
SAT Documentation
Release 5.7.0

CEA DES/ISAS/DM2S/STMF/LGLS

February 11, 2021

CONTENTS

1 Documentation 3
1.1 Installation . 3
1.2 Using SAT . 5
1.3 Configuration . 9

2 List of Commands 19
2.1 Command doc . 20
2.2 Command config . 21
2.3 Command prepare . 23
2.4 Command compile . 25
2.5 Command launcher . 27
2.6 Command log . 28
2.7 Command environ . 29
2.8 Command clean . 32
2.9 Command package . 33
2.10 Command generate . 35
2.11 Command init . 36
2.12 Command template . 37
2.13 Command application . 38

3 Release Notes 39
3.1 SAT version 5.7.0 . 39
3.2 SAT version 5.6.0 . 40
3.3 SAT version 5.5.0 . 41
3.4 SAT version 9.4.0 . 43
3.5 SAT version 5.3.0 . 44
3.6 SAT version 5.2.0 . 46
3.7 SAT version 5.1.0 . 47
3.8 SAT version 5.0.0 . 48

i

ii

SAT Documentation, Release 5.7.0

SAT is a tool that makes it easy to build on various linux platforms and windows large software, which rely on
a lot of prerequisites. It was originally created for the maintenance and the packaging of SALOME platform (its
name comes from SalomeTools), its usage is now wider. The following features should be highlighted:

• the definition of the application content: which products (prerequisites, codes, modules) are necessary and
which versions are required

• the configuration of the application : how to get the source of products, how to compile them, which options
to use, etc. The configuration can be conditionnaly overwritten, this feature allows application developers
taking into account platform specifics.

• the preparation of the complete software: all the required sources with correct versions are retrieved from
git/svn/cvs repositories, or from already prepared tarballs.

• management of patches if some are required to compile on specific platforms (portage)

• management of the environment to set up at compile time and at runtime

• automatic compilation of the complete application (the application with all its products).

• production of a launcher that sets up the environment and starts the application

• management of tests: both unit and integration tests are managed

• packaging: creation of binary and/or source packages to distribute the application on various platforms

• overwriting the configuration in command line: it allows users setting easily their own preferences or
options

SAT uses python, and many of its strength come from its power and straightforwardness. It is compatible with
both python2 and python3 versions. SAT is a Command Line Interface (CLI1) based on python langage. It is
a suite of commands, which are detailed later in this documentation. These commands are used to perform the
operations on the application. SAT enables command completion by sourcing the provided complete_sat.sh script.

Like similar tool, SAT doesn’t like modified environments, as this can cause conflicts while compiling products
or using applications. It is recommended that SAT users run with a clean environment, especially for PATH,
LD_LIBRARY_PATH and PYTHONPATH. ~/.bashrc file should be as thin as possible!

1https://en.wikipedia.org/wiki/Command-line_interface

CONTENTS 1

https://en.wikipedia.org/wiki/Command-line_interface

SAT Documentation, Release 5.7.0

2 CONTENTS

CHAPTER

ONE

DOCUMENTATION

1.1 Installation

sat is provided either embedded into a salome package, or as a standalone package. It can also be retrieved from
the git repositories.

1.1.1 From git bases

sat git bases are hosted by the salome platform Tuleap forge1 . Therefore you first have to get an account to this
forge. To get started, one has to download sat, and at last one sat project (usually SAT_SALOME project, which
contains all the configuration required to build SALOME and its prerequisites). The following script get sat and
SAT_SALOME project from git repos:

get sat
BASE_SAT=https://codev-tuleap.cea.fr/plugins/git/spns/SAT.git
BASE_PROJET=https://codev-tuleap.cea.fr/plugins/git/spns/SAT_SALOME.git
TAG_SAT=master
TAG_PROJET=master
git clone ${BASE_SAT}
cd SAT
git checkout ${TAG_SAT}
cd ..

get sat project SAT_SALOME
git clone ${BASE_PROJET}
cd SAT_SALOME
git checkout ${TAG_PROJET}
cd ..

initialisation de sat

add SAT_SALOME project to sat, other configurations projects can be added
SAT/sat init --add_project $(pwd)/SAT_SALOME/salome.pyconf

record tag and url (not mandatory)
SAT/sat init --VCS $BASE_SAT
SAT/sat init --tag $(git describe --tags)

1.1.2 Embedded sat version

sat is provided in salome packages with sources, in order to be able to recompile the sources (sat is not provided
in salome packages with only binaries).

1https://codev-tuleap.cea.fr/projects/salome

3

https://codev-tuleap.cea.fr/projects/salome

SAT Documentation, Release 5.7.0

Embedded sat is always associated to an embedded sat project, which contains all the products and application
configuration necessary to the package.

tar -xf SALOME-9.3.0-CO7-SRC.tgz
cd SALOME-9.3.0-CO7-SRC
ls PROJECT/ # list the embedded sat project
edit the SALOME-9.3.0 configuration pyconf file
sat/sat config SALOME-9.3.0 -e

The user has usually two main use cases with an embedded sat, which are explained in the README file of the
archive:

1. recompile the complete application

./sat prepare SALOME-9.3.0

./sat compile SALOME-9.3.0

./sat launcher SALOME-9.3.0

Please note that the sources are installed in SOURCES directory, and the compilation is installed in INSTALL
directory (therefore they do not overwrite the initial binaries, which are stored in BINARIES-XXX directory). The
launcher salome is overwritten (it will use the new compiled binaries) but the old binaries can still be used in
connection with binsalome launcher).

2. recompile only a part of the application

It is possible to recompile only a part of the products (those we need to modify and recompile). To enter this
(partial recompilation mode), one has initialy to copy the binaries from BINARIES-XXX to INSTALL, and do the
path substitutions by using the install_bin.sh script:

pre-installation of all binaries in INSTALL dir, with substitutions
./install_bin.sh
./sat prepare SALOME-9.3.0 -p GEOM # get GEOM sources, modify them
./sat compile SALOME-9.3.0 -p GEOM --clean_all # only recompile GEOM

1.1.3 Standalone sat packages

sat is also delivered as a standalone package, usually associated to a sat project. The following example is an
archive containing sat 5.3.0 and the salome sat project. It can be used to build from scratch any salome application.

untar a standalone sat package, with a salome project
tar xf sat_5.3.0_satproject_salome.tgz
cd sat_5.3.0_satproject_salome
ls projects # list embedded sat projects
> salome
./sat config -l # list all salome applications available for build

Finally, the project also provides bash scripts that get a tagged version of sat from the git repository, and a tagged
version of salome projects. This mode is dedicated to the developpers, and requires an access to the Tuleap git
repositories.

4 Chapter 1. Documentation

SAT Documentation, Release 5.7.0

1.2 Using SAT

1.2.1 Getting started

SAT is a Command Line Interface (CLI2) based on python language. Its purpose is to cover the maintenance and
the production of an application which has to run on several platforms and depends upon a lot of prerequisites. It
is most of the time used interactively from a terminal, but there is also a batch mode that can be used for example
in automatic procedures (like jenkins jobs). SAT is used in command line by invoking after its name a sat option
(which is non mandatory), then a command name, followed by the arguments of the command (most of the time
the name of an application and command options):

./sat [generic_options] [command] [application] [command_options]

The main sat options are:

• -h : to invoke the help and get the list of available options and commands

• -o : to overwrite at runtime a configuration parameter or option

• -v : to change the verbosity (default is 3, minimum 0 and maximum 6)

• -b : to enter the batch mode and avoid any question (this non interactive mode is useful for automatic
procedures like jenkins jobs)

• -t : to display the compilation logs in the terminal (otherwise they are logged in files and displayed by the
log command

The main sat commands are:

• prepare : to get the sources of the application products (from git repositories or archives) and apply patches
if there are any

• compile : to build the application (using cmake, automake or shell script)

• launcher : to generate a launcher of the application (in the most general case the launcher sets up the
run-time environment and starts an exe)

• package : to build a package of the application (binary and/or source)

• config : to display the configuration

• log : to display within a web browser the logs of SAT

1.2.2 Getting help

Help option -h

More details are provided by the help of sat. The help option can be called at two levels : the high level displays
information on how to use sat, the command level displays information on how to use a sat command.

display sat help
./sat -h

display the help of the compile command
./sat compile -h

Completion mode

When getting started with sat, the use of the completion mode is convenient. This mode will display by typing
twice on the tab key the available options, commands, applications or products available. The completion mode
has to be activated by sourcing the file complete_sat.sh contained in SAT directory:

2https://en.wikipedia.org/wiki/Command-line_interface

1.2. Using SAT 5

https://en.wikipedia.org/wiki/Command-line_interface

SAT Documentation, Release 5.7.0

activate the completion mode
source complete_sat.sh

list all application available for compilation
./sat compile <TAB> <TAB>
> SALOME-7.8.2 SALOME-8.5.0 SALOME-9.3.0 SALOME-master

list all available options of sat compile
./sat compile SALOME-9.3.0 <TAB> <TAB>
> --check --clean_build_after --install_flags --properties
> --stop_first_fail --with_fathers --clean_all --clean_make
> --products --show --with_children

1.2.3 Build from scratch an application

This is the main use case : build from scratch an application.

get the list of available applications in your context
the result depends upon the projects that have been loaded in sat.
./sat config -l
> ...
> SALOME-8.5.0
> SALOME-9.3.0
> SALOME-9.4.0

get all sources of SALOME-9.4.0 application
./sat prepare SALOME-9.4.0

compile all products (prerequisites and modules of SALOME-9.4.0)
./sat compile SALOME-9.4.0

if a compilation error occured, you can access the compilation logs with:
./sat log SALOME-9.4.0

create a SALOME launcher, displays its path.
./sat launcher SALOME-9.4.0
> Generating launcher for SALOME-9.4.0 :
> .../SALOME-9.4.0-CO7/salome

start salome platform
.../SALOME-9.4.0-CO7/salome

create a binary package to install salome on other computers
./sat package SALOME-9.4.0 -b

All the build is done in the application directory, which is parameterized by the sat configuration variable $APPLI-
CATION.workdir. In the above example this directory corresponds to .../SALOME-9.4.0-CO7. SAT can only build
applications provided by the projects that have been loaded with sat init command. The available applications are
listed by sat config -l command.

1.2.4 Partial recompilation of a packaged application

Getting all the sources and compile everything is often a long process. The following use case has proven to be
convenient for fast usage! It consists to get the application through a sat package containing the binaries, the
sources and SAT. This allows using directly the application after the untar (the binary part). And later, if required,
it is possible to add a module, or modify some source code and recompile only what was added or modified.

untar a sat package containing binaries (for CentOS7) and sources
tar xfz SALOME-9.4.0-CO7-SRC.tar.gz

6 Chapter 1. Documentation

SAT Documentation, Release 5.7.0

start salome
SALOME-9.4.0-CO7-SRC/salome

copy binaries in INSTALL directory, do required substitutions
to enable recompilation
./install_bin.sh

get sources of modules we want to recompile
sat/sat prepare SALOME-9.4.0 -p SHAPER,SMESH

do some modifications and recompile both modules
sat/sat compile SALOME-9.4.0 -p SHAPER,SMESH --clean_all

This use case is documented in the README file of the package

1.2.5 Using SAT bases

Users or developers that have to build several applications, which share common products, may want to mutualise
the compilation of the common products. The notion of SAT base follows this objective. It allows sharing the
installation of products between several applications, and therefore compile these products only once.

Location

By default the SAT base is located in the parent directory of sat (the directory containing sat directory) and is
called BASE. This default can be changed by the user with sat init command :

change the location of SAT base directory
./sat init -b <new base path>

Which products go into the base

The application developer has the possibility to declare that a product will go by default in the base. He uses for
that the keyword ‘base’ in the install_dir key within the product configuration file (products pyconf) : install_dir
: ‘base’ It is done usually for products that are considered as prerequisites.

At this stage, all products with install_dir set to ‘base’ will be installed in SAT base directory.

Application configuration

The default behavior of products can be modified in the application configuration, with the base flag. Like other
application flags (debug, verbose, dev) the base flag can be used for a selection of products, or globally for all
products.

declare in application configuration that SMESH and YACS are installed in base
products :
{
...
SMESH : {base : "yes"}
YACS : {base : "yes"}
...
}

declare with a global application flag that all products are installed in base
base : "yes"

1.2. Using SAT 7

SAT Documentation, Release 5.7.0

Mutualisation of products

Products that go in base and have the same configuration will be shared by different applications (it’s the objec-
tive). SAT does check the configuration to prevent of an application using a product in base with a non compat-
ible configuration. To check the compatibility, SAT stores the configuration in a file called sat-config-<product
name>.pyconf. In a next build (for example in another application), SAT checks if the new configuration corre-
sponds to what is described in sat-config-<product name>.pyconf. If it corresponds, the previous build is used in
base, otherwise a new build is done, and stored in a new directory called config-<build number>.

Warning: Please note that only the dependencies between products are considered for the checking. If the
compilation options changed, it will not be tracked (for example the use of debug mode with -g option will not
produce a second configuration, it will overwrite the previous build done in production mode)

1.2.6 Developing a module with SAT

SAT has some features that make developers’ life easier. Let’s highlight some of the developers use cases. (if you
are not familiar with SAT configuration, you may first read Configuration Chapter before, and come back to this
paragraph after)

Activating the development mode

By default sat prepare command is not suited for development, because it erases the source directory (if it already
exists) before getting the sources. If you did developments in this directory they will be lost!.

Therefore before you start some developments inside a product, you should declare the product in development
mode in the application configuration. For example if you plan to modify KERNEL module, modify SALOME
configuration like this:

APPLICATION :
{
...

products :
{
declare KERNEL in development mode (and also compile it
with debug and verbose options)
’KERNEL’ : {dev:’yes’, debug:’yes’, verbose:’yes’,

tag:’my_dev_branch’, section:’version_7_8_0_to_8_4_0’}
...
}

}

When the dev mode is activated, SAT will load the sources from the git repository only the first time, when the
local directory does not exist. For the next calls to sat prepare, it will keep the source intact and do nothing!

In the example we have also set the debug and the verbose flags to “yes” - it is often useful when developing.

Finally, we have changed the tag and replaced it with a development branch (to be able to push developments
directly in git repo - without producing patches).

Warning: But doing this we have (probably) broken the automatic association done by SAT between the tag
of the product and the product section used by SAT to compile it! (see the chapter “Product sections” in the
Configuration documentation for more details about this association) Therefore you need to tell SAT which
section to use (otherwise it will take the “default” section, and it may not be the one you need). This is done
with : section:’version_7_8_0_to_8_4_0’. If you don’t know which section should be used, print it with SAT
config before changing the tag : ./sat config SALOME-9.4.0 -i KERNEL will tell you which section is being
used.

8 Chapter 1. Documentation

SAT Documentation, Release 5.7.0

Pushing developments in base, or creating patches

If you have set the tag to a development branch (like in the previous example), you can directly push your devel-
opments in the git repository with git push command. If not (if you are detached to a tag, you can produce with
git a patch of you developments:

git diff > my_dev.patch

And use this patch either with SAT to apply it automatically with sat prepare command, or send the patch for an
integration request.

Changing the source directory

By default the source directory of a product is located inside SAT installation, in the SOURCES directory. This
default may not be convenient. Developers may prefer to develop inside the HOME directory (for example when
this directory is automatically saved).

To change the default source directory, you first have to identify which product section is used by SAT:

./sat config SALOME-9.4.0 -i KERNEL
>
> section = default

Then you can change the source directory in the section being used (default in the example above). For that you can
modify the source_dir field in the file SAT_SALOME/products/KERNEL.pyconf. Or change it in command line:
./sat -o “PRODUCTS.KERNEL.default.source_dir=’/home/KERNEL”’ <your sat command>. For example
the following command recompiles KERNEL using /home/KERNEL as source directory:

take KERNEL sources in /home/KERNEL
./sat -o "PRODUCTS.KERNEL.default.source_dir=’/home/KERNEL’" compile SALOME-master\

-p KERNEL --clean_all

Displaying compilation logs in the terminal

When developing a module you often have to compile it, and correct errors that occurs. In this case, using sat log
command to consult the compilation logs is not convenient! It is advised to use in this case the -t option of sat, it
will display the logs directly inside the terminal:

sat -t option put the compilation logs in the terminal
./sat -t -o "PRODUCTS.KERNEL.default.source_dir=’/home/KERNEL’" compile\

SALOME-master -p KERNEL --clean_all

1.3 Configuration

1.3.1 Introduction

For the configuration, SAT uses a python module called config, which aims to offer more power and flexibility
for the configuration of python programs. This module was slightly adapted for SAT, and renamed Pyconf. (see
config module3 for a complete description of the module, the associated syntax, the documentation).

sat uses files with .pyconf extension to store the configuration parameters. These .pyconf are parsed by SAT, and
merged into a global configuration, which is passed to the sat commands and used by them.

3http://www.red-dove.com/config-doc/

1.3. Configuration 9

http://www.red-dove.com/config-doc/

SAT Documentation, Release 5.7.0

1.3.2 Configuration projects

By default SAT is provided with no configuration at all, except is own internal one. The configuration is brought
by SAT projects : usually a git base containing all the configuration files of a project (.pyconf files). For Salome
platform, the SAT project is called SAT_SALOME and can be downloaded from salome Tuleap forge. SAT
projects are loaded in sat with the sat init command:

get salome platform SAT configuration project (SAT_SALOME), and load it into SAT
git clone SAT_SALOME
SAT/sat init --add_project $(pwd)/SAT_SALOME/salome.pyconf

SAT_SALOME project provides all configuration files for salome applications, and for the products that are used
in these applications.

1.3.3 Application configuration

The configuration files of applications contain the required information for SAT to build the application. They are
usually located in the application directory of the project:

list applications provided by SAT_SALOME project
ls SAT_SALOME/applications
> MEDCOUPLING-9.4.0.pyconf SALOME-7.8.0.pyconf
> SALOME-8.5.0.pyconf SALOME-9.4.0.pyconf

These files can be edited directly, and also with the SAT:

edit SALOME-9.4.0.pyconf configuration file
SAT/sat config SALOME-9.4.0 -e

The application configuration file defines the APPLICATION sections. The content of this section (or a part of it)
can be displayed with sat config command:

display the complete APPLICATION configuration
sat config SALOME-9.4.0 -v APPLICATION

display only the application properties
sat config SALOME-9.4.0 -v APPLICATION.properties

SAT users that need to create new application files for their own purpose usually copy an existing configuration file
and adapt it to their application. Let’s discribe the content of an application pyconf file. We take in the following
examples the file SAT_SALOME/applications/SALOME-9.4.0.pyconf.

Global variables and flags

At the beginning of the APPLICATION sections, global variables and flags are defined:

• name : the name of the application (mandatory)

• workdir : the directory in which the application is produced (mandatory)

• tag : the default tag to use for the git bases

• dev : activate the dev mode. In dev mode git bases are checked out only one time, to avoid risks of removing
developments.

• verbose : activate verbosity in the compilation

• debug : activate debug mode in the compilation, i.e -g option

• python3 : ‘yes/no’ tell sat that the application uses python3

• base : ‘yes/no/name’ to set up the use of a SAT base

10 Chapter 1. Documentation

SAT Documentation, Release 5.7.0

APPLICATION :
{

name : ’SALOME-9.4.0’
workdir : $LOCAL.workdir + $VARS.sep + $APPLICATION.name + ’-’ + $VARS.dist
tag : ’V9_4_BR’
debug : ’no’
dev : ’no’
base : ’no’
python3 : ’yes’
...

Please note the workdir variable is defined in the above example with references to other sections defined in other
configurations files (i.e. $LOCAL and $VARS). It’s a useful Pyconf functionality. Most of the global variables
are optionnal, except name and workdir.

Environment subsection

This subsection allows defining environment variables at the application level (most of the time the environment
is set by the products configuration).

APPLICATION :
{
...

environ :
{

build : {CONFIGURATION_ROOT_DIR : $workdir + $VARS.sep + "SOURCES" +\
$VARS.sep + "CONFIGURATION"}

launch : {PYTHONIOENCODING:"UTF_8"}
SALOME_trace : "local" # local/file:.../with_logger
specify the first modules to display in gui
SALOME_MODULES : "SHAPER,GEOM,SMESH,PARAVIS,YACS,JOBMANAGER"

}
}

In the example above CONFIGURATION_ROOT_DIR variable will be set only at compile time (usage of build
key), while PYTHONIOENCODING will be set only at run-time (use of launch key). variables SALOME_trace
and SALOME_MODULES are set both at compile time and run time.

products subsection

This subsection will specify which products are included in the application. For each product, it is possible to
specify in a dictionnary:

• tag : the tag to use for the product

• dev : activate the dev mode.

• verbose : activate verbosity in the compilation

• debug : activate debug mode

If these flags are not specified, SAT takes the default application flag. In the following example, SAT uses the
default tag V9_4_BR for products SHAPER, KERNEL and MEDCOUPLING. For LIBBATCH it uses the tag
V2_4_2. KERNEL is compiled in debug and verbose mode.

APPLICATION :
{
...

tag : ’V9_4_BR’
...

products :
{

1.3. Configuration 11

SAT Documentation, Release 5.7.0

’SHAPER’
’LIBBATCH’ : {tag :’V2_4_2’}
’KERNEL’ : {debug:’yes’, verbose:’yes’}
’MEDCOUPLING’
...

properties

Properties are used by SAT to define some general rules or policies. They can be defined in the application
configuration with the properties subsection:

APPLICATION :
{
...

properties :
{

mesa_launcher_in_package : "yes"
repo_dev : "yes"
pip : ’yes’
pip_install_dir : ’python’

}

In this example the following properties are used:

• mesa_launcher_in_package : ask to put a mesa launcher in the packages produced by sat package com-
mand

• repo_dev : use the development git base (for salome, the tuleap forge)

• pip : ask to use pip to get python products

• pip_install_dir : install pip products in python installation directory (not in separate directories)

1.3.4 Products configuration

The configuration files of products contain the required information for SAT to build each product. They are
usually located in the product directory of the project. SAT_SALOME supports a lot of products:

ls SAT_SALOME/products/
ADAO_INTERFACE.pyconf homard_bin.pyconf PyQtChart.pyconf
ADAO.pyconf homard_pre_windows.pyconf PyQt.pyconf
alabaster.pyconf HOMARD.pyconf pyreadline.pyconf
ALAMOS_PROFILE.pyconf HXX2SALOME.pyconf Python.pyconf
ALAMOS.pyconf HYBRIDPLUGIN.pyconf pytz.pyconf
Babel.pyconf idna.pyconf qt.pyconf
BLSURFPLUGIN.pyconf imagesize.pyconf qwt.pyconf
boost.pyconf ispc.pyconf requests.pyconf
bsd_xdr.pyconf Jinja2.pyconf RESTRICTED.pyconf
CALCULATOR.pyconf JOBMANAGER.pyconf root.pyconf
CAS.pyconf KERNEL.pyconf ruby.pyconf
CDMATH.pyconf kiwisolver.pyconf SALOME_FORMATION_PROFILE.pyconf
CEATESTBASE.pyconf lapack.pyconf SALOME_PROFILE.pyconf
certifi.pyconf lata.pyconf SALOME.pyconf
cgns.pyconf LIBBATCH.pyconf SAMPLES.pyconf
chardet.pyconf libjpeg.pyconf scipy.pyconf
click.pyconf libpng.pyconf scons.pyconf
cmake.pyconf libxml2.pyconf scotch.pyconf
colorama.pyconf llvm.pyconf setuptools.pyconf
compil_scripts markupsafe.pyconf SHAPER.pyconf
COMPONENT.pyconf matplotlib.pyconf SHAPERSTUDY.pyconf
CONFIGURATION.pyconf MEDCOUPLING.pyconf sip.pyconf
COREFLOWS_PROFILE.pyconf medfile.pyconf six.pyconf

12 Chapter 1. Documentation

SAT Documentation, Release 5.7.0

COREFLOWS.pyconf med_pre_windows.pyconf SMESH.pyconf
cppunit.pyconf MED.pyconf snowballstemmer.pyconf
cycler.pyconf mesa.pyconf SOLVERLAB.pyconf
Cython.pyconf MeshGems.pyconf solvespace.pyconf
dateutil.pyconf metis.pyconf sphinxcontrib_applehelp.pyconf
distribute.pyconf mpc.pyconf sphinxcontrib_devhelp.pyconf
DOCUMENTATION.pyconf mpfr.pyconf sphinxcontrib_htmlhelp.pyconf
docutils.pyconf msvc.pyconf sphinxcontrib_jsmath.pyconf
doxygen.pyconf NETGENPLUGIN.pyconf sphinxcontrib_napoleon.pyconf
EFICAS.pyconf netgen.pyconf sphinxcontrib.pyconf
EFICAS_TOOLS.pyconf nlopt.pyconf sphinxcontrib_qthelp.pyconf
eigen.pyconf numpy.pyconf sphinxcontrib_serializinghtml.pyconf
embree.pyconf omniNotify.pyconf sphinxcontrib_websupport.pyconf
env_scripts omniORB.pyconf sphinxintl.pyconf
expat.pyconf omniORBpy.pyconf Sphinx.pyconf
f2c.pyconf openblas.pyconf sphinx_rtd_theme.pyconf
ffmpeg.pyconf opencv.pyconf subprocess32.pyconf
FIELDS.pyconf openmpi.pyconf swig.pyconf
freeimage.pyconf openssl.pyconf tbb.pyconf
freetype.pyconf ospray.pyconf tcl.pyconf
ftgl.pyconf packaging.pyconf tcltk.pyconf
functools32.pyconf ParaViewData.pyconf TECHOBJ_ROOT.pyconf
gcc.pyconf ParaView.pyconf tk.pyconf
GEOM.pyconf PARAVIS.pyconf Togl.pyconf
GHS3DPLUGIN.pyconf ParMetis.pyconf TRIOCFD_IHM.pyconf
GHS3DPRLPLUGIN.pyconf patches TRIOCFD_PROFILE.pyconf
gl2ps.pyconf perl.pyconf TrioCFD.pyconf
glu.pyconf petsc.pyconf TRUST.pyconf
gmp.pyconf Pillow.pyconf typing.pyconf
GMSHPLUGIN.pyconf planegcs.pyconf uranie_win.pyconf
gmsh.pyconf pockets.pyconf urllib3.pyconf
graphviz.pyconf pthreads.pyconf VISU.pyconf
GUI.pyconf PY2CPP.pyconf vtk.pyconf
hdf5.pyconf pybind11.pyconf XDATA.pyconf
HELLO.pyconf PYCALCULATOR.pyconf YACSGEN.pyconf
HEXABLOCKPLUGIN.pyconf Pygments.pyconf YACS.pyconf
HEXABLOCK.pyconf PyHamcrest.pyconf zlib.pyconf
HexoticPLUGIN.pyconf PYHELLO.pyconf
Hexotic.pyconf pyparsing.pyconf

Available product configuration flags

• name : the name of the product

• build_source : the method to use when getting the sources, possible choices are script/cmake/autotools. If
“script” is chosen, a compilation script should be provided with compil_script key

• compil_script : to specify a compilation script (in conjonction with build_source set to “script”). The
programming language is bash under linux, and bat under windows.

• get_source : the mode to get the sources, possible choices are archive/git/svn/cvs

• depend : to give SAT the dependencies of the product

• patches : provides a list of patches, if required

• source_dir : where SAT copies the source

• build_dir : where SAT builds the product

• install_dir : where SAT installs the product

The following example is the configuration of boost product:

1.3. Configuration 13

SAT Documentation, Release 5.7.0

default :
{

name : "boost"
build_source : "script"
compil_script : $name + $VARS.scriptExtension
get_source : "archive"
environ :
{

env_script : $name + ".py"
}
depend : [’Python’]
opt_depend : [’openmpi’]
patches : []
source_dir : $APPLICATION.workdir + $VARS.sep + ’SOURCES’ + $VARS.sep + $name
build_dir : $APPLICATION.workdir + $VARS.sep + ’BUILD’ + $VARS.sep + $name
install_dir : ’base’
properties :
{

single_install_dir : "yes"
incremental : "yes"

}
}

Product properties

Properties are also associated to products. It is possible to list all the properties with the command ./sat config
SALOME-9.4.0 –show_properties*

Here are some properties frequently used:

• single_install_dir : the product can be installed in a common directory

• compile_time : the product is used only at compile time (ex : swig)

• pip : the product is managed by pip

• not_in_package : the product will not be put in packages

• is_SALOME_module : the product is a SALOME module

• is_distene : the product requires a DISTENE licence

The product properties allow SAT doing specific choices according to the property. They also allow users filter-
ing products when calling commands. For example it is possible to compile only SALOME modules with the
command:

just recompile SALOME modules, not other products
./sat compile SALOME-9.4.0 --properties is_SALOME_module:yes --clean_all

Product environment

The product environment is declared in a subsection called environment. It is used by sat at compile time to set
up the environment for the compilation of all the products depending upon it. It is also used at run tim to set up
the application environment.

Two mechanisms are offered to define the environment. The first one is similar to the one used in the application
configuration : inside the environ section, we declare variables or paths. A variable appended or prepended by
an underscore is treated as a path, to which we prepend or append the valued according to the position of the
underscore. In the following example, the value <install_dir/share/salome/ressources/salome is prepended to the
path SalomeAppConfig.

14 Chapter 1. Documentation

SAT Documentation, Release 5.7.0

environ :
{

_SalomeAppConfig : $install_dir + $VARS.sep + "share" + $VARS.sep + "salome" +\
$VARS.sep + "resources" + $VARS.sep + "salome"

}

But the most common way is to use an environment script, which specifies the environment by using an API
provided by sat:

use script qt.py to set up qt environment
environ :
{

env_script : "qt.py"
}

As an example, the environment script for qt is:

#!/usr/bin/env python
#-*- coding:utf-8 -*-

import os.path
import platform

def set_env(env, prereq_dir, version):
env.set(’QTDIR’, prereq_dir)

version_maj = version.split(’.’)
if version_maj[0] == ’5’:

env.set(’QT5_ROOT_DIR’, prereq_dir)
env.prepend(’QT_PLUGIN_PATH’, os.path.join(prereq_dir, ’plugins’))
env.prepend(’QT_QPA_PLATFORM_PLUGIN_PATH’,

os.path.join(prereq_dir, ’plugins’))
pass

else:
env.set(’QT4_ROOT_DIR’, prereq_dir)
pass

env.prepend(’PATH’, os.path.join(prereq_dir, ’bin’))

if platform.system() == "Windows" :
env.prepend(’LIB’, os.path.join(prereq_dir, ’lib’))
pass

else :
env.prepend(’LD_LIBRARY_PATH’, os.path.join(prereq_dir, ’lib’))
pass

env is the API provided by SAT, prereq_dir is the installation directory, version the product version. env.set sets a
variable, env.prepend and env.append are used to prepend or append values to a path.

The setenv function is used to set the environment at compile time and run time. It is also possible to use
set_env_build and set_env_launch callback functions to set specific compile or run time environment. Finally
the function set_nativ_env is used for native products.

Product sections

The product configuration file may contain several sections. In addition to the “default” section, it is possible to
declare other sections that will be used for specific versions of the product. This allows SAT compiling different
versions of a product. To determine which section should be used, SAT has an algorithm that takes into account
the version number. Here are some examples of sections that will be taken into account by SAT :

this section will be used for versions between 8.5.0 and 9.2.1
_from_8_5_0_to_9_2_1 :

1.3. Configuration 15

SAT Documentation, Release 5.7.0

{
...

}

this section will only ve used for 9.3.0 version
version_9_3_0 :
{

...
}

Several version numbering are considered by SAT (not only X.Y.Z) For example V9, v9, 9, 9.0.0, 9_0_0, are
accepted.

By default SAT only considers one section : the one determined according to the version number, or the default
one. But if the incremental property is defined in the default section, and is set to “yes”, then SAT enters in
the incremental mode and merges different sections into one, by proceeding incremental steps. SAT uses the
following algorithm to merge the sections:

1. We take the complete “default” section

2. If a “default_win” section is defined, we merge it.

3. If a section name corresponds to the version number, we also merge it.

4. Finally on windows platform if the same section name appended by _win exists, we merge it.

1.3.5 Other configuration sections

The configuration of SAT is split into eight sections : VARS, APPLICATION, PRODUCTS, PROJECTS, PATHS,
USER, LOCAL, INTERNAL. These sections are feeded by the pyconf files which are loaded by sat: each pyconf
file is parsed by SAT and merged into the global configuration. One file can reference variables defined in other
files. Files are loaded in this order :

• the internal pyconf (declared inside sat)

• the personal pyconf : ~/.salomeTools/SAT.pyconf

• the application pyconf

• the products pyconf (for all products declared in the application)

In order to check the configuration and the merge done by sat, it is possible to display the resulting eight section
with the command:

display the content of a configuration section
(VARS, APPLICATION, PRODUCTS, PROJECTS, PATHS, USER, LOCAL, INTERNAL)
SAT/sat config SALOME-9.4.0 -v <section>

Note also that if you don’t remember the name of a section it is possible to display section names with the
automatic completion functionality.

We have already described two of the sections : APPLICATION and PRODUCTS. Let’s describe briefly the six
others.

VARS section

This section is dynamically created by SAT at run time.
It contains information about the environment: date, time, OS, architecture etc.

to get the current setting
sat config --value VARS

16 Chapter 1. Documentation

SAT Documentation, Release 5.7.0

USER section

This section is defined by the user configuration file, ~/.salomeTools/SAT.pyconf.

The USER section defines some parameters (not exhaustive):

• pdf_viewer : the pdf viewer used to read pdf documentation

• browser : The web browser to use (firefox).

• editor : The editor to use (vi, pluma).

• and other user preferences.

to get the current setting
sat config SALOME-xx --value USER

to edit your personal configuration file
sat config -e

Other sections

• PROJECTS : This section contains the configuration of the projects loaded in SAT by sat init –add_project
command.

• PATHS : This section contains paths used by sat.

• LOCAL : contains information relative to the local installation of SAT.

• INTERNAL : contains internal SAT information

1.3.6 Overwriting the configuration

At the end of the process, SAT ends up with a complete global configuration resulting from the parsing of all
.pyconf files. It may be interesting to overwrite the configuration. SAT offers two overwriting mechanisms to
answer these two use cases:

1. Be able to conditionally modify the configuration of an application to take into account specifics and support
multi-platform builds

2. Be able to modify the configuration in the command line, to enable or disable some options at run time

Application overwriting

At the end of the application configuration, it is possible to define an overwrite section with the keyword __over-
write__ :. It is followed by a list of overwrite sections, that may be conditionnal (use of the keyword __con-
dition__ :). A classical usage of the application overwriting is the change of a prerequisite version for a given
platform (when the default version does not compile).

__overwrite__ :
[

{
opencv 3 do not compile on old CO6
__condition__ : "VARS.dist in [’CO6’]"
’APPLICATION.products.opencv’ : ’2.4.13.5’

}
]

1.3. Configuration 17

SAT Documentation, Release 5.7.0

Command line overwriting

Command line overwriting is triggered by sat -o option, followed in double quotes by the parameter to overwrite,
the = sign and the value in simple quotes. In the following example, we suppose that the application SALOME-
9.4.0 has set both flags debug and verbose to “no”, and that we want to recompile MEDCOUPLING in debug
mode, with cmake verbosity activated. The command to use is:

recompile MEDCOUPLING in debug mode (-g) and with verbosity
./sat -t -o "APPLICATION.verbose=’yes’" -o "APPLICATION.debug=’yes’" compile\

SALOME-9.4.0 -p MEDCOUPLING --clean_all

18 Chapter 1. Documentation

CHAPTER

TWO

LIST OF COMMANDS

19

SAT Documentation, Release 5.7.0

2.1 Command doc

2.1.1 Description

The doc command displays sat documentation.

2.1.2 Usage

• Show (in a web browser) the sat documentation in format xml/html:

sat doc --xml

• Show (in evince, for example) the (same) sat documentation in format pdf:

sat doc --pdf

• Edit and modify in your preference user editor the sources files (rst) of sat documentation:

sat doc --edit

• get information how to compile locally sat documentation (from the sources files):

sat doc --compile

2.1.3 Some useful configuration paths

• USER

– browser : The browser used to show the html files (firefox for example).

– pdf_viewer : The viewer used to show the pdf files (evince for example).

– editor : The editor used to edit ascii text files (pluma or gedit for example).

20 Chapter 2. List of Commands

SAT Documentation, Release 5.7.0

2.2 Command config

2.2.1 Description

The config command manages sat configuration. It allows display, manipulation and operation on configuration
files

2.2.2 Usage

• Edit the user personal configuration file $HOME/.salomeTools/SAT.pyconf. It is used to store the
user personal choices, like the favorite editor, browser, pdf viewer:

sat config --edit

• List the available applications (they come from the sat projects defined in data/local.pyconf):

sat config --list

• Edit the configuration of an application:

sat config <application> --edit

• Check the system dependencies (if any) used by the application:

sat config <application> --check_system

• Copy an application configuration file into the user personal directory:

sat config <application> --copy [new_name]

• Print the value of a configuration parameter.
Use the automatic completion to get recursively the parameter names.
Use –no_label option to get only the value, without label (useful in automatic scripts).
Examples (with SALOME-xx as SALOME-8.4.0):

sat config --value <parameter_path>
sat config --value . # all the configuration
sat config --value LOCAL
sat config --value LOCAL.workdir

sat config <application> --value <parameter_path>
sat config SALOME-xx --value APPLICATION.workdir
sat config SALOME-xx --no_label --value APPLICATION.workdir

• Print in one-line-by-value mode the value of a configuration parameter,
with its source expression, if any.
This is a debug mode, useful for developers.
Prints the parameter path, the source expression if any, and the final value:

sat config SALOME-xx -g USER

Note: And so, not only for fun, to get all expressions of configuration

sat config SALOME-xx -g . | grep -e "-->"

• Print the patches that are applied:

sat config SALOME-xx --show_patchs

2.2. Command config 21

SAT Documentation, Release 5.7.0

• Print the properties available for an application:

sat config SALOME-xx show_properties

• Get information on a product configuration:

sat config <application> --info <product>
sat config SALOME-xx --info KERNEL
sat config SALOME-xx --info qt

2.2.3 Some useful configuration paths

Exploring a current configuration.

• PATHS: To get list of directories where to find files.

• USER: To get user preferences (editor, pdf viewer, web browser, default working dir).

sat commands:

sat config SALOME-xx -v PATHS
sat config SALOME-xx -v USERS

22 Chapter 2. List of Commands

SAT Documentation, Release 5.7.0

2.3 Command prepare

2.3.1 Description

The prepare command brings the sources of an application in the sources application directory, in order to
compile them with the compile command.

The sources can be prepared from VCS software (cvs, svn, git), an archive or a directory.

Warning: When sat prepares a product, it first removes the existing directory, except if the development
mode is activated. When you are working on a product, you need to declare in the application configuration
this product in dev mode.

2.3.2 Remarks

VCS bases (git, svn, cvs)

The prepare command does not manage authentication on the cvs server. For example, to prepare modules from a
cvs server, you first need to login once.

To avoid typing a password for each product, you may use a ssh key with passphrase, or store your password (in
.cvspass or .gitconfig files). If you have security concerns, it is also possible to use a bash agent and type your
password only once.

Dev mode

By default prepare uses export mode: it creates an image of the sources, corresponding to the tag or branch
specified, without any link to the VCS base. To perform a checkout (svn, cvs) or a git clone (git), you need to
declare the product in dev mode in your application configuration: edit the application configuration file (pyconf)
and modify the product declaration:

sat config <application> -e
and edit the product section:
<product> : {tag : "my_tag", dev : "yes", debug : "yes"}

The first time you will execute the sat prepare command, your module will be downloaded in checkout mode
(inside the SOURCES directory of the application). Then, you can develop in this repository, and finally push
them in the base when they are ready. If you type during the development process by mistake a sat prepare
command, the sources in dev mode will not be altered/removed (unless you use -f option).

2.3.3 Usage

• Prepare the sources of a complete application in SOURCES directory (all products):

sat prepare <application>

• Prepare only some modules:

sat prepare <application> --products <product1>,<product2> ...

• Prepare only some modules with a given property:

prepare only SALOME modules, not prerequisites
./sat prepare <application> --properties is_SALOME_module:yes

• Use –force to force to prepare the products in development mode (this will remove the sources and do a new
clone/checkout):

2.3. Command prepare 23

SAT Documentation, Release 5.7.0

sat prepare <application> --force

• Use –force_patch to force to apply patch to the products in development mode (otherwise they are not
applied):

sat prepare <application> --force_patch

• Prepare only products that are not present in SOURCES. This completion mode is used to complete the
preparation when it was interrupted, or when the product list was increased:

sat prepare <application> --complete

2.3.4 Some useful configuration paths

Command sat prepare uses the pyconf file configuration of each product to know how to get the sources.

Note: to verify configuration of a product, and get name of this pyconf files configuration

sat config <application> --info <product>

• get_method: the method to use to prepare the module, possible values are cvs, git, archive, dir.

• git_info : (used if get_method = git) information to prepare sources from git.

• svn_info : (used if get_method = svn) information to prepare sources from svn.

• cvs_info : (used if get_method = cvs) information to prepare sources from cvs.

• archive_info : (used if get_method = archive) the path to the archive.

• dir_info : (used if get_method = dir) the directory with the sources.

24 Chapter 2. List of Commands

SAT Documentation, Release 5.7.0

2.4 Command compile

2.4.1 Description

The compile command allows compiling the products of a SALOME1 application.

2.4.2 Usage

• Compile a complete application:

sat compile <application>

• Compile only some products:

sat compile <application> --products <product1>,<product2> ...

• Use sat -t to duplicate the logs in the terminal (by default the logs are stored and displayed with sat log
command):

sat -t compile <application> --products <product1>

• Compile a module and its dependencies:

sat compile <application> --products med --with_fathers

• Compile a module and the modules depending on it (for example plugins):

sat compile <application> --products med --with_children

• Force the compilation of a module, even if it is already installed. This option clean the build before compil-
ing:

sat compile <application> --products med --force

• Update mode, compile only git products which source has changed, including the dependencies. The option
is not implemented for svn and cvs, only for git. One has to call sat prepare before, to check if git sources
where modified. The mecanism is based upon git log -1 command, and the modification of the source
directory date accordingly:

update SALOME sources
./sat prepare <application> --properties is_SALOME_module:yes

only compile modules that has to be recompiled.
sat compile <application> --update

• Clean the build and install directories before starting compilation:

sat compile <application> --products GEOM --clean_all

Note:

a warning will be shown if option –products is missing
(as it will clean everything)

• Clean only the install directories before starting compilation:

sat compile <application> --clean_install

• Add options for make:

1http://www.salome-platform.org

2.4. Command compile 25

http://www.salome-platform.org

SAT Documentation, Release 5.7.0

sat compile <application> --products <product> --make_flags <flags>

• Use the –check option to execute the unit tests after compilation:

sat compile <application> --check

• Remove the build directory after successful compilation (some build directory like qt are big):

sat compile <application> --products qt --clean_build_after

• Stop the compilation as soon as the compilation of a module fails:

sat compile <application> --stop_first_fail

• Do not compile, just show if products are installed or not, and where is the installation:

sat compile <application> --show

• Print the recursive list of dependencies of one (or several) products:

sat -v5 compile SALOME-master -p GEOM --with_fathers --show

2.4.3 Some useful configuration paths

The way to compile a product is defined in the pyconf file configuration. The main options are:

• build_source : the method used to build the product (cmake/autotools/script)

• compil_script : the compilation script if build_source is equal to “script”

• cmake_options : additional options for cmake.

• nb_proc : number of jobs to use with make for this product.

• check_install : allow to specify a list of paths (relative to install directory), that sat will check after instal-
lation. This flag allows to check if an installation is complete.

• install_dir : allow to change the default install dir. If the value is set to ‘base’, the product will by default
be installed in sat base. Unless base was set to ‘no’ in application pyconf.

26 Chapter 2. List of Commands

SAT Documentation, Release 5.7.0

2.5 Command launcher

2.5.1 Description

The launcher command creates a SALOME launcher, a python script file to start SALOME2.

2.5.2 Usage

• Create a launcher:

sat launcher <application>

Generate a launcher in the application directory, i.e $APPLICATION.workdir.

• Create a launcher with a given name (default name is APPLICATION.profile.launcher_name)

sat launcher <application> --name ZeLauncher

The launcher will be called ZeLauncher.

• Set a launcher which does not initialise the PATH variables:

sat launcher <application> --no_path_init

In this case the launcher does not initialise the path variables (the default is to do it only for PATH, not for
LD_LIBRARY_PATH, PYTHONPATH, etc).

• Create a generic launcher, which sets the environment (bash or bat) and call the exe given as argument:

sat launcher <application> -e INSTALL/SALOME/bin/salome/salome.py -n salome.sh

The launcher will be called salome.sh. It will source the environment and call
$APPLICATION.workdir/INSTALL/SALOME/bin/salome/salome.py. The arguments given to
salome.sh are transfered to salome.py.

• Set a specific resources catalog:

sat launcher <application> --catalog <path of a salome resources catalog>

Note that the catalog specified will be copied to the profile directory.

• Generate the catalog for a list of machines:

sat launcher <application> --gencat <list of machines>

This will create a catalog by querying each machine (memory, number of processors) with ssh.

• Generate a mesa launcher (if mesa and llvm are parts of the application). Use this option only if you have
to use salome through ssh and have problems with ssh X forwarding of OpengGL modules (like Paravis):

sat launcher <application> --use_mesa

2.5.3 Configuration

Some useful configuration paths:

• APPLICATION.profile

– product : the name of the profile product (the product in charge of holding the application stuff, like
logos, splashscreen)

– launcher_name : the name of the launcher.

2http://www.salome-platform.org

2.5. Command launcher 27

http://www.salome-platform.org

SAT Documentation, Release 5.7.0

2.6 Command log

2.6.1 Description

The log command displays sat log in a web browser or in a terminal.

2.6.2 Usage

• Show (in a web browser) the log of the commands corresponding to an application:

sat log <application>

• Show the log for commands that do not use any application:

sat log

• The –terminal (or -t) display the log directly in the terminal, through a CLI3 interactive menu:

sat log <application> --terminal

• The –last option displays only the last command:

sat log <application> --last

• To access the last compilation log in terminal mode, use –last_compile option:

sat log <application> --last_compile

• The –clean (int) option erases the n older log files and print the number of remaining log files:

sat log <application> --clean 50

2.6.3 Some useful configuration paths

• USER

– browser : The browser used to show the log (by default firefox).

– log_dir : The directory used to store the log files.

3https://en.wikipedia.org/wiki/Command-line_interface

28 Chapter 2. List of Commands

https://en.wikipedia.org/wiki/Command-line_interface

SAT Documentation, Release 5.7.0

2.7 Command environ

2.7.1 Description

The environ command generates the environment files used to run and compile your application (as SALOME4

is an example).

Note: these files are not required, sat sets the environment itself, when compiling. And so does the salome
launcher.

These files are useful when someone wants to check the environment. They could be used in debug mode to set
the environment for gdb.

The configuration part at the end of this page explains how to specify the environment used by sat (at build or run
time), and saved in some files by sat environ command.

2.7.2 Usage

• Create the shell environment files of the application:

sat environ <application>

• Create the environment files of the application for a given shell. Options are bash, bat (for windows), tcl,
cfg (the configuration format used by SALOME):

sat environ <application> --shell [bash|bat|cfg|tcl|all]

• Use a different prefix for the files (default is ‘env’):

This will create file <prefix>_launch.sh, <prefix>_build.sh
sat environ <application> --prefix <prefix>

• Use a different target directory for the files:

This will create file env_launch.sh, env_build.sh
in the directory corresponding to <path>
sat environ <application> --target <path>

• Generate the environment files only with the given products:

This will create the environment files only for the given products
and their prerequisites.
It is useful when you want to visualise which environment uses
sat to compile a given product.
sat environ <application> --product <product1>,<product2>, ...

• Generate tcl modules for use with environment-modules package.

sat environ <application> --shell tcl

Use this command to generate tcl modules associated to a module base. The production of a module base is
triggered when the flag base in the application pyconf is set to a value not equal to yes.

APPLICATION :
{

...
trigger the production of a environment module base which name is salome9
base : ’salome9’

}

4http://www.salome-platform.org

2.7. Command environ 29

http://www.salome-platform.org

SAT Documentation, Release 5.7.0

In this example, the module base will be produced in BASE/apps/salome9, and the tcl modules associated in the
directory tcl BASE/apps/modulefiles/salome9. Later, it will be possible to enable these modules with the shell
command module use –append .../SAT/BASE/modulefiles.

2.7.3 Configuration

The specification of the environment can be done through several mechanisms.

1. For salome products (the products with the property is_SALOME_module as yes) the environment is set
automatically by sat, in respect with SALOME requirements.

2. For other products, the environment is set with the use of the environ section within the pyconf file of the
product. The user has two possibilities, either set directly the environment within the section, or specify a
python script which will be used to set the environment programmatically.

Within the section, the user can define environment variables. He can also modify PATH variables, by appending
or prepending directories. In the following example, we prepend <install_dir>/lib to LD_LIBRARY_PATH (note
the left first underscore), append <install_dir>/lib to PYTHONPATH (note the right last underscore), and set
LAPACK_ROOT_DIR to <install_dir>:

environ :
{

_LD_LIBRARY_PATH : $install_dir + $VARS.sep + "lib"
PYTHONPATH_ : $install_dir + $VARS.sep + "lib"
LAPACK_ROOT_DIR : $install_dir

}

It is possible to distinguish the build environment from the launch environment: use a subsection called build or
launch. In the example below, LD_LIBRARY_PATH and PYTHONPATH are only modified at run time, not at
compile time:

environ :
{

build :
{
LAPACK_ROOT_DIR : $install_dir

}
launch :
{
LAPACK_ROOT_DIR : $install_dir
_LD_LIBRARY_PATH : $install_dir + $VARS.sep + "lib"
PYTHONPATH_ : $install_dir + $VARS.sep + "lib"

}
}

3. The last possibility is to set the environment with a python script. The script should be provided in the
products/env_scripts directory of the sat project, and its name is specified in the environment section with
the key environ.env_script:

environ :
{

env_script : ’lapack.py’
}

Please note that the two modes are complementary and are both taken into account. Most of the time, the first
mode is sufficient.

The second mode can be used when the environment has to be set programmatically. The developer implements a
handle (as a python method) which is called by sat to set the environment. Here is an example:

#!/usr/bin/env python
#-*- coding:utf-8 -*-

30 Chapter 2. List of Commands

SAT Documentation, Release 5.7.0

import os.path
import platform

def set_env(env, prereq_dir, version):
env.set("TRUST_ROOT_DIR",prereq_dir)
env.prepend(’PATH’, os.path.join(prereq_dir, ’bin’))
env.prepend(’PATH’, os.path.join(prereq_dir, ’include’))
env.prepend(’LD_LIBRARY_PATH’, os.path.join(prereq_dir, ’lib’))
return

sat defines four handles:

• set_env(env, prereq_dir, version) : used at build and run time.

• set_env_launch(env, prereq_dir, version) : used only at run time (if defined!)

• set_env_build(env, prereq_dir, version) : used only at build time (if defined!)

• set_native_env(env) : used only for native products, at build and run time.

2.7. Command environ 31

SAT Documentation, Release 5.7.0

2.8 Command clean

2.8.1 Description

The clean command removes products in the source, build, or install directories of an application. Theses direc-
tories are usually named SOURCES, BUILD, INSTALL.

Use the options to define what directories you want to suppress and to set the list of products.

2.8.2 Usage

• Clean all previously created build and install directories (example application as SALOME_xx):

take care, is long time to restore, sometimes
sat clean SALOME-xx --build --install

• Clean previously created build and install directories, only for products with property is_SALOME_module:

sat clean SALOME-xxx --build --install \
--properties is_SALOME_module:yes

2.8.3 Available options

• –products : Products to clean.

• –properties :

Filter the products by their properties.
Syntax: --properties <property>:<value>

• –sources : Clean the product source directories.

• –build : Clean the product build directories.

• –install : Clean the product install directories.

• –generated : Clean source, build and install directories for generated products.

• –package : Clean the application package directory.

• –all : Clean the product source, build and install directories.

• –sources_without_dev :

Do not clean the products in development mode,
(they could have VCS5 commits pending).

2.8.4 Some useful configuration paths

No specific configuration.

5https://en.wikipedia.org/wiki/Version_control

32 Chapter 2. List of Commands

https://en.wikipedia.org/wiki/Version_control

SAT Documentation, Release 5.7.0

2.9 Command package

2.9.1 Description

The package command creates a SALOME archive (usually a compressed Tar6 file .tgz). This tar file is used later
to install SALOME on other remote computer.

Depending on the selected options, the archive includes sources and binaries of SALOME products and prerequi-
sites.

Usually utility sat is included in the archive.

Note: By default the package includes the sources of prerequisites and products. To select a subset, use the
–without_property or –with_vcs options.

2.9.2 Usage

• Create a package for a product (example as SALOME_xx):

sat package SALOME_xx

This command will create an archive named SALOME_xx.tgz in the working directory
(USER.workDir). If the archive already exists, do nothing.

• Create a package with a specific name:

sat package SALOME_xx --name YourSpecificName

Note: By default, the archive is created in the working directory of the user (USER.workDir).

If the option –name is used with a path (relative or absolute) it will be used.

If the option –name is not used and binaries (prerequisites and products) are included in the package, the OS7

architecture will be appended to the name (example: SALOME_xx-CO7.tgz).

Examples:

Creates SALOME_xx.tgz in $USER.workDir
sat package SALOME_xx

Creates SALOME_xx_<arch>.tgz in $USER.workDir
sat package SALOME_xx --binaries

Creates MySpecificName.tgz in $USER.workDir
sat package SALOME_xx --name MySpecificName

• Force the creation of the archive (if it already exists):

sat package SALOME_xx --force

• Include the binaries in the archive (products and prerequisites):

sat package SALOME_xx --binaries

This command will create an archive named SALOME_xx _<arch>.tgz where <arch> is the OS archi-
tecture of the machine.

6https://en.wikipedia.org/wiki/Tar_(computing)
7https://en.wikipedia.org/wiki/Operating_system

2.9. Command package 33

https://en.wikipedia.org/wiki/Tar_(computing)
https://en.wikipedia.org/wiki/Operating_system

SAT Documentation, Release 5.7.0

• Do not delete Version Control System (VCS8) information from the configuration files of the embedded sat:

sat package SALOME_xx --with_vcs

The version control systems known by this option are CVS9, SVN10 and Git11.

2.9.3 Some useful configuration paths

No specific configuration.

8https://en.wikipedia.org/wiki/Version_control
9https://fr.wikipedia.org/wiki/Concurrent_versions_system

10https://en.wikipedia.org/wiki/Apache_Subversion
11https://git-scm.com

34 Chapter 2. List of Commands

https://en.wikipedia.org/wiki/Version_control
https://fr.wikipedia.org/wiki/Concurrent_versions_system
https://en.wikipedia.org/wiki/Apache_Subversion
https://git-scm.com

SAT Documentation, Release 5.7.0

2.10 Command generate

2.10.1 Description

The generate command generates and compiles SALOME modules from cpp modules using YACSGEN.

Note: This command uses YACSGEN to generate the module. It needs to be specified with –yacsgen option, or
defined in the product or by the environment variable $YACSGEN_ROOT_DIR.

2.10.2 Remarks

• This command will only apply on the CPP modules of the application, those who have both properties:

cpp : "yes"
generate : "yes"

• The cpp modules are usually computational components, and the generated module brings the CORBA
layer which allows distributing the compononent on remote machines. cpp modules should conform to
YACSGEN/hxx2salome requirements (please refer to YACSGEN documentation).

2.10.3 Usage

• Generate all the modules of a product:

sat generate <application>

• Generate only specific modules:

sat generate <application> --products <list_of_products>

Remark: modules which don’t have the generate property are ignored.

• Use a specific version of YACSGEN:

sat generate <application> --yacsgen <path_to_yacsgen>

2.10. Command generate 35

SAT Documentation, Release 5.7.0

2.11 Command init

2.11.1 Description

The init command manages the sat local configuration (which is stored in the data/local.pyconf file). It allows to
initialise the content of this file.

2.11.2 Usage

• A sat project provides all the pyconf files relative to a project (salome for example). Use the –add_project
command to add a sat project locally, in data/local.pyconf (by default sat comes without any project). It is
possible to add as many projects as required.

sat init --add_project <path/to/a/sat/project/project.pyconf>

• If you need to remove a sat project from the local configuration, use the –reset_projects command to remove
all projects and then add the next ones with –add_project:

sat init --reset_projects
sat init --add_project <path/to/a/new/sat/project/project.pyconf>

• By default the product archives are stored locally within the directory containing sat, in a subdirectory called
ARCHIVES. If you want to change the default, use the –archive_dir option:

sat init --archive_dir <local/path/where/to/store/product/archives>

• sat enables a base mode, which allows to mutualize product builds between several applications. By default,
the mutualized builds are stored locally within the directory containing sat, in a subdirectory called BASE.
To change the default, use the –base option:

sat init --base <local/path/where/to/store/product/mutualised/product/builds>

• In the same way, you can use the –workdir and –log_dir commands to change the default directories used
to store the application builds, and sat logs:

sat init --workdir <local/path/where/to/store/applications>
sat init --log_dir <local/path/where/to/store/sat/logs>

2.11.3 Some useful configuration paths

All the sat init commands update the local pyconf sat file data/local.pyconf. The same result can be achieved by
editing the file directly. The content of data/local.pyconf is dumped into two sat configuration variables:

• LOCAL: Contains notably all the default paths in the fields archive_dir, base, log_dir and workdir.

• PROJECTS: The field project_file_paths contains all the project files that have been included with –
add_project option.

sat commands:

sat config -v LOCAL
sat config -v PROJECTS

36 Chapter 2. List of Commands

SAT Documentation, Release 5.7.0

2.12 Command template

2.12.1 Description

The template command generates the sources of a SALOME module out of a template. SAT provides two
templates for SALOME 9 :

• PythonComponent : a complete template for a SALOME module implemented in python (with data model
and GUI).

• CppComponent : a template for a SALOME component implemented in C++, with a code coupling API.

2.12.2 Usage

• Create a python SALOME module:

sat template --name <product_name> --template PythonComponent\
--target <my_directory>

Create in my_directory a ready to use SALOME module implemented in python. The generated module can
then be adapted to the needs, and pushed in a git repository.

2.12. Command template 37

SAT Documentation, Release 5.7.0

2.13 Command application

2.13.1 Description

The application command is used to create a virtual SALOME application. This command use appli_gen tool to
generate the virtual application. It uses symbolic links and do not work on windows platform.

2.13.2 Usage

• Create an application:

sat application <application>

Create the virtual application directory in the salomeTool application directory
$APPLICATION.workdir.

• Give a name to the application:

sat application <application> --name <my_application_name>

Remark: this option overrides the name given in the virtual_app section of the configuration file
$APPLICATION.virtual_app.name.

• Change the directory where the application is created:

sat application <application> --target <my_application_directory>

• Set a specific SALOME resources catalog (it will be used for the distribution of components on distant
machines):

sat application <application> --catalog <path_to_catalog>

Note that the catalog specified will be copied to the application directory.

• Generate the catalog for a list of machines:

sat application <application> --gencat machine1,machine2,machine3

This will create a catalog by querying each machine through ssh protocol (memory, number of processor)
with ssh.

• Generate a mesa application (if mesa and llvm are parts of the application). Use this option only if you have
to use salome through ssh and have problems with ssh X forwarding of OpengGL modules (like Paravis):

sat application <application> --use_mesa

2.13.3 Some useful configuration paths

The virtual application can be configured with the virtual_app section of the configuration file.

• APPLICATION.virtual_app

– name : name of the launcher (to replace the default runAppli).

– application_name : (optional) the name of the virtual application directory, if missing the default
value is $name + _appli.

38 Chapter 2. List of Commands

CHAPTER

THREE

RELEASE NOTES

3.1 SAT version 5.7.0

3.1.1 Release Notes, November 2020

New features and improvements

New field build_depend used in product configuration files

In order to improve the setting of the environment at run-time and compile-time, a new field was introduced in
the product configuration files : build_depend. This field allows the user to specify which products are required
for the build (use the field build_depend) , and which one are used at runtime (use the former field depend). If
a product is used at both build and runtime it is only declared (like before) in the depend field (it is the case for
example of graphviz which is used at build-time by doxygen, and at run-time by YACS).

These two fields are used by sat accordingly to the context for the dependencies evaluation. Here is the example
of med prerequisites (medfile.pyconf), which depends at runtime on hdf5 and python, and requires cmake for the
compilation:
...
depend : ["hdf5", "Python"]
build_depend : ["cmake"]

New option –update for sat compile

The time spent to compile salome and its 60 prerequisites is regularly increasing... and can exceed ten hours on
slow computers! It is therefore problematic and expensive in term of resources to recompile completely salome
everyday. The –update option was introduced to allow compiling only the products which source code has
changed. This option is only implemented for git (not for svn and cvs). To use the option, one has to call sat
prepare before. this call will get new sources, and will allow sat checking if the source code was modified since the
last compilation. The mechanism is based upon git log -1 command, and the modification of the source directory
date accordingly:

update SALOME sources and set the date of the source directories of git
products accordingly: to the last commit
./sat prepare <application> --properties is_SALOME_module:yes

only compile products that has to be recompiled.
sat compile <application> --update

This option can also be mixed with –proterties option, to avoid recompiling salome prerequisites:

only compile SALOME products which source code has changed
sat compile <application> --update --properties is_SALOME_module:yes

sat do not reinitialise PATH, LD_LIBRARY_PATH and PYTHONPATH variables anymore

39

SAT Documentation, Release 5.7.0

The last versions of sat were reinitialising the PATH, LD_LIBRARY_PATH and PYTHONPATH variables before
the compilation. The objective was to avoid bad interaction with the user environment, and ensure that sat environ-
mnent was correctly set for build. Alas this policy causes difficulties, notably on cluster where people sometimes
need to use an alternate compiler and have to set it through module load command. It was therefore decided to
suppress this policy.

Please note that apart from this use case (set the environment of a specific compiler) it is strongly advised to use
sat with a clean environment! Note also that it is possible to manage with sat a compiler as a product, and therefore
delegate the setting of this compiler to sat. When you have the choice it is a better option.

Change log

This chapter does not provide the complete set of changes included, only the most significant changes are listed.

Arti-
fact

Description

sat
#19888

suppress at compile time the reinit if PATH, LD_LIBRARY_PATH and PYTHONPATH

sat
#19894

use the product configuration file to assert if a product was compiled or not. (before sat was using
the product directory, which was in some cases error prone)

3.2 SAT version 5.6.0

3.2.1 Release Notes, July 2020

New features and improvements

Checking of system dependencies

SALOME depends upon some system prerequisites. Recent examples are tbb and openssl. For these products
SALOME made the choice not to embedd the prerequisite, but to rely on the system version. SAT has now the
capacity to check for the system dependencies in two ways:

• sat prepare command will return an error if system prerequisites are not installed.

• sat config has now an option –check_system that list all the system prerequisites with their status.

Removing build dependencies from binary archives

SALOME archive are getting fat. In order to reduce the size of binary archives, the management by sat of the build
prerequisites was modified. build prerequisites declared with the property compile_time : “yes” are not included
anymore in binary archives.

New option -f –force for sat compile

This option can be used to force the recompilation of products. It is an alternative to –clean_all, which do not
work properly with the single_dir mode (it will erase the complete PRODUCTS directory, which is usually not
expected!

Change log

This chapter does not provide the complete set of changes included, only the most significant changes are listed.

40 Chapter 3. Release Notes

SAT Documentation, Release 5.7.0

Artifact Description
sat #18501 bad management of rm_products functionality in archives
sat #18546 for products installed in BASE, replace in directory name / by _ to avoid the creation if a directory
sat #19109 more robust choice of the package manager to check system dependencies
sat #18720 add option –use-mesa in automatic completion
sat #19192 don’t remove PRODUCTS dir when compilation fails
sat #19234 remove build products from bin archives, better management of their environment
sat #19218 correct out_dir_Path substituion for appended variables
sat #18350 -f option for sat compile : force the recompilation
sat #18831 sat compile –clean_all : do all the cleaning, then compile (bug correction with single_dir mode)
sat #18653 replace platform.linux_distribution by distro.linux_distribution for python 3.8+

3.3 SAT version 5.5.0

3.3.1 Release Notes, November 2019

New features and improvements

pip mode for python modules

This new mode was introduced in order to simplify the management of the python products (which number is
constantly raising years after years...). It is triggered by two properties within the application configuration file:

pip : ’yes’
pip_install_dir : ’python’

The first property activates the use of pip for all the products which have themselves the pip property activated (it
concerns twenty products). The second property specifies that the products should be installed directly in python
directory, and not in their own specific directory. This second property is useful on windows platform to reduce
the length of python path.

After several tests and iterations, the following management was adopted:

• sat prepare <application> does nothing for pip products (because at prepare time we don’t have python
compiled, and the use of native pip may not be compatible).

• sat compile <application> use the pip module installed in python to get pip archives (wheels), store
them in local archive directory, and install them either in python directory, or in the product directory
(in accordance to pip_install_dir property).

single directory mode

This new mode was introduced in order to get shorter path on windows platform. It is triggered by the property
single_install_dir within the application configuration file:

single_install_dir : "yes"

When activated, all the products which have themselves the property single_install_dir are installed in a common
directory, called PRODUCTS.

Generalization of sat launcher command

sat launcher command was extended to generate launchers based on an executable given as argument with -e
option:

sat launcher <application> -n salome.sh -e INSTALL/SALOME/bin/salome.py

The command generates a launcher called salome.sh, which sets the environment, and launches the IN-
STALL/SALOME/bin/salome.py.

optimization of sat compile

3.3. SAT version 5.5.0 41

SAT Documentation, Release 5.7.0

For a complete compilation of salome, sat compile command was spending more than three minutes to calculate
the dependencies and the order in which the products should be compiled. The algorithm used was clumsy, and
confused. It was therefore completely rewritten using a topological sorting. The products order calculation takes
now less than one second.

new management of sections in product configuration files

The sections defined in products are used to specify the variations in the way products are built. Depending upon
the tag or version of the product, sat chooses one of these sections and sets the product definition according to it.
With time, the number of sections increased a lot. And it is not easy to visualise the differences between these
sections, as they often are identical, except few variations. With the windows version, new sections are introduced
to manage windows specifics.

Therefore the need of a new mode for managing sections arises, that would be simplier, more concise, and help
the comprehension. This new mode is called incremental, and is triggered by the property incremental within
the default section of the product:

default:
{

....
properties:
{

incremental : "yes"
}
...

}

When this mode is defined, the definition of the product is defined incrementaly, by taking into account the
reference (the default section) and applying to it corrections defined in the other incremental sections. Depending
upon the case, several sections may be taken into account, in a predefined order:

• the default section, which contains the reference definition

• on windows platform, the default_win section if it exists

• the section corresponding to the tag. the algorithm to determine this section remains unchanged (what
changes is that in incremental mode the section only define deltas, not the complete definition)

• on windows platform, if it exists the same section postfixed with “_win”.

Here is as an example the incremental definition used for boost products. For version 1.49 of boost, we extend the
definition because we need to apply a patch:

default :
{

name : "boost"
build_source : "script"
compil_script : $name + $VARS.scriptExtension
get_source : "archive"
environ :
{

env_script : $name + ".py"
}
depend : [’Python’]
opt_depend : [’openmpi’]
patches : []
source_dir : $APPLICATION.workdir + $VARS.sep + ’SOURCES’ + $VARS.sep + $name
build_dir : $APPLICATION.workdir + $VARS.sep + ’BUILD’ + $VARS.sep + $name
install_dir : ’base’
properties :
{

single_install_dir : "yes"
incremental : "yes"

}
}

42 Chapter 3. Release Notes

SAT Documentation, Release 5.7.0

version_1_49_0:
{

patches : ["boost-1.49.0.patch"]
}

Suppression of the global “no_base” flag in application configuration

no_base : “no” is not interpreted anymore in application pyconf. One has to use the base flag. The possible
values are:

• yes : all the products go into the base

• no : no product goes into the base

The complete usage rule of bases is explained in the documentation.

Change log

This chapter does not provide the complete set of changes included, only the most significant changes are listed.

Artifact Description
spns #8544 The documentation has been improved!
spns #16894 clean the temp directory at the end of sat package
sat #12965 optimisation of sat compile : better, simplier and faster algo for dependencies!
sat #17206 Use pip to manage python modules
sat #17137 check_install functionality improvement : uses linux expending shell rules and interprets

environment variables
sat #8544 Update and improvement of documentation
sat # 8547 Generalisation of sat launcher command (new option –exe to specify which exe should be

launched after setting the environment
sat #17357 New field “rm_products” to blacklist products in overwrite section of appli pyconf
sat #17194 Parametrication of the value of INSTALL and BINARIES directories (in

src/internal_config/salomeTools.pyconf)
sat #17639 Warning when sat is launcher with python3
sat #17359 New incremental mode for the definition of products
sat #17766
sat #17848

The environment of products is now loaded in the order of product dependencies. To treat
correctly dependencies in the environment

sat #17955 No unit tests for native products
SAT_DEBUG and SAT_VERBOSE environment variables are now available in the
compilation, which can now forward the information and do the job!

sat #18392 Bug, binaries archives do not work when producrs are in base

3.4 SAT version 9.4.0

3.4.1 Release Notes, April, 2019

This version of sat was used to produce SALOME 9.3.0

New features and improvments

sat package

The sat package command has been completed and finalised, in order to manage standalone packages of sat, with
or without an embedded project. Options –ftp and –with_vcs have been added, in order to reduce the size of
salome project packages (without these options, the archive of the sat salome project is huge, as it includes all the
prerequisites archives. The –ftp option allows pointing directly to salome ftp site, which provides the prerequisites
archives. These are therefore not included. With the same approach, –with_vcs option specify an archive that

3.4. SAT version 9.4.0 43

SAT Documentation, Release 5.7.0

points directly to the git bases of SALOME. Sources of SALOME modules are therefore not embedded in the
archive, reducing the size.

produce a standalone archive of sat
sat package -t

produce a HUGE standalone archive of sat with the salome project embedded.
sat package -t -p salome

produce a small archive with sat and embedded salome project,
with direct links to ftp server and git repos
sat package -t -p salome --ftp --with_vcs

repo_dev property

This new application property repo_dev was introduced to trigger the use of the development git repositories for
all the git bases of an application. Before, the only way to use the development git repositories was to declare all
products in dev mode. This was problematic, for example one had to use –force_patch option to apply patches, or
to use –force option to reinstall sources.

The use of the development git repository is now triggered by declaring this new repo_dev property in the appli-
cation. And products are declared in dev mode only if we develop them.

add this section in an application to force the use of the development git bases
(from Tuleap)
properties :
{

repo_dev : "yes"
}

windows compatibility

The compatibility to windows platform has been improved. The calls to lsb_release linux command have been
replaced by the use of python platform module. Also the module med has been renamed medfile, and module
Homard has been renamed homard_bin, in order to avoid lower/upper case conflicts.

Change log

This chapter does not provide the complete set of changes included, only the most significant changes are listed.

Artifact Description
sat #12099 Add a new field called check_install to verify the correct installation
sat #8607 Suppression of sat profile command, replaced by sat template command (AppModule)
69d6a69f43 Introduction of a new property called repo_dev to trigger the use of the dev git repository.
scs #13187 Update of PythonComponent template
sat #16728 Replace call to lsb_release by platform module
sat #13318 sat
#16713

command sat package -t -p salome –ftp –with_vcs debug of sat packages containing sat
and embedded projects

sat #16787 Rename product med by medfile and Homard by homard_bin

3.5 SAT version 5.3.0

3.5.1 Release Notes, February, 2019

New features and improvments

sat init

44 Chapter 3. Release Notes

SAT Documentation, Release 5.7.0

The command sat init has been finalized, with the addition of options –add_project and –reset_projects. It is
now able to manage projects after an intiale git clone of sat. The capacity is used by users installing sat from the
git repositories:

get sources of sat
git clone https://codev-tuleap.cea.fr/plugins/git/spns/SAT.git sat

get SAT_SALOME project (the sat project that contains the configuration of SALOME)
git clone https://codev-tuleap.cea.fr/plugins/git/spns/SAT_SALOME.git

initialise sat with this project
sat init --add_project $(pwd)/SAT_SALOME/salome.pyconf

It is possible to initialise sat with several projects by calling several times sat init –add_project

sat prepare : git retry functionnality

With large git repositories (>1GB) git clone command may fail. To decrease the risk, sat prepare will now retry
three times the git clone function in case of failure.

Reset of LD_LIBRARY_PATH and PYTHONPATH before setting the environment

Every year, a lot of problems occur, due to users (bad) environment. This is most of the time caused by the presence
(out-of-date) .bashrc files. To prevent these (time-consuming) problems, sat now reset LD_LIBRARY_PATH and
PYTHONPATH variables before setting the environment thus avoiding side effects. Users who wish anayway to
start SALOME with a non empty LD_LIBRARY_PATH or PYTHONPATH may comment the reset in salome
launcher or in env_launch.sh file.

New option –complete for sat prepare

This option is used when an installation is interrupted or incomplete. It allows downloading only the sources of
missing products

only get sources of missing products (i.e products not present in INSTALL dir)
git prepare SALOME-master -c

** New option –packages for sat clean**

SALOME packages are big... It is usefull to be able to clean them whith this new option.

remove packages present in PACKAGES directory of SALOME-master
git clean SALOME-master --packages

Global configuration keys “debug”, “verbose” and “dev” in applications

These new keys can be defined in applications in order to triger the debug, verbose and dev mode for all products.
In the following example, the SALOME-master application will be compiled in debug mode (use of -g flag), but
with no verbosity. Its products are not in development mode.

APPLICATION :
{

name : ’SALOME-master’
workdir : $LOCAL.workdir + $VARS.sep + $APPLICATION.name + ’-’ + $VARS.dist
tag : ’master’
dev : ’no’
verbose :’no’
debug : ’yes’
...

}

Change log

This chapter does not provide the complete set of changes included, only the most significant changes are listed.

3.5. SAT version 5.3.0 45

SAT Documentation, Release 5.7.0

Artifact Description
sat #16548 sat
#8566

Finalisation of sat init command (options -add_project and –reset_projects)

sat #12994 new git retry functionnality for sat prepare : give three trials in case of failures
sat #8581 traceability : save tag of sat and its projects
sat #8588 reset LD_LIBRARY_PATH and PYTHONPATH before launching SALOME
sat #9575 Improvment of the DISTENE licences management (notably for packages)
sat #8597 Implementation of option sat prepare -c (–complete) for preparing only the sources that

are not yet installed
sat #8655 implementation of option sat clean –packages
sat #8532 sat
#8594

sat log : remane option –last_terminal in –last_compile Extension of sat log –last_compile
to the logs of make check

sat #13271 hpc mode trigered by product “hpc” key in state of MPI_ROOT variable
sat #8606 sat generate clean old directories before a new generation
sat #12952 Add global keys “debug”, “verbose” and “dev” to manage globally these modes for all the

products of an application
sat #8523 protection of call to ssh on windows platform

3.6 SAT version 5.2.0

3.6.1 Release Notes, December, 2018

This version of salomeTool was used to produce SALOME 9.2.0

New features and improvments

Generalisation of –properties option

Wherever the –product option was available (to select products), an option –properties has been implemented, to
offer a alternative way to select products, based on theur property. For example

get only the sources of SALOME modules, not the prerequisites
sat prepare SALOME-9.2.0 --properties is_SALOME_module:yes

Compatibility with python 3

salomeTool is still meant to run under python2. But it magages now the build of applications runninfg under
python3. It includes: * the generation of python3 launcher, * the testing of applications under python 3 (sat test
command).

New syntax for the naming of sections in product pyconf

The old syntax is still supported for compatibility, but the new one, more explicit, is recommended.

all tags from 8.5.0 to 9.2.1, with variants (8, 8_5_0, 8.5, V8, v8.6, etc)
_from_8_5_0_to_9_2_1
{

....

mesa launcher

When salome is used on a remote machine, the use of openGL 3 is not compatible with X11 forwarding (ssh -X).
This cause segmentation faults when the 3D viewers are used. For people who have no other choice and need to
use ssh (it may be useful for testing SALOME on a client remote machine), we provide in the packages a mesa
laucher mesa_salome. It will avoid the segmentation faults, at the price of poor performance : it should only be
used in this case! If performance is required, a solution based on the use of VirtualGL and TurboVNC/x2go would
be recommended. But this requires some configuration of the tools to be done as root. To activate the production
of the mesa launcher, use the application property mesa_launcher_in_package:

46 Chapter 3. Release Notes

SAT Documentation, Release 5.7.0

activate the production of a launcher using mesa library
properties :
{

mesa_launcher_in_package : "yes"
}

Change log

This chapter does not provide the complete set of changes included, only the most significant changes are listed.

Artifact Description
sat
#8577

Add a –properties option everywhere useful (whenever there is a –product option)

sat
#8471

Windows portage necessary to produce SALOME 8.2.0 on Windows

sat
#13031

Python 3 compatibility

sat
#8561

New syntax for sections names in products pyconf files

sat
#11056

New application property mesa_launcher_in_package to activate the production of a mesa
launcher in the package

3.7 SAT version 5.1.0

3.7.1 Release Notes, June, 2018

This version of sat was used to produce SALOME 8.5.0

New features and improvments

sat compile : management of a verbose and debug option

The verbose and debug option for cmake products is activated through two new keys introduced
in application configuration files : debug and verbose. debug option will trigger the tranm-
mission of -DCMAKE_VERBOSE_MAKEFILE=ON to cmake, while verbose option will transmit -
DCMAKE_VERBOSE_MAKEFILE=ON. The new options can be activated for a selected products (within the
option dictionnary associated to the products):

for KERNEL compilation : specify to cmake a debug compilation with verbosity
KERNEL : {tag : "V7_8_0", base : "yes", debug : "yes", verbose : "yes"}

These two options can also be activated globaly, for all products, through golbal keys:

specify to cmake a debug compilation with verbosity for all products
APPLICATION :
{

name : ’SALOME-master’
workdir : $LOCAL.workdir + $VARS.sep + $APPLICATION.name + ’-’ + $VARS.dist
tag : ’master’
verbose :’yes’
debug : ’yes’
...

}

Implementation of salome test functionnality with sat launcher

3.7. SAT version 5.1.0 47

SAT Documentation, Release 5.7.0

sat launcher is now able to launch salome tests (before the development, only virtual applications where able to
launch salome tests). SALOME module was adapted to hold the tests (through links to SALOME module test
directories). Notablt, the results and logs of the test are stored in INSTALL/SALOME/bin/salome/test.

display help for salome test command
salome test -h

show available tests (without running them)
salome test -N

run tests
salome test

Change log

This chapter does not provide the complete set of changes included, only the most significant changes are listed.

Artifact Description
sat #8908 sat compile : management of a verbose and debug options
sat #8560 Define handles set_env_build and set_env_launch to be able to specialise env
sat #8638 Improve information printed by –show option of sat compile
sat #8911 Implementation of salome test with sat launcher in connection with

SALOME module
sat #11056 Generation of new salome launcher with mesa with sat launcher command
sat #11028 Use of a new property “configure_dependency” to manage the dependency

of all salome modules to CONFIGURATION module
sat #10569 Debug and improvement of products filters in sat commands
sat #8576 sat #8646 sat #8605
sat #8646 sat #8576

Improve if messages displayed by sat compile commande Improve
management of errors

3.8 SAT version 5.0.0

3.8.1 Release Notes, January 2018

This version of sat was used to produce SALOME 8.4.0

New features and improvments

Complete re-engineering

Separation of the tool and the configurations files

Clarification of main use cases

Simplification and uniformisation of tha API

Local prerequisite base

Use of properties associated to products

1. facilitate the development of services (example has_unit_tests property)

2. help the user to select specific products with a given property

New type of packages

robust and easy to install!

48 Chapter 3. Release Notes

	Documentation
	Installation
	Using SAT
	Configuration

	List of Commands
	Command doc
	Command config
	Command prepare
	Command compile
	Command launcher
	Command log
	Command environ
	Command clean
	Command package
	Command generate
	Command init
	Command template
	Command application

	Release Notes
	SAT version 5.7.0
	SAT version 5.6.0
	SAT version 5.5.0
	SAT version 9.4.0
	SAT version 5.3.0
	SAT version 5.2.0
	SAT version 5.1.0
	SAT version 5.0.0

