1 # Copyright (C) 2007-2008 CEA/DEN, EDF R&D, OPEN CASCADE
3 # Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
4 # CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
6 # This library is free software; you can redistribute it and/or
7 # modify it under the terms of the GNU Lesser General Public
8 # License as published by the Free Software Foundation; either
9 # version 2.1 of the License.
11 # This library is distributed in the hope that it will be useful,
12 # but WITHOUT ANY WARRANTY; without even the implied warranty of
13 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 # Lesser General Public License for more details.
16 # You should have received a copy of the GNU Lesser General Public
17 # License along with this library; if not, write to the Free Software
18 # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 # See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
22 # Tetrahedrization of the geometry generated by the Python script GEOM_Partition1.py
23 # Hypothesis and algorithms for the mesh generation are global
24 # -- Rayon de la bariere
32 #---------------------------------------------------------------
35 barier_radius = 5.6 / 2 # Rayon de la bariere
36 colis_radius = 1.0 / 2 # Rayon du colis
37 colis_step = 2.0 # Distance s
\89parant deux colis
38 cc_width = 0.11 # Epaisseur du complement de colisage
42 cc_radius = colis_radius + cc_width
43 colis_center = sqrt(2.0)*colis_step/2
54 p0 = geompy.MakeVertex(0.,0.,0.)
55 vz = geompy.MakeVectorDXDYDZ(0.,0.,1.)
59 barier = geompy.MakeCylinder(p0, vz, barier_radius, barier_height)
63 colis = geompy.MakeCylinder(p0, vz, colis_radius, barier_height)
64 cc = geompy.MakeCylinder(p0, vz, cc_radius, barier_height)
66 colis_cc = geompy.MakeCompound([colis, cc])
67 colis_cc = geompy.MakeTranslation(colis_cc, colis_center, 0.0, 0.0)
69 colis_cc_multi = geompy.MultiRotate1D(colis_cc, vz, 4)
73 Compound1 = geompy.MakeCompound([colis_cc_multi, barier])
74 SubShape_theShape = geompy.SubShapeAll(Compound1,geompy.ShapeType["SOLID"])
75 alveole = geompy.MakePartition(SubShape_theShape)
77 print "Analysis of the geometry to mesh (right after the Partition) :"
79 subShellList = geompy.SubShapeAll(alveole, geompy.ShapeType["SHELL"])
80 subFaceList = geompy.SubShapeAll(alveole, geompy.ShapeType["FACE"])
81 subEdgeList = geompy.SubShapeAll(alveole, geompy.ShapeType["EDGE"])
83 print "number of Shells in alveole : ", len(subShellList)
84 print "number of Faces in alveole : ", len(subFaceList)
85 print "number of Edges in alveole : ", len(subEdgeList)
87 subshapes = geompy.SubShapeAll(alveole, geompy.ShapeType["SHAPE"])
89 ## there are 9 subshapes
91 comp1 = geompy.MakeCompound( [ subshapes[0], subshapes[1] ] )
92 comp2 = geompy.MakeCompound( [ subshapes[2], subshapes[3] ] )
93 comp3 = geompy.MakeCompound( [ subshapes[4], subshapes[5] ] )
94 comp4 = geompy.MakeCompound( [ subshapes[6], subshapes[7] ] )
97 compGOs.append( comp1 )
98 compGOs.append( comp2 )
99 compGOs.append( comp3 )
100 compGOs.append( comp4 )
101 comp = geompy.MakeCompound( compGOs )
103 alveole = geompy.MakeCompound( [ comp, subshapes[8] ])
105 idalveole = geompy.addToStudy(alveole, "alveole")
107 print "Analysis of the geometry to mesh (right after the MakeCompound) :"
109 subShellList = geompy.SubShapeAll(alveole, geompy.ShapeType["SHELL"])
110 subFaceList = geompy.SubShapeAll(alveole, geompy.ShapeType["FACE"])
111 subEdgeList = geompy.SubShapeAll(alveole, geompy.ShapeType["EDGE"])
113 print "number of Shells in alveole : ", len(subShellList)
114 print "number of Faces in alveole : ", len(subFaceList)
115 print "number of Edges in alveole : ", len(subEdgeList)
117 status = geompy.CheckShape(alveole)
118 print " check status ", status
122 # ---- init a Mesh with the alveole
123 shape_mesh = salome.IDToObject( idalveole )
125 mesh = smesh.Mesh(shape_mesh, "MeshAlveole")
127 print "-------------------------- create Hypothesis (In this case global hypothesis are used)"
129 print "-------------------------- NumberOfSegments"
131 numberOfSegments = 10
133 regular1D = mesh.Segment()
134 hypNbSeg = regular1D.NumberOfSegments(numberOfSegments)
135 print hypNbSeg.GetName()
136 print hypNbSeg.GetId()
137 print hypNbSeg.GetNumberOfSegments()
138 smesh.SetName(hypNbSeg, "NumberOfSegments_" + str(numberOfSegments))
140 print "-------------------------- MaxElementArea"
144 mefisto2D = mesh.Triangle()
145 hypArea = mefisto2D.MaxElementArea(maxElementArea)
146 print hypArea.GetName()
147 print hypArea.GetId()
148 print hypArea.GetMaxElementArea()
149 smesh.SetName(hypArea, "MaxElementArea_" + str(maxElementArea))
151 print "-------------------------- MaxElementVolume"
153 maxElementVolume = 0.5
155 netgen3D = mesh.Tetrahedron(smesh.NETGEN)
156 hypVolume = netgen3D.MaxElementVolume(maxElementVolume)
157 print hypVolume.GetName()
158 print hypVolume.GetId()
159 print hypVolume.GetMaxElementVolume()
160 smesh.SetName(hypVolume, "MaxElementVolume_" + str(maxElementVolume))
162 print "-------------------------- compute the mesh of alveole "
166 log=mesh.GetLog(0) # no erase trace
169 print "Information about the Mesh_mechanic:"
170 print "Number of nodes : ", mesh.NbNodes()
171 print "Number of edges : ", mesh.NbEdges()
172 print "Number of faces : ", mesh.NbFaces()
173 print "Number of triangles : ", mesh.NbTriangles()
174 print "Number of volumes : ", mesh.NbVolumes()
175 print "Number of tetrahedrons: ", mesh.NbTetras()
177 print "problem when computing the mesh"
179 salome.sg.updateObjBrowser(1)