we must know number of points in next layer
4214 int nb_next = curr_base_len - nb_col * 2;
4215 if (remainder > 0 && i > remainder / 2)
4216 // take into account short "column"
4218 if (nb_next < nt) nb_next = nt;
4220 const double y = uv_el[ i ].normParam;
4222 if ( i + 1 == nr ) // top
4229 next_base.resize( nb_next, nullUVPtStruct );
4230 next_base.front() = uv_el[i];
4231 next_base.back() = uv_er[i];
4233 // compute normalized param u
4234 double du = 1. / ( nb_next - 1 );
4235 next_base[0].normParam = 0.;
4236 for ( j = 1; j < nb_next; ++j )
4237 next_base[j].normParam = next_base[j-1].normParam + du;
4239 uv[ UV_L ].SetCoord( next_base.front().u, next_base.front().v );
4240 uv[ UV_R ].SetCoord( next_base.back().u, next_base.back().v );
4242 // not reduced left elements
4243 for (j = 0; j < free_left; j++)
4246 const SMDS_MeshNode*& Nf = next_base[++next_base_len].node;
4248 Nf = makeNode( next_base[ next_base_len ], y, quad, uv, myHelper, S );
4250 myHelper->AddFace(curr_base[ j ].node,
4251 curr_base[ j+1 ].node,
4253 next_base[ next_base_len-1 ].node);
4256 for (int icol = 1; icol <= nb_col; icol++) {
4258 if (remainder > 0 && icol == nb_col && i > remainder / 2)
4259 // stop short "column"
4263 reduceFunction( curr_base, next_base, j, next_base_len, quad, uv, y, myHelper, S );
4265 j += reduce_grp_size;
4267 // not reduced middle elements
4268 if (icol < nb_col) {
4269 if (remainder > 0 && icol == nb_col - 1 && i > remainder / 2)
4270 // pass middle elements before stopped short "column"
4273 int free_add = free_middle;
4274 if (remainder > 0 && icol == nb_col - 1)
4275 // next "column" is short
4276 free_add -= (nr - 1) - (remainder / 2);
4278 for (int imiddle = 1; imiddle <= free_add; imiddle++) {
4279 // f (i + 1, j + imiddle)
4280 const SMDS_MeshNode*& Nf = next_base[++next_base_len].node;
4282 Nf = makeNode( next_base[ next_base_len ], y, quad, uv, myHelper, S );
4284 myHelper->AddFace(curr_base[ j-1+imiddle ].node,
4285 curr_base[ j +imiddle ].node,
4287 next_base[ next_base_len-1 ].node);
4293 // not reduced right elements
4294 for (; j < curr_base_len-1; j++) {
4296 const SMDS_MeshNode*& Nf = next_base[++next_base_len].node;
4298 Nf = makeNode( next_base[ next_base_len ], y, quad, uv, myHelper, S );
4300 myHelper->AddFace(curr_base[ j ].node,
4301 curr_base[ j+1 ].node,
4303 next_base[ next_base_len-1 ].node);
4306 curr_base_len = next_base_len + 1;
4308 curr_base.swap( next_base );
4311 } // end "linear" simple reduce
4316 } // end Simple Reduce implementation
4322 //================================================================================
4323 namespace // data for smoothing
4326 // --------------------------------------------------------------------------------
4328 * \brief Structure used to check validity of node position after smoothing.
4329 * It holds two nodes connected to a smoothed node and belonging to
4336 TTriangle( TSmoothNode* n1=0, TSmoothNode* n2=0 ): _n1(n1), _n2(n2) {}
4338 inline bool IsForward( gp_UV uv ) const;
4340 // --------------------------------------------------------------------------------
4342 * \brief Data of a smoothed node
4348 vector< TTriangle > _triangles; // if empty, then node is not movable
4350 // --------------------------------------------------------------------------------
4351 inline bool TTriangle::IsForward( gp_UV uv ) const
4353 gp_Vec2d v1( uv, _n1->_uv ), v2( uv, _n2->_uv );
4357 //================================================================================
4359 * \brief Returns area of a triangle
4361 //================================================================================
4363 double getArea( const gp_UV uv1, const gp_UV uv2, const gp_UV uv3 )
4365 gp_XY v1 = uv1 - uv2, v2 = uv3 - uv2;
4371 //================================================================================
4373 * \brief Set UV of nodes on degenerated VERTEXes in the middle of degenerated EDGE
4375 * WARNING: this method must be called AFTER retrieving UVPtStruct's from quad
4377 //================================================================================
4379 void StdMeshers_Quadrangle_2D::updateDegenUV(FaceQuadStruct::Ptr quad)
4383 // Set UV of nodes on degenerated VERTEXes in the middle of degenerated EDGE
4384 // --------------------------------------------------------------------------
4385 for ( unsigned i = 0; i < quad->side.size(); ++i )
4387 const vector<UVPtStruct>& uvVec = quad->side[i].GetUVPtStruct();
4389 // find which end of the side is on degenerated shape
4391 if ( myHelper->IsDegenShape( uvVec[0].node->getshapeId() ))
4393 else if ( myHelper->IsDegenShape( uvVec.back().node->getshapeId() ))
4394 degenInd = uvVec.size() - 1;
4398 // find another side sharing the degenerated shape
4399 bool isPrev = ( degenInd == 0 );
4400 if ( i >= QUAD_TOP_SIDE )
4402 int i2 = ( isPrev ? ( i + 3 ) : ( i + 1 )) % 4;
4403 const vector<UVPtStruct>& uvVec2 = quad->side[ i2 ].GetUVPtStruct();
4405 if ( uvVec[ degenInd ].node == uvVec2.front().node )
4407 else if ( uvVec[ degenInd ].node == uvVec2.back().node )
4408 degenInd2 = uvVec2.size() - 1;
4410 throw SALOME_Exception( LOCALIZED( "Logical error" ));
4412 // move UV in the middle
4413 uvPtStruct& uv1 = const_cast<uvPtStruct&>( uvVec [ degenInd ]);
4414 uvPtStruct& uv2 = const_cast<uvPtStruct&>( uvVec2[ degenInd2 ]);
4415 uv1.u = uv2.u = 0.5 * ( uv1.u + uv2.u );
4416 uv1.v = uv2.v = 0.5 * ( uv1.v + uv2.v );
4419 else if ( quad->side.size() == 4 /*&& myQuadType == QUAD_STANDARD*/)
4421 // Set number of nodes on a degenerated side to be same as on an opposite side
4422 // ----------------------------------------------------------------------------
4423 for ( size_t i = 0; i < quad->side.size(); ++i )
4425 StdMeshers_FaceSidePtr degSide = quad->side[i];
4426 if ( !myHelper->IsDegenShape( degSide->EdgeID(0) ))
4428 StdMeshers_FaceSidePtr oppSide = quad->side[( i+2 ) % quad->side.size() ];
4429 if ( degSide->NbSegments() == oppSide->NbSegments() )
4432 // make new side data
4433 const vector<UVPtStruct>& uvVecDegOld = degSide->GetUVPtStruct();
4434 const SMDS_MeshNode* n = uvVecDegOld[0].node;
4435 Handle(Geom2d_Curve) c2d = degSide->Curve2d(0);
4436 double f = degSide->FirstU(0), l = degSide->LastU(0);
4437 gp_Pnt2d p1 = uvVecDegOld.front().UV();
4438 gp_Pnt2d p2 = uvVecDegOld.back().UV();
4440 quad->side[i] = StdMeshers_FaceSide::New( oppSide.get(), n, &p1, &p2, c2d, f, l );
4444 //================================================================================
4446 * \brief Perform smoothing of 2D elements on a FACE with ignored degenerated EDGE
4448 //================================================================================
4450 void StdMeshers_Quadrangle_2D::smooth (FaceQuadStruct::Ptr quad)
4452 if ( !myNeedSmooth ) return;
4454 SMESHDS_Mesh* meshDS = myHelper->GetMeshDS();
4455 const double tol = BRep_Tool::Tolerance( quad->face );
4456 Handle(ShapeAnalysis_Surface) surface = myHelper->GetSurface( quad->face );
4458 if ( myHelper->HasDegeneratedEdges() && myForcedPnts.empty() )
4460 // "smooth" by computing node positions using 3D TFI and further projection
4462 list< FaceQuadStruct::Ptr >::iterator q = myQuadList.begin();
4463 for ( ; q != myQuadList.end() ; ++q )
4466 int nbhoriz = quad->iSize;
4467 int nbvertic = quad->jSize;
4469 SMESH_TNodeXYZ a0( quad->UVPt( 0, 0 ).node );
4470 SMESH_TNodeXYZ a1( quad->UVPt( nbhoriz-1, 0 ).node );
4471 SMESH_TNodeXYZ a2( quad->UVPt( nbhoriz-1, nbvertic-1 ).node );
4472 SMESH_TNodeXYZ a3( quad->UVPt( 0, nbvertic-1 ).node );
4475 for (int i = 1; i < nbhoriz-1; i++)
4477 SMESH_TNodeXYZ p0( quad->UVPt( i, 0 ).node );
4478 SMESH_TNodeXYZ p2( quad->UVPt( i, nbvertic-1 ).node );
4479 for (int j = 1; j < nbvertic-1; j++)
4481 SMESH_TNodeXYZ p1( quad->UVPt( nbhoriz-1, j ).node );
4482 SMESH_TNodeXYZ p3( quad->UVPt( 0, j ).node );
4484 UVPtStruct& uvp = quad->UVPt( i, j );
4486 gp_Pnt pnew = myHelper->calcTFI(uvp.x,uvp.y, a0,a1,a2,a3, p0,p1,p2,p3);
4487 meshDS->MoveNode( uvp.node, pnew.X(), pnew.Y(), pnew.Z() );
4490 // project to surface
4492 for (int i = 1; i < nbhoriz-1; i++)
4494 for (int j = 1; j < nbvertic-1; j++)
4496 UVPtStruct& uvp = quad->UVPt( i, j );
4497 SMESH_NodeXYZ p = uvp.node;
4499 cellSize = Max( p.SquareDistance( quad->UVPt( i+1, j ).node ),
4500 p.SquareDistance( quad->UVPt( i-1, j ).node ));
4501 cellSize = Max( p.SquareDistance( quad->UVPt( i, j+1 ).node ), cellSize );
4502 cellSize = Max( p.SquareDistance( quad->UVPt( i, j-1 ).node ), cellSize );
4504 gp_Pnt2d uv = surface->NextValueOfUV( uvp.UV(), p, 10*tol );
4505 gp_Pnt pnew = surface->Value( uv );
4506 bool ok = ( pnew.SquareDistance( p ) < 2 * cellSize );
4509 uv = surface->ValueOfUV( p, 10*tol );
4510 pnew = surface->Value( uv );
4511 ok = ( pnew.SquareDistance( p ) < 2 * cellSize );
4515 meshDS->MoveNode( uvp.node, pnew.X(), pnew.Y(), pnew.Z() );
4525 // Get nodes to smooth
4527 typedef map< const SMDS_MeshNode*, TSmoothNode, TIDCompare > TNo2SmooNoMap;
4528 TNo2SmooNoMap smooNoMap;
4531 boost::container::flat_set< const SMDS_MeshNode* > fixedNodes;
4532 for ( size_t i = 0; i < myForcedPnts.size(); ++i )
4534 fixedNodes.insert( myForcedPnts[i].node );
4535 if ( myForcedPnts[i].node->getshapeId() != myHelper->GetSubShapeID() )
4537 TSmoothNode & sNode = smooNoMap[ myForcedPnts[i].node ];
4538 sNode._uv = myForcedPnts[i].uv;
4539 sNode._xyz = SMESH_TNodeXYZ( myForcedPnts[i].node );
4542 SMESHDS_SubMesh* fSubMesh = meshDS->MeshElements( quad->face );
4543 SMDS_NodeIteratorPtr nIt = fSubMesh->GetNodes();
4544 while ( nIt->more() ) // loop on nodes bound to a FACE
4546 const SMDS_MeshNode* node = nIt->next();
4547 TSmoothNode & sNode = smooNoMap[ node ];
4548 sNode._uv = myHelper->GetNodeUV( quad->face, node );
4549 sNode._xyz = SMESH_TNodeXYZ( node );
4550 if ( fixedNodes.count( node ))
4551 continue; // fixed - no triangles
4553 // set sNode._triangles
4554 SMDS_ElemIteratorPtr fIt = node->GetInverseElementIterator( SMDSAbs_Face );
4555 while ( fIt->more() )
4557 const SMDS_MeshElement* face = fIt->next();
4558 const int nbN = face->NbCornerNodes();
4559 const int nInd = face->GetNodeIndex( node );
4560 const int prevInd = myHelper->WrapIndex( nInd - 1, nbN );
4561 const int nextInd = myHelper->WrapIndex( nInd + 1, nbN );
4562 const SMDS_MeshNode* prevNode = face->GetNode( prevInd );
4563 const SMDS_MeshNode* nextNode = face->GetNode( nextInd );
4564 sNode._triangles.push_back( TTriangle( & smooNoMap[ prevNode ],
4565 & smooNoMap[ nextNode ]));
4568 // set _uv of smooth nodes on FACE boundary
4569 set< StdMeshers_FaceSide* > sidesOnEdge;
4570 list< FaceQuadStruct::Ptr >::iterator q = myQuadList.begin();
4571 for ( ; q != myQuadList.end() ; ++q )
4572 for ( size_t i = 0; i < (*q)->side.size(); ++i )
4573 if ( ! (*q)->side[i].grid->Edge(0).IsNull() &&
4574 //(*q)->nbNodeOut( i ) == 0 &&
4575 sidesOnEdge.insert( (*q)->side[i].grid.get() ).second )
4577 const vector<UVPtStruct>& uvVec = (*q)->side[i].grid->GetUVPtStruct();
4578 for ( unsigned j = 0; j < uvVec.size(); ++j )
4580 TSmoothNode & sNode = smooNoMap[ uvVec[j].node ];
4581 sNode._uv = uvVec[j].UV();
4582 sNode._xyz = SMESH_TNodeXYZ( uvVec[j].node );
4586 // define reference orientation in 2D
4587 TNo2SmooNoMap::iterator n2sn = smooNoMap.begin();
4588 for ( ; n2sn != smooNoMap.end(); ++n2sn )
4589 if ( !n2sn->second._triangles.empty() )
4591 if ( n2sn == smooNoMap.end() ) return;
4592 const TSmoothNode & sampleNode = n2sn->second;
4593 const bool refForward = ( sampleNode._triangles[0].IsForward( sampleNode._uv ));
4597 for ( int iLoop = 0; iLoop < 5; ++iLoop )
4599 for ( n2sn = smooNoMap.begin(); n2sn != smooNoMap.end(); ++n2sn )
4601 TSmoothNode& sNode = n2sn->second;
4602 if ( sNode._triangles.empty() )
4603 continue; // not movable node
4606 bool isValid = false;
4607 bool use3D = ( iLoop > 2 ); // 3 loops in 2D and 2, in 3D
4611 // compute a new XYZ
4612 gp_XYZ newXYZ (0,0,0);
4613 for ( size_t i = 0; i < sNode._triangles.size(); ++i )
4614 newXYZ += sNode._triangles[i]._n1->_xyz;
4615 newXYZ /= sNode._triangles.size();
4617 // compute a new UV by projection
4618 newUV = surface->NextValueOfUV( sNode._uv, newXYZ, 10*tol ).XY();
4620 // check validity of the newUV
4621 for ( size_t i = 0; i < sNode._triangles.size() && isValid; ++i )
4622 isValid = ( sNode._triangles[i].IsForward( newUV ) == refForward );
4626 // compute a new UV by averaging
4627 newUV.SetCoord(0.,0.);
4628 for ( unsigned i = 0; i < sNode._triangles.size(); ++i )
4629 newUV += sNode._triangles[i]._n1->_uv;
4630 newUV /= sNode._triangles.size();
4632 // check validity of the newUV
4634 for ( unsigned i = 0; i < sNode._triangles.size() && isValid; ++i )
4635 isValid = ( sNode._triangles[i].IsForward( newUV ) == refForward );
4640 sNode._xyz = surface->Value( newUV ).XYZ();
4645 // Set new XYZ to the smoothed nodes
4647 for ( n2sn = smooNoMap.begin(); n2sn != smooNoMap.end(); ++n2sn )
4649 TSmoothNode& sNode = n2sn->second;
4650 if ( sNode._triangles.empty() )
4651 continue; // not movable node
4653 SMDS_MeshNode* node = const_cast< SMDS_MeshNode*>( n2sn->first );
4654 gp_Pnt xyz = surface->Value( sNode._uv );
4655 meshDS->MoveNode( node, xyz.X(), xyz.Y(), xyz.Z() );
4658 node->SetPosition( SMDS_PositionPtr( new SMDS_FacePosition( sNode._uv.X(), sNode._uv.Y() )));
4662 // Move medium nodes in quadratic mesh
4663 if ( _quadraticMesh )
4665 const TLinkNodeMap& links = myHelper->GetTLinkNodeMap();
4666 TLinkNodeMap::const_iterator linkIt = links.begin();
4667 for ( ; linkIt != links.end(); ++linkIt )
4669 const SMESH_TLink& link = linkIt->first;
4670 SMDS_MeshNode* node = const_cast< SMDS_MeshNode*>( linkIt->second );
4672 if ( node->getshapeId() != myHelper->GetSubShapeID() )
4673 continue; // medium node is on EDGE or VERTEX
4675 gp_XYZ pm = 0.5 * ( SMESH_TNodeXYZ( link.node1() ) + SMESH_TNodeXYZ( link.node2() ));
4676 gp_XY uvm = myHelper->GetNodeUV( quad->face, node );
4678 gp_Pnt2d uv = surface->NextValueOfUV( uvm, pm, 10*tol );
4679 gp_Pnt xyz = surface->Value( uv );
4681 node->SetPosition( SMDS_PositionPtr( new SMDS_FacePosition( uv.X(), uv.Y() )));
4682 meshDS->MoveNode( node, xyz.X(), xyz.Y(), xyz.Z() );
4688 //================================================================================
4690 * \brief Checks validity of generated faces
4692 //================================================================================
4694 bool StdMeshers_Quadrangle_2D::check()
4696 const bool isOK = true;
4697 if ( !myCheckOri || myQuadList.empty() || !myQuadList.front() || !myHelper )
4700 TopoDS_Face geomFace = TopoDS::Face( myHelper->GetSubShape() );
4701 SMESHDS_Mesh* meshDS = myHelper->GetMeshDS();
4702 SMESHDS_SubMesh* fSubMesh = meshDS->MeshElements( geomFace );
4704 if ( geomFace.Orientation() >= TopAbs_INTERNAL ) geomFace.Orientation( TopAbs_FORWARD );
4706 // Get a reference orientation sign
4711 TSideVector wireVec =
4712 StdMeshers_FaceSide::GetFaceWires( geomFace, *myHelper->GetMesh(), true, err, myHelper );
4713 StdMeshers_FaceSidePtr wire = wireVec[0];
4715 // find a right angle VERTEX
4717 double maxAngle = -1e100;
4718 for ( int i = 0; i < wire->NbEdges(); ++i )
4720 int iPrev = myHelper->WrapIndex( i-1, wire->NbEdges() );
4721 const TopoDS_Edge& e1 = wire->Edge( iPrev );
4722 const TopoDS_Edge& e2 = wire->Edge( i );
4723 double angle = myHelper->GetAngle( e1, e2, geomFace, wire->FirstVertex( i ));
4724 if (( maxAngle < angle ) &&
4725 ( 5.* M_PI/180 < angle && angle < 175.* M_PI/180 ))
4731 if ( maxAngle < -2*M_PI ) return isOK;
4733 // get a sign of 2D area of a corner face
4735 int iPrev = myHelper->WrapIndex( iVertex-1, wire->NbEdges() );
4736 const TopoDS_Edge& e1 = wire->Edge( iPrev );
4737 const TopoDS_Edge& e2 = wire->Edge( iVertex );
4739 gp_Vec2d v1, v2; gp_Pnt2d p;
4742 bool rev = ( e1.Orientation() == TopAbs_REVERSED );
4743 Handle(Geom2d_Curve) c = BRep_Tool::CurveOnSurface( e1, geomFace, u[0], u[1] );
4744 c->D1( u[ !rev ], p, v1 );
4749 bool rev = ( e2.Orientation() == TopAbs_REVERSED );
4750 Handle(Geom2d_Curve) c = BRep_Tool::CurveOnSurface( e2, geomFace, u[0], u[1] );
4751 c->D1( u[ rev ], p, v2 );
4762 // Look for incorrectly oriented faces
4764 std::list<const SMDS_MeshElement*> badFaces;
4766 const SMDS_MeshNode* nn [ 8 ]; // 8 is just for safety
4768 SMDS_ElemIteratorPtr fIt = fSubMesh->GetElements();
4769 while ( fIt->more() ) // loop on faces bound to a FACE
4771 const SMDS_MeshElement* f = fIt->next();
4773 const int nbN = f->NbCornerNodes();
4774 for ( int i = 0; i < nbN; ++i )
4775 nn[ i ] = f->GetNode( i );
4777 const SMDS_MeshNode* nInFace = 0;
4778 if ( myHelper->HasSeam() )
4780 for ( int i = 0; i < nbN && !nInFace; ++i )
4781 if ( !myHelper->IsSeamShape( nn[i]->getshapeId() ))
4784 gp_XY uv = myHelper->GetNodeUV( geomFace, nInFace );
4785 if ( myHelper->IsOnSeam( uv ))
4789 if ( myHelper->GetPeriodicIndex() && !nInFace )
4791 for ( int i = 0; i < nbN && !nInFace; ++i )
4792 if ( fSubMesh->Contains( nn[i] ))
4795 for ( int i = 0; i < nbN && !nInFace; ++i )
4797 SMDS_ElemIteratorPtr fIt = nn[i]->GetInverseElementIterator( SMDSAbs_Face );
4798 while ( fIt->more() && !nInFace )
4800 const SMDS_MeshElement* face = fIt->next();
4801 if ( !fSubMesh->Contains( face ))
4803 for ( int iN = 0, nN = face->NbCornerNodes(); iN < nN; ++iN )
4805 const SMDS_MeshNode* n = face->GetNode( iN );
4806 if ( fSubMesh->Contains( n ))
4817 for ( int i = 0; i < nbN; ++i )
4818 uv[ i ] = myHelper->GetNodeUV( geomFace, nn[i], nInFace, &toCheckUV );
4824 double sign1 = getArea( uv[0], uv[1], uv[2] );
4825 double sign2 = getArea( uv[0], uv[2], uv[3] );
4826 if ( sign1 * sign2 < 0 )
4828 sign2 = getArea( uv[1], uv[2], uv[3] );
4829 sign1 = getArea( uv[1], uv[3], uv[0] );
4830 if ( sign1 * sign2 < 0 )
4831 continue; // this should not happen
4833 isBad = ( sign1 * okSign < 0 );
4838 double sign = getArea( uv[0], uv[1], uv[2] );
4839 isBad = ( sign * okSign < 0 );
4845 if ( isBad && myHelper->HasRealSeam() )
4847 // fix uv for a case where a face intersects the seam
4848 for ( int iPar = 1; iPar < 3; ++iPar )
4849 if ( iPar & myHelper->GetPeriodicIndex() )
4851 double max = uv[0].Coord( iPar );
4852 for ( int i = 1; i < nbN; ++i )
4853 max = Max( max, uv[i].Coord( iPar ));
4855 for ( int i = 0; i < nbN; ++i )
4857 double par = uv[i].Coord( iPar );
4858 double shift = ShapeAnalysis::AdjustByPeriod( par, max, myHelper->GetPeriod( iPar ));
4859 uv[i].SetCoord( iPar, par + shift );
4862 double sign1 = getArea( uv[0], uv[1], uv[2] );
4863 double sign2 = getArea( uv[0], uv[2], uv[3] );
4864 if ( sign1 * sign2 < 0 )
4866 sign2 = getArea( uv[1], uv[2], uv[3] );
4867 sign1 = getArea( uv[1], uv[3], uv[0] );
4868 if ( sign1 * sign2 < 0 )
4869 continue; // this should not happen
4871 isBad = ( sign1 * okSign < 0 );
4875 badFaces.push_back ( f );
4878 if ( !badFaces.empty() )
4880 SMESH_subMesh* fSM = myHelper->GetMesh()->GetSubMesh( geomFace );
4881 SMESH_ComputeErrorPtr& err = fSM->GetComputeError();
4882 SMESH_BadInputElements* badElems =
4883 new SMESH_BadInputElements( meshDS, COMPERR_ALGO_FAILED,
4884 "Inverted elements generated");
4885 badElems->myBadElements.swap( badFaces );
4886 err.reset( badElems );
4894 //================================================================================
4896 * \brief Constructor of a side of quad
4898 //================================================================================
4900 FaceQuadStruct::Side::Side(StdMeshers_FaceSidePtr theGrid)
4901 : grid(theGrid), from(0), to(theGrid ? theGrid->NbPoints() : 0 ), di(1), nbNodeOut(0)
4905 //=============================================================================
4907 * \brief Constructor of a quad
4909 //=============================================================================
4911 FaceQuadStruct::FaceQuadStruct(const TopoDS_Face& F, const std::string& theName)
4912 : face( F ), name( theName )
4917 //================================================================================
4919 * \brief Fills myForcedPnts
4921 //================================================================================
4923 bool StdMeshers_Quadrangle_2D::getEnforcedUV()
4925 myForcedPnts.clear();
4926 if ( !myParams ) return true; // missing hypothesis
4928 std::vector< TopoDS_Shape > shapes;
4929 std::vector< gp_Pnt > points;
4930 myParams->GetEnforcedNodes( shapes, points );
4932 TopTools_IndexedMapOfShape vMap;
4933 for ( size_t i = 0; i < shapes.size(); ++i )
4934 if ( !shapes[i].IsNull() )
4935 TopExp::MapShapes( shapes[i], TopAbs_VERTEX, vMap );
4937 size_t nbPoints = points.size();
4938 for ( int i = 1; i <= vMap.Extent(); ++i )
4939 points.push_back( BRep_Tool::Pnt( TopoDS::Vertex( vMap( i ))));
4941 // find out if all points must be in the FACE, which is so if
4942 // myParams is a local hypothesis on the FACE being meshed
4943 bool isStrictCheck = false;
4945 SMESH_HypoFilter paramFilter( SMESH_HypoFilter::Is( myParams ));
4946 TopoDS_Shape assignedTo;
4947 if ( myHelper->GetMesh()->GetHypothesis( myHelper->GetSubShape(),
4951 isStrictCheck = ( assignedTo.IsSame( myHelper->GetSubShape() ));
4954 multimap< double, ForcedPoint > sortedFP; // sort points by distance from EDGEs
4956 Standard_Real u1,u2,v1,v2;
4957 const TopoDS_Face& face = TopoDS::Face( myHelper->GetSubShape() );
4958 const double tol = BRep_Tool::Tolerance( face );
4959 Handle(ShapeAnalysis_Surface) project = myHelper->GetSurface( face );
4960 project->Bounds( u1,u2,v1,v2 );
4962 BRepBndLib::Add( face, bbox );
4963 double farTol = 0.01 * sqrt( bbox.SquareExtent() );
4965 // get internal VERTEXes of the FACE to use them instead of equal points
4966 typedef map< pair< double, double >, TopoDS_Vertex > TUV2VMap;
4968 for ( TopExp_Explorer vExp( face, TopAbs_VERTEX, TopAbs_EDGE ); vExp.More(); vExp.Next() )
4970 TopoDS_Vertex v = TopoDS::Vertex( vExp.Current() );
4971 gp_Pnt2d uv = project->ValueOfUV( BRep_Tool::Pnt( v ), tol );
4972 uv2intV.insert( make_pair( make_pair( uv.X(), uv.Y() ), v ));
4975 for ( size_t iP = 0; iP < points.size(); ++iP )
4977 gp_Pnt2d uv = project->ValueOfUV( points[ iP ], tol );
4978 if ( project->Gap() > farTol )
4980 if ( isStrictCheck && iP < nbPoints )
4982 (COMPERR_BAD_PARMETERS, TComm("An enforced point is too far from the face, dist = ")
4983 << points[ iP ].Distance( project->Value( uv )) << " - ("
4984 << points[ iP ].X() << ", "<< points[ iP ].Y() << ", "<< points[ iP ].Z() << " )");
4987 BRepClass_FaceClassifier clsf ( face, uv, tol );
4988 switch ( clsf.State() ) {
4991 double edgeDist = ( Min( Abs( uv.X() - u1 ), Abs( uv.X() - u2 )) +
4992 Min( Abs( uv.Y() - v1 ), Abs( uv.Y() - v2 )));
4995 fp.xyz = points[ iP ].XYZ();
4996 if ( iP >= nbPoints )
4997 fp.vertex = TopoDS::Vertex( vMap( iP - nbPoints + 1 ));
4999 TUV2VMap::iterator uv2v = uv2intV.lower_bound( make_pair( uv.X()-tol, uv.Y()-tol ));
5000 for ( ; uv2v != uv2intV.end() && uv2v->first.first <= uv.X()+tol; ++uv2v )
5001 if ( uv.SquareDistance( gp_Pnt2d( uv2v->first.first, uv2v->first.second )) < tol*tol )
5003 fp.vertex = uv2v->second;
5008 if ( myHelper->IsSubShape( fp.vertex, myHelper->GetMesh() ))
5010 SMESH_subMesh* sm = myHelper->GetMesh()->GetSubMesh( fp.vertex );
5011 sm->ComputeStateEngine( SMESH_subMesh::COMPUTE );
5012 fp.node = SMESH_Algo::VertexNode( fp.vertex, myHelper->GetMeshDS() );
5016 fp.node = myHelper->AddNode( fp.xyz.X(), fp.xyz.Y(), fp.xyz.Z(),
5017 0, fp.uv.X(), fp.uv.Y() );
5019 sortedFP.insert( make_pair( edgeDist, fp ));
5024 if ( isStrictCheck && iP < nbPoints )
5026 (COMPERR_BAD_PARMETERS, TComm("An enforced point is out of the face boundary - ")
5027 << points[ iP ].X() << ", "<< points[ iP ].Y() << ", "<< points[ iP ].Z() << " )");
5032 if ( isStrictCheck && iP < nbPoints )
5034 (COMPERR_BAD_PARMETERS, TComm("An enforced point is on the face boundary - ")
5035 << points[ iP ].X() << ", "<< points[ iP ].Y() << ", "<< points[ iP ].Z() << " )");
5040 if ( isStrictCheck && iP < nbPoints )
5042 (TComm("Classification of an enforced point ralative to the face boundary failed - ")
5043 << points[ iP ].X() << ", "<< points[ iP ].Y() << ", "<< points[ iP ].Z() << " )");
5048 multimap< double, ForcedPoint >::iterator d2uv = sortedFP.begin();
5049 for ( ; d2uv != sortedFP.end(); ++d2uv )
5050 myForcedPnts.push_back( (*d2uv).second );
5055 //================================================================================
5057 * \brief Splits quads by adding points of enforced nodes and create nodes on
5058 * the sides shared by quads
5060 //================================================================================
5062 bool StdMeshers_Quadrangle_2D::addEnforcedNodes()
5064 // if ( myForcedPnts.empty() )
5067 // make a map of quads sharing a side
5068 map< StdMeshers_FaceSidePtr, vector< FaceQuadStruct::Ptr > > quadsBySide;
5069 list< FaceQuadStruct::Ptr >::iterator quadIt = myQuadList.begin();
5070 for ( ; quadIt != myQuadList.end(); ++quadIt )
5071 for ( size_t iSide = 0; iSide < (*quadIt)->side.size(); ++iSide )
5073 if ( !setNormalizedGrid( *quadIt ))
5075 quadsBySide[ (*quadIt)->side[iSide] ].push_back( *quadIt );
5078 const TopoDS_Face& face = TopoDS::Face( myHelper->GetSubShape() );
5079 Handle(Geom_Surface) surf = BRep_Tool::Surface( face );
5081 for ( size_t iFP = 0; iFP < myForcedPnts.size(); ++iFP )
5083 bool isNodeEnforced = false;
5085 // look for a quad enclosing an enforced point
5086 for ( quadIt = myQuadList.begin(); quadIt != myQuadList.end(); ++quadIt )
5088 FaceQuadStruct::Ptr quad = *quadIt;
5089 if ( !setNormalizedGrid( *quadIt ))
5092 if ( !quad->findCell( myForcedPnts[ iFP ], i, j ))
5095 // a grid cell is found, select a node of the cell to move
5096 // to the enforced point to and to split the quad at
5097 multimap< double, pair< int, int > > ijByDist;
5098 for ( int di = 0; di < 2; ++di )
5099 for ( int dj = 0; dj < 2; ++dj )
5101 double dist2 = ( myForcedPnts[ iFP ].uv - quad->UVPt( i+di,j+dj ).UV() ).SquareModulus();
5102 ijByDist.insert( make_pair( dist2, make_pair( di,dj )));
5104 // try all nodes starting from the closest one
5105 set< FaceQuadStruct::Ptr > changedQuads;
5106 multimap< double, pair< int, int > >::iterator d2ij = ijByDist.begin();
5107 for ( ; !isNodeEnforced && d2ij != ijByDist.end(); ++d2ij )
5109 int di = d2ij->second.first;
5110 int dj = d2ij->second.second;
5112 // check if a node is at a side
5114 if ( dj== 0 && j == 0 )
5115 iSide = QUAD_BOTTOM_SIDE;
5116 else if ( dj == 1 && j+2 == quad->jSize )
5117 iSide = QUAD_TOP_SIDE;
5118 else if ( di == 0 && i == 0 )
5119 iSide = QUAD_LEFT_SIDE;
5120 else if ( di == 1 && i+2 == quad->iSize )
5121 iSide = QUAD_RIGHT_SIDE;
5123 if ( iSide > -1 ) // ----- node is at a side
5125 FaceQuadStruct::Side& side = quad->side[ iSide ];
5126 // check if this node can be moved
5127 if ( quadsBySide[ side ].size() < 2 )
5128 continue; // its a face boundary -> can't move the node
5130 int quadNodeIndex = ( iSide % 2 ) ? j : i;
5131 int sideNodeIndex = side.ToSideIndex( quadNodeIndex );
5132 if ( side.IsForced( sideNodeIndex ))
5134 // the node is already moved to another enforced point
5135 isNodeEnforced = quad->isEqual( myForcedPnts[ iFP ], i, j );
5138 // make a node of a side forced
5139 vector<UVPtStruct>& points = (vector<UVPtStruct>&) side.GetUVPtStruct();
5140 points[ sideNodeIndex ].u = myForcedPnts[ iFP ].U();
5141 points[ sideNodeIndex ].v = myForcedPnts[ iFP ].V();
5142 points[ sideNodeIndex ].node = myForcedPnts[ iFP ].node;
5144 updateSideUV( side, sideNodeIndex, quadsBySide );
5146 // update adjacent sides
5147 set< StdMeshers_FaceSidePtr > updatedSides;
5148 updatedSides.insert( side );
5149 for ( size_t i = 0; i < side.contacts.size(); ++i )
5150 if ( side.contacts[i].point == sideNodeIndex )
5152 const vector< FaceQuadStruct::Ptr >& adjQuads =
5153 quadsBySide[ *side.contacts[i].other_side ];
5154 if ( adjQuads.size() > 1 &&
5155 updatedSides.insert( * side.contacts[i].other_side ).second )
5157 updateSideUV( *side.contacts[i].other_side,
5158 side.contacts[i].other_point,
5161 changedQuads.insert( adjQuads.begin(), adjQuads.end() );
5163 const vector< FaceQuadStruct::Ptr >& adjQuads = quadsBySide[ side ];
5164 changedQuads.insert( adjQuads.begin(), adjQuads.end() );
5166 isNodeEnforced = true;
5168 else // ------------------ node is inside the quad
5172 // make a new side passing through IJ node and split the quad
5173 int indForced, iNewSide;
5174 if ( quad->iSize < quad->jSize ) // split vertically
5176 quad->updateUV( myForcedPnts[ iFP ].uv, i, j, /*isVert=*/true );
5178 iNewSide = splitQuad( quad, i, 0 );
5182 quad->updateUV( myForcedPnts[ iFP ].uv, i, j, /*isVert=*/false );
5184 iNewSide = splitQuad( quad, 0, j );
5186 FaceQuadStruct::Ptr newQuad = myQuadList.back();
5187 FaceQuadStruct::Side& newSide = newQuad->side[ iNewSide ];
5189 vector<UVPtStruct>& points = (vector<UVPtStruct>&) newSide.GetUVPtStruct();
5190 points[ indForced ].node = myForcedPnts[ iFP ].node;
5192 newSide.forced_nodes.insert( indForced );
5193 quad->side[( iNewSide+2 ) % 4 ].forced_nodes.insert( indForced );
5195 quadsBySide[ newSide ].push_back( quad );
5196 quadsBySide[ newQuad->side[0] ].push_back( newQuad );
5197 quadsBySide[ newQuad->side[1] ].push_back( newQuad );
5198 quadsBySide[ newQuad->side[2] ].push_back( newQuad );
5199 quadsBySide[ newQuad->side[3] ].push_back( newQuad );
5201 isNodeEnforced = true;
5203 } // end of "node is inside the quad"
5205 } // loop on nodes of the cell
5207 // remove out-of-date uv grid of changedQuads
5208 set< FaceQuadStruct::Ptr >::iterator qIt = changedQuads.begin();
5209 for ( ; qIt != changedQuads.end(); ++qIt )
5210 (*qIt)->uv_grid.clear();
5212 if ( isNodeEnforced )
5217 if ( !isNodeEnforced )
5219 if ( !myForcedPnts[ iFP ].vertex.IsNull() )
5220 return error(TComm("Unable to move any node to vertex #")
5221 <<myHelper->GetMeshDS()->ShapeToIndex( myForcedPnts[ iFP ].vertex ));
5223 return error(TComm("Unable to move any node to point ( ")
5224 << myForcedPnts[iFP].xyz.X() << ", "
5225 << myForcedPnts[iFP].xyz.Y() << ", "
5226 << myForcedPnts[iFP].xyz.Z() << " )");
5228 myNeedSmooth = true;
5230 } // loop on enforced points
5232 // Compute nodes on all sides, where not yet present
5234 for ( quadIt = myQuadList.begin(); quadIt != myQuadList.end(); ++quadIt )
5236 FaceQuadStruct::Ptr quad = *quadIt;
5237 for ( int iSide = 0; iSide < 4; ++iSide )
5239 FaceQuadStruct::Side & side = quad->side[ iSide ];
5240 if ( side.nbNodeOut > 0 )
5241 continue; // emulated side
5242 vector< FaceQuadStruct::Ptr >& quadVec = quadsBySide[ side ];
5243 if ( quadVec.size() <= 1 )
5244 continue; // outer side
5246 const vector<UVPtStruct>& points = side.grid->GetUVPtStruct();
5247 for ( size_t iC = 0; iC < side.contacts.size(); ++iC )
5249 if ( side.contacts[iC].point < side.from ||
5250 side.contacts[iC].point >= side.to )
5252 if ( side.contacts[iC].other_point < side.contacts[iC].other_side->from ||
5253 side.contacts[iC].other_point >= side.contacts[iC].other_side->to )
5255 const vector<UVPtStruct>& oGrid = side.contacts[iC].other_side->grid->GetUVPtStruct();
5256 const UVPtStruct& uvPt = points[ side.contacts[iC].point ];
5257 if ( side.contacts[iC].other_point >= (int) oGrid .size() ||
5258 side.contacts[iC].point >= (int) points.size() )
5259 throw SALOME_Exception( "StdMeshers_Quadrangle_2D::addEnforcedNodes(): wrong contact" );
5260 if ( oGrid[ side.contacts[iC].other_point ].node )
5261 (( UVPtStruct& ) uvPt).node = oGrid[ side.contacts[iC].other_point ].node;
5264 bool missedNodesOnSide = false;
5265 for ( size_t iP = 0; iP < points.size(); ++iP )
5266 if ( !points[ iP ].node )
5268 UVPtStruct& uvPnt = ( UVPtStruct& ) points[ iP ];
5269 gp_Pnt P = surf->Value( uvPnt.u, uvPnt.v );
5270 uvPnt.node = myHelper->AddNode(P.X(), P.Y(), P.Z(), 0, uvPnt.u, uvPnt.v );
5271 missedNodesOnSide = true;
5273 if ( missedNodesOnSide )
5275 // clear uv_grid where nodes are missing
5276 for ( size_t iQ = 0; iQ < quadVec.size(); ++iQ )
5277 quadVec[ iQ ]->uv_grid.clear();
5285 //================================================================================
5287 * \brief Splits a quad at I or J. Returns an index of a new side in the new quad
5289 //================================================================================
5291 int StdMeshers_Quadrangle_2D::splitQuad(FaceQuadStruct::Ptr quad, int I, int J)
5293 FaceQuadStruct* newQuad = new FaceQuadStruct( quad->face );
5294 myQuadList.push_back( FaceQuadStruct::Ptr( newQuad ));
5296 vector<UVPtStruct> points;
5297 if ( I > 0 && I <= quad->iSize-2 )
5299 points.reserve( quad->jSize );
5300 for ( int jP = 0; jP < quad->jSize; ++jP )
5301 points.push_back( quad->UVPt( I, jP ));
5303 newQuad->side.resize( 4 );
5304 newQuad->side[ QUAD_BOTTOM_SIDE ] = quad->side[ QUAD_BOTTOM_SIDE ];
5305 newQuad->side[ QUAD_RIGHT_SIDE ] = quad->side[ QUAD_RIGHT_SIDE ];
5306 newQuad->side[ QUAD_TOP_SIDE ] = quad->side[ QUAD_TOP_SIDE ];
5307 newQuad->side[ QUAD_LEFT_SIDE ] = StdMeshers_FaceSide::New( points, quad->face );
5309 FaceQuadStruct::Side& newSide = newQuad->side[ QUAD_LEFT_SIDE ];
5310 FaceQuadStruct::Side& newSide2 = quad->side [ QUAD_RIGHT_SIDE ];
5312 quad->side[ QUAD_RIGHT_SIDE ] = newSide;
5314 int iBot = quad->side[ QUAD_BOTTOM_SIDE ].ToSideIndex( I );
5315 int iTop = quad->side[ QUAD_TOP_SIDE ].ToSideIndex( I );
5317 newSide.AddContact ( 0, & quad->side[ QUAD_BOTTOM_SIDE ], iBot );
5318 newSide2.AddContact( 0, & quad->side[ QUAD_BOTTOM_SIDE ], iBot );
5319 newSide.AddContact ( quad->jSize - 1, & quad->side[ QUAD_TOP_SIDE ], iTop );
5320 newSide2.AddContact( quad->jSize - 1, & quad->side[ QUAD_TOP_SIDE ], iTop );
5321 // cout << "Contact: L " << &newSide << " "<< newSide.NbPoints()
5322 // << " R " << &newSide2 << " "<< newSide2.NbPoints()
5323 // << " B " << &quad->side[ QUAD_BOTTOM_SIDE ] << " "<< quad->side[ QUAD_BOTTOM_SIDE].NbPoints()
5324 // << " T " << &quad->side[ QUAD_TOP_SIDE ] << " "<< quad->side[ QUAD_TOP_SIDE].NbPoints()<< endl;
5326 newQuad->side[ QUAD_BOTTOM_SIDE ].from = iBot;
5327 newQuad->side[ QUAD_TOP_SIDE ].from = iTop;
5328 newQuad->name = ( TComm("Right of I=") << I );
5330 bool bRev = quad->side[ QUAD_BOTTOM_SIDE ].IsReversed();
5331 bool tRev = quad->side[ QUAD_TOP_SIDE ].IsReversed();
5332 quad->side[ QUAD_BOTTOM_SIDE ].to = iBot + ( bRev ? -1 : +1 );
5333 quad->side[ QUAD_TOP_SIDE ].to = iTop + ( tRev ? -1 : +1 );
5334 quad->uv_grid.clear();
5336 return QUAD_LEFT_SIDE;
5338 else if ( J > 0 && J <= quad->jSize-2 ) //// split horizontally, a new quad is below an old one
5340 points.reserve( quad->iSize );
5341 for ( int iP = 0; iP < quad->iSize; ++iP )
5342 points.push_back( quad->UVPt( iP, J ));
5344 newQuad->side.resize( 4 );
5345 newQuad->side[ QUAD_BOTTOM_SIDE ] = quad->side[ QUAD_BOTTOM_SIDE ];
5346 newQuad->side[ QUAD_RIGHT_SIDE ] = quad->side[ QUAD_RIGHT_SIDE ];
5347 newQuad->side[ QUAD_TOP_SIDE ] = StdMeshers_FaceSide::New( points, quad->face );
5348 newQuad->side[ QUAD_LEFT_SIDE ] = quad->side[ QUAD_LEFT_SIDE ];
5350 FaceQuadStruct::Side& newSide = newQuad->side[ QUAD_TOP_SIDE ];
5351 FaceQuadStruct::Side& newSide2 = quad->side [ QUAD_BOTTOM_SIDE ];
5353 quad->side[ QUAD_BOTTOM_SIDE ] = newSide;
5355 int iLft = quad->side[ QUAD_LEFT_SIDE ].ToSideIndex( J );
5356 int iRgt = quad->side[ QUAD_RIGHT_SIDE ].ToSideIndex( J );
5358 newSide.AddContact ( 0, & quad->side[ QUAD_LEFT_SIDE ], iLft );
5359 newSide2.AddContact( 0, & quad->side[ QUAD_LEFT_SIDE ], iLft );
5360 newSide.AddContact ( quad->iSize - 1, & quad->side[ QUAD_RIGHT_SIDE ], iRgt );
5361 newSide2.AddContact( quad->iSize - 1, & quad->side[ QUAD_RIGHT_SIDE ], iRgt );
5362 // cout << "Contact: T " << &newSide << " "<< newSide.NbPoints()
5363 // << " B " << &newSide2 << " "<< newSide2.NbPoints()
5364 // << " L " << &quad->side[ QUAD_LEFT_SIDE ] << " "<< quad->side[ QUAD_LEFT_SIDE].NbPoints()
5365 // << " R " << &quad->side[ QUAD_RIGHT_SIDE ] << " "<< quad->side[ QUAD_RIGHT_SIDE].NbPoints()<< endl;
5367 bool rRev = newQuad->side[ QUAD_RIGHT_SIDE ].IsReversed();
5368 bool lRev = newQuad->side[ QUAD_LEFT_SIDE ].IsReversed();
5369 newQuad->side[ QUAD_RIGHT_SIDE ].to = iRgt + ( rRev ? -1 : +1 );
5370 newQuad->side[ QUAD_LEFT_SIDE ].to = iLft + ( lRev ? -1 : +1 );
5371 newQuad->name = ( TComm("Below J=") << J );
5373 quad->side[ QUAD_RIGHT_SIDE ].from = iRgt;
5374 quad->side[ QUAD_LEFT_SIDE ].from = iLft;
5375 quad->uv_grid.clear();
5377 return QUAD_TOP_SIDE;
5380 myQuadList.pop_back();
5384 //================================================================================
5386 * \brief Updates UV of a side after moving its node
5388 //================================================================================
5390 void StdMeshers_Quadrangle_2D::updateSideUV( FaceQuadStruct::Side& side,
5392 const TQuadsBySide& quadsBySide,
5397 side.forced_nodes.insert( iForced );
5399 // update parts of the side before and after iForced
5401 set<int>::iterator iIt = side.forced_nodes.upper_bound( iForced );
5402 int iEnd = Min( side.NbPoints()-1, ( iIt == side.forced_nodes.end() ) ? int(1e7) : *iIt );
5403 if ( iForced + 1 < iEnd )
5404 updateSideUV( side, iForced, quadsBySide, &iEnd );
5406 iIt = side.forced_nodes.lower_bound( iForced );
5407 int iBeg = Max( 0, ( iIt == side.forced_nodes.begin() ) ? 0 : *--iIt );
5408 if ( iForced - 1 > iBeg )
5409 updateSideUV( side, iForced, quadsBySide, &iBeg );
5414 const int iFrom = Min ( iForced, *iNext );
5415 const int iTo = Max ( iForced, *iNext ) + 1;
5416 const size_t sideSize = iTo - iFrom;
5418 vector<UVPtStruct> points[4]; // side points of a temporary quad
5420 // from the quads get grid points adjacent to the side
5421 // to make two sides of a temporary quad
5422 vector< FaceQuadStruct::Ptr > quads = quadsBySide.find( side )->second; // copy!
5423 for ( int is2nd = 0; is2nd < 2; ++is2nd )
5425 points[ is2nd ].reserve( sideSize );
5427 while ( points[is2nd].size() < sideSize )
5429 int iCur = iFrom + points[is2nd].size() - int( !points[is2nd].empty() );
5431 // look for a quad adjacent to iCur-th point of the side
5432 for ( size_t iQ = 0; iQ < quads.size(); ++iQ )
5434 FaceQuadStruct::Ptr q = quads[ iQ ];
5438 for ( iS = 0; iS < q->side.size(); ++iS )
5439 if ( side.grid == q->side[ iS ].grid )
5441 if ( iS == q->side.size() )
5444 if ( !q->side[ iS ].IsReversed() )
5445 isOut = ( q->side[ iS ].from > iCur || q->side[ iS ].to-1 <= iCur );
5447 isOut = ( q->side[ iS ].to >= iCur || q->side[ iS ].from <= iCur );
5450 if ( !setNormalizedGrid( q ))
5453 // found - copy points
5455 if ( iS % 2 ) // right or left
5457 i = ( iS == QUAD_LEFT_SIDE ) ? 1 : q->iSize-2;
5458 j = q->side[ iS ].ToQuadIndex( iCur );
5460 dj = ( q->side[ iS ].IsReversed() ) ? -1 : +1;
5461 nb = ( q->side[ iS ].IsReversed() ) ? j+1 : q->jSize-j;
5463 else // bottom or top
5465 i = q->side[ iS ].ToQuadIndex( iCur );
5466 j = ( iS == QUAD_BOTTOM_SIDE ) ? 1 : q->jSize-2;
5467 di = ( q->side[ iS ].IsReversed() ) ? -1 : +1;
5469 nb = ( q->side[ iS ].IsReversed() ) ? i+1 : q->iSize-i;
5471 if ( !points[is2nd].empty() )
5473 gp_UV lastUV = points[is2nd].back().UV();
5474 gp_UV quadUV = q->UVPt( i, j ).UV();
5475 if ( ( lastUV - quadUV ).SquareModulus() > 1e-10 )
5476 continue; // quad is on the other side of the side
5477 i += di; j += dj; --nb;
5479 for ( ; nb > 0 ; --nb )
5481 points[ is2nd ].push_back( q->UVPt( i, j ));
5482 if ( points[is2nd].size() >= sideSize )
5486 quads[ iQ ].reset(); // not to use this quad anymore
5488 if ( points[is2nd].size() >= sideSize )
5492 if ( nbLoops++ > quads.size() )
5493 throw SALOME_Exception( "StdMeshers_Quadrangle_2D::updateSideUV() bug: infinite loop" );
5495 } // while ( points[is2nd].size() < sideSize )
5496 } // two loops to fill points[0] and points[1]
5498 // points for other pair of opposite sides of the temporary quad
5500 enum { L,R,B,T }; // side index of points[]
5502 points[B].push_back( points[L].front() );
5503 points[B].push_back( side.GetUVPtStruct()[ iFrom ]);
5504 points[B].push_back( points[R].front() );
5506 points[T].push_back( points[L].back() );
5507 points[T].push_back( side.GetUVPtStruct()[ iTo-1 ]);
5508 points[T].push_back( points[R].back() );
5510 // make the temporary quad
5511 FaceQuadStruct::Ptr tmpQuad
5512 ( new FaceQuadStruct( TopoDS::Face( myHelper->GetSubShape() ), "tmpQuad"));
5513 tmpQuad->side.push_back( StdMeshers_FaceSide::New( points[B] )); // bottom
5514 tmpQuad->side.push_back( StdMeshers_FaceSide::New( points[R] )); // right
5515 tmpQuad->side.push_back( StdMeshers_FaceSide::New( points[T] ));
5516 tmpQuad->side.push_back( StdMeshers_FaceSide::New( points[L] ));
5518 // compute new UV of the side
5519 setNormalizedGrid( tmpQuad );
5520 gp_UV uv = tmpQuad->UVPt(1,0).UV();
5521 tmpQuad->updateUV( uv, 1,0, /*isVertical=*/true );
5523 // update UV of the side
5524 vector<UVPtStruct>& sidePoints = (vector<UVPtStruct>&) side.GetUVPtStruct();
5525 for ( int i = iFrom; i < iTo; ++i )
5527 const uvPtStruct& uvPt = tmpQuad->UVPt( 1, i-iFrom );
5528 sidePoints[ i ].u = uvPt.u;
5529 sidePoints[ i ].v = uvPt.v;
5533 //================================================================================
5535 * \brief Finds indices of a grid quad enclosing the given enforced UV
5537 //================================================================================
5539 bool FaceQuadStruct::findCell( const gp_XY& UV, int & I, int & J )
5541 // setNormalizedGrid() must be called before!
5542 if ( uv_box.IsOut( UV ))
5545 // find an approximate position
5546 double x = 0.5, y = 0.5;
5547 gp_XY t0 = UVPt( iSize - 1, 0 ).UV();
5548 gp_XY t1 = UVPt( 0, jSize - 1 ).UV();
5549 gp_XY t2 = UVPt( 0, 0 ).UV();
5550 SMESH_MeshAlgos::GetBarycentricCoords( UV, t0, t1, t2, x, y );
5551 x = Min( 1., Max( 0., x ));
5552 y = Min( 1., Max( 0., y ));
5554 // precise the position
5555 normPa2IJ( x,y, I,J );
5556 if ( !isNear( UV, I,J ))
5558 // look for the most close IJ by traversing uv_grid in the middle
5559 double dist2, minDist2 = ( UV - UVPt( I,J ).UV() ).SquareModulus();
5560 for ( int isU = 0; isU < 2; ++isU )
5562 int ind1 = isU ? 0 : iSize / 2;
5563 int ind2 = isU ? jSize / 2 : 0;
5564 int di1 = isU ? Max( 2, iSize / 20 ) : 0;
5565 int di2 = isU ? 0 : Max( 2, jSize / 20 );
5566 int i,nb = isU ? iSize / di1 : jSize / di2;
5567 for ( i = 0; i < nb; ++i, ind1 += di1, ind2 += di2 )
5568 if (( dist2 = ( UV - UVPt( ind1,ind2 ).UV() ).SquareModulus() ) < minDist2 )
5572 if ( isNear( UV, I,J ))
5574 minDist2 = ( UV - UVPt( I,J ).UV() ).SquareModulus();
5577 if ( !isNear( UV, I,J, Max( iSize, jSize ) /2 ))
5583 //================================================================================
5585 * \brief Find indices (i,j) of a point in uv_grid by normalized parameters (x,y)
5587 //================================================================================
5589 void FaceQuadStruct::normPa2IJ(double X, double Y, int & I, int & J )
5592 I = Min( int ( iSize * X ), iSize - 2 );
5593 J = Min( int ( jSize * Y ), jSize - 2 );
5599 while ( X <= UVPt( I,J ).x && I != 0 )
5601 while ( X > UVPt( I+1,J ).x && I+2 < iSize )
5603 while ( Y <= UVPt( I,J ).y && J != 0 )
5605 while ( Y > UVPt( I,J+1 ).y && J+2 < jSize )
5607 } while ( oldI != I || oldJ != J );
5610 //================================================================================
5612 * \brief Looks for UV in quads around a given (I,J) and precise (I,J)
5614 //================================================================================
5616 bool FaceQuadStruct::isNear( const gp_XY& UV, int & I, int & J, int nbLoops )
5618 if ( I+1 >= iSize ) I = iSize - 2;
5619 if ( J+1 >= jSize ) J = jSize - 2;
5622 gp_XY uvI, uvJ, uv0, uv1;
5623 for ( int iLoop = 0; iLoop < nbLoops; ++iLoop )
5625 int oldI = I, oldJ = J;
5627 uvI = UVPt( I+1, J ).UV();
5628 uvJ = UVPt( I, J+1 ).UV();
5629 uv0 = UVPt( I, J ).UV();
5630 SMESH_MeshAlgos::GetBarycentricCoords( UV, uvI, uvJ, uv0, bcI, bcJ );
5631 if ( bcI >= 0. && bcJ >= 0. && bcI + bcJ <= 1.)
5634 if ( I > 0 && bcI < 0. ) --I;
5635 if ( I+2 < iSize && bcI > 1. ) ++I;
5636 if ( J > 0 && bcJ < 0. ) --J;
5637 if ( J+2 < jSize && bcJ > 1. ) ++J;
5639 uv1 = UVPt( I+1,J+1).UV();
5640 if ( I != oldI || J != oldJ )
5642 uvI = UVPt( I+1, J ).UV();
5643 uvJ = UVPt( I, J+1 ).UV();
5645 SMESH_MeshAlgos::GetBarycentricCoords( UV, uvI, uvJ, uv1, bcI, bcJ );
5646 if ( bcI >= 0. && bcJ >= 0. && bcI + bcJ <= 1.)
5649 if ( I > 0 && bcI > 1. ) --I;
5650 if ( I+2 < iSize && bcI < 0. ) ++I;
5651 if ( J > 0 && bcJ > 1. ) --J;
5652 if ( J+2 < jSize && bcJ < 0. ) ++J;
5654 if ( I == oldI && J == oldJ )
5657 if ( iLoop+1 == nbLoops )
5659 uvI = UVPt( I+1, J ).UV();
5660 uvJ = UVPt( I, J+1 ).UV();
5661 uv0 = UVPt( I, J ).UV();
5662 SMESH_MeshAlgos::GetBarycentricCoords( UV, uvI, uvJ, uv0, bcI, bcJ );
5663 if ( bcI >= 0. && bcJ >= 0. && bcI + bcJ <= 1.)
5666 uv1 = UVPt( I+1,J+1).UV();
5667 SMESH_MeshAlgos::GetBarycentricCoords( UV, uvI, uvJ, uv1, bcI, bcJ );
5668 if ( bcI >= 0. && bcJ >= 0. && bcI + bcJ <= 1.)
5675 //================================================================================
5677 * \brief Checks if a given UV is equal to a given grid point
5679 //================================================================================
5681 bool FaceQuadStruct::isEqual( const gp_XY& UV, int I, int J )
5683 TopLoc_Location loc;
5684 Handle(Geom_Surface) surf = BRep_Tool::Surface( face, loc );
5685 gp_Pnt p1 = surf->Value( UV.X(), UV.Y() );
5686 gp_Pnt p2 = surf->Value( UVPt( I,J ).u, UVPt( I,J ).v );
5688 double dist2 = 1e100;
5689 for ( int di = -1; di < 2; di += 2 )
5692 if ( i < 0 || i+1 >= iSize ) continue;
5693 for ( int dj = -1; dj < 2; dj += 2 )
5696 if ( j < 0 || j+1 >= jSize ) continue;
5699 p2.SquareDistance( surf->Value( UVPt( i,j ).u, UVPt( i,j ).v )));
5702 double tol2 = dist2 / 1000.;
5703 return p1.SquareDistance( p2 ) < tol2;
5706 //================================================================================
5708 * \brief Recompute UV of grid points around a moved point in one direction
5710 //================================================================================
5712 void FaceQuadStruct::updateUV( const gp_XY& UV, int I, int J, bool isVertical )
5714 UVPt( I, J ).u = UV.X();
5715 UVPt( I, J ).v = UV.Y();
5720 if ( J+1 < jSize-1 )
5722 gp_UV a0 = UVPt( 0, J ).UV();
5723 gp_UV a1 = UVPt( iSize-1, J ).UV();
5724 gp_UV a2 = UVPt( iSize-1, jSize-1 ).UV();
5725 gp_UV a3 = UVPt( 0, jSize-1 ).UV();
5727 gp_UV p0 = UVPt( I, J ).UV();
5728 gp_UV p2 = UVPt( I, jSize-1 ).UV();
5729 const double y0 = UVPt( I, J ).y, dy = 1. - y0;
5730 for (int j = J+1; j < jSize-1; j++)
5732 gp_UV p1 = UVPt( iSize-1, j ).UV();
5733 gp_UV p3 = UVPt( 0, j ).UV();
5735 UVPtStruct& uvPt = UVPt( I, j );
5736 gp_UV uv = calcUV( uvPt.x, ( uvPt.y - y0 ) / dy, a0,a1,a2,a3, p0,p1,p2,p3);
5744 gp_UV a0 = UVPt( 0, 0 ).UV();
5745 gp_UV a1 = UVPt( iSize-1, 0 ).UV();
5746 gp_UV a2 = UVPt( iSize-1, J ).UV();
5747 gp_UV a3 = UVPt( 0, J ).UV();
5749 gp_UV p0 = UVPt( I, 0 ).UV();
5750 gp_UV p2 = UVPt( I, J ).UV();
5751 const double y0 = 0., dy = UVPt( I, J ).y - y0;
5752 for (int j = 1; j < J; j++)
5754 gp_UV p1 = UVPt( iSize-1, j ).UV();
5755 gp_UV p3 = UVPt( 0, j ).UV();
5757 UVPtStruct& uvPt = UVPt( I, j );
5758 gp_UV uv = calcUV( uvPt.x, ( uvPt.y - y0 ) / dy, a0,a1,a2,a3, p0,p1,p2,p3);
5764 else // horizontally
5769 gp_UV a0 = UVPt( 0, 0 ).UV();
5770 gp_UV a1 = UVPt( I, 0 ).UV();
5771 gp_UV a2 = UVPt( I, jSize-1 ).UV();
5772 gp_UV a3 = UVPt( 0, jSize-1 ).UV();
5774 gp_UV p1 = UVPt( I, J ).UV();
5775 gp_UV p3 = UVPt( 0, J ).UV();
5776 const double x0 = 0., dx = UVPt( I, J ).x - x0;
5777 for (int i = 1; i < I; i++)
5779 gp_UV p0 = UVPt( i, 0 ).UV();
5780 gp_UV p2 = UVPt( i, jSize-1 ).UV();
5782 UVPtStruct& uvPt = UVPt( i, J );
5783 gp_UV uv = calcUV(( uvPt.x - x0 ) / dx , uvPt.y, a0,a1,a2,a3, p0,p1,p2,p3);
5789 if ( I+1 < iSize-1 )
5791 gp_UV a0 = UVPt( I, 0 ).UV();
5792 gp_UV a1 = UVPt( iSize-1, 0 ).UV();
5793 gp_UV a2 = UVPt( iSize-1, jSize-1 ).UV();
5794 gp_UV a3 = UVPt( I, jSize-1 ).UV();
5796 gp_UV p1 = UVPt( iSize-1, J ).UV();
5797 gp_UV p3 = UVPt( I, J ).UV();
5798 const double x0 = UVPt( I, J ).x, dx = 1. - x0;
5799 for (int i = I+1; i < iSize-1; i++)
5801 gp_UV p0 = UVPt( i, 0 ).UV();
5802 gp_UV p2 = UVPt( i, jSize-1 ).UV();
5804 UVPtStruct& uvPt = UVPt( i, J );
5805 gp_UV uv = calcUV(( uvPt.x - x0 ) / dx , uvPt.y, a0,a1,a2,a3, p0,p1,p2,p3);
5813 //================================================================================
5815 * \brief Side copying
5817 //================================================================================
5819 FaceQuadStruct::Side& FaceQuadStruct::Side::operator=(const Side& otherSide)
5821 grid = otherSide.grid;
5822 from = otherSide.from;
5825 forced_nodes = otherSide.forced_nodes;
5826 contacts = otherSide.contacts;
5827 nbNodeOut = otherSide.nbNodeOut;
5829 for ( size_t iC = 0; iC < contacts.size(); ++iC )
5831 FaceQuadStruct::Side* oSide = contacts[iC].other_side;
5832 for ( size_t iOC = 0; iOC < oSide->contacts.size(); ++iOC )
5833 if ( oSide->contacts[iOC].other_side == & otherSide )
5835 // cout << "SHIFT old " << &otherSide << " " << otherSide.NbPoints()
5836 // << " -> new " << this << " " << this->NbPoints() << endl;
5837 oSide->contacts[iOC].other_side = this;
5843 //================================================================================
5845 * \brief Converts node index of a quad to node index of this side
5847 //================================================================================
5849 int FaceQuadStruct::Side::ToSideIndex( int quadNodeIndex ) const
5851 return from + di * quadNodeIndex;
5854 //================================================================================
5856 * \brief Converts node index of this side to node index of a quad
5858 //================================================================================
5860 int FaceQuadStruct::Side::ToQuadIndex( int sideNodeIndex ) const
5862 return ( sideNodeIndex - from ) * di;
5865 //================================================================================
5867 * \brief Reverse the side
5869 //================================================================================
5871 bool FaceQuadStruct::Side::Reverse(bool keepGrid)
5879 std::swap( from, to );
5890 //================================================================================
5892 * \brief Checks if a node is enforced
5893 * \param [in] nodeIndex - an index of a node in a size
5894 * \return bool - \c true if the node is forced
5896 //================================================================================
5898 bool FaceQuadStruct::Side::IsForced( int nodeIndex ) const
5900 if ( nodeIndex < 0 || nodeIndex >= grid->NbPoints() )
5901 throw SALOME_Exception( " FaceQuadStruct::Side::IsForced(): wrong index" );
5903 if ( forced_nodes.count( nodeIndex ) )
5906 for ( size_t i = 0; i < this->contacts.size(); ++i )
5907 if ( contacts[ i ].point == nodeIndex &&
5908 contacts[ i ].other_side->forced_nodes.count( contacts[ i ].other_point ))
5914 //================================================================================
5916 * \brief Sets up a contact between this and another side
5918 //================================================================================
5920 void FaceQuadStruct::Side::AddContact( int ip, Side* side, int iop )
5922 if ( ip >= (int) GetUVPtStruct().size() ||
5923 iop >= (int) side->GetUVPtStruct().size() )
5924 throw SALOME_Exception( "FaceQuadStruct::Side::AddContact(): wrong point" );
5925 if ( ip < from || ip >= to )
5928 contacts.resize( contacts.size() + 1 );
5929 Contact& c = contacts.back();
5931 c.other_side = side;
5932 c.other_point = iop;
5935 side->contacts.resize( side->contacts.size() + 1 );
5936 Contact& c = side->contacts.back();
5938 c.other_side = this;
5943 //================================================================================
5945 * \brief Returns a normalized parameter of a point indexed within a quadrangle
5947 //================================================================================
5949 double FaceQuadStruct::Side::Param( int i ) const
5951 const vector<UVPtStruct>& points = GetUVPtStruct();
5952 return (( points[ from + i * di ].normParam - points[ from ].normParam ) /
5953 ( points[ to - 1 * di ].normParam - points[ from ].normParam ));
5956 //================================================================================
5958 * \brief Returns UV by a parameter normalized within a quadrangle
5960 //================================================================================
5962 gp_XY FaceQuadStruct::Side::Value2d( double x ) const
5964 const vector<UVPtStruct>& points = GetUVPtStruct();
5965 double u = ( points[ from ].normParam +
5966 x * ( points[ to-di ].normParam - points[ from ].normParam ));
5967 return grid->Value2d( u ).XY();
5970 //================================================================================
5972 * \brief Returns side length
5974 //================================================================================
5976 double FaceQuadStruct::Side::Length(int theFrom, int theTo) const
5978 if ( IsReversed() != ( theTo < theFrom ))
5979 std::swap( theTo, theFrom );
5981 const vector<UVPtStruct>& points = GetUVPtStruct();
5983 if ( theFrom == theTo && theTo == -1 )
5984 r = Abs( First().normParam -
5985 Last ().normParam );
5986 else if ( IsReversed() )
5987 r = Abs( points[ Max( to, theTo+1 ) ].normParam -
5988 points[ Min( from, theFrom ) ].normParam );
5990 r = Abs( points[ Min( to, theTo-1 ) ].normParam -
5991 points[ Max( from, theFrom ) ].normParam );
5992 return r * grid->Length();