
SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 1 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SALOME TUTORIAL 
USER’S GUIDE 

 



SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 2 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

Contents 

1. Introduction .................................................................................................................................. 3 
1.1 How to use this tutorial ........................................................................................................... 3 
1.2 Pre-requisites.......................................................................................................................... 3 
1.3 Cohesion of sample components ........................................................................................... 3 

2. SALOME build procedure ............................................................................................................ 5 
2.1 General description of the build procedure ............................................................................ 5 
2.2 Typical sources package organization ................................................................................... 6 
2.3 Customize build procedure ..................................................................................................... 6 
2.4 Build the module ..................................................................................................................... 7 
2.5 Running SALOME with enabled ATOMIC module ................................................................. 8 

3. ATOMIC: light-weight component ............................................................................................10 
3.1 Instantiating a GUI module ...................................................................................................11 
3.2 Component with data ............................................................................................................16 
3.3 Implementing persistence .....................................................................................................19 
3.4 Working with Object Browser ...............................................................................................21 
3.5 Selection management .........................................................................................................23 

3.5.1 Popup menu handling with contextMenuPopup() method .................................................. 25 
3.5.2 Popup menu manager ............................................................................................................. 25 

3.6 Operations ............................................................................................................................27 
3.7 Implementing Dump python ..................................................................................................32 

3.7.1 Different approaches of the dump python mechanism implementation ................................... 32 
3.7.2 Adding “snapshot dump” in ATOMIC module .......................................................................... 33 

4. ATOMGEN: Python component ................................................................................................37 
4.1 Component with CORBA engine ..........................................................................................37 
4.2 Engine: interface and implementation ..................................................................................39 
4.3 Advanced data storage .........................................................................................................43 
4.4 GUI for Python component ...................................................................................................47 
4.5 Dump python mechanism .....................................................................................................51 

5. ATOMSOLV: C++ component with engine...............................................................................54 
5.1 Engine: interface and implementation ..................................................................................55 
5.2 Instantiating a GUI module ...................................................................................................56 
5.3 Graphical capabilities ...........................................................................................................60 
5.4 Preferences ..........................................................................................................................68 

6. SALOME Concepts .....................................................................................................................73 
6.1 KERNEL concepts ................................................................................................................73 

6.1.1 Build configurations ................................................................................................................. 73 
6.1.2 Component .............................................................................................................................. 73 
6.1.3 C++ component ....................................................................................................................... 74 
6.1.4 CORBA engine ........................................................................................................................ 75 
6.1.5 Light-weight component........................................................................................................... 75 
6.1.6 Numerical computations cycle ................................................................................................. 75 
6.1.7 Python component ................................................................................................................... 75 
6.1.8 SALOME data structure ........................................................................................................... 75 
6.1.9 Study 76 

6.2 GUI concepts ........................................................................................................................76 
6.2.1 Data model .............................................................................................................................. 76 
6.2.2 Data object .............................................................................................................................. 76 
6.2.3 Data owner .............................................................................................................................. 76 
6.2.4 Desktop 76 
6.2.5 GUI module ............................................................................................................................. 77 
6.2.6 Operation 77 
6.2.7 Resource manager .................................................................................................................. 78 
6.2.8 Selection management ............................................................................................................ 79 
6.2.9 View manager .......................................................................................................................... 79 
6.2.10 View model .............................................................................................................................. 79 
6.2.11 View window ............................................................................................................................ 80 

7. Attachments ................................................................................................................................81 
 



SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 3 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

1. INTRODUCTION 

This document represents a tutorial on SALOME platform. The tutorial provides an introduction to 
the developing of an application based on SALOME platform. It does not cover all the aspects of 
software application development; however it describes basic workflow which should be applied by 
the developers in order to implement new SALOME component(s). 
 
This tutorial is intended for the programmers with extended experience in C++ and/or Python 
languages, but unfamiliar with SALOME platform. In addition, some knowledge of CORBA 
technology, numerical computation cycle (pre-processing, processing, post-processing), and Qt 
library is required. 

1.1 HOW TO USE THIS TUTORIAL 

The tutorial is an interactive presentation which describes, step by step, how to build a custom 
SALOME-based application (SALOME component) "from scratch". It can be used as a training 
material organized in series of "lessons" where every lesson introduces a certain issue of SALOME 
platform. Further lessons are based on the previous ones so it is proposed to study them one after 
another to avoid misunderstanding. 
 
The tutorial is mainly intended to help a new developer, fully unfamiliar with SALOME platform, to 
understand its main concepts and develop a customized SALOME component. Also, it can be used 
by experienced users of SALOME platform as a reference material. The tutorial can be observed a 
recommended practices warehouse in this case. 
 
The chapter 6 of the tutorial “SALOME Concepts” presents main concepts of SALOME platform. 
Having met an unknown word (notion, concept) in the tutorial, please, refer to this chapter for 
explanations. 

1.2 PRE-REQUISITES 

This tutorial is applicable to the SALOME platform version 7.3.0 and newer. For other pre-
requisites (3

rd
-party products) please refer to the SALOME requirements. 

 
Note: SALOME platform distribution under Linux (SALOME Install Wizard) includes pre-compiled 
binaries of SALOME Tutorial modules, described in this document. If you choose installation of all 
SALOME modules into single directory (this option is available in SALOME Install Wizard), you will 
not be able to complete this tutorial as modules installed with SALOME will have more priority and, 
thus, they will be used in run-time instead of manually built ones. 

1.3 COHESION OF SAMPLE COMPONENTS 

Since the main goal of the tutorial is to provide the guide for creation of a new component, it is 
separated into 3 main parts: 

 ATOMIC: light-weight component. 

 ATOMGEN: Python component with CORBA engine. 

 ATOMSOLV: C++ component with engine 
 
It is proposed to study the tutorial in this order (Light-weight, then Python, then C++ with engine) 
because some topics are common and they will be explained only once in previous chapters. Every 
chapter consists of explanations and the code in C++/Python that builds up a component. 
 
The components developed with SALOME platform are mostly used for pre- and post-processing 
applications. Usually the data is prepared by one component, then it is processed by various 
solvers of other components that represent application of different physical algorithms to the data, 
and the results of calculations might be displayed by yet another component! Such interaction 
between components on the basis of data processing is known as coupling of the components. 
This tutorial will simulate a simple model of components coupling; the following interaction between 
the components will be developed during the tutorial: 
 

http://www.salome-platform.org/
http://www.qtsoftware.com/
http://www.qtsoftware.com/
http://www.salome-platform.org/downloads/current-version/download-page#supported-platforms-and-requirements


SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 4 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

 The first component to be developed is a light-weight component named ATOMIC. Its main 
goal is to prepare the data for the calculations. It allows the user to input the data using 
dialog boxes and export the data to a file. In the ATOMIC component it is impossible to 
visualize this data in any way, neither it is intended to perform any algorithmic processing 
of the data. These tasks will be carried out by the other components. The data is a list of 
records, each containing 3 floating point values (Cartesian coordinates), and a string value 
(name). It represents molecules and atoms. An XML format is used for the exporting of the 
data. 
 

 The second component is a Python component named ATOMGEN. It performs the 
processing of the data. It reads the data from the XML file and performs "algorithmic 
processing" to the data. After processing, the "molecules" are increased in number and 
oriented along some curve. It can be thought as "spatial algorithmic processing" of 
molecules. Then the data is stored in an internal data structure so it is accessible by other 
components via CORBA interface. 
 

 The third component is a C++ component with CORBA engine named ATOMSOLV. It 
allows further processing of the data and displaying of the results. This component 
introduces concepts of the viewer, view management, selection management, etc. It is 
possible to open a 3D view window in this component and display the "atoms" and 
"molecules". The "atoms" are represented by spheres in 3D space. ATOMSOLV also 
performs further processing of data, this time not spatial, but let's say "thermal". After the 
processing, different properties are assigned to the "atoms", that is reflected in their 3D 
representation – the atoms are differently colored. It will be also possible to change the 
color and display mode of the "atoms" manually. An important issue is how the data 
("atoms") is retrieved from the ATOMGEN component. It is done by means of CORBA 
interface directly from the Python component's engine. 



SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 5 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

2. SALOME BUILD PROCEDURE 

In this section we introduce the structure of a SALOME component source directories and a formal 
procedure of building the application. SALOME platform is rather complex software, and its build 
procedure requires examination. 
 
The description of build procedure given in this chapter is mainly aimed for Linux platform, however 
Windows is also supported by build procedure. 

2.1 GENERAL DESCRIPTION OF THE BUILD PROCEDURE 

The build procedure used for SALOME modules is based on the CMake tool 
(http://www.cmake.org). CMake is a cross-platform build system which works on Linux, Windows 
and other operating systems. 
 
CMake build system is used to define build rules for the application that allows developing of the 
cross-platform build procedures. They allow hiding a lot of details of Makefile's from the developer. 
With CMake tool, the build procedure of each SALOME module consists of the following steps: 
 
Step Description Input Output 

cmake Read script files and produce input 
files for the native build system of 
the platform where it runs on. It can 
create GNU Makefiles, KDevelop 
project files, XCode project files, 
MS Visual Studio project files, etc. 

When invoked, cmake command 
performs configuration of the build 
procedure, making all necessary 
products and tools detection, 
compilation/installation options set-
up etc. 

CMakeLists.txt 
files 

*.cmake files 

*.in files 

CMakeCache.txt 

Makefile 

other files 

make Compile all sources generating 
libraries, executables, etc. in the 
build directory 

Makefile 

Source code files 

Libraries, 
executables, 
scripts, 
resources, 
documentation, 
etc. in the build 
directory 

make install Install the application to the target 
directory (by default, /usr ). 

Libraries, 
executables, etc. 
in the build 
directory 

Libraries, 
executables, etc. 
in the target 
directory 

 
The CMake tool based procedure uses set of input files which define the build rules. The CMake 
build system is implemented in such a way to simplify as much as possible the defining of the build 
rules. It represents a “top-level” layer above the GNU make utility, providing simplified rules for 
such objects like libraries (static and shared), executables, python scripts, resources, 
documentation files, etc. It also provides integration with other build tools, like compilers, linkers, 
documentation generation utilities; supports different programming languages (C++, Fortran, 
Python, etc.) and other. Also it is possible to define own build rules; this is done by creating custom 
scripts following CMake syntax. The input for CMake build system is usually a set of 

CMakeLists.txt and *.cmake files. 

 
CMake input files are used to describe the build procedure, in particular: 

 Test platform; 

 Test system configuration; 

http://www.cmake.org/


SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 6 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

 Detect pre-requisites; 

 Specify targets (libraries, executables); 

 Generate build rules (for example, standard UNIX makefiles on Linux, MSVC solutions, 
etc). 

2.2 TYPICAL SOURCES PACKAGE ORGANIZATION 

Let’s take a look at the typical SALOME module sources package. Usually source package of 
SALOME module consist of the set of files and sub-directories, including source code (C++, 

Fortran, Python, etc.), build procedure files (CMakeLists.txt), check procedures (*.cmake), 

resources files (images, translation files, etc.), test scripts and other staff. 
 
Unpack attached archive light-00.tar.gz with ATOMIC module initial source tree to your working 
directory. It represents typical sources directory tree: 
 
ATOMIC_SRC - root directory 

ATOMIC_SRC/adm_local - administrative directory 

ATOMIC_SRC/adm_local/cmake_files - CMake-related administrative files 

ATOMIC_SRC/bin - directory for scripts and other tools 

ATOMIC_SRC/bin/VERSION.in - version file 

ATOMIC_SRC/resources - directory for common resources 

ATOMIC_SRC/resources/SalomeApp.xml - configuration file (“full” SALOME) 

ATOMIC_SRC/resources/LightApp.xml - configuration file (“light” SALOME) 

ATOMIC_SRC/resources/ATOMIC.png - main module icon 

ATOMIC_SRC/src - directory for source code 

ATOMIC_SRC/src/ATOMICGUI - GUI library source code directory 

ATOMIC_SRC/src/ATOMICGUI/ATOMICGUI.h - GUI library header file 

ATOMIC_SRC/src/ATOMICGUI/ATOMICGUI.cxx - GUI library implementation file 

ATOMIC_SRC/src/ATOMICGUI/resources - GUI library custom resources 

ATOMIC_SRC/ATOMIC_version.h.in - Module header file template 

ATOMIC_SRC/CMakeLists.txt - root CMake system file 

 
Some secondary files are not listed. Typically, each sub-directory also contains own 

CMakeLists.txt file. 

 
In addition, other modules can provide more complex sources package structure including 

additional directories, for example doc for the documentation sources, idl for CORBA interfaces 

files, etc. 

2.3 CUSTOMIZE BUILD PROCEDURE 

Project's root directory provides main CMake configuration that allows build all targets into one set 
of binaries and libraries. Each sub-directory also includes CMake configuration file 

(CMakeLists.txt) that specifies targets being build. 

 
The file CMakeLists.txt in root directory of the SALOME module provides basic build rules to be 

used in other CMakeLists.txt files. It sets main properties of project: name, version, pre-

requisites, installation paths, programming languages being used by the project, tree of sub-
directories, etc. 
 
A lot of files used by the build procedure of each SALOME module are located in SALOME 

KERNEL module (that is referenced by the KERNEL_ROOT_DIR environment variable), namely in 

its salome_adm sub-folder. Similarly, the GUI_ROOT_DIR environment variable is used for the 

graphical user interface (GUI) module of SALOME; this module also provides a set of configuration 

utilities (*.cmake files) in its adm_local folder. 

 
Some modules can need some external packages in order to compile and run properly. The usual 

approach is to write a special *.cmake file for the purpose of finding a certain piece of software 

and to set it's libraries, include files and definitions into appropriate variables so that they can be 
used in the build process of another project. It is possible to include the standard CMake detection 



SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 7 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

modules (FindXyz.cmake files, located in the standard CMake installation directory) or, if CMake 

does not provide a search procedure for some required software, it is necessary to create 

*.cmake module for each pre-requisite. 

 
Imagine we plan to use gd library for GIF/JPEG pictures creation in ATOMIC module. Then we 
must check at the configuration step, that this library is available, properly installed and compatible 
with our source code. To do this, we’ll need to add the corresponding check to our build  

 Create *.cmake file implementing the procedure that checks the availability of the gd 

library and sets required compilation / linkage options. 
 

Take a look at the attached ready-to-use FindGd.cmake file. It provides a typical example of 

such procedure implementation. The CMake tool includes a large set of helper macro-
commands which can be used in the check procedures. In our case, we check presence and 

availability of the gd.h header file and libgd.so library using pre-defined CMake macro-

commands FIND_PATH and FIND_LIBRARY. If everything goes well, we set the global 

variable GD_FOUND to TRUE, otherwise print the warning message. In addition, we specify 

GD_LIBRARIES and GD_INCLUDE_DIRS variables that can be then used in the 

CMakeLists.txt files when it’s necessary to link against the gd library. 

 

 Add check procedure into main CMakeLists.txt file and print GD_FOUND variable value 

in the summary section: 
 

  

MESSAGE(STATUS "Check for gd ...") 

 

FIND_PACKAGE(Gd) 

... 

MESSAGE(STATUS "Find gd – ${GD_FOUND}") 

 

 Include GD_LIBRARIES and GD_INCLUDE_DIRS variables in the CMakeLists.txt 

where it’s necessary to link against the gd library. This can be done in ${GD_LIBRARIES} 

and ${GD_INCLUDE_DIRS}. For example 

 
... 

INCLUDE_DIRECTORIES(${GUI_INCLUDE_DIR} ${GD_INCLUDE_DIRS}) 

... 

TARGET_LINK_LIBRARIES(mylibrary ${GUI_LIBRARIES} ${GD_LIBRARIES}) 

... 

2.4 BUILD THE MODULE 

We start developing the component with a stub that contains only basic directory structure, 

CMakeLists.txt files, several resources files and two source files with minimal code required 

for GUI library building. The archive file light-00.tar.gz with ATOMIC module initial source tree has 
to be unpacked to the working directory. To build the module it’s necessary to perform the following 
actions: 
 

 Check prerequisites: Linux operating system, C/C++ compiler, CMake tool availability, etc. 
 

 Set SALOME build environment (environment scripts env_build.sh and 

env_build.csh are the part of the SALOME installation procedure), for example: 

 

[%] source env_build.sh 

 

 Set ATOMIC module environment (this is optional for build procedure, but helps giving 
further instructions) -  set paths to the ATOMIC module source, build and installation 
directories, either using file atomic_env_build.sh (note: you have to edit it before 

usage to set correct paths): 

 

../../../../AppData/Local/Temp/archives/atomic_env_build.sh


SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 8 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

[%] source atomic_env_build.sh 
 

or by using shell commands directly: 
 

[%] export ATOMIC_SRC_DIR=your_sources_path/ATOMIC_SRC  
[%] export ATOMIC_BUILD_DIR=your_build_path/ATOMIC_BUILD  
[%] export ATOMIC_ROOT_DIR=your_install_path/ATOMIC 

 

Only the environment variable ATOMIC_ROOT_DIR is actually required - for using ATOMIC 

module in SALOME and for compilation of other modules, depending on the ATOMIC (this 
is not necessary for ATOMIC compilation and can be done later, but we tell it here for 
better understanding). 
 

 Build and install ATOMIC module: 
 

Change directory to the ${ATOMIC_SRC_DIR} (if not yet there) and go one level up: 
 

[%] cd ${ATOMIC_SRC_DIR} 
[%] cd .. 

 

Here, we suppose that a source directory and a build directory are on the same level in the 

directories hierarchy. Create build directory ${ATOMIC_BUILD_DIR}, and cd to this 

directory: 
 
[%] mkdir ${ATOMIC_BUILD_DIR} 
[%] cd ${ATOMIC_BUILD_DIR} 

 

Invoke cmake command to prepare build directory for compilation: 

 
[%] cmake –DCMAKE_BUILD_TYPE=<Mode>  
    -DCMAKE_INSTALL_PREFIX=${ATOMIC_ROOT_DIR} ../${ATOMIC_SRC_DIR} 

 

Here, <Mode> is a build mode (Release or Debug), ATOMIC_ROOT_DIR is a destination 

folder to install ATOMIC module of SALOME. By default (if CMAKE_INSTALL_PREFIX 

option is not given), ATOMIC module will be configured for installation to the /usr 

directory that requires root permissions to complete the installation. 
 

Invoke make and make install commands to build and install ATOMIC module: 
 

[%] make 
[%] make install 

2.5 RUNNING SALOME WITH ENABLED ATOMIC MODULE 

To launch SALOME session with the ATOMIC module, it’s necessary to perform the following 
steps: 
 

 Set runtime environment:  
 

Set paths to products and standard SALOME modules (environment scripts 

env_products.sh and env_products.csh are the part of the SALOME installation 

procedure): 
 
[%] source env_products.sh 

 

Supplement environment with ATOMIC installation directory path: 
 
[%] export ATOMIC_ROOT_DIR=your_install_path 

 

 Launch SALOME. 



SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 9 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

 
To launch Salome with some modules available, for example GEOM and ATOMIC, use 

runSalome command with --modules option: 

 
[%] ${KERNEL_ROOT_DIR}/bin/salome/runSalome --modules=GEOM,ATOMIC 

 
This command starts SALOME GUI session. The «Modules» toolbar will contain two items: 
«Geometry» and «Atomic». 
 

 Quit SALOME GUI 
 
Use menu File  Exit to close SALOME GUI desktop. 
 

Now you know how to build SALOME modules and run SALOME. Let’s use this knowledge to 
study ATOMIC: light-weight component. 



SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 10 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

3. ATOMIC: LIGHT-WEIGHT COMPONENT  

This chapter is dedicated to so-called "light-weight" components of SALOME platform.  What is a 
SALOME component is explained in 6.1.2 chapter.  The "lightness" of a light-weight component 
consists in exclusion of SALOME platform services that are based on CORBA technology.  Light-
weight components do not have a CORBA-based engine and do not use any CORBA-based 
services of SALOME platform (implemented in SALOMEDS, NamingService, Container, and other 
packages of KERNEL module). 
 
Here we have to say a few words about different modes of building and running of SALOME 
applications.  2 core modules of SALOME platform - KERNEL and GUI - can be compiled and run 
in 2 configurations (can be understood as modes): full and light. 
 

 Light configuration means that all CORBA-based services are disabled.  To build the 

modules in “light” configuration -DSALOME_LIGHT_ONLY=ON option must be passed to the 

cmake command (see paragraph 2 for details).   To run SALOME in the light configuration, 

the command runLightSalome.csh (or runLightSalome.sh) from GUI module is 

used. 
 

 Building in full configuration enables all CORBA services (-DSALOME_LIGHT_ONLY=OFF 

parameter of cmake command, this option is used by default).  To run SALOME in the full 

configuration a command runSalome from KERNEL module is used. 

 
A light-weight component can work with SALOME KERNEL and GUI modules built in both light and 
full configurations.  In other words, a light-weight component can be a part of a multi-component 
SALOME application, and the other components do not have to be necessarily light-weight.  But if 
all components are light-weight (in particular, if there is only 1 light-weight component in an 
application), then it is preferable to use KERNEL and GUI modules in light configuration.  This will 
increase the application performance since a number of unused CORBA-based services will not be 
started. 
 
Studying this chapter step by step, we shall create a simple light-weight component ATOMIC. 
Beginning with the next section – « Instantiating a GUI module » - we start the development of our 
component.  First we create a GUI module class, then create its internal data structure (Component 
with data section), implement persistence of the data (Implementing persistence section), learn 
how to display the data in Object Browser (Working with Object Browser section), set and retrieve 
selected objects and display a popup menu (Selection management section).  At last, we shall 
implement several new functions wrapped into Operation objects. 
 
Having completed this chapter of the tutorial, the sample light-weight component should look like 
shown at the Figure 1.  
 



SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 11 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

 
Figure 1. ATOMIC module 

 
The ATOMIC component will allow creating "molecule" objects (compound) and "atom" objects 
(single objects with a "molecule" as a parent).  "Atom" objects will have 3 integer attributes (X, Y, Z 
coordinates).  "Molecules" and their "atoms" will be shown in Object Browser.  Additionally we shall 
implement the following functions: renaming and removal of "molecules" and "atoms", import and 
export of data ("molecules" and "atoms") to/from file in XML format. 

3.1 INSTANTIATING A GUI MODULE 

We shall start the development of a new GUI module class for ATOMIC component with a build 

stub. The stub contains structure of directories, necessary utility files (CMakeLists.txt), and 2 

source files: ATOMICGUI.h and ATOMICGUI.cxx - starting point for our GUI module development. 

 
Please, unpack the stub archive file ATOMIC module source files (initial stub) to your working 

directory.  Set environment, create ATOMIC build directory, run cmake, make and make install 

commands.  For details on SALOME build procedure please refer to the paragraph 2. 
 
An application can be started now, new Study can be created and ATOMIC module can be 
loaded. But it has no controls and does absolutely nothing. 
 

Let's take a look at ATOMIC.h and ATOMIC.cxx (comments are excluded): 

 

ATOMIC.h: 
class ATOMICGUI: public LightApp_Module 

{ 

  Q_OBJECT 

public: 

  ATOMICGUI(); 

}; 

 

ATOMIC.cxx: 

../../../../AppData/Local/Temp/archives/light-00.tar.gz


SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 12 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

ATOMICGUI::ATOMICGUI() 

: LightApp_Module( "ATOMICGUI" ) 

{ 

} 

extern "C" { 

  ATOMICGUI_EXPORT CAM_Module* createModule() { 

    return new ATOMICGUI(); 

  } 

} 

 

So we have an empty module and an "extern C" function for its instantiation.  A global "extern 

C" function that creates a GUI module instance is used in SALOME for dynamic loading of a 

component at run time.  It should be always declared using exactly the same "signature": 
 

extern "C" { CAM_Module* createModule(); } 

 

A component is loaded using the following sequence of actions: 
 

 Resource file(s) are parsed.  Resource file(s) contain a lot of customizable information 
which is used during application start up and run.  The information contains instruction 
which components should be activated, which CORBA servers started (in full 
configuration), and many other important things. A general rule for resource files location 

is: first files listed in LightAppConfig (light-weight configuration) or SalomeAppConfig 

variable value (file names must be separated by ';' or ':' symbol) are parsed, then a user-

dependent resource file ~/.SalomeApprc.<version> is parsed. Commands 

runSalome and runLightSalome extend this variable automatically using according 

<module_name>_ROOT_DIR values. 

 

 Components to be activated in the current SALOME session are listed in resource files 

(section "launch", parameter "modules").  Names of GUI modules library files (.so or 

.dll) are either dynamically constructed at run time (on Linux the algorithm is: 

"lib"+<component_name>+".so") or they are explicitly indicated in the resource file. 

 

 When a certain module is activated (selected in components combo box or a 

corresponding tool button is pressed), its library is loaded into memory, an "extern C" 

function createModule() is dynamically located in the library and called to retrieve a 

GUI module object. 
 

 As soon as GUI module object is constructed, it receives control of execution, creates 
necessary menu items, view windows, etc.  A component is ready to operate. 

 
Below we shall examine the functions that are called on GUI module object when it is activated and 
deactivated: 
 

 initialize(): Called when a component is activated for the first time. Function  

initialize() is called only once for each GUI module object created.  It is the best 

place for code that creates actions, menu items, tool buttons, operations, popup menu 
items, etc. 

 

 activateModule(): Called every time a component is activated (a corresponding item is 

selected in components combo box or a tool button in components tool bar is pressed).  
Usually this function displays menu items and tool buttons (which were already created in 

initialize()) and installs customized selection managers (not used in ATOMIC 

component). 
 

 deactivateModule(): Called every time when a component is deactivated (another 

component is activated or a study is closed).  Usually this function hides menus and tool 
buttons of a component and deactivates customized selection managers. 

 



SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 13 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

Let's assume we have implemented these functions and created 2 actions for atoms and molecules 
creation.  We shall also create the corresponding menu items and tool buttons and connect their 
actions to one common slot (which will do nothing for the moment).  The GUI module class of 
ATOMIC component will now look in the following way: 
 

ATOMICGUI.h 

ATOMICGUI.cxx 

    initialize() 

    activateModule() 

    deactivateModule() 

    onOperation() 

    extern "C" createModule() 

 
#if !defined(ATOMICGUI_H) 

#define ATOMICGUI_H 

 

#include <LightApp_Module.h> 

 

/*! 

 * Class       : ATOMICGUI 

 * Description : GUI module class for ATOMIC component 

 */ 

class ATOMICGUI: public LightApp_Module 

{ 

  Q_OBJECT 

  enum { agCreateConf, agAddAtom }; 

 

public: 

  ATOMICGUI(); 

  virtual void initialize ( CAM_Application* ); 

 

public slots: 

  virtual bool activateModule   ( SUIT_Study* ); 

  virtual bool deactivateModule ( SUIT_Study* ); 

 

private slots: 

  void         onOperation(); 

}; 

 

#endif // ATOMICGUI_H 

 
using namespace std; 

 

#include "ATOMICGUI.h" 

 

#include <LightApp_Application.h> 

 

#include <SUIT_ResourceMgr.h> 

#include <SUIT_Session.h> 

#include <SUIT_Desktop.h> 

 

/*! Constructor */ 

ATOMICGUI::ATOMICGUI() 

: LightApp_Module( "ATOMICGUI" ) 

{ 

} 

 

/*! Initialization function. 

    Called only once on first activation of GUI module. 

*/ 

void ATOMICGUI::initialize ( CAM_Application* app ) 

{ 

  LightApp_Module::initialize( app ); // call parent implementation 



SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 14 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

 

  QWidget* parent = application()->desktop(); 

  SUIT_ResourceMgr* resMgr = SUIT_Session::session()->resourceMgr(); 

 

  // create actions 

  createAction( agCreateConf, tr( "TOP_CREATE_CONF" ),  

      resMgr->loadPixmap( "ATOMIC", tr( "ICON_ATOMIC_CONF" ) ),  

      tr( "MEN_CREATE_CONF" ), tr( "STB_CREATE_CONF" ), 0, parent, 

      false, this, SLOT( onOperation() ) ); 

  createAction( agAddAtom,    tr( "TOP_ADD_ATOM" ), 

      resMgr->loadPixmap( "ATOMIC", tr( "ICON_ATOM" ) ),  

      tr( "MEN_ADD_ATOM" ),    tr( "STB_ADD_ATOM" ),    0, parent,  

      false, this, SLOT( onOperation() ) ); 

 

  // init popup menus 

  int aAtomicMnu = createMenu( tr( "MEN_ATOMIC" ), -1, -1, 50 ); 

  createMenu( agCreateConf, aAtomicMnu, 10 ); 

  createMenu( separator(),  aAtomicMnu, -1, 10 ); 

  createMenu( agAddAtom,    aAtomicMnu, 10 ); 

 

  // create toolbar 

  int tbId = createTool( tr( "MEN_ATOMIC" ) ); 

  createTool( agCreateConf, tbId ); 

  createTool( agAddAtom,    tbId ); 

} 

 

/*! Activation function. Called on every activation of a GUI module. 

*/ 

bool ATOMICGUI::activateModule ( SUIT_Study* study ) 

{ 

  bool isDone = LightApp_Module::activateModule( study ); 

  if ( !isDone ) return false; 

 

  setMenuShown( true ); 

  setToolShown( true ); 

 

  return isDone; 

} 

 

/*! Deactivation function.  

    Called on every deactivation of a GUI module. 

*/ 

bool ATOMICGUI::deactivateModule ( SUIT_Study* study ) 

{ 

  setMenuShown( false ); 

  setToolShown( false ); 

 

  return LightApp_Module::deactivateModule( study ); 

} 

 

/*! slot connected to all functions of the component 

    (create molecule, add atom, etc.) 

*/ 

void ATOMICGUI::onOperation() 

{ 

  if( sender() && sender()->inherits( "QAction" ) ) 

  { 

    int id = actionId( ( QAction* )sender() ); 

    printf( "An operation with ID = %d was called\n", id ); 

  } 

} 

 

#if defined(WNT) 



SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 15 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

#define ATOMICGUI_EXPORT __declspec(dllexport) 

#else   // WNT 

#define ATOMICGUI_EXPORT 

#endif  // WNT 

 

/*! GUI module instantiation function */ 

extern "C" { 

  ATOMICGUI_EXPORT CAM_Module* createModule() { 

    return new ATOMICGUI(); 

  } 

} 

 

The whole application at this point of our development can be downloaded using this link, unzipped 
and built. 
 
Please, build the application and run it.  Now we can see that the Desktop has Atomic menu with 
sub items and a new tool bar: 
 

 
Figure 2. « Atomic » menu 

 
Please, pay attention at using a new object for string and bitmap resources allocation described in 
SALOME concepts chapter: Resource manager.  Resource manager uses resource file pointed by 

LightAppConfig / SalomeAppConfig variable for location of directories with resources.  In our 

case,  LightApp.xml (or SalomeApp.xml) file contains the following lines that tell Resource 

manager to use a certain directory for location of ATOMIC resources: 
 

<section name="resources" > 

  <parameter name="ATOMIC" 

   value="${ATOMIC_ROOT_DIR}/share/salome/resources/atomic"/> 

</section> 

 

This directory (${ATOMIC_ROOT_DIR}/share/salome/resources/atomic) after building of 

ATOMIC component contains .qm files (prepared by lrelease tool from Qt toolkit) for bitmap and 

string resource allocation.  File names must follow certain rule: 
 

 Bitmap resources file name: <Resource_name>_images.qm  [ATOMIC_images.qm] 

 

 Textual resources file name: <Resource_name>_msg_<language>.qm 

[ATOMIC_msg_en.qm] 

 

For more information on using qm files and internationalization support by Qt toolkit, please, refer to 

Qt API reference on Qt web site: QTranslator class. 

 
At this point we have built a GUI module for a light-weight component with a set of commands 
accessible through menus and tool buttons.  The goal of our component is to prepare data for its 
further processing.  In the next section we shall develop an internal data model for our component 
and implement its persistence. 

../../../../AppData/Local/Temp/archives/light-01.tar.gz
http://qt-project.org/doc/qt-5.1/qtcore/qtranslator.html


SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 16 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

3.2 COMPONENT WITH DATA  

A component stores its data by means of Data Model - a very important concept of SALOME 
platform.  Data Model is a somewhat manager of data within a component.  It plays a role of 
interface for accessing the data: retrieval, removal, and modification.  It also implements 
persistence of data: saving to external file(s) and reconstruction of internal data structure from the 
file(s). 
 
The data itself can be organized in any way a programmer desires.  In our simple case we will use 
a list of values, more complicated data structures can be implemented using complex tools for data 

storage and retrieval (as CORBA-based SALOMEDS library or even SQL servers), but the common 

gateway for accessing the data will be Data Model. 
 

Data Model represents arbitrary internal data in a tree-like structure.  It is done through root() 

method of CAM_DataModel class.  It returns object of the highest level of a component, usually 

this object represents the component itself.  Here we have to say a few words about what kind of 
object is returned by Data Model. This object is a called a Data Object.  Its primary mission is to 
provide a common view of arbitrary data.  It is a proxy-object - it hides the real implementation of 
data and provides a generic interface to accessing it by other objects.  For example, Object 
Browser "knows" how to display Data Objects, Selection Manager "knows" how to select Data 
Objects, and only Data Object itself "knows" which real piece of data was accessed (displayed, 
selected, etc.) through it. 
 
OK, let's return to our ATOMIC component and develop a data structure for it.  First of all, we have 
to develop a data itself.  In our simple case, we shall use a simple list of values to represent a set 
of molecules.  Each value - is an object of a class that we are going to develop.  Let's assume that 
we have done it :), and here it is: 
 

class ATOMICGUI_AtomicMolecule 

{ 

private: 

 

  class Atom 

  { 

  public: 

    Atom(); 

    Atom(const QString& name, const double x, const double y, const 

double z); 

    QString name() const { return myName; } 

    double  x()    const { return myX;    } 

    double  y()    const { return myY;    } 

    double  z()    const { return myZ;    } 

     

    int     id()   const { return myId;   } 

     

  private: 

    QString    myName; 

    double     myX; 

    double     myY; 

    double     myZ; 

    int        myId; 

    static int myMaxId; 

 

    friend class ATOMICGUI_AtomicMolecule; 

  }; 

 

public: 

  ATOMICGUI_AtomicMolecule( const QString& name = QString::null ); 

  virtual ~ATOMICGUI_AtomicMolecule(); 

 

  void addAtom( const QString& atom, const double x, const double y, 

const double z ); 



SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 17 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

  void deleteAtom( const int index ); 

   

  int         id     () const { return myId; } 

  QString     name   () const { return myName; } 

  int         count  () const { return myAtoms.count(); } 

 

  int         atomId   ( const int index ) const; 

  QString     atomName ( const int index ) const; 

  double      atomX    ( const int index ) const; 

  double      atomY    ( const int index ) const; 

  double      atomZ    ( const int index ) const; 

 

  void        setName( const QString& name, const int index = -1 ); 

 

private: 

  QString          myName; 

  QList<Atom>      myAtoms; 

  int              myId; 

  static int       myMaxId; 

}; 

 
This class represents one molecule that consists of several atoms.  The data structure of ATOMIC 
component consists of a set of molecules.  How do we do it and where do we store this set?  As we 
have described above, the best place for it would be a Data Model.  We develop 

ATOMICGUI_DataModel class, and its header file will look like this: 

 
class ATOMICGUI_DataModel : public LightApp_DataModel 

{ 

  Q_OBJECT 

 

public: 

  ATOMICGUI_DataModel ( CAM_Module* ); 

  virtual ~ATOMICGUI_DataModel(); 

 

  bool   createMolecule (); 

  bool   addAtom (const QString& moleculeID, const QString& atomName, 

                  const double x, const double y, const double z); 

 

private: 

  QList<ATOMICGUI_AtomicMolecule> myMolecules; 

}; 

 

The private member field myMolecules is basically all data structure of our component.  

createMolecule() and addAtom() methods allow to add new objects to the data structure.  

Please, take the source file of the current state of ATOMIC component, study it carefully and build 
it.  We have implemented a virtual function of GUI module class which creates Data Model.  This 
function will be called automatically when new study is created.  Also Data Model will receive a 
number of callbacks for saving and restoring of it data - we shall implement them later.  We also 

added functionality to onOperation() slot of ATOMICGUI class, so that pressing "Create 

molecule" tool button (or selecting a menu item) creates a real object in our data structure.  In the 
future we shall replace this code (we shall use Operation object).  Also it is not currently possible to 
add Atoms to molecules since we do not know how to identify a molecule to be used (wait until we 
learn Selection management).  "Everything is good in its season"! 
 
Now we are going to develop a Data Object for our model.  As it was mentioned above, Data 
Object plays a role of proxy - it hides the real implementation of data and provides a generic 
interface for accessing it by other objects.  For ATOMIC component we shall develop one Data 
Object class to represent both Molecule and Atom objects.  Another successor of Data Object that 
we will develop represents a root object - parent of all our Molecules and Atoms. 
 
 

../../../../AppData/Local/Temp/archives/light-02.tar.gz


SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 18 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

class ATOMICGUI_DataObject : public virtual LightApp_DataObject 

{ 

public: 

  ATOMICGUI_DataObject (SUIT_DataObject*, 

        ATOMICGUI_AtomicMolecule* = 0, int = -1); 

  virtual ~ATOMICGUI_DataObject(); 

     

  virtual QString entry() const; 

 

  QString    name()    const; 

  QPixmap    icon(const int = NameId)    const; 

  QString    toolTip(const int = NameId) const; 

 

  ATOMICGUI_AtomicMolecule* molecule() const { return myMolecule; } 

  int        atomIndex()  const { return myIndex; } 

 

  bool       isMolecule() const; 

  bool       isAtom() const; 

 

private: 

  ATOMICGUI_AtomicMolecule*  myMolecule; 

  int                        myIndex; 

}; 

 

class ATOMICGUI_ModuleObject : public ATOMICGUI_DataObject, 

                               public LightApp_ModuleObject 

{ 

public: 

  ATOMICGUI_ModuleObject ( CAM_DataModel*, SUIT_DataObject* = 0 ); 

 

  virtual QString name()    const; 

  QPixmap         icon(const int = NameId)    const; 

  QString         toolTip(const int = NameId) const; 

}; 

 

Method entry() of Data Object is inherited from LightApp_DataObject class.  This method 

must return a unique string for every object.  It is used for unique object "key" generation which in 
turn is used for object compare (equal, less, etc.).  We shall implement it as follows: 
 

QString ATOMICGUI_DataObject::entry() const 

{ 

  QString id = "root"; 

  if ( myMolecule ) 

    id = QString::number( myMolecule->id() );  

  if ( myIndex >= 0 ) 

    id += QString( "_%1" ).arg( QString::number(  

          myMolecule->atomId( myIndex ) ) );  

  return QString( "ATOMICGUI_%1" ).arg( id ); 

} 

 
Such implementation returns an unique string for all 3 kinds of ATOMIC objects: root object, 
molecule, and atom. 
 
The next step is building a tree of Data Objects and setting the root of this tree as a root of the Data 

Model.  The best place for this functionality is virtual method build() of Data Model class.  Let's 

implement it: 
 

void ATOMICGUI_DataModel::build() 

{ 

  CAM_ModuleObject* modelRoot =  

    dynamic_cast<CAM_ModuleObject*>( root() ); 

  if( !modelRoot )  {  // root is not set yet 

    LightApp_Study* study = 



SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 19 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

      dynamic_cast<LightApp_Study*>( module()-> 

                   application()->activeStudy()); 

    modelRoot = createModuleObject( study->root() ); 

    setRoot( modelRoot ); 

  } 

  // create 'molecule' objects under model root object  

  // and 'atom' objects under 'molecule'-s 

  for ( int i = 0; i < myMolecules.count(); i++ ) { 

    ATOMICGUI_DataObject* molObj = 

      new ATOMICGUI_DataObject ( modelRoot, &myMolecules[i] ); 

    for ( int j = 0; j < myMolecules[ i ].count(); j++ ) { 

      /*ATOMICGUI_DataObject* atomObj = */ 

      new ATOMICGUI_DataObject ( molObj, &myMolecules[i], j ); 

    } 

  } 

} 

 

A root object is an instance of ATOMICGUI_ModuleObject class, its children are molecule 

objects, their children - atom objects.  We shall also implement several utility methods in our Data 
Model: 
 

bool renameObj ( const QString& entry, const QString& newName ); 

bool deleteObjs ( const QStringList& listOfEntries ); 

ATOMICGUI_DataObject* findObject   ( const QString& entry ); 

ATOMICGUI_DataObject* findMolecule ( const QString& entry ); 

 

All these methods operate with entries.  Having implemented entry() method of Data Object it is 

much easier now to operate with these entries - unique identifiers of Data Objects of all types: root 
Data Object, molecules, and atoms. 
 
Please, take source files of the current state of ATOMIC component.  Study them to understand the 
following issues: 
 

 How the real data (classes declared in ATOMICGUI_Data.h file) is "wrapped" with 

Data Object interface. 
 

 How a tree of Data Objects is constructed. 
 

 How a certain molecule or atom is accessed (modified) using its Data Object. 
 
As it is still not possible to create atoms of a certain molecule (we simply do not know yet how to 
select a certain molecule), we have added a temporary code that creates 3 atoms for any new 

molecule in createMolecule() method. 

 

Calling root()->dump() in ATOMICGUI_DataModel::build() method displays in the 

terminal the current structure of Data Objects.  After we learn how to display the objects in Object 

Browser, there will be no need in this dump(). 

 
In the next section we shall implement persistence of our data. 

3.3 IMPLEMENTING PERSISTENCE 

Data Model has a number of virtual functions that are called by Study when it is being saved to a 

file or restored from a file.  The functions are: save(), saveAs(), open().  The algorithm of 

saving of a Study is the following: Study iterates active components, retrieves their Data Models 

and calls  save() or saveAs() functions.  In save() and saveAs() a Data Model saves its 

data to a temporary file(s) in arbitrary format and returns (in out-parameter) a list of file names 
which contain the saved data.  The first file name must be a name of a directory, the next file 
names (any number of them) - names of files in this directory.  If we go deeper into persistence 
implementation details, we'll see that contents of these files will be serialized into a binary stream, 
this stream will be saved into one single file (or multiple files, depends on settings), and afterwards 

../../../../AppData/Local/Temp/archives/light-03.tar.gz


SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 20 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

the original file(s) created by Data Model will be deleted.  During opening of a Study the algorithm 
is exactly the opposite: from a single file (or multiple files) a stream is created, it restores the 
temporary files for Data Models (in the same way as Data Model saved them, only location of these 

files may change), and finally open() function of a Data Model is called receiving the temporary 

file name(s) on its input.  It must restore the internal data structure from the files. 
 
Such scheme of persistence is very flexible.  It allows for saving of a Study that contains data of 
multiple components into one single file.  Each component follows its own rules for saving of its 
own data; the information that it presents is only a file name where it saved the data. 
 
Let's take a look at ATOMIC component. The following virtual functions must be redefined in Data 
Model: 
 

virtual bool open   ( const QString&, CAM_Study*, QStringList ); 

virtual bool save   ( QStringList& ); 

virtual bool saveAs ( const QString&, CAM_Study*, QStringList& ); 

 

virtual bool isModified () const; 

virtual bool isSaved    () const; 

 

The functions isModified() and isSaved() are called by application to enable/disable "Save" 

and "Save As" menu item and tool button. 
 
We also have to add 2 functions to do the real saving of our "atomic" data structure to a file and 
restoring it from a file.  We chose XML format and Qt DOM library for  these needs. 

bool  importFile ( const QString&, CAM_Study* = 0 ); 

bool  exportFile ( const QString& = QString::null ); 

 

Now let's take a look at implementation of open(), save(), and saveAs() functions: 

 
bool ATOMICGUI_DataModel::open( const QString& URL,  

               CAM_Study* study, QStringList listOfFiles ) 

{ 

  LightApp_Study* aDoc = dynamic_cast<LightApp_Study*>( study ); 

  if ( !aDoc ) 

    return false; 

 

  LightApp_DataModel::open( URL, aDoc, listOfFiles ); 

 

  // The first list item contains path to a temporary 

  // directory, where the persistent files was placed 

  if ( listOfFiles.count() > 0 ) { 

    QString aTmpDir ( listOfFiles[0] ); 

 

    // This module operates with a single persistent file 

    if ( listOfFiles.size() == 2 ) { 

      myStudyURL = URL; 

      QString aFullPath = SUIT_Tools::addSlash( aTmpDir ) +  

                 listOfFiles[1]; 

      return importFile( aFullPath, aDoc ); 

    } 

  } 

 

  return false; 

} 

 

bool ATOMICGUI_DataModel::save( QStringList& listOfFiles ) 

{ 

  bool isMultiFile = false;  

 

  LightApp_DataModel::save( listOfFiles ); 



SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 21 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

 

  LightApp_Study* study = dynamic_cast<LightApp_Study*>( 

              module()->application()->activeStudy() ); 

 

  QString aTmpDir(study->GetTmpDir( myStudyURL.toLatin1(),  

              isMultiFile ).c_str()); 

 

  QString aFileName = SUIT_Tools::file( myStudyURL, false ) + 

              "_ATOMICGUI.xml"; 

  QString aFullPath = aTmpDir + aFileName; 

  bool ok = exportFile( aFullPath ); 

 

  listOfFiles.append( aTmpDir ); 

  listOfFiles.append( aFileName ); 

 

  return ok; 

} 

 

bool ATOMICGUI_DataModel::saveAs ( const QString& URL, 

             CAM_Study* study, QStringList& listOfFiles ) 

{ 

  myStudyURL = URL; 

  return save( listOfFiles ); 

} 

 

The member field myStudyURL is used to store the file name of last used persistent file. 

In save() we create an XML file, export our data into this file, and return in the out parameter the 

directory and the file name. 
 

In the open() function we construct the file name using the first (directory name) and the second 

(file name) members of the input list, and call importFile() to restore the data structure from 

this file. 
 

All we have to do now - is implement importFile() and exportFile() functions. This is 

already done in the sources of the current state of ATOMIC component. Please, save the source 
files and build the component. Now it is possible to save the study and restore it. We can see in the 

terminal that dump() after opening of a study outputs the same, previously saved data structure. 

 

At this point we finish to develop the ATOMICGUI_DataModel class - now has all functionality that 

is supposed to have. 
 
In the next section we learn how to use Object Browser for displaying the data structure, so we will 

not have to use dump() any more. 

3.4 WORKING WITH OBJECT BROWSER 

Object Browser is a view window based on QTreeView class, which can display the data structure 
of components based on Data Objects.  Object Browser is shared among all components; it is 
created for every new (opened) Study.  Components display their "portions" of data in Object 
Browser under their "root objects".  On the Figure 3 below we can see 2 root objects of 2 
components: Geometry component and Mesh component. 
 

../../../../AppData/Local/Temp/archives/light-04.tar.gz
http://doc.trolltech.com/4.5/qtreeview.html


SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 22 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

 
Figure 3. Object Browser 

 
Object Browser supports selection of objects (setting and retrieving selected objects), and 
displaying a popup menu on them.  Data Objects can provide different text for different columns in 
Object Browser.  Standard set of columns includes 4 additional columns: "Value", "Entry", "IOR", 
and "Reference entry" (see Figure 4), but any number of additional columns can be added by a 
component. 
 

 
Figure 4. Object browser custom columns 

 
Data Objects also provide an icon and a tool tip to be displayed in Object Browser.  If we take a 
look again at Data Object of ATOMIC component, it has got methods that are used by object 
browser: 
 

QString    name()    const; 

QPixmap    icon()    const; 

QString    toolTip() const; 

 
OK, now we come to the first question: how does a component opens and accesses the Object 
Browser? 
 

 To make the Object Browser available for a component, a component's GUI module class 

must redefine virtual method windows() and add a "flag" of Object Browser to out-

parameter map. That's all! 
 

void ATOMICGUI::windows ( QMap<int, int>& aMap ) cons 

{ 

  aMap.insert( LightApp_Application::WT_ObjectBrowser, 

               Qt::LeftDockWidgetArea ); 

} 



SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 23 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

 

Now Object Browser window is opened every time a component is activated.  If user closes 
Object Browser window, then it can be opened again using menu View  Windows  
Object Browser. 

 

 A component accesses Object Browser through methods of 

LightApp_Application::objectBrowser(). So from a GUI module class: 

getApp()->objectBrowser(). 

 

After the Object Browser is active, it automatically scans Data Models of active components, takes 

their root Data Objects (using method "root()"), and displays them in the list view. 

Please, take the source files of ATOMIC component with available Object Browser. The data 
structure is shown in Object Browser. In the next section we are going to learn how to retrieve 
selected objects from Object Browser and how to install different popup menus on different objects. 

3.5 SELECTION MANAGEMENT 

At this point of the tutorial, the data structure of ATOMIC component is fully implemented, it is 
possible to create ATOMIC entities, save and restore a Study, display it in the Object Browser. In 
this section we learn how to manage selection of objects - molecules and atoms - in Object 
Browser. Management of selection in other types of viewers is very similar and follows the same 
schema as we study here. 
 

Selection management is handled by a class LightApp_SelectionMgr or its successors. So far, 

we have 2 "representations" of every entity of data structure: "core" object stored privately in Data 

Model (instance of ATOMICGUI_AtomicMolecule class) and a corresponding Data Object 

(instance of ATOMICGUI_DataObject class). Selection manager uses yet another 

"representation" of data. It is called a Data Owner object. Usually it is not necessary to redefine 

Data Owner class in a custom component, a standard LightApp_DataOwner class is sufficient. 

Data Owner is a very simple class; it stores only an entry of a selected Data Object. As we 

remember, "entry" is a unique "key" of a piece of data. We implemented the method entry() in 

ATOMICGUI_DataObject class. It returns different string keys for different objects (and the same 

string keys for the same objects). Data Owner objects can be treated as entries wrapped into 
instances of a class. The wrapping of a string entry into a class is done because some components 
may extend the Data Owner class so it stores not only entries, but object type information, object 
properties information, etc. In any case, Data Owner always represents a selected entity. 
 
Selection may be performed not only in Object Browser, but in other windows that can display data 
in a custom way (3D views, 2D plots, etc.). Every view window has its own "selector" - a class that 
performs "conversion" of data from the format used by this viewer to Data Owner and reverse. This 
is the main purpose of Data Owner - store selected entities independently from the source of 
selection. Let's demonstrate how it works in terms of Object Browser: 
 

 When selection event is emitted in the list view of Object Browser, the global Selection 
Manager receives this event and requests the selector of Object Browser to return the 
selected objects. Selector of Object Browser scans its Data Objects and creates a Data 
Owner for every selected Data Object. Entry of a new Data Owner is set equal to the entry 
of the corresponding Data Object. 

 

 When it is needed to select objects in Object Browser (synchronize selection, reflect to 
selection in a dialog box, etc.), then the global Selection Manager receives a list of Data 
Owners to be selected.  It passes it to the selector of Object Browser.  The selector finds 
Data Objects with the same entries as given Data Owners and selects them. 

 

When we say "global Selection Manager" we mean an object of LightApp_SelectionMgr class 

which is stored in LightApp_Application class instance.  When we create an Object Browser, 

its selector is also automatically created and registered in the Selection Manager.  After the 
registration, the selector will receive external selection events from the Selection Manager, and the 
Selection Manager will receive the selected objects (list of Data Owners) from the selector. 

../../../../AppData/Local/Temp/archives/light-05.tar.gz


SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 24 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

 

OK, let's implement a method in ATOMICGUI class, which will return a list of strings - entries of the 

selected objects. 
 

void ATOMICGUI::selected( QStringList& entries, const bool multiple ) 

{ 

  LightApp_SelectionMgr* mgr = getApp()->selectionMgr(); 

  if( !mgr ) 

    return; 

 

  SUIT_DataOwnerPtrList anOwnersList; 

  mgr->selected( anOwnersList ); 

     

  for ( int i = 0; i < anOwnersList.size(); i++ ) 

  { 

    const LightApp_DataOwner* owner =  

       dynamic_cast<const LightApp_DataOwner*> 

       ( anOwnersList[ i ].get() ); 

    QStringList es = owner->entry().split( "_" ); 

    if ( es.count() > 1 && es[ 0 ] == "ATOMICGUI" &&  

         es[ 1 ] != "root" ) 

    { 

      entries.append( owner->entry() ); 

      if( !multiple ) 

        break; 

    } 

  } 

} 

 

In this method we receive from the Selection Manager the list Data Owners, iterate them and then 

select only "our" entries.  We also exclude "ATOMICGUI_root" entry as it is the root entry of the 

Data Model and does not correspond to any molecule or atom. 
 
Now we shall implement creation of atoms of a certain molecule.  We remove the code which 
creates 3 atoms of any new molecule from Data Model class and add the following code to 

onOperation() slot of ATOMICGUI class: 

 
if ( id == agAddAtom ) { 

  QStringList entries; 

  selected( entries, false ); 

  ATOMICGUI_AddAtomDlg dlg ( getApp()->desktop() ); 

  int res = dlg.exec(); 

  ATOMICGUI_DataModel* dm = dynamic_cast<ATOMICGUI_DataModel*> 

                           ( dataModel() ); 

  if( dm && res == QDialog::Accepted && dlg.acceptData( entries ) ) { 

    QString name; 

    double x, y, z; 

    dlg.data( name, x, y, z ); 

    dm->addAtom( entries.first(), name, x, y, z ); 

    getApp()->updateObjectBrowser(); 

  } 

} 

 

ATOMICGUI_AddAtomDlg is a very simple dialog that allows user to input a name of a new atom 

and 3 coordinates: X, Y, and Z. Please, download the source files of the current version of ATOMIC 
with selection management, and enjoy atoms creation under selected molecules! 
 
Another aspect of selection management which we are going to study in this section is 
management of popup menus. Popup menu is shown when user clicks a right mouse button in any 
view window including Object Browser. This view window in terms of popup management is called 
"a client window". If there are selected objects, a popup menu should contain commands that use 

../../../../AppData/Local/Temp/archives/light-06.tar.gz
../../../../AppData/Local/Temp/archives/light-06.tar.gz


SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 25 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

these objects. If there are no selected objects - popup contains commands applicable for the client 
window (change it background color, refresh view, etc.). 
 
A GUI module class can add its commands to the popup menu. It can be done in 2 ways described 
in details in next sections. 

3.5.1 Popup menu handling with contextMenuPopup() method 

Redefine virtual function void contextMenuPopup(). This function is called by 

LightApp_Application class on popup menu request event. The module can analyze the type 

of client window - parameter "client" (for Object Browser it will be equal to "ObjectBrowser" string), 
the current selection, and fill the given popup menu with necessary items. Let's implement this 
function in ATOMICGUI class: 
 

void ATOMICGUI::contextMenuPopup( const QString& client,  

                QMenu* menu, QString& /*title*/ ) 

{ 

  if ( client == "ObjectBrowser" ) { 

    QStringList entries; 

    selected( entries, false ); 

    if ( entries.size() ) { 

      QStringList es = entries.first().split( "_" ); 

      if ( es.count() == 2 && es[ 0 ] == "ATOMICGUI" ) { 

        // selected object belongs to ATOMICGUI 

        // and it is a molecule object 

        manu->addAction( action( agAddAtom ) );  

      } 

    } 

  } 

} 

 

Please, replace ATOMICGUI.h and ATOMICGUI.cxx files in your version with these ones: 

ATOMICGUI.h with contextMenuPopup(), ATOMICGUI.cxx with contextMenuPopup() and 

recompile the component (make command).  Popup menu shown in Object Browser with a 

molecule object selected now has 1 item added by our module: "Add Atom" action. 

3.5.2 Popup menu manager 

The approach described in previous paragraph is very simple and straightforward.  It is suitable for 
components with simple logic of popup menu construction (small number of object types and/or 
small number of commands).  The second approach to add items to popup menu is more 
advanced.  It consists in redefinition of a class which performs analysis of selected objects in terms 
of their properties that influence popup menu construction.  For example: property "type of object" 
determines if a certain item should be added to popup or not; property "visibility of object" 
determines which one of the items "Display" or "Hide" should be added to the popup.  A custom 

class that will perform analysis of properties of an object must inherit LightApp_Selection 

class.  GUI module returns an instance of this class in its virtual method createSelection(). 

 
Determining of the properties of objects that affect popup menu items is the first step.  The second 
step is generation of logical rules that check the values of properties (returned by a successor of 

LightApp_Selection class) and decide - if a certain item must be added to popup menu or not.  

The object that stores these rules is called a Popup Manager - instance of QtxPopupMgr class. 

 
In GUI module of ATOMIC component we will have the following set of rules for its actions: 
 

QString rule = "client='ObjectBrowser' and selcount=1 and 

                type='Molecule'"; 

popupMgr()->setRule( action( agAddAtom ),  rule ); 

 

rule = "client='ObjectBrowser' and selcount=1 and type='Root'"; 

popupMgr()->setRule( action( agCreateMol ),rule ); 

 

rule = "($type in {'Molecule' 'Atom'}) and client='ObjectBrowser' 

../../../../AppData/Local/Temp/archives/ATOMICGUI.h
../../../../AppData/Local/Temp/archives/ATOMICGUI.cxx


SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 26 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

        and selcount=1"; 

popupMgr()->setRule( action( agRename ),   rule ); 

 

rule = "($type in {'Molecule' 'Atom'}) and client='ObjectBrowser' 

        and selcount>0"; 

popupMgr()->setRule( action( agDelete ),   rule ); 

 
As you can notice, we add 2 new commands - Rename and Delete.  We are not implementing 
these operations yet, for the moment we only add them to popup menu. 
 

Let's take a closer look at the logical rules.  A rule "client='ObjectBrowser' and 

selcount=1 and type='Molecule'" in natural language would be: "a client window must be 

Object Browser AND there should be exactly 1 object selected AND the type of the object should 
be 'Molecule'".  This rule is set for "Add Atom" action. 
 

A construct "$type in {'Molecule' 'Atom'}" means "value of 'type' property must be equal 

to one of the following: 'Molecule' or 'Atom'".  Another rule could look like this: "'Molecule' in 

$type", and that would mean "there should be at least one object, for which the value of a property 

'type' would be equal to 'Molecule'".  The rules can be combined with "and" and "or" operators. 
 

The function setRule() of the QtxPopupMgr class has 2 significant parameters (as we see in 

the code above). 
 

Let’s return to LightApp_Selection class.  We must create a successor of this class and 

redefine its virtual methods init(), count(), and param() in order to compute the value of 

parameter "type" of the logical rules.  The other parameters "client" and "selcount" are 

computed by LightApp_Selection class, and we can simply use them in our logical rules.  
 

The init() method is called when a "request popup" event comes (user clicks a right mouse 

button).  In this method the class must initialize its internal fields (lists, maps, etc. for calculation of 

parameters in parameter() method.  parameter() returns a value of a certain parameter of an 

certain object (object index is given).  And the last method count() returns the number of 

objects.   Let's take a look at implementation of these methods in ATOMICGUI_Selection class: 
 

void ATOMICGUI_Selection::init( const QString& client, 

        LightApp_SelectionMgr* mgr ) 

{ 

  if ( mgr ) { 

    SUIT_DataOwnerPtrList sel; 

    mgr->selected( sel); 

    SUIT_DataOwnerPtrList::const_iterator anIt  = sel.begin(), 

                                          aLast = sel.end(); 

    for ( ; anIt != aLast; anIt++ ) { 

      QString type = "Unknown"; 

      SUIT_DataOwner* owner = (SUIT_DataOwner*)( (*anIt).get() ); 

      LightApp_DataOwner* sowner =  

           dynamic_cast<LightApp_DataOwner*>( owner ); 

      QStringList es = sowner->entry().split( "_" ); 

      if ( es.count() > 0 && es[ 0 ] == "ATOMICGUI" ) { 

        if ( es.count() > 1 ) { 

          if( es[ 1 ] == "root" ) 

            type = "Root"; 

          else 

            type = "Molecule"; 

          if ( es.count() > 2 ) 

            type = "Atom"; 

        } 

      } 

      myTypes.append( type ); 

    } 

  } 



SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 27 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

  LightApp_Selection::init( client, mgr ); 

} 

 

QVariant ATOMICGUI_Selection::parameter( const int ind, const 

QString& p ) const 

{ 

  if ( p == "type" ) 

    return myTypes[ ind ]; 

  return LightApp_Selection::parameter( ind, p ); 

} 

 

int ATOMICGUI_Selection::count() const 

{ 

  return myTypes.count(); 

} 

 

The ATOMICGUI_Selection class has a member field myTypes of QStringList type. It stores 

the types of selected objects. How the types are "calculated" using the entries of the objects - is 

shown in init() method. Method param() is very simple - it returns type of an object stored in 
myTypes. 

 

Now we must compile all these changes together. Please, download the version of ATOMIC source 
file with advanced popup management. 
 
At this point of our tutorial we have studied almost all topics related to development of a light-
weight component. In the next and last section of light-component chapter we improve the way in 

which we implemented onOperation() slot of ATOMICGUI class. A new conceptual object of 

SALOME platform will be introduced and studied - the Operation. We also implement several new 
functionalities using Operations - import and export of data, renaming and removal of molecules 
and atoms. 

3.6 OPERATIONS 

Operation is a manager of an action inside a component GUI.  By "action" we understand any 
functionality a GUI module of a component provides to a user.  Examples of actions may be the 
following: creation of a sphere in Geometry component, Atom creation in ATOMIC component, 
mesh calculation in Mesh component. 
 
Using an Operation for action management gives the following advantages: 
 

 Action can be canceled, suspended, and resumed during its execution. 
 

 An Operation instance can control which other Operations can be executed simultaneously 
with this Operation.  It is implemented using method 

 

bool isValid(SUIT_Operation* theOtherOperation) const. 

 

Before starting a new operation (operation_A), an application calls isValid() method of 

the operation being executed (operation_B) passing it operation_A as a parameter.  If 
operation_B returns false, then operation_A is not started, it must wait untill operation_B 
finishes its execution.  This mechanism can be overridden, though, with yet another virtual 
method of SUIT_Operation class: 

 
bool SUIT_Operation::isGranted() const. 

 

If this method returns true, then the operation is started any way, ignoring isValid() 

return value. 
 

 Operation has support for transaction mechanism. 
 

../../../../AppData/Local/Temp/archives/light-07.tar.gz
../../../../AppData/Local/Temp/archives/light-07.tar.gz


SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 28 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

For example, if user closes a study during execution of an operation, the Operation 

receives "Abort" signal (abortOperation() virtual function is called).  The operation 

stops all algorithmic processing, closes the dialog windows it opened, aborts transaction, 
and frees all resources.  Without using the Operation object it would be problematic to 
perform such smart deactivation of the action. 

 

Base class for Operation object is SUIT_Operation, then it is inherited in LightApp 

package - LightApp_Operation. SUIT_Operation has the following virtual methods to 

be redefined in successors: 
 

bool isReadyToStart() const returns true if all initialization steps are done (location of 
resources, creation of dialog, etc.) and the operation is 
ready to be started. 

void stopOperation() called when operation must be stopped.  It is called from 
abort() and commit() functions.  Usually all dialog boxes 
are closed and resources are freed in this function. 

void startOperation() called when operation is started.  It should start 
processing, display dialog boxes, etc. in this function. 

void abortOperation() called when operation is aborted.  It should urgently stop 
all processing and free all resources. 

void commitOperation() called when operation is committed (normally finished).  It 
is called from non-virtual commit() function which is usually 
called by the operation itself when everything is done. 

void resumeOperation()  called when operation is started again after suspension. 

void suspendOperation()  called when operation must be suspended.  It should store 
the current state of processing, hide dialog boxes, etc. 

bool hasTransaction() const returns true if the operation uses any transaction 
mechanism (for keeping track of undo/redo or other 
means). 

bool abortTransaction()  aborts transaction 

bool openTransaction() opens new transaction 

bool commitTransaction( 

const QString& = 

QString::null ) 

commits transaction.  The parameter is the name of a 
transaction. 

 

LightApp_Operation class adds access to GUI module instance, Desktop, Selection manager 

from within the Operation, and adds 2 virtual methods for working with a dialog window: 
 

LightApp_Dialog* dlg() const; 

void setDialogActive( const bool ); 

 

If an Operation works with a dialog window, then its method dlg() should return it. It will be 

automatically shown in start(), and hidden in abort() or commit(). 

 
OK, now we are going to develop Operations for the ATOMIC component. Custom Operation 
objects must be created in the virtual method of the GUI module class : 
 

LightApp_Operation* createOperation( const int operationID ) const; 

 



SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 29 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

Let's create Operations for Atom and Molecule creation. First of all we create 2 classes - 

implementations of our custom Operations: ATOMICGUI_CreateMolOp and 

ATOMICGUI_AddAtomOp. We shall also create a special base class for Operations of ATOMIC 

component. Implementations of these classes will be the following (we already have the 

corresponding functionality in onOperation() slot of ATOMICGUI class, here we moved it to the 

new Operation classes): 
 

ATOMICGUI_CreateMolOp: 

ATOMICGUI_CreateMolOp::ATOMICGUI_CreateMolOp() 

: ATOMICGUI_Operation() 

{ 

} 

ATOMICGUI_CreateMolOp::~ATOMICGUI_CreateMolOp() 

{ 

} 

void ATOMICGUI_CreateMolOp::startOperation() 

{ 

  if( dataModel() && dataModel()->createMolecule() ) 

    commit(); 

  else 

    abort(); 

} 

 

ATOMICGUI_AddAtomOp: 

ATOMICGUI_AddAtomOp::ATOMICGUI_AddAtomOp() 

  : ATOMICGUI_Operation(), 

    myDlg( 0 ) 

{ 

} 

ATOMICGUI_AddAtomOp::~ATOMICGUI_AddAtomOp() 

{ 

  if ( myDlg ) 

    delete myDlg; 

} 

LightApp_Dialog* ATOMICGUI_AddAtomOp::dlg() const 

{ 

  if ( !myDlg ) 

    const_cast<ATOMICGUI_AddAtomOp*>( this )->myDlg =  

      new ATOMICGUI_AddAtomDlg( module()->getApp()->desktop() ); 

 

  return myDlg; 

} 

void ATOMICGUI_AddAtomOp::onApply() 

{ 

  QStringList entries; 

  atomModule()->selected( entries, false ); 

  ATOMICGUI_AddAtomDlg* d =  

    dynamic_cast<ATOMICGUI_AddAtomDlg*>( dlg() ); 

  if( dataModel() && d && d->acceptData( entries ) ) 

  { 

    QString name; 

    double x, y, z; 

    d->data( name, x, y, z ); 

    dataModel()->addAtom( entries.first(), name, x, y, z ); 

    module()->getApp()->updateObjectBrowser(); 

  } 

} 

 

And the following modifications must be done to ATOMICGUI class: 

 
void ATOMICGUI::onOperation() 

{ 



SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 30 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

  if( sender() && sender()->inherits( "QAction" ) ) 

  { 

    int id = actionId( ( QAction* )sender() ); 

    startOperation( id ); 

  } 

} 

LightApp_Operation* ATOMICGUI::createOperation( const int id ) const 

{ 

  switch( id ) 

  { 

  case agCreateMol: 

    return new ATOMICGUI_CreateConfOp(); 

 

  case agAddAtom: 

    return new ATOMICGUI_AddAtomOp(); 

 

  default: 

    return 0; 

  } 

} 

 

The onOperation() slot of ATOMICGUI class simply calls startOperation() method passing 

the Operation identifier. The Operation objects are stored on the base level of GUI module (in 

LightApp_Module class) and starting the Operation multiple times does not create multiple 

Operation objects (can be understood as caching). But if the Operation is started for the first time, it 

is created by createOperation() method, which we have redefined in ATOMICGUI class in 

order to create custom Operations of our component. 
 
The modifications are reflected in this version of ATOMIC source files. It also became possible to 

improve "Add atom" operation: ATOMICGUI_AddAtomDlg has 3 buttons now: Apply, Ok, and 

Close, so it is possible to create several atoms during one single operation pressing Apply button. 

Please, notice, that signals of the Operation dialog (ATOMICGUI_AddAtomDlg for example) are 

connected to virtual slots of base Operation class ATOMICGUI_Operation. Child Operations 

need to redefine these virtual functions to add customized processing. 
 
ATOMIC component is almost finished. Finally, we are going to implement several other Operators 
for the following actions: import of data, export of data, renaming of atoms and molecules, and 
removal. The core functionality for these actions already exists in Data Model. All we have to do is 

create 4 new Operator classes, and add their creation to createOperation() method. 

 
Let's take a look at new Operation for import and export (we shall combine these 2 actions into 1 
Operator for simplicity): 
 

ATOMICGUI_ImportExportOp::ATOMICGUI_ImportExportOp( const bool import 

) 

: ATOMICGUI_Operation(), 

  myIsImport( import ) 

{ 

} 

ATOMICGUI_ImportExportOp::~ATOMICGUI_ImportExportOp() 

{ 

} 

void ATOMICGUI_ImportExportOp::startOperation() 

{ 

  ATOMICGUI_DataModel* dm = dataModel(); 

  if ( !dm ) 

  { 

    abort(); 

    return; 

  } 

 

  QStringList filtersList; 

../../../../AppData/Local/Temp/archives/light-08.tar.gz


SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 31 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

  filtersList.append( tr( "XML_FILES" ) ); 

 

  // Select a file to be imported 

  QString aFileName =  

    module()->getApp()->getFileName( myIsImport, QString::null, 

                                     filtersList.join( ";;" ), 

                                     tr( myIsImport ?  

                                     “ATOMICGUI_IMPORT_XML" :  

                                     “ATOMICGUI_EXPORT_XML" ), 0 ); 

 

  if( !aFileName.isEmpty() ) 

  { 

    if( ( myIsImport && dm->importFile( aFileName ) ) || 

        ( !myIsImport && dm->exportFile( aFileName ) ) ) 

    { 

      commit(); 

      return; 

    } 

    else 

      SUIT_MessageBox::warning ( application()->desktop(), 

                   tr( "WRN_WARNING" ), 

                   tr( myIsImport ?  

                   "WRN_IMPORT_FAILED" : 

                   "WRN_EXPORT_FAILED" ), 

                   tr( "BUT_OK" ) ); 

  } 

  abort(); 

} 

 

The Operator retrieves a file name and calls import() or export() function of Data Model to 

perform the task. 
 

The onOperation() slot of ATOMICGUI class will look like this: 

 
LightApp_Operation* ATOMICGUI::createOperation( const int id ) const 

{ 

  switch( id ) 

  { 

  case agImportXML: 

    return new ATOMICGUI_ImportExportOp( true ); 

 

  case agExportXML: 

    return new ATOMICGUI_ImportExportOp( false ); 

 

  case agCreateConf: 

    return new ATOMICGUI_CreateMolOp(); 

 

  case agAddAtom: 

    return new ATOMICGUI_AddAtomOp(); 

 

  case agRename: 

    return new ATOMICGUI_RenameOp(); 

 

  case agDelete: 

    return new ATOMICGUI_DeleteOp(); 

 

  default: 

    return 0; 

  } 

} 

 
Please, download the source files of the final version of ATOMIC component using this link. As an 

../../../../AppData/Local/Temp/archives/light-09.tar.gz


SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 32 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

exercise, you can develop new Operations for ATOMIC component. "Delete All" or even "Copy / 
Paste" of atoms could be a very good practice and examination of the obtained knowledge! 

3.7 IMPLEMENTING DUMP PYTHON 

Dump python operation allows storing the state of SALOME study in form of the Python script. 
Resulting script is the fast way for restoring of the content of SALOME study.  
 
The implementation of the dump python mechanism is different for the SALOME light-weight 
component and component with CORBA engine: 
 

 To implement dump python in the light-weight component it is necessary to redefine virtual 

method dumpPython() declared in the LightApp_DataModel class. The signature of 

this method is: 
 

virtual bool dumpPython( const QString&, CAM_Study*, bool, 

QStringList& ); 

 

 To implement the dump python mechanism in the SALOME component with CORBA 

engine it is necessary implement virtual function DumpPython() of the module engine, a 

successor of the Engines::EngineComponent CORBA interface. The signature of this 

method is:  
 

sequence<octet> DumpPython(in Object, in boolean, in boolean, 

out boolean); 

 

 
Take into account that component engine should be also inherited from the 

SALOMEDS::Driver interface and provide (at least empty) implementation of persistence 

methods. This requirement is stipulated by the architectural features of the SALOME data 
server. 

3.7.1 Different approaches of the dump python mechanism implementation 

Generally there are two main approaches for implementation of the dump python mechanism: 
 

1. Each method of the custom SALOME component that publishes any data in the SALOME 
Study, also records some additional information to the component. This information can be 
later used for generation of the Python script, more precisely the part of the script that 
concerns the component. In the simple case it can be a string representation of the Python 
command with all required parameters and returning value(s) that reproduces the 
component’s function being invoked. This information can be stored in arbitrary way, for 
example directly in the component’s data model. Other approach is to use SALOMEDS 
attributes to store Python commands directly in SALOME study. Take into account that 
Dump python data should be persistent, i.e. it should be stored/retrieved during the study 
saving/loading. The described approach is called “historical dump”. 

 
Advantages: 

 The dump python functionality in most cases can be trivially implemented. 
 

Disadvantages: 

 Main disadvantage of the historical dump is a problem of backward compatibility. Since 
the Python command is generated and stored directly at the moment of the function 
invocation, the maintenance of the studies (for example, in case of significant changing 
component API) becomes complicated task. 

 
2. Dump python method analyzes current content of the SALOME Study, namely the part 

related to the component, and generates a Python script basing on the information 
retrieved from the study and the corresponding data stored in the component data model. 
This approach is called “snapshot dump” since it allows generation of minimal and 
sufficient script that reproduces the current content of the study, avoiding generation any 
intermediate commands (like data edition or removal commands). Usually this approach 



SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 33 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

does not imply storing any additional information in the Study since it dumps the current 
state only. 

 
Advantages: 

 No need to modify the existent data model of the custom component. 

 No need to store any additional data in the study. 

 No any “backward compatibility” problem. 
 

Disadvantages: 

 For complex data model, an implementation of the dump python function can be rather 
complicated task, especially in case of complex relations between data objects. 

 
Thus, taking into account advantages and disadvantages of both approaches it is recommended to 
use the “historical” approach when creating a new component, since all required functionality can 
be initially included to the data model being implemented. The second can be applied when adding 
support of dump python mechanism to the existent component. 
 
In fact, it’s possible to mix both approached when the most complicated objects in the custom 
component store the additional information thus simplifying the implementation of the dump python 
method and less complex objects are written in a Python script basing on analysis of their content, 
that allows minimizing of the modifications in the existing code. 

3.7.2 Adding “snapshot dump” in ATOMIC module 

The simplicity of the data model of the ATOMIC component allows applying “snapshot dump” 
approach to it. 
 
First step of the dump python mechanism implementation in our component is creation of the 
Python interface, since currently ATOMIC component has no way to create and publish objects 

using Python interpreter. Firstly, let’s change return type of the createMolecule() method of the 

ATOMICGUI_DataModel class from bool to QString; now this method will return study entry 

(unique identifier) of the created molecule. Also, we will remove temporary debug code that 

automatically added three atoms to the just created molecule in createMolecule() function: 

 
QString ATOMICGUI_DataModel::createMolecule() 

{ 

  // add new molecule 

  ATOMICGUI_AtomicMolecule mol; 

  myMolecules.append( mol ); 

  // obtain its id (entry) 

  QString id = QString( "ATOMICGUI_%1" ).arg( mol.id() ); 

  // update object browser 

  update(); 

  // return entry of the created molecule 

  return id; 

} 

 

The entry returned by the createMolecule() function will be required later in Python module in 

order to access the corresponding C++ data object. 
 

Let’s adds new AtomicPy python module in our component. For wrapping C++ classes into 

Python we will use sip third-party open-source software (by Riverbank Computing Ltd). This seems 
to be natural choice, since sip is one of the SALOME pre-requisites; it provides a simple way to 

generate Python wrapping for C++ code, especially Qt-based one. AtomicPy library will contain 

AtomicMolecule class: 

 
class TCreateMoleculeEvent: public SALOME_Event 

{ 

public: 

  QString myName; 

  typedef QString TResult; 

  TResult myResult; 

http://riverbankcomputing.com/software/sip/download


SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 34 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

   

  TCreateMoleculeEvent(const QString& name) :  

   myResult(""), myName(name) {} 

  virtual void Execute() 

  { 

    if ( !SUIT_Session::session() ) 

      return; 

    LightApp_Application* app =  

      dynamic_cast<LightApp_Application*>(  

      SUIT_Session::session()->activeApplication() ); 

    if(!app) 

      return; 

     

    LightApp_Module* module =  

     dynamic_cast<LightApp_Module*>( app->module("Atomic") ); 

    if(!module) 

      return; 

       

    ATOMICGUI_DataModel* model = 

      dynamic_cast<ATOMICGUI_DataModel*>(module->dataModel()); 

    if(!model) 

      return; 

     

    myResult = model->createMolecule(); 

    model->renameObj(myResult,myName); 

  } 

}; 

 

AtomicMolecule::AtomicMolecule( const QString& name ) 

{ 

  myId = ProcessEvent( new TCreateMoleculeEvent( name ) );   

} 

 
Above code creates a molecule and publishes it in the study. The constructor 

AtomicMolecule(const QString& name) performs in such a way the same action as “Create 

molecule” function from GUI interface . 
 
Below code adds new atom to the molecule, like the command “Add atom” from the GUI interface: 
 

class TAddAtomEvent: public SALOME_Event 

{ 

public: 

  QString myId; 

  QString myName; 

  double myX, myY, myZ; 

 

  TAddAtomEvent(const QString& id,  

  const QString& name, 

  const double x, 

  const double y, 

  const double z) : myId(id), myName(name), myX(x), myY(y), myZ(z) 

{} 

  virtual void Execute() 

  { 

    if ( !SUIT_Session::session() ) 

      return; 

    LightApp_Application* app =  

      dynamic_cast<LightApp_Application*>(  

      SUIT_Session::session()->activeApplication() ); 

    if(!app) 

      return; 

     

    LightApp_Module* module =  



SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 35 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

      dynamic_cast<LightApp_Module*>( app->module("Atomic") ); 

    if(!module) 

      return; 

     

    ATOMICGUI_DataModel* model = 

      dynamic_cast<ATOMICGUI_DataModel*>(module->dataModel()); 

    if(!model) 

      return; 

     

    model->addAtom(myId,myName,myX,myY,myZ); 

  } 

}; 

void AtomicMolecule::addAtom( const QString& atom,  

            const double x,  

                              const double y,  

                              const double z ){ 

  ProcessVoidEvent( new TAddAtomEvent( myId, atom, x, y, x ) ); 

} 

 
Note, that all the functions modifying the contents of the study are wrapped by the events using 
SALOME events mechanism. This is important since all the Python commands executed in the 
SALOME embedded Python interpreter are serialized in order to avoid concurrent access to the 
Python interpreter from different threads that might lead to the application crashes. 
 

To wrap our AtomicMolecule class into Python module we should describe it in the SIP 

specification file: 
 

%Module AtomicPy 

 

%Import QtGuimod.sip 

 

%ExportedHeaderCode 

#include <AtomicPy.h> 

%End 

 

class AtomicMolecule /NoDefaultCtors/ 

{ 

public: 

  AtomicMolecule( const QString& name ) /Transfer/; 

  void addAtom( const QString& atom, const double x,  

                const double y, const double z );  

 

private: 

  AtomicMolecule(AtomicMolecule&); 

}; 

 

 

 

Now we are ready for the implementation of the dumpPython() method: 

 
bool ATOMICGUI_DataModel::dumpPython( const QString& theURL, 

          CAM_Study* theStudy, 

          bool isMultiFile, 

          QStringList& theListOfFiles  ) { 

  QString aScript = "from AtomicPy import *\n"; 

  QString aPrefix = ""; 

  if(isMultiFile) { 

    aScript += "def RebuildData(theStudy):\n"; 

    aPrefix = "\t"; 

  } 

   

  for ( int i = 0; i < myMolecules.count(); i++ ) { 

    aScript += aPrefix + QString("mol_%1 =  



SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 36 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

      AtomicMolecule('").arg(i) + myMolecules[ i ].name()+"')\n"; 

    for ( int j = 0; j < myMolecules[ i ].count(); j++ ) { 

      aScript += aPrefix + QString("mol_%1.addAtom('").arg(i) + 

                 myMolecules[ i ].atomName( j ); 

      aScript += QString("', %1, %2, %3)\n") 

                 .arg(myMolecules[i].atomX( j )) 

                 .arg(myMolecules[i].atomY( j )) 

                 .arg(myMolecules[i].atomZ( j )); 

    } 

  } 

   

  if(isMultiFile) { 

    aScript += aPrefix+"pass\n"; 

  } 

 

  LightApp_Study* study = dynamic_cast<LightApp_Study*>( theStudy ); 

  if(!study) 

    return false; 

   

  std::string aTmpDir = study->GetTmpDir( 

              theURL.toLatin1().constData(), isMultiFile ); 

  std::string aFile = aTmpDir + "atomic_dump.tmp"; 

 

  std::ofstream outfile(aFile.c_str()); 

  outfile.write (aScript.toLatin1().data(),aScript.size()); 

  outfile.close(); 

 

  theListOfFiles.append(aTmpDir.c_str()); 

  theListOfFiles.append("atomic_dump.tmp"); 

   

  return true; 

} 

 
Our function iterates through the list of molecules stored in the data model and generates Python 
script, line by line. After that it stores generated script into temporary file and puts path to 

temporary file and name of the file into output parameter theListOfFiles. 

 
Note, that way the Python script is created is different for “single-file” and “multiple-file” modes. 
Mainly this concerns the tabulations and preface part of generated script. 
 
Now our ATOMIC component can generate Python script, which can restore state of its data 
model: 
 

from AtomicPy import * 

def RebuildData(theStudy): 

  mol_0 = AtomicMolecule('H20') 

  mol_0.addAtom('H1', 0, 0, 0) 

  mol_0.addAtom('H2', 1, 1, 1) 

  mol_0.addAtom('O', 0.5, 0.5, 0.5) 

  pass 

 

 
Please, use this link to download the latest source files of the fully functional version of ATOMIC 
component with implemented dump python mechanism. 
 
This is the end of the chapter dedicated to development of a light-weight component. If you are 
ready to continue with our tutorial and learn about other types of components - please, proceed to 
the next chapter - ATOMGEN: Python component. 
 

../../../../AppData/Local/Temp/archives/light-10.tar.gz
../../../../AppData/Local/Temp/archives/light-10.tar.gz


SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 37 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

4. ATOMGEN: PYTHON COMPONENT 

In this chapter we learn how to develop a component in Python programming language (SALOME 
platform supports 2 languages for development of custom components: C++ and Python). Using 
Python for new component development is easier in many ways, because a lot of implementation 
details are hidden from a developer, Python modules (files in Python language) are brief and clear. 
 
A very important issue of this chapter is a concept of CORBA Engine. Engine is a part of a 
component, built upon CORBA technology, which usually performs algorithmic data processing. 
Engine can be understood as a stand-alone piece of software within a component, whose services 
may be used by a component it belongs to as well as by other external components. 
 
Throughout this chapter we shall develop a Python component named ATOMGEN, with CORBA 
engine and graphic user interface. This component is able to perform pseudo-algorithmic 
processing of the data prepared by ATOMIC (light-weight C++ component developed in the first 
chapter of the tutorial). The data processing in ATOMGEN is in some sense a "spatial analysis" of 
molecules and atoms: for every molecule it will create 5 new molecules, atoms of new molecules 
will have different coordinates (translated by a constant distance along X, Y, and Z axes).  
ATOMGEN is also able to read XML file with data prepared by ATOMIC component and export its 
data to an XML file (just like ATOMIC). 
 
Having completed this chapter, the ATOMGEN component should look like shown on the picture 
below: 
 

 
Figure 5. ATOMGEN module 

 
Proceed to the next paragraph to start learning ATOMGEN module. 

4.1 COMPONENT WITH CORBA ENGINE 

In this section we introduce the notion of engine - a CORBA component that provides a number of 
services for other objects.  CORBA engines are constructed by SALOME components that perform 
analytical processing used by this component and by other external objects (from within other 
components, from Python console, etc.).  A possibility to use functionality of a component 
externally is the main advantage of using a CORBA engine. 



SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 38 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

 
In our sample ATOMGEN Python component we want to perform analytical processing of data 
prepared by previously developed ATOMIC component, and provide the next following component 
- C++ component - with the results of processing. It means that we will use 2 advantages of using 
an Engine in our application:  
 

 Data processing code is separated from GUI code. 
 

 Interaction with another component is more convenient and transparent (passing results of 
processing to the next component is done by means of intra-CORBA communication – 
communication between Engines of components). 

 

Engine is basically a CORBA object which inherits Engines::EngineComponent interface 

declared in SALOME_Component.idl file of KERNEL module of SALOME platform.  Let's take a 

look at Engines::EngineComponent interface: 

 

readonly attribute string instanceName The name of the instance of the component 

readonly attribute string interfaceName The name of the interface of the component 

void ping() Determines whether the server has already been 
loaded or not 

long getStudyId() Get study associated to component instance 
return 

-1: not initialised (Internal Error) 

0: multistudy component instance 

>0: study id associated to this instance 

void destroy() Deactivates the engine 
TO BE USED BY CONTAINER ONLY (Container 
housekeeping) 
use remove_impl from Container instead! 

Container GetContainerRef() Returns the container that the engine refers to. 

void setProperties(in FieldsDict 

dico) 

Gives a sequence of (key=string, value=any) to 
the engine.  Base class component stores the 
sequence in a map.  The map is cleared before.  
This map is for use by derived classes.  

FieldsDict getProperties() Returns a previously stored map (key=string, 
value=any) as a sequence. 

TMPFile DumpPython(in Object 

theStudy, in boolean isPublished, 

in boolean isMultiFile, out 

boolean isValidScript) 

Returns a python script, which is being played 
back reproduces the data model of component.  
Is redefined by components that support such 
feature. 

The following methods are used by Supervisor component for managing a component remotely 
(starting a certain method of an engine, killing, suspending, etc.) 

boolean Kill_impl() Returns True if the engine has been killed. 

boolean Stop_impl() Returns True if the activity of the engine has 
been stopped (action can't be resumed). 

boolean Suspend_impl() Returns True if the activity of the engine has 



SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 39 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

been suspended (action can be resumed). 

boolean Resume_impl() Returns True if the activity of the engine has 
been resumed. 

long CpuUsed_impl() Returns the Cpu used time (long type does 
not work in Python!) 

void Names (in string aGraphName, in 

string aNodeName) 
This method is used by the SUPERVISOR 
component. It sets the names of the graph 
and of the node. 

 

Another interface - Container (declared in the same file SALOME_Component.idl) is used for 

instanciating of components (to be more precise - engines of components).  Main methods of 
Container interface are: 
 

boolean load_component_Library(in 

string componentName) 

Loads a new component class (dynamic 
library).  Returns true if load successfull or 
already done, false otherwise. 

Component create_component_instance(in 

string componentName, in long studyId) 

Creates a new servant instance of a 
component.  Component library must be 
loaded prior to call of this method. 

Component find_component_instance(in 

string registeredName, in long 

studyId) 

Finds a servant instance of a component. 

- registeredName is the name of the 

component in Registry or Name Service, 
without instance suffix number 

Component load_impl(in string 

nameToRegister, in string 

componentName) 

Find a servant instance of a component, or 
create a new one.  Loads the component 
library if needed.  Only applicable to multi 
study components. 

- nameToRegister is the name of the 

component which will be registered  in 
Registry (or Name Service) 

- componentName is the name of the 

constructed library of the component (not 
used any more, give empty string) 

void remove_impl(in Component 

component_i) 

Stops the component servant, and deletes 
all related objects 

 
So, basically, an Engine is a CORBA object and a Container is its manager-object which creates it, 
publishes in the naming service, and destroys it. 
 
In the next section we are going to write an IDL file for ATOMGEN engine and a Python file with 
implementation of the methods declared in the IDL file. 

4.2 ENGINE: INTERFACE AND IMPLEMENTATION 

Development of any CORBA object (and our Engine is a CORBA object) is accomplished in 2 
steps:  
 

 Writing the interface in IDL language (Interface Definition Language). 
 

 Development of the implementation of methods declared in the IDL file using one of the 
following programming languages: C, C++, Java, Smalltalk, COBOL, Ada, Lisp, PL/1, 
Python.  In SALOME applications we use Python and C++. 



SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 40 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

 
Deep study of IDL language is beyond the scope of this tutorial.  If you are unfamiliar with IDL, 
please, read the corresponding literature.  These links may help: 
 

 Mastering the Interface Definition Language (IDL) from Teach Yourself CORBA In 14 Days 
tutorial 

 

 Introduction to CORBA IDL from Orbix Programmer's Guide 
 
OK, let’s start coding.  In IDL file of ATOMGEN component we would like to declare the following 
CORBA interfaces and methods: 
 

interface Atom { 

  string getName(); 

  double getX(); 

  double getY(); 

  double getZ(); 

}; 

Interface of the most elementary piece of 
data of ATOMGEN component - atoms.  An 
atom has methods for retrieval of name and 
coordinates.  Setting and storing of these 
properties will be done only in 
implementation in Python. 

interface Molecule { 

  string getName(); 

  long getNbAtoms(); 

  Atom getAtom(in long theIndex); 

}; 

Interface of molecule - compound data type 
of ATOMGEN (similar to ATOMIC data). 

typedef sequence<Molecule> 

MoleculeList; 

Declaration of sequence of molecules type. 

interface ATOMGEN_Gen : 

Engines::EngineComponent { 

  void setCurrentStudy (in 

SALOMEDS::Study); 

  boolean importXmlFile (in string 

theFileName); 

  boolean exportXmlFile (in string 

theFileName); 

  boolean processData (in 

MoleculeList theData); 

  MoleculeList getData (in long 

studyID); 

}; 

ATOMGEN_Gen - interface of ATOMGEN 

component Engine - inherits 
Engines::EngineComponent 

setCurrentStudy() method is required 

for connecting to the current data source 
(study object) 

importXMLFile() method performs import 

of data prepared by ATOMIC or ATOMGEN 
components 

exportXMLFile() method performs export 

of current data to an XML file 

processData() method performs "spacial 

processing" of molecules and atoms: 
molecules are increased in number, new 
atoms assigned new coordinates 

getData() method returns the list of 

molecules of a certain study 

 

Let's assume we have written the methods above in IDL file ATOMGEN.idl. IDL files are placed in 

the idl subdirectory, located under main source directory of the component. Please, download the 

first version of ATOMGEN component with ATOMGEN.idl file in idl subdirectory. 

 
Now we have to create a Python module with implementation of the declared IDL interfaces. We 

shall create an src subdirectory (under main source directory) and add a package called 

ATOMGEN. Then we are going to create 3 files with code in Python: 
 

ATOMGEN.py  Implementation of ATOMGEN_Gen interface declared in 
ATOMGEN.idl 

http://pipin.tmd.ns.ac.yu/extra/java2/CORBA/CORBAin14/ch03/ch03.htm
http://pipin.tmd.ns.ac.yu/extra/java2/CORBA/CORBAin14/ch03/ch03.htm
http://www.iona.com/support/docs/manuals/orbix/33/html/orbix33cxx_pguide/IDL.html#148693
../../../../AppData/Local/Temp/archives/py-01.tar.gz


SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 41 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

ATOMGEN_Data.py  Implementation of Atom and Molecule interfaces declared in 
ATOMGEN.idl 

ATOMGEN_XmlParser.xml  Implementation of XML import and export functionality  (used 
from within ATOMGEN.py Python module) 

 
Let's take a look at the code of ATOMGEN Python module (from next version of ATOMGEN 
component): 
 

 General initialization 
 

# necessary import clauses 

import ATOMGEN_ORB 

import ATOMGEN_ORB__POA 

import SALOME_ComponentPy 

 

# initializing ORB(CORBA) 

from omniORB import CORBA 

myORB = CORBA.ORB_init([''], CORBA.ORB_ID) 

 

# initializing Portable Object Adapter (CORBA) 

from omniORB import PortableServer 

myPOA = myORB.resolve_initial_references("RootPOA"); 

 

# define a function to convert CORBA object to servant 

def ObjectToServant(object): 

  return myPOA.reference_to_servant(object) 

 

 ATOMGEN class - implements ATOMGEN_Gen interface 

 
# ATOMGEN class inherits a stub generated by omniIDL  

# for ATOMGEN_Gen interface (ATOMGEN_ORB__POA.ATOMGEN_Gen class). 

class ATOMGEN( ATOMGEN_ORB__POA.ATOMGEN_Gen, 

               SALOME_ComponentPy.SALOME_ComponentPy_i): 

 

# Constructor 

# _naming_service is inherited from the SALOME_ComponentPy class. 

  def __init__ (self, orb, poa, contID, containerName,  

                instanceName, interfaceName): 

    SALOME_ComponentPy.SALOME_ComponentPy_i.__init__(self, orb, poa, 

           contID, containerName, instanceName, interfaceName, 0) 

    self._naming_service = 

           SALOME_ComponentPy.SALOME_NamingServicePy_i(self._orb) 

    # self.study keeps reference to the current study (None for now) 

    self.study = None 

    # self.studyData stores molecules data of several studies. 

    # it is a map with an integer key (study ID) and values of type 

    # ListOfMolecule. 

    # data of multiple studies can be stored using this map 

    self.studyData = {} 

    pass 

 

  # Returns data (MoleculeList) of the given study (by study ID) 

  def getData( self, studyID ) 

    if self.studyData.has_key(study._get_StudyId()): 

      returnself.studyData[study._get_StudyId()] 

    return None 

 

  # Sets current study and clears the internal data  

  # that is bound with new study ID 

../../../../AppData/Local/Temp/archives/py-02.tar.gz
../../../../AppData/Local/Temp/archives/py-02.tar.gz


SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 42 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

  def setCurrentStudy( self, study ): 

    self.study = study 

    if self.study and not self.getData(self.study._get_StudyId()): 

      self.studyData[self.study._get_StudyId()] = [] 

    pass 

 

  # Performs import of data from an XML file using method 

  # readXmlFile declared in ATOMGEN_XmlParser Python module 

  # After import the data is saved in the internal data structure 

  def importXmlFile( self, fileName ): 

    if self.study: 

      from ATOMGEN_XmlParser import readXmlFile 

      new_data = readXmlFile( fileName ) 

      for mol in new_data: 

        for i in range(mol.getNbAtoms()): 

          mol.atoms[ i ]._this() 

        mol = mol._this() 

      data = self.getData(self.study._get_StudyId()) 

      data += new_data 

      return True 

    return False 

 

  # Exports data to an XML file using method writeXmlFile 

  # declared in ATOMGEN_XmlParser Python module 

  def exportXmlFile( self, fileName ): 

    if self.study: 

      from ATOMGEN_XmlParser import writeXmlFile 

      studyID = self.study._get_StudyId() 

      writeXmlFile( fileName, self.studyData[ studyID ] ) 

      return True 

    return False 

 

  # Artificial "spacial processing" of data. 

  # For every existing molecule 5 (nb_steps)  

  # new molecules are created. 

  # Coordinates of atoms are shifted by 10, 5, and 3 respectively  

  # multiplied by new molecule number. 

  def processData( self, data ): 

    if not self.study: return False 

    nb_steps = 5 

    new_data = [] 

    dx = 10.0 

    dy = 5.0 

    dz = 3.0 

    for i in range( nb_steps ): 

      for mol in data: 

        new_mol = self._translateMolecule( 

            mol, dx*(i+1), dy*(i+1), dz*(i+1)) 

        new_data.append( new_mol ) 

        for j in range(new_mol.getNbAtoms()): 

          new_mol.atoms[ j ]._this() 

        new_mol = new_mol._this() 

    data = self.getData(self.study._get_StudyId()) 

    data += new_data 

    return True 

 

  # Creates new molecule, coordinates of atoms are shifted 

  # by given values. 

  def _translateMolecule(self, mol, dx, dy, dz): 

    mol = ObjectToServant( mol ) 

    from ATOMGEN_Data import Molecule, Atom 

    new_mol = Molecule(mol.name + " translated") 

    print mol.name 



SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 43 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

    for atom in mol.atoms: 

      new_mol.addAtom( Atom(atom.name, atom.x + dx,  

                            atom.y + dy, atom.z + dz) ) 

    return new_mol 

 

The other Python modules – ATOMGEN_Data.py and ATOMGEN_XmlParser.py do not require 

additional explanations - Atom and Molecule interfaces have the simplest implementation 

possible, and XML parser functions are simple utility functions in Python. 
 
Please build current ATOMGEN component. It does not have any GUI connected to the engine yet, 
so use of the component is very limited. 
 
In the next section we will learn how to implement persistence of data using SALOMEDS package 
of KERNEL module. This is a very powerful tool for persistence implementation and definitely worth 
learning. 

4.3 ADVANCED DATA STORAGE 

SALOME platform has a number of services that can be used by custom components. One of 
these services is SALOMEDS package of KERNEL module (DS stands for Data Structure). 
SALOMEDS provides a framework for implementation of persistent data structure. It can be used 

using CORBA interface of SALOMEDS package (see SALOMEDS.idl and 

SALOMEDS_Attributes.idl files) or without CORBA through a proxy package 

SALOMEDSClient. Classes of SALOMEDSClient package have the same interface as declared in 

SALOMEDS.idl (and implemented in SALOMEDS package), but the functionality of 

SALOMEDSClient classes can be used without CORBA, but only from C++ using pointers. 
 
Since in this chapter we deal with a Python component, we have only one option to use 
SALOMEDS: through the CORBA interface.  The table below explains the purpose of the main 

interfaces declared in SALOMEDS.idl file (and the corresponding classes of SALOMEDSClient 

package which have almost the same name: SALOMEDS::Study becomes 

SALOMEDSClient_Study, etc.). 

 

Study Study is a warehouse of data.  It can be understood as a document, 

the data storage of the upper level.  Study contains data of multiple 
components, it's a single document for all components.  Most of 

operations on a Study object are handled by StudyManager and 

StudyBuilder interfaces. 

SObject SObject is the main constituent of SALOMEDS-based data 

structure. If you are familiar with CAF (Cascade Application 

Framework) - the analogy of SObject would be TDF_Label class. It 

can be understood as a branch of a tree of data, or as a record in a 
database table. Usually it does not store the data itself, it uses child 

Attributes - successors of SALOMEDS::GenericAttribute - for 

storing specific data, properties of the object. 

GenericAttribute GenericAttribute is base class for Attributes - an actual piece of 

data. Attributes are connected to SObjects, they can be observed as 

properties of SObjects. 

StudyManager Interface to manipulate Studies. You will find in this interface the 

methods to create, open, close, and save a Study. Since a SALOME 

session is multi-document, you will also find methods that allow 
navigating through a collection of studies currently present in a 
session. 

StudyBuilder The purpose of StudyBuilder interface is to add and/or remove 

objects and attributes. An instance of StudyBuilder is linked to a 



SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 44 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

Study. A command management is also provided for undo/redo 

functionality. 

SComponent SComponent is basically an SObject (it inherits SObject) of a 

certain type. It represents a component itself in a multi-component 

document (a Study object). It is a parent for component's data, its 

SObjects and Attributes. As a comment in SALOMEDS.idl file says, 

"the SComponent interface establishes in the study a permanent 
association to the components integrated into SALOME platform". 

Driver Driver interface represents a common tool that allows components 

of SALOME application to perform the following data-related tasks: 

publish the objects created by a certain component in the Study 

(declare them persistent and available for other components) 

save/load the data created by a component 

transform the transient (run-time) references to SObjects into 

persistent references when saving (or loading) a study and vice 
versa. 

copy/paste common functionality. Copy/paste can be called by any 
component in order to copy/paste its object created in the study 

These functionalities are called by StudyManager for performing 

tasks on a Study object. Any component must implement Driver 

interface itself (as we do in ATOMGEN component) or provide an 
object which implements it for the component's data. 

 
OK, let's return to ATOMGEN component. We want to use the functionality of SALOMEDS for 
implementation of persistence for our data. (Yes, we already know how to export the data into an 
XML file, and we learned in the previous chapter how to enclose this XML file into a persistent 
Study file.  Using SALOMEDS for this task will be done only by way of example, to display yet 
another way of persistence implementation). 
 

We shall create number of new methods in ATOMGEN.py module: 

 
def Save( self, component, URL, isMultiFile ) 

def Load( self, component, stream, URL, isMultiFile ) 

def IORToLocalPersistentID(self, sobject, IOR, isMultiFile, isASCII) 

def LocalPersistentIDToIOR(self, sobject, persistentID,  

                           isMultiFile, isASCII) 

def Close( self, component ) 

def CanPublishInStudy( self, IOR ) 

def PublishInStudy( self, study, sobject, object, name ) 

 

All these methods are overridden from Driver interface.  They will be called by StudyBuilder and 
StudyManager objects when a study is saved, loaded, closed, etc. 
 

Let's take a closer look at PublishInStudy() method.  It is intended to register (or "save" in 

other words) an object of "local" type, component dependent, in SALOMEDS-based data structure.  
It usually means creation of one or several SObjects and child Attributes.  It can be understood as 
conversion of local data structure to SALOMEDS-based data structure. 
 

def PublishInStudy( self, study, sobject, object, name ): 

    if study and object and object._narrow(ATOMGEN_ORB.Molecule): 

        builder = study.NewBuilder() 

        builder.NewCommand() 

        # get or create component object 

        father = study.FindComponent(self._ComponentDataType) 

        if father is None: 



SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 45 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

            builder 

            father = builder.NewComponent(self._ComponentDataType) 

            attr = builder.FindOrCreateAttribute(father, 

                                                 "AttributeName") 

            attr.SetValue(self._ComponentDataType) 

            builder.DefineComponentInstance(father, self._this()) 

            pass 

        # publish molecule 

        sobject = builder.NewObject(father) 

        attr = builder.FindOrCreateAttribute(sobject, 

               "AttributeName") 

        if not name: 

            name = object.getName() 

        attr.SetValue(name) 

        attr = builder.FindOrCreateAttribute(sobject, "AttributeIOR") 

        attr.SetValue(ObjectToString(object)) 

        # publish atoms 

        for i in range(object.getNbAtoms()): 

            atom = object.getAtom( i ) 

            sobject1 = builder.NewObject(sobject) 

            attr = builder.FindOrCreateAttribute(sobject1, 

                  "AttributeName") 

            attr.SetValue(atom.getName()) 

            attr = builder.FindOrCreateAttribute(sobject1, 

                  "AttributeIOR") 

            attr.SetValue(ObjectToString(atom)) 

            sobject2 = builder.NewObject(sobject1) 

            attr = builder.FindOrCreateAttribute(sobject2,  

                  "AttributeName") 

            attr.SetValue("x") 

            attr = builder.FindOrCreateAttribute(sobject2, 

                  "AttributeReal") 

            attr.SetValue(atom.getX()) 

            sobject2 = builder.NewObject(sobject1) 

            attr = builder.FindOrCreateAttribute(sobject2, 

                  "AttributeName") 

            attr.SetValue("y") 

            attr = builder.FindOrCreateAttribute(sobject2, 

                  "AttributeReal") 

            attr.SetValue(atom.getY()) 

            sobject2 = builder.NewObject(sobject1) 

            attr = builder.FindOrCreateAttribute(sobject2, 

                  "AttributeName") 

            attr.SetValue("z") 

            attr = builder.FindOrCreateAttribute(sobject2, 

                  "AttributeReal") 

            attr.SetValue(atom.getZ()) 

        builder.CommitCommand() 

        return sobject 

    return None 

 
As we look in the code above, we can see that we expect to receive an object of 

ATOMGEN_ORB.Molecule type at the input.  Then we create a new StudyBuilder object and 

open a transaction on it.  After that we find or create (only once for the first time) a SComponent 

object - father object for SObjects of ATOMGEN component.  After that we create an SObject that 

corresponds to a given molecule object.  We create 2 attributes for the molecule SObject: 

AttributeName (to store the name of molecule) and AttributeIOR.  AttributeIOR stores a 

unique key of any CORBA object.  In our case, the SObject exists on SALOMEDS CORBA 

server, and it has got its own IOR.  In order to locate the servant on the side of our engine, we 

need to store its IOR in the SObject - that is done with the help of AttributeIOR child object. 

 



SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 46 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

Finally, we iterate the atoms of the molecule.  For every atom we create an SObject and a 

number of attributes to store name, IOR, and coordinates of the atom. 
 

Method Load() of ATOMGEN class performs the opposite task: it iterates the SALOMEDS data 

structure and creates ATOMGEN_ORB.Molecule and ATOMGEN_ORB.Atom objects for SObjects 

of the corresponding level (children of ATOMGEN SComponent correspond to molecules, 

grandchildren - to atoms).  Please, pay attention at using special iterator classes (interfaces 

declared in SALOMEDS.idl file) for traversing the SALOMEDS data structure. 

 
def Load( self, component, stream, URL, isMultiFile ): 

    global __entry2IOR__ 

    __entry2IOR__.clear() 

    import StringIO, pickle 

    study = component.GetStudy() 

    iter = study.NewChildIterator(component) 

    data = [] 

    while iter.More(): 

        sobject = iter.Value() 

        iter.Next() 

        found, attr = sobject.FindAttribute("AttributeName") 

        if not found: continue 

        from ATOMGEN_Data import Molecule, Atom 

        mol = Molecule(attr.Value()) 

        __entry2IOR__[sobject.GetID()] = ObjectToString(mol._this()) 

        iter1 = study.NewChildIterator(sobject) 

        while iter1.More(): 

            sobject1 = iter1.Value() 

            iter1.Next() 

            found, attr = sobject1.FindAttribute("AttributeName") 

            if not found: continue 

            name = attr.Value() 

            x = y = z = None 

            iter2 = study.NewChildIterator(sobject1) 

            while iter2.More(): 

                sobject2 = iter2.Value() 

                iter2.Next() 

                found, attr1 = 

                  sobject2.FindAttribute("AttributeName") 

                if not found: continue 

                found, attr2 = 

                  sobject2.FindAttribute("AttributeReal") 

                if not found: continue 

                if attr1.Value() == "x": x = attr2.Value() 

                if attr1.Value() == "y": y = attr2.Value() 

                if attr1.Value() == "z": z = attr2.Value() 

            if None not in [x, y, z]: 

                atom = Atom(name, x, y, z) 

                mol.addAtom(atom) 

                __entry2IOR__[sobject1.GetID()] = 

                     ObjectToString(atom._this()) 

            pass 

        data.append(mol) 

    self.studyData[ study._get_StudyId() ] = data 

    return 1 

 
At this point we finish to study SALOMEDS and its use in ATOMGEN component. Please, 
download the source files of the current version of ATOMGEN with advanced data structure. 
 
In the next chapter we create a graphic user interface for ATOMGEN component to finalize its 
development. Please, continue with GUI for Python component, if you are ready! 

../../../../AppData/Local/Temp/archives/py-03.tar.gz


SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 47 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

4.4 GUI FOR PYTHON COMPONENT  

In distinction from C++ components, whose GUI modules are unique subclasses of a common 

parent class (CAM_Module), all Python components use the same GUI module class.  This class is 

a C++ class SALOME_PYQT_Module.  Surprised?  How can a C++ class be a GUI module for a 

Python component?  And even for all Python components, with different menu items, view 
windows, selection management policies, etc.?  In this section we are going to explain how it 
works. 
 
In the previous chapter about light-weight component, in the section "Instantiating a GUI module", 
we have pointed that a GUI library file name can be also specified in the resource file 

(SalomeApp.xml or LightApp.xml file).  For C++ components the usual practice is not to 

indicate the name of GUI library file explicitly.  The default algorithm of library file name 
construction is "lib" + component_name + ".so", and usually GUI libraries of C++ components have 
exactly the same file name, so there is no need to indicate them explicitly.  But for a Python 
component it is not the case, and we must add the following lines to the resource file 
SalomeApp.xml (Python components are loaded only in full configuration of SALOME, it is a 

current limitation, so we examine only SalomeApp.xml file and omit LightApp.xml): 

 
<section name="ATOMGEN" > 

  <parameter name="name"    value="AtomGen" /> 

  <parameter name="icon"    value="ATOMGEN.png" /> 

  <parameter name="library" value="SalomePyQtGUI" /> 

</section> 

 

After we have indicated a parameter "library" in resource section of ATOMGEN component, 

the GUI library file to be loaded on the first activation of ATOMGEN component will be 

libSalomePyQtGUI.so.  libSalomePyQtGUI.so is a library built in 

SALOME_PYQT/SALOME_PYQT_GUI package of GUI module of SALOME platform.  It contains 

SALOME_PYQT_Module class - a successor of SalomeApp_Module and a utility class 

SALOME_PYQT_PyInterp.  SALOME_PYQT_Module implements all main virtual methods of GUI 

modules that allow for customization of GUI of a certain component: 
 

void initialize(); 

bool activateModule(); 

bool deactivateModule(); 

void windows() const; 

void viewManagers() const; 

void contextMenuPopup(), etc. 

 

Implementation of these methods is a little bit tricky.  SALOME_PYQT_Module gets a name of a 

component that uses it, and constructs a name of a Python script using the following rule:  

"component_name"+"GUI.py" ("ATOMGENGUI.py" in our case).  SALOME_PYQT_Module has a 

Python interpreter wrapped into SALOME_PYQT_PyInterp class, and implementation of the 

methods (initialize(), activateModule(), etc.) simply calls a method with the same name 

in a Python module constructed above.  So SALOME_PYQT_Module constructed for ATOMGEN 

component in its initialize() method will call a Python method initialize() from 
ATOMGENGUI.py. 

 

The implementation of this schema is little bit more complicated.  Let's take a look at 

deactivatedModule() method, for example: 
bool SALOME_PYQT_Module::deactivateModule( SUIT_Study* theStudy ) 

{ 

  MESSAGE( "SALOME_PYQT_Module::deactivateModule" ); 

 

  if ( menuMgr() ) 

    disconnect( menuMgr(), SIGNAL( menuHighlighted( int, int ) ), 

                this,      SLOT( onMenuHighlighted( int, int ) ) ); 

 

  // remove menus & toolbars created from XML file if required 

  if ( myXmlHandler ) 



SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 48 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

    myXmlHandler->clearActions(); 

 

  // deactivate menus, toolbars, etc 

  setMenuShown( false ); 

  setToolShown( false ); 

 

  // DeactivateReq: request class for internal deactivate() operation 

  class DeactivateReq : public PyInterp_LockRequest 

  { 

  public: 

    DeactivateReq( PyInterp_base*      _py_interp, 

           SUIT_Study*         _study, 

           SALOME_PYQT_Module* _obj ) 

      : PyInterp_LockRequest( _py_interp, 0, true ), myStudy ( _study 

), 

        myObj   ( _obj   ) {} 

  protected: 

    virtual void execute() 

    { 

      myObj->deactivate( myStudy ); 

    } 

  private: 

    SUIT_Study*         myStudy; 

    SALOME_PYQT_Module* myObj; 

  }; 

 

  // Posting the request 

  PyInterp_Dispatcher::Get()->Exec( new DeactivateReq( myInterp, 

theStudy, this ) ); 

 

  return SalomeApp_Module::deactivateModule( theStudy ); 

} 

 
First of all, the method does all usual deactivation things: disconnect the signals and hide menus 

and tool buttons.  Then it creates an object of PyInterp_LockRequest type and passes it to 

PyInterp_Dispatcher.  This mechanism is used in order to synchronize the calls to Python 

interpreter.  User actions are asynchronous by their nature (user can start an action, then - yet 
another action before the first one is finished, and so on) and if we pass them to Python interpreter 
in the same asynchronous order (or disorder), then actions easily lock each other and the Python 

interpreter hangs. This problem is solved with the help of special class PyInterp_Dispatcher 

which creates a queue of requests of the Python interpreter and calls the actions one after another. 
 

Let's see what happens in deactivatedModule() up to the end. The code that will be 

synchronously executed is in the protected virtual method execute() of DeactivateReq 

(PyInterp_LockRequest subclass object): 

 
virtual void execute() 

{ 

  myObj->deactivate( myStudy ); 

} 

 

Here, myObj is an object of SALOME_PYQT_Module type, so we have to see 

SALOME_PYQT_Module::deactivate() method now (as it is called in execute()): 

 

void SALOME_PYQT_Module::deactivate( SUIT_Study* theStudy ) 

{ 

  // check if the sub interpreter is initialized and Python module is 

imported 

  if ( !myInterp || !myModule ) { 

    // Error! Python sub interpreter should be initialized and module 

should be imported first! 



SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 49 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

    return; 

  } 

  // then call Python module's deactivate() method 

  if(PyObject_HasAttrString(myModule , "deactivate")){ 

    PyObjWrapper res(PyObject_CallMethod(myModule, "deactivate", 

"")); 

    if( !res ) { 

      PyErr_Print(); 

    } 

  } 

} 

 

After checking the Python interpreter and GUI module for existence, method deactivate is 

located and invoked in a Python script: 
 

PyObject_CallMethod( myModule, "deactivate", "" ) 

 
OK, we finally come to the code executed in ATOMGEN component.  Let's see the deactivate 

method of ATOMGENGUI.py: 

 
def deactivate(): 

    print "ATOMGENGUI::deactivate" 

    # connect selection 

    global myStudy 

    studyId = myStudy._get_StudyId() 

    selection = __study_data_map__[ studyId ][ "selection" ] 

    selection.ClearIObjects() 

    QObject.disconnect( selection,  

         SIGNAL( "currentSelectionChanged()" ), selectionChanged ) 

    global myRunDlg 

    if myRunDlg: 

        myRunDlg.close() 

        myRunDlg = None 

    myStudy = None 

    pass 

 
This method performs the local de-activation, in particular, it clears selection and closes the dialog 
box if it was open. 
 
Once again, let's retrace the call stack: 
 

1. SALOME_PYQT_Module::deactivateModule() is called asynchronously (in general) 

in response to an external event (component deactivation) 

2. SALOME_PYQT_Module::deactivate() is called synchronously using an internal 

event queue 

3. deactivate from ATOMGENGUI is called 

 

This procedure of calls from SALOME_PYQT_Module to Python script is followed by all methods of 

GUI module for a Python component.  The following methods of ATOMGENGUI.py are called from 

SALOME_PYQT_Module in response to corresponding events: 

 

 initialize 

 windows 

 views 

 activate 

 deactivate 

 activeStudyChanged 

 createPopupMenu 

 OnGUIEvent 
 



SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 50 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

Please, refer to ATOMGENGUI.py file to know how these methods are implemented.  It is not 

complicated, so we will not examine them in details. 
 

There are 2 more topics related to ATOMGEN GUI that we are going discuss here: using pyuic 

compiler for Qt-based dialog boxes development and creation of menu items and tool buttons. 
 

As you have noticed, in ATOMGENGUI package of ATOMGEN component we have a file with "ui" 

extension: rundlg.ui.  This file was prepared with Qt Designer tool, it is in special format (similar 

to XML) that describes a layout of a dialog box.  In ATOMGENGUI.py file we have the following 
code: 
 

import ui_rundlg 

class RunDlg(QDialog, ui_rundlg.Ui_RunDlg): 

...... 

 

The Python module ui_rundlg, mentioned in this code, is a module automatically generated from 

rundlg.ui file.  Class _rundlg.Ui_RunDlg is a class of dialog box described in rundlg.ui 

file.  In the source directory we have only this ui file, but after we build ATOMGEN component, the 

build directory will contain ui_rundlg.py file (ATOMGEN_BUILD/bin/salome subdirectory) 

generated by pyuic compiler.  So we can derive a new class from  rundlg.RunDlg: 
 

class RunDlg(QDialog, ui_rundlg.Ui_RunDlg) 

 

Deriving from classes generated by the pyuic compiler is very common in development of GUI for 

Python components. QDialog is the parent class, that allows RunDlg to be Qt dialog window 

widget that contains all components declared in ui file. In constructor on RunDlg it is called 

setupUi method of Ui_RunDlg to initialize and insert all content widgets into the dialog box. 

 
The last topic that we are going to learn in this section is creation of menu items and tool buttons in 
GUI modules written in Python.  GUI module of a C++ component can create menu items and tool 

buttons using only createMenu(), and createTool() methods.  Python components also can 

use these methods of SalomePyQt Python module.  As we can see in activate method of 

ATOMGENGUI module a menu items are created using the following calls: 

 
a = sgPyQt.createAction( __CMD_IMPORT_XML__,  

                         tr( "MEN_IMPORT_XML" ), 

                         tr( "TOP_IMPORT_XML" ), 

                         tr( "STB_IMPORT_XML" ) ) 

fileMnu = sgPyQt.createMenu( QApplication.translate( "ATOMGENGUI", 

                         "MEN_FILE" ), -1, -1 ) 

sgPyQt.createMenu( __CMD_IMPORT_XML__, fileMnu, 10 ) 

 
But we can also see that menu ATOMGEN with Run item is not present in the code of 

ATOMGENGUI.  Identifier of the "Run" command is declared there (__CMD_RUN_ALGO__ = 

4002), moreover, the command is properly handled in ATOMGENGUI (onRunAlgo() method).  

This menu item and the tool button are declared in a special XML file which is located in the 

resource directory of ATOMGEN component: ATOMGEN_en.xml 

 
<?xml version='1.0' encoding='us-ascii'?> 

<!DOCTYPE application PUBLIC "" "desktop.dtd"> 

<application title="ATOMGEN component" date="15/11/2005"  

             author="SALOME team" appId="SALOME" > 

<desktop> 

 

<!-- ### MENUBAR ###  --> 

<menubar> 

 <menu-item label-id="ATOMGEN" item-id="90" pos-id="3"> 

  <popup-item item-id="4002" label-id="Run" icon-id="" 

   tooltip-id="Runs calculations" accel-id="" toggle-id="" 



SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 51 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

   execute-action=""/> 

 </menu-item> 

</menubar> 

 

<!-- ### TOOLBARS ###  --> 

<toolbar label-id="ATOMGEN"> 

 <toolbutton-item item-id="4002" label-id="Run" 

     icon-id="atomgen_run.png" tooltip-id="Runs calculations" 

     accel-id="" toggle-id="" execute-action=""/> 

</toolbar> 

 

</desktop> 

</application> 

 
This XML file describes menu items and tool buttons for ATOMGEN component. In order to use 
this way of menu items creation, the XML file must be named in the following way: 

component_name + "_" + language_id + ".xml". language_id is 2 letters language 

identifier used in the current session of SALOME ("en", "fr", "ru", etc. - same postfix is used 

for naming the po-files in SALOME). This way of menu items and tool buttons creation (via XML 

file) was adopted in previous versions of SALOME platform (series 1.x, 2.x), now it is left only for 
Python components for compatibility reasons. 
 
With this section we would like to finish the development of ATOMGEN Python component. Please, 
use this link to download the latest source files of the fully functional version of ATOMGEN. Study 
them carefully, and after that return to our tutorial to study the next chapter which will explain how 
to develop a component in C++ with engine and advanced visualization for our molecular data! 

4.5 DUMP PYTHON MECHANISM 

As it has been discussed in chapter 3.7.1 there are basically two different approaches for 
implementing of Dump python functionality in SALOME components – to make “historical” or 
“snapshot” dump. For the ATOMGEN component “historical dump” approach seems to suit better 
than “snapshot” one, because engine of this component implements methods, which can create 
and publish in the study more then one object at a time. As described in the paragraph 3.7.1, in 
case of the “historical dump” approach each command that creates and publishes data in the study 
should store additional information related to the Dump python functionality in the component. To 

store this additional information we will use AttributeTableOfString attribute class that will be 

created on the root SObject of the component’s data tree. This approach allows us to avoid 

keeping the data related to the Dump python functionality somewhere in additional data structures 
at the engine side. An additional advantage of SALOME attribute usage is that it is persistent (as all 
other SALOMEDS attributes) – it is saved/restored to the study file automatically by SALOME data 
server. 
 
Let’s add required changes in the implementation of the component’s methods: 

 

1. Changes in the importXmlFile() method: 

 
    def importXmlFile( self, fileName ): 

        """ 

        Imports atomic data from external XML file 

        and publishes the data in the active study 

        """ 

        if self.study: 

            # import file 

            from ATOMGEN_XmlParser import readXmlFile 

            new_data = readXmlFile( fileName ) 

            entries = self.appendData( new_data ) 

            if len(entries)  > 0 : 

                cmd = "[" + ", ".join(entries) +  

                       "] = " + __pyEngineName__ 

                cmd += ".importXmlFile('" + fileName + "')" 

                attr = self._getTableAttribute()                 

../../../../AppData/Local/Temp/archives/py-04.tar.gz


SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 52 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

                if attr is not None: 

                    attr.PutValue(cmd,attr.GetNbRows()+1,1) 

            res = [] 

            for m in new_data:                 

                res.append(m._this()) 

            return res 

        return [] 

 

2. Changes in the processData() method: 

 
    def processData( self, data ): 

        """ 

        Perform some specific action on the atomic data 

        """ 

        if not self.study: return [] 

        nb_steps = 5 

        new_data = [] 

        dx = 10.0 

        dy = 5.0 

        dz = 3.0 

        for i in range( nb_steps ): 

            for mol in data: 

                new_mol = self._translateMolecule( mol, i,  

                       dx * (i+1), dy * (i+1), dz * (i+1) )                 

                new_data.append( new_mol ) 

        entries = self.appendData( new_data ) 

        if len(entries) > 0 : 

            lst = [] 

            for m in data: 

                ior = ObjectToString(m) 

                so = self.study.FindObjectIOR(ior) 

                lst.append(so.GetID()) 

                 

            cmd =  "[" + ", ".join(entries) + "] = "+__pyEngineName__ 

            cmd += ".processData([" + ", ".join(lst) + "])" 

            attr = self._getTableAttribute() 

            if attr is not None: 

                attr.PutValue(cmd, attr.GetNbRows()+1,1) 

        res = [] 

        for m in new_data: 

            res.append(m._this()) 

        return res 

 

3. Changes in the exportXmlFile() method: 
    def exportXmlFile( self, fileName ): 

        """ 

        Exports atomic data from the active study to 

        the external XML file 

        """ 

        if self.study: 

            from ATOMGEN_XmlParser import writeXmlFile 

            studyID = self.study._get_StudyId() 

            writeXmlFile( fileName, self.studyData[ studyID ] ) 

            cmd = __pyEngineName__+ ".exportXmlFile('" +  

                  fileName + "')" 

            attr = self._getTableAttribute() 

            if attr is not None: 

                attr.PutValue(cmd,attr.GetNbRows()+1,1) 

            return True 

        return False 

 
Now methods store python commands necessary to generation python script in the study. 



SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 53 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

Also processData() and importXmlFile() methods return the list of references to the 

created objects. 
 
Important notice: for identification of the objects in the stored python command objects’ entries 
(unique identifiers) are used. These identifiers will be replaced by the unique python names in the 

DumpPython method (see below). 

 

Finally, let’s impement DumpPython method. This method iterates through the stored python 

commands, for each command generates unique valid object name and replaces object’s entry by 
the generated name in the resulting Python command: 
 

    def DumpPython(self, theStudy, isPublished, isMultiFile): 

        script = [] 

        prefix = "" 

        if isMultiFile : 

            script.append("import salome") 

            script.append("\n") 

            prefix = "\t" 

        script.append("import ATOMGEN\n") 

        script.append(__pyEngineName__ + " = 

           salome.lcc.FindOrLoadComponent(\"FactoryServerPy\", 

           \"ATOMGEN\")") 

         

        if isMultiFile : 

            script.append("def RebuildData(theStudy):\n") 

            script.append(prefix+__pyEngineName__ + 

                ".setCurrentStudy(theStudy)\n") 

        else: 

            script.append(__pyEngineName__ +  

                ".setCurrentStudy(theStudy)\n") 

         

        attr = self._getTableAttribute() 

        if attr is not None: 

            for idx in range(attr.GetNbRows()): 

                s = prefix + attr.GetValue(idx+1,1) 

                script.append(s) 

         

        if isMultiFile : 

         script.append(prefix+"pass") 

       else: 

         script.append("\n") 

       script.append("\0") 

         

        all = "\n".join(script) 

        self._getPyNames()         

        studyID = self.study._get_StudyId() 

         

        for k in self.entry2PyName[studyID].keys() : 

            all = all.replace(k,self.entry2PyName[studyID][k]) 

         

        return (all,1) 

 
Please, use this link to download the latest source files of the fully functional version of 
ATOMGEN componet with implemented dump python mechanism. 

../../../../AppData/Local/Temp/archives/py-05.tar.gz
../../../../AppData/Local/Temp/archives/py-05.tar.gz


SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 54 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

5. ATOMSOLV: C++ COMPONENT WITH ENGINE 

This chapter is dedicated to C++ component with a CORBA engine. This type of component is the 

most frequently used in industrial SALOME-based applications as it provides the most of 

advantages of SALOME platform. Both KERNEL and GUI modules must be compiled in full 
configuration to include all services of SALOME platform. 
 
Studying this chapter step by step, we shall develop the next new component for processing of 
molecules and atoms - ATOMSOLV component. Currently the cycle of our sample data processing 
is the following: 
 

 the data (molecules and atoms) are created in ATOMIC component (light-weight) and 
saved in XML format; 
 

 ATOMGEN component reads the data from the XML file and performs their "spacial 
analysis": number of molecules and atoms is increased. 

 

ATOMSOLV component (to be developed in this chapter) retrieves the data from ATOMGEN 
component and performs its further analysis.  It assigns properties to molecules (we think of these 
properties as "temperature" of molecules).  And ATOMSOLV finally displays the results: atoms are 
displayed as spheres in 3D space; the color of the spheres reflects the value of temperature of a 
molecule the atoms belong to. 
   

 
Figure 6. ATOMSOLV module 

 
Having completed this chapter we shall have the the full demonstration of data processing cycle: 
data preparation (modeling), data analysis, and visualization of results. 
 
The new concepts of SALOME platform that we are going to learn in this chapter mainly include 
graphical capabilities of SALOME: notions of view window, view manager, selection in 3D viewers, 
user-defined preferences, etc. 



SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 55 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

5.1 ENGINE: INTERFACE AND IMPLEMENTATION 

Interface Engine of ATOMSOLV component is rather simple.   Its objective is to store data retrieved 
from ATOMGEN component and perform additional processing of the data.  In order to store the 

results of additional processing we must extent ATOMGEN_ORB::Molecule interface.  To keep it 

simple, we will use struct to store the original molecule and its new property: floating point value of 
temperature: 

module ATOMSOLV_ORB 

{ 

  struct TMolecule 

  { 

    ATOMGEN_ORB::Molecule molecule; 

    double temperature; 

  }; 

}; 

 
The interface of ATOMSOLV engine: 
 

module ATOMSOLV_ORB 

{ 

  typedef sequence<TMolecule> TMoleculeList; 

 

  interface ATOMSOLV_Gen : Engines::EngineComponent 

  { 

    boolean setData( in long studyID, in TMoleculeList theData ); 

    boolean getData( in long studyID, out TMoleculeList outData ); 

    boolean processData( in long studyID ); 

  }; 

}; 

 
Let's take a look at the implementation of the ATOMSOLV engine interface: 
 

class ATOMSOLV: public POA_ATOMSOLV_ORB::ATOMSOLV_Gen, public 

Engines_Component_i  

{ 

public: 

  ATOMSOLV(CORBA::ORB_ptr, PortableServer::POA_ptr, 

PortableServer::ObjectId *, const char *, const char *); 

  virtual ~ATOMSOLV(); 

 

  bool setData( long studyID,  

                const ATOMSOLV_ORB::TMoleculeList& theData ); 

  bool getData( long studyID,  

                ATOMSOLV_ORB::TMoleculeList_out outData ); 

  bool processData( long studyID ); 

 

private: 

  std::map<long, ATOMSOLV_ORB::TMoleculeList*> myData; 

}; 

 

The implementation class ATOMSOLV inherits POA_ATOMSOLV_ORB::ATOMSOLV_Gen class which 

is an automatically generated stub for ATOMSOLV_Gen CORBA interface. And it inherits 

Engines_Component_i class as the base component (engine) implementation class. 

 

The private member field myData (std::map) is used to store lists of molecules for multiple studies. 

The key in the map is a studyID, and the value is a list of TMolecules (molecules with temperature). 
 
The processing is done very simple - temperature assigned to molecules is a randomly generated 
floating point value: 
 

bool ATOMSOLV::processData( long studyID ) 

{ 



SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 56 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

  if ( myData.find( studyID ) != myData.end() ) { 

    ATOMSOLV_ORB::TMoleculeList* data = myData[ studyID ]; 

    for ( int i = 0, n = data->length(); i < n; i++ ) 

      (*data)[i].temperature = rand(); 

  } 

} 

 
Please, use this link to download the version of ATOMSOLV with implementation of engine. It is not 
possible to really work with this version as it has no GUI, so, please, use it only as a code 
reference. 

5.2 INSTANTIATING A GUI MODULE 

GUI module for a component with engine must be derived from SalomeApp_Module class, which 

presumes use of an engine. Pure virtual method SalomeApp_Module::engineIOR() must 

return IOR of CORBA engine of a component. The engine is usually loaded by GUI module on the 

first invocation (in virtual method initialize()) and registered in LifeCycleCORBA. Let's take a 

look at methods of ATOMSOLVGUI that work with engine: 
 

virtual QString engineIOR() const; 

static void InitATOMSOLVGen( SalomeApp_Application* ); 

static ATOMSOLV_ORB::ATOMSOLV_Gen_var GetATOMSOLVGen(); 

 
void ATOMSOLVGUI::InitATOMSOLVGen( SalomeApp_Application* app ) 

{ 

  if ( !app ) 

    myEngine = ATOMSOLV_ORB::ATOMSOLV_Gen::_nil(); 

  else { 

    Engines::EngineComponent_var comp = 

       app->lcc()->FindOrLoad_Component( "FactoryServer",  

       "ATOMSOLV" ); 

    ATOMSOLV_ORB::ATOMSOLV_Gen_ptr atomGen = 

       ATOMSOLV_ORB::ATOMSOLV_Gen::_narrow(comp); 

    ASSERT( !CORBA::is_nil( atomGen ) ); 

    myEngine = atomGen; 

  } 

} 

ATOMSOLV_ORB::ATOMSOLV_Gen_var ATOMSOLVGUI::GetATOMSOLVGen() 

{ 

  if ( CORBA::is_nil( myEngine ) ) { 

    SUIT_Application* suitApp = 

        SUIT_Session::session()->activeApplication(); 

    SalomeApp_Application* app = 

        dynamic_cast<SalomeApp_Application*>( suitApp ); 

    InitATOMSOLVGen( app ); 

  } 

  return myEngine; 

} 

QString ATOMSOLVGUI::engineIOR() const 

{ 

  CORBA::String_var anIOR =  

         getApp()->orb()->object_to_string( GetATOMSOLVGen() ); 

  return QString( anIOR.in() ); 

} 

 

Method GetATOMSOLVGen() is made static to allow access to ATOMSOLV engine from different 

GUI classes. It is also possible to acquire a pointer to ATOMSOLV_Gen calling directly 

FindOrLoad_Component() method of LifeCycleCORBA interface that can be aquired from 

SalomeApp_Application instance. 

 
Let's implement a method to retrieve data from ATOMGEN engine and store it in ATOMSOLV 
engine. It will be a slot connected to "Retrive data" action of ATOMSOLVGUI class: 

../../../../AppData/Local/Temp/archives/c-01.tar.gz


SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 57 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

 
1.  void ATOMSOLVGUI::OnRetrieveData() 

2.  { 

3.    ATOMSOLV_ORB::ATOMSOLV_Gen_var engine = GetATOMSOLVGen(); 

4.    SalomeApp_Application* app = getApp(); 

5.    if ( !CORBA::is_nil( engine ) && app ) { 

6.      // acquire ATOMGEN engine: use LifeCycleCORBA service for it 

7.      Engines::EngineComponent_var comp =  

8.        app->lcc()->FindOrLoad_Component("FactoryServerPy","ATOMGEN"); 

9.      ATOMGEN_ORB::ATOMGEN_Gen_var atomGen = 

10.       ATOMGEN_ORB::ATOMGEN_Gen::_narrow( comp ); 

11.     SalomeApp_Study* appStudy =  

12.       dynamic_cast<SalomeApp_Study*>( app->activeStudy() ); 

13.     if ( !CORBA::is_nil( atomGen ) && appStudy ) { 

14.       const int studyID = appStudy->id(); 

15.       // load study data if it is not done yet by ATOMGEN component 

16.       if ( _PTR( Study ) studyDS = appStudy->studyDS() ) { 

17.         if ( _PTR( SComponent ) atomGenSComp =  

18.             studyDS->FindComponent( "ATOMGEN" ) ) { 

19.           _PTR( StudyBuilder ) builder = studyDS->NewBuilder(); 

20.           std::string atomGenIOR = 

21              app->orb()->object_to_string( atomGen ); 

22.           builder->LoadWith( atomGenSComp, atomGenIOR ); 

23.         } 

24.       } 

25.       // retrieve data from ATOMGEN 

26.       ATOMGEN_ORB::MoleculeList_var inData =  

27.          atomGen->getData( studyID ); 

28.       // "convert" Molecules to TMolecules,  

29.       // set default temperature '0' 

30.       const int n = inData->length(); 

31.       ATOMSOLV_ORB::TMoleculeList_var outData =  

32.            new ATOMSOLV_ORB::TMoleculeList(); 

33.       outData->length( n ); 

34.       for ( int i = 0; i < n; i++ ) { 

35.         ATOMSOLV_ORB::TMolecule_var tmol = 

36             new ATOMSOLV_ORB::TMolecule(); 

37.         tmol->molecule =  

38.            ATOMGEN_ORB::Molecule::_duplicate( inData[i] ); 

39.         tmol->temperature = 0; 

40.         outData[ i ] = tmol; 

41.       } 

42.       // store the data in ATOMSOLV engine 

43.       engine->setData( studyID, outData ); 

44.  

45.       // update object browser so new data objects appear in it 

46.       app->updateObjectBrowser(); 

47.     } 

48.   } 

49. } 

 
As we see, first of all we acquire reference to both engines: of ATOMSOLV and ATOMGEN 
components (lines 3, 9). Then we must get the data from ATOMGEN that corresponds to the 
currently opened study. We obtain the integer study ID (14), and then use SALOMEDS services for 
loading of the study by the component ATOMGEN (16-22). It is necessary to do it, because internal 
data structure of ATOMGEN may not be initialized in case if ATOMGEN was not previously loaded 
and therefore it has not "connected" to the current study. We do this "connection" of ATOMGEN 

engine to study manually, calling StudyBuilder::LoadWith() method (22). After that we 

retrieve the data and convert it to format of ATOMSOLV (list TMolecules instead of Molecules), 
setting default temperature of 0 (25-41). Finally, we store the data in ATOMSOLV engine (43) and 
update the object browser in order to see the new data under ATOMSOLV root. 
 



SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 58 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

As you already know, in order to see the data structure in Object Browser, we have to create Data 
Model and Data Object classes, build a tree of Data Objects inside the Data Model (in its method 

build()), and connect the Data Model to component GUI. Let's assume, we have already done it, 

and take a look at the most interesting methods of Data Model and Data Object: 
 

void ATOMSOLVGUI_DataModel::build() 

{ 

  ATOMSOLVGUI_ModuleObject* modelRoot = 

   dynamic_cast<ATOMSOLVGUI_ModuleObject*>( root() ); 

  if( !modelRoot )  {  // root is not set yet 

    modelRoot = new ATOMSOLVGUI_ModuleObject( this, 0 ); 

    setRoot( modelRoot ); 

  } 

 

  // create 'molecule' objects under model root object 

  // and 'atom' objects under 'molecule'-s 

  ATOMSOLV_ORB::ATOMSOLV_Gen_var engine = 

    ATOMSOLVGUI::GetATOMSOLVGen(); 

  if ( !CORBA::is_nil( engine ) ) { 

    const int studyID = getStudy()->id(); 

    ATOMSOLV_ORB::TMoleculeList_var molecules; 

    if ( !engine->getData( studyID, molecules ) ) 

      return; 

 

    for ( int i = 0, n = molecules->length(); i < n; i++ ) { 

      ATOMSOLVGUI_DataObject* molDO =  

         new ATOMSOLVGUI_DataObject ( modelRoot, i ); 

      const ATOMSOLV_ORB::TMolecule& mol = molecules[i]; 

      const int atoms = mol.molecule->getNbAtoms(); 

      for ( int j = 0; j < atoms; j++ ) 

        new ATOMSOLVGUI_DataObject ( molDO, i, j ); 

    } 

  } 

} 

 
QString ATOMSOLVGUI_DataObject::entry() const 

{ 

  QString id = "root"; 

  if ( myMoleculeIndex > -1 ) { 

    id = QString::number( myMoleculeIndex ); 

    if ( myAtomIndex >= 0 ) 

    id += QString( "_%1" ).arg( myAtomIndex ); 

  } 

  return QString( "ATOMSOLVGUI_%1" ).arg( id ); 

} 

 

QString ATOMSOLVGUI_DataObject::name() const 

{ 

  ATOMSOLV_ORB::TMolecule tmolecule = getTMolecule(); 

  ATOMGEN_ORB::Molecule_var mol = tmolecule.molecule; 

  if ( !CORBA::is_nil( mol ) ) { 

    if ( !isAtom() ) 

      return QString( "%1 [%2]" ).arg( mol->getName() ).arg( 

           tmolecule.temperature ); 

    else if ( myAtomIndex < mol->getNbAtoms() ) 

      return mol->getAtom( myAtomIndex )->getName();     

  } 

  return QString("-Error-"); 

} 

 

ATOMSOLV_ORB::TMolecule ATOMSOLVGUI_DataObject::getTMolecule() const 

{ 

  ATOMSOLV_ORB::ATOMSOLV_Gen_var engine = 



SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 59 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

    ATOMSOLVGUI::GetATOMSOLVGen(); 

  LightApp_RootObject* rootObj =  

    dynamic_cast<LightApp_RootObject*> ( root() ); 

  if ( rootObj && !CORBA::is_nil( engine ) ) { 

    const int studyID = rootObj->study()->id(); 

    if ( studyID > 0 ) { 

      ATOMSOLV_ORB::TMoleculeList_var molecules; 

      if ( engine->getData( studyID, molecules ) &&  

       myMoleculeIndex > -1 &&  

       myMoleculeIndex < molecules->length() ) 

    return molecules[ myMoleculeIndex ]; 

    } 

  } 

  return ATOMSOLV_ORB::TMolecule(); 

} 

 
Data Model builds a tree of Data objects in the following way: first of all it creates a root object in 

case it was not created before.  Then it gets the list of TMolecules from engine, iterates it, and 

builds Data Objects for every TMolecule, and for every atom of TMolecule. 

 

Data Object stores 2 integer indexes: index of TMolecule(myMoleculeIndex), and index of 

atom within TMolecule(myAtomicIndex).   If myAtomicIndex is equal to '-1' then the Data 

Object corresponds to a molecule object, if myAtomicIndex is a valid index ( >= 0), then the Data 

Object corresponds to an atom. 
 
Please, download the source files of the current version of ATOMSOLV component, compile them, 
and start the application. ATOMGEN component must be also made available. It means that 

ATOMGEN_ROOT_DIR variable must be correctly set and ATOMGEN component must be added to 

the list of active components (with --modules=ATOMSOLV,ATOMGEN command line parameter, 

for example). After the application is started, switch to ATOMGEN and import an XML file with data 
prepared by ATOMIC component (for example, sample.xml from ATOMIC component, it is located 
in resources directory of ATOMIC). Now activate ATOMSOLV component and select AtomSolv  
Retrieve data command. AtomSolv root object with molecules and atoms must appear in Object 
Browser - they were retrieved from ATOMGEN engine using CORBA technology! 
 
If we choose AtomSolv  Process data command now, the molecules will be assigned new 

temperature properties (see ATOMSOLVGUI::OnProcessData() and 

ATOMSOLV::processData() methods). It is reflected in the Data Objects that correspond to the 

molecules: the number in square brackets is changed. 
 

../../../../AppData/Local/Temp/archives/c-02.tar.gz


SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 60 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

 
Figure 7. Post-processing with ATOMSOLV 

 

In the next section we will learn how to display the atoms in 3D viewer. 

5.3 GRAPHICAL CAPABILITIES 

In this section we are going to learn how to display objects in 3D viewer. In our application the 
objects that are most suitable for 3D presentation are atoms as they have such property as 
Cartesian coordinates. But first of all, we must implement retrieval of objects selected in Object 
Browser (so we know what to display), and add the corresponding actions to popup menu (so we 

know when to display). We shall implement method ATOMSOLVGUI::selected() in a very 

similar to ATOMIC component way: 
 

void ATOMSOLVGUI::selected (QStringList& entries, const bool 

multiple) 

{ 

  LightApp_SelectionMgr* mgr = getApp()->selectionMgr(); 

  if( !mgr ) 

    return; 

 

  SUIT_DataOwnerPtrList anOwnersList; 

  mgr->selected( anOwnersList ); 

     

  for ( int i = 0; i < anOwnersList.size(); i++ ) 

  { 

    const LightApp_DataOwner* owner =  

      dynamic_cast<const LightApp_DataOwner*>(  

      anOwnersList[ i ].get() ); 

    QStringList es = owner->entry().split( "_" ); 

    if ( es.count() > 1 && es[ 0 ] == "ATOMSOLVGUI" &&  



SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 61 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

         es[ 1 ] != "root" ) 

    { 

      if ( !entries.contains( owner->entry() ) ) 

        entries.append( owner->entry() ); 

      if( !multiple ) 

        break; 

    } 

  } 

} 

 
We would like to add the following actions to the popup menu of atoms (displayable objects): 
Display, Erase, Representation mode - Points, Representation mode - Wireframe, Representation 
mode - Surface, Change color, Change Transparency. So called "representation mode" (or "display 
mode") is the way the object looks in 3D viewer: 
 

 
Figure 8. Representation modes 

 

We would like to be able to change this property, so we create the corresponding actions. Color 
and transparency are also 3D presentation properties, they can be also modified: 
 

 
Figure 9. Colored atoms 

 
The logical rules for adding Display / Erase commands to popup menu will be the following: 

mgr->setRule( action( Display ), "true in $canBeDisplayed and 

              activeModule='ATOMSOLV' and !isVisible" ); 

mgr->setRule( action( Erase ), "true in $canBeDisplayed and 

              activeModule='ATOMSOLV' and isVisible" ); 

 



SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 62 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

The parameter canBeDisplayed is analyzed by the LightApp_Selection class when a 

popup menu is constructed.  LightApp_Selection requests from a GUI module a special object 

called Displayer (ancestor of LightApp_Displayer class). Displayer has a virtual function 

canBeDisplayed() which is called with entry of an object and type of viewer as input parameter. 

If it returns true, then canBeDisplayed popup menu parameter becomes true for this object. Let's 

create ATOMSOLVGUI_Displayer class and implement its canBeDisplayed() method: 

 
bool ATOMSOLVGUI_Displayer::canBeDisplayed( const QString& entry,  

                          const QString& viewer_type ) const 

{ 

  QStringList es = entry.split( "_" ); 

  bool result = ( es.count() == 3 && es[ 0 ] == "ATOMSOLVGUI" && 

                  viewer_type == SVTK_Viewer::Type() );  

  return result; 

} 

 
The code es.count() == 3 && es[ 0 ] == "ATOMSOLVGUI" guarantees that the entry 

belongs to an atom (only atom objects has 3 parts divided with underscore, and the first part is 
"ATOMSOLVGUI" string). The second part of the logical condition viewer_type == 

SVTK_Viewer::Type() means that our atoms can be displayed only in VTK viewer. 

 
Here we have to say a few words about different types of viewers adopted in SALOME platform. 
GUI module of SALOME currently contains the following packages responsible for displaying 
objects in various ways: 
 

GLViewer 2D presentation of objects, developed specially for SALOME platform 
using core Open GL libraries  

OCCViewer, SOCC 3D presentation based on Open CASCADE technology (AIS, V3d 
packages from Open CASCADE library: http://www.opencascade.org) 

Plot2d, SPlot2d 2D presentation based on QWT toolkit (open source Qt-based library: 
http://qwt.sourceforge.net), mainly aimed to display graphs and curves 
in 2D 

VTKViewer, SVTK 3D presentation based on Visualization TookKit (open source toolkit by 
Kitware, Inc.: www.vtk.org) 

 
All visualization packages of GUI module presented above contain several obligatory classes 
inherited from classes of SUIT package that allow for abstraction from a certain way the object 
visualization is implemented in this package.  The interface of all visualization packages is the 
same, the implementation, of course, differs.  In the table below we will try to describe the base 
classes and their objectives: 
 

SUIT_ViewWindow View window is a frame, inherited from QMainWindow (Qt library), that 

contains the visualization scene.  Objects are displayed inside a view 
window.  The visualization packages inherit their custom view windows 

from SUIT_ViewWindow and fill it with custom widgets in order to 

display objects in a certain way.  OCCViewer, for example, places a 
V3d_View (Open CASCADE library) inside its view window to display a 
3D scene. 

View window is able to save its contents as an image (dumpView() and 

dumpViewToFormat() virtual functions) and it is able to save and 

restore its parameters (values of zoom, pan, degree rotation, and other 

custom properties of the scene) - get/setVisualParameters() 

virtual functions.  These functions are redefined in every custom view 
window to perform the corresponding functionality. 

As view window is a basic frame, it receives the basic window events: 

http://www.opencascade.org/
http://qwt.sourceforge.net/
http://www.vtk.org/


SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 63 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

mouse moves, clicks, keyboard presses, etc.  One of the objectives of 
view window is to pass these events further - it is done through various 

signals emitted by SUIT_ViewWindow class: mousePressed(), 

mouseReleased(), weeling(), keyPressed(), etc. 

SUIT_ViewModel View model is a creator of View windows.  "View model - View window" 
pair follows "Factory method" pattern - view windows are created by 

virtual method of view model createView().  Visualization packages 

of GUI module redefine SUIT_ViewModel class to be able to create 

custom view windows. 

View models have a pair of methods: 

static QString Type(); 

virtual QString getType() const; 

 

These methods must return a type descriptor of a view ("OCCViewer", 
"VTKViewer", etc.).  This type is used in context popup menu ("client" 
parameter will be equal to this type), and in many other places in the 
code where it is needed to determine the type of a view. 

SUIT_ViewManager The name of the class shows its main purpose: it manages the views 
(view windows).  It contains a view model as a member field for creation 
of a view and various methods for accessing the managed views 

(getActiveView(), getViewsCount(), etc.). 

SUIT_ViewManager is a "gateway" class for working with view 

windows from application or another side.  STD_Application class 

(parent class for LightApp_Application and 

SalomeApp_Application) stores view managers and it is possible to 

retrieve a view manager of a certain type using methods of the 
application. 

 
The classes presented above from SUIT package play the role of an abstraction layer that 
generalizes where the objects are displayed (view window).  Now we have to observe the objects 
themselves. 
 
Different viewers naturally work with different internal graphic presentations.  OCCViewer, for 

example, uses AIS_InteractiveObject class for presentation of an object in the graphic 

scene; VTKViewer uses vtkActor for the same purpose.  The goal of SALOME platform is to 

support a unified way of working with presentation objects of different types.  This is done using an 
abstraction layer declared in Prs package of GUI module.  This package contains only 2 files 

(SALOME_Prs.h/cxx), they contain declaration and implementation of several classes described 

in the table below: 
 

SALOME_Prs SALOME_Prs is an abstraction of an object presentation.  Generalization 

of what to display (the object). 

It is a pure interface that represents "something" that can be displayed 

in SALOME_View (another abstraction). 

SALOME_OCCPrs, 
SALOME_VTKPrs, 
SALOME_Prs2d 

Direct successors of SALOME_Prs.  The implementation of these 

classes is very simple, they delegate the call to SALOME_View.  For 

example: 

void SALOME_OCCPrs::DisplayIn( SALOME_View* v 

) const 

{ 

  if ( v ) v->Display( this ); 

} 



SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 64 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

SALOME_View SALOME_View is an abstraction of how to display (type of viewer).  

SALOME_View interface (it is more an interface as the base 

implementation leaves the methods empty) is inherited by View Models 

of the visualization packages (SOCC_ViewModel, SVTK_ViewModel, 

etc.).  These view models know how to display SALOME_Prs of a certain 

type.  Naturally, SVTK_ViewModel redefines only 1 virtual Display() 

method of SALOME_View interface - the one that takes a 

SALOME_VTKPrs as a parameter.  It will know exactly how to treat 

SALOME_VTKPrs object, how to get the internal displayable object from 

it (vtkActor) and display it in the active VTK view window. 

SALOME_Displayer SALOME_Displayer interface plays a role of a display manager.  It is 

used by application (LightApp_Application or 

SalomeApp_Application), GUI module of a component 

(LightApp_Module or SalomeApp_Module) when it needs to display 

or erase the objects. 

Displayer is the only class that usually needs to be redefined by a 
component in order to display its objects.  Custom Displayer class must 

be derived from LightApp_Displayer.  Usually there is only one 

virtual method of LightApp_Displayer to be redefined in a custom 

Displayer class for displaying of an object in all types of viewers: 

virtual SALOME_Prs* buildPresentation( const 

QString& entry, SALOME_View* = 0 ); 

 
Let's create our own Displayer class (in fact, we have already done it above) and redefine 

buildPresentation() method:  

 
SALOME_Prs* ATOMSOLVGUI_Displayer::buildPresentation( const QString& 

entry, SALOME_View* view ) 

{ 

  const int studyID = getStudyID(); 

  if ( studyID == -1 ) 

    return 0; 

 

  SVTK_Prs* prs = dynamic_cast<SVTK_Prs*>( 

     LightApp_Displayer::buildPresentation( entry, view ) ); 

 

  if ( !prs ) return 0; 

 

  double temperature; 

  ATOMGEN_ORB::Atom_var atom = getAtom( entry, studyID,  

                                        temperature ); 

   

  if ( !CORBA::is_nil( atom ) ) { 

    double center[ 3 ]; 

    center[ 0 ] = atom->getX(); 

    center[ 1 ] = atom->getY(); 

    center[ 2 ] = atom->getZ(); 

     

    vtkSphereSource* vtkObj = vtkSphereSource::New(); 

    vtkObj->SetRadius( radius ); 

    vtkObj->SetCenter( center ); 

    vtkObj->SetThetaResolution( (int)( vtkObj->GetEndTheta() * 

         quality_coefficient ) ); 

    vtkObj->SetPhiResolution( (int)( vtkObj->GetEndPhi() * 

         quality_coefficient ) ); 

 

    vtkPolyDataMapper* vtkMapper = vtkPolyDataMapper::New(); 

    vtkMapper->SetInput( vtkObj->GetOutput() ); 



SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 65 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

     

    vtkObj->Delete(); 

     

    SALOME_Actor* actor = SALOME_Actor::New(); 

    actor->SetMapper( vtkMapper ); 

    actor->setIO( new SALOME_InteractiveObject( entry.toLatin1(), 

            "ATOMSOLV" ) ); 

    setTemperature( actor, temperature ); 

 

    actor->SetRepresentation( 2 ); // 2 == surface mode 

 

    vtkMapper->Delete(); 

     

    prs->AddObject( actor ); 

  } 

 

  return prs; 

} 

 

The main lines in the code above are highlighted in bold font: creation of vtkActor 

(SALOME_Actor is its ancestor), and filling of SALOME_Prs object by this vtkActor (SVTK_Prs 

to be more specific).  Such SALOME_Prs object will be possible to display in VTK viewer.  

SVTK_ViewModel, as an ancestor of SALOME_View will receive this SALOME_Prs, downcast it to 

SVTK_Prs, get vtkActor from it - and display it in the active view window.  That's how it works in 

SALOME. 
 

As we decided to work with VTK viewer (canBeDisplayed() method of ATOMSOLV_Displayer 

returns "true" only if type of viewer is "VTKViewer"), we must create a VTK view window when our 

component GUI starts.  This is done using virtual method of LightApp_Module 

viewManagers().  We must return in the out parameter of this method the list of viewer types that 

we want to use.  In our case, the implementation will be the following: 
 

void ATOMSOLVGUI::viewManagers( QStringList& theViewMgrs ) const 

{ 

  theViewMgrs.append( SVTK_Viewer::Type() ); 

} 

 
OK, now we have to return to the new commands that we were going to implement in ATOMSOLV 
GUI: changing of 3D representation mode (points, wireframe, surface mode), changing of color and 
transparency.  We are going to create new actions in ATOMSOLVGUI and create the logical rules 
for these actions, so they are correctly added to the popup menu: 
 

1.  createAction( Shading, tr( "TLT_SHADING" ), QIcon(), 

2.  tr("MEN_SHADING" ), tr( "STS_SHADING" ), 0, aParent, true, this, 

3.      SLOT( OnDisplayerCommand() ) ); 

4.  createAction( Wireframe, tr( "TLT_WIREFRAME" ), QIcon(), 

5.      tr( "MEN_WIREFRAME" ), tr( "STS_WIREFRAME" ), 0, 

6.      aParent, true, this, SLOT( OnDisplayerCommand() ) ); 

7.  createAction( PointsMode, tr( "TLT_POINTSMODE" ), QIcon(), 

8.      tr( "MEN_POINTSMODE" ), tr( "STS_POINTSMODE" ), 0, aParent, 

9.      true, this, SLOT( OnDisplayerCommand() ) ); 

10. createAction( Color, tr( "TLT_COLOR" ), QIcon(),  

11.     tr( "MEN_COLOR" ), tr( "STS_COLOR" ), 0, aParent, false, 

12.     this, SLOT( OnDisplayerCommand() ) ); 

13. createAction( Transparency, tr( "TLT_TRANSPARENCY" ), QIcon(), 

14.     tr( "MEN_TRANSPARENCY" ), tr( "STS_TRANSPARENCY" ), 0,  

15.     aParent, false, this, SLOT( OnDisplayerCommand() ) ); 

16. QtxPopupMgr* mgr = popupMgr(); 

17. int dispmodeId = mgr->insert( tr( "MEN_DISPLAY_MODE" ), -1, -1 );  

18. mgr->insert( action(  PointsMode ), dispmodeId, -1 ); 

19. mgr->insert( action(  Wireframe ), dispmodeId, -1 ); 

20. mgr->insert( action(  Shading ), dispmodeId, -1 );  



SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 66 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

21. mgr->insert( action( Color ), -1, 0 ); 

22. mgr->insert( action( Transparency ), -1, 0 ); 

23. mgr->setRule( action( PointsMode ), "client='VTKViewer' and 

24.    selcount>0 and isVisible", true ); 

25. mgr->setRule( action( Wireframe ), "client='VTKViewer' and 

26.    selcount>0 and isVisible", true ); 

27. mgr->setRule( action( Shading ), "client='VTKViewer' and  

28.    selcount>0 and isVisible", true ); 

29. mgr->setRule( action( Color ), "client='VTKViewer' and  

30.    selcount>0 and isVisible", true ); 

31. mgr->setRule( action( Transparency ), "client='VTKViewer' and 

32,    selcount>0 and isVisible", true ); 

33. mgr->setRule( action( PointsMode ), "$displaymode={'Points'}", 

34.    QtxPopupMgr::ToggleRule ); 

35. mgr->setRule( action( Wireframe ), "$displaymode={'Wireframe'}", 

36.    QtxPopupMgr::ToggleRule ); 

37. mgr->setRule( action( Shading ), "$displaymode={'Surface'}", 

38.    QtxPopupMgr::ToggleRule ); 

 
The last section of the code (lines 33-38) is rather interesting: we make the representation mode 
actions to be toggle actions ("checkable" menu items) and set logical rules for the toggle status.   (If 

QtxPopupMrg::setRule() function is called with the last parameter equal to 

QtxPopupMgr::ToggleAction, then it sets the rule for the toggle status, and not for command 

visibility as it would be with default last parameter). 
 
Let's take a closer look at the rules themselves.  In natural language they would mean: "values of 
displaymode parameter must be equal to the list that contains 1 element ('Points', 'Wireframe', or 
'Surface')".  Such rule differs from the rule "displaymode='Points'" (or 'Wireframe', or 'Surface'), 
because in case when 2 elements with different representation modes will be selected, the first rule 
would return "false" result for both actions (because value of displaymode parameter will be equal 
to the list containing 2 different elements), although the second rule would return "true" for both 
actions. 
 
The new parameter "displaymode" that we are using in the logical rules is not computed anywhere 
for us (as "client" or "selcount" parameters).  We have to create a custom Selection class and 
compute this parameter in it.  We already got acquainted with this mechanism of parameters 
computation in ATOMIC component (see Selection section of Light-weight component chapter), so 

here we will just present the function of our custom Selection class (ATOMSOLVGUI_Selection), 

which computes the new "displaymode" parameter: 
 

QString ATOMSOLVGUI_Selection::displayMode( const int index ) const 

{ 

  SALOME_View* view = LightApp_Displayer::GetActiveView(); 

  QString viewType = activeViewType(); 

  if ( view && viewType == SVTK_Viewer::Type() ) { 

    if ( SALOME_Prs* prs = view->CreatePrs( 

         entry( index ).toLatin1() )){ 

      SVTK_Prs* vtkPrs = dynamic_cast<SVTK_Prs*>( prs ); 

      vtkActorCollection* lst = vtkPrs ? vtkPrs->GetObjects() : 0; 

      if ( lst ) { 

        lst->InitTraversal(); 

        vtkActor* actor = lst->GetNextActor(); 

        if ( actor ) { 

          SALOME_Actor* salActor =  

            dynamic_cast<SALOME_Actor*>( actor ); 

          if ( salActor ) { 

            int dm = salActor->GetRepresentation(); 

            if ( dm == 0 ) 

              return "Points"; 

            else if ( dm == 1 ) 

              return "Wireframe"; 

            else if ( dm == 2 ) 



SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 67 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

              return "Surface"; 

          } // if ( salome actor ) 

        } // if ( actor ) 

      } // if ( lst == vtkPrs->GetObjects() ) 

    } 

  } 

  return "Undefined"; 

} 

 

The last thing that we must implement is the slot in ATOMSOLVGUI class to which all visualization 

actions are connected (Display, Erase, Representation modes, Color, Transparency).  We will also 
implement changing of representation mode, color, and transparency in 

ATOMSOLVGUI_Displayer class. 

 
1.   void ATOMSOLVGUI::OnDisplayerCommand() 

2.   { 

3.     const QObject* obj = sender(); 

4.     if ( obj && obj->inherits( "QAction" ) ) { 

5.       const int id = actionId ( (QAction*)obj );  

6.       switch ( id ) { 

7.       case Display : { 

8.         QStringList entries;  

9.         selected ( entries, true ); 

10.        ATOMSOLVGUI_Displayer d;  

11.        for ( QStringList::const_iterator it = entries.begin(),  

12.              last = entries.end(); it != last; it++ ) 

13.          d.Display( it->toLatin1(), /*updateviewer=*/false, 0 ); 

14.        d.UpdateViewer(); 

15.      } break; 

16.      case Erase   : { 

17.        QStringList entries;  

18.        selected ( entries, true ); 

19.        ATOMSOLVGUI_Displayer d;  

20.        for ( QStringList::const_iterator it = entries.begin(), 

21.              last = entries.end(); it != last; it++ ) 

22.          d.Erase( *it, /*forced=*/true, /*updateViewer=*/false, 0 

); 

23.        d.UpdateViewer(); 

24.      } break; 

25.      case Shading   : { 

26.        QStringList entries;  

27.        selected ( entries, true );  

28.        ATOMSOLVGUI_Displayer().setDisplayMode(entries, "Surface" 

); 

29.      } break;  

30.      case Wireframe   : { 

31.        QStringList entries;  

32.        selected ( entries, true );  

33.        ATOMSOLVGUI_Displayer().setDisplayMode(entries, "Wireframe"); 

34.      } break; 

35.      case PointsMode   : { 

36.        QStringList entries;  

37.        selected ( entries, true );  

38.        ATOMSOLVGUI_Displayer().setDisplayMode( entries, "Points" 

); 

39.      } break; 

40.      case Color   : { 

41.        QStringList entries;  

42.       selected ( entries, true ); 

43.        QColor initialColor( "white" ); 

44.        if ( entries.count() == 1 ) 

45.          initialColor=ATOMSOLVGUI_Displayer().getColor(entries[0]); 

46.        QColor color = QColorDialog::getColor( initialColor, 



SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 68 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

47.           getApp()->desktop() ); 

48.        if ( color.isValid() ) 

49.          ATOMSOLVGUI_Displayer().setColor( entries, color ); 

50.      } break; 

51.      case Transparency   : { 

52.        QStringList entries;  

53.        selected ( entries, true ); 

54.        ATOMSOLVGUI_TransparencyDlg( getApp()->desktop(),  

55.                                     entries ).exec(); 

56.      } break; 

57.      default: printf( "ERROR: Action with ID = %d was not found 

58.                       in ATOMSOLVGUI\n", id ); break; 

59.      } 

50.    } 

61.  }  

 
As we see in the code above, to display an object we call basic method of Displayer class: 

Display() (lines 7-14). This method is not implemented in ATOMSOLVGUI_Displayer, but the 

core implementation in the parent class (LightApp_Displayer) will call virtual function 

buildPresentation() which is redefined in ATOMSOLVGUI_Displayer. 

 
Please, download the current version of ATOMSOLV component source files, compile it and run. 
Don't forget to start ATOMGEN component as well and import a valid XML file with data in it 
(sample.xml from ATOMIC component resources). Then retrieve the data in ATOMSOLV, select 
atoms in Object Browser and display them in the viewer. Pay attention to the methods of 

ATOMSOLV_Displayer: how it assigns new color to presentations of atoms when "Process Data" 

is called (updateActor(), setTemperature() methods), how it sets new representation 

mode (setDisplayMode() method), and transparency (setTransparency()). 

For setting transparency we use a separate modal dialog box ATOMSOLVGUI_TransparencyDlg, 

which calls setTransparency() method of Displayer every time user moves the transparency 

control (slider bar). 
 
As an exercise, we would propose you to upgrade ATOMSOLV component and make it possible to 
display atoms in OCCViewer (another type of 3D viewer). Don't forget to add modifications in the 
following methods: 
 

 ATOMSOLVGUI::viewManagers() - add a new type of view manager. 

 

 ATOMSOLVGUI_Displayer::canBeDisplayed() -- must return true not only for VTK 

viewer 
 

 ATOMSOLVGUI_Displayer::buildPresentation() -- creation of SOCC_Prs object in 

case the given view is of OCCViewer type.  The method already contains commented code 

for building SOCC_Prs object. 

 

 Get/set methods for representation mode, color, transparency must take into account the 

type of viewer!  Try to use methods of SALOME_View interface for simplification. 
 

 ATOMSOLVGUI::OnProcessData() must be modified to work not only with vtkActor-s.  

Redisplaying of objects must be done in a more general way then present implementation. 
 
At this point we would like to finish the section about graphical capabilities of SALOME and switch 
to the next section about user-defined preferences in a SALOME application. 

5.4 PREFERENCES 

In the previous section we implemented visualization of atoms as 3D spheres with hard-coded 
values of radius and initial representation mode.  Such approach is not flexible and does not meet 
requirements of an industrial application.  Even our ATOMSOLV component is not an industrial 
application, we would like it to be as good as possible, and in the present section we will learn how 

../../../../AppData/Local/Temp/archives/c-03.tar.gz


SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 69 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

a user can edit values of radius and default representation mode at run time and 

ATOMSOLV_Displayer can retrieve these values and use them. 

 
Such values that can be edited by user are called preferences.  Their edition is done in 
Preferences dialog box shown when a menu item File  Preferences is selected (see Figure 10). 
 
A SALOME component can easily add its own editable values to this dialog box.  The values can 
be retrieved using a global Resource Manager object.  For example, the value of "Multi file save" 
check-box in the dialog box above can be retrieved using the following call: 
 

SUIT_Session::session()->resourceMgr()->booleanValue("Study", 

               "multi_file", false); 

 
"Study" and "multi_file" are descriptors of the "Multi file save" preference (they were indicated 
during its creation), "false" is the default value, it will be returned in case Resource Manager fails to 
find the preference with given descriptors. 
 
In ATOMSOLV component we would like to add the following parameters to be edited by user: 
floating point parameter radius, and representation mode parameter that can be equal to one of the 
3 predefined values: "Points", "Wireframe", "Surface".  How can this be done? 
 
As we see in the dialog box above, the list-box on the left contains the names of all available 
components.  But only untill the GUI modules of these components are loaded.  As soon as GUI 
modules are loaded, they are requested for their preferences.  If a component does not have any 
preferences (in case of ATOMGEN and ATOMSOLV component - it is true), the name of the 
component is removed from the list-box.  So if we load ATOMGEN and ATOMSOLV components, 
and open Preferences dialog box after that -- we will not see the names of our components in the 
list-box. 
 

 
Figure 10. Preferences dialog box 

  
To add user-editable parameters to the Preferences dialog box a component GUI module must 

redefine virtual method createPreferences().  ATOMSOLVGUI class will do it in the following 

way: 
 



SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 70 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

1.   void ATOMSOLVGUI::createPreferences() 

2.   { 

3.     int tabId = addPreference( tr( "ATOMSOLV_PREFERENCES" ) ); 

4.     int groupId = addPreference( tr( "PRESENTATION_PREF_GROUP" ), 

5.                   tabId ); 

6.     setPreferenceProperty( groupId, "columns", 1 );   

7.     // Representation mode preference 

8.     int dispModeId = addPreference( tr( "DISPLAY_MODE_PREF" ), 

9.                   groupId, LightApp_Preferences::Selector, 

10.                  "ATOMSOLV", "Representation" ); 

11.    QList<QVariant> intDispModes; 

12.    QStringList strDispModes; 

13.    intDispModes.append( 0 ); 

14.    strDispModes.append( tr( "MEN_POINTSMODE" ) ); 

15.    intDispModes.append( 1 ); 

16.    strDispModes.append( tr( "MEN_WIREFRAME" ) ); 

17.    intDispModes.append( 2 ); 

18.    strDispModes.append( tr( "MEN_SHADING" ) ); 

19.    setPreferenceProperty( dispModeId, "strings", strDispModes ); 

20.    setPreferenceProperty( dispModeId, "indexes", intDispModes ); 

21.    // Radius preference 

22.    int radisusId = addPreference( tr( "RADIUS_PREF" ), groupId,  

23.            LightApp_Preferences::DblSpin, "ATOMSOLV", "Radius" ); 

24.    setPreferenceProperty( radisusId, "min", .001 ); 

25.    setPreferenceProperty( radisusId, "max", 1000 ); 

26.    setPreferenceProperty( radisusId, "precision", 3 ); 

27.  } 

 
Adding preferences is very simple.  We use only 1 method to create a separate tab for preferences 
of ATOMSOLV component (line 3), the same method to create a group (QGroupBox) for our 
preferences (line 4), and the same method for creation of editable parameters as well (lines 8, 22).  

The method is addPreference(), it is inherited from LightApp_Module class. 

 

If addPreference() is called with 1 parameter it creates a tab, with 2 - it creates a group (a tab 

ID must be passed as second parameter), with more then 2 - it creates a control for editing of a 
certain value.  The type of control is passed as a third parameter (different control types are 
described in the table below), 4th and 5th parameters are descriptors of the value being edited.  
Later retrieval of the value using Resource Manager must use these descriptors. 
 

LightApp_Preferences::Space Pseudo parameter type, it has NO control for 
edition.  It might be useful when a large number of 
controls are added, and they are aligned in grid, 
and it is needed to leave empty space instead of a 
control in the grid - in this case a control with 
Space type can be created. 

LightApp_Preferences::Bool Boolean parameter, control for edition is a check 
box. 

LightApp_Preferences::Color Color parameter, control for edition is a push 
button that displays the color, when pressed it 
opens a standard system dialog box for color 
selection.  

LightApp_Preferences::String String parameter, control for edition is a line edit 
control. 

LightApp_Preferences::Selector Parameter with predefined list of values.  Control 
for edition is a combo box. 

LightApp_Preferences::DblSpin Floating point parameter, control for edition is a 



SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 71 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

modified spin box for floating point values. 

LightApp_Preferences::IntSpin Integer parameter, control for edition is a standard 
spin box.  

LightApp_Preferences::Double Floating point parameter, control for edition is a 
line edit control. 

LightApp_Preferences::Integer Integer parameter, control for edition is a line edit 
control.  

LightApp_Preferences::GroupBox Pseudo parameter type, creates a group box that 
can be used for grouping of other controls. 

LightApp_Preferences::Font Font parameter, control for edition is complex, it 
allows to set the name of font family, size of font, 
set bold, italic, and underline attributes.  It also 
allows to open a standard system "Select font" 
dialog box and select the font there. 

LightApp_Preferences::DirList Directory list parameter, control for edition is a list 
of strings (directories) with possibility to add, 
remove, and change the order of strings in it. 

LightApp_Preferences::File File parameter, control for edition is a line edit 
control and a button that opens a standard system 
"Open file" dialog. 

LightApp_Preferences::User Pseudo parameter type, no control for edition, it 
must be used in successors of Preferences class 
for new preferences type s in the future. 

 
After we have added the necessary parameters, they must be adjusted.  For example, by default 
the preferences are grouped in 2 columns on a tab.  In our case 1 column would look better, and 

we add the following line in createPreferences() method: 

 
setPreferenceProperty( groupId, "columns", 1 ); 

 

It makes the controls in the previously created group with ID = groupId to be aligned in 1 column, 

one under another. 
 
For Selector control it is necessary to install the list of values.  It is possible to set up 2 lists: one list 
of displayable values ("strings"), and another list of values to be returned ("indexes").  In our case it 
is very helpful, because representation mode "Surface" has ID of 2, for example.  We set up 2 

properties for representation mode preference (with dispModeId) -- see lines 11-18 in the code 

above. 
 
For the Radius parameter we will set up 3 properties: minimum value, maximum value, and 
precision. How it is done - shown on lines 24-26 in the code above. 
 
The next important task is to track changes of our preferences.  User may open Preferences dialog 
box at any time and modify values of our parameters.  ATOMSOLV component must reflect to 
these changes, and draw next atoms with new radius, for example, in case the radius was 
changed.  Tracking these changes is very easy: we have to redefine one more virtual method in 

ATOMSOLVGUI: preferencesChanged(): 

 
void ATOMSOLVGUI::preferencesChanged( const QString& group, const 

QString& param ) 

{ 



SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 72 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

  if ( group == "ATOMSOLV" && param == "Representation" ) 

    ATOMSOLVGUI_Displayer::setDefaultRepresentation(  

       getApp()->resourceMgr()->integerValue( group, param ) ); 

  else if ( group == "ATOMSOLV" && param == "Radius" ) 

    ATOMSOLVGUI_Displayer::setDefaultRadius(  

       getApp()->resourceMgr()->doubleValue( group, param ) ); 

} 

 

We implemented 4 static methods in ATOMSOLVGUI_Displayer: 

setDefaultRepresentation()/setDefaultRepresentation() and 

setDefaultRadius()/setDefaultRadius(). If a corresponding parameter is changed in 

Preferences dialog box - we call a "set" method of Displayer, and inside the Displayer we naturally 
use a "get" method to retrieve the value. 
 
Please, download the last final version of ATOMSOLV source files with editable preferences. 
 
At this point we would like to finish our Getting started with SALOME platform tutorial. We believe 
that now you are ready for development of new SALOME-based components on your own. If you 
have questions or/and suggestions - please, we will be happy to hear them from you on SALOME 
platform web forum: http://www.salome-platform.org/forum/! 

../../../../AppData/Local/Temp/archives/c-04.tar.gz
http://www.salome-platform.org/forum/


SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 73 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

6. SALOME CONCEPTS 

6.1 KERNEL CONCEPTS 

6.1.1 Build configurations 

2 core modules of SALOME platform - KERNEL and GUI - can be compiled and run in 2 
configurations (can be understood as versions): full and light. 
 

 Light configuration means that all CORBA-based services are disabled. To build the 

modules in light configuration -DSALOME_LIGHT_ONLY=ON parameter must be passed to 

the cmake command (see chapter “SALOME build procedure” for details). To run SALOME 

in light configuration a command runLightSalome.csh (or runLightSalome.sh) from 

GUI module is used. 
 

 Building in full configuration enables all CORBA services (-DSALOME_LIGHT_ONLY=OFF  

parameter of cmake command, this option is used by default). To run SALOME in full 

configuration a command runSalome from KERNEL module is used. 

 

Light-weight components can work with SALOME built in both light and full configurations.  In other 
words, a light-weight component can be a part of a multi-component SALOME application, and the 
other components do not have to be necessarily light-weight.  But if all components are light-weight 
(in particular, if there is only 1 light-weight component in an application), then it is preferable to use 
KERNEL and GUI modules in light configuration.  This will increase the application performance 
since a number of unused CORBA-based services will not be started. 
 
Full-weight components can be compiled and run only if KERNEL and GUI are built in full 
configuration. 

6.1.2 Component 

A component is the base concept of SALOME platform.  It can be understood as a separate 
software application - a piece of software which is dedicated to do a certain functionality.  
Examples of components are:  
 

 GEOM component - allows user to create geometrical data using various algorithms of 
creation and modification of geometrical primitives 

 

 Post-Pro component - allows user to display results of numerical computations using 
sophisticated visualization technologies 

 

 YACS component - allows user to perform complicated data processing using other 
components and embedded Python 

 

 etc. 
 

SALOME toolkit introduces a multi-component approach.  It means that a SALOME application 
consists of 1 or more components that operate at the same time sharing several common objects: 
GUI objects such as desktop with main menu, Objects Browser, Python console panel, etc., and 
non-GUI objects built on CORBA technology.  Being completely different in functionality, SALOME 
components have a lot in common - architecture, internal structure of data and algorithms, common 
source code at the base level.  Custom components are developed with high degree of code reuse 
which in turn greatly improves the quality of new custom components.   
 



SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 74 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

 
Figure 11. A multi-component SALOME application 

 
A component's architecture usually consists of a GUI part and an algorithmic part embedded into 
one single object with CORBA interface that is called an engine.  If a component does not have 
CORBA engine and does not use other CORBA services (provided by SALOME platform KERNEL 
module or other components), then such component is called a light-weight component.  
Components with CORBA engine can be said full-weight components, but usually they are referred 
just as "components". 
 
Another partition of components is done on the basis of programming language used for a 
component development.  Currently components of SALOME platform can be written in C++ and in 
Python language. 

6.1.3 C++ component 

A component written in C++ programming language. 
 

Light-weight C++ components should inherit corresponding classes from LightApp package of 

SALOME GUI: component's GUI module class inherits LightApp_Module, component's 

operation class inherits LightApp_Operation, etc. 

 

CORBA engines of C++ components should implement Engines::EngineComponent interface 

declared in SALOME_Component.idl file of KERNEL module.  GUI classes of components with 

CORBA engine should inherit classes of SalomeApp package of GUI module: GUI module class - 

SalomeApp_Module, etc. 

 
Please, refer to “ATOMIC: light-weight component” and “ATOMSOLV: C++ component with engine” 
chapters of the tutorial for further details. 



SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 75 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

6.1.4 CORBA engine 

A part of a component, which is built using CORBA technology and implements 

Engines::EngineComponent interface declared in SALOME_Component.idl file of KERNEL 

module. Engine of a component usually performs algorithmic data processing. Its services may be 
used by a component it belongs to as well as by other components. For example, "Post-Pro" 
component uses services of "MED" component engine for importation of data files in med format. 

6.1.5 Light-weight component 

Light-weight component is a SALOME component without CORBA engine. If a component does 
not implement any services accessible via CORBA technology by other components, and if a 
component does not use CORBA-based services of SALOME KERNEL (implemented in 
SALOMEDS, NamingService, Container, and other packages), then such component should be 
built upon light-weight architecture. 
 
Light-weight component consists of GUI module and functional packages which are accessible only 
from its GUI module and not accessible from within other components. 
 
Light-weight components can work with SALOME built in both light and full configurations. In other 
words, a light-weight component can be a part of a multi-component SALOME application, and the 
other components do not have to be necessarily light-weight. But if all components are light-weight 
(in particular, if there is only 1 light-weight component in an application), then it is preferable to use 
KERNEL and GUI modules in light configuration. This will increase the application performance 
since a number of unused CORBA-based services will not be started. 
 
Currently only C++ light-weight components are supported by SALOME platform. In future, it is 
planned to add support for Python light-weight components. 

6.1.6 Numerical computations cycle 

Software data processing which is usually performed in 3 phases: 
 

1. Pre-processing phase: preparation of data, design of the mathematical model of a 
physical object or phenomenon. 

2. Processing phase: numerical computations carried out by a special software (solver), 
application of algorithms to a previously developed mathematical model; 

3. Post-processing phase: visual representation of computation results (graphs, colored 
shapes in 3D, etc.). 

6.1.7 Python component 

A component written in Python programming language. It may be either with CORBA engine or 
without. 
Please, refer to “ATOMGEN: Python component” chapter of the tutorial for details. 

6.1.8 SALOME data structure 

SALOMEDS (SALOME data structure) is a library that provides support for a multi-component 
document of SALOME platform. Components can use SALOMEDS to publish their data inside a 
SALOMEDS document (Study object). Publishing the data in a common document gives the 
following advantages for a custom component: 
 

 The data becomes available for other components (for processing, visualization, etc.), it 
can accessed using SALOMEDS tools and services. 

 

 The data becomes automatically persistent (can be saved and restored), as persistence is 
already implemented in SALOMEDS library. 

 

SALOMEDS also provides the mechanism of data persistence for components that do not publish 
their data in a common SALOMEDS data structure. This mechanism is described in Implementing 
persistence section of the tutorial. Briefly, SALOMEDS provides the following: a component saves 
its data in arbitiary format to an external file and returns the name of this file to SALOMEDS. 
SALOMEDS serializes this file into a binary stream and includes it into the common Study file on 



SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 76 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

save operation. When the data must be restored, exactly the same file is created by SALOMEDS 
for the component, and the component itself is responsible for loading it. 

6.1.9 Study 

Study represents a SALOME platform document that contains data of multiple components. The 
data is organized in a tree-like structure within the Study. SALOMEDS library supports persistence 
of Study. 

6.2 GUI CONCEPTS 

6.2.1 Data model 

Data model is a manager of data within a component GUI. It plays a role of interface for accessing 
the data: retrieval, removal, and modification. It also implements persistence of data: saving to 
external file(s) and reconstruction of internal data structure from the file(s). 
 

Data Model represents arbitrary internal data in a tree-like structure. It is done through root() 

method of CAM_DataModel class. It returns object of the highest level of component's data, 

usually this object represents the component itself. This objects (instance of Data Object class) has 
child objects, they also have child objects, and so forth. 
 

Data model class is usually redefined by a component (inherits LightApp_DataModel or 

SalomeApp_DataModel classes).  

6.2.2 Data object 

It is a unitary piece of data within a component GUI. Its primary mission is to provide a common 
view to an arbitrary data. It is a proxi-object - it hides the real implementation of data and provides 
a generic interface to accessing it by other objects. For example, Object Browser "knows" how to 
display Data Objects, Selection Manager "knows" how to select Data Objects, and only Data 
Object itself "knows" which real piece of component's data was accessed (displayed, selected, etc.) 
through it. 
 
Data object supports tree-like structure: it has a parent Data object (or null, if it is a root-level 
object), and arbitrary number of child objects. 
 

Data object class is usually redefined by a component (inherits LightApp_DataObject or 

SalomeApp_DataObject classes). 

6.2.3 Data owner 

Data owner is an abstract representation of a piece of data.  It is mainly used for selection 
management - Data owner represents a selected entity independently from the source of selection 
(Object Browser, 3D viewer, 2D chart).  Setting and retrieval of selection always operates with the 
list of Data owners. 
 
Data owner contains a unique string identifier called "entry" which is used for locating the real 
object in the component data structure. 
 
Usually it is not necessary to declare a custom Data owner class in a component, the base 

implementation is in LightApp_DataOwner class. 

6.2.4 Desktop 

Desktop represents a main frame of a SALOME application.  It contains a menu bar, tool bars, and 
central area for GUI controls of components: Object Browser, Python console, 3D/2D viewers, etc. 
 
Base desktop class is SUIT_Desktop, it defines methods to access active window inside the 
desktop frame, managers of tool bars and main menu.  STD package contains 3 successors of 

base Desktop class: STD_SDIDesktop, STD_MDIDesktop, and STD_TabDesktop.  SDI and 

MDI desktop classes implement single and multiple document interfaces within the desktop frame.  
TabDesktop allows for "tabbing" of windows within the desktop frame.  By default, if it is not 
overridden in a component GUI, SALOME applications use TabDesktop.  Tabbed windows can be 



SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 77 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

split vertically or horizontally, it is possible to store positions of windows, how they are split, etc. 

and restore afterwards.  Example of application with STD_TabDesktop: 
 

 
Figure 12. Tabbed desktop window 

6.2.5 GUI module 

A part of a component, which is responsible for graphical representation and behavior of a 
component.  An approximate list of responsibilities of GUI module is: 
 

 Creation of main menu items and toolbar buttons, connection them to the component's 
functions. 

 

 Definition of types of shared GUI objects that the component will use (viewers, object 
browser, etc.). 

 

 Filling popup menu on object selection event. 
 

 Starting of common services as selection management, popup menu management, etc. 
 

In general, a GUI module coordinates the behavior of a component especially when it relates to 
interaction with user. 
 

GUI module class of C++ component must inherit LightApp_Module (for light architecture) or 

SalomeApp_Module class. 

 
GUI module of Python component is implemented in a more complex way.  Please, refer to GUI for 
Python component section of the tutorial for details. 

6.2.6 Operation 

Operation is a manager of an action inside a component GUI.  By "action" we understand any 
functionality a GUI module of a component provides to a user.  Examples of actions may be the 
following: creation of a sphere in Geometry component, Atom creation in ATOMIC component, 
graph execution in Supervisor component. 
 
Using an Operation for action management gives the following advantages:  
 

 Action can be canceled, suspended, and resumed during its execution. 
 



SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 78 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

 Operation instance can control which other Operations can be executed simultaneously 
with this Operation.  It is implemented using method 

 
bool SUIT_Operation::isValid(SUIT_Operation* theOtherOperation) 

const. 

 

Before starting a new operation (operation_A), an application calls isValid() method of the 
operation being executed (operation_B) passing it operation_A as a parameter.  If 
operation_B returns false, then operation_A is not started, it must wait untill operation_B 
finishes its execution.  This mechanism can be overridden, though, with yet another virtual 
method of SUIT_Operation class: 

 
bool SUIT_Operation::isGranted() const. 

 
If this method returns true, then the operation is started any way, ignoring isValid() return 
value. 

 

 Operation has support for transaction mechanism.   
 

For example, if user closes a study during execution of an operation, the Operation receives 

"Abort" signal (abortOperation() virtual function is called).  The operation stops all 

algorithmical processing, closes the dialog windows it opened, aborts transaction, and frees 
all resources.  Without using the Operation object it would be problematic to perform such 
smart deactivation of the action. 
 

Base class for Operation object is SUIT_Operation, then it is inherited in LightApp package - 

LightApp_Operation.  Custom operations of a component should inherit 

LightApp_Operation class.  

6.2.7 Resource manager 

It is a class that provides access to various resources at run-time.  Values of integer, floating point, 

boolean, string and even complex (QFont, QColor) types can be set and retrieved from the 

Resource manager.  Resource manager can be statically accessed from any place in the code 
using the following call: 
 

SUIT_Session::session()->resourceMgr(); 

 
Between the sessions Resource manager stores resources in external files in XML or INI formats 
(XML by default).  When SALOME application starts, Resouce manager locates these files and 
loads resources from them.  The resouces files are: 
 

 In light configuration of SALOME: 
 

1. User resource file ~/.LightApprc.<version>, where <version> is the version number of 
SALOME (currently 3.2.0). 

 
2. LightApp.xml files in directories listed in LightAppConfig environmental variable.  For 

example, if LightAppConfig equals to 
 

"/work/ATOMGEN_BUILD/share/salome/resources:/work/ATOMSOLV_BUILD/sha

re/salome/resources:/work/GUI_BUILD/share/salome/resources" 

 

Resource manager will try to load 3 LightApp.xml files from the 3 listed directories. 
 

 In full configuration of SALOME: 
 

3. User resource file ~/.SalomeApprc.<version>, where <version> is the version number of 
SALOME (currently 3.2.0). 

4. SalomeApp.xml files in directories listed in SalomeAppConfig environmental variable.  
For example, if SalomeAppConfig equals to 



SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 79 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

 
"/work/ATOMGEN_BUILD/share/salome/resources:/work/ATOMSOLV_BUILD/sha

re/salome/resources:/work/GUI_BUILD/share/salome/resources" 

 
Resource manager will try to load 3 SalomeApp.xml files from the 3 listed directories. 

 
Certain resources can be modified by user using Preferences dialog box (see Preferences section 
of the tutorial for details).  Modified resources are written by the Resouce manager to the user 
resource file (.LightApprc.<version> or .SalomeApprc.<version> in the user home directory). 

6.2.8 Selection management 

Selection management in a SALOME application is handled by a class 

LightApp_SelectionMgr or its successors.  Selection manager uses very "light" representation 

of data: Data Owner objects.  Data Owner stores only an entry (unique string identifier, unique 
"key" of a piece of data) of a selected entity. Every window (view, dialog box, etc.) that displays 
data and supports selection of objects must implement a so called Selector class - a class that 
performs "conversion" of data internally used by this view to Data Owner and reverse.  Also every 
window that supports selection must register itself as a selection source by the Selection Manager.  
Such registration is done for support of selection syncronization: entities that are selected in one 
window become selected in other windows. 
 
The selection syncronization follows the next scheme: 
 

 When a selection event happens in a window, it emits a signal.  This signal is caught by 
the global Selection Manager. 

 

 Selection Manager requests for selected objects from the Selector of the signal emitter. 
 

 Selector creates a list of Data owners that correspond to the selected in its window entities. 
 

 Selection Manager receives the list of Data owners; then it iterates the other registered 
Selectors and programmatically sets the selection in them passing the list of Data owners. 

 

 Having received the list of Data owners, Selectors try to select the corresponding objects in 
their windows. 

6.2.9 View manager 

The name of this object shows its main purpose: it manages the views (View windows). It contains 
a View model as a member field for creation of a view and various methods for accessing the 

managed views (getActiveView(), getViewsCount(), etc.). 

 

SUIT_ViewManager is a "gateway" class for working with view windows from application or 

another side. STD_Application class (parent class for LightApp_Application and 

SalomeApp_Application) stores view managers and it is possible to retrieve a view manager 

of a certain type using methods of the application. 

6.2.10 View model 

View model is a creator of View windows. "View model - View window" pair follows "Factory 

method" pattern - view windows are created by virtual method of view model createView(). 

Visualization packages of GUI module redefine SUIT_ViewModel class to be able to create 

custom view windows. 
 
View models have a pair of methods: 
 
static QString Type(); 

virtual QString getType() const; 

 

These methods must return a type descriptor of a view ("OCCViewer", "VTKViewer", etc.). This 
type is used in context popup menu ("client" parameter will be equal to this type), and in many 
other places in the code where it is needed to determine the type of a view.  



SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 80 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

6.2.11 View window 

View window is a frame, inherited from QMainWindow (Qt library), that contains the visualization 

scene.  Objects are displayed inside a view window.  The visualization packages inherit their 

custom view windows from SUIT_ViewWindow and fill it with custom widgets in order to display 

objects in a certain way.  OCCViewer, for example, places a V3d_View (Open CASCADE library) 

inside its view window to display a 3D scene. 
 

View window is able to save its contents as an image (dumpView() and dumpViewToFormat() 

virtual functions) and it is able to save and restore its parameters (values of zoom, pan, degree 

rotation, and other custom properties of the scene) - get/setVisualParameters() virtual 

functions.  These functions are redefined in every custom view window to perform the 
corresponding functionality. 
 
As view window is a basic frame, it receives the basic window events: mouse moves, clicks, 
keyboard presses, etc.  One of the objectives of view window is to pass these events further - it is 

done through various signals emitted by SUIT_ViewWindow class: mousePressed(), 

mouseReleased(), weeling(), keyPressed(), etc. 



SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 81 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

7. ATTACHMENTS 

File name Description Paragraph # 

ATOMIC: light-weight component 

light-00.tar.gz Empty stub for light-weight component development. 
Contains basic sources directory structure and stub for 
the GUI module class with no meaningful content. 

2.2 

3.1  

FindGd.cmake This file provides macro-procedure used to check 
presence and availability of gd library. 

2.2 

light-01.tar.gz Light-weight component with implemented methods 

initialize(), activateModule(), 

deactivateModule(), and a few customized 

actions and menu items created. 

3.1  

light-02.tar.gz Light-weight component with redefined data model 
class connected to GUI module.  New data classes 
developed (molecules, atoms), data model class is 
almost empty. 

3.2  

light-03.tar.gz Light-weight component with redefined data model and 

data object classes.  Data model implements build() 

virtual method for creation of a tree-type structure of 
data objects. 

3.2  

light-04.tar.gz Light-weight component with fully developed data 
model: it implements persistence of its data and builds 
tree of data objects. 

3.3  

light-05.tar.gz Light-weight component with Object Browser 
displaying the custom data objects of the component. 

3.4  

light-06.tar.gz Light-weight component with support of selection of 
elements in Object Browser.  It is possible to analyze 
selection and retrieve entries of the selected objects. 

3.5  

light-07.tar.gz Light-weight component with advanced popup menus 

management (use of QtxPopupMgr, logical rules for 

actions, redefinition of Selection class).  

3.5.2 

light-08.tar.gz Light-weight component with redefined Operation class 
and 2 custom operations.  Example of using 
operations: one operation uses a dialog box, another - 
does not. 

3.6  

light-09.tar.gz Fully functional ATOMIC component with customized 
data model, data objects, persistent data structure, 
Object Browser capabilities, selection management, 
popup menus management, and use of operations. 

3.6 

light-10.tar.gz Fully functional ATOMIC component with implemented 
dump python functionality. 

3.7 

ATOMGEN: Python component 

../../../../AppData/Local/Temp/archives/light-00.tar.gz
../../../../AppData/Local/Temp/archives/check_gd.m4
../../../../AppData/Local/Temp/archives/light-01.tar.gz
../../../../AppData/Local/Temp/archives/light-02.tar.gz
../../../../AppData/Local/Temp/archives/light-03.tar.gz
../../../../AppData/Local/Temp/archives/light-04.tar.gz
../../../../AppData/Local/Temp/archives/light-05.tar.gz
../../../../AppData/Local/Temp/archives/light-06.tar.gz
../../../../AppData/Local/Temp/archives/light-07.tar.gz
../../../../AppData/Local/Temp/archives/light-08.tar.gz
../../../../AppData/Local/Temp/archives/light-09.tar.gz
../../../../AppData/Local/Temp/archives/light-10.tar.gz


SALOME : The Open Source Integration Platform for Numerical Simulation 
 
 

Copyright © 2001-2013.  All rights reserved. Page 82 of 82 

 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                      

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

                                                                                                                                                                                                                                                                          

py-01.tar.gz An empty component with one IDL file that contains 
definition of interface of ATOMGEN engine. 

4.2  

py-02.tar.gz Python component with engine: interface is declared in 
IDL, implementation written in Python.  No GUI is 
developed yet. 

4.2  

py-03.tar.gz Python component with advanced data structure: 
persistence of internal data is implemented using 
SALOMEDS package of KERNEL. 

4.3  

py-04.tar.gz Fully functional ATOMGEN component: engine 
implementation, persistent data structure and GUI 
written in Python. 

4.4  

py-05.tar.gz Fully functional ATOMGEN component with 
implemented dump python functionality. 

4.5 

ATOMSOLV: C++ component with engine 

c-01.tar.gz C++ component with implemented engine: interface is 
declared in IDL file, implementation code in C++. 

5.1  

c-02.tar.gz C++ component with implemented engine and GUI 
module.  Objects are displayed in Object Browser, but 
visual presentation in 3D viewer is not implemented 
yet. 

5.2  

c-03.tar.gz C++ component with implemented engine and GUI 
module, atoms are visualized in 3D viewer (VTK 
viewer). 

5.3  

c-04.tar.gz Fully functional ATOMSOLV component: engine is 
implemented, GUI with visualization of atoms in 3D, 
visualization parameters are taken from user defined 
preferences.  

5.4 

 

 

../../../../AppData/Local/Temp/archives/py-01.tar.gz
../../../../AppData/Local/Temp/archives/py-02.tar.gz
../../../../AppData/Local/Temp/archives/py-03.tar.gz
../../../../AppData/Local/Temp/archives/py-04.tar.gz
../../../../AppData/Local/Temp/archives/py-05.tar.gz
../../../../AppData/Local/Temp/archives/c-01.tar.gz
../../../../AppData/Local/Temp/archives/c-02.tar.gz
../../../../AppData/Local/Temp/archives/c-03.tar.gz
../../../../AppData/Local/Temp/archives/c-04.tar.gz

