Salome HOME
Review of reference documentation.
authorysn <ysn@opencascade.com>
Mon, 5 May 2014 05:25:50 +0000 (09:25 +0400)
committerysn <ysn@opencascade.com>
Mon, 5 May 2014 05:25:50 +0000 (09:25 +0400)
19 files changed:
doc/salome/gui/SMESH/images/hypo_quad_params_enfnodes_algo.png [deleted file]
doc/salome/gui/SMESH/images/hypo_quad_params_enfnodes_algo1.png [new file with mode: 0644]
doc/salome/gui/SMESH/images/hypo_quad_params_enfnodes_algo2.png [new file with mode: 0644]
doc/salome/gui/SMESH/images/hypo_quad_params_enfnodes_algo3.png [new file with mode: 0644]
doc/salome/gui/SMESH/images/split_into_prisms.png
doc/salome/gui/SMESH/input/1d_meshing_hypo.doc
doc/salome/gui/SMESH/input/2d_meshing_hypo.doc
doc/salome/gui/SMESH/input/about_meshes.doc
doc/salome/gui/SMESH/input/arranging_study_objects_page.doc [deleted file]
doc/salome/gui/SMESH/input/basic_meshing_algos.doc
doc/salome/gui/SMESH/input/cartesian_algo.doc
doc/salome/gui/SMESH/input/constructing_meshes.doc
doc/salome/gui/SMESH/input/define_mesh_by_script.doc [new file with mode: 0644]
doc/salome/gui/SMESH/input/double_nodes_page.doc
doc/salome/gui/SMESH/input/grouping_elements.doc
doc/salome/gui/SMESH/input/index.doc
doc/salome/gui/SMESH/input/mesh_through_point.doc
doc/salome/gui/SMESH/input/split_to_tetra.doc
doc/salome/gui/SMESH/input/use_existing_algos.doc

diff --git a/doc/salome/gui/SMESH/images/hypo_quad_params_enfnodes_algo.png b/doc/salome/gui/SMESH/images/hypo_quad_params_enfnodes_algo.png
deleted file mode 100755 (executable)
index adddf84..0000000
Binary files a/doc/salome/gui/SMESH/images/hypo_quad_params_enfnodes_algo.png and /dev/null differ
diff --git a/doc/salome/gui/SMESH/images/hypo_quad_params_enfnodes_algo1.png b/doc/salome/gui/SMESH/images/hypo_quad_params_enfnodes_algo1.png
new file mode 100644 (file)
index 0000000..3040015
Binary files /dev/null and b/doc/salome/gui/SMESH/images/hypo_quad_params_enfnodes_algo1.png differ
diff --git a/doc/salome/gui/SMESH/images/hypo_quad_params_enfnodes_algo2.png b/doc/salome/gui/SMESH/images/hypo_quad_params_enfnodes_algo2.png
new file mode 100644 (file)
index 0000000..f0a4c62
Binary files /dev/null and b/doc/salome/gui/SMESH/images/hypo_quad_params_enfnodes_algo2.png differ
diff --git a/doc/salome/gui/SMESH/images/hypo_quad_params_enfnodes_algo3.png b/doc/salome/gui/SMESH/images/hypo_quad_params_enfnodes_algo3.png
new file mode 100644 (file)
index 0000000..f6db339
Binary files /dev/null and b/doc/salome/gui/SMESH/images/hypo_quad_params_enfnodes_algo3.png differ
index 6b9f77a2da91f5af7dbc30ff29fb29915aacbf06..6d48e6956cb97d01001723d3ce86a4fcbcb42dc5 100644 (file)
Binary files a/doc/salome/gui/SMESH/images/split_into_prisms.png and b/doc/salome/gui/SMESH/images/split_into_prisms.png differ
index b992bc8e2e2d53ed1299e360af991aa6798b3e0a..ac0902ec139828dd71e8b5bddd5b2dd18f34099f 100644 (file)
@@ -48,7 +48,7 @@ beginning from a given starting length and up to a given end length.
 The direction of the splitting is defined by the orientation of the underlying geometrical edge. 
 <b>"Reverse Edges"</b> list box allows to specify the edges for which the splitting should be made 
 in the direction opposing to their orientation. This list box is enabled only if the geometry object 
-is selected for the meshing. In this case the user can select edges to be reversed either directly 
+is selected for the meshing. In this case the user can select edges to be reversed either by directly 
 picking them in the 3D viewer or by selecting the edges or groups of edges in the Object Browser.
 
 \image html a-arithmetic1d.png
@@ -62,17 +62,14 @@ picking them in the 3D viewer or by selecting the edges or groups of edges in th
 \anchor geometric_1d_anchor
 <h2>Geometric Progression hypothesis</h2>
 
-<b>Geometric Progression</b> hypothesis allows to split edges into
+<b>Geometric Progression</b> hypothesis allows splitting edges into
 segments with a length that changes in geometric progression (Lk =
-Lk-1 * d) beginning from a given starting length and with a given
-common ratio.
+Lk-1 * d) starting from a given <b>Start Length</b> and  <b>Common Ratio</b>.
 
-The direction of the splitting is defined by the orientation of the
-underlying geometrical edge. <b>"Reverse Edges"</b> list box allows to
-specify the edges for which the splitting should be made in the
-direction opposing to their orientation. This list box is enabled only
-if the geometry object is selected for the meshing. In this case the
-user can select edges to be reversed either directly picking them in
+The splitting direction is defined by the orientation of the
+underlying geometrical edge.
+<b>Reverse Edges</b> list box allows specifying the edges, for which the splitting should be made in the
+direction opposite to their orientation. This list box is filled after a geometry object is selected for meshing. In this case it is possible to select edges to be reversed either directly picking them in
 the 3D viewer or by selecting the edges or groups of edges in the
 Object Browser. 
 
index e019c8b87ff3c96bc64f282dc329f8b3395aab1b..0ccb902e0025d7266fde1d8fc95b8901a9ad9458 100644 (file)
@@ -36,13 +36,13 @@ of a given face.
 \anchor hypo_quad_params_anchor
 <h2>Quadrangle parameters</h2>
 
-\image html hypo_quad_params_dialog.png "Quadrangle parameters creation/edition dialog"
+\image html hypo_quad_params_dialog.png "Quadrangle parameters: Transition"
 
 <b>Quadrangle parameters</b> is a hypothesis for Quadrangle (Mapping) algorithm.
 
 <b>Transition</b> tab is used to define the algorithm of transition
 between opposite sides of faces with a different number of
-segments on opposite sides. The following types of transition
+segments on them. The following types of transition
 algorithms are available:
 
 - <b>Standard</b> is the default case, when both triangles and quadrangles
@@ -80,7 +80,7 @@ algorithm for meshing of trilateral faces. In this case it is
 necessary to select the vertex, which will be used as the fourth edge
 (degenerated).
 
-\image html hypo_quad_params_dialog_vert.png "Base Vertex tab of Quadrangle parameters creation/edition dialog"
+\image html hypo_quad_params_dialog_vert.png "Quadrangle parameters: Base Vertex"
 
 \image html hypo_quad_params_1.png "A face built from 3 edges"
 
@@ -98,9 +98,9 @@ shows the good (left) and the bad (right) results of meshing.
 
 \image html hypo_quad_params_res_2.png "The resulting meshes"
 
-\image html hypo_quad_params_dialog_enf.png "Enforced nodes tab of Quadrangle parameters creation/edition dialog"
+\image html hypo_quad_params_dialog_enf.png "Quadrangle parameters: Enforced nodes"
 
-<b>Enforced nodes</b> tab allows for defining points where the
+<b>Enforced nodes</b> tab allows defining points, where the
 algorithm should create nodes. There are two ways to define positions
 of the enforced nodes.
 <ul>
@@ -113,22 +113,30 @@ of the enforced nodes.
     projected to the meshed face and located close enough to the
     meshed face will be used to create the enforced nodes.</li>
 </ul>
-Algorithm of creation of the enforced nodes is following.
 
-\image html hypo_quad_params_enfnodes_algo.png "Steps of the algorithm of creation of the enforced nodes"
-<ol>
-  <li> Left image: Positions of nodes are computed without taking into
+Let us see how the algorithm works:
+
+
+<ul>
+  <li> Initially positions of nodes are computed without taking into
   account the enforced vertex (yellow point).</li> 
-  <li> Middle image: A node closest to the enforced vertex is
+\image html hypo_quad_params_enfnodes_algo1.png "Initial mesh"
+
+  <li> Then the node closest to the enforced vertex is
     detected. Extreme nodes of the row and column of the detected node
     are used to create virtual edges (yellow lines) ending at the
     enforced vertex. </li>
-  <li> Right image: The meshed face is thus divided by the virtual
+\image html hypo_quad_params_enfnodes_algo2.png "Creation of virtual edges"
+       
+  <li> Consequently, the meshed face is divided by the virtual
     edges into four quadrilateral sub-domains each of which is meshed
-    as usually: the nodes of the row and column of detected node are
+    as usually: the nodes of the row and column of the detected node are
     moved to the virtual edges and the quadrilateral elements are
     constructed. 
-</ol>
+       
+\image html hypo_quad_params_enfnodes_algo3.png "Final mesh"   
+
+</ul>
 If there are several enforced vertices, the algorithm is applied
 recursively to the formed sub-domains.
 
index 565b3a48b3e74624078789ece37f361289816248..870e5c1825cdffb4185235ec4db026777ccf522a 100644 (file)
@@ -10,7 +10,7 @@ on the basis of geometrical shapes produced in the GEOM module.
 It is also possible to 
 \subpage constructing_submeshes_page "construct mesh on a part of the geometrical object", 
 for example, a face, with different meshing parameters or using
-another meshing algorithm than the whole mesh.
+another meshing algorithm.
 
 Several created meshes can be \subpage building_compounds_page "combined into another mesh".
 
diff --git a/doc/salome/gui/SMESH/input/arranging_study_objects_page.doc b/doc/salome/gui/SMESH/input/arranging_study_objects_page.doc
deleted file mode 100644 (file)
index ea655d5..0000000
+++ /dev/null
@@ -1,11 +0,0 @@
-/*!
-
-\page arranging_study_objects_page Arranging objects in study
-
-If sub-meshes or groups container item has more than one child sub-object, then there is a possibility to sort these children in ascending order.
-
-To use sort functionality select "Sort children" popup menu item for the parent object.
-
-\image html smesh_sort.png "Sorting of sub-objects"
-
-*/
index e76863e8a09151d8d6b84af28841d74c901e4bce..ee632b282113eb56970641ada4fda99b01a9a1ec 100644 (file)
@@ -9,9 +9,9 @@ used for meshing entities (1D, 2D, 3D) composing geometrical objects.
 <li>For meshing of 1D entities (<b>edges</b>):</li>
 
 <ul>
-<li>Wire Discretisation meshing algorithm - splits a wire into a
+<li>Wire Discretization meshing algorithm - splits a wire into a
 number of mesh segments following any 1D hypothesis.</li>
-<li>Composite Side Discretisation algorithm - allows to apply any 1D
+<li>Composite Side Discretization algorithm - allows to apply any 1D
 hypothesis to a whole side of a geometrical face even if it is
 composed of several edges provided that they form C1 curve, have the
 same hypotheses assigned and form one side in all faces of the main
@@ -58,10 +58,10 @@ There is also a number of more specific algorithms:
 <li>\subpage segments_around_vertex_algo_page "for defining the local size of elements around a certain node"</li>
 <li>\subpage prism_3d_algo_page "for meshing prismatic shapes"</li>
 <li>\subpage radial_quadrangle_1D2D_algo_page "for meshing special 2d faces (circles and part of circles)"</li>
+<li>\subpage use_existing_page "Use Edges to be Created Manually" and 
+\ref use_existing_page "Use Faces to be Created Manually" algorithms can be
+used to create a 1D or a 2D mesh in a python script.</li>
 </ul>
-\ref use_existing_anchor "Use Edges to be Created Manually" and 
-\ref use_existing_anchor "Use Faces to be Created Manually" algorithms can be
-used to create a 1D or a 2D mesh in a python script.
 
 \ref constructing_meshes_page "Constructing meshes" page describes in
 detail how to apply meshing algorithms.
index 7bf8306905efcb201d6b21cfa1bfce3af26ea6e6..6062aa89ea87f81f423a649ac5f0086f4d873018 100644 (file)
@@ -7,7 +7,7 @@ the internal part of geometry and polyhedrons and other types of
 elements at the intersection of Cartesian cells with the geometrical
 boundary.
 
-\image html cartesian3D_sphere.png "A shpere meshed by Body Fitting algorithm"
+\image html cartesian3D_sphere.png "A sphere meshed by Body Fitting algorithm"
 
 The meshing algorithm is as follows.
 <ol>
@@ -29,10 +29,7 @@ nodes are inside and some outside. </li>
 </li>
 </ol>
 To apply this algorithm when you define your mesh, select <b>Body
-  Fitting</b> in the list of 3D algorithms and click <em> "Add
-  Hypothesis" </em> button and <em>"Body Fitting Parameters"</em>" menu
-item. Dialog of <b>Body Fitting Parameters
-  hypothesis</b> will appear.
+  Fitting</b> in the list of 3D algorithms and add <b>Body Fitting Parameters</b> hypothesis. The following dialog will appear:
 
 <br>
 \anchor cartesian_hyp_anchor
@@ -43,19 +40,21 @@ item. Dialog of <b>Body Fitting Parameters
 This dialog allows to define
 <ul>
   <li>\b Name of the algorithm. </li>
+  
   <li> Minimal size of a cell truncated by the geometry boundary. If the
     size of a truncated grid cell is \b Threshold times less than a
     initial cell size, then a mesh element is not created. </li>
+       
   <li> <b> Implement Edges </b> check-box activates incorporation of
   geometrical edges in the mesh.
-\image html cartesian_implement_edge.png "'Implement Edges' switched off (left) and on (right)"
-  <li> Cartesian structured grid. Location of nodes along each grid axis
-    is defined individually. <b> Definition mode </b> chooses a way of
-    grid definition:
+  
+\image html cartesian_implement_edge.png "Implement Edges switched off to the left and on to the right"
+
+  <li> <b>Definition mode</b> allows choosing how Cartesian structured grid is defined. Location of nodes along each grid axis is defined individually:
     <ul>
       <li> You can specify the \b Coordinates of grid nodes. \b Insert button
-        inserts a node at distance \b Step (negative or positive) from a
-        selected node. \b Delete button removes a selected node. Double
+        inserts a node at  \b Step distance(negative or positive) from the
+        selected node. \b Delete button removes the selected node. Double
         click on a coordinate in the list enables its edition. 
         \b Note that node coordinates are measured along directions of
         axes that can differ from the directions of the Global Coordinate
@@ -65,38 +64,37 @@ This dialog allows to define
         normalized at [0.0,1.0]. The whole range of geometry can be
         divided into sub-ranges with their own spacing formulas to apply;
     \a t varies between 0.0 and 1.0 within each sub-range. \b Insert button
-        divides a selected range into two ones. \b Delete button adds the
+        divides a selected range into two. \b Delete button adds the
         selected sub-range to the previous one. Double click on a range in
         the list enables edition of its right boundary. Double click on a
         function in the list enables its edition.
     </li> </ul>
   </li>
-  <li> Coordinates of a <b> Fixed Point</b>. They allow to exactly
-    locate a grid node in a direction defined by spacing. If all the three
-    directions are defined by spacing, then there will be a mesh node at
-    the <b> Fixed Point</b>. If two directions are defined by spacing,
-    then there will be at least a link between mesh nodes passing through
-    the <b> Fixed Point</b>. If only one direction is defined by spacing,
-    then there will be at least an element facet passing through
-    the <b> Fixed Point</b>. If no directions are defined by spacing,
-    <b> Fixed Point</b> is disabled.</li>
-  <li> <b> Directions of Axes</b>. You can set up almost any
-    directions of grid axes that can help in generation of as many as
-    possible hexahedral elements.
+  
+  <li> <b> Fixed Point</b> group allows defining an exact location of a grid node in the direction defined by spacing. The following cases are possible:
+<ul>
+<li>If all three directions are defined by spacing, there will be a mesh node at  the <b> Fixed Point</b>. </li>
+<li>If two directions are defined by spacing, there will be at least a link between mesh nodes passing through    the <b> Fixed Point</b>.</li>
+<li> If only one direction is defined by spacing, there will be at least an element facet passing through the <b> Fixed Point</b>.</li> 
+<li>If no directions are defined by spacing, <b> Fixed Point</b> is disabled.</li>
+</ul>
+</li>
+       
+  <li> <b> Directions of Axes</b> group allows setting the directions of grid axes.
     <ul>
-      <li><b> Orthogonal Axes </b> check-box, if activated, keeps the
-        axes orthogonal during their modification. </li>
+      <li>If <b> Orthogonal Axes </b> check-box is activated the
+        axes remain orthogonal during their modification. </li>
       <li> Selection buttons enable snapping corresponding axes to
         direction of a geometrical edge selected in the Object
         Browser. Edge direction is defined by coordinates of its end
         points.</li>
       <li><b> Optimal Axes</b> button runs an algorithm that tries to
-        set the axes so that a number of generated hexahedra to be
-        maximal.</li>
+        set the axes to maximize the number of generated hexahedra.</li>
       <li><b> Reset </b> button returns the axes in a default position
       parallel to the axes of the Global Coordinate System.</li> 
-  </ul></li>
-</ul>
+  </ul>
+  </li>
+ </ul>
 
 <br>
 <b>See Also</b> a sample TUI Script of a
index b6c687bb03c2cbdc26499d3cd550426cfb36f705..34ca6e99595892f7ee5e2f7611c98662bde6b33c 100644 (file)
@@ -10,9 +10,6 @@
   <li> \ref submesh_order_anchor "Changing sub-mesh priority" (optional)</li>
   <li> \ref compute_anchor "Computing the mesh"</li>
 </ul>
-Mesh can be \ref use_existing_anchor "computed using your own meshing algorithms" 
-written in Python.
-
 
 \anchor create_mesh_anchor
 <h2>Creation of a mesh object</h2>
@@ -32,6 +29,10 @@ written in Python.
     \image html createmesh-inv.png
     <br>
   </li>
+  <li>Select <b>Mesh Type</b> in the corresponding list from <b>Any, Hexahedral, Tetrahedral, Triangular </b> and \b Quadrilateral (there can be less items for lower dimensions). 
+  
+  Selection of a mesh type hides any algorithms that are not able to create elements of this type.</li>
+  
   <li>Apply \subpage basic_meshing_algos_page "meshing algorithms" and
     \subpage about_hypo_page "hypotheses" which will be used to compute
     this mesh.
@@ -87,23 +88,20 @@ written in Python.
     <em>"Edit Hypothesis" button</em>
     </center>
 
-    Most 2D and 3D algorithms can work without hypotheses using some
-    default meshing parameters. Some algorithms does not require any
-    hypothesis. After selection of an algorithm "Hypothesis" field of
+    Most 2D and 3D algorithms can work without hypotheses using default meshing parameters. Some algorithms do not require any hypotheses. After selection of an algorithm "Hypothesis" field of
     the dialog can contain:
     <ul>
       <li> <em>\<Default\></em> if the algorithm can work using default
       parameters.</li>
       <li> <em>\<None\></em> if the algorithm requires a hypothesis defining
       its parameters.</li>
-      <li> Nothing if the algorithm has no parameters to tune.</li>
+      <li> If the algorithm does not use hypotheses, this field is grayed.</li>
     </ul>
-    After selection of an algorithm "Add. Hypothesis" field of
-    the dialog can contain:
+    After selection of an algorithm <b>Add. Hypothesis</b> field can contain:
     <ul>
-      <li> <em>\<None\></em> if the algorithm can be additionally tuned
+      <li> <em>\<None\></em> if the algorithm can be tuned
       using an additional hypothesis.</li>
-      <li> Nothing if the algorithm has no additional parameters to tune.</li>
+      <li> If the algorithm does not use additional hypotheses, this field is grayed.</li>
     </ul>
 
     Proceed in the same way with 2D and 1D Algorithms and Hypotheses that
@@ -346,33 +344,6 @@ By default, the information box is always shown after mesh computation operation
 
 <br><br>
 
-\anchor use_existing_anchor
-<h2>"Use Edges to be Created Manually" and "Use Faces to be Created Manually" algorithms</h2>
-
-It is possible to create a 1D or a 2D mesh in a python script
-(using <em>AddNode, AddEdge</em> and <em>AddFace</em> commands) and
-then use such sub-meshes in the construction of a 2D or a 3D mesh. For
-this, there exist two algorithms: <b>Use Edges to be Created
-Manually</b> and <b>Use Faces to be Created Manually</b>.
-Imagine, you want to use standard algorithms to generate 1D and 3D
-meshes and to create 2D mesh by your python code. Then you
-<ol>
-  <li> create a mesh object, assign a 1D algorithm,</li>
-  <li> invoke \b Compute command, which computes a 1D mesh,</li>
-  <li> assign <b>Use Faces to be Created Manually</b> and a 3D algorithm,</li>
-  <li> run your python code, which creates a 2D mesh,</li>
-  <li> invoke \b Compute command, which computes a 3D mesh.</li>
-</ol>
-\warning <b>Use Edges to be Created Manually</b> and <b>Use Faces to
-be Created Manually</b> algorithms should be assigned _before_
-mesh generation by the Python code.
-
-Consider trying a sample script demonstrating the usage of 
-\ref tui_use_existing_faces "Use Faces to be Created Manually"
-algorithm for construction of a 2D mesh using Python commands.
 
-\image html use_existing_face_sample_mesh.png
-<em> Mesh computed by \ref tui_use_existing_faces "the sample script"
-  shown in a Shrink mode.</em>
 
 */
diff --git a/doc/salome/gui/SMESH/input/define_mesh_by_script.doc b/doc/salome/gui/SMESH/input/define_mesh_by_script.doc
new file mode 100644 (file)
index 0000000..beb9d8e
--- /dev/null
@@ -0,0 +1,29 @@
+/*!
+
+\page  use_existing_page Use Edges/Faces to be Created Manually"
+
+The algorithms <b>Use Edges to be Created Manually</b> and <b>Use Faces to be Created Manually</b> allow  creating a 1D or a 2D mesh in a python script (using <em>AddNode, AddEdge</em> and <em>AddFace</em> commands) and then using such sub-meshes in the construction of a 2D or a 3D mesh. 
+
+For example, you want to use standard algorithms to generate 1D and 3D
+meshes and to create 2D mesh by your python code. For this, you
+<ol>
+  <li> create a mesh object, assign a 1D algorithm,</li>
+  <li> invoke \b Compute command, which computes a 1D mesh,</li>
+  <li> assign <b>Use Faces to be Created Manually</b> and a 3D algorithm,</li>
+  <li> run your python code, which creates a 2D mesh,</li>
+  <li> invoke \b Compute command, which computes a 3D mesh.</li>
+</ol>
+
+\warning <b>Use Edges to be Created Manually</b> and <b>Use Faces to
+be Created Manually</b> algorithms should be assigned _before_
+mesh generation by the Python code.
+
+Consider trying a sample script demonstrating the usage of 
+\ref tui_use_existing_faces "Use Faces to be Created Manually"
+algorithm for construction of a 2D mesh using Python commands.
+
+\image html use_existing_face_sample_mesh.png
+<em> Mesh computed by \ref tui_use_existing_faces "the sample script"
+  shown in a Shrink mode.</em>
+  
+*/
index c86f0bdc13d3144cb6493ead4434d4c0378fb7b6..9c3983f0185ccff569e08f5da6d1707029d878da 100644 (file)
@@ -122,18 +122,7 @@ Parameters to be defined in this mode:
 \anchor mode_group_boundary_anchor
 <h2>Duplicate nodes on group boundaries</h2>
 
-This mode duplicates nodes located on boundaries between given groups of
-volumes. If required, flat elements are created on the duplicated
-nodes: a triangular facet shared by two volumes of two groups generates
-a flat prism, a quadrangular facet generates a flat hexahedron.
-<br>
-The created flat volumes are stored in groups. These groups are named
-according to the position of the group in the list of groups: group
-"j_n_p" is a group of flat elements that are built between the group \#n
-and the group \#p in the group list. All the flat elements are gathered
-into the group named "joints3D". The flat element of the multiple
-junctions between the simple junction are stored in a group named
-"jointsMultiples".
+This mode duplicates nodes located on boundaries between given groups of volumes. 
 
 <br>
 
@@ -142,12 +131,12 @@ junctions between the simple junction are stored in a group named
 Parameters to be defined in this mode:
 <ul>
 <li><b>Groups of volumes</b> (<em>mandatory</em>): list of volume
-  groups. These groups should be disjoint, i.e. should not share volumes.</li>
-<li><b>Create joint elements</b> : if checked - the flat elements are created.</li>
-<li><b>On all boundaries</b> : if checked - then the volumes not
-  included into the <b>Groups of volumes</b> are considered as another given
-  group. And thus nodes on boundary between <b>Groups of volumes</b> and the
-  rest mesh are also duplicated.</li>
+  groups. These groups should be disjoint, i.e. should not have shared volumes.</li>
+<li> If <b>Create joint elements</b> option is activated, flat elements are created on the duplicated
+nodes: a triangular facet shared by two volumes of two groups generates
+a flat prism, a quadrangular facet generates a flat hexahedron.</li>
+<li> If <b>On all boundaries</b> : option is activated, the volumes, which are not
+  included into <b>Groups of volumes</b>, are considered as another group and thus the nodes on the boundary between <b>Groups of volumes</b> and the remaining mesh are also duplicated.</li>
 </ul>
 
 <br><b>See Also</b> a sample TUI Script of a
index 9615ad4c39b858009442b9ac7afc3716e174520b..c6a97e16533091bcb70fc7fd4673f812fdd65da4 100644 (file)
@@ -32,6 +32,10 @@ The created groups can be later:
 - \subpage using_operations_on_groups_page "Subjected to Boolean operations"
 - \subpage deleting_groups_page "Deleted"
 
+If sub-meshes or groups container item has more than one child sub-object, it is possible to sort the children in ascending order. For this, select the parent object in the Object Browser and choose <b>Sort children</b> context menu item.
+
+\image html smesh_sort.png "Sorting of sub-objects"
+
 An important tool, providing filters for creation of \b Standalone
 groups is \ref selection_filter_library_page.
 
index a4c2a66ab0326a76cb608e6c4211b89b3df262f0..d7a4751379887f8e85a26c96a0e3df5068182a1c 100644 (file)
@@ -25,7 +25,6 @@ It is possible to easily set parameters via the variables predefined in
 \subpage using_notebook_mesh_page "Salome notebook".
 
 Mesh module preferences are described in the \subpage mesh_preferences_page section of SALOME Mesh Help.
-Also, there is a possibility to \subpage arranging_study_objects_page "re-arrange sub-meshes and groups in the SALOME study".
 
 Almost all mesh module functionalities are accessible via
 \subpage smeshpy_interface_page "Mesh module Python interface".
index 958a662eb42fe535b4c354db587e69a49c9c1d89..679d629b49b50841ad36519eb800e9b5359c4f11 100644 (file)
@@ -14,17 +14,19 @@ click <em>"Move Node"</em> button in the toolbar.
 \image html image67.png
 <center><em>"Move Node" button</em></center>
 
-One of the following dialogs will appear:
+The following dialog will appear:
 
-\image html meshtopass1.png "manual method of selecting node"
-\image html meshtopass2.png "automatic method of selecting node"
+\image html meshtopass1.png "Manual node selection"
+
+\image html meshtopass2.png "Automatic node selection"
 
 </li>
-<li>Specify the way of selection of the node: manually (first radio button) or automatically (second radio button).</li>
-<li>If the manual method selected, select the necessary node (X, Y, Z fields show the original coordinates of the node to move) or set the ID node.</li>
+<li>Specify the way of node selection: manually (the first radio button) or automatically (the second radio button).</li>
+
+<li>If the manual method is selected, select the necessary node (X, Y, Z fields show the original coordinates of the node to move) or set the node ID.</li>
 <li>Enter the coordinates of the destination point.</li>
 <li>Click <b>Update Destination</b> button to update the coordinates of the destination point.</li>
-<li>Activate \b Preview checkbox to show the result of move in the viewer</li>
+<li>Activate \b Preview check-box to show the result of move in the viewer</li>
 <li>Click the \b Apply or <b>Apply and Close</b> button to confirm the operation.</li>
 </ol>
 
index eb7fe0f26805f7dbf3c42157519ef0e091066cd0..187af8b895d8fc1785e3bbe1efb8438e0cb204ba 100644 (file)
@@ -19,70 +19,50 @@ The following dialog box will appear:
 \image html split_into_tetra.png
 
 <br>
-<b>Target element type</b> group of radio-buttons allows to select
-a type of operation. If \b Tetrahedron button is checked, then the
-operation will split volumes of any type into tetrahedra.
-If \b Prism button is checked, then the operation will split hexahedra
-into prisms, and the dialog will look as follows:
-
-\image html split_into_prisms.png
+First it is possible to select the type of operation:
+- If \b Tetrahedron button is checked, the operation will split volumes of any type into tetrahedra.
+- If \b Prism button is checked, the operation will split hexahedra into prisms.
 
 <ul>
-<li>The main list contains list of volumes to split. You can click on
+<li>The main list contains the list of volumes to split. You can click on
   a volume in the 3D viewer and it will be highlighted (lock Shift
   keyboard button to select several volumes). Click \b Add button and
   the ID of this volume will be added to the list. To remove the
   selected element or elements from the list click \b Remove button. <b>Sort
-    list</b> button allows to sort the list of IDs. \b Filter button allows to
-  apply a definite filter to the selection of volumes.
+    list</b> button allows to sort the list of IDs. \b Filter button allows applying a filter to the selection of volumes.
   <br><b>Note:</b> If you split not all adjacent non-tetrahedral
   volumes, your mesh becomes non-conform.</li> 
-<li><b>Apply to all</b> radio button allows to split all
+  
+<li><b>Apply to all</b> radio button allows splitting all
   volumes of the currently selected mesh.</li>
-</ul>
+  
+<li>If \b Tetrahedron element type is selected, <b> Split hexahedron </b> group allows specifying the number of tetrahedra  a hexahedron will be split into. If the chosen method does not allow to get a conform mesh, a generic solution is applied: an additional node is created at the gravity center of a hexahedron, serving an apex of tetrahedra, all quadrangle sides of the hexahedron are split into two triangles each serving a base of a new tetrahedron.</li> 
 
-<ul>
-<li><b> Split hexahedron </b> group allows to specify a method of
-  splitting hexahedra.
+<li>If \Prism element type is selected, the <b>Split hexahedron</b> group looks as follows:
+
+\image html split_into_prisms.png
 
 <ul>
-<li><b>Into N tetrahedra/prisms</b> allows to specify the number of
-  tetrahedra or prisms a hexahedron will be split into. If the
-  specified method does not allow to get a conform mesh, a generic
-  solution is applied: an additional node is created at the gravity
-  center of a hexahedron, serving an apex of tetrahedra, all
-  quadrangle sides of the hexahedron are split into two triangles each
-  serving a base of a new tetrahedron.</li> 
-<li> <b> Facet to split </b> group allows to specify a side (facet) of a
-  hexahedron to split into triangles when splitting into prisms.
-  The facet to split is defined by specifying a point and a direction
-  close to normal of the facet. The operation finds a hexahedron most
-  close to the specified point and splits a facet whose normal is most
-  close to the specified direction. Then the splitting is propagated
-  from that hexahedron to all adjacent hexahedra.
-  <ul> 
-    <li> <b> Hexa location </b> allows to specify a <em> start
-        point </em> by which a first split hexahedron is found. <em>
-        Selection button</em> switches to selection of the element whose
-      barycenter will be used the start point and whose direction will be
-      used as a normal to facet to split into triangles. To return to
-      selection of volumes to split it is necessary to switch this button
-      off. </li>
-    <li> <b> Facet normal </b> allows to specify a direction of the
-    normal to hexahedron facet to split into triangles.</li>
-  </ul>
-<li><b> All domains </b> - if it is off the operation stops as all
+<li><b>Into 2 (or 4) prisms</b> allows to specify the number of prisms a hexahedron will be split into.</li> 
+<li> <b> Facet to split </b> group allows to specify the side (facet) of the hexahedron, which is split into triangles.  This facet is defined by a point and a direction. The algorithm finds a hexahedron closest to the specified point and splits a facet whose normal is closest to the specified direction. Then the splitting is propagated from that hexahedron to all adjacent hexahedra. 
+The point and the direction by which the first split hexahedron is found can be specified:
+<ul>
+ <li> by input of coordinates in <b> Hexa location </b> and <b> Facet normal </b> fields, or </li>
+ <li> by clicking <b>Selection</b> button and selecting in the viewer the element whose barycenter will be used as the start point and whose direction will be used as a normal to facet to split into triangles. Switch this button
+off to return to selection of volumes to split.</li>
+</ul>
+    
+<li> If <b> All domains </b> option is off, the operation stops when all
   hehexedra adjacent to the start hexahedron are split into
   prisms. Else the operation tries to continue splitting starting from
   another hexahedron closest to the <b> Hexa location</b>. </li>
 </li>
 </ul>
 
-<li><b>Select from</b> a set of fields allows to choose a sub-mesh or an
-  existing group whose elements will be added to the list as you ckick
-  \b Add button.</li>
+<li><b>Select from</b> set of fields allows choosing a sub-mesh or an
+  existing group whose elements will be added to the list as you click \b Add button.</li>
 </ul>
 
-<li>Click the \b Apply or <b>Apply and Close</b> button to confirm the operation.</li>
+<li>Click \b Apply or <b>Apply and Close</b> button to confirm the operation.</li>
 </ol>
 */
index 55eb854dd7f14a374dd8c62c02fa1bed8e9571e5..bdb4151a4bfed312b4782c208910ffe1828b591a 100644 (file)
@@ -1,8 +1,8 @@
 /*!
 
-\page import_algos_page "Import Elements from Another Mesh" Algorithms
+\page import_algos_page Import Elements from Another Mesh Algorithms
 
-\n <em>Import nD Elements from Another Mesh </em>algorithms allow to
+\n <b>Import Elements from Another Mesh</b> algorithms allow to
 define the mesh of a geometrical 
 object by importing suitably located mesh elements from another
 mesh. The mesh elements to import from the other mesh should be contained in