X-Git-Url: http://git.salome-platform.org/gitweb/?p=modules%2Fsmesh.git;a=blobdiff_plain;f=src%2FStdMeshers%2FStdMeshers_ViscousLayers.cxx;h=00f409de82ad64db2fadd21ca9a9bc4fb924ebb1;hp=67c79fef737d2928a6b25a49458d7c07dbdbf77e;hb=400f6d87de867089f11bd4e840ed5ceb36a12a3f;hpb=a27b03972c8d020b1c78b4fd85a6e0430bac702b diff --git a/src/StdMeshers/StdMeshers_ViscousLayers.cxx b/src/StdMeshers/StdMeshers_ViscousLayers.cxx index 67c79fef7..00f409de8 100644 --- a/src/StdMeshers/StdMeshers_ViscousLayers.cxx +++ b/src/StdMeshers/StdMeshers_ViscousLayers.cxx @@ -1,9 +1,9 @@ -// Copyright (C) 2007-2013 CEA/DEN, EDF R&D, OPEN CASCADE +// Copyright (C) 2007-2016 CEA/DEN, EDF R&D, OPEN CASCADE // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either -// version 2.1 of the License. +// version 2.1 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of @@ -30,53 +30,79 @@ #include "SMDS_SetIterator.hxx" #include "SMESHDS_Group.hxx" #include "SMESHDS_Hypothesis.hxx" +#include "SMESHDS_Mesh.hxx" #include "SMESH_Algo.hxx" #include "SMESH_ComputeError.hxx" #include "SMESH_ControlsDef.hxx" #include "SMESH_Gen.hxx" #include "SMESH_Group.hxx" +#include "SMESH_HypoFilter.hxx" #include "SMESH_Mesh.hxx" #include "SMESH_MeshAlgos.hxx" #include "SMESH_MesherHelper.hxx" #include "SMESH_ProxyMesh.hxx" #include "SMESH_subMesh.hxx" #include "SMESH_subMeshEventListener.hxx" +#include "StdMeshers_FaceSide.hxx" +#include "StdMeshers_ViscousLayers2D.hxx" +#include +#include #include +#include +//#include +#include +#include #include #include #include #include #include +#include #include #include #include #include +#include #include #include #include #include #include #include +#include #include #include #include #include +#include +#include #include #include #include #include #include #include +#include +#include #include #include -#include -#include #include #include +#include +#include +#include -//#define __myDEBUG +#ifdef _DEBUG_ +#define __myDEBUG +//#define __NOT_INVALIDATE_BAD_SMOOTH +//#define __NODES_AT_POS +#endif + +#define INCREMENTAL_SMOOTH // smooth only if min angle is too small +#define BLOCK_INFLATION // of individual _LayerEdge's +#define OLD_NEF_POLYGON using namespace std; @@ -87,6 +113,24 @@ namespace VISCOUS_3D enum UIndex { U_TGT = 1, U_SRC, LEN_TGT }; + const double theMinSmoothCosin = 0.1; + const double theSmoothThickToElemSizeRatio = 0.6; + const double theMinSmoothTriaAngle = 30; + const double theMinSmoothQuadAngle = 45; + + // what part of thickness is allowed till intersection + // (defined by SALOME_TESTS/Grids/smesh/viscous_layers_00/A5) + const double theThickToIntersection = 1.5; + + bool needSmoothing( double cosin, double tgtThick, double elemSize ) + { + return cosin * tgtThick > theSmoothThickToElemSizeRatio * elemSize; + } + double getSmoothingThickness( double cosin, double elemSize ) + { + return theSmoothThickToElemSizeRatio * elemSize / cosin; + } + /*! * \brief SMESH_ProxyMesh computed by _ViscousBuilder for a SOLID. * It is stored in a SMESH_subMesh of the SOLID as SMESH_subMeshEventListenerData @@ -94,7 +138,8 @@ namespace VISCOUS_3D struct _MeshOfSolid : public SMESH_ProxyMesh, public SMESH_subMeshEventListenerData { - bool _n2nMapComputed; + bool _n2nMapComputed; + SMESH_ComputeErrorPtr _warning; _MeshOfSolid( SMESH_Mesh* mesh) :SMESH_subMeshEventListenerData( /*isDeletable=*/true),_n2nMapComputed(false) @@ -158,7 +203,9 @@ namespace VISCOUS_3D SMESH_subMeshEventListenerData* data, const SMESH_Hypothesis* hyp) { - if ( SMESH_subMesh::COMPUTE_EVENT == eventType ) + if (( SMESH_subMesh::COMPUTE_EVENT == eventType ) && + ( SMESH_subMesh::CHECK_COMPUTE_STATE != event && + SMESH_subMesh::SUBMESH_COMPUTED != event )) { // delete SMESH_ProxyMesh containing temporary faces subMesh->DeleteEventListener( this ); @@ -213,6 +260,7 @@ namespace VISCOUS_3D sub->SetEventListener( _ShrinkShapeListener::Get(), data, /*whereToListenTo=*/mainSM ); } } + struct _SolidData; //-------------------------------------------------------------------------------- /*! * \brief Simplex (triangle or tetrahedron) based on 1 (tria) or 2 (tet) nodes of @@ -228,19 +276,24 @@ namespace VISCOUS_3D const SMDS_MeshNode* nNext=0, const SMDS_MeshNode* nOpp=0) : _nPrev(nPrev), _nNext(nNext), _nOpp(nOpp) {} - bool IsForward(const SMDS_MeshNode* nSrc, const gp_XYZ* pntTgt) const + bool IsForward(const gp_XYZ* pntSrc, const gp_XYZ* pntTgt, double& vol) const { const double M[3][3] = - {{ _nNext->X() - nSrc->X(), _nNext->Y() - nSrc->Y(), _nNext->Z() - nSrc->Z() }, - { pntTgt->X() - nSrc->X(), pntTgt->Y() - nSrc->Y(), pntTgt->Z() - nSrc->Z() }, - { _nPrev->X() - nSrc->X(), _nPrev->Y() - nSrc->Y(), _nPrev->Z() - nSrc->Z() }}; - double determinant = ( + M[0][0]*M[1][1]*M[2][2] - + M[0][1]*M[1][2]*M[2][0] - + M[0][2]*M[1][0]*M[2][1] - - M[0][0]*M[1][2]*M[2][1] - - M[0][1]*M[1][0]*M[2][2] - - M[0][2]*M[1][1]*M[2][0]); - return determinant > 1e-100; + {{ _nNext->X() - pntSrc->X(), _nNext->Y() - pntSrc->Y(), _nNext->Z() - pntSrc->Z() }, + { pntTgt->X() - pntSrc->X(), pntTgt->Y() - pntSrc->Y(), pntTgt->Z() - pntSrc->Z() }, + { _nPrev->X() - pntSrc->X(), _nPrev->Y() - pntSrc->Y(), _nPrev->Z() - pntSrc->Z() }}; + vol = ( + M[0][0] * M[1][1] * M[2][2] + + M[0][1] * M[1][2] * M[2][0] + + M[0][2] * M[1][0] * M[2][1] + - M[0][0] * M[1][2] * M[2][1] + - M[0][1] * M[1][0] * M[2][2] + - M[0][2] * M[1][1] * M[2][0]); + return vol > 1e-100; + } + bool IsForward(const SMDS_MeshNode* nSrc, const gp_XYZ& pTgt, double& vol) const + { + SMESH_TNodeXYZ pSrc( nSrc ); + return IsForward( &pSrc, &pTgt, vol ); } bool IsForward(const gp_XY& tgtUV, const SMDS_MeshNode* smoothedNode, @@ -254,10 +307,56 @@ namespace VISCOUS_3D double d = v1 ^ v2; return d*refSign > 1e-100; } + bool IsMinAngleOK( const gp_XYZ& pTgt, double& minAngle ) const + { + SMESH_TNodeXYZ pPrev( _nPrev ), pNext( _nNext ); + if ( !_nOpp ) // triangle + { + gp_Vec tp( pPrev - pTgt ), pn( pNext - pPrev ), nt( pTgt - pNext ); + double tp2 = tp.SquareMagnitude(); + double pn2 = pn.SquareMagnitude(); + double nt2 = nt.SquareMagnitude(); + + if ( tp2 < pn2 && tp2 < nt2 ) + minAngle = ( nt * -pn ) * ( nt * -pn ) / nt2 / pn2; + else if ( pn2 < nt2 ) + minAngle = ( tp * -nt ) * ( tp * -nt ) / tp2 / nt2; + else + minAngle = ( pn * -tp ) * ( pn * -tp ) / pn2 / tp2; + + static double theMaxCos2 = ( Cos( theMinSmoothTriaAngle * M_PI / 180. ) * + Cos( theMinSmoothTriaAngle * M_PI / 180. )); + return minAngle < theMaxCos2; + } + else // quadrangle + { + SMESH_TNodeXYZ pOpp( _nOpp ); + gp_Vec tp( pPrev - pTgt ), po( pOpp - pPrev ), on( pNext - pOpp), nt( pTgt - pNext ); + double tp2 = tp.SquareMagnitude(); + double po2 = po.SquareMagnitude(); + double on2 = on.SquareMagnitude(); + double nt2 = nt.SquareMagnitude(); + minAngle = Max( Max((( tp * -nt ) * ( tp * -nt ) / tp2 / nt2 ), + (( po * -tp ) * ( po * -tp ) / po2 / tp2 )), + Max((( on * -po ) * ( on * -po ) / on2 / po2 ), + (( nt * -on ) * ( nt * -on ) / nt2 / on2 ))); + + static double theMaxCos2 = ( Cos( theMinSmoothQuadAngle * M_PI / 180. ) * + Cos( theMinSmoothQuadAngle * M_PI / 180. )); + return minAngle < theMaxCos2; + } + } bool IsNeighbour(const _Simplex& other) const { return _nPrev == other._nNext || _nNext == other._nPrev; } + bool Includes( const SMDS_MeshNode* node ) const { return _nPrev == node || _nNext == node; } + static void GetSimplices( const SMDS_MeshNode* node, + vector<_Simplex>& simplices, + const set& ingnoreShapes, + const _SolidData* dataToCheckOri = 0, + const bool toSort = false); + static void SortSimplices(vector<_Simplex>& simplices); }; //-------------------------------------------------------------------------------- /*! @@ -265,9 +364,10 @@ namespace VISCOUS_3D */ struct _Curvature { - double _r; // radius - double _k; // factor to correct node smoothed position - double _h2lenRatio; // avgNormProj / (2*avgDist) + double _r; // radius + double _k; // factor to correct node smoothed position + double _h2lenRatio; // avgNormProj / (2*avgDist) + gp_Pnt2d _uv; // UV used in putOnOffsetSurface() public: static _Curvature* New( double avgNormProj, double avgDist ) { @@ -277,37 +377,25 @@ namespace VISCOUS_3D c = new _Curvature; c->_r = avgDist * avgDist / avgNormProj; c->_k = avgDist * avgDist / c->_r / c->_r; + //c->_k = avgNormProj / c->_r; c->_k *= ( c->_r < 0 ? 1/1.1 : 1.1 ); // not to be too restrictive c->_h2lenRatio = avgNormProj / ( avgDist + avgDist ); + + c->_uv.SetCoord( 0., 0. ); } return c; } double lenDelta(double len) const { return _k * ( _r + len ); } double lenDeltaByDist(double dist) const { return dist * _h2lenRatio; } }; - struct _LayerEdge; //-------------------------------------------------------------------------------- - /*! - * Structure used to smooth a _LayerEdge (master) based on an EDGE. - */ - struct _2NearEdges - { - // target nodes of 2 neighbour _LayerEdge's based on the same EDGE - const SMDS_MeshNode* _nodes[2]; - // vectors from source nodes of 2 _LayerEdge's to the source node of master _LayerEdge - //gp_XYZ _vec[2]; - double _wgt[2]; // weights of _nodes - _LayerEdge* _edges[2]; - // normal to plane passing through _LayerEdge._normal and tangent of EDGE - gp_XYZ* _plnNorm; + struct _2NearEdges; + struct _LayerEdge; + struct _EdgesOnShape; + struct _Smoother1D; + typedef map< const SMDS_MeshNode*, _LayerEdge*, TIDCompare > TNode2Edge; - _2NearEdges() { _nodes[0]=_nodes[1]=0; _plnNorm = 0; } - void reverse() { - std::swap( _nodes[0], _nodes[1] ); - std::swap( _wgt[0], _wgt[1] ); - } - }; //-------------------------------------------------------------------------------- /*! * \brief Edge normal to surface, connecting a node on solid surface (_nodes[0]) @@ -315,52 +403,139 @@ namespace VISCOUS_3D */ struct _LayerEdge { + typedef gp_XYZ (_LayerEdge::*PSmooFun)(); + vector< const SMDS_MeshNode*> _nodes; - gp_XYZ _normal; // to solid surface - vector _pos; // points computed during inflation - double _len; // length achived with the last step - double _cosin; // of angle (_normal ^ surface) + gp_XYZ _normal; // to boundary of solid + vector _pos; // points computed during inflation + double _len; // length achieved with the last inflation step + double _maxLen; // maximal possible length + double _cosin; // of angle (_normal ^ surface) + double _minAngle; // of _simplices double _lenFactor; // to compute _len taking _cosin into account + int _flags; - // face or edge w/o layer along or near which _LayerEdge is inflated - TopoDS_Shape _sWOL; // simplices connected to the source node (_nodes[0]); // used for smoothing and quality check of _LayerEdge's based on the FACE vector<_Simplex> _simplices; + vector<_LayerEdge*> _neibors; // all surrounding _LayerEdge's + PSmooFun _smooFunction; // smoothing function + _Curvature* _curvature; // data for smoothing of _LayerEdge's based on the EDGE _2NearEdges* _2neibors; - _Curvature* _curvature; - // TODO:: detele _Curvature, _plnNorm - - void SetNewLength( double len, SMESH_MesherHelper& helper ); + enum EFlags { TO_SMOOTH = 0x0000001, + MOVED = 0x0000002, // set by _neibors[i]->SetNewLength() + SMOOTHED = 0x0000004, // set by _LayerEdge::Smooth() + DIFFICULT = 0x0000008, // near concave VERTEX + ON_CONCAVE_FACE = 0x0000010, + BLOCKED = 0x0000020, // not to inflate any more + INTERSECTED = 0x0000040, // close intersection with a face found + NORMAL_UPDATED = 0x0000080, + UPD_NORMAL_CONV = 0x0000100, // to update normal on boundary of concave FACE + MARKED = 0x0000200, // local usage + MULTI_NORMAL = 0x0000400, // a normal is invisible by some of surrounding faces + NEAR_BOUNDARY = 0x0000800, // is near FACE boundary forcing smooth + SMOOTHED_C1 = 0x0001000, // is on _eosC1 + DISTORTED = 0x0002000, // was bad before smoothing + RISKY_SWOL = 0x0004000, // SWOL is parallel to a source FACE + SHRUNK = 0x0008000, // target node reached a tgt position while shrink() + UNUSED_FLAG = 0x0100000 // to add user flags after + }; + bool Is ( int flag ) const { return _flags & flag; } + void Set ( int flag ) { _flags |= flag; } + void Unset( int flag ) { _flags &= ~flag; } + std::string DumpFlags() const; // debug + + void SetNewLength( double len, _EdgesOnShape& eos, SMESH_MesherHelper& helper ); bool SetNewLength2d( Handle(Geom_Surface)& surface, const TopoDS_Face& F, + _EdgesOnShape& eos, SMESH_MesherHelper& helper ); void SetDataByNeighbors( const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, + const _EdgesOnShape& eos, SMESH_MesherHelper& helper); - void InvalidateStep( int curStep ); - bool Smooth(int& badNb); - bool SmoothOnEdge(Handle(Geom_Surface)& surface, - const TopoDS_Face& F, - SMESH_MesherHelper& helper); + void Block( _SolidData& data ); + void InvalidateStep( size_t curStep, const _EdgesOnShape& eos, bool restoreLength=false ); + void ChooseSmooFunction(const set< TGeomID >& concaveVertices, + const TNode2Edge& n2eMap); + void SmoothPos( const vector< double >& segLen, const double tol ); + int GetSmoothedPos( const double tol ); + int Smooth(const int step, const bool isConcaveFace, bool findBest); + int Smooth(const int step, bool findBest, vector< _LayerEdge* >& toSmooth ); + int CheckNeiborsOnBoundary(vector< _LayerEdge* >* badNeibors = 0, bool * needSmooth = 0 ); + void SmoothWoCheck(); + bool SmoothOnEdge(Handle(ShapeAnalysis_Surface)& surface, + const TopoDS_Face& F, + SMESH_MesherHelper& helper); + void MoveNearConcaVer( const _EdgesOnShape* eov, + const _EdgesOnShape* eos, + const int step, + vector< _LayerEdge* > & badSmooEdges); bool FindIntersection( SMESH_ElementSearcher& searcher, double & distance, const double& epsilon, + _EdgesOnShape& eos, const SMDS_MeshElement** face = 0); + bool SegTriaInter( const gp_Ax1& lastSegment, + const gp_XYZ& p0, + const gp_XYZ& p1, + const gp_XYZ& p2, + double& dist, + const double& epsilon) const; bool SegTriaInter( const gp_Ax1& lastSegment, const SMDS_MeshNode* n0, const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, double& dist, - const double& epsilon) const; - gp_Ax1 LastSegment(double& segLen) const; - bool IsOnEdge() const { return _2neibors; } - void Copy( _LayerEdge& other, SMESH_MesherHelper& helper ); - void SetCosin( double cosin ); + const double& epsilon) const + { return SegTriaInter( lastSegment, + SMESH_TNodeXYZ( n0 ), SMESH_TNodeXYZ( n1 ), SMESH_TNodeXYZ( n2 ), + dist, epsilon ); + } + const gp_XYZ& PrevPos() const { return _pos[ _pos.size() - 2 ]; } + gp_XYZ PrevCheckPos( _EdgesOnShape* eos=0 ) const; + gp_Ax1 LastSegment(double& segLen, _EdgesOnShape& eos) const; + gp_XY LastUV( const TopoDS_Face& F, _EdgesOnShape& eos, int which=-1 ) const; + bool IsOnEdge() const { return _2neibors; } + bool IsOnFace() const { return ( _nodes[0]->GetPosition()->GetDim() == 2 ); } + int BaseShapeDim() const { return _nodes[0]->GetPosition()->GetDim(); } + gp_XYZ Copy( _LayerEdge& other, _EdgesOnShape& eos, SMESH_MesherHelper& helper ); + void SetCosin( double cosin ); + void SetNormal( const gp_XYZ& n ) { _normal = n; } + void SetMaxLen( double l ) { _maxLen = l; } + int NbSteps() const { return _pos.size() - 1; } // nb inlation steps + bool IsNeiborOnEdge( const _LayerEdge* edge ) const; + void SetSmooLen( double len ) { // set _len at which smoothing is needed + _cosin = len; // as for _LayerEdge's on FACE _cosin is not used + } + double GetSmooLen() { return _cosin; } // for _LayerEdge's on FACE _cosin is not used + + gp_XYZ smoothLaplacian(); + gp_XYZ smoothAngular(); + gp_XYZ smoothLengthWeighted(); + gp_XYZ smoothCentroidal(); + gp_XYZ smoothNefPolygon(); + + enum { FUN_LAPLACIAN, FUN_LENWEIGHTED, FUN_CENTROIDAL, FUN_NEFPOLY, FUN_ANGULAR, FUN_NB }; + static const int theNbSmooFuns = FUN_NB; + static PSmooFun _funs[theNbSmooFuns]; + static const char* _funNames[theNbSmooFuns+1]; + int smooFunID( PSmooFun fun=0) const; }; + _LayerEdge::PSmooFun _LayerEdge::_funs[theNbSmooFuns] = { &_LayerEdge::smoothLaplacian, + &_LayerEdge::smoothLengthWeighted, + &_LayerEdge::smoothCentroidal, + &_LayerEdge::smoothNefPolygon, + &_LayerEdge::smoothAngular }; + const char* _LayerEdge::_funNames[theNbSmooFuns+1] = { "Laplacian", + "LengthWeighted", + "Centroidal", + "NefPolygon", + "Angular", + "None"}; struct _LayerEdgeCmp { bool operator () (const _LayerEdge* e1, const _LayerEdge* e2) const @@ -370,58 +545,321 @@ namespace VISCOUS_3D } }; //-------------------------------------------------------------------------------- + /*! + * A 2D half plane used by _LayerEdge::smoothNefPolygon() + */ + struct _halfPlane + { + gp_XY _pos, _dir, _inNorm; + bool IsOut( const gp_XY p, const double tol ) const + { + return _inNorm * ( p - _pos ) < -tol; + } + bool FindIntersection( const _halfPlane& hp, gp_XY & intPnt ) + { + //const double eps = 1e-10; + double D = _dir.Crossed( hp._dir ); + if ( fabs(D) < std::numeric_limits::min()) + return false; + gp_XY vec21 = _pos - hp._pos; + double u = hp._dir.Crossed( vec21 ) / D; + intPnt = _pos + _dir * u; + return true; + } + }; + //-------------------------------------------------------------------------------- + /*! + * Structure used to smooth a _LayerEdge based on an EDGE. + */ + struct _2NearEdges + { + double _wgt [2]; // weights of _nodes + _LayerEdge* _edges[2]; + + // normal to plane passing through _LayerEdge._normal and tangent of EDGE + gp_XYZ* _plnNorm; + + _2NearEdges() { _edges[0]=_edges[1]=0; _plnNorm = 0; } + const SMDS_MeshNode* tgtNode(bool is2nd) { + return _edges[is2nd] ? _edges[is2nd]->_nodes.back() : 0; + } + const SMDS_MeshNode* srcNode(bool is2nd) { + return _edges[is2nd] ? _edges[is2nd]->_nodes[0] : 0; + } + void reverse() { + std::swap( _wgt [0], _wgt [1] ); + std::swap( _edges[0], _edges[1] ); + } + void set( _LayerEdge* e1, _LayerEdge* e2, double w1, double w2 ) { + _edges[0] = e1; _edges[1] = e2; _wgt[0] = w1; _wgt[1] = w2; + } + bool include( const _LayerEdge* e ) { + return ( _edges[0] == e || _edges[1] == e ); + } + }; + + + //-------------------------------------------------------------------------------- + /*! + * \brief Layers parameters got by averaging several hypotheses + */ + struct AverageHyp + { + AverageHyp( const StdMeshers_ViscousLayers* hyp = 0 ) + :_nbLayers(0), _nbHyps(0), _method(0), _thickness(0), _stretchFactor(0) + { + Add( hyp ); + } + void Add( const StdMeshers_ViscousLayers* hyp ) + { + if ( hyp ) + { + _nbHyps++; + _nbLayers = hyp->GetNumberLayers(); + //_thickness += hyp->GetTotalThickness(); + _thickness = Max( _thickness, hyp->GetTotalThickness() ); + _stretchFactor += hyp->GetStretchFactor(); + _method = hyp->GetMethod(); + } + } + double GetTotalThickness() const { return _thickness; /*_nbHyps ? _thickness / _nbHyps : 0;*/ } + double GetStretchFactor() const { return _nbHyps ? _stretchFactor / _nbHyps : 0; } + int GetNumberLayers() const { return _nbLayers; } + int GetMethod() const { return _method; } + + bool UseSurfaceNormal() const + { return _method == StdMeshers_ViscousLayers::SURF_OFFSET_SMOOTH; } + bool ToSmooth() const + { return _method == StdMeshers_ViscousLayers::SURF_OFFSET_SMOOTH; } + bool IsOffsetMethod() const + { return _method == StdMeshers_ViscousLayers::FACE_OFFSET; } + + private: + int _nbLayers, _nbHyps, _method; + double _thickness, _stretchFactor; + }; + + //-------------------------------------------------------------------------------- + /*! + * \brief _LayerEdge's on a shape and other shape data + */ + struct _EdgesOnShape + { + vector< _LayerEdge* > _edges; + + TopoDS_Shape _shape; + TGeomID _shapeID; + SMESH_subMesh * _subMesh; + // face or edge w/o layer along or near which _edges are inflated + TopoDS_Shape _sWOL; + bool _isRegularSWOL; // w/o singularities + // averaged StdMeshers_ViscousLayers parameters + AverageHyp _hyp; + bool _toSmooth; + _Smoother1D* _edgeSmoother; + vector< _EdgesOnShape* > _eosConcaVer; // edges at concave VERTEXes of a FACE + vector< _EdgesOnShape* > _eosC1; // to smooth together several C1 continues shapes + + vector< gp_XYZ > _faceNormals; // if _shape is FACE + vector< _EdgesOnShape* > _faceEOS; // to get _faceNormals of adjacent FACEs + + Handle(ShapeAnalysis_Surface) _offsetSurf; + _LayerEdge* _edgeForOffset; + + _SolidData* _data; // parent SOLID + + _LayerEdge* operator[](size_t i) const { return (_LayerEdge*) _edges[i]; } + size_t size() const { return _edges.size(); } + TopAbs_ShapeEnum ShapeType() const + { return _shape.IsNull() ? TopAbs_SHAPE : _shape.ShapeType(); } + TopAbs_ShapeEnum SWOLType() const + { return _sWOL.IsNull() ? TopAbs_SHAPE : _sWOL.ShapeType(); } + bool HasC1( const _EdgesOnShape* other ) const + { return std::find( _eosC1.begin(), _eosC1.end(), other ) != _eosC1.end(); } + bool GetNormal( const SMDS_MeshElement* face, gp_Vec& norm ); + _SolidData& GetData() const { return *_data; } + + _EdgesOnShape(): _shapeID(-1), _subMesh(0), _toSmooth(false), _edgeSmoother(0) {} + }; + + //-------------------------------------------------------------------------------- + /*! + * \brief Convex FACE whose radius of curvature is less than the thickness of + * layers. It is used to detect distortion of prisms based on a convex + * FACE and to update normals to enable further increasing the thickness + */ + struct _ConvexFace + { + TopoDS_Face _face; + + // edges whose _simplices are used to detect prism distortion + vector< _LayerEdge* > _simplexTestEdges; + + // map a sub-shape to _SolidData::_edgesOnShape + map< TGeomID, _EdgesOnShape* > _subIdToEOS; + + bool _isTooCurved; + bool _normalsFixed; + bool _normalsFixedOnBorders; // used in putOnOffsetSurface() + + double GetMaxCurvature( _SolidData& data, + _EdgesOnShape& eof, + BRepLProp_SLProps& surfProp, + SMESH_MesherHelper& helper); + + bool GetCenterOfCurvature( _LayerEdge* ledge, + BRepLProp_SLProps& surfProp, + SMESH_MesherHelper& helper, + gp_Pnt & center ) const; + bool CheckPrisms() const; + }; + + //-------------------------------------------------------------------------------- + /*! + * \brief Structure holding _LayerEdge's based on EDGEs that will collide + * at inflation up to the full thickness. A detected collision + * is fixed in updateNormals() + */ + struct _CollisionEdges + { + _LayerEdge* _edge; + vector< _LayerEdge* > _intEdges; // each pair forms an intersected quadrangle + const SMDS_MeshNode* nSrc(int i) const { return _intEdges[i]->_nodes[0]; } + const SMDS_MeshNode* nTgt(int i) const { return _intEdges[i]->_nodes.back(); } + }; - typedef map< const SMDS_MeshNode*, _LayerEdge*, TIDCompare > TNode2Edge; - //-------------------------------------------------------------------------------- /*! * \brief Data of a SOLID */ struct _SolidData { + typedef const StdMeshers_ViscousLayers* THyp; TopoDS_Shape _solid; - const StdMeshers_ViscousLayers* _hyp; + TopTools_MapOfShape _before; // SOLIDs to be computed before _solid + TGeomID _index; // SOLID id _MeshOfSolid* _proxyMesh; - set _reversedFaceIds; + list< THyp > _hyps; + list< TopoDS_Shape > _hypShapes; + map< TGeomID, THyp > _face2hyp; // filled if _hyps.size() > 1 + set< TGeomID > _reversedFaceIds; + set< TGeomID > _ignoreFaceIds; // WOL FACEs and FACEs of other SOLIDs - double _stepSize, _stepSizeCoeff; + double _stepSize, _stepSizeCoeff, _geomSize; const SMDS_MeshNode* _stepSizeNodes[2]; - TNode2Edge _n2eMap; - // edges of _n2eMap. We keep same data in two containers because - // iteration over the map is 5 time longer than over the vector - vector< _LayerEdge* > _edges; + TNode2Edge _n2eMap; // nodes and _LayerEdge's based on them + + // map to find _n2eMap of another _SolidData by a shrink shape shared by two _SolidData's + map< TGeomID, TNode2Edge* > _s2neMap; + // _LayerEdge's with underlying shapes + vector< _EdgesOnShape > _edgesOnShape; - // key: an id of shape (EDGE or VERTEX) shared by a FACE with - // layers and a FACE w/o layers + // key: an id of shape (EDGE or VERTEX) shared by a FACE with + // layers and a FACE w/o layers // value: the shape (FACE or EDGE) to shrink mesh on. - // _LayerEdge's basing on nodes on key shape are inflated along the value shape + // _LayerEdge's basing on nodes on key shape are inflated along the value shape map< TGeomID, TopoDS_Shape > _shrinkShape2Shape; - // FACE's WOL, srink on which is forbiden due to algo on the adjacent SOLID - set< TGeomID > _noShrinkFaces; + // Convex FACEs whose radius of curvature is less than the thickness of layers + map< TGeomID, _ConvexFace > _convexFaces; - // to - map< TGeomID,Handle(Geom_Curve)> _edge2curve; + // shapes (EDGEs and VERTEXes) srink from which is forbidden due to collisions with + // the adjacent SOLID + set< TGeomID > _noShrinkShapes; - // end indices in _edges of _LayerEdge on one shape to smooth - vector< int > _endEdgeToSmooth; + int _nbShapesToSmooth; + + vector< _CollisionEdges > _collisionEdges; + set< TGeomID > _concaveFaces; + + double _maxThickness; // of all _hyps + double _minThickness; // of all _hyps double _epsilon; // precision for SegTriaInter() - int _index; // for debug + SMESH_MesherHelper* _helper; - _SolidData(const TopoDS_Shape& s=TopoDS_Shape(), - const StdMeshers_ViscousLayers* h=0, - _MeshOfSolid* m=0) :_solid(s), _hyp(h), _proxyMesh(m) {} + _SolidData(const TopoDS_Shape& s=TopoDS_Shape(), + _MeshOfSolid* m=0) + :_solid(s), _proxyMesh(m), _helper(0) {} ~_SolidData(); - Handle(Geom_Curve) CurveForSmooth( const TopoDS_Edge& E, - const int iFrom, - const int iTo, - Handle(Geom_Surface)& surface, - const TopoDS_Face& F, - SMESH_MesherHelper& helper); + void SortOnEdge( const TopoDS_Edge& E, vector< _LayerEdge* >& edges); + void Sort2NeiborsOnEdge( vector< _LayerEdge* >& edges ); + + _ConvexFace* GetConvexFace( const TGeomID faceID ) { + map< TGeomID, _ConvexFace >::iterator id2face = _convexFaces.find( faceID ); + return id2face == _convexFaces.end() ? 0 : & id2face->second; + } + _EdgesOnShape* GetShapeEdges(const TGeomID shapeID ); + _EdgesOnShape* GetShapeEdges(const TopoDS_Shape& shape ); + _EdgesOnShape* GetShapeEdges(const _LayerEdge* edge ) + { return GetShapeEdges( edge->_nodes[0]->getshapeId() ); } + + SMESH_MesherHelper& GetHelper() const { return *_helper; } + + void UnmarkEdges( int flag = _LayerEdge::MARKED ) { + for ( size_t i = 0; i < _edgesOnShape.size(); ++i ) + for ( size_t j = 0; j < _edgesOnShape[i]._edges.size(); ++j ) + _edgesOnShape[i]._edges[j]->Unset( flag ); + } + void AddShapesToSmooth( const set< _EdgesOnShape* >& shape, + const set< _EdgesOnShape* >* edgesNoAnaSmooth=0 ); + + void PrepareEdgesToSmoothOnFace( _EdgesOnShape* eof, bool substituteSrcNodes ); + }; + //-------------------------------------------------------------------------------- + /*! + * \brief Offset plane used in getNormalByOffset() + */ + struct _OffsetPlane + { + gp_Pln _plane; + int _faceIndex; + int _faceIndexNext[2]; + gp_Lin _lines[2]; // line of intersection with neighbor _OffsetPlane's + bool _isLineOK[2]; + _OffsetPlane() { + _isLineOK[0] = _isLineOK[1] = false; _faceIndexNext[0] = _faceIndexNext[1] = -1; + } + void ComputeIntersectionLine( _OffsetPlane& pln, + const TopoDS_Edge& E, + const TopoDS_Vertex& V ); + gp_XYZ GetCommonPoint(bool& isFound, const TopoDS_Vertex& V) const; + int NbLines() const { return _isLineOK[0] + _isLineOK[1]; } + }; + //-------------------------------------------------------------------------------- + /*! + * \brief Container of centers of curvature at nodes on an EDGE bounding _ConvexFace + */ + struct _CentralCurveOnEdge + { + bool _isDegenerated; + vector< gp_Pnt > _curvaCenters; + vector< _LayerEdge* > _ledges; + vector< gp_XYZ > _normals; // new normal for each of _ledges + vector< double > _segLength2; + + TopoDS_Edge _edge; + TopoDS_Face _adjFace; + bool _adjFaceToSmooth; + + void Append( const gp_Pnt& center, _LayerEdge* ledge ) + { + if ( ledge->Is( _LayerEdge::MULTI_NORMAL )) + return; + if ( _curvaCenters.size() > 0 ) + _segLength2.push_back( center.SquareDistance( _curvaCenters.back() )); + _curvaCenters.push_back( center ); + _ledges.push_back( ledge ); + _normals.push_back( ledge->_normal ); + } + bool FindNewNormal( const gp_Pnt& center, gp_XYZ& newNormal ); + void SetShapes( const TopoDS_Edge& edge, + const _ConvexFace& convFace, + _SolidData& data, + SMESH_MesherHelper& helper); }; //-------------------------------------------------------------------------------- /*! @@ -430,10 +868,9 @@ namespace VISCOUS_3D struct _SmoothNode { const SMDS_MeshNode* _node; - //vector _nodesAround; vector<_Simplex> _simplices; // for quality check - enum SmoothType { LAPLACIAN, CENTROIDAL, ANGULAR }; + enum SmoothType { LAPLACIAN, CENTROIDAL, ANGULAR, TFI }; bool Smooth(int& badNb, Handle(Geom_Surface)& surface, @@ -446,6 +883,7 @@ namespace VISCOUS_3D const gp_XY& uvToFix, const double refSign ); }; + struct PyDump; //-------------------------------------------------------------------------------- /*! * \brief Builder of viscous layers @@ -457,6 +895,9 @@ namespace VISCOUS_3D // does it's job SMESH_ComputeErrorPtr Compute(SMESH_Mesh& mesh, const TopoDS_Shape& shape); + // check validity of hypotheses + SMESH_ComputeErrorPtr CheckHypotheses( SMESH_Mesh& mesh, + const TopoDS_Shape& shape ); // restore event listeners used to clear an inferior dim sub-mesh modified by viscous layers void RestoreListeners(); @@ -467,53 +908,103 @@ namespace VISCOUS_3D private: bool findSolidsWithLayers(); - bool findFacesWithLayers(); + bool setBefore( _SolidData& solidBefore, _SolidData& solidAfter ); + bool findFacesWithLayers(const bool onlyWith=false); + void getIgnoreFaces(const TopoDS_Shape& solid, + const StdMeshers_ViscousLayers* hyp, + const TopoDS_Shape& hypShape, + set& ignoreFaces); bool makeLayer(_SolidData& data); - bool setEdgeData(_LayerEdge& edge, const set& subIds, - SMESH_MesherHelper& helper, _SolidData& data); + void setShapeData( _EdgesOnShape& eos, SMESH_subMesh* sm, _SolidData& data ); + bool setEdgeData( _LayerEdge& edge, _EdgesOnShape& eos, + SMESH_MesherHelper& helper, _SolidData& data); + gp_XYZ getFaceNormal(const SMDS_MeshNode* n, + const TopoDS_Face& face, + SMESH_MesherHelper& helper, + bool& isOK, + bool shiftInside=false); + bool getFaceNormalAtSingularity(const gp_XY& uv, + const TopoDS_Face& face, + SMESH_MesherHelper& helper, + gp_Dir& normal ); + gp_XYZ getWeigthedNormal( const _LayerEdge* edge ); + gp_XYZ getNormalByOffset( _LayerEdge* edge, + std::pair< TopoDS_Face, gp_XYZ > fId2Normal[], + int nbFaces, + bool lastNoOffset = false); bool findNeiborsOnEdge(const _LayerEdge* edge, const SMDS_MeshNode*& n1, const SMDS_MeshNode*& n2, + _EdgesOnShape& eos, _SolidData& data); - void getSimplices( const SMDS_MeshNode* node, vector<_Simplex>& simplices, - const set& ingnoreShapes, - const _SolidData* dataToCheckOri = 0, - const bool toSort = false); - bool sortEdges( _SolidData& data, - vector< vector<_LayerEdge*> >& edgesByGeom); + void findSimplexTestEdges( _SolidData& data, + vector< vector<_LayerEdge*> >& edgesByGeom); + void computeGeomSize( _SolidData& data ); + bool findShapesToSmooth( _SolidData& data); + void limitStepSizeByCurvature( _SolidData& data ); void limitStepSize( _SolidData& data, const SMDS_MeshElement* face, - const double cosin); + const _LayerEdge* maxCosinEdge ); void limitStepSize( _SolidData& data, const double minSize); bool inflate(_SolidData& data); bool smoothAndCheck(_SolidData& data, const int nbSteps, double & distToIntersection); - bool smoothAnalyticEdge( _SolidData& data, - const int iFrom, - const int iTo, - Handle(Geom_Surface)& surface, - const TopoDS_Face& F, - SMESH_MesherHelper& helper); - bool updateNormals( _SolidData& data, SMESH_MesherHelper& helper ); + int invalidateBadSmooth( _SolidData& data, + SMESH_MesherHelper& helper, + vector< _LayerEdge* >& badSmooEdges, + vector< _EdgesOnShape* >& eosC1, + const int infStep ); + void makeOffsetSurface( _EdgesOnShape& eos, SMESH_MesherHelper& ); + void putOnOffsetSurface( _EdgesOnShape& eos, int infStep, + vector< _EdgesOnShape* >& eosC1, + int smooStep=0, int moveAll=false ); + void findCollisionEdges( _SolidData& data, SMESH_MesherHelper& helper ); + void findEdgesToUpdateNormalNearConvexFace( _ConvexFace & convFace, + _SolidData& data, + SMESH_MesherHelper& helper ); + void limitMaxLenByCurvature( _SolidData& data, SMESH_MesherHelper& helper ); + void limitMaxLenByCurvature( _LayerEdge* e1, _LayerEdge* e2, + _EdgesOnShape& eos1, _EdgesOnShape& eos2, + const bool isSmoothable ); + bool updateNormals( _SolidData& data, SMESH_MesherHelper& helper, int stepNb, double stepSize ); + bool updateNormalsOfConvexFaces( _SolidData& data, + SMESH_MesherHelper& helper, + int stepNb ); + void updateNormalsOfC1Vertices( _SolidData& data ); + bool updateNormalsOfSmoothed( _SolidData& data, + SMESH_MesherHelper& helper, + const int nbSteps, + const double stepSize ); + bool isNewNormalOk( _SolidData& data, + _LayerEdge& edge, + const gp_XYZ& newNormal); bool refine(_SolidData& data); - bool shrink(); - bool prepareEdgeToShrink( _LayerEdge& edge, const TopoDS_Face& F, + bool shrink(_SolidData& data); + bool prepareEdgeToShrink( _LayerEdge& edge, _EdgesOnShape& eos, SMESH_MesherHelper& helper, const SMESHDS_SubMesh* faceSubMesh ); - void fixBadFaces(const TopoDS_Face& F, SMESH_MesherHelper& helper); - bool addBoundaryElements(); + void restoreNoShrink( _LayerEdge& edge ) const; + void fixBadFaces(const TopoDS_Face& F, + SMESH_MesherHelper& helper, + const bool is2D, + const int step, + set * involvedNodes=NULL); + bool addBoundaryElements(_SolidData& data); bool error( const string& text, int solidID=-1 ); - SMESHDS_Mesh* getMeshDS() { return _mesh->GetMeshDS(); } + SMESHDS_Mesh* getMeshDS() const { return _mesh->GetMeshDS(); } // debug void makeGroupOfLE(); - SMESH_Mesh* _mesh; - SMESH_ComputeErrorPtr _error; + SMESH_Mesh* _mesh; + SMESH_ComputeErrorPtr _error; - vector< _SolidData > _sdVec; - set _ignoreShapeIds; - int _tmpFaceID; + vector< _SolidData > _sdVec; + TopTools_IndexedMapOfShape _solids; // to find _SolidData by a solid + TopTools_MapOfShape _shrinkedFaces; + + int _tmpFaceID; + PyDump* _pyDump; }; //-------------------------------------------------------------------------------- /*! @@ -521,16 +1012,85 @@ namespace VISCOUS_3D */ class _Shrinker1D { + TopoDS_Edge _geomEdge; vector _initU; vector _normPar; vector _nodes; const _LayerEdge* _edges[2]; bool _done; public: - void AddEdge( const _LayerEdge* e, SMESH_MesherHelper& helper ); + void AddEdge( const _LayerEdge* e, _EdgesOnShape& eos, SMESH_MesherHelper& helper ); void Compute(bool set3D, SMESH_MesherHelper& helper); void RestoreParams(); void SwapSrcTgtNodes(SMESHDS_Mesh* mesh); + const TopoDS_Edge& GeomEdge() const { return _geomEdge; } + const SMDS_MeshNode* TgtNode( bool is2nd ) const + { return _edges[is2nd] ? _edges[is2nd]->_nodes.back() : 0; } + const SMDS_MeshNode* SrcNode( bool is2nd ) const + { return _edges[is2nd] ? _edges[is2nd]->_nodes[0] : 0; } + }; + //-------------------------------------------------------------------------------- + /*! + * \brief Smoother of _LayerEdge's on EDGE. + */ + struct _Smoother1D + { + struct OffPnt // point of the offsetted EDGE + { + gp_XYZ _xyz; // coord of a point inflated from EDGE w/o smooth + double _len; // length reached at previous inflation step + double _param; // on EDGE + _2NearEdges _2edges; // 2 neighbor _LayerEdge's + gp_XYZ _edgeDir;// EDGE tangent at _param + double Distance( const OffPnt& p ) const { return ( _xyz - p._xyz ).Modulus(); } + }; + vector< OffPnt > _offPoints; + vector< double > _leParams; // normalized param of _eos._edges on EDGE + Handle(Geom_Curve) _anaCurve; // for analytic smooth + _LayerEdge _leOnV[2]; // _LayerEdge's holding normal to the EDGE at VERTEXes + gp_XYZ _edgeDir[2]; // tangent at VERTEXes + size_t _iSeg[2]; // index of segment where extreme tgt node is projected + _EdgesOnShape& _eos; + double _curveLen; // length of the EDGE + std::pair _eToSmooth[2]; // indices of _LayerEdge's in _eos + + static Handle(Geom_Curve) CurveForSmooth( const TopoDS_Edge& E, + _EdgesOnShape& eos, + SMESH_MesherHelper& helper); + + _Smoother1D( Handle(Geom_Curve) curveForSmooth, + _EdgesOnShape& eos ) + : _anaCurve( curveForSmooth ), _eos( eos ) + { + } + bool Perform(_SolidData& data, + Handle(ShapeAnalysis_Surface)& surface, + const TopoDS_Face& F, + SMESH_MesherHelper& helper ); + + void prepare(_SolidData& data ); + + void findEdgesToSmooth(); + + bool isToSmooth( int iE ); + + bool smoothAnalyticEdge( _SolidData& data, + Handle(ShapeAnalysis_Surface)& surface, + const TopoDS_Face& F, + SMESH_MesherHelper& helper); + bool smoothComplexEdge( _SolidData& data, + Handle(ShapeAnalysis_Surface)& surface, + const TopoDS_Face& F, + SMESH_MesherHelper& helper); + gp_XYZ getNormalNormal( const gp_XYZ & normal, + const gp_XYZ& edgeDir); + _LayerEdge* getLEdgeOnV( bool is2nd ) + { + return _eos._edges[ is2nd ? _eos._edges.size()-1 : 0 ]->_2neibors->_edges[ is2nd ]; + } + bool isAnalytic() const { return !_anaCurve.IsNull(); } + + void offPointsToPython() const; // debug }; //-------------------------------------------------------------------------------- /*! @@ -538,43 +1098,124 @@ namespace VISCOUS_3D * We can't use SMDS_FaceOfNodes since it's impossible to set it's ID which is * needed because SMESH_ElementSearcher internaly uses set of elements sorted by ID */ - struct TmpMeshFace : public SMDS_MeshElement + struct _TmpMeshFace : public SMDS_MeshElement { vector _nn; - TmpMeshFace( const vector& nodes, int id): - SMDS_MeshElement(id), _nn(nodes) {} + _TmpMeshFace( const vector& nodes, + int id, int faceID=-1, int idInFace=-1): + SMDS_MeshElement(id), _nn(nodes) { setShapeId(faceID); setIdInShape(idInFace); } virtual const SMDS_MeshNode* GetNode(const int ind) const { return _nn[ind]; } virtual SMDSAbs_ElementType GetType() const { return SMDSAbs_Face; } virtual vtkIdType GetVtkType() const { return -1; } virtual SMDSAbs_EntityType GetEntityType() const { return SMDSEntity_Last; } - virtual SMDSAbs_GeometryType GetGeomType() const { return SMDSGeom_TRIANGLE; } -virtual SMDS_ElemIteratorPtr elementsIterator(SMDSAbs_ElementType type) const + virtual SMDSAbs_GeometryType GetGeomType() const + { return _nn.size() == 3 ? SMDSGeom_TRIANGLE : SMDSGeom_QUADRANGLE; } + virtual SMDS_ElemIteratorPtr elementsIterator(SMDSAbs_ElementType) const { return SMDS_ElemIteratorPtr( new SMDS_NodeVectorElemIterator( _nn.begin(), _nn.end()));} }; //-------------------------------------------------------------------------------- /*! * \brief Class of temporary mesh face storing _LayerEdge it's based on */ - struct TmpMeshFaceOnEdge : public TmpMeshFace + struct _TmpMeshFaceOnEdge : public _TmpMeshFace { _LayerEdge *_le1, *_le2; - TmpMeshFaceOnEdge( _LayerEdge* le1, _LayerEdge* le2, int ID ): - TmpMeshFace( vector(4), ID ), _le1(le1), _le2(le2) + _TmpMeshFaceOnEdge( _LayerEdge* le1, _LayerEdge* le2, int ID ): + _TmpMeshFace( vector(4), ID ), _le1(le1), _le2(le2) { _nn[0]=_le1->_nodes[0]; _nn[1]=_le1->_nodes.back(); _nn[2]=_le2->_nodes.back(); _nn[3]=_le2->_nodes[0]; } + gp_XYZ GetDir() const // return average direction of _LayerEdge's, normal to EDGE + { + SMESH_TNodeXYZ p0s( _nn[0] ); + SMESH_TNodeXYZ p0t( _nn[1] ); + SMESH_TNodeXYZ p1t( _nn[2] ); + SMESH_TNodeXYZ p1s( _nn[3] ); + gp_XYZ v0 = p0t - p0s; + gp_XYZ v1 = p1t - p1s; + gp_XYZ v01 = p1s - p0s; + gp_XYZ n = ( v0 ^ v01 ) + ( v1 ^ v01 ); + gp_XYZ d = v01 ^ n; + d.Normalize(); + return d; + } + gp_XYZ GetDir(_LayerEdge* le1, _LayerEdge* le2) // return average direction of _LayerEdge's + { + _nn[0]=le1->_nodes[0]; + _nn[1]=le1->_nodes.back(); + _nn[2]=le2->_nodes.back(); + _nn[3]=le2->_nodes[0]; + return GetDir(); + } + }; + //-------------------------------------------------------------------------------- + /*! + * \brief Retriever of node coordinates either directly or from a surface by node UV. + * \warning Location of a surface is ignored + */ + struct _NodeCoordHelper + { + SMESH_MesherHelper& _helper; + const TopoDS_Face& _face; + Handle(Geom_Surface) _surface; + gp_XYZ (_NodeCoordHelper::* _fun)(const SMDS_MeshNode* n) const; + + _NodeCoordHelper(const TopoDS_Face& F, SMESH_MesherHelper& helper, bool is2D) + : _helper( helper ), _face( F ) + { + if ( is2D ) + { + TopLoc_Location loc; + _surface = BRep_Tool::Surface( _face, loc ); + } + if ( _surface.IsNull() ) + _fun = & _NodeCoordHelper::direct; + else + _fun = & _NodeCoordHelper::byUV; + } + gp_XYZ operator()(const SMDS_MeshNode* n) const { return (this->*_fun)( n ); } + + private: + gp_XYZ direct(const SMDS_MeshNode* n) const + { + return SMESH_TNodeXYZ( n ); + } + gp_XYZ byUV (const SMDS_MeshNode* n) const + { + gp_XY uv = _helper.GetNodeUV( _face, n ); + return _surface->Value( uv.X(), uv.Y() ).XYZ(); + } }; + + //================================================================================ + /*! + * \brief Check angle between vectors + */ + //================================================================================ + + inline bool isLessAngle( const gp_Vec& v1, const gp_Vec& v2, const double cos ) + { + double dot = v1 * v2; // cos * |v1| * |v2| + double l1 = v1.SquareMagnitude(); + double l2 = v2.SquareMagnitude(); + return (( dot * cos >= 0 ) && + ( dot * dot ) / l1 / l2 >= ( cos * cos )); + } + } // namespace VISCOUS_3D + + //================================================================================ // StdMeshers_ViscousLayers hypothesis // StdMeshers_ViscousLayers::StdMeshers_ViscousLayers(int hypId, int studyId, SMESH_Gen* gen) :SMESH_Hypothesis(hypId, studyId, gen), - _isToIgnoreShapes(18), _nbLayers(1), _thickness(1), _stretchFactor(1) + _isToIgnoreShapes(1), _nbLayers(1), _thickness(1), _stretchFactor(1), + _method( SURF_OFFSET_SMOOTH ) { _name = StdMeshers_ViscousLayers::GetHypType(); _param_algo_dim = -3; // auxiliary hyp used by 3D algos @@ -601,14 +1242,19 @@ void StdMeshers_ViscousLayers::SetStretchFactor(double factor) if ( _stretchFactor != factor ) _stretchFactor = factor, NotifySubMeshesHypothesisModification(); } // -------------------------------------------------------------------------------- +void StdMeshers_ViscousLayers::SetMethod( ExtrusionMethod method ) +{ + if ( _method != method ) + _method = method, NotifySubMeshesHypothesisModification(); +} // -------------------------------------------------------------------------------- SMESH_ProxyMesh::Ptr StdMeshers_ViscousLayers::Compute(SMESH_Mesh& theMesh, const TopoDS_Shape& theShape, const bool toMakeN2NMap) const { using namespace VISCOUS_3D; - _ViscousBuilder bulder; - SMESH_ComputeErrorPtr err = bulder.Compute( theMesh, theShape ); + _ViscousBuilder builder; + SMESH_ComputeErrorPtr err = builder.Compute( theMesh, theShape ); if ( err && !err->IsOK() ) return SMESH_ProxyMesh::Ptr(); @@ -620,10 +1266,18 @@ StdMeshers_ViscousLayers::Compute(SMESH_Mesh& theMesh, _ViscousListener::GetSolidMesh( &theMesh, exp.Current(), /*toCreate=*/false)) { if ( toMakeN2NMap && !pm->_n2nMapComputed ) - if ( !bulder.MakeN2NMap( pm )) + if ( !builder.MakeN2NMap( pm )) return SMESH_ProxyMesh::Ptr(); components.push_back( SMESH_ProxyMesh::Ptr( pm )); pm->myIsDeletable = false; // it will de deleted by boost::shared_ptr + + if ( pm->_warning && !pm->_warning->IsOK() ) + { + SMESH_subMesh* sm = theMesh.GetSubMesh( exp.Current() ); + SMESH_ComputeErrorPtr& smError = sm->GetComputeError(); + if ( !smError || smError->IsOK() ) + smError = pm->_warning; + } } _ViscousListener::RemoveSolidMesh ( &theMesh, exp.Current() ); } @@ -643,21 +1297,26 @@ std::ostream & StdMeshers_ViscousLayers::SaveTo(std::ostream & save) << " " << _thickness << " " << _stretchFactor << " " << _shapeIds.size(); - for ( unsigned i = 0; i < _shapeIds.size(); ++i ) + for ( size_t i = 0; i < _shapeIds.size(); ++i ) save << " " << _shapeIds[i]; save << " " << !_isToIgnoreShapes; // negate to keep the behavior in old studies. + save << " " << _method; return save; } // -------------------------------------------------------------------------------- std::istream & StdMeshers_ViscousLayers::LoadFrom(std::istream & load) { - int nbFaces, faceID, shapeToTreat; + int nbFaces, faceID, shapeToTreat, method; load >> _nbLayers >> _thickness >> _stretchFactor >> nbFaces; - while ( _shapeIds.size() < nbFaces && load >> faceID ) + while ( (int) _shapeIds.size() < nbFaces && load >> faceID ) _shapeIds.push_back( faceID ); - if ( load >> shapeToTreat ) + if ( load >> shapeToTreat ) { _isToIgnoreShapes = !shapeToTreat; - else + if ( load >> method ) + _method = (ExtrusionMethod) method; + } + else { _isToIgnoreShapes = true; // old behavior + } return load; } // -------------------------------------------------------------------------------- bool StdMeshers_ViscousLayers::SetParametersByMesh(const SMESH_Mesh* theMesh, @@ -665,17 +1324,39 @@ bool StdMeshers_ViscousLayers::SetParametersByMesh(const SMESH_Mesh* theMesh, { // TODO return false; +} // -------------------------------------------------------------------------------- +SMESH_ComputeErrorPtr +StdMeshers_ViscousLayers::CheckHypothesis(SMESH_Mesh& theMesh, + const TopoDS_Shape& theShape, + SMESH_Hypothesis::Hypothesis_Status& theStatus) +{ + VISCOUS_3D::_ViscousBuilder builder; + SMESH_ComputeErrorPtr err = builder.CheckHypotheses( theMesh, theShape ); + if ( err && !err->IsOK() ) + theStatus = SMESH_Hypothesis::HYP_INCOMPAT_HYPS; + else + theStatus = SMESH_Hypothesis::HYP_OK; + + return err; +} +// -------------------------------------------------------------------------------- +bool StdMeshers_ViscousLayers::IsShapeWithLayers(int shapeIndex) const +{ + bool isIn = + ( std::find( _shapeIds.begin(), _shapeIds.end(), shapeIndex ) != _shapeIds.end() ); + return IsToIgnoreShapes() ? !isIn : isIn; } // END StdMeshers_ViscousLayers hypothesis //================================================================================ -namespace +namespace VISCOUS_3D { gp_XYZ getEdgeDir( const TopoDS_Edge& E, const TopoDS_Vertex& fromV ) { gp_Vec dir; double f,l; Handle(Geom_Curve) c = BRep_Tool::Curve( E, f, l ); + if ( c.IsNull() ) return gp_XYZ( Precision::Infinite(), 1e100, 1e100 ); gp_Pnt p = BRep_Tool::Pnt( fromV ); double distF = p.SquareDistance( c->Value( f )); double distL = p.SquareDistance( c->Value( l )); @@ -690,22 +1371,32 @@ namespace gp_Vec dir; double f,l; gp_Pnt p; Handle(Geom_Curve) c = BRep_Tool::Curve( E, f, l ); + if ( c.IsNull() ) return gp_XYZ( Precision::Infinite(), 1e100, 1e100 ); double u = helper.GetNodeU( E, atNode ); c->D1( u, p, dir ); return dir.XYZ(); } //-------------------------------------------------------------------------------- + gp_XYZ getFaceDir( const TopoDS_Face& F, const TopoDS_Vertex& fromV, + const SMDS_MeshNode* node, SMESH_MesherHelper& helper, bool& ok, + double* cosin=0); + //-------------------------------------------------------------------------------- gp_XYZ getFaceDir( const TopoDS_Face& F, const TopoDS_Edge& fromE, const SMDS_MeshNode* node, SMESH_MesherHelper& helper, bool& ok) { + double f,l; + Handle(Geom_Curve) c = BRep_Tool::Curve( fromE, f, l ); + if ( c.IsNull() ) + { + TopoDS_Vertex v = helper.IthVertex( 0, fromE ); + return getFaceDir( F, v, node, helper, ok ); + } gp_XY uv = helper.GetNodeUV( F, node, 0, &ok ); Handle(Geom_Surface) surface = BRep_Tool::Surface( F ); gp_Pnt p; gp_Vec du, dv, norm; surface->D1( uv.X(),uv.Y(), p, du,dv ); norm = du ^ dv; - double f,l; - Handle(Geom_Curve) c = BRep_Tool::Curve( fromE, f, l ); double u = helper.GetNodeU( fromE, node, 0, &ok ); c->D1( u, p, du ); TopAbs_Orientation o = helper.GetSubShapeOri( F.Oriented(TopAbs_FORWARD), fromE); @@ -717,8 +1408,8 @@ namespace if ( node->GetPosition()->GetTypeOfPosition() == SMDS_TOP_VERTEX && helper.IsClosedEdge( fromE )) { - if ( fabs(u-f) < fabs(u-l )) c->D1( l, p, dv ); - else c->D1( f, p, dv ); + if ( fabs(u-f) < fabs(u-l)) c->D1( l, p, dv ); + else c->D1( f, p, dv ); if ( o == TopAbs_REVERSED ) dv.Reverse(); gp_Vec dir2 = norm ^ dv; @@ -729,57 +1420,127 @@ namespace //-------------------------------------------------------------------------------- gp_XYZ getFaceDir( const TopoDS_Face& F, const TopoDS_Vertex& fromV, const SMDS_MeshNode* node, SMESH_MesherHelper& helper, - bool& ok, double* cosin=0) - { - double f,l; TopLoc_Location loc; - vector< TopoDS_Edge > edges; // sharing a vertex - PShapeIteratorPtr eIt = helper.GetAncestors( fromV, *helper.GetMesh(), TopAbs_EDGE); - while ( eIt->more()) - { - const TopoDS_Edge* e = static_cast( eIt->next() ); - if ( helper.IsSubShape( *e, F ) && !BRep_Tool::Curve( *e, loc,f,l).IsNull() ) - edges.push_back( *e ); - } - gp_XYZ dir(0,0,0); - if ( !( ok = ( edges.size() > 0 ))) return dir; - // get average dir of edges going fromV - gp_XYZ edgeDir; - //if ( edges.size() > 1 ) - for ( unsigned i = 0; i < edges.size(); ++i ) - { - edgeDir = getEdgeDir( edges[i], fromV ); - double size2 = edgeDir.SquareModulus(); - if ( size2 > numeric_limits::min() ) - edgeDir /= sqrt( size2 ); - else - ok = false; - dir += edgeDir; - } - gp_XYZ fromEdgeDir = getFaceDir( F, edges[0], node, helper, ok ); - if ( edges.size() == 1 ) - dir = fromEdgeDir; - else if ( dir.SquareModulus() < 0.1 ) // ~< 20 degrees - dir = fromEdgeDir + getFaceDir( F, edges[1], node, helper, ok ); - else if ( dir * fromEdgeDir < 0 ) - dir *= -1; - if ( ok ) + bool& ok, double* cosin) + { + TopoDS_Face faceFrw = F; + faceFrw.Orientation( TopAbs_FORWARD ); + //double f,l; TopLoc_Location loc; + TopoDS_Edge edges[2]; // sharing a vertex + size_t nbEdges = 0; + { + TopoDS_Vertex VV[2]; + TopExp_Explorer exp( faceFrw, TopAbs_EDGE ); + for ( ; exp.More() && nbEdges < 2; exp.Next() ) + { + const TopoDS_Edge& e = TopoDS::Edge( exp.Current() ); + if ( SMESH_Algo::isDegenerated( e )) continue; + TopExp::Vertices( e, VV[0], VV[1], /*CumOri=*/true ); + if ( VV[1].IsSame( fromV )) { + nbEdges += edges[ 0 ].IsNull(); + edges[ 0 ] = e; + } + else if ( VV[0].IsSame( fromV )) { + nbEdges += edges[ 1 ].IsNull(); + edges[ 1 ] = e; + } + } + } + gp_XYZ dir(0,0,0), edgeDir[2]; + if ( nbEdges == 2 ) { - //dir /= edges.size(); + // get dirs of edges going fromV + ok = true; + for ( size_t i = 0; i < nbEdges && ok; ++i ) + { + edgeDir[i] = getEdgeDir( edges[i], fromV ); + double size2 = edgeDir[i].SquareModulus(); + if (( ok = size2 > numeric_limits::min() )) + edgeDir[i] /= sqrt( size2 ); + } + if ( !ok ) return dir; + + // get angle between the 2 edges + gp_Vec faceNormal; + double angle = helper.GetAngle( edges[0], edges[1], faceFrw, fromV, &faceNormal ); + if ( Abs( angle ) < 5 * M_PI/180 ) + { + dir = ( faceNormal.XYZ() ^ edgeDir[0].Reversed()) + ( faceNormal.XYZ() ^ edgeDir[1] ); + } + else + { + dir = edgeDir[0] + edgeDir[1]; + if ( angle < 0 ) + dir.Reverse(); + } if ( cosin ) { - double angle = gp_Vec( edgeDir ).Angle( dir ); - *cosin = cos( angle ); + double angle = gp_Vec( edgeDir[0] ).Angle( dir ); + *cosin = Cos( angle ); } } + else if ( nbEdges == 1 ) + { + dir = getFaceDir( faceFrw, edges[ edges[0].IsNull() ], node, helper, ok ); + if ( cosin ) *cosin = 1.; + } + else + { + ok = false; + } + return dir; } + + //================================================================================ + /*! + * \brief Finds concave VERTEXes of a FACE + */ + //================================================================================ + + bool getConcaveVertices( const TopoDS_Face& F, + SMESH_MesherHelper& helper, + set< TGeomID >* vertices = 0) + { + // check angles at VERTEXes + TError error; + TSideVector wires = StdMeshers_FaceSide::GetFaceWires( F, *helper.GetMesh(), 0, error ); + for ( size_t iW = 0; iW < wires.size(); ++iW ) + { + const int nbEdges = wires[iW]->NbEdges(); + if ( nbEdges < 2 && SMESH_Algo::isDegenerated( wires[iW]->Edge(0))) + continue; + for ( int iE1 = 0; iE1 < nbEdges; ++iE1 ) + { + if ( SMESH_Algo::isDegenerated( wires[iW]->Edge( iE1 ))) continue; + int iE2 = ( iE1 + 1 ) % nbEdges; + while ( SMESH_Algo::isDegenerated( wires[iW]->Edge( iE2 ))) + iE2 = ( iE2 + 1 ) % nbEdges; + TopoDS_Vertex V = wires[iW]->FirstVertex( iE2 ); + double angle = helper.GetAngle( wires[iW]->Edge( iE1 ), + wires[iW]->Edge( iE2 ), F, V ); + if ( angle < -5. * M_PI / 180. ) + { + if ( !vertices ) + return true; + vertices->insert( helper.GetMeshDS()->ShapeToIndex( V )); + } + } + } + return vertices ? !vertices->empty() : false; + } + //================================================================================ /*! * \brief Returns true if a FACE is bound by a concave EDGE */ //================================================================================ - bool isConcave( const TopoDS_Face& F, SMESH_MesherHelper& helper ) + bool isConcave( const TopoDS_Face& F, + SMESH_MesherHelper& helper, + set< TGeomID >* vertices = 0 ) { + bool isConcv = false; + // if ( helper.Count( F, TopAbs_WIRE, /*useMap=*/false) > 1 ) + // return true; gp_Vec2d drv1, drv2; gp_Pnt2d p; TopExp_Explorer eExp( F.Oriented( TopAbs_FORWARD ), TopAbs_EDGE ); @@ -798,69 +1559,168 @@ namespace double u1 = intervals( i ); double u2 = intervals( i+1 ); curve.D2( 0.5*( u1+u2 ), p, drv1, drv2 ); - double cross = drv2 ^ drv1; + double cross = drv1 ^ drv2; if ( E.Orientation() == TopAbs_REVERSED ) cross = -cross; - isConvex = ( cross < 1e-9 ); + isConvex = ( cross > -1e-9 ); // 0.1 ); } - // check if concavity is strong enough to care about it - //const double maxAngle = 5 * Standard_PI180; if ( !isConvex ) { //cout << "Concave FACE " << helper.GetMeshDS()->ShapeToIndex( F ) << endl; - return true; - // map< double, const SMDS_MeshNode* > u2nodes; - // if ( !SMESH_Algo::GetSortedNodesOnEdge( helper.GetMeshDS(), E, - // /*ignoreMedium=*/true, u2nodes)) - // continue; - // map< double, const SMDS_MeshNode* >::iterator u2n = u2nodes.begin(); - // gp_Pnt2d uvPrev = helper.GetNodeUV( F, u2n->second ); - // double uPrev = u2n->first; - // for ( ++u2n; u2n != u2nodes.end(); ++u2n ) - // { - // gp_Pnt2d uv = helper.GetNodeUV( F, u2n->second ); - // gp_Vec2d segmentDir( uvPrev, uv ); - // curve.D1( uPrev, p, drv1 ); - // try { - // if ( fabs( segmentDir.Angle( drv1 )) > maxAngle ) - // return true; - // } - // catch ( ... ) {} - // uvPrev = uv; - // uPrev = u2n->first; - // } + isConcv = true; + if ( vertices ) + break; + else + return true; } } - return false; - } + + // check angles at VERTEXes + if ( getConcaveVertices( F, helper, vertices )) + isConcv = true; + + return isConcv; + } + + //================================================================================ + /*! + * \brief Computes mimimal distance of face in-FACE nodes from an EDGE + * \param [in] face - the mesh face to treat + * \param [in] nodeOnEdge - a node on the EDGE + * \param [out] faceSize - the computed distance + * \return bool - true if faceSize computed + */ + //================================================================================ + + bool getDistFromEdge( const SMDS_MeshElement* face, + const SMDS_MeshNode* nodeOnEdge, + double & faceSize ) + { + faceSize = Precision::Infinite(); + bool done = false; + + int nbN = face->NbCornerNodes(); + int iOnE = face->GetNodeIndex( nodeOnEdge ); + int iNext[2] = { SMESH_MesherHelper::WrapIndex( iOnE+1, nbN ), + SMESH_MesherHelper::WrapIndex( iOnE-1, nbN ) }; + const SMDS_MeshNode* nNext[2] = { face->GetNode( iNext[0] ), + face->GetNode( iNext[1] ) }; + gp_XYZ segVec, segEnd = SMESH_TNodeXYZ( nodeOnEdge ); // segment on EDGE + double segLen = -1.; + // look for two neighbor not in-FACE nodes of face + for ( int i = 0; i < 2; ++i ) + { + if (( nNext[i]->GetPosition()->GetDim() != 2 ) && + ( nodeOnEdge->GetPosition()->GetDim() == 0 || nNext[i]->GetID() < nodeOnEdge->GetID() )) + { + // look for an in-FACE node + for ( int iN = 0; iN < nbN; ++iN ) + { + if ( iN == iOnE || iN == iNext[i] ) + continue; + SMESH_TNodeXYZ pInFace = face->GetNode( iN ); + gp_XYZ v = pInFace - segEnd; + if ( segLen < 0 ) + { + segVec = SMESH_TNodeXYZ( nNext[i] ) - segEnd; + segLen = segVec.Modulus(); + } + double distToSeg = v.Crossed( segVec ).Modulus() / segLen; + faceSize = Min( faceSize, distToSeg ); + done = true; + } + segLen = -1; + } + } + return done; + } + //================================================================================ + /*! + * \brief Return direction of axis or revolution of a surface + */ + //================================================================================ + + bool getRovolutionAxis( const Adaptor3d_Surface& surface, + gp_Dir & axis ) + { + switch ( surface.GetType() ) { + case GeomAbs_Cone: + { + gp_Cone cone = surface.Cone(); + axis = cone.Axis().Direction(); + break; + } + case GeomAbs_Sphere: + { + gp_Sphere sphere = surface.Sphere(); + axis = sphere.Position().Direction(); + break; + } + case GeomAbs_SurfaceOfRevolution: + { + axis = surface.AxeOfRevolution().Direction(); + break; + } + //case GeomAbs_SurfaceOfExtrusion: + case GeomAbs_OffsetSurface: + { + Handle(Adaptor3d_HSurface) base = surface.BasisSurface(); + return getRovolutionAxis( base->Surface(), axis ); + } + default: return false; + } + return true; + } + //-------------------------------------------------------------------------------- // DEBUG. Dump intermediate node positions into a python script + // HOWTO use: run python commands written in a console to see + // construction steps of viscous layers #ifdef __myDEBUG - ofstream* py; - struct PyDump { - PyDump() { + ostream* py; + int theNbPyFunc; + struct PyDump + { + PyDump(SMESH_Mesh& m) { + int tag = 3 + m.GetId(); const char* fname = "/tmp/viscous.py"; cout << "execfile('"< ostream & operator<<( const T &anything ) { return *this ; } + }; + void Pause() { py = &_mystream; } + void Resume() { py = _pyStream; } + MyStream _mystream; + ostream* _pyStream; }; #define dumpFunction(f) { _dumpFunction(f, __LINE__);} #define dumpMove(n) { _dumpMove(n, __LINE__);} +#define dumpMoveComm(n,txt) { _dumpMove(n, __LINE__, txt);} #define dumpCmd(txt) { _dumpCmd(txt, __LINE__);} void _dumpFunction(const string& fun, int ln) - { if (py) *py<< "def "<GetID()<< ", "<< n->X() - << ", "<Y()<<", "<< n->Z()<< ")\t\t # "<< ln <Y()<<", "<< n->Z()<< ")\t\t # "<< ln <<" "<< txt << endl; } void _dumpCmd(const string& txt, int ln) { if (py) *py<< " "<GetID()<<", ["; for ( int i=1; i < f->NbNodes(); ++i ) *py << f->GetNode(i-1)->GetID()<<", "; *py << f->GetNode( f->NbNodes()-1 )->GetID() << " ])"<< endl; }} +#define debugMsg( txt ) { cout << "# "<< txt << " (line: " << __LINE__ << ")" << endl; } + #else - struct PyDump { void Finish() {} }; + + struct PyDump { PyDump(SMESH_Mesh&) {} void Finish() {} void Pause() {} void Resume() {} }; #define dumpFunction(f) f #define dumpMove(n) +#define dumpMoveComm(n,txt) #define dumpCmd(txt) #define dumpFunctionEnd() -#define dumpChangeNodes(f) +#define dumpChangeNodes(f) { if(f) {} } // prevent "unused variable 'f'" warning +#define debugMsg( txt ) {} + #endif } @@ -901,19 +1767,36 @@ _ViscousBuilder::_ViscousBuilder() bool _ViscousBuilder::error(const string& text, int solidId ) { + const string prefix = string("Viscous layers builder: "); _error->myName = COMPERR_ALGO_FAILED; - _error->myComment = string("Viscous layers builder: ") + text; + _error->myComment = prefix + text; if ( _mesh ) { SMESH_subMesh* sm = _mesh->GetSubMeshContaining( solidId ); if ( !sm && !_sdVec.empty() ) - sm = _mesh->GetSubMeshContaining( _sdVec[0]._index ); + sm = _mesh->GetSubMeshContaining( solidId = _sdVec[0]._index ); if ( sm && sm->GetSubShape().ShapeType() == TopAbs_SOLID ) { SMESH_ComputeErrorPtr& smError = sm->GetComputeError(); if ( smError && smError->myAlgo ) _error->myAlgo = smError->myAlgo; smError = _error; + sm->ComputeStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE ); + } + // set KO to all solids + for ( size_t i = 0; i < _sdVec.size(); ++i ) + { + if ( _sdVec[i]._index == solidId ) + continue; + sm = _mesh->GetSubMesh( _sdVec[i]._solid ); + if ( !sm->IsEmpty() ) + continue; + SMESH_ComputeErrorPtr& smError = sm->GetComputeError(); + if ( !smError || smError->IsOK() ) + { + smError = SMESH_ComputeError::New( COMPERR_ALGO_FAILED, prefix + "failed"); + sm->ComputeStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE ); + } } } makeGroupOfLE(); // debug @@ -981,8 +1864,6 @@ bool _ViscousBuilder::MakeN2NMap( _MeshOfSolid* pm ) SMESH_ComputeErrorPtr _ViscousBuilder::Compute(SMESH_Mesh& theMesh, const TopoDS_Shape& theShape) { - // TODO: set priority of solids during Gen::Compute() - _mesh = & theMesh; // check if proxy mesh already computed @@ -993,7 +1874,8 @@ SMESH_ComputeErrorPtr _ViscousBuilder::Compute(SMESH_Mesh& theMesh, if ( _ViscousListener::GetSolidMesh( _mesh, exp.Current(), /*toCreate=*/false)) return SMESH_ComputeErrorPtr(); // everything already computed - PyDump debugDump; + PyDump debugDump( theMesh ); + _pyDump = &debugDump; // TODO: ignore already computed SOLIDs if ( !findSolidsWithLayers()) @@ -1002,24 +1884,39 @@ SMESH_ComputeErrorPtr _ViscousBuilder::Compute(SMESH_Mesh& theMesh, if ( !findFacesWithLayers() ) return _error; - for ( unsigned i = 0; i < _sdVec.size(); ++i ) + for ( size_t i = 0; i < _sdVec.size(); ++i ) { - if ( ! makeLayer(_sdVec[i]) ) + size_t iSD = 0; + for ( iSD = 0; iSD < _sdVec.size(); ++iSD ) // find next SOLID to compute + if ( _sdVec[iSD]._before.IsEmpty() && + !_sdVec[iSD]._solid.IsNull() && + _sdVec[iSD]._n2eMap.empty() ) + break; + + if ( ! makeLayer(_sdVec[iSD]) ) // create _LayerEdge's return _error; - if ( _sdVec[i]._edges.size() == 0 ) + if ( _sdVec[iSD]._n2eMap.size() == 0 ) // no layers in a SOLID + { + _sdVec[iSD]._solid.Nullify(); continue; - - if ( ! inflate(_sdVec[i]) ) + } + + if ( ! inflate(_sdVec[iSD]) ) // increase length of _LayerEdge's return _error; - if ( ! refine(_sdVec[i]) ) + if ( ! refine(_sdVec[iSD]) ) // create nodes and prisms return _error; - } - if ( !shrink() ) - return _error; - addBoundaryElements(); + if ( ! shrink(_sdVec[iSD]) ) // shrink 2D mesh on FACEs w/o layer + return _error; + + addBoundaryElements(_sdVec[iSD]); // create quadrangles on prism bare sides + + const TopoDS_Shape& solid = _sdVec[iSD]._solid; + for ( iSD = 0; iSD < _sdVec.size(); ++iSD ) + _sdVec[iSD]._before.Remove( solid ); + } makeGroupOfLE(); // debug debugDump.Finish(); @@ -1027,6 +1924,34 @@ SMESH_ComputeErrorPtr _ViscousBuilder::Compute(SMESH_Mesh& theMesh, return _error; } +//================================================================================ +/*! + * \brief Check validity of hypotheses + */ +//================================================================================ + +SMESH_ComputeErrorPtr _ViscousBuilder::CheckHypotheses( SMESH_Mesh& mesh, + const TopoDS_Shape& shape ) +{ + _mesh = & mesh; + + if ( _ViscousListener::GetSolidMesh( _mesh, shape, /*toCreate=*/false)) + return SMESH_ComputeErrorPtr(); // everything already computed + + + findSolidsWithLayers(); + bool ok = findFacesWithLayers( true ); + + // remove _MeshOfSolid's of _SolidData's + for ( size_t i = 0; i < _sdVec.size(); ++i ) + _ViscousListener::RemoveSolidMesh( _mesh, _sdVec[i]._solid ); + + if ( !ok ) + return _error; + + return SMESH_ComputeErrorPtr(); +} + //================================================================================ /*! * \brief Finds SOLIDs to compute using viscous layers. Fills _sdVec @@ -1040,27 +1965,43 @@ bool _ViscousBuilder::findSolidsWithLayers() TopExp::MapShapes( _mesh->GetShapeToMesh(), TopAbs_SOLID, allSolids ); _sdVec.reserve( allSolids.Extent()); - SMESH_Gen* gen = _mesh->GetGen(); + SMESH_HypoFilter filter; for ( int i = 1; i <= allSolids.Extent(); ++i ) { // find StdMeshers_ViscousLayers hyp assigned to the i-th solid - SMESH_Algo* algo = gen->GetAlgo( *_mesh, allSolids(i) ); + SMESH_subMesh* sm = _mesh->GetSubMesh( allSolids(i) ); + if ( sm->GetSubMeshDS() && sm->GetSubMeshDS()->NbElements() > 0 ) + continue; // solid is already meshed + SMESH_Algo* algo = sm->GetAlgo(); if ( !algo ) continue; // TODO: check if algo is hidden const list & allHyps = algo->GetUsedHypothesis(*_mesh, allSolids(i), /*ignoreAuxiliary=*/false); + _SolidData* soData = 0; list< const SMESHDS_Hypothesis *>::const_iterator hyp = allHyps.begin(); const StdMeshers_ViscousLayers* viscHyp = 0; - for ( ; hyp != allHyps.end() && !viscHyp; ++hyp ) - viscHyp = dynamic_cast( *hyp ); - if ( viscHyp ) - { - _MeshOfSolid* proxyMesh = _ViscousListener::GetSolidMesh( _mesh, - allSolids(i), - /*toCreate=*/true); - _sdVec.push_back( _SolidData( allSolids(i), viscHyp, proxyMesh )); - _sdVec.back()._index = getMeshDS()->ShapeToIndex( allSolids(i)); - } + for ( ; hyp != allHyps.end(); ++hyp ) + if (( viscHyp = dynamic_cast( *hyp ))) + { + TopoDS_Shape hypShape; + filter.Init( filter.Is( viscHyp )); + _mesh->GetHypothesis( allSolids(i), filter, true, &hypShape ); + + if ( !soData ) + { + _MeshOfSolid* proxyMesh = _ViscousListener::GetSolidMesh( _mesh, + allSolids(i), + /*toCreate=*/true); + _sdVec.push_back( _SolidData( allSolids(i), proxyMesh )); + soData = & _sdVec.back(); + soData->_index = getMeshDS()->ShapeToIndex( allSolids(i)); + soData->_helper = new SMESH_MesherHelper( *_mesh ); + soData->_helper->SetSubShape( allSolids(i) ); + _solids.Add( allSolids(i) ); + } + soData->_hyps.push_back( viscHyp ); + soData->_hypShapes.push_back( hypShape ); + } } if ( _sdVec.empty() ) return error @@ -1071,134 +2012,183 @@ bool _ViscousBuilder::findSolidsWithLayers() //================================================================================ /*! - * \brief + * \brief Set a _SolidData to be computed before another */ //================================================================================ -bool _ViscousBuilder::findFacesWithLayers() +bool _ViscousBuilder::setBefore( _SolidData& solidBefore, _SolidData& solidAfter ) { - // collect all faces to ignore defined by hyp - vector ignoreFaces; - for ( unsigned i = 0; i < _sdVec.size(); ++i ) + // check possibility to set this order; get all solids before solidBefore + TopTools_IndexedMapOfShape allSolidsBefore; + allSolidsBefore.Add( solidBefore._solid ); + for ( int i = 1; i <= allSolidsBefore.Extent(); ++i ) { - vector ids = _sdVec[i]._hyp->GetBndShapes(); - for ( unsigned i = 0; i < ids.size(); ++i ) + int iSD = _solids.FindIndex( allSolidsBefore(i) ); + if ( iSD ) { - const TopoDS_Shape& s = getMeshDS()->IndexToShape( ids[i] ); - if ( !s.IsNull() && s.ShapeType() == TopAbs_FACE ) - { - _ignoreShapeIds.insert( ids[i] ); - ignoreFaces.push_back( s ); - } + TopTools_MapIteratorOfMapOfShape soIt( _sdVec[ iSD-1 ]._before ); + for ( ; soIt.More(); soIt.Next() ) + allSolidsBefore.Add( soIt.Value() ); } } + if ( allSolidsBefore.Contains( solidAfter._solid )) + return false; + + for ( int i = 1; i <= allSolidsBefore.Extent(); ++i ) + solidAfter._before.Add( allSolidsBefore(i) ); + + return true; +} + +//================================================================================ +/*! + * \brief + */ +//================================================================================ - // ignore internal faces +bool _ViscousBuilder::findFacesWithLayers(const bool onlyWith) +{ SMESH_MesherHelper helper( *_mesh ); TopExp_Explorer exp; - for ( unsigned i = 0; i < _sdVec.size(); ++i ) + + // collect all faces-to-ignore defined by hyp + for ( size_t i = 0; i < _sdVec.size(); ++i ) + { + // get faces-to-ignore defined by each hyp + typedef const StdMeshers_ViscousLayers* THyp; + typedef std::pair< set, THyp > TFacesOfHyp; + list< TFacesOfHyp > ignoreFacesOfHyps; + list< THyp >::iterator hyp = _sdVec[i]._hyps.begin(); + list< TopoDS_Shape >::iterator hypShape = _sdVec[i]._hypShapes.begin(); + for ( ; hyp != _sdVec[i]._hyps.end(); ++hyp, ++hypShape ) + { + ignoreFacesOfHyps.push_back( TFacesOfHyp( set(), *hyp )); + getIgnoreFaces( _sdVec[i]._solid, *hyp, *hypShape, ignoreFacesOfHyps.back().first ); + } + + // fill _SolidData::_face2hyp and check compatibility of hypotheses + const int nbHyps = _sdVec[i]._hyps.size(); + if ( nbHyps > 1 ) + { + // check if two hypotheses define different parameters for the same FACE + list< TFacesOfHyp >::iterator igFacesOfHyp; + for ( exp.Init( _sdVec[i]._solid, TopAbs_FACE ); exp.More(); exp.Next() ) + { + const TGeomID faceID = getMeshDS()->ShapeToIndex( exp.Current() ); + THyp hyp = 0; + igFacesOfHyp = ignoreFacesOfHyps.begin(); + for ( ; igFacesOfHyp != ignoreFacesOfHyps.end(); ++igFacesOfHyp ) + if ( ! igFacesOfHyp->first.count( faceID )) + { + if ( hyp ) + return error(SMESH_Comment("Several hypotheses define " + "Viscous Layers on the face #") << faceID ); + hyp = igFacesOfHyp->second; + } + if ( hyp ) + _sdVec[i]._face2hyp.insert( make_pair( faceID, hyp )); + else + _sdVec[i]._ignoreFaceIds.insert( faceID ); + } + + // check if two hypotheses define different number of viscous layers for + // adjacent faces of a solid + set< int > nbLayersSet; + igFacesOfHyp = ignoreFacesOfHyps.begin(); + for ( ; igFacesOfHyp != ignoreFacesOfHyps.end(); ++igFacesOfHyp ) + { + nbLayersSet.insert( igFacesOfHyp->second->GetNumberLayers() ); + } + if ( nbLayersSet.size() > 1 ) + { + for ( exp.Init( _sdVec[i]._solid, TopAbs_EDGE ); exp.More(); exp.Next() ) + { + PShapeIteratorPtr fIt = helper.GetAncestors( exp.Current(), *_mesh, TopAbs_FACE ); + THyp hyp1 = 0, hyp2 = 0; + while( const TopoDS_Shape* face = fIt->next() ) + { + const TGeomID faceID = getMeshDS()->ShapeToIndex( *face ); + map< TGeomID, THyp >::iterator f2h = _sdVec[i]._face2hyp.find( faceID ); + if ( f2h != _sdVec[i]._face2hyp.end() ) + { + ( hyp1 ? hyp2 : hyp1 ) = f2h->second; + } + } + if ( hyp1 && hyp2 && + hyp1->GetNumberLayers() != hyp2->GetNumberLayers() ) + { + return error("Two hypotheses define different number of " + "viscous layers on adjacent faces"); + } + } + } + } // if ( nbHyps > 1 ) + else + { + _sdVec[i]._ignoreFaceIds.swap( ignoreFacesOfHyps.back().first ); + } + } // loop on _sdVec + + if ( onlyWith ) // is called to check hypotheses compatibility only + return true; + + // fill _SolidData::_reversedFaceIds + for ( size_t i = 0; i < _sdVec.size(); ++i ) { exp.Init( _sdVec[i]._solid.Oriented( TopAbs_FORWARD ), TopAbs_FACE ); for ( ; exp.More(); exp.Next() ) { - TGeomID faceInd = getMeshDS()->ShapeToIndex( exp.Current() ); - if ( helper.NbAncestors( exp.Current(), *_mesh, TopAbs_SOLID ) > 1 ) - { - _ignoreShapeIds.insert( faceInd ); - ignoreFaces.push_back( exp.Current() ); - if ( helper.IsReversedSubMesh( TopoDS::Face( exp.Current() ))) - _sdVec[i]._reversedFaceIds.insert( faceInd ); + const TopoDS_Face& face = TopoDS::Face( exp.Current() ); + const TGeomID faceID = getMeshDS()->ShapeToIndex( face ); + if ( //!sdVec[i]._ignoreFaceIds.count( faceID ) && + helper.NbAncestors( face, *_mesh, TopAbs_SOLID ) > 1 && + helper.IsReversedSubMesh( face )) + { + _sdVec[i]._reversedFaceIds.insert( faceID ); } } } - // Find faces to shrink mesh on (solution 2 in issue 0020832); + // Find FACEs to shrink mesh on (solution 2 in issue 0020832): fill in _shrinkShape2Shape TopTools_IndexedMapOfShape shapes; - for ( unsigned i = 0; i < _sdVec.size(); ++i ) + std::string structAlgoName = "Hexa_3D"; + for ( size_t i = 0; i < _sdVec.size(); ++i ) { shapes.Clear(); TopExp::MapShapes(_sdVec[i]._solid, TopAbs_EDGE, shapes); for ( int iE = 1; iE <= shapes.Extent(); ++iE ) { const TopoDS_Shape& edge = shapes(iE); - // find 2 faces sharing an edge + // find 2 FACEs sharing an EDGE TopoDS_Shape FF[2]; - PShapeIteratorPtr fIt = helper.GetAncestors(edge, *_mesh, TopAbs_FACE); + PShapeIteratorPtr fIt = helper.GetAncestors(edge, *_mesh, TopAbs_FACE, &_sdVec[i]._solid); while ( fIt->more()) { const TopoDS_Shape* f = fIt->next(); - if ( helper.IsSubShape( *f, _sdVec[i]._solid)) - FF[ int( !FF[0].IsNull()) ] = *f; + FF[ int( !FF[0].IsNull()) ] = *f; } if( FF[1].IsNull() ) continue; // seam edge can be shared by 1 FACE only + // check presence of layers on them int ignore[2]; for ( int j = 0; j < 2; ++j ) - ignore[j] = _ignoreShapeIds.count ( getMeshDS()->ShapeToIndex( FF[j] )); - if ( ignore[0] == ignore[1] ) continue; // nothing interesting + ignore[j] = _sdVec[i]._ignoreFaceIds.count( getMeshDS()->ShapeToIndex( FF[j] )); + if ( ignore[0] == ignore[1] ) + continue; // nothing interesting TopoDS_Shape fWOL = FF[ ignore[0] ? 0 : 1 ]; - // add edge to maps - TGeomID edgeInd = getMeshDS()->ShapeToIndex( edge ); - _sdVec[i]._shrinkShape2Shape.insert( make_pair( edgeInd, fWOL )); - } - } - // Exclude from _shrinkShape2Shape FACE's that can't be shrinked since - // the algo of the SOLID sharing the FACE does not support it - set< string > notSupportAlgos; notSupportAlgos.insert("Hexa_3D"); - for ( unsigned i = 0; i < _sdVec.size(); ++i ) - { - TopTools_MapOfShape noShrinkVertices; - map< TGeomID, TopoDS_Shape >::iterator e2f = _sdVec[i]._shrinkShape2Shape.begin(); - for ( ; e2f != _sdVec[i]._shrinkShape2Shape.end(); ++e2f ) - { - const TopoDS_Shape& fWOL = e2f->second; - TGeomID edgeID = e2f->first; - bool notShrinkFace = false; - PShapeIteratorPtr soIt = helper.GetAncestors(fWOL, *_mesh, TopAbs_SOLID); - while ( soIt->more()) - { - const TopoDS_Shape* solid = soIt->next(); - if ( _sdVec[i]._solid.IsSame( *solid )) continue; - SMESH_Algo* algo = _mesh->GetGen()->GetAlgo( *_mesh, *solid ); - if ( !algo || !notSupportAlgos.count( algo->GetName() )) continue; - notShrinkFace = true; - for ( unsigned j = 0; j < _sdVec.size(); ++j ) - { - if ( _sdVec[j]._solid.IsSame( *solid ) ) - if ( _sdVec[j]._shrinkShape2Shape.count( edgeID )) - notShrinkFace = false; - } - } - if ( notShrinkFace ) - { - _sdVec[i]._noShrinkFaces.insert( getMeshDS()->ShapeToIndex( fWOL )); - for ( TopExp_Explorer vExp( fWOL, TopAbs_VERTEX ); vExp.More(); vExp.Next() ) - noShrinkVertices.Add( vExp.Current() ); - } - } - // erase from _shrinkShape2Shape all srink EDGE's of a SOLID connected - // to the found not shrinked fWOL's - e2f = _sdVec[i]._shrinkShape2Shape.begin(); - for ( ; e2f != _sdVec[i]._shrinkShape2Shape.end(); ) - { - TGeomID edgeID = e2f->first; - TopoDS_Vertex VV[2]; - TopExp::Vertices( TopoDS::Edge( getMeshDS()->IndexToShape( edgeID )),VV[0],VV[1]); - if ( noShrinkVertices.Contains( VV[0] ) || noShrinkVertices.Contains( VV[1] )) - { - _sdVec[i]._noShrinkFaces.insert( getMeshDS()->ShapeToIndex( e2f->second )); - _sdVec[i]._shrinkShape2Shape.erase( e2f++ ); - } - else + + // add EDGE to maps + if ( !fWOL.IsNull()) { - e2f++; + TGeomID edgeInd = getMeshDS()->ShapeToIndex( edge ); + _sdVec[i]._shrinkShape2Shape.insert( make_pair( edgeInd, fWOL )); } } } - + // Find the SHAPE along which to inflate _LayerEdge based on VERTEX - for ( unsigned i = 0; i < _sdVec.size(); ++i ) + for ( size_t i = 0; i < _sdVec.size(); ++i ) { shapes.Clear(); TopExp::MapShapes(_sdVec[i]._solid, TopAbs_VERTEX, shapes); @@ -1207,18 +2197,15 @@ bool _ViscousBuilder::findFacesWithLayers() const TopoDS_Shape& vertex = shapes(iV); // find faces WOL sharing the vertex vector< TopoDS_Shape > facesWOL; - int totalNbFaces = 0; - PShapeIteratorPtr fIt = helper.GetAncestors(vertex, *_mesh, TopAbs_FACE); + size_t totalNbFaces = 0; + PShapeIteratorPtr fIt = helper.GetAncestors(vertex, *_mesh, TopAbs_FACE, &_sdVec[i]._solid ); while ( fIt->more()) { const TopoDS_Shape* f = fIt->next(); - const int fID = getMeshDS()->ShapeToIndex( *f ); - if ( helper.IsSubShape( *f, _sdVec[i]._solid ) ) - { - totalNbFaces++; - if ( _ignoreShapeIds.count ( fID ) && ! _sdVec[i]._noShrinkFaces.count( fID )) - facesWOL.push_back( *f ); - } + totalNbFaces++; + const int fID = getMeshDS()->ShapeToIndex( *f ); + if ( _sdVec[i]._ignoreFaceIds.count ( fID ) /*&& !_sdVec[i]._noShrinkShapes.count( fID )*/) + facesWOL.push_back( *f ); } if ( facesWOL.size() == totalNbFaces || facesWOL.empty() ) continue; // no layers at this vertex or no WOL @@ -1226,89 +2213,298 @@ bool _ViscousBuilder::findFacesWithLayers() switch ( facesWOL.size() ) { case 1: + { + helper.SetSubShape( facesWOL[0] ); + if ( helper.IsRealSeam( vInd )) // inflate along a seam edge? { - helper.SetSubShape( facesWOL[0] ); - if ( helper.IsRealSeam( vInd )) // inflate along a seam edge? + TopoDS_Shape seamEdge; + PShapeIteratorPtr eIt = helper.GetAncestors(vertex, *_mesh, TopAbs_EDGE); + while ( eIt->more() && seamEdge.IsNull() ) { - TopoDS_Shape seamEdge; - PShapeIteratorPtr eIt = helper.GetAncestors(vertex, *_mesh, TopAbs_EDGE); - while ( eIt->more() && seamEdge.IsNull() ) - { - const TopoDS_Shape* e = eIt->next(); - if ( helper.IsRealSeam( *e ) ) - seamEdge = *e; - } - if ( !seamEdge.IsNull() ) - { - _sdVec[i]._shrinkShape2Shape.insert( make_pair( vInd, seamEdge )); - break; - } + const TopoDS_Shape* e = eIt->next(); + if ( helper.IsRealSeam( *e ) ) + seamEdge = *e; + } + if ( !seamEdge.IsNull() ) + { + _sdVec[i]._shrinkShape2Shape.insert( make_pair( vInd, seamEdge )); + break; } - _sdVec[i]._shrinkShape2Shape.insert( make_pair( vInd, facesWOL[0] )); - break; } + _sdVec[i]._shrinkShape2Shape.insert( make_pair( vInd, facesWOL[0] )); + break; + } case 2: + { + // find an edge shared by 2 faces + PShapeIteratorPtr eIt = helper.GetAncestors(vertex, *_mesh, TopAbs_EDGE); + while ( eIt->more()) { - // find an edge shared by 2 faces - PShapeIteratorPtr eIt = helper.GetAncestors(vertex, *_mesh, TopAbs_EDGE); - while ( eIt->more()) + const TopoDS_Shape* e = eIt->next(); + if ( helper.IsSubShape( *e, facesWOL[0]) && + helper.IsSubShape( *e, facesWOL[1])) { - const TopoDS_Shape* e = eIt->next(); - if ( helper.IsSubShape( *e, facesWOL[0]) && - helper.IsSubShape( *e, facesWOL[1])) - { - _sdVec[i]._shrinkShape2Shape.insert( make_pair( vInd, *e )); break; - } + _sdVec[i]._shrinkShape2Shape.insert( make_pair( vInd, *e )); break; } - break; } + break; + } default: return error("Not yet supported case", _sdVec[i]._index); } } } + // Add to _noShrinkShapes sub-shapes of FACE's that can't be shrinked since + // the algo of the SOLID sharing the FACE does not support it or for other reasons + set< string > notSupportAlgos; notSupportAlgos.insert( structAlgoName ); + for ( size_t i = 0; i < _sdVec.size(); ++i ) + { + map< TGeomID, TopoDS_Shape >::iterator e2f = _sdVec[i]._shrinkShape2Shape.begin(); + for ( ; e2f != _sdVec[i]._shrinkShape2Shape.end(); ++e2f ) + { + const TopoDS_Shape& fWOL = e2f->second; + const TGeomID edgeID = e2f->first; + TGeomID faceID = getMeshDS()->ShapeToIndex( fWOL ); + TopoDS_Shape edge = getMeshDS()->IndexToShape( edgeID ); + if ( edge.ShapeType() != TopAbs_EDGE ) + continue; // shrink shape is VERTEX + + TopoDS_Shape solid; + PShapeIteratorPtr soIt = helper.GetAncestors(fWOL, *_mesh, TopAbs_SOLID); + while ( soIt->more() && solid.IsNull() ) + { + const TopoDS_Shape* so = soIt->next(); + if ( !so->IsSame( _sdVec[i]._solid )) + solid = *so; + } + if ( solid.IsNull() ) + continue; + + bool noShrinkE = false; + SMESH_Algo* algo = _mesh->GetSubMesh( solid )->GetAlgo(); + bool isStructured = ( algo && algo->GetName() == structAlgoName ); + size_t iSolid = _solids.FindIndex( solid ) - 1; + if ( iSolid < _sdVec.size() && _sdVec[ iSolid ]._ignoreFaceIds.count( faceID )) + { + // the adjacent SOLID has NO layers on fWOL; + // shrink allowed if + // - there are layers on the EDGE in the adjacent SOLID + // - there are NO layers in the adjacent SOLID && algo is unstructured and computed later + bool hasWLAdj = (_sdVec[iSolid]._shrinkShape2Shape.count( edgeID )); + bool shrinkAllowed = (( hasWLAdj ) || + ( !isStructured && setBefore( _sdVec[ i ], _sdVec[ iSolid ] ))); + noShrinkE = !shrinkAllowed; + } + else if ( iSolid < _sdVec.size() ) + { + // the adjacent SOLID has layers on fWOL; + // check if SOLID's mesh is unstructured and then try to set it + // to be computed after the i-th solid + if ( isStructured || !setBefore( _sdVec[ i ], _sdVec[ iSolid ] )) + noShrinkE = true; // don't shrink fWOL + } + else + { + // the adjacent SOLID has NO layers at all + noShrinkE = isStructured; + } + + if ( noShrinkE ) + { + _sdVec[i]._noShrinkShapes.insert( edgeID ); + + // check if there is a collision with to-shrink-from EDGEs in iSolid + // if ( iSolid < _sdVec.size() ) + // { + // shapes.Clear(); + // TopExp::MapShapes( fWOL, TopAbs_EDGE, shapes); + // for ( int iE = 1; iE <= shapes.Extent(); ++iE ) + // { + // const TopoDS_Edge& E = TopoDS::Edge( shapes( iE )); + // const TGeomID eID = getMeshDS()->ShapeToIndex( E ); + // if ( eID == edgeID || + // !_sdVec[iSolid]._shrinkShape2Shape.count( eID ) || + // _sdVec[i]._noShrinkShapes.count( eID )) + // continue; + // for ( int is1st = 0; is1st < 2; ++is1st ) + // { + // TopoDS_Vertex V = helper.IthVertex( is1st, E ); + // if ( _sdVec[i]._noShrinkShapes.count( getMeshDS()->ShapeToIndex( V ) )) + // { + // return error("No way to make a conformal mesh with " + // "the given set of faces with layers", _sdVec[i]._index); + // } + // } + // } + // } + } + + // add VERTEXes of the edge in _noShrinkShapes, which is necessary if + // _shrinkShape2Shape is different in the adjacent SOLID + for ( TopoDS_Iterator vIt( edge ); vIt.More(); vIt.Next() ) + { + TGeomID vID = getMeshDS()->ShapeToIndex( vIt.Value() ); + bool noShrinkV = false, noShrinkIfAdjMeshed = false; + + if ( iSolid < _sdVec.size() ) + { + if ( _sdVec[ iSolid ]._ignoreFaceIds.count( faceID )) + { + map< TGeomID, TopoDS_Shape >::iterator i2S, i2SAdj; + i2S = _sdVec[i ]._shrinkShape2Shape.find( vID ); + i2SAdj = _sdVec[iSolid]._shrinkShape2Shape.find( vID ); + if ( i2SAdj == _sdVec[iSolid]._shrinkShape2Shape.end() ) + noShrinkV = (( isStructured ) || + ( noShrinkIfAdjMeshed = i2S->second.ShapeType() == TopAbs_EDGE )); + else + noShrinkV = ( ! i2S->second.IsSame( i2SAdj->second )); + } + else + { + noShrinkV = noShrinkE; + } + } + else + { + // the adjacent SOLID has NO layers at all + if ( isStructured ) + { + noShrinkV = true; + } + else + { + noShrinkV = noShrinkIfAdjMeshed = + ( _sdVec[i]._shrinkShape2Shape[ vID ].ShapeType() == TopAbs_EDGE ); + } + } + + if ( noShrinkV && noShrinkIfAdjMeshed ) + { + // noShrinkV if FACEs in the adjacent SOLID are meshed + PShapeIteratorPtr fIt = helper.GetAncestors( _sdVec[i]._shrinkShape2Shape[ vID ], + *_mesh, TopAbs_FACE, &solid ); + while ( fIt->more() ) + { + const TopoDS_Shape* f = fIt->next(); + if ( !f->IsSame( fWOL )) + { + noShrinkV = ! _mesh->GetSubMesh( *f )->IsEmpty(); + break; + } + } + } + if ( noShrinkV ) + _sdVec[i]._noShrinkShapes.insert( vID ); + } + + } // loop on _sdVec[i]._shrinkShape2Shape + } // loop on _sdVec to fill in _SolidData::_noShrinkShapes + + + // add FACEs of other SOLIDs to _ignoreFaceIds + for ( size_t i = 0; i < _sdVec.size(); ++i ) + { + shapes.Clear(); + TopExp::MapShapes(_sdVec[i]._solid, TopAbs_FACE, shapes); + + for ( exp.Init( _mesh->GetShapeToMesh(), TopAbs_FACE ); exp.More(); exp.Next() ) + { + if ( !shapes.Contains( exp.Current() )) + _sdVec[i]._ignoreFaceIds.insert( getMeshDS()->ShapeToIndex( exp.Current() )); + } + } + return true; } //================================================================================ /*! - * \brief Create the inner surface of the viscous layer and prepare data for infation + * \brief Finds FACEs w/o layers for a given SOLID by an hypothesis */ //================================================================================ -bool _ViscousBuilder::makeLayer(_SolidData& data) +void _ViscousBuilder::getIgnoreFaces(const TopoDS_Shape& solid, + const StdMeshers_ViscousLayers* hyp, + const TopoDS_Shape& hypShape, + set& ignoreFaceIds) { - // get all sub-shapes to make layers on - set subIds, faceIds; - subIds = data._noShrinkFaces; - TopExp_Explorer exp( data._solid, TopAbs_FACE ); - for ( ; exp.More(); exp.Next() ) - if ( ! _ignoreShapeIds.count( getMeshDS()->ShapeToIndex( exp.Current() ))) - { - SMESH_subMesh* fSubM = _mesh->GetSubMesh( exp.Current() ); - faceIds.insert( fSubM->GetId() ); - SMESH_subMeshIteratorPtr subIt = - fSubM->getDependsOnIterator(/*includeSelf=*/true, /*complexShapeFirst=*/false); - while ( subIt->more() ) - subIds.insert( subIt->next()->GetId() ); - } + TopExp_Explorer exp; + + vector ids = hyp->GetBndShapes(); + if ( hyp->IsToIgnoreShapes() ) // FACEs to ignore are given + { + for ( size_t ii = 0; ii < ids.size(); ++ii ) + { + const TopoDS_Shape& s = getMeshDS()->IndexToShape( ids[ii] ); + if ( !s.IsNull() && s.ShapeType() == TopAbs_FACE ) + ignoreFaceIds.insert( ids[ii] ); + } + } + else // FACEs with layers are given + { + exp.Init( solid, TopAbs_FACE ); + for ( ; exp.More(); exp.Next() ) + { + TGeomID faceInd = getMeshDS()->ShapeToIndex( exp.Current() ); + if ( find( ids.begin(), ids.end(), faceInd ) == ids.end() ) + ignoreFaceIds.insert( faceInd ); + } + } + + // ignore internal FACEs if inlets and outlets are specified + if ( hyp->IsToIgnoreShapes() ) + { + TopTools_IndexedDataMapOfShapeListOfShape solidsOfFace; + TopExp::MapShapesAndAncestors( hypShape, + TopAbs_FACE, TopAbs_SOLID, solidsOfFace); + + for ( exp.Init( solid, TopAbs_FACE ); exp.More(); exp.Next() ) + { + const TopoDS_Face& face = TopoDS::Face( exp.Current() ); + if ( SMESH_MesherHelper::NbAncestors( face, *_mesh, TopAbs_SOLID ) < 2 ) + continue; + + int nbSolids = solidsOfFace.FindFromKey( face ).Extent(); + if ( nbSolids > 1 ) + ignoreFaceIds.insert( getMeshDS()->ShapeToIndex( face )); + } + } +} + +//================================================================================ +/*! + * \brief Create the inner surface of the viscous layer and prepare data for infation + */ +//================================================================================ + +bool _ViscousBuilder::makeLayer(_SolidData& data) +{ + // get all sub-shapes to make layers on + set subIds, faceIds; + subIds = data._noShrinkShapes; + TopExp_Explorer exp( data._solid, TopAbs_FACE ); + for ( ; exp.More(); exp.Next() ) + { + SMESH_subMesh* fSubM = _mesh->GetSubMesh( exp.Current() ); + if ( ! data._ignoreFaceIds.count( fSubM->GetId() )) + faceIds.insert( fSubM->GetId() ); + } // make a map to find new nodes on sub-shapes shared with other SOLID - map< TGeomID, TNode2Edge* > s2neMap; map< TGeomID, TNode2Edge* >::iterator s2ne; map< TGeomID, TopoDS_Shape >::iterator s2s = data._shrinkShape2Shape.begin(); for (; s2s != data._shrinkShape2Shape.end(); ++s2s ) { TGeomID shapeInd = s2s->first; - for ( unsigned i = 0; i < _sdVec.size(); ++i ) + for ( size_t i = 0; i < _sdVec.size(); ++i ) { if ( _sdVec[i]._index == data._index ) continue; map< TGeomID, TopoDS_Shape >::iterator s2s2 = _sdVec[i]._shrinkShape2Shape.find( shapeInd ); if ( s2s2 != _sdVec[i]._shrinkShape2Shape.end() && *s2s == *s2s2 && !_sdVec[i]._n2eMap.empty() ) { - s2neMap.insert( make_pair( shapeInd, &_sdVec[i]._n2eMap )); + data._s2neMap.insert( make_pair( shapeInd, &_sdVec[i]._n2eMap )); break; } } @@ -1316,119 +2512,249 @@ bool _ViscousBuilder::makeLayer(_SolidData& data) // Create temporary faces and _LayerEdge's - dumpFunction(SMESH_Comment("makeLayers_")< newNodes; // of a mesh face TNode2Edge::iterator n2e2; // collect _LayerEdge's of shapes they are based on + vector< _EdgesOnShape >& edgesByGeom = data._edgesOnShape; const int nbShapes = getMeshDS()->MaxShapeIndex(); - vector< vector<_LayerEdge*> > edgesByGeom( nbShapes+1 ); + edgesByGeom.resize( nbShapes+1 ); + // set data of _EdgesOnShape's + if ( SMESH_subMesh* sm = _mesh->GetSubMesh( data._solid )) + { + SMESH_subMeshIteratorPtr smIt = sm->getDependsOnIterator(/*includeSelf=*/false); + while ( smIt->more() ) + { + sm = smIt->next(); + if ( sm->GetSubShape().ShapeType() == TopAbs_FACE && + !faceIds.count( sm->GetId() )) + continue; + setShapeData( edgesByGeom[ sm->GetId() ], sm, data ); + } + } + // make _LayerEdge's for ( set::iterator id = faceIds.begin(); id != faceIds.end(); ++id ) { - SMESHDS_SubMesh* smDS = getMeshDS()->MeshElements( *id ); - if ( !smDS ) return error(SMESH_Comment("Not meshed face ") << *id, data._index ); - const TopoDS_Face& F = TopoDS::Face( getMeshDS()->IndexToShape( *id )); + SMESH_subMesh* sm = _mesh->GetSubMesh( F ); SMESH_ProxyMesh::SubMesh* proxySub = data._proxyMesh->getFaceSubM( F, /*create=*/true); + SMESHDS_SubMesh* smDS = sm->GetSubMeshDS(); + if ( !smDS ) return error(SMESH_Comment("Not meshed face ") << *id, data._index ); + SMDS_ElemIteratorPtr eIt = smDS->GetElements(); while ( eIt->more() ) { const SMDS_MeshElement* face = eIt->next(); + double faceMaxCosin = -1; + _LayerEdge* maxCosinEdge = 0; + int nbDegenNodes = 0; + newNodes.resize( face->NbCornerNodes() ); - double faceMaxCosin = -1; - for ( int i = 0 ; i < face->NbCornerNodes(); ++i ) + for ( size_t i = 0 ; i < newNodes.size(); ++i ) { - const SMDS_MeshNode* n = face->GetNode(i); + const SMDS_MeshNode* n = face->GetNode( i ); + const int shapeID = n->getshapeId(); + const bool onDegenShap = helper.IsDegenShape( shapeID ); + const bool onDegenEdge = ( onDegenShap && n->GetPosition()->GetDim() == 1 ); + if ( onDegenShap ) + { + if ( onDegenEdge ) + { + // substitute n on a degenerated EDGE with a node on a corresponding VERTEX + const TopoDS_Shape& E = getMeshDS()->IndexToShape( shapeID ); + TopoDS_Vertex V = helper.IthVertex( 0, TopoDS::Edge( E )); + if ( const SMDS_MeshNode* vN = SMESH_Algo::VertexNode( V, getMeshDS() )) { + n = vN; + nbDegenNodes++; + } + } + else + { + nbDegenNodes++; + } + } TNode2Edge::iterator n2e = data._n2eMap.insert( make_pair( n, (_LayerEdge*)0 )).first; if ( !(*n2e).second ) { // add a _LayerEdge _LayerEdge* edge = new _LayerEdge(); - n2e->second = edge; edge->_nodes.push_back( n ); - const int shapeID = n->getshapeId(); - edgesByGeom[ shapeID ].push_back( edge ); + n2e->second = edge; + edgesByGeom[ shapeID ]._edges.push_back( edge ); + const bool noShrink = data._noShrinkShapes.count( shapeID ); + + SMESH_TNodeXYZ xyz( n ); // set edge data or find already refined _LayerEdge and get data from it - if ( n->GetPosition()->GetTypeOfPosition() != SMDS_TOP_FACE && - ( s2ne = s2neMap.find( shapeID )) != s2neMap.end() && - ( n2e2 = (*s2ne).second->find( n )) != s2ne->second->end()) + if (( !noShrink ) && + ( n->GetPosition()->GetTypeOfPosition() != SMDS_TOP_FACE ) && + (( s2ne = data._s2neMap.find( shapeID )) != data._s2neMap.end() ) && + (( n2e2 = (*s2ne).second->find( n )) != s2ne->second->end() )) { _LayerEdge* foundEdge = (*n2e2).second; - edge->Copy( *foundEdge, helper ); - // location of the last node is modified but we can restore - // it by node position on _sWOL stored by the node + gp_XYZ lastPos = edge->Copy( *foundEdge, edgesByGeom[ shapeID ], helper ); + foundEdge->_pos.push_back( lastPos ); + // location of the last node is modified and we restore it by foundEdge->_pos.back() const_cast< SMDS_MeshNode* > - ( edge->_nodes.back() )->setXYZ( n->X(), n->Y(), n->Z() ); + ( edge->_nodes.back() )->setXYZ( xyz.X(), xyz.Y(), xyz.Z() ); } else { - edge->_nodes.push_back( helper.AddNode( n->X(), n->Y(), n->Z() )); - if ( !setEdgeData( *edge, subIds, helper, data )) + if ( !noShrink ) + { + edge->_nodes.push_back( helper.AddNode( xyz.X(), xyz.Y(), xyz.Z() )); + } + if ( !setEdgeData( *edge, edgesByGeom[ shapeID ], helper, data )) return false; + + if ( edge->_nodes.size() < 2 ) + edge->Block( data ); + //data._noShrinkShapes.insert( shapeID ); } dumpMove(edge->_nodes.back()); - if ( edge->_cosin > 0.01 ) + + if ( edge->_cosin > faceMaxCosin ) { - if ( edge->_cosin > faceMaxCosin ) - faceMaxCosin = edge->_cosin; + faceMaxCosin = edge->_cosin; + maxCosinEdge = edge; } } newNodes[ i ] = n2e->second->_nodes.back(); + + if ( onDegenEdge ) + data._n2eMap.insert( make_pair( face->GetNode( i ), n2e->second )); } + if ( newNodes.size() - nbDegenNodes < 2 ) + continue; + // create a temporary face - const SMDS_MeshElement* newFace = new TmpMeshFace( newNodes, --_tmpFaceID ); + const SMDS_MeshElement* newFace = + new _TmpMeshFace( newNodes, --_tmpFaceID, face->getshapeId(), face->getIdInShape() ); proxySub->AddElement( newFace ); // compute inflation step size by min size of element on a convex surface - if ( faceMaxCosin > 0.1 ) - limitStepSize( data, face, faceMaxCosin ); + if ( faceMaxCosin > theMinSmoothCosin ) + limitStepSize( data, face, maxCosinEdge ); + } // loop on 2D elements on a FACE - } // loop on FACEs of a SOLID + } // loop on FACEs of a SOLID to create _LayerEdge's + + + // Set _LayerEdge::_neibors + TNode2Edge::iterator n2e; + for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS ) + { + _EdgesOnShape& eos = data._edgesOnShape[iS]; + for ( size_t i = 0; i < eos._edges.size(); ++i ) + { + _LayerEdge* edge = eos._edges[i]; + TIDSortedNodeSet nearNodes; + SMDS_ElemIteratorPtr fIt = edge->_nodes[0]->GetInverseElementIterator(SMDSAbs_Face); + while ( fIt->more() ) + { + const SMDS_MeshElement* f = fIt->next(); + if ( !data._ignoreFaceIds.count( f->getshapeId() )) + nearNodes.insert( f->begin_nodes(), f->end_nodes() ); + } + nearNodes.erase( edge->_nodes[0] ); + edge->_neibors.reserve( nearNodes.size() ); + TIDSortedNodeSet::iterator node = nearNodes.begin(); + for ( ; node != nearNodes.end(); ++node ) + if (( n2e = data._n2eMap.find( *node )) != data._n2eMap.end() ) + edge->_neibors.push_back( n2e->second ); + } + } data._epsilon = 1e-7; if ( data._stepSize < 1. ) data._epsilon *= data._stepSize; - // Put _LayerEdge's into the vector data._edges - - if ( !sortEdges( data, edgesByGeom )) + if ( !findShapesToSmooth( data )) // _LayerEdge::_maxLen is computed here return false; - // Set target nodes into _Simplex and _2NearEdges - TNode2Edge::iterator n2e; - for ( unsigned i = 0; i < data._edges.size(); ++i ) + // limit data._stepSize depending on surface curvature and fill data._convexFaces + limitStepSizeByCurvature( data ); // !!! it must be before node substitution in _Simplex + + // Set target nodes into _Simplex and _LayerEdge's to _2NearEdges + const SMDS_MeshNode* nn[2]; + for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS ) { - if ( data._edges[i]->IsOnEdge()) - for ( int j = 0; j < 2; ++j ) + _EdgesOnShape& eos = data._edgesOnShape[iS]; + for ( size_t i = 0; i < eos._edges.size(); ++i ) + { + _LayerEdge* edge = eos._edges[i]; + if ( edge->IsOnEdge() ) { - if ( data._edges[i]->_nodes.back()->NbInverseElements(SMDSAbs_Volume) > 0 ) - break; // _LayerEdge is shared by two _SolidData's - const SMDS_MeshNode* & n = data._edges[i]->_2neibors->_nodes[j]; - if (( n2e = data._n2eMap.find( n )) == data._n2eMap.end() ) - return error("_LayerEdge not found by src node", data._index); - n = (*n2e).second->_nodes.back(); - data._edges[i]->_2neibors->_edges[j] = n2e->second; + // get neighbor nodes + bool hasData = ( edge->_2neibors->_edges[0] ); + if ( hasData ) // _LayerEdge is a copy of another one + { + nn[0] = edge->_2neibors->srcNode(0); + nn[1] = edge->_2neibors->srcNode(1); + } + else if ( !findNeiborsOnEdge( edge, nn[0],nn[1], eos, data )) + { + return false; + } + // set neighbor _LayerEdge's + for ( int j = 0; j < 2; ++j ) + { + if (( n2e = data._n2eMap.find( nn[j] )) == data._n2eMap.end() ) + return error("_LayerEdge not found by src node", data._index); + edge->_2neibors->_edges[j] = n2e->second; + } + if ( !hasData ) + edge->SetDataByNeighbors( nn[0], nn[1], eos, helper ); } - else - for ( unsigned j = 0; j < data._edges[i]->_simplices.size(); ++j ) + + for ( size_t j = 0; j < edge->_simplices.size(); ++j ) { - _Simplex& s = data._edges[i]->_simplices[j]; + _Simplex& s = edge->_simplices[j]; s._nNext = data._n2eMap[ s._nNext ]->_nodes.back(); s._nPrev = data._n2eMap[ s._nPrev ]->_nodes.back(); } - } + + // For an _LayerEdge on a degenerated EDGE, copy some data from + // a corresponding _LayerEdge on a VERTEX + // (issue 52453, pb on a downloaded SampleCase2-Tet-netgen-mephisto.hdf) + if ( helper.IsDegenShape( edge->_nodes[0]->getshapeId() )) + { + // Generally we should not get here + if ( eos.ShapeType() != TopAbs_EDGE ) + continue; + TopoDS_Vertex V = helper.IthVertex( 0, TopoDS::Edge( eos._shape )); + const SMDS_MeshNode* vN = SMESH_Algo::VertexNode( V, getMeshDS() ); + if (( n2e = data._n2eMap.find( vN )) == data._n2eMap.end() ) + continue; + const _LayerEdge* vEdge = n2e->second; + edge->_normal = vEdge->_normal; + edge->_lenFactor = vEdge->_lenFactor; + edge->_cosin = vEdge->_cosin; + } + + } // loop on data._edgesOnShape._edges + } // loop on data._edgesOnShape + + // fix _LayerEdge::_2neibors on EDGEs to smooth + // map< TGeomID,Handle(Geom_Curve)>::iterator e2c = data._edge2curve.begin(); + // for ( ; e2c != data._edge2curve.end(); ++e2c ) + // if ( !e2c->second.IsNull() ) + // { + // if ( _EdgesOnShape* eos = data.GetShapeEdges( e2c->first )) + // data.Sort2NeiborsOnEdge( eos->_edges ); + // } dumpFunctionEnd(); return true; @@ -1442,7 +2768,7 @@ bool _ViscousBuilder::makeLayer(_SolidData& data) void _ViscousBuilder::limitStepSize( _SolidData& data, const SMDS_MeshElement* face, - const double cosin) + const _LayerEdge* maxCosinEdge ) { int iN = 0; double minSize = 10 * data._stepSize; @@ -1450,20 +2776,20 @@ void _ViscousBuilder::limitStepSize( _SolidData& data, for ( int i = 0; i < nbNodes; ++i ) { const SMDS_MeshNode* nextN = face->GetNode( SMESH_MesherHelper::WrapIndex( i+1, nbNodes )); - const SMDS_MeshNode* curN = face->GetNode( i ); + const SMDS_MeshNode* curN = face->GetNode( i ); if ( nextN->GetPosition()->GetTypeOfPosition() == SMDS_TOP_FACE || - curN->GetPosition()->GetTypeOfPosition() == SMDS_TOP_FACE ) + curN-> GetPosition()->GetTypeOfPosition() == SMDS_TOP_FACE ) { - double dist = SMESH_TNodeXYZ( face->GetNode(i)).Distance( nextN ); + double dist = SMESH_TNodeXYZ( curN ).Distance( nextN ); if ( dist < minSize ) minSize = dist, iN = i; } } - double newStep = 0.8 * minSize / cosin; + double newStep = 0.8 * minSize / maxCosinEdge->_lenFactor; if ( newStep < data._stepSize ) { data._stepSize = newStep; - data._stepSizeCoeff = 0.8 / cosin; + data._stepSizeCoeff = 0.8 / maxCosinEdge->_lenFactor; data._stepSizeNodes[0] = face->GetNode( iN ); data._stepSizeNodes[1] = face->GetNode( SMESH_MesherHelper::WrapIndex( iN+1, nbNodes )); } @@ -1475,7 +2801,7 @@ void _ViscousBuilder::limitStepSize( _SolidData& data, */ //================================================================================ -void _ViscousBuilder::limitStepSize( _SolidData& data, const double minSize) +void _ViscousBuilder::limitStepSize( _SolidData& data, const double minSize ) { if ( minSize < data._stepSize ) { @@ -1491,1701 +2817,6599 @@ void _ViscousBuilder::limitStepSize( _SolidData& data, const double minSize) //================================================================================ /*! - * \brief Separate shapes (and _LayerEdge's on them) to smooth from the rest ones + * \brief Limit data._stepSize by evaluating curvature of shapes and fill data._convexFaces */ //================================================================================ -bool _ViscousBuilder::sortEdges( _SolidData& data, - vector< vector<_LayerEdge*> >& edgesByGeom) +void _ViscousBuilder::limitStepSizeByCurvature( _SolidData& data ) { - // Find shapes needing smoothing; such a shape has _LayerEdge._normal on it's - // boundry inclined at a sharp angle to the shape - - list< TGeomID > shapesToSmooth; - SMESH_MesherHelper helper( *_mesh ); - bool ok = true; - for ( unsigned iS = 0; iS < edgesByGeom.size(); ++iS ) + BRepLProp_SLProps surfProp( 2, 1e-6 ); + data._convexFaces.clear(); + + for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS ) { - vector<_LayerEdge*>& eS = edgesByGeom[iS]; - if ( eS.empty() ) continue; - TopoDS_Shape S = getMeshDS()->IndexToShape( iS ); - bool needSmooth = false; - switch ( S.ShapeType() ) + _EdgesOnShape& eof = data._edgesOnShape[iS]; + if ( eof.ShapeType() != TopAbs_FACE || + data._ignoreFaceIds.count( eof._shapeID )) + continue; + + TopoDS_Face F = TopoDS::Face( eof._shape ); + const TGeomID faceID = eof._shapeID; + + BRepAdaptor_Surface surface( F, false ); + surfProp.SetSurface( surface ); + + _ConvexFace cnvFace; + cnvFace._face = F; + cnvFace._normalsFixed = false; + cnvFace._isTooCurved = false; + + double maxCurvature = cnvFace.GetMaxCurvature( data, eof, surfProp, helper ); + if ( maxCurvature > 0 ) { - case TopAbs_EDGE: { + limitStepSize( data, 0.9 / maxCurvature ); + findEdgesToUpdateNormalNearConvexFace( cnvFace, data, helper ); + } + if ( !cnvFace._isTooCurved ) continue; + + _ConvexFace & convFace = + data._convexFaces.insert( make_pair( faceID, cnvFace )).first->second; - bool isShrinkEdge = !eS[0]->_sWOL.IsNull(); - for ( TopoDS_Iterator vIt( S ); vIt.More() && !needSmooth; vIt.Next() ) + // skip a closed surface (data._convexFaces is useful anyway) + bool isClosedF = false; + helper.SetSubShape( F ); + if ( helper.HasRealSeam() ) + { + // in the closed surface there must be a closed EDGE + for ( TopExp_Explorer eIt( F, TopAbs_EDGE ); eIt.More() && !isClosedF; eIt.Next() ) + isClosedF = helper.IsClosedEdge( TopoDS::Edge( eIt.Current() )); + } + if ( isClosedF ) + { + // limit _LayerEdge::_maxLen on the FACE + const double oriFactor = ( F.Orientation() == TopAbs_REVERSED ? +1. : -1. ); + const double minCurvature = + 1. / ( eof._hyp.GetTotalThickness() * ( 1 + theThickToIntersection )); + map< TGeomID, _EdgesOnShape* >::iterator id2eos = cnvFace._subIdToEOS.find( faceID ); + if ( id2eos != cnvFace._subIdToEOS.end() ) { - TGeomID iV = getMeshDS()->ShapeToIndex( vIt.Value() ); - vector<_LayerEdge*>& eV = edgesByGeom[ iV ]; - if ( eV.empty() ) continue; - double cosin = eV[0]->_cosin; - bool badCosin = - ( !eV[0]->_sWOL.IsNull() && ( eV[0]->_sWOL.ShapeType() == TopAbs_EDGE || !isShrinkEdge)); - if ( badCosin ) + _EdgesOnShape& eos = * id2eos->second; + for ( size_t i = 0; i < eos._edges.size(); ++i ) { - gp_Vec dir1, dir2; - if ( eV[0]->_sWOL.ShapeType() == TopAbs_EDGE ) - dir1 = getEdgeDir( TopoDS::Edge( eV[0]->_sWOL ), TopoDS::Vertex( vIt.Value() )); - else - dir1 = getFaceDir( TopoDS::Face( eV[0]->_sWOL ), TopoDS::Vertex( vIt.Value() ), - eV[0]->_nodes[0], helper, ok); - dir2 = getEdgeDir( TopoDS::Edge( S ), TopoDS::Vertex( vIt.Value() )); - double angle = dir1.Angle( dir2 ); - cosin = cos( angle ); + _LayerEdge* ledge = eos._edges[ i ]; + gp_XY uv = helper.GetNodeUV( F, ledge->_nodes[0] ); + surfProp.SetParameters( uv.X(), uv.Y() ); + if ( surfProp.IsCurvatureDefined() ) + { + double curvature = Max( surfProp.MaxCurvature() * oriFactor, + surfProp.MinCurvature() * oriFactor ); + if ( curvature > minCurvature ) + ledge->SetMaxLen( Min( ledge->_maxLen, 1. / curvature )); + } } - needSmooth = ( cosin > 0.1 ); } - break; + continue; } - case TopAbs_FACE: { - for ( TopExp_Explorer eExp( S, TopAbs_EDGE ); eExp.More() && !needSmooth; eExp.Next() ) + // Fill _ConvexFace::_simplexTestEdges. These _LayerEdge's are used to detect + // prism distortion. + map< TGeomID, _EdgesOnShape* >::iterator id2eos = convFace._subIdToEOS.find( faceID ); + if ( id2eos != convFace._subIdToEOS.end() && !id2eos->second->_edges.empty() ) + { + // there are _LayerEdge's on the FACE it-self; + // select _LayerEdge's near EDGEs + _EdgesOnShape& eos = * id2eos->second; + for ( size_t i = 0; i < eos._edges.size(); ++i ) { - TGeomID iE = getMeshDS()->ShapeToIndex( eExp.Current() ); - vector<_LayerEdge*>& eE = edgesByGeom[ iE ]; - if ( eE.empty() ) continue; - if ( eE[0]->_sWOL.IsNull() ) - { - for ( unsigned i = 0; i < eE.size() && !needSmooth; ++i ) - needSmooth = ( eE[i]->_cosin > 0.1 ); - } - else - { - const TopoDS_Face& F1 = TopoDS::Face( S ); - const TopoDS_Face& F2 = TopoDS::Face( eE[0]->_sWOL ); - const TopoDS_Edge& E = TopoDS::Edge( eExp.Current() ); - for ( unsigned i = 0; i < eE.size() && !needSmooth; ++i ) + _LayerEdge* ledge = eos._edges[ i ]; + for ( size_t j = 0; j < ledge->_simplices.size(); ++j ) + if ( ledge->_simplices[j]._nNext->GetPosition()->GetDim() < 2 ) { - gp_Vec dir1 = getFaceDir( F1, E, eE[i]->_nodes[0], helper, ok ); - gp_Vec dir2 = getFaceDir( F2, E, eE[i]->_nodes[0], helper, ok ); - double angle = dir1.Angle( dir2 ); - double cosin = cos( angle ); - needSmooth = ( cosin > 0.1 ); + // do not select _LayerEdge's neighboring sharp EDGEs + bool sharpNbr = false; + for ( size_t iN = 0; iN < ledge->_neibors.size() && !sharpNbr; ++iN ) + sharpNbr = ( ledge->_neibors[iN]->_cosin > theMinSmoothCosin ); + if ( !sharpNbr ) + convFace._simplexTestEdges.push_back( ledge ); + break; } - } } - break; - } - case TopAbs_VERTEX: - continue; - default:; } - if ( needSmooth ) + else { - if ( S.ShapeType() == TopAbs_EDGE ) shapesToSmooth.push_front( iS ); - else shapesToSmooth.push_back ( iS ); - } + // where there are no _LayerEdge's on a _ConvexFace, + // as e.g. on a fillet surface with no internal nodes - issue 22580, + // so that collision of viscous internal faces is not detected by check of + // intersection of _LayerEdge's with the viscous internal faces. - } // loop on edgesByGeom + set< const SMDS_MeshNode* > usedNodes; - data._edges.reserve( data._n2eMap.size() ); - data._endEdgeToSmooth.clear(); - - // first we put _LayerEdge's on shapes to smooth - list< TGeomID >::iterator gIt = shapesToSmooth.begin(); - for ( ; gIt != shapesToSmooth.end(); ++gIt ) - { - vector<_LayerEdge*>& eVec = edgesByGeom[ *gIt ]; - if ( eVec.empty() ) continue; - data._edges.insert( data._edges.end(), eVec.begin(), eVec.end() ); - data._endEdgeToSmooth.push_back( data._edges.size() ); - eVec.clear(); - } - - // then the rest _LayerEdge's - for ( unsigned iS = 0; iS < edgesByGeom.size(); ++iS ) - { - vector<_LayerEdge*>& eVec = edgesByGeom[iS]; - data._edges.insert( data._edges.end(), eVec.begin(), eVec.end() ); - eVec.clear(); - } + // look for _LayerEdge's with null _sWOL + id2eos = convFace._subIdToEOS.begin(); + for ( ; id2eos != convFace._subIdToEOS.end(); ++id2eos ) + { + _EdgesOnShape& eos = * id2eos->second; + if ( !eos._sWOL.IsNull() ) + continue; + for ( size_t i = 0; i < eos._edges.size(); ++i ) + { + _LayerEdge* ledge = eos._edges[ i ]; + const SMDS_MeshNode* srcNode = ledge->_nodes[0]; + if ( !usedNodes.insert( srcNode ).second ) continue; - return ok; + for ( size_t i = 0; i < ledge->_simplices.size(); ++i ) + { + usedNodes.insert( ledge->_simplices[i]._nPrev ); + usedNodes.insert( ledge->_simplices[i]._nNext ); + } + convFace._simplexTestEdges.push_back( ledge ); + } + } + } + } // loop on FACEs of data._solid } //================================================================================ /*! - * \brief Set data of _LayerEdge needed for smoothing - * \param subIds - ids of sub-shapes of a SOLID to take into account faces from + * \brief Detect shapes (and _LayerEdge's on them) to smooth */ //================================================================================ -bool _ViscousBuilder::setEdgeData(_LayerEdge& edge, - const set& subIds, - SMESH_MesherHelper& helper, - _SolidData& data) +bool _ViscousBuilder::findShapesToSmooth( _SolidData& data ) { - SMESH_MeshEditor editor(_mesh); - - const SMDS_MeshNode* node = edge._nodes[0]; // source node - SMDS_TypeOfPosition posType = node->GetPosition()->GetTypeOfPosition(); - - edge._len = 0; - edge._2neibors = 0; - edge._curvature = 0; + // define allowed thickness + computeGeomSize( data ); // compute data._geomSize and _LayerEdge::_maxLen - // -------------------------- - // Compute _normal and _cosin - // -------------------------- - edge._cosin = 0; - edge._normal.SetCoord(0,0,0); + // Find shapes needing smoothing; such a shape has _LayerEdge._normal on it's + // boundary inclined to the shape at a sharp angle - int totalNbFaces = 0; - gp_Pnt p; - gp_Vec du, dv, geomNorm; - bool normOK = true; + TopTools_MapOfShape edgesOfSmooFaces; + SMESH_MesherHelper helper( *_mesh ); + bool ok = true; - TGeomID shapeInd = node->getshapeId(); - map< TGeomID, TopoDS_Shape >::const_iterator s2s = data._shrinkShape2Shape.find( shapeInd ); - bool onShrinkShape ( s2s != data._shrinkShape2Shape.end() ); - TopoDS_Shape vertEdge; + vector< _EdgesOnShape >& edgesByGeom = data._edgesOnShape; + data._nbShapesToSmooth = 0; - if ( onShrinkShape ) // one of faces the node is on has no layers - { - vertEdge = getMeshDS()->IndexToShape( s2s->first ); // vertex or edge - if ( s2s->second.ShapeType() == TopAbs_EDGE ) - { - // inflate from VERTEX along EDGE - edge._normal = getEdgeDir( TopoDS::Edge( s2s->second ), TopoDS::Vertex( vertEdge )); - } - else if ( vertEdge.ShapeType() == TopAbs_VERTEX ) - { - // inflate from VERTEX along FACE - edge._normal = getFaceDir( TopoDS::Face( s2s->second ), TopoDS::Vertex( vertEdge ), - node, helper, normOK, &edge._cosin); - } - else - { - // inflate from EDGE along FACE - edge._normal = getFaceDir( TopoDS::Face( s2s->second ), TopoDS::Edge( vertEdge ), - node, helper, normOK); - } - } - else // layers are on all faces of SOLID the node is on + for ( size_t iS = 0; iS < edgesByGeom.size(); ++iS ) // check FACEs { - // find indices of geom faces the node lies on - set faceIds; - if ( posType == SMDS_TOP_FACE ) - { - faceIds.insert( node->getshapeId() ); - } - else - { - SMDS_ElemIteratorPtr fIt = node->GetInverseElementIterator(SMDSAbs_Face); - while ( fIt->more() ) - faceIds.insert( editor.FindShape(fIt->next())); - } + _EdgesOnShape& eos = edgesByGeom[iS]; + eos._toSmooth = false; + if ( eos._edges.empty() || eos.ShapeType() != TopAbs_FACE ) + continue; - set::iterator id = faceIds.begin(); - TopoDS_Face F; - for ( ; id != faceIds.end(); ++id ) + double tgtThick = eos._hyp.GetTotalThickness(); + SMESH_subMeshIteratorPtr subIt = eos._subMesh->getDependsOnIterator(/*includeSelf=*/false ); + while ( subIt->more() && !eos._toSmooth ) { - const TopoDS_Shape& s = getMeshDS()->IndexToShape( *id ); - if ( s.IsNull() || s.ShapeType() != TopAbs_FACE || !subIds.count( *id )) - continue; - totalNbFaces++; - //nbLayerFaces += subIds.count( *id ); - F = TopoDS::Face( s ); + TGeomID iSub = subIt->next()->GetId(); + const vector<_LayerEdge*>& eSub = edgesByGeom[ iSub ]._edges; + if ( eSub.empty() ) continue; - gp_XY uv = helper.GetNodeUV( F, node, 0, &normOK ); - Handle(Geom_Surface) surface = BRep_Tool::Surface( F ); - surface->D1( uv.X(),uv.Y(), p, du,dv ); - geomNorm = du ^ dv; - double size2 = geomNorm.SquareMagnitude(); - if ( size2 > numeric_limits::min() ) - geomNorm /= sqrt( size2 ); - else - normOK = false; - if ( helper.GetSubShapeOri( data._solid, F ) != TopAbs_REVERSED ) - geomNorm.Reverse(); - edge._normal += geomNorm.XYZ(); + double faceSize; + for ( size_t i = 0; i < eSub.size() && !eos._toSmooth; ++i ) + if ( eSub[i]->_cosin > theMinSmoothCosin ) + { + SMDS_ElemIteratorPtr fIt = eSub[i]->_nodes[0]->GetInverseElementIterator(SMDSAbs_Face); + while ( fIt->more() && !eos._toSmooth ) + { + const SMDS_MeshElement* face = fIt->next(); + if ( face->getshapeId() == eos._shapeID && + getDistFromEdge( face, eSub[i]->_nodes[0], faceSize )) + { + eos._toSmooth = needSmoothing( eSub[i]->_cosin, + tgtThick * eSub[i]->_lenFactor, + faceSize); + } + } + } } - if ( totalNbFaces == 0 ) - return error(SMESH_Comment("Can't get normal to node ") << node->GetID(), data._index); - - edge._normal /= totalNbFaces; - - switch ( posType ) + if ( eos._toSmooth ) { - case SMDS_TOP_FACE: - edge._cosin = 0; break; + for ( TopExp_Explorer eExp( edgesByGeom[iS]._shape, TopAbs_EDGE ); eExp.More(); eExp.Next() ) + edgesOfSmooFaces.Add( eExp.Current() ); - case SMDS_TOP_EDGE: { - TopoDS_Edge E = TopoDS::Edge( helper.GetSubShapeByNode( node, getMeshDS())); - gp_Vec inFaceDir = getFaceDir( F, E, node, helper, normOK); - double angle = inFaceDir.Angle( edge._normal ); // [0,PI] - edge._cosin = cos( angle ); - //cout << "Cosin on EDGE " << edge._cosin << " node " << node->GetID() << endl; - break; - } - case SMDS_TOP_VERTEX: { - TopoDS_Vertex V = TopoDS::Vertex( helper.GetSubShapeByNode( node, getMeshDS())); - gp_XYZ inFaceDir = getFaceDir( F, V, node, helper, normOK); - double angle = gp_Vec( inFaceDir).Angle( edge._normal ); // [0,PI] - edge._cosin = cos( angle ); - //cout << "Cosin on VERTEX " << edge._cosin << " node " << node->GetID() << endl; - break; + data.PrepareEdgesToSmoothOnFace( &edgesByGeom[iS], /*substituteSrcNodes=*/false ); } - default: - return error(SMESH_Comment("Invalid shape position of node ")<::min() ) - return error(SMESH_Comment("Bad normal at node ")<< node->GetID(), data._index ); - - edge._normal /= sqrt( normSize ); - - // TODO: if ( !normOK ) then get normal by mesh faces + } // check FACEs - // Set the rest data - // -------------------- - if ( onShrinkShape ) + for ( size_t iS = 0; iS < edgesByGeom.size(); ++iS ) // check EDGEs { - edge._sWOL = (*s2s).second; - - SMDS_MeshNode* tgtNode = const_cast( edge._nodes.back() ); - if ( SMESHDS_SubMesh* sm = getMeshDS()->MeshElements( data._solid )) - sm->RemoveNode( tgtNode , /*isNodeDeleted=*/false ); + _EdgesOnShape& eos = edgesByGeom[iS]; + eos._edgeSmoother = NULL; + if ( eos._edges.empty() || eos.ShapeType() != TopAbs_EDGE ) continue; + if ( !eos._hyp.ToSmooth() ) continue; - // set initial position which is parameters on _sWOL in this case - if ( edge._sWOL.ShapeType() == TopAbs_EDGE ) - { - double u = helper.GetNodeU( TopoDS::Edge( edge._sWOL ), node, 0, &normOK ); - edge._pos.push_back( gp_XYZ( u, 0, 0)); - getMeshDS()->SetNodeOnEdge( tgtNode, TopoDS::Edge( edge._sWOL ), u ); - } - else // TopAbs_FACE - { - gp_XY uv = helper.GetNodeUV( TopoDS::Face( edge._sWOL ), node, 0, &normOK ); - edge._pos.push_back( gp_XYZ( uv.X(), uv.Y(), 0)); - getMeshDS()->SetNodeOnFace( tgtNode, TopoDS::Face( edge._sWOL ), uv.X(), uv.Y() ); - } - } - else - { - edge._pos.push_back( SMESH_TNodeXYZ( node )); + const TopoDS_Edge& E = TopoDS::Edge( edgesByGeom[iS]._shape ); + if ( SMESH_Algo::isDegenerated( E ) || !edgesOfSmooFaces.Contains( E )) + continue; - if ( posType == SMDS_TOP_FACE ) + double tgtThick = eos._hyp.GetTotalThickness(); + for ( TopoDS_Iterator vIt( E ); vIt.More() && !eos._toSmooth; vIt.Next() ) { - getSimplices( node, edge._simplices, _ignoreShapeIds, &data ); - double avgNormProj = 0, avgLen = 0; - for ( unsigned i = 0; i < edge._simplices.size(); ++i ) + TGeomID iV = getMeshDS()->ShapeToIndex( vIt.Value() ); + vector<_LayerEdge*>& eV = edgesByGeom[ iV ]._edges; + if ( eV.empty() || eV[0]->Is( _LayerEdge::MULTI_NORMAL )) continue; + gp_Vec eDir = getEdgeDir( E, TopoDS::Vertex( vIt.Value() )); + double angle = eDir.Angle( eV[0]->_normal ); + double cosin = Cos( angle ); + double cosinAbs = Abs( cosin ); + if ( cosinAbs > theMinSmoothCosin ) { - gp_XYZ vec = edge._pos.back() - SMESH_TNodeXYZ( edge._simplices[i]._nPrev ); - avgNormProj += edge._normal * vec; - avgLen += vec.Modulus(); + // always smooth analytic EDGEs + Handle(Geom_Curve) curve = _Smoother1D::CurveForSmooth( E, eos, helper ); + eos._toSmooth = ! curve.IsNull(); + + // compare tgtThick with the length of an end segment + SMDS_ElemIteratorPtr eIt = eV[0]->_nodes[0]->GetInverseElementIterator(SMDSAbs_Edge); + while ( eIt->more() && !eos._toSmooth ) + { + const SMDS_MeshElement* endSeg = eIt->next(); + if ( endSeg->getshapeId() == (int) iS ) + { + double segLen = + SMESH_TNodeXYZ( endSeg->GetNode( 0 )).Distance( endSeg->GetNode( 1 )); + eos._toSmooth = needSmoothing( cosinAbs, tgtThick * eV[0]->_lenFactor, segLen ); + } + } + if ( eos._toSmooth ) + { + eos._edgeSmoother = new _Smoother1D( curve, eos ); + + // for ( size_t i = 0; i < eos._edges.size(); ++i ) + // eos._edges[i]->Set( _LayerEdge::TO_SMOOTH ); + } } - avgNormProj /= edge._simplices.size(); - avgLen /= edge._simplices.size(); - edge._curvature = _Curvature::New( avgNormProj, avgLen ); } - } + data._nbShapesToSmooth += eos._toSmooth; - // Set neighbour nodes for a _LayerEdge based on EDGE + } // check EDGEs - if ( posType == SMDS_TOP_EDGE /*|| - ( onShrinkShape && posType == SMDS_TOP_VERTEX && fabs( edge._cosin ) < 1e-10 )*/) + // Reset _cosin if no smooth is allowed by the user + for ( size_t iS = 0; iS < edgesByGeom.size(); ++iS ) { - edge._2neibors = new _2NearEdges; - // target node instead of source ones will be set later - if ( ! findNeiborsOnEdge( &edge, - edge._2neibors->_nodes[0], - edge._2neibors->_nodes[1], - data)) - return false; - edge.SetDataByNeighbors( edge._2neibors->_nodes[0], - edge._2neibors->_nodes[1], - helper); + _EdgesOnShape& eos = edgesByGeom[iS]; + if ( eos._edges.empty() ) continue; + + if ( !eos._hyp.ToSmooth() ) + for ( size_t i = 0; i < eos._edges.size(); ++i ) + //eos._edges[i]->SetCosin( 0 ); // keep _cosin to use in limitMaxLenByCurvature() + eos._edges[i]->_lenFactor = 1; } - edge.SetCosin( edge._cosin ); // to update edge._lenFactor - return true; -} + // Fill _eosC1 to make that C1 FACEs and EGDEs between them to be smoothed as a whole -//================================================================================ -/*! - * \brief Find 2 neigbor nodes of a node on EDGE - */ -//================================================================================ + TopTools_MapOfShape c1VV; -bool _ViscousBuilder::findNeiborsOnEdge(const _LayerEdge* edge, - const SMDS_MeshNode*& n1, - const SMDS_MeshNode*& n2, - _SolidData& data) + for ( size_t iS = 0; iS < edgesByGeom.size(); ++iS ) // check FACEs + { + _EdgesOnShape& eos = edgesByGeom[iS]; + if ( eos._edges.empty() || + eos.ShapeType() != TopAbs_FACE || + !eos._toSmooth ) + continue; + + // check EDGEs of a FACE + TopTools_MapOfShape checkedEE, allVV; + list< SMESH_subMesh* > smQueue( 1, eos._subMesh ); // sm of FACEs + while ( !smQueue.empty() ) + { + SMESH_subMesh* sm = smQueue.front(); + smQueue.pop_front(); + SMESH_subMeshIteratorPtr smIt = sm->getDependsOnIterator(/*includeSelf=*/false); + while ( smIt->more() ) + { + sm = smIt->next(); + if ( sm->GetSubShape().ShapeType() == TopAbs_VERTEX ) + allVV.Add( sm->GetSubShape() ); + if ( sm->GetSubShape().ShapeType() != TopAbs_EDGE || + !checkedEE.Add( sm->GetSubShape() )) + continue; + + _EdgesOnShape* eoe = data.GetShapeEdges( sm->GetId() ); + vector<_LayerEdge*>& eE = eoe->_edges; + if ( eE.empty() || !eoe->_sWOL.IsNull() ) + continue; + + bool isC1 = true; // check continuity along an EDGE + for ( size_t i = 0; i < eE.size() && isC1; ++i ) + isC1 = ( Abs( eE[i]->_cosin ) < theMinSmoothCosin ); + if ( !isC1 ) + continue; + + // check that mesh faces are C1 as well + { + gp_XYZ norm1, norm2; + const SMDS_MeshNode* n = eE[ eE.size() / 2 ]->_nodes[0]; + SMDS_ElemIteratorPtr fIt = n->GetInverseElementIterator(SMDSAbs_Face); + if ( !SMESH_MeshAlgos::FaceNormal( fIt->next(), norm1, /*normalized=*/true )) + continue; + while ( fIt->more() && isC1 ) + isC1 = ( SMESH_MeshAlgos::FaceNormal( fIt->next(), norm2, /*normalized=*/true ) && + Abs( norm1 * norm2 ) >= ( 1. - theMinSmoothCosin )); + if ( !isC1 ) + continue; + } + + // add the EDGE and an adjacent FACE to _eosC1 + PShapeIteratorPtr fIt = helper.GetAncestors( sm->GetSubShape(), *_mesh, TopAbs_FACE ); + while ( const TopoDS_Shape* face = fIt->next() ) + { + _EdgesOnShape* eof = data.GetShapeEdges( *face ); + if ( !eof ) continue; // other solid + if ( eos._shapeID == eof->_shapeID ) continue; + if ( !eos.HasC1( eof )) + { + // check the FACEs + eos._eosC1.push_back( eof ); + eof->_toSmooth = false; + data.PrepareEdgesToSmoothOnFace( eof, /*substituteSrcNodes=*/false ); + smQueue.push_back( eof->_subMesh ); + } + if ( !eos.HasC1( eoe )) + { + eos._eosC1.push_back( eoe ); + eoe->_toSmooth = false; + data.PrepareEdgesToSmoothOnFace( eoe, /*substituteSrcNodes=*/false ); + } + } + } + } + if ( eos._eosC1.empty() ) + continue; + + // check VERTEXes of C1 FACEs + TopTools_MapIteratorOfMapOfShape vIt( allVV ); + for ( ; vIt.More(); vIt.Next() ) + { + _EdgesOnShape* eov = data.GetShapeEdges( vIt.Key() ); + if ( !eov || eov->_edges.empty() || !eov->_sWOL.IsNull() ) + continue; + + bool isC1 = true; // check if all adjacent FACEs are in eos._eosC1 + PShapeIteratorPtr fIt = helper.GetAncestors( vIt.Key(), *_mesh, TopAbs_FACE ); + while ( const TopoDS_Shape* face = fIt->next() ) + { + _EdgesOnShape* eof = data.GetShapeEdges( *face ); + if ( !eof ) continue; // other solid + isC1 = ( face->IsSame( eos._shape ) || eos.HasC1( eof )); + if ( !isC1 ) + break; + } + if ( isC1 ) + { + eos._eosC1.push_back( eov ); + data.PrepareEdgesToSmoothOnFace( eov, /*substituteSrcNodes=*/false ); + c1VV.Add( eov->_shape ); + } + } + + } // fill _eosC1 of FACEs + + + // Find C1 EDGEs + + vector< pair< _EdgesOnShape*, gp_XYZ > > dirOfEdges; + + for ( size_t iS = 0; iS < edgesByGeom.size(); ++iS ) // check VERTEXes + { + _EdgesOnShape& eov = edgesByGeom[iS]; + if ( eov._edges.empty() || + eov.ShapeType() != TopAbs_VERTEX || + c1VV.Contains( eov._shape )) + continue; + const TopoDS_Vertex& V = TopoDS::Vertex( eov._shape ); + + // get directions of surrounding EDGEs + dirOfEdges.clear(); + PShapeIteratorPtr fIt = helper.GetAncestors( eov._shape, *_mesh, TopAbs_EDGE ); + while ( const TopoDS_Shape* e = fIt->next() ) + { + _EdgesOnShape* eoe = data.GetShapeEdges( *e ); + if ( !eoe ) continue; // other solid + gp_XYZ eDir = getEdgeDir( TopoDS::Edge( *e ), V ); + if ( !Precision::IsInfinite( eDir.X() )) + dirOfEdges.push_back( make_pair( eoe, eDir.Normalized() )); + } + + // find EDGEs with C1 directions + for ( size_t i = 0; i < dirOfEdges.size(); ++i ) + for ( size_t j = i+1; j < dirOfEdges.size(); ++j ) + if ( dirOfEdges[i].first && dirOfEdges[j].first ) + { + double dot = dirOfEdges[i].second * dirOfEdges[j].second; + bool isC1 = ( dot < - ( 1. - theMinSmoothCosin )); + if ( isC1 ) + { + double maxEdgeLen = 3 * Min( eov._edges[0]->_maxLen, eov._hyp.GetTotalThickness() ); + double eLen1 = SMESH_Algo::EdgeLength( TopoDS::Edge( dirOfEdges[i].first->_shape )); + double eLen2 = SMESH_Algo::EdgeLength( TopoDS::Edge( dirOfEdges[j].first->_shape )); + if ( eLen1 < maxEdgeLen ) eov._eosC1.push_back( dirOfEdges[i].first ); + if ( eLen2 < maxEdgeLen ) eov._eosC1.push_back( dirOfEdges[j].first ); + dirOfEdges[i].first = 0; + dirOfEdges[j].first = 0; + } + } + } // fill _eosC1 of VERTEXes + + + + return ok; +} + +//================================================================================ +/*! + * \brief initialize data of _EdgesOnShape + */ +//================================================================================ + +void _ViscousBuilder::setShapeData( _EdgesOnShape& eos, + SMESH_subMesh* sm, + _SolidData& data ) { - const SMDS_MeshNode* node = edge->_nodes[0]; - const int shapeInd = node->getshapeId(); - SMESHDS_SubMesh* edgeSM = 0; - if ( node->GetPosition()->GetTypeOfPosition() == SMDS_TOP_EDGE ) + if ( !eos._shape.IsNull() || + sm->GetSubShape().ShapeType() == TopAbs_WIRE ) + return; + + SMESH_MesherHelper helper( *_mesh ); + + eos._subMesh = sm; + eos._shapeID = sm->GetId(); + eos._shape = sm->GetSubShape(); + if ( eos.ShapeType() == TopAbs_FACE ) + eos._shape.Orientation( helper.GetSubShapeOri( data._solid, eos._shape )); + eos._toSmooth = false; + eos._data = &data; + + // set _SWOL + map< TGeomID, TopoDS_Shape >::const_iterator s2s = + data._shrinkShape2Shape.find( eos._shapeID ); + if ( s2s != data._shrinkShape2Shape.end() ) + eos._sWOL = s2s->second; + + eos._isRegularSWOL = true; + if ( eos.SWOLType() == TopAbs_FACE ) { - - edgeSM = getMeshDS()->MeshElements( shapeInd ); - if ( !edgeSM || edgeSM->NbElements() == 0 ) - return error(SMESH_Comment("Not meshed EDGE ") << shapeInd, data._index); + const TopoDS_Face& F = TopoDS::Face( eos._sWOL ); + Handle(ShapeAnalysis_Surface) surface = helper.GetSurface( F ); + eos._isRegularSWOL = ( ! surface->HasSingularities( 1e-7 )); } - int iN = 0; - n2 = 0; - SMDS_ElemIteratorPtr eIt = node->GetInverseElementIterator(SMDSAbs_Edge); - while ( eIt->more() && !n2 ) + + // set _hyp + if ( data._hyps.size() == 1 ) { - const SMDS_MeshElement* e = eIt->next(); - const SMDS_MeshNode* nNeibor = e->GetNode( 0 ); - if ( nNeibor == node ) nNeibor = e->GetNode( 1 ); - if ( edgeSM ) + eos._hyp = data._hyps.back(); + } + else + { + // compute average StdMeshers_ViscousLayers parameters + map< TGeomID, const StdMeshers_ViscousLayers* >::iterator f2hyp; + if ( eos.ShapeType() == TopAbs_FACE ) { - if (!edgeSM->Contains(e)) continue; + if (( f2hyp = data._face2hyp.find( eos._shapeID )) != data._face2hyp.end() ) + eos._hyp = f2hyp->second; } else { - TopoDS_Shape s = SMESH_MesherHelper::GetSubShapeByNode(nNeibor, getMeshDS() ); - if ( !SMESH_MesherHelper::IsSubShape( s, edge->_sWOL )) continue; + PShapeIteratorPtr fIt = helper.GetAncestors( eos._shape, *_mesh, TopAbs_FACE ); + while ( const TopoDS_Shape* face = fIt->next() ) + { + TGeomID faceID = getMeshDS()->ShapeToIndex( *face ); + if (( f2hyp = data._face2hyp.find( faceID )) != data._face2hyp.end() ) + eos._hyp.Add( f2hyp->second ); + } + } + } + + // set _faceNormals + if ( ! eos._hyp.UseSurfaceNormal() ) + { + if ( eos.ShapeType() == TopAbs_FACE ) // get normals to elements on a FACE + { + SMESHDS_SubMesh* smDS = sm->GetSubMeshDS(); + if ( !smDS ) return; + eos._faceNormals.resize( smDS->NbElements() ); + + SMDS_ElemIteratorPtr eIt = smDS->GetElements(); + for ( int iF = 0; eIt->more(); ++iF ) + { + const SMDS_MeshElement* face = eIt->next(); + if ( !SMESH_MeshAlgos::FaceNormal( face, eos._faceNormals[iF], /*normalized=*/true )) + eos._faceNormals[iF].SetCoord( 0,0,0 ); + } + + if ( !helper.IsReversedSubMesh( TopoDS::Face( eos._shape ))) + for ( size_t iF = 0; iF < eos._faceNormals.size(); ++iF ) + eos._faceNormals[iF].Reverse(); + } + else // find EOS of adjacent FACEs + { + PShapeIteratorPtr fIt = helper.GetAncestors( eos._shape, *_mesh, TopAbs_FACE ); + while ( const TopoDS_Shape* face = fIt->next() ) + { + TGeomID faceID = getMeshDS()->ShapeToIndex( *face ); + eos._faceEOS.push_back( & data._edgesOnShape[ faceID ]); + if ( eos._faceEOS.back()->_shape.IsNull() ) + // avoid using uninitialised _shapeID in GetNormal() + eos._faceEOS.back()->_shapeID = faceID; + } } - ( iN++ ? n2 : n1 ) = nNeibor; } - if ( !n2 ) - return error(SMESH_Comment("Wrongly meshed EDGE ") << shapeInd, data._index); - return true; } //================================================================================ /*! - * \brief Set _curvature and _2neibors->_plnNorm by 2 neigbor nodes residing the same EDGE + * \brief Returns normal of a face */ //================================================================================ -void _LayerEdge::SetDataByNeighbors( const SMDS_MeshNode* n1, - const SMDS_MeshNode* n2, - SMESH_MesherHelper& helper) +bool _EdgesOnShape::GetNormal( const SMDS_MeshElement* face, gp_Vec& norm ) { - if ( _nodes[0]->GetPosition()->GetTypeOfPosition() != SMDS_TOP_EDGE ) - return; + bool ok = false; + const _EdgesOnShape* eos = 0; - gp_XYZ pos = SMESH_TNodeXYZ( _nodes[0] ); - gp_XYZ vec1 = pos - SMESH_TNodeXYZ( n1 ); - gp_XYZ vec2 = pos - SMESH_TNodeXYZ( n2 ); + if ( face->getshapeId() == _shapeID ) + { + eos = this; + } + else + { + for ( size_t iF = 0; iF < _faceEOS.size() && !eos; ++iF ) + if ( face->getshapeId() == _faceEOS[ iF ]->_shapeID ) + eos = _faceEOS[ iF ]; + } - // Set _curvature + if (( eos ) && + ( ok = ( face->getIdInShape() < (int) eos->_faceNormals.size() ))) + { + norm = eos->_faceNormals[ face->getIdInShape() ]; + } + else if ( !eos ) + { + debugMsg( "_EdgesOnShape::Normal() failed for face "<GetID() + << " on _shape #" << _shapeID ); + } + return ok; +} - double sumLen = vec1.Modulus() + vec2.Modulus(); - _2neibors->_wgt[0] = 1 - vec1.Modulus() / sumLen; - _2neibors->_wgt[1] = 1 - vec2.Modulus() / sumLen; - double avgNormProj = 0.5 * ( _normal * vec1 + _normal * vec2 ); - double avgLen = 0.5 * ( vec1.Modulus() + vec2.Modulus() ); - if ( _curvature ) delete _curvature; - _curvature = _Curvature::New( avgNormProj, avgLen ); -#ifdef __myDEBUG -// if ( _curvature ) -// cout << _nodes[0]->GetID() -// << " CURV r,k: " << _curvature->_r<<","<<_curvature->_k -// << " proj = "<GetID(), data._index); + + if ( totalNbFaces >= 3 ) + { + edge._normal = getNormalByOffset( &edge, face2Norm, totalNbFaces, fromVonF ); + } + + if ( edge._normal.Modulus() < 1e-3 && nbOkNorms > 1 ) + { + // opposite normals, re-get normals at shifted positions (IPAL 52426) + edge._normal.SetCoord( 0,0,0 ); + for ( int iF = 0; iF < totalNbFaces - fromVonF; ++iF ) + { + const TopoDS_Face& F = face2Norm[iF].first; + geomNorm = getFaceNormal( node, F, helper, normOK, /*shiftInside=*/true ); + if ( helper.GetSubShapeOri( data._solid, F ) != TopAbs_REVERSED ) + geomNorm.Reverse(); + if ( normOK ) + face2Norm[ iF ].second = geomNorm.XYZ(); + edge._normal += face2Norm[ iF ].second; + } + } + } + } + else // !useGeometry - get _normal using surrounding mesh faces + { + edge._normal = getWeigthedNormal( &edge ); + + // set faceIds; + // + // SMDS_ElemIteratorPtr fIt = node->GetInverseElementIterator(SMDSAbs_Face); + // while ( fIt->more() ) + // { + // const SMDS_MeshElement* face = fIt->next(); + // if ( eos.GetNormal( face, geomNorm )) + // { + // if ( onShrinkShape && !faceIds.insert( face->getshapeId() ).second ) + // continue; // use only one mesh face on FACE + // edge._normal += geomNorm.XYZ(); + // totalNbFaces++; + // } + // } + } + + // compute _cosin + //if ( eos._hyp.UseSurfaceNormal() ) + { + switch ( eos.ShapeType() ) + { + case TopAbs_FACE: { + edge._cosin = 0; + break; + } + case TopAbs_EDGE: { + TopoDS_Edge E = TopoDS::Edge( eos._shape ); + gp_Vec inFaceDir = getFaceDir( F, E, node, helper, normOK ); + double angle = inFaceDir.Angle( edge._normal ); // [0,PI] + edge._cosin = Cos( angle ); + break; + } + case TopAbs_VERTEX: { + if ( fromVonF ) + { + getFaceDir( TopoDS::Face( eos._sWOL ), TopoDS::Vertex( eos._shape ), + node, helper, normOK, &edge._cosin ); + } + else if ( eos.SWOLType() != TopAbs_FACE ) // else _cosin is set by getFaceDir() + { + TopoDS_Vertex V = TopoDS::Vertex( eos._shape ); + gp_Vec inFaceDir = getFaceDir( F, V, node, helper, normOK ); + double angle = inFaceDir.Angle( edge._normal ); // [0,PI] + edge._cosin = Cos( angle ); + if ( totalNbFaces > 2 || helper.IsSeamShape( node->getshapeId() )) + for ( int iF = 1; iF < totalNbFaces; ++iF ) + { + F = face2Norm[ iF ].first; + inFaceDir = getFaceDir( F, V, node, helper, normOK=true ); + if ( normOK ) { + double angle = inFaceDir.Angle( edge._normal ); + double cosin = Cos( angle ); + if ( Abs( cosin ) > Abs( edge._cosin )) + edge._cosin = cosin; + } + } + } + break; + } + default: + return error(SMESH_Comment("Invalid shape position of node ")<::min() ) + return error(SMESH_Comment("Bad normal at node ")<< node->GetID(), data._index ); + + edge._normal /= sqrt( normSize ); + + if ( edge.Is( _LayerEdge::MULTI_NORMAL ) && edge._nodes.size() == 2 ) + { + getMeshDS()->RemoveFreeNode( edge._nodes.back(), 0, /*fromGroups=*/false ); + edge._nodes.resize( 1 ); + edge._normal.SetCoord( 0,0,0 ); + edge.SetMaxLen( 0 ); + } + + // Set the rest data + // -------------------- + + edge.SetCosin( edge._cosin ); // to update edge._lenFactor + + if ( onShrinkShape ) + { + const SMDS_MeshNode* tgtNode = edge._nodes.back(); + if ( SMESHDS_SubMesh* sm = getMeshDS()->MeshElements( data._solid )) + sm->RemoveNode( tgtNode , /*isNodeDeleted=*/false ); + + // set initial position which is parameters on _sWOL in this case + if ( eos.SWOLType() == TopAbs_EDGE ) + { + double u = helper.GetNodeU( TopoDS::Edge( eos._sWOL ), node, 0, &normOK ); + edge._pos.push_back( gp_XYZ( u, 0, 0 )); + if ( edge._nodes.size() > 1 ) + getMeshDS()->SetNodeOnEdge( tgtNode, TopoDS::Edge( eos._sWOL ), u ); } + else // eos.SWOLType() == TopAbs_FACE + { + gp_XY uv = helper.GetNodeUV( TopoDS::Face( eos._sWOL ), node, 0, &normOK ); + edge._pos.push_back( gp_XYZ( uv.X(), uv.Y(), 0)); + if ( edge._nodes.size() > 1 ) + getMeshDS()->SetNodeOnFace( tgtNode, TopoDS::Face( eos._sWOL ), uv.X(), uv.Y() ); + } + + if ( edge._nodes.size() > 1 ) + { + // check if an angle between a FACE with layers and SWOL is sharp, + // else the edge should not inflate + F.Nullify(); + for ( int iF = 0; iF < totalNbFaces && F.IsNull(); ++iF ) // find a FACE with VL + if ( ! helper.IsSubShape( eos._sWOL, face2Norm[iF].first )) + F = face2Norm[iF].first; + if ( !F.IsNull()) + { + geomNorm = getFaceNormal( node, F, helper, normOK ); + if ( helper.GetSubShapeOri( data._solid, F ) != TopAbs_REVERSED ) + geomNorm.Reverse(); // inside the SOLID + if ( geomNorm * edge._normal < -0.001 ) + { + getMeshDS()->RemoveFreeNode( tgtNode, 0, /*fromGroups=*/false ); + edge._nodes.resize( 1 ); + } + else if ( edge._lenFactor > 3 ) + { + edge._lenFactor = 2; + edge.Set( _LayerEdge::RISKY_SWOL ); + } + } + } + } + else + { + edge._pos.push_back( SMESH_TNodeXYZ( node )); + + if ( eos.ShapeType() == TopAbs_FACE ) + { + double angle; + for ( size_t i = 0; i < edge._simplices.size(); ++i ) + { + edge._simplices[i].IsMinAngleOK( edge._pos.back(), angle ); + edge._minAngle = Max( edge._minAngle, angle ); // "angle" is actually cosine + } + } + } + + // Set neighbor nodes for a _LayerEdge based on EDGE + + if ( eos.ShapeType() == TopAbs_EDGE /*|| + ( onShrinkShape && posType == SMDS_TOP_VERTEX && fabs( edge._cosin ) < 1e-10 )*/) + { + edge._2neibors = new _2NearEdges; + // target nodes instead of source ones will be set later + } + + return true; +} + +//================================================================================ +/*! + * \brief Return normal to a FACE at a node + * \param [in] n - node + * \param [in] face - FACE + * \param [in] helper - helper + * \param [out] isOK - true or false + * \param [in] shiftInside - to find normal at a position shifted inside the face + * \return gp_XYZ - normal + */ +//================================================================================ + +gp_XYZ _ViscousBuilder::getFaceNormal(const SMDS_MeshNode* node, + const TopoDS_Face& face, + SMESH_MesherHelper& helper, + bool& isOK, + bool shiftInside) +{ + gp_XY uv; + if ( shiftInside ) + { + // get a shifted position + gp_Pnt p = SMESH_TNodeXYZ( node ); + gp_XYZ shift( 0,0,0 ); + TopoDS_Shape S = helper.GetSubShapeByNode( node, helper.GetMeshDS() ); + switch ( S.ShapeType() ) { + case TopAbs_VERTEX: + { + shift = getFaceDir( face, TopoDS::Vertex( S ), node, helper, isOK ); + break; + } + case TopAbs_EDGE: + { + shift = getFaceDir( face, TopoDS::Edge( S ), node, helper, isOK ); + break; + } + default: + isOK = false; + } + if ( isOK ) + shift.Normalize(); + p.Translate( shift * 1e-5 ); + + TopLoc_Location loc; + GeomAPI_ProjectPointOnSurf& projector = helper.GetProjector( face, loc, 1e-7 ); + + if ( !loc.IsIdentity() ) p.Transform( loc.Transformation().Inverted() ); + + projector.Perform( p ); + if ( !projector.IsDone() || projector.NbPoints() < 1 ) + { + isOK = false; + return p.XYZ(); + } + Standard_Real U,V; + projector.LowerDistanceParameters(U,V); + uv.SetCoord( U,V ); + } + else + { + uv = helper.GetNodeUV( face, node, 0, &isOK ); + } + + gp_Dir normal; + isOK = false; + + Handle(Geom_Surface) surface = BRep_Tool::Surface( face ); + + if ( !shiftInside && + helper.IsDegenShape( node->getshapeId() ) && + getFaceNormalAtSingularity( uv, face, helper, normal )) + { + isOK = true; + return normal.XYZ(); + } + + int pointKind = GeomLib::NormEstim( surface, uv, 1e-5, normal ); + enum { REGULAR = 0, QUASYSINGULAR, CONICAL, IMPOSSIBLE }; + + if ( pointKind == IMPOSSIBLE && + node->GetPosition()->GetDim() == 2 ) // node inside the FACE + { + // probably NormEstim() failed due to a too high tolerance + pointKind = GeomLib::NormEstim( surface, uv, 1e-20, normal ); + isOK = ( pointKind < IMPOSSIBLE ); + } + if ( pointKind < IMPOSSIBLE ) + { + if ( pointKind != REGULAR && + !shiftInside && + node->GetPosition()->GetDim() < 2 ) // FACE boundary + { + gp_XYZ normShift = getFaceNormal( node, face, helper, isOK, /*shiftInside=*/true ); + if ( normShift * normal.XYZ() < 0. ) + normal = normShift; + } + isOK = true; + } + + if ( !isOK ) // hard singularity, to call with shiftInside=true ? + { + const TGeomID faceID = helper.GetMeshDS()->ShapeToIndex( face ); + + SMDS_ElemIteratorPtr fIt = node->GetInverseElementIterator(SMDSAbs_Face); + while ( fIt->more() ) + { + const SMDS_MeshElement* f = fIt->next(); + if ( f->getshapeId() == faceID ) + { + isOK = SMESH_MeshAlgos::FaceNormal( f, (gp_XYZ&) normal.XYZ(), /*normalized=*/true ); + if ( isOK ) + { + TopoDS_Face ff = face; + ff.Orientation( TopAbs_FORWARD ); + if ( helper.IsReversedSubMesh( ff )) + normal.Reverse(); + break; + } + } + } + } + return normal.XYZ(); +} + +//================================================================================ +/*! + * \brief Try to get normal at a singularity of a surface basing on it's nature + */ +//================================================================================ + +bool _ViscousBuilder::getFaceNormalAtSingularity( const gp_XY& uv, + const TopoDS_Face& face, + SMESH_MesherHelper& helper, + gp_Dir& normal ) +{ + BRepAdaptor_Surface surface( face ); + gp_Dir axis; + if ( !getRovolutionAxis( surface, axis )) + return false; + + double f,l, d, du, dv; + f = surface.FirstUParameter(); + l = surface.LastUParameter(); + d = ( uv.X() - f ) / ( l - f ); + du = ( d < 0.5 ? +1. : -1 ) * 1e-5 * ( l - f ); + f = surface.FirstVParameter(); + l = surface.LastVParameter(); + d = ( uv.Y() - f ) / ( l - f ); + dv = ( d < 0.5 ? +1. : -1 ) * 1e-5 * ( l - f ); + + gp_Dir refDir; + gp_Pnt2d testUV = uv; + enum { REGULAR = 0, QUASYSINGULAR, CONICAL, IMPOSSIBLE }; + double tol = 1e-5; + Handle(Geom_Surface) geomsurf = surface.Surface().Surface(); + for ( int iLoop = 0; true ; ++iLoop ) + { + testUV.SetCoord( testUV.X() + du, testUV.Y() + dv ); + if ( GeomLib::NormEstim( geomsurf, testUV, tol, refDir ) == REGULAR ) + break; + if ( iLoop > 20 ) + return false; + tol /= 10.; + } + + if ( axis * refDir < 0. ) + axis.Reverse(); + + normal = axis; + + return true; +} + +//================================================================================ +/*! + * \brief Return a normal at a node weighted with angles taken by faces + */ +//================================================================================ + +gp_XYZ _ViscousBuilder::getWeigthedNormal( const _LayerEdge* edge ) +{ + const SMDS_MeshNode* n = edge->_nodes[0]; + + gp_XYZ resNorm(0,0,0); + SMESH_TNodeXYZ p0( n ), pP, pN; + for ( size_t i = 0; i < edge->_simplices.size(); ++i ) + { + pP.Set( edge->_simplices[i]._nPrev ); + pN.Set( edge->_simplices[i]._nNext ); + gp_Vec v0P( p0, pP ), v0N( p0, pN ), vPN( pP, pN ), norm = v0P ^ v0N; + double l0P = v0P.SquareMagnitude(); + double l0N = v0N.SquareMagnitude(); + double lPN = vPN.SquareMagnitude(); + if ( l0P < std::numeric_limits::min() || + l0N < std::numeric_limits::min() || + lPN < std::numeric_limits::min() ) + continue; + double lNorm = norm.SquareMagnitude(); + double sin2 = lNorm / l0P / l0N; + double angle = ACos(( v0P * v0N ) / Sqrt( l0P ) / Sqrt( l0N )); + + double weight = sin2 * angle / lPN; + resNorm += weight * norm.XYZ() / Sqrt( lNorm ); + } + + return resNorm; +} + +//================================================================================ +/*! + * \brief Return a normal at a node by getting a common point of offset planes + * defined by the FACE normals + */ +//================================================================================ + +gp_XYZ _ViscousBuilder::getNormalByOffset( _LayerEdge* edge, + std::pair< TopoDS_Face, gp_XYZ > f2Normal[], + int nbFaces, + bool lastNoOffset) +{ + SMESH_TNodeXYZ p0 = edge->_nodes[0]; + + gp_XYZ resNorm(0,0,0); + TopoDS_Shape V = SMESH_MesherHelper::GetSubShapeByNode( p0._node, getMeshDS() ); + if ( V.ShapeType() != TopAbs_VERTEX || nbFaces < 3 ) + { + for ( int i = 0; i < nbFaces; ++i ) + resNorm += f2Normal[i].second; + return resNorm; + } + + // prepare _OffsetPlane's + vector< _OffsetPlane > pln( nbFaces ); + for ( int i = 0; i < nbFaces - lastNoOffset; ++i ) + { + pln[i]._faceIndex = i; + pln[i]._plane = gp_Pln( p0 + f2Normal[i].second, f2Normal[i].second ); + } + if ( lastNoOffset ) + { + pln[ nbFaces - 1 ]._faceIndex = nbFaces - 1; + pln[ nbFaces - 1 ]._plane = gp_Pln( p0, f2Normal[ nbFaces - 1 ].second ); + } + + // intersect neighboring OffsetPlane's + PShapeIteratorPtr edgeIt = SMESH_MesherHelper::GetAncestors( V, *_mesh, TopAbs_EDGE ); + while ( const TopoDS_Shape* edge = edgeIt->next() ) + { + int f1 = -1, f2 = -1; + for ( int i = 0; i < nbFaces && f2 < 0; ++i ) + if ( SMESH_MesherHelper::IsSubShape( *edge, f2Normal[i].first )) + (( f1 < 0 ) ? f1 : f2 ) = i; + + if ( f2 >= 0 ) + pln[ f1 ].ComputeIntersectionLine( pln[ f2 ], TopoDS::Edge( *edge ), TopoDS::Vertex( V )); + } + + // get a common point + gp_XYZ commonPnt( 0, 0, 0 ); + int nbPoints = 0; + bool isPointFound; + for ( int i = 0; i < nbFaces; ++i ) + { + commonPnt += pln[ i ].GetCommonPoint( isPointFound, TopoDS::Vertex( V )); + nbPoints += isPointFound; + } + gp_XYZ wgtNorm = getWeigthedNormal( edge ); + if ( nbPoints == 0 ) + return wgtNorm; + + commonPnt /= nbPoints; + resNorm = commonPnt - p0; + if ( lastNoOffset ) + return resNorm; + + // choose the best among resNorm and wgtNorm + resNorm.Normalize(); + wgtNorm.Normalize(); + double resMinDot = std::numeric_limits::max(); + double wgtMinDot = std::numeric_limits::max(); + for ( int i = 0; i < nbFaces - lastNoOffset; ++i ) + { + resMinDot = Min( resMinDot, resNorm * f2Normal[i].second ); + wgtMinDot = Min( wgtMinDot, wgtNorm * f2Normal[i].second ); + } + + if ( Max( resMinDot, wgtMinDot ) < theMinSmoothCosin ) + { + edge->Set( _LayerEdge::MULTI_NORMAL ); + } + + return ( resMinDot > wgtMinDot ) ? resNorm : wgtNorm; +} + +//================================================================================ +/*! + * \brief Compute line of intersection of 2 planes + */ +//================================================================================ + +void _OffsetPlane::ComputeIntersectionLine( _OffsetPlane& pln, + const TopoDS_Edge& E, + const TopoDS_Vertex& V ) +{ + int iNext = bool( _faceIndexNext[0] >= 0 ); + _faceIndexNext[ iNext ] = pln._faceIndex; + + gp_XYZ n1 = _plane.Axis().Direction().XYZ(); + gp_XYZ n2 = pln._plane.Axis().Direction().XYZ(); + + gp_XYZ lineDir = n1 ^ n2; + + double x = Abs( lineDir.X() ); + double y = Abs( lineDir.Y() ); + double z = Abs( lineDir.Z() ); + + int cooMax; // max coordinate + if (x > y) { + if (x > z) cooMax = 1; + else cooMax = 3; + } + else { + if (y > z) cooMax = 2; + else cooMax = 3; + } + + gp_Pnt linePos; + if ( Abs( lineDir.Coord( cooMax )) < 0.05 ) + { + // parallel planes - intersection is an offset of the common EDGE + gp_Pnt p = BRep_Tool::Pnt( V ); + linePos = 0.5 * (( p.XYZ() + n1 ) + ( p.XYZ() + n2 )); + lineDir = getEdgeDir( E, V ); + } + else + { + // the constants in the 2 plane equations + double d1 = - ( _plane.Axis().Direction().XYZ() * _plane.Location().XYZ() ); + double d2 = - ( pln._plane.Axis().Direction().XYZ() * pln._plane.Location().XYZ() ); + + switch ( cooMax ) { + case 1: + linePos.SetX( 0 ); + linePos.SetY(( d2*n1.Z() - d1*n2.Z()) / lineDir.X() ); + linePos.SetZ(( d1*n2.Y() - d2*n1.Y()) / lineDir.X() ); + break; + case 2: + linePos.SetX(( d1*n2.Z() - d2*n1.Z()) / lineDir.Y() ); + linePos.SetY( 0 ); + linePos.SetZ(( d2*n1.X() - d1*n2.X()) / lineDir.Y() ); + break; + case 3: + linePos.SetX(( d2*n1.Y() - d1*n2.Y()) / lineDir.Z() ); + linePos.SetY(( d1*n2.X() - d2*n1.X()) / lineDir.Z() ); + linePos.SetZ( 0 ); + } + } + gp_Lin& line = _lines[ iNext ]; + line.SetDirection( lineDir ); + line.SetLocation ( linePos ); + + _isLineOK[ iNext ] = true; + + + iNext = bool( pln._faceIndexNext[0] >= 0 ); + pln._lines [ iNext ] = line; + pln._faceIndexNext[ iNext ] = this->_faceIndex; + pln._isLineOK [ iNext ] = true; +} + +//================================================================================ +/*! + * \brief Computes intersection point of two _lines + */ +//================================================================================ + +gp_XYZ _OffsetPlane::GetCommonPoint(bool& isFound, + const TopoDS_Vertex & V) const +{ + gp_XYZ p( 0,0,0 ); + isFound = false; + + if ( NbLines() == 2 ) + { + gp_Vec lPerp0 = _lines[0].Direction().XYZ() ^ _plane.Axis().Direction().XYZ(); + double dot01 = lPerp0 * _lines[1].Direction().XYZ(); + if ( Abs( dot01 ) > 0.05 ) + { + gp_Vec l0l1 = _lines[1].Location().XYZ() - _lines[0].Location().XYZ(); + double u1 = - ( lPerp0 * l0l1 ) / dot01; + p = ( _lines[1].Location().XYZ() + _lines[1].Direction().XYZ() * u1 ); + isFound = true; + } + else + { + gp_Pnt pV ( BRep_Tool::Pnt( V )); + gp_Vec lv0( _lines[0].Location(), pV ), lv1(_lines[1].Location(), pV ); + double dot0( lv0 * _lines[0].Direction() ), dot1( lv1 * _lines[1].Direction() ); + p += 0.5 * ( _lines[0].Location().XYZ() + _lines[0].Direction().XYZ() * dot0 ); + p += 0.5 * ( _lines[1].Location().XYZ() + _lines[1].Direction().XYZ() * dot1 ); + isFound = true; + } + } + + return p; +} + +//================================================================================ +/*! + * \brief Find 2 neigbor nodes of a node on EDGE + */ +//================================================================================ + +bool _ViscousBuilder::findNeiborsOnEdge(const _LayerEdge* edge, + const SMDS_MeshNode*& n1, + const SMDS_MeshNode*& n2, + _EdgesOnShape& eos, + _SolidData& data) +{ + const SMDS_MeshNode* node = edge->_nodes[0]; + const int shapeInd = eos._shapeID; + SMESHDS_SubMesh* edgeSM = 0; + if ( eos.ShapeType() == TopAbs_EDGE ) + { + edgeSM = eos._subMesh->GetSubMeshDS(); + if ( !edgeSM || edgeSM->NbElements() == 0 ) + return error(SMESH_Comment("Not meshed EDGE ") << shapeInd, data._index); + } + int iN = 0; + n2 = 0; + SMDS_ElemIteratorPtr eIt = node->GetInverseElementIterator(SMDSAbs_Edge); + while ( eIt->more() && !n2 ) + { + const SMDS_MeshElement* e = eIt->next(); + const SMDS_MeshNode* nNeibor = e->GetNode( 0 ); + if ( nNeibor == node ) nNeibor = e->GetNode( 1 ); + if ( edgeSM ) + { + if (!edgeSM->Contains(e)) continue; + } + else + { + TopoDS_Shape s = SMESH_MesherHelper::GetSubShapeByNode( nNeibor, getMeshDS() ); + if ( !SMESH_MesherHelper::IsSubShape( s, eos._sWOL )) continue; + } + ( iN++ ? n2 : n1 ) = nNeibor; + } + if ( !n2 ) + return error(SMESH_Comment("Wrongly meshed EDGE ") << shapeInd, data._index); + return true; +} + +//================================================================================ +/*! + * \brief Set _curvature and _2neibors->_plnNorm by 2 neigbor nodes residing the same EDGE + */ +//================================================================================ + +void _LayerEdge::SetDataByNeighbors( const SMDS_MeshNode* n1, + const SMDS_MeshNode* n2, + const _EdgesOnShape& eos, + SMESH_MesherHelper& helper) +{ + if ( eos.ShapeType() != TopAbs_EDGE ) + return; + if ( _curvature && Is( SMOOTHED_C1 )) + return; + + gp_XYZ pos = SMESH_TNodeXYZ( _nodes[0] ); + gp_XYZ vec1 = pos - SMESH_TNodeXYZ( n1 ); + gp_XYZ vec2 = pos - SMESH_TNodeXYZ( n2 ); + + // Set _curvature + + double sumLen = vec1.Modulus() + vec2.Modulus(); + _2neibors->_wgt[0] = 1 - vec1.Modulus() / sumLen; + _2neibors->_wgt[1] = 1 - vec2.Modulus() / sumLen; + double avgNormProj = 0.5 * ( _normal * vec1 + _normal * vec2 ); + double avgLen = 0.5 * ( vec1.Modulus() + vec2.Modulus() ); + if ( _curvature ) delete _curvature; + _curvature = _Curvature::New( avgNormProj, avgLen ); + // if ( _curvature ) + // debugMsg( _nodes[0]->GetID() + // << " CURV r,k: " << _curvature->_r<<","<<_curvature->_k + // << " proj = "<second; + // for ( size_t iN = 1; iN < le->_nodes.size(); ++iN ) + // dumpCmd(SMESH_Comment("mesh.AddEdge([ ") <_nodes[iN-1]->GetID() + // << ", " << le->_nodes[iN]->GetID() <<"])"); + if ( le ) { + dumpCmd(SMESH_Comment("mesh.AddEdge([ ") <_nodes[0]->GetID() + << ", " << le->_nodes.back()->GetID() <<"]) # " << le->_flags ); + } + } + dumpFunctionEnd(); + + dumpFunction( SMESH_Comment("makeNormals") << i ); + for ( n2e = _sdVec[i]._n2eMap.begin(); n2e != _sdVec[i]._n2eMap.end(); ++n2e ) + { + _LayerEdge* edge = n2e->second; + SMESH_TNodeXYZ nXYZ( edge->_nodes[0] ); + nXYZ += edge->_normal * _sdVec[i]._stepSize; + dumpCmd(SMESH_Comment("mesh.AddEdge([ ") << edge->_nodes[0]->GetID() + << ", mesh.AddNode( "<< nXYZ.X()<<","<< nXYZ.Y()<<","<< nXYZ.Z()<<")])"); + } + dumpFunctionEnd(); + + dumpFunction( SMESH_Comment("makeTmpFaces_") << i ); + dumpCmd( "faceId1 = mesh.NbElements()" ); + TopExp_Explorer fExp( _sdVec[i]._solid, TopAbs_FACE ); + for ( ; fExp.More(); fExp.Next() ) + { + if ( const SMESHDS_SubMesh* sm = _sdVec[i]._proxyMesh->GetProxySubMesh( fExp.Current() )) + { + if ( sm->NbElements() == 0 ) continue; + SMDS_ElemIteratorPtr fIt = sm->GetElements(); + while ( fIt->more()) + { + const SMDS_MeshElement* e = fIt->next(); + SMESH_Comment cmd("mesh.AddFace(["); + for ( int j = 0; j < e->NbCornerNodes(); ++j ) + cmd << e->GetNode(j)->GetID() << (j+1 < e->NbCornerNodes() ? ",": "])"); + dumpCmd( cmd ); + } + } + } + dumpCmd( "faceId2 = mesh.NbElements()" ); + dumpCmd( SMESH_Comment( "mesh.MakeGroup( 'tmpFaces_" ) << i << "'," + << "SMESH.FACE, SMESH.FT_RangeOfIds,'='," + << "'%s-%s' % (faceId1+1, faceId2))"); + dumpFunctionEnd(); + } +#endif +} + +//================================================================================ +/*! + * \brief Find maximal _LayerEdge length (layer thickness) limited by geometry + */ +//================================================================================ + +void _ViscousBuilder::computeGeomSize( _SolidData& data ) +{ + data._geomSize = Precision::Infinite(); + double intersecDist; + const SMDS_MeshElement* face; + SMESH_MesherHelper helper( *_mesh ); + + SMESHUtils::Deleter searcher + ( SMESH_MeshAlgos::GetElementSearcher( *getMeshDS(), + data._proxyMesh->GetFaces( data._solid ))); + + for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS ) + { + _EdgesOnShape& eos = data._edgesOnShape[ iS ]; + if ( eos._edges.empty() ) + continue; + // get neighbor faces, intersection with which should not be considered since + // collisions are avoided by means of smoothing + set< TGeomID > neighborFaces; + if ( eos._hyp.ToSmooth() ) + { + SMESH_subMeshIteratorPtr subIt = + eos._subMesh->getDependsOnIterator(/*includeSelf=*/eos.ShapeType() != TopAbs_FACE ); + while ( subIt->more() ) + { + SMESH_subMesh* sm = subIt->next(); + PShapeIteratorPtr fIt = helper.GetAncestors( sm->GetSubShape(), *_mesh, TopAbs_FACE ); + while ( const TopoDS_Shape* face = fIt->next() ) + neighborFaces.insert( getMeshDS()->ShapeToIndex( *face )); + } + } + // find intersections + double thinkness = eos._hyp.GetTotalThickness(); + for ( size_t i = 0; i < eos._edges.size(); ++i ) + { + if ( eos._edges[i]->Is( _LayerEdge::BLOCKED )) continue; + eos._edges[i]->SetMaxLen( thinkness ); + eos._edges[i]->FindIntersection( *searcher, intersecDist, data._epsilon, eos, &face ); + if ( intersecDist > 0 && face ) + { + data._geomSize = Min( data._geomSize, intersecDist ); + if ( !neighborFaces.count( face->getshapeId() )) + eos[i]->SetMaxLen( Min( thinkness, intersecDist / ( face->GetID() < 0 ? 3. : 2. ))); + } + } + } + + data._maxThickness = 0; + data._minThickness = 1e100; + list< const StdMeshers_ViscousLayers* >::iterator hyp = data._hyps.begin(); + for ( ; hyp != data._hyps.end(); ++hyp ) + { + data._maxThickness = Max( data._maxThickness, (*hyp)->GetTotalThickness() ); + data._minThickness = Min( data._minThickness, (*hyp)->GetTotalThickness() ); + } + + // Limit inflation step size by geometry size found by intersecting + // normals of _LayerEdge's with mesh faces + if ( data._stepSize > 0.3 * data._geomSize ) + limitStepSize( data, 0.3 * data._geomSize ); + + if ( data._stepSize > data._minThickness ) + limitStepSize( data, data._minThickness ); + + + // ------------------------------------------------------------------------- + // Detect _LayerEdge which can't intersect with opposite or neighbor layer, + // so no need in detecting intersection at each inflation step + // ------------------------------------------------------------------------- + + int nbSteps = data._maxThickness / data._stepSize; + if ( nbSteps < 3 || nbSteps * data._n2eMap.size() < 100000 ) + return; + + vector< const SMDS_MeshElement* > closeFaces; + int nbDetected = 0; + + for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS ) + { + _EdgesOnShape& eos = data._edgesOnShape[ iS ]; + if ( eos._edges.empty() || eos.ShapeType() != TopAbs_FACE ) + continue; + + for ( size_t i = 0; i < eos.size(); ++i ) + { + SMESH_NodeXYZ p( eos[i]->_nodes[0] ); + double radius = data._maxThickness + 2 * eos[i]->_maxLen; + closeFaces.clear(); + searcher->GetElementsInSphere( p, radius, SMDSAbs_Face, closeFaces ); + + bool toIgnore = true; + for ( size_t iF = 0; iF < closeFaces.size() && toIgnore; ++iF ) + if ( !( toIgnore = ( closeFaces[ iF ]->getshapeId() == eos._shapeID || + data._ignoreFaceIds.count( closeFaces[ iF ]->getshapeId() )))) + { + // check if a _LayerEdge will inflate in a direction opposite to a direction + // toward a close face + bool allBehind = true; + for ( int iN = 0; iN < closeFaces[ iF ]->NbCornerNodes() && allBehind; ++iN ) + { + SMESH_NodeXYZ pi( closeFaces[ iF ]->GetNode( iN )); + allBehind = (( pi - p ) * eos[i]->_normal < 0.1 * data._stepSize ); + } + toIgnore = allBehind; + } + + + if ( toIgnore ) // no need to detect intersection + { + eos[i]->Set( _LayerEdge::INTERSECTED ); + ++nbDetected; + } + } + } + + debugMsg( "Nb LE to intersect " << data._n2eMap.size()-nbDetected << ", ignore " << nbDetected ); + + return; +} + +//================================================================================ +/*! + * \brief Increase length of _LayerEdge's to reach the required thickness of layers + */ +//================================================================================ + +bool _ViscousBuilder::inflate(_SolidData& data) +{ + SMESH_MesherHelper helper( *_mesh ); + + const double tgtThick = data._maxThickness; + + if ( data._stepSize < 1. ) + data._epsilon = data._stepSize * 1e-7; + + debugMsg( "-- geomSize = " << data._geomSize << ", stepSize = " << data._stepSize ); + _pyDump->Pause(); + + findCollisionEdges( data, helper ); + + limitMaxLenByCurvature( data, helper ); + + _pyDump->Resume(); + + // limit length of _LayerEdge's around MULTI_NORMAL _LayerEdge's + for ( size_t i = 0; i < data._edgesOnShape.size(); ++i ) + if ( data._edgesOnShape[i].ShapeType() == TopAbs_VERTEX && + data._edgesOnShape[i]._edges.size() > 0 && + data._edgesOnShape[i]._edges[0]->Is( _LayerEdge::MULTI_NORMAL )) + { + data._edgesOnShape[i]._edges[0]->Unset( _LayerEdge::BLOCKED ); + data._edgesOnShape[i]._edges[0]->Block( data ); + } + + const double safeFactor = ( 2*data._maxThickness < data._geomSize ) ? 1 : theThickToIntersection; + + double avgThick = 0, curThick = 0, distToIntersection = Precision::Infinite(); + int nbSteps = 0, nbRepeats = 0; + while ( avgThick < 0.99 ) + { + // new target length + double prevThick = curThick; + curThick += data._stepSize; + if ( curThick > tgtThick ) + { + curThick = tgtThick + tgtThick*( 1.-avgThick ) * nbRepeats; + nbRepeats++; + } + + double stepSize = curThick - prevThick; + updateNormalsOfSmoothed( data, helper, nbSteps, stepSize ); // to ease smoothing + + // Elongate _LayerEdge's + dumpFunction(SMESH_Comment("inflate")<SetNewLength( shapeCurThick, eos, helper ); + } + } + dumpFunctionEnd(); + + if ( !updateNormals( data, helper, nbSteps, stepSize )) // to avoid collisions + return false; + + // Improve and check quality + if ( !smoothAndCheck( data, nbSteps, distToIntersection )) + { + if ( nbSteps > 0 ) + { +#ifdef __NOT_INVALIDATE_BAD_SMOOTH + debugMsg("NOT INVALIDATED STEP!"); + return error("Smoothing failed", data._index); +#endif + dumpFunction(SMESH_Comment("invalidate")<InvalidateStep( nbSteps+1, eos ); + } + dumpFunctionEnd(); + } + break; // no more inflating possible + } + nbSteps++; + + // Evaluate achieved thickness + avgThick = 0; + int nbActiveEdges = 0; + for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS ) + { + _EdgesOnShape& eos = data._edgesOnShape[iS]; + if ( eos._edges.empty() ) continue; + + const double shapeTgtThick = eos._hyp.GetTotalThickness(); + for ( size_t i = 0; i < eos._edges.size(); ++i ) + { + if ( eos._edges[i]->_nodes.size() > 1 ) + avgThick += Min( 1., eos._edges[i]->_len / shapeTgtThick ); + else + avgThick += shapeTgtThick; + nbActiveEdges += ( ! eos._edges[i]->Is( _LayerEdge::BLOCKED )); + } + } + avgThick /= data._n2eMap.size(); + debugMsg( "-- Thickness " << curThick << " ("<< avgThick*100 << "%) reached" ); + +#ifdef BLOCK_INFLATION + if ( nbActiveEdges == 0 ) + { + debugMsg( "-- Stop inflation since all _LayerEdge's BLOCKED " ); + break; + } +#else + if ( distToIntersection < tgtThick * avgThick * safeFactor && avgThick < 0.9 ) + { + debugMsg( "-- Stop inflation since " + << " distToIntersection( "<_warning || data._proxyMesh->_warning->IsOK() ) + { + data._proxyMesh->_warning.reset + ( new SMESH_ComputeError (COMPERR_WARNING, + SMESH_Comment("Thickness ") << tgtThick << + " of viscous layers not reached," + " average reached thickness is " << avgThick*tgtThick)); + } + } + + // Restore position of src nodes moved by inflation on _noShrinkShapes + dumpFunction(SMESH_Comment("restoNoShrink_So")<_nodes.size() == 1 ) + for ( size_t i = 0; i < eos._edges.size(); ++i ) + { + restoreNoShrink( *eos._edges[ i ] ); + } + } + dumpFunctionEnd(); + + return safeFactor > 0; // == true (avoid warning: unused variable 'safeFactor') +} + +//================================================================================ +/*! + * \brief Improve quality of layer inner surface and check intersection + */ +//================================================================================ + +bool _ViscousBuilder::smoothAndCheck(_SolidData& data, + const int infStep, + double & distToIntersection) +{ + if ( data._nbShapesToSmooth == 0 ) + return true; // no shapes needing smoothing + + bool moved, improved; + double vol; + vector< _LayerEdge* > movedEdges, badEdges; + vector< _EdgesOnShape* > eosC1; // C1 continues shapes + vector< bool > isConcaveFace; + + SMESH_MesherHelper helper(*_mesh); + Handle(ShapeAnalysis_Surface) surface; + TopoDS_Face F; + + for ( int isFace = 0; isFace < 2; ++isFace ) // smooth on [ EDGEs, FACEs ] + { + const TopAbs_ShapeEnum shapeType = isFace ? TopAbs_FACE : TopAbs_EDGE; + + for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS ) + { + _EdgesOnShape& eos = data._edgesOnShape[ iS ]; + if ( !eos._toSmooth || + eos.ShapeType() != shapeType || + eos._edges.empty() ) + continue; + + // already smoothed? + // bool toSmooth = ( eos._edges[ 0 ]->NbSteps() >= infStep+1 ); + // if ( !toSmooth ) continue; + + if ( !eos._hyp.ToSmooth() ) + { + // smooth disabled by the user; check validy only + if ( !isFace ) continue; + badEdges.clear(); + for ( size_t i = 0; i < eos._edges.size(); ++i ) + { + _LayerEdge* edge = eos._edges[i]; + for ( size_t iF = 0; iF < edge->_simplices.size(); ++iF ) + if ( !edge->_simplices[iF].IsForward( edge->_nodes[0], edge->_pos.back(), vol )) + { + // debugMsg( "-- Stop inflation. Bad simplex (" + // << " "<< edge->_nodes[0]->GetID() + // << " "<< edge->_nodes.back()->GetID() + // << " "<< edge->_simplices[iF]._nPrev->GetID() + // << " "<< edge->_simplices[iF]._nNext->GetID() << " ) "); + // return false; + badEdges.push_back( edge ); + } + } + if ( !badEdges.empty() ) + { + eosC1.resize(1); + eosC1[0] = &eos; + int nbBad = invalidateBadSmooth( data, helper, badEdges, eosC1, infStep ); + if ( nbBad > 0 ) + return false; + } + continue; // goto the next EDGE or FACE + } + + // prepare data + if ( eos.SWOLType() == TopAbs_FACE ) + { + if ( !F.IsSame( eos._sWOL )) { + F = TopoDS::Face( eos._sWOL ); + helper.SetSubShape( F ); + surface = helper.GetSurface( F ); + } + } + else + { + F.Nullify(); surface.Nullify(); + } + const TGeomID sInd = eos._shapeID; + + // perform smoothing + + if ( eos.ShapeType() == TopAbs_EDGE ) + { + dumpFunction(SMESH_Comment("smooth")<Perform( data, surface, F, helper )) + { + // smooth on EDGE's (normally we should not get here) + int step = 0; + do { + moved = false; + for ( size_t i = 0; i < eos._edges.size(); ++i ) + { + moved |= eos._edges[i]->SmoothOnEdge( surface, F, helper ); + } + dumpCmd( SMESH_Comment("# end step ")<_shapeID ); + vector< _LayerEdge* > & edges = eosC1[ iEOS ]->_edges; + for ( size_t i = 0; i < edges.size(); ++i ) + if ( edges[i]->Is( _LayerEdge::MOVED ) || + edges[i]->Is( _LayerEdge::NEAR_BOUNDARY )) + movedEdges.push_back( edges[i] ); + + makeOffsetSurface( *eosC1[ iEOS ], helper ); + } + + int step = 0, stepLimit = 5, nbBad = 0; + while (( ++step <= stepLimit ) || improved ) + { + dumpFunction(SMESH_Comment("smooth")<Unset( _LayerEdge::SMOOTHED ); + if ( movedEdges[i]->Smooth( step, findBest, movedEdges ) > 0 ) + badEdges.push_back( movedEdges[i] ); + } +#else + bool findBest = ( step == stepLimit || isConcaveFace[ iEOS ]); + for ( size_t iEOS = 0; iEOS < eosC1.size(); ++iEOS ) + { + vector< _LayerEdge* > & edges = eosC1[ iEOS ]->_edges; + for ( size_t i = 0; i < edges.size(); ++i ) + { + edges[i]->Unset( _LayerEdge::SMOOTHED ); + if ( edges[i]->Smooth( step, findBest, false ) > 0 ) + badEdges.push_back( eos._edges[i] ); + } + } +#endif + nbBad = badEdges.size(); + + if ( nbBad > 0 ) + debugMsg(SMESH_Comment("nbBad = ") << nbBad ); + + if ( !badEdges.empty() && step >= stepLimit / 2 ) + { + if ( badEdges[0]->Is( _LayerEdge::ON_CONCAVE_FACE )) + stepLimit = 9; + + // resolve hard smoothing situation around concave VERTEXes + for ( size_t iEOS = 0; iEOS < eosC1.size(); ++iEOS ) + { + vector< _EdgesOnShape* > & eosCoVe = eosC1[ iEOS ]->_eosConcaVer; + for ( size_t i = 0; i < eosCoVe.size(); ++i ) + eosCoVe[i]->_edges[0]->MoveNearConcaVer( eosCoVe[i], eosC1[ iEOS ], + step, badEdges ); + } + // look for the best smooth of _LayerEdge's neighboring badEdges + nbBad = 0; + for ( size_t i = 0; i < badEdges.size(); ++i ) + { + _LayerEdge* ledge = badEdges[i]; + for ( size_t iN = 0; iN < ledge->_neibors.size(); ++iN ) + { + ledge->_neibors[iN]->Unset( _LayerEdge::SMOOTHED ); + nbBad += ledge->_neibors[iN]->Smooth( step, true, /*findBest=*/true ); + } + ledge->Unset( _LayerEdge::SMOOTHED ); + nbBad += ledge->Smooth( step, true, /*findBest=*/true ); + } + debugMsg(SMESH_Comment("nbBad = ") << nbBad ); + } + + if ( nbBad == oldBadNb && + nbBad > 0 && + step < stepLimit ) // smooth w/o chech of validity + { + dumpFunctionEnd(); + dumpFunction(SMESH_Comment("smoothWoCheck")<SmoothWoCheck(); + } + if ( stepLimit < 9 ) + stepLimit++; + } + + improved = ( nbBad < oldBadNb ); + + dumpFunctionEnd(); + + if (( step % 3 == 1 ) || ( nbBad > 0 && step >= stepLimit / 2 )) + for ( size_t iEOS = 0; iEOS < eosC1.size(); ++iEOS ) + { + putOnOffsetSurface( *eosC1[ iEOS ], infStep, eosC1, step, /*moveAll=*/step == 1 ); + } + + } // smoothing steps + + // project -- to prevent intersections or fix bad simplices + for ( size_t iEOS = 0; iEOS < eosC1.size(); ++iEOS ) + { + if ( ! eosC1[ iEOS ]->_eosConcaVer.empty() || nbBad > 0 ) + putOnOffsetSurface( *eosC1[ iEOS ], infStep, eosC1 ); + } + + //if ( !badEdges.empty() ) + { + badEdges.clear(); + for ( size_t iEOS = 0; iEOS < eosC1.size(); ++iEOS ) + { + for ( size_t i = 0; i < eosC1[ iEOS ]->_edges.size(); ++i ) + { + if ( !eosC1[ iEOS ]->_sWOL.IsNull() ) continue; + + _LayerEdge* edge = eosC1[ iEOS ]->_edges[i]; + edge->CheckNeiborsOnBoundary( & badEdges ); + if (( nbBad > 0 ) || + ( edge->Is( _LayerEdge::BLOCKED ) && edge->Is( _LayerEdge::NEAR_BOUNDARY ))) + { + SMESH_TNodeXYZ tgtXYZ = edge->_nodes.back(); + gp_XYZ prevXYZ = edge->PrevCheckPos(); + for ( size_t j = 0; j < edge->_simplices.size(); ++j ) + if ( !edge->_simplices[j].IsForward( &prevXYZ, &tgtXYZ, vol )) + { + debugMsg("Bad simplex ( " << edge->_nodes[0]->GetID() + << " "<< tgtXYZ._node->GetID() + << " "<< edge->_simplices[j]._nPrev->GetID() + << " "<< edge->_simplices[j]._nNext->GetID() << " )" ); + badEdges.push_back( edge ); + break; + } + } + } + } + + // try to fix bad simplices by removing the last inflation step of some _LayerEdge's + nbBad = invalidateBadSmooth( data, helper, badEdges, eosC1, infStep ); + + if ( nbBad > 0 ) + return false; + } + + } // // smooth on FACE's + } // loop on shapes + } // smooth on [ EDGEs, FACEs ] + + // Check orientation of simplices of _LayerEdge's on EDGEs and VERTEXes + eosC1.resize(1); + for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS ) + { + _EdgesOnShape& eos = data._edgesOnShape[ iS ]; + if ( eos.ShapeType() == TopAbs_FACE || + eos._edges.empty() || + !eos._sWOL.IsNull() ) + continue; + + badEdges.clear(); + for ( size_t i = 0; i < eos._edges.size(); ++i ) + { + _LayerEdge* edge = eos._edges[i]; + if ( edge->_nodes.size() < 2 ) continue; + SMESH_TNodeXYZ tgtXYZ = edge->_nodes.back(); + //SMESH_TNodeXYZ prevXYZ = edge->_nodes[0]; + gp_XYZ prevXYZ = edge->PrevCheckPos( &eos ); + //const gp_XYZ& prevXYZ = edge->PrevPos(); + for ( size_t j = 0; j < edge->_simplices.size(); ++j ) + if ( !edge->_simplices[j].IsForward( &prevXYZ, &tgtXYZ, vol )) + { + debugMsg("Bad simplex on bnd ( " << edge->_nodes[0]->GetID() + << " "<< tgtXYZ._node->GetID() + << " "<< edge->_simplices[j]._nPrev->GetID() + << " "<< edge->_simplices[j]._nNext->GetID() << " )" ); + badEdges.push_back( edge ); + break; + } + } + + // try to fix bad simplices by removing the last inflation step of some _LayerEdge's + eosC1[0] = &eos; + int nbBad = invalidateBadSmooth( data, helper, badEdges, eosC1, infStep ); + if ( nbBad > 0 ) + return false; + } + + + // Check if the last segments of _LayerEdge intersects 2D elements; + // checked elements are either temporary faces or faces on surfaces w/o the layers + + SMESHUtils::Deleter searcher + ( SMESH_MeshAlgos::GetElementSearcher( *getMeshDS(), + data._proxyMesh->GetFaces( data._solid )) ); + +#ifdef BLOCK_INFLATION + const bool toBlockInfaltion = true; +#else + const bool toBlockInfaltion = false; +#endif + distToIntersection = Precision::Infinite(); + double dist; + const SMDS_MeshElement* intFace = 0; + const SMDS_MeshElement* closestFace = 0; + _LayerEdge* le = 0; + bool is1stBlocked = true; // dbg + for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS ) + { + _EdgesOnShape& eos = data._edgesOnShape[ iS ]; + if ( eos._edges.empty() || !eos._sWOL.IsNull() ) + continue; + for ( size_t i = 0; i < eos._edges.size(); ++i ) + { + if ( eos._edges[i]->Is( _LayerEdge::INTERSECTED ) || + eos._edges[i]->Is( _LayerEdge::MULTI_NORMAL )) + continue; + if ( eos._edges[i]->FindIntersection( *searcher, dist, data._epsilon, eos, &intFace )) + { + return false; + // commented due to "Illegal hash-positionPosition" error in NETGEN + // on Debian60 on viscous_layers_01/B2 case + // Collision; try to deflate _LayerEdge's causing it + // badEdges.clear(); + // badEdges.push_back( eos._edges[i] ); + // eosC1[0] = & eos; + // int nbBad = invalidateBadSmooth( data, helper, badEdges, eosC1, infStep ); + // if ( nbBad > 0 ) + // return false; + + // badEdges.clear(); + // if ( _EdgesOnShape* eof = data.GetShapeEdges( intFace->getshapeId() )) + // { + // if ( const _TmpMeshFace* f = dynamic_cast< const _TmpMeshFace*>( intFace )) + // { + // const SMDS_MeshElement* srcFace = + // eof->_subMesh->GetSubMeshDS()->GetElement( f->getIdInShape() ); + // SMDS_ElemIteratorPtr nIt = srcFace->nodesIterator(); + // while ( nIt->more() ) + // { + // const SMDS_MeshNode* srcNode = static_cast( nIt->next() ); + // TNode2Edge::iterator n2e = data._n2eMap.find( srcNode ); + // if ( n2e != data._n2eMap.end() ) + // badEdges.push_back( n2e->second ); + // } + // eosC1[0] = eof; + // nbBad = invalidateBadSmooth( data, helper, badEdges, eosC1, infStep ); + // if ( nbBad > 0 ) + // return false; + // } + // } + // if ( eos._edges[i]->FindIntersection( *searcher, dist, data._epsilon, eos, &intFace )) + // return false; + // else + // continue; + } + if ( !intFace ) + { + SMESH_Comment msg("Invalid? normal at node "); msg << eos._edges[i]->_nodes[0]->GetID(); + debugMsg( msg ); + continue; + } + + const bool isShorterDist = ( distToIntersection > dist ); + if ( toBlockInfaltion || isShorterDist ) + { + // ignore intersection of a _LayerEdge based on a _ConvexFace with a face + // lying on this _ConvexFace + if ( _ConvexFace* convFace = data.GetConvexFace( intFace->getshapeId() )) + if ( convFace->_isTooCurved && convFace->_subIdToEOS.count ( eos._shapeID )) + continue; + + // ignore intersection of a _LayerEdge based on a FACE with an element on this FACE + // ( avoid limiting the thickness on the case of issue 22576) + if ( intFace->getshapeId() == eos._shapeID ) + continue; + + // ignore intersection with intFace of an adjacent FACE + if ( dist > 0.1 * eos._edges[i]->_len ) + { + bool toIgnore = false; + if ( eos._toSmooth ) + { + const TopoDS_Shape& S = getMeshDS()->IndexToShape( intFace->getshapeId() ); + if ( !S.IsNull() && S.ShapeType() == TopAbs_FACE ) + { + TopExp_Explorer sub( eos._shape, + eos.ShapeType() == TopAbs_FACE ? TopAbs_EDGE : TopAbs_VERTEX ); + for ( ; !toIgnore && sub.More(); sub.Next() ) + // is adjacent - has a common EDGE or VERTEX + toIgnore = ( helper.IsSubShape( sub.Current(), S )); + + if ( toIgnore ) // check angle between normals + { + gp_XYZ normal; + if ( SMESH_MeshAlgos::FaceNormal( intFace, normal, /*normalized=*/true )) + toIgnore = ( normal * eos._edges[i]->_normal > -0.5 ); + } + } + } + if ( !toIgnore ) // check if the edge is a neighbor of intFace + { + for ( size_t iN = 0; !toIgnore && iN < eos._edges[i]->_neibors.size(); ++iN ) + { + int nInd = intFace->GetNodeIndex( eos._edges[i]->_neibors[ iN ]->_nodes.back() ); + toIgnore = ( nInd >= 0 ); + } + } + if ( toIgnore ) + continue; + } + + // intersection not ignored + + if ( toBlockInfaltion && + dist < ( eos._edges[i]->_len * theThickToIntersection )) + { + if ( is1stBlocked ) { is1stBlocked = false; // debug + dumpFunction(SMESH_Comment("blockIntersected") <Set( _LayerEdge::INTERSECTED ); // not to intersect + eos._edges[i]->Block( data ); // not to inflate + + if ( _EdgesOnShape* eof = data.GetShapeEdges( intFace->getshapeId() )) + { + // block _LayerEdge's, on top of which intFace is + if ( const _TmpMeshFace* f = dynamic_cast< const _TmpMeshFace*>( intFace )) + { + const SMDS_MeshElement* srcFace = + eof->_subMesh->GetSubMeshDS()->GetElement( f->getIdInShape() ); + SMDS_ElemIteratorPtr nIt = srcFace->nodesIterator(); + while ( nIt->more() ) + { + const SMDS_MeshNode* srcNode = static_cast( nIt->next() ); + TNode2Edge::iterator n2e = data._n2eMap.find( srcNode ); + if ( n2e != data._n2eMap.end() ) + n2e->second->Block( data ); + } + } + } + } + + if ( isShorterDist ) + { + distToIntersection = dist; + le = eos._edges[i]; + closestFace = intFace; + } + + } // if ( toBlockInfaltion || isShorterDist ) + } // loop on eos._edges + } // loop on data._edgesOnShape + + if ( !is1stBlocked ) + dumpFunctionEnd(); + + if ( closestFace && le ) + { +#ifdef __myDEBUG + SMDS_MeshElement::iterator nIt = closestFace->begin_nodes(); + cout << "Shortest distance: _LayerEdge nodes: tgt " << le->_nodes.back()->GetID() + << " src " << le->_nodes[0]->GetID()<< ", intersection with face (" + << (*nIt++)->GetID()<<" "<< (*nIt++)->GetID()<<" "<< (*nIt++)->GetID() + << ") distance = " << distToIntersection<< endl; +#endif + } + + return true; +} + +//================================================================================ +/*! + * \brief try to fix bad simplices by removing the last inflation step of some _LayerEdge's + * \param [in,out] badSmooEdges - _LayerEdge's to fix + * \return int - resulting nb of bad _LayerEdge's + */ +//================================================================================ + +int _ViscousBuilder::invalidateBadSmooth( _SolidData& data, + SMESH_MesherHelper& helper, + vector< _LayerEdge* >& badSmooEdges, + vector< _EdgesOnShape* >& eosC1, + const int infStep ) +{ + if ( badSmooEdges.empty() || infStep == 0 ) return 0; + + dumpFunction(SMESH_Comment("invalidateBadSmooth")<<"_S"<_shapeID<<"_InfStep"<Set( ADDED ); + bool invalidated = false; + if ( edge->Is( TO_INVALIDATE ) && edge->NbSteps() > 1 ) + { + edge->InvalidateStep( edge->NbSteps(), *eos, /*restoreLength=*/true ); + edge->Block( data ); + edge->Set( INVALIDATED ); + edge->Unset( TO_INVALIDATE ); + invalidated = true; + haveInvalidated = true; + } + + // look for _LayerEdge's of bad _simplices + int nbBad = 0; + SMESH_TNodeXYZ tgtXYZ = edge->_nodes.back(); + gp_XYZ prevXYZ1 = edge->PrevCheckPos( eos ); + //const gp_XYZ& prevXYZ2 = edge->PrevPos(); + for ( size_t j = 0; j < edge->_simplices.size(); ++j ) + { + if (( edge->_simplices[j].IsForward( &prevXYZ1, &tgtXYZ, vol ))/* && + ( &prevXYZ1 == &prevXYZ2 || edge->_simplices[j].IsForward( &prevXYZ2, &tgtXYZ, vol ))*/) + continue; + + bool isBad = true; + _LayerEdge* ee[2] = { 0,0 }; + for ( size_t iN = 0; iN < edge->_neibors.size() && !ee[1] ; ++iN ) + if ( edge->_simplices[j].Includes( edge->_neibors[iN]->_nodes.back() )) + ee[ ee[0] != 0 ] = edge->_neibors[iN]; + + int maxNbSteps = Max( ee[0]->NbSteps(), ee[1]->NbSteps() ); + while ( maxNbSteps > edge->NbSteps() && isBad ) + { + --maxNbSteps; + for ( int iE = 0; iE < 2; ++iE ) + { + if ( ee[ iE ]->NbSteps() > maxNbSteps && + ee[ iE ]->NbSteps() > 1 ) + { + _EdgesOnShape* eos = data.GetShapeEdges( ee[ iE ] ); + ee[ iE ]->InvalidateStep( ee[ iE ]->NbSteps(), *eos, /*restoreLength=*/true ); + ee[ iE ]->Block( data ); + ee[ iE ]->Set( INVALIDATED ); + haveInvalidated = true; + } + } + if (( edge->_simplices[j].IsForward( &prevXYZ1, &tgtXYZ, vol )) /*&& + ( &prevXYZ1 == &prevXYZ2 || edge->_simplices[j].IsForward( &prevXYZ2, &tgtXYZ, vol ))*/) + isBad = false; + } + nbBad += isBad; + if ( !ee[0]->Is( ADDED )) badSmooEdges.push_back( ee[0] ); + if ( !ee[1]->Is( ADDED )) badSmooEdges.push_back( ee[1] ); + ee[0]->Set( ADDED ); + ee[1]->Set( ADDED ); + if ( isBad ) + { + ee[0]->Set( TO_INVALIDATE ); + ee[1]->Set( TO_INVALIDATE ); + } + } + + if ( !invalidated && nbBad > 0 && edge->NbSteps() > 1 ) + { + _EdgesOnShape* eos = data.GetShapeEdges( edge ); + edge->InvalidateStep( edge->NbSteps(), *eos, /*restoreLength=*/true ); + edge->Block( data ); + edge->Set( INVALIDATED ); + edge->Unset( TO_INVALIDATE ); + haveInvalidated = true; + } + } // loop on badSmooEdges + } // while ( haveInvalidated ) + + // re-smooth on analytical EDGEs + for ( size_t i = 0; i < badSmooEdges.size(); ++i ) + { + _LayerEdge* edge = badSmooEdges[i]; + if ( !edge->Is( INVALIDATED )) continue; + + _EdgesOnShape* eos = data.GetShapeEdges( edge ); + if ( eos->ShapeType() == TopAbs_VERTEX ) + { + PShapeIteratorPtr eIt = helper.GetAncestors( eos->_shape, *_mesh, TopAbs_EDGE ); + while ( const TopoDS_Shape* e = eIt->next() ) + if ( _EdgesOnShape* eoe = data.GetShapeEdges( *e )) + if ( eoe->_edgeSmoother && eoe->_edgeSmoother->isAnalytic() ) + { + // TopoDS_Face F; Handle(ShapeAnalysis_Surface) surface; + // if ( eoe->SWOLType() == TopAbs_FACE ) { + // F = TopoDS::Face( eoe->_sWOL ); + // surface = helper.GetSurface( F ); + // } + // eoe->_edgeSmoother->Perform( data, surface, F, helper ); + eoe->_edgeSmoother->_anaCurve.Nullify(); + } + } + } + + + // check result of invalidation + + int nbBad = 0; + for ( size_t iEOS = 0; iEOS < eosC1.size(); ++iEOS ) + { + for ( size_t i = 0; i < eosC1[ iEOS ]->_edges.size(); ++i ) + { + if ( !eosC1[ iEOS ]->_sWOL.IsNull() ) continue; + _LayerEdge* edge = eosC1[ iEOS ]->_edges[i]; + SMESH_TNodeXYZ tgtXYZ = edge->_nodes.back(); + gp_XYZ prevXYZ = edge->PrevCheckPos( eosC1[ iEOS ]); + for ( size_t j = 0; j < edge->_simplices.size(); ++j ) + if ( !edge->_simplices[j].IsForward( &prevXYZ, &tgtXYZ, vol )) + { + ++nbBad; + debugMsg("Bad simplex remains ( " << edge->_nodes[0]->GetID() + << " "<< tgtXYZ._node->GetID() + << " "<< edge->_simplices[j]._nPrev->GetID() + << " "<< edge->_simplices[j]._nNext->GetID() << " )" ); + } + } + } + dumpFunctionEnd(); + + return nbBad; +} + +//================================================================================ +/*! + * \brief Create an offset surface + */ +//================================================================================ + +void _ViscousBuilder::makeOffsetSurface( _EdgesOnShape& eos, SMESH_MesherHelper& helper ) +{ + if ( eos._offsetSurf.IsNull() || + eos._edgeForOffset == 0 || + eos._edgeForOffset->Is( _LayerEdge::BLOCKED )) + return; + + Handle(ShapeAnalysis_Surface) baseSurface = helper.GetSurface( TopoDS::Face( eos._shape )); + + // find offset + gp_Pnt tgtP = SMESH_TNodeXYZ( eos._edgeForOffset->_nodes.back() ); + /*gp_Pnt2d uv=*/baseSurface->ValueOfUV( tgtP, Precision::Confusion() ); + double offset = baseSurface->Gap(); + + eos._offsetSurf.Nullify(); + + try + { + BRepOffsetAPI_MakeOffsetShape offsetMaker; + offsetMaker.PerformByJoin( eos._shape, -offset, Precision::Confusion() ); + if ( !offsetMaker.IsDone() ) return; + + TopExp_Explorer fExp( offsetMaker.Shape(), TopAbs_FACE ); + if ( !fExp.More() ) return; + + TopoDS_Face F = TopoDS::Face( fExp.Current() ); + Handle(Geom_Surface) surf = BRep_Tool::Surface( F ); + if ( surf.IsNull() ) return; + + eos._offsetSurf = new ShapeAnalysis_Surface( surf ); + } + catch ( Standard_Failure ) + { + } +} + +//================================================================================ +/*! + * \brief Put nodes of a curved FACE to its offset surface + */ +//================================================================================ + +void _ViscousBuilder::putOnOffsetSurface( _EdgesOnShape& eos, + int infStep, + vector< _EdgesOnShape* >& eosC1, + int smooStep, + int moveAll ) +{ + _EdgesOnShape * eof = & eos; + if ( eos.ShapeType() != TopAbs_FACE ) // eos is a boundary of C1 FACE, look for the FACE eos + { + eof = 0; + for ( size_t i = 0; i < eosC1.size() && !eof; ++i ) + { + if ( eosC1[i]->_offsetSurf.IsNull() || + eosC1[i]->ShapeType() != TopAbs_FACE || + eosC1[i]->_edgeForOffset == 0 || + eosC1[i]->_edgeForOffset->Is( _LayerEdge::BLOCKED )) + continue; + if ( SMESH_MesherHelper::IsSubShape( eos._shape, eosC1[i]->_shape )) + eof = eosC1[i]; + } + } + if ( !eof || + eof->_offsetSurf.IsNull() || + eof->ShapeType() != TopAbs_FACE || + eof->_edgeForOffset == 0 || + eof->_edgeForOffset->Is( _LayerEdge::BLOCKED )) + return; + + double preci = BRep_Tool::Tolerance( TopoDS::Face( eof->_shape )), vol; + for ( size_t i = 0; i < eos._edges.size(); ++i ) + { + _LayerEdge* edge = eos._edges[i]; + edge->Unset( _LayerEdge::MARKED ); + if ( edge->Is( _LayerEdge::BLOCKED ) || !edge->_curvature ) + continue; + if ( moveAll == _LayerEdge::UPD_NORMAL_CONV ) + { + if ( !edge->Is( _LayerEdge::UPD_NORMAL_CONV )) + continue; + } + else if ( !moveAll && !edge->Is( _LayerEdge::MOVED )) + continue; + + int nbBlockedAround = 0; + for ( size_t iN = 0; iN < edge->_neibors.size(); ++iN ) + nbBlockedAround += edge->_neibors[iN]->Is( _LayerEdge::BLOCKED ); + if ( nbBlockedAround > 1 ) + continue; + + gp_Pnt tgtP = SMESH_TNodeXYZ( edge->_nodes.back() ); + gp_Pnt2d uv = eof->_offsetSurf->NextValueOfUV( edge->_curvature->_uv, tgtP, preci ); + if ( eof->_offsetSurf->Gap() > edge->_len ) continue; // NextValueOfUV() bug + edge->_curvature->_uv = uv; + if ( eof->_offsetSurf->Gap() < 10 * preci ) continue; // same pos + + gp_XYZ newP = eof->_offsetSurf->Value( uv ).XYZ(); + gp_XYZ prevP = edge->PrevCheckPos(); + bool ok = true; + if ( !moveAll ) + for ( size_t iS = 0; iS < edge->_simplices.size() && ok; ++iS ) + { + ok = edge->_simplices[iS].IsForward( &prevP, &newP, vol ); + } + if ( ok ) + { + SMDS_MeshNode* n = const_cast< SMDS_MeshNode* >( edge->_nodes.back() ); + n->setXYZ( newP.X(), newP.Y(), newP.Z()); + edge->_pos.back() = newP; + + edge->Set( _LayerEdge::MARKED ); + if ( moveAll == _LayerEdge::UPD_NORMAL_CONV ) + { + edge->_normal = ( newP - prevP ).Normalized(); + } + } + } + + + +#ifdef _DEBUG_ + // dumpMove() for debug + size_t i = 0; + for ( ; i < eos._edges.size(); ++i ) + if ( eos._edges[i]->Is( _LayerEdge::MARKED )) + break; + if ( i < eos._edges.size() ) + { + dumpFunction(SMESH_Comment("putOnOffsetSurface_S") << eos._shapeID + << "_InfStep" << infStep << "_" << smooStep ); + for ( ; i < eos._edges.size(); ++i ) + { + if ( eos._edges[i]->Is( _LayerEdge::MARKED )) + dumpMove( eos._edges[i]->_nodes.back() ); + } + dumpFunctionEnd(); + } +#endif + + _ConvexFace* cnvFace; + if ( moveAll != _LayerEdge::UPD_NORMAL_CONV && + eos.ShapeType() == TopAbs_FACE && + (cnvFace = eos.GetData().GetConvexFace( eos._shapeID )) && + !cnvFace->_normalsFixedOnBorders ) + { + // put on the surface nodes built on FACE boundaries + SMESH_subMeshIteratorPtr smIt = eos._subMesh->getDependsOnIterator(/*includeSelf=*/false); + while ( smIt->more() ) + { + SMESH_subMesh* sm = smIt->next(); + _EdgesOnShape* subEOS = eos.GetData().GetShapeEdges( sm->GetId() ); + if ( !subEOS->_sWOL.IsNull() ) continue; + if ( std::find( eosC1.begin(), eosC1.end(), subEOS ) != eosC1.end() ) continue; + + putOnOffsetSurface( *subEOS, infStep, eosC1, smooStep, _LayerEdge::UPD_NORMAL_CONV ); + } + cnvFace->_normalsFixedOnBorders = true; + } +} + +//================================================================================ +/*! + * \brief Return a curve of the EDGE to be used for smoothing and arrange + * _LayerEdge's to be in a consequent order + */ +//================================================================================ + +Handle(Geom_Curve) _Smoother1D::CurveForSmooth( const TopoDS_Edge& E, + _EdgesOnShape& eos, + SMESH_MesherHelper& helper) +{ + SMESHDS_SubMesh* smDS = eos._subMesh->GetSubMeshDS(); + + TopLoc_Location loc; double f,l; + + Handle(Geom_Line) line; + Handle(Geom_Circle) circle; + bool isLine, isCirc; + if ( eos._sWOL.IsNull() ) /////////////////////////////////////////// 3D case + { + // check if the EDGE is a line + Handle(Geom_Curve) curve = BRep_Tool::Curve( E, f, l); + if ( curve->IsKind( STANDARD_TYPE( Geom_TrimmedCurve ))) + curve = Handle(Geom_TrimmedCurve)::DownCast( curve )->BasisCurve(); + + line = Handle(Geom_Line)::DownCast( curve ); + circle = Handle(Geom_Circle)::DownCast( curve ); + isLine = (!line.IsNull()); + isCirc = (!circle.IsNull()); + + if ( !isLine && !isCirc ) // Check if the EDGE is close to a line + { + isLine = SMESH_Algo::IsStraight( E ); + + if ( isLine ) + line = new Geom_Line( gp::OX() ); // only type does matter + } + if ( !isLine && !isCirc && eos._edges.size() > 2) // Check if the EDGE is close to a circle + { + // TODO + } + } + else //////////////////////////////////////////////////////////////////////// 2D case + { + if ( !eos._isRegularSWOL ) // 23190 + return NULL; + + const TopoDS_Face& F = TopoDS::Face( eos._sWOL ); + + // check if the EDGE is a line + Handle(Geom2d_Curve) curve = BRep_Tool::CurveOnSurface( E, F, f, l ); + if ( curve->IsKind( STANDARD_TYPE( Geom2d_TrimmedCurve ))) + curve = Handle(Geom2d_TrimmedCurve)::DownCast( curve )->BasisCurve(); + + Handle(Geom2d_Line) line2d = Handle(Geom2d_Line)::DownCast( curve ); + Handle(Geom2d_Circle) circle2d = Handle(Geom2d_Circle)::DownCast( curve ); + isLine = (!line2d.IsNull()); + isCirc = (!circle2d.IsNull()); + + if ( !isLine && !isCirc ) // Check if the EDGE is close to a line + { + Bnd_B2d bndBox; + SMDS_NodeIteratorPtr nIt = smDS->GetNodes(); + while ( nIt->more() ) + bndBox.Add( helper.GetNodeUV( F, nIt->next() )); + gp_XY size = bndBox.CornerMax() - bndBox.CornerMin(); + + const double lineTol = 1e-2 * sqrt( bndBox.SquareExtent() ); + for ( int i = 0; i < 2 && !isLine; ++i ) + isLine = ( size.Coord( i+1 ) <= lineTol ); + } + if ( !isLine && !isCirc && eos._edges.size() > 2 ) // Check if the EDGE is close to a circle + { + // TODO + } + if ( isLine ) + { + line = new Geom_Line( gp::OX() ); // only type does matter + } + else if ( isCirc ) + { + gp_Pnt2d p = circle2d->Location(); + gp_Ax2 ax( gp_Pnt( p.X(), p.Y(), 0), gp::DX()); + circle = new Geom_Circle( ax, 1.); // only center position does matter + } + } + + if ( isLine ) + return line; + if ( isCirc ) + return circle; + + return Handle(Geom_Curve)(); +} + +//================================================================================ +/*! + * \brief Smooth edges on EDGE + */ +//================================================================================ + +bool _Smoother1D::Perform(_SolidData& data, + Handle(ShapeAnalysis_Surface)& surface, + const TopoDS_Face& F, + SMESH_MesherHelper& helper ) +{ + if ( _leParams.empty() || ( !isAnalytic() && _offPoints.empty() )) + prepare( data ); + + findEdgesToSmooth(); + if ( isAnalytic() ) + return smoothAnalyticEdge( data, surface, F, helper ); + else + return smoothComplexEdge ( data, surface, F, helper ); +} + +//================================================================================ +/*! + * \brief Find edges to smooth + */ +//================================================================================ + +void _Smoother1D::findEdgesToSmooth() +{ + _LayerEdge* leOnV[2] = { getLEdgeOnV(0), getLEdgeOnV(1) }; + for ( int iEnd = 0; iEnd < 2; ++iEnd ) + if ( leOnV[iEnd]->Is( _LayerEdge::NORMAL_UPDATED )) + _leOnV[iEnd]._cosin = Abs( _edgeDir[iEnd].Normalized() * leOnV[iEnd]->_normal ); + + _eToSmooth[0].first = _eToSmooth[0].second = 0; + + for ( size_t i = 0; i < _eos.size(); ++i ) + { + if ( !_eos[i]->Is( _LayerEdge::TO_SMOOTH )) + { + if ( needSmoothing( _leOnV[0]._cosin, + _eos[i]->_len * leOnV[0]->_lenFactor, _curveLen * _leParams[i] ) || + isToSmooth( i ) + ) + _eos[i]->Set( _LayerEdge::TO_SMOOTH ); + else + break; + } + _eToSmooth[0].second = i+1; + } + + _eToSmooth[1].first = _eToSmooth[1].second = _eos.size(); + + for ( int i = _eos.size() - 1; i >= _eToSmooth[0].second; --i ) + { + if ( !_eos[i]->Is( _LayerEdge::TO_SMOOTH )) + { + if ( needSmoothing( _leOnV[1]._cosin, + _eos[i]->_len * leOnV[1]->_lenFactor, _curveLen * ( 1.-_leParams[i] )) || + isToSmooth( i )) + _eos[i]->Set( _LayerEdge::TO_SMOOTH ); + else + break; + } + _eToSmooth[1].first = i; + } +} + +//================================================================================ +/*! + * \brief Check if iE-th _LayerEdge needs smoothing + */ +//================================================================================ + +bool _Smoother1D::isToSmooth( int iE ) +{ + SMESH_NodeXYZ pi( _eos[iE]->_nodes[0] ); + SMESH_NodeXYZ p0( _eos[iE]->_2neibors->srcNode(0) ); + SMESH_NodeXYZ p1( _eos[iE]->_2neibors->srcNode(1) ); + gp_XYZ seg0 = pi - p0; + gp_XYZ seg1 = p1 - pi; + gp_XYZ tangent = seg0 + seg1; + double tangentLen = tangent.Modulus(); + double segMinLen = Min( seg0.Modulus(), seg1.Modulus() ); + if ( tangentLen < std::numeric_limits::min() ) + return false; + tangent /= tangentLen; + + for ( size_t i = 0; i < _eos[iE]->_neibors.size(); ++i ) + { + _LayerEdge* ne = _eos[iE]->_neibors[i]; + if ( !ne->Is( _LayerEdge::TO_SMOOTH ) || + ne->_nodes.size() < 2 || + ne->_nodes[0]->GetPosition()->GetDim() != 2 ) + continue; + gp_XYZ edgeVec = SMESH_NodeXYZ( ne->_nodes.back() ) - SMESH_NodeXYZ( ne->_nodes[0] ); + double proj = edgeVec * tangent; + if ( needSmoothing( 1., proj, segMinLen )) + return true; + } + return false; +} + +//================================================================================ +/*! + * \brief smooth _LayerEdge's on a staight EDGE or circular EDGE + */ +//================================================================================ + +bool _Smoother1D::smoothAnalyticEdge( _SolidData& data, + Handle(ShapeAnalysis_Surface)& surface, + const TopoDS_Face& F, + SMESH_MesherHelper& helper) +{ + if ( !isAnalytic() ) return false; + + size_t iFrom = 0, iTo = _eos._edges.size(); + + if ( _anaCurve->IsKind( STANDARD_TYPE( Geom_Line ))) + { + if ( F.IsNull() ) // 3D + { + SMESH_TNodeXYZ pSrc0( _eos._edges[iFrom]->_2neibors->srcNode(0) ); + SMESH_TNodeXYZ pSrc1( _eos._edges[iTo-1]->_2neibors->srcNode(1) ); + //const gp_XYZ lineDir = pSrc1 - pSrc0; + //_LayerEdge* vLE0 = getLEdgeOnV( 0 ); + //_LayerEdge* vLE1 = getLEdgeOnV( 1 ); + // bool shiftOnly = ( vLE0->Is( _LayerEdge::NORMAL_UPDATED ) || + // vLE0->Is( _LayerEdge::BLOCKED ) || + // vLE1->Is( _LayerEdge::NORMAL_UPDATED ) || + // vLE1->Is( _LayerEdge::BLOCKED )); + for ( int iEnd = 0; iEnd < 2; ++iEnd ) + { + iFrom = _eToSmooth[ iEnd ].first, iTo = _eToSmooth[ iEnd ].second; + if ( iFrom >= iTo ) continue; + SMESH_TNodeXYZ p0( _eos[iFrom]->_2neibors->tgtNode(0) ); + SMESH_TNodeXYZ p1( _eos[iTo-1]->_2neibors->tgtNode(1) ); + double param0 = ( iFrom == 0 ) ? 0. : _leParams[ iFrom-1 ]; + double param1 = _leParams[ iTo ]; + for ( size_t i = iFrom; i < iTo; ++i ) + { + _LayerEdge* edge = _eos[i]; + SMDS_MeshNode* tgtNode = const_cast( edge->_nodes.back() ); + double param = ( _leParams[i] - param0 ) / ( param1 - param0 ); + gp_XYZ newPos = p0 * ( 1. - param ) + p1 * param; + + // if ( shiftOnly || edge->Is( _LayerEdge::NORMAL_UPDATED )) + // { + // gp_XYZ curPos = SMESH_TNodeXYZ ( tgtNode ); + // double shift = ( lineDir * ( newPos - pSrc0 ) - + // lineDir * ( curPos - pSrc0 )); + // newPos = curPos + lineDir * shift / lineDir.SquareModulus(); + // } + if ( edge->Is( _LayerEdge::BLOCKED )) + { + SMESH_TNodeXYZ pSrc( edge->_nodes[0] ); + double curThick = pSrc.SquareDistance( tgtNode ); + double newThink = ( pSrc - newPos ).SquareModulus(); + if ( newThink > curThick ) + continue; + } + edge->_pos.back() = newPos; + tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() ); + dumpMove( tgtNode ); + } + } + } + else // 2D + { + _LayerEdge* eV0 = getLEdgeOnV( 0 ); + _LayerEdge* eV1 = getLEdgeOnV( 1 ); + gp_XY uvV0 = eV0->LastUV( F, *data.GetShapeEdges( eV0 )); + gp_XY uvV1 = eV1->LastUV( F, *data.GetShapeEdges( eV1 )); + if ( eV0->_nodes.back() == eV1->_nodes.back() ) // closed edge + { + int iPeriodic = helper.GetPeriodicIndex(); + if ( iPeriodic == 1 || iPeriodic == 2 ) + { + uvV1.SetCoord( iPeriodic, helper.GetOtherParam( uvV1.Coord( iPeriodic ))); + if ( uvV0.Coord( iPeriodic ) > uvV1.Coord( iPeriodic )) + std::swap( uvV0, uvV1 ); + } + } + for ( int iEnd = 0; iEnd < 2; ++iEnd ) + { + iFrom = _eToSmooth[ iEnd ].first, iTo = _eToSmooth[ iEnd ].second; + if ( iFrom >= iTo ) continue; + _LayerEdge* e0 = _eos[iFrom]->_2neibors->_edges[0]; + _LayerEdge* e1 = _eos[iTo-1]->_2neibors->_edges[1]; + gp_XY uv0 = ( e0 == eV0 ) ? uvV0 : e0->LastUV( F, _eos ); + gp_XY uv1 = ( e1 == eV1 ) ? uvV1 : e1->LastUV( F, _eos ); + double param0 = ( iFrom == 0 ) ? 0. : _leParams[ iFrom-1 ]; + double param1 = _leParams[ iTo ]; + gp_XY rangeUV = uv1 - uv0; + for ( size_t i = iFrom; i < iTo; ++i ) + { + if ( _eos[i]->Is( _LayerEdge::BLOCKED )) continue; + double param = ( _leParams[i] - param0 ) / ( param1 - param0 ); + gp_XY newUV = uv0 + param * rangeUV; + + gp_Pnt newPos = surface->Value( newUV.X(), newUV.Y() ); + SMDS_MeshNode* tgtNode = const_cast( _eos[i]->_nodes.back() ); + tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() ); + dumpMove( tgtNode ); + + SMDS_FacePosition* pos = static_cast( tgtNode->GetPosition() ); + pos->SetUParameter( newUV.X() ); + pos->SetVParameter( newUV.Y() ); + + gp_XYZ newUV0( newUV.X(), newUV.Y(), 0 ); + + if ( !_eos[i]->Is( _LayerEdge::SMOOTHED )) + { + _eos[i]->Set( _LayerEdge::SMOOTHED ); // to check in refine() (IPAL54237) + if ( _eos[i]->_pos.size() > 2 ) + { + // modify previous positions to make _LayerEdge less sharply bent + vector& uvVec = _eos[i]->_pos; + const gp_XYZ uvShift = newUV0 - uvVec.back(); + const double len2 = ( uvVec.back() - uvVec[ 0 ] ).SquareModulus(); + int iPrev = uvVec.size() - 2; + while ( iPrev > 0 ) + { + double r = ( uvVec[ iPrev ] - uvVec[0] ).SquareModulus() / len2; + uvVec[ iPrev ] += uvShift * r; + --iPrev; + } + } + } + _eos[i]->_pos.back() = newUV0; + } + } + } + return true; + } + + if ( _anaCurve->IsKind( STANDARD_TYPE( Geom_Circle ))) + { + Handle(Geom_Circle) circle = Handle(Geom_Circle)::DownCast( _anaCurve ); + gp_Pnt center3D = circle->Location(); + + if ( F.IsNull() ) // 3D + { + if ( getLEdgeOnV( 0 )->_nodes.back() == getLEdgeOnV( 1 )->_nodes.back() ) + return true; // closed EDGE - nothing to do + + // circle is a real curve of EDGE + gp_Circ circ = circle->Circ(); + + // new center is shifted along its axis + const gp_Dir& axis = circ.Axis().Direction(); + _LayerEdge* e0 = getLEdgeOnV(0); + _LayerEdge* e1 = getLEdgeOnV(1); + SMESH_TNodeXYZ p0 = e0->_nodes.back(); + SMESH_TNodeXYZ p1 = e1->_nodes.back(); + double shift1 = axis.XYZ() * ( p0 - center3D.XYZ() ); + double shift2 = axis.XYZ() * ( p1 - center3D.XYZ() ); + gp_Pnt newCenter = center3D.XYZ() + axis.XYZ() * 0.5 * ( shift1 + shift2 ); + + double newRadius = 0.5 * ( newCenter.Distance( p0 ) + newCenter.Distance( p1 )); + + gp_Ax2 newAxis( newCenter, axis, gp_Vec( newCenter, p0 )); + gp_Circ newCirc( newAxis, newRadius ); + gp_Vec vecC1 ( newCenter, p1 ); + + double uLast = newAxis.XDirection().AngleWithRef( vecC1, newAxis.Direction() ); // -PI - +PI + if ( uLast < 0 ) + uLast += 2 * M_PI; + + for ( size_t i = 0; i < _eos.size(); ++i ) + { + if ( _eos[i]->Is( _LayerEdge::BLOCKED )) continue; + //if ( !_eos[i]->Is( _LayerEdge::TO_SMOOTH )) continue; + double u = uLast * _leParams[i]; + gp_Pnt p = ElCLib::Value( u, newCirc ); + _eos._edges[i]->_pos.back() = p.XYZ(); + + SMDS_MeshNode* tgtNode = const_cast( _eos._edges[i]->_nodes.back() ); + tgtNode->setXYZ( p.X(), p.Y(), p.Z() ); + dumpMove( tgtNode ); + } + return true; + } + else // 2D + { + const gp_XY center( center3D.X(), center3D.Y() ); + + _LayerEdge* e0 = getLEdgeOnV(0); + _LayerEdge* eM = _eos._edges[ 0 ]; + _LayerEdge* e1 = getLEdgeOnV(1); + gp_XY uv0 = e0->LastUV( F, *data.GetShapeEdges( e0 ) ); + gp_XY uvM = eM->LastUV( F, *data.GetShapeEdges( eM ) ); + gp_XY uv1 = e1->LastUV( F, *data.GetShapeEdges( e1 ) ); + gp_Vec2d vec0( center, uv0 ); + gp_Vec2d vecM( center, uvM ); + gp_Vec2d vec1( center, uv1 ); + double uLast = vec0.Angle( vec1 ); // -PI - +PI + double uMidl = vec0.Angle( vecM ); + if ( uLast * uMidl <= 0. ) + uLast += ( uMidl > 0 ? +2. : -2. ) * M_PI; + const double radius = 0.5 * ( vec0.Magnitude() + vec1.Magnitude() ); + + gp_Ax2d axis( center, vec0 ); + gp_Circ2d circ( axis, radius ); + for ( size_t i = 0; i < _eos.size(); ++i ) + { + if ( _eos[i]->Is( _LayerEdge::BLOCKED )) continue; + //if ( !_eos[i]->Is( _LayerEdge::TO_SMOOTH )) continue; + double newU = uLast * _leParams[i]; + gp_Pnt2d newUV = ElCLib::Value( newU, circ ); + _eos._edges[i]->_pos.back().SetCoord( newUV.X(), newUV.Y(), 0 ); + + gp_Pnt newPos = surface->Value( newUV.X(), newUV.Y() ); + SMDS_MeshNode* tgtNode = const_cast( _eos._edges[i]->_nodes.back() ); + tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() ); + dumpMove( tgtNode ); + + SMDS_FacePosition* pos = static_cast( tgtNode->GetPosition() ); + pos->SetUParameter( newUV.X() ); + pos->SetVParameter( newUV.Y() ); + + _eos[i]->Set( _LayerEdge::SMOOTHED ); // to check in refine() (IPAL54237) + } + } + return true; + } + + return false; +} + +//================================================================================ +/*! + * \brief smooth _LayerEdge's on a an EDGE + */ +//================================================================================ + +bool _Smoother1D::smoothComplexEdge( _SolidData& data, + Handle(ShapeAnalysis_Surface)& surface, + const TopoDS_Face& F, + SMESH_MesherHelper& helper) +{ + if ( _offPoints.empty() ) + return false; + + // ---------------------------------------------- + // move _offPoints along normals of _LayerEdge's + // ---------------------------------------------- + + _LayerEdge* e[2] = { getLEdgeOnV(0), getLEdgeOnV(1) }; + if ( e[0]->Is( _LayerEdge::NORMAL_UPDATED )) + _leOnV[0]._normal = getNormalNormal( e[0]->_normal, _edgeDir[0] ); + if ( e[1]->Is( _LayerEdge::NORMAL_UPDATED )) + _leOnV[1]._normal = getNormalNormal( e[1]->_normal, _edgeDir[1] ); + _leOnV[0]._len = e[0]->_len; + _leOnV[1]._len = e[1]->_len; + for ( size_t i = 0; i < _offPoints.size(); i++ ) + { + _LayerEdge* e0 = _offPoints[i]._2edges._edges[0]; + _LayerEdge* e1 = _offPoints[i]._2edges._edges[1]; + const double w0 = _offPoints[i]._2edges._wgt[0]; + const double w1 = _offPoints[i]._2edges._wgt[1]; + gp_XYZ avgNorm = ( e0->_normal * w0 + e1->_normal * w1 ).Normalized(); + double avgLen = ( e0->_len * w0 + e1->_len * w1 ); + double avgFact = ( e0->_lenFactor * w0 + e1->_lenFactor * w1 ); + if ( e0->Is( _LayerEdge::NORMAL_UPDATED ) || + e1->Is( _LayerEdge::NORMAL_UPDATED )) + avgNorm = getNormalNormal( avgNorm, _offPoints[i]._edgeDir ); + + _offPoints[i]._xyz += avgNorm * ( avgLen - _offPoints[i]._len ) * avgFact; + _offPoints[i]._len = avgLen; + } + + double fTol = 0; + if ( !surface.IsNull() ) // project _offPoints to the FACE + { + fTol = 100 * BRep_Tool::Tolerance( F ); + //const double segLen = _offPoints[0].Distance( _offPoints[1] ); + + gp_Pnt2d uv = surface->ValueOfUV( _offPoints[0]._xyz, fTol ); + //if ( surface->Gap() < 0.5 * segLen ) + _offPoints[0]._xyz = surface->Value( uv ).XYZ(); + + for ( size_t i = 1; i < _offPoints.size(); ++i ) + { + uv = surface->NextValueOfUV( uv, _offPoints[i]._xyz, fTol ); + //if ( surface->Gap() < 0.5 * segLen ) + _offPoints[i]._xyz = surface->Value( uv ).XYZ(); + } + } + + // ----------------------------------------------------------------- + // project tgt nodes of extreme _LayerEdge's to the offset segments + // ----------------------------------------------------------------- + + const int updatedOrBlocked = _LayerEdge::NORMAL_UPDATED | _LayerEdge::BLOCKED; + if ( e[0]->Is( updatedOrBlocked )) _iSeg[0] = 0; + if ( e[1]->Is( updatedOrBlocked )) _iSeg[1] = _offPoints.size()-2; + + gp_Pnt pExtreme[2], pProj[2]; + bool isProjected[2]; + for ( int is2nd = 0; is2nd < 2; ++is2nd ) + { + pExtreme[ is2nd ] = SMESH_TNodeXYZ( e[is2nd]->_nodes.back() ); + int i = _iSeg[ is2nd ]; + int di = is2nd ? -1 : +1; + bool & projected = isProjected[ is2nd ]; + projected = false; + double uOnSeg, distMin = Precision::Infinite(), dist, distPrev = 0; + int nbWorse = 0; + do { + gp_Vec v0p( _offPoints[i]._xyz, pExtreme[ is2nd ] ); + gp_Vec v01( _offPoints[i]._xyz, _offPoints[i+1]._xyz ); + uOnSeg = ( v0p * v01 ) / v01.SquareMagnitude(); // param [0,1] along v01 + projected = ( Abs( uOnSeg - 0.5 ) <= 0.5 ); + dist = pExtreme[ is2nd ].SquareDistance( _offPoints[ i + ( uOnSeg > 0.5 )]._xyz ); + if ( dist < distMin || projected ) + { + _iSeg[ is2nd ] = i; + pProj[ is2nd ] = _offPoints[i]._xyz + ( v01 * uOnSeg ).XYZ(); + distMin = dist; + } + else if ( dist > distPrev ) + { + if ( ++nbWorse > 3 ) // avoid projection to the middle of a closed EDGE + break; + } + distPrev = dist; + i += di; + } + while ( !projected && + i >= 0 && i+1 < (int)_offPoints.size() ); + + if ( !projected ) + { + if (( is2nd && _iSeg[1] != _offPoints.size()-2 ) || ( !is2nd && _iSeg[0] != 0 )) + { + _iSeg[0] = 0; + _iSeg[1] = _offPoints.size()-2; + debugMsg( "smoothComplexEdge() failed to project nodes of extreme _LayerEdge's" ); + return false; + } + } + } + if ( _iSeg[0] > _iSeg[1] ) + { + debugMsg( "smoothComplexEdge() incorrectly projected nodes of extreme _LayerEdge's" ); + return false; + } + + // adjust length of extreme LE (test viscous_layers_01/B7) + gp_Vec vDiv0( pExtreme[0], pProj[0] ); + gp_Vec vDiv1( pExtreme[1], pProj[1] ); + double d0 = vDiv0.Magnitude(); + double d1 = isProjected[1] ? vDiv1.Magnitude() : 0; + if ( e[0]->Is( _LayerEdge::BLOCKED )) { + if ( e[0]->_normal * vDiv0.XYZ() < 0 ) e[0]->_len += d0; + else e[0]->_len -= d0; + } + if ( e[1]->Is( _LayerEdge::BLOCKED )) { + if ( e[1]->_normal * vDiv1.XYZ() < 0 ) e[1]->_len += d1; + else e[1]->_len -= d1; + } + + // --------------------------------------------------------------------------------- + // compute normalized length of the offset segments located between the projections + // --------------------------------------------------------------------------------- + + // temporary replace extreme _offPoints by pExtreme + gp_XYZ opXYZ[2] = { _offPoints[ _iSeg[0] ]._xyz, + _offPoints[ _iSeg[1]+1 ]._xyz }; + _offPoints[ _iSeg[0] ]._xyz = pExtreme[0].XYZ(); + _offPoints[ _iSeg[1]+ 1]._xyz = pExtreme[1].XYZ(); + + size_t iSeg = 0, nbSeg = _iSeg[1] - _iSeg[0] + 1; + vector< double > len( nbSeg + 1 ); + len[ iSeg++ ] = 0; + len[ iSeg++ ] = pProj[ 0 ].Distance( _offPoints[ _iSeg[0]+1 ]._xyz ); + for ( size_t i = _iSeg[0]+1; i <= _iSeg[1]; ++i, ++iSeg ) + { + len[ iSeg ] = len[ iSeg-1 ] + _offPoints[i].Distance( _offPoints[i+1] ); + } + // if ( isProjected[ 1 ]) + // len[ nbSeg ] -= pProj[ 1 ].Distance( _offPoints[ _iSeg[1]+1 ]._xyz ); + // else + // len[ nbSeg ] += pExtreme[ 1 ].Distance( _offPoints[ _iSeg[1]+1 ]._xyz ); + + double fullLen = len.back() - d0 - d1; + for ( iSeg = 0; iSeg < len.size(); ++iSeg ) + len[iSeg] = ( len[iSeg] - d0 ) / fullLen; + + // ------------------------------------------------------------- + // distribute tgt nodes of _LayerEdge's between the projections + // ------------------------------------------------------------- + + iSeg = 0; + for ( size_t i = 0; i < _eos.size(); ++i ) + { + if ( _eos[i]->Is( _LayerEdge::BLOCKED )) continue; + //if ( !_eos[i]->Is( _LayerEdge::TO_SMOOTH )) continue; + while ( iSeg+2 < len.size() && _leParams[i] > len[ iSeg+1 ] ) + iSeg++; + double r = ( _leParams[i] - len[ iSeg ]) / ( len[ iSeg+1 ] - len[ iSeg ]); + gp_XYZ p = ( _offPoints[ iSeg + _iSeg[0] ]._xyz * ( 1 - r ) + + _offPoints[ iSeg + _iSeg[0] + 1 ]._xyz * r ); + + if ( surface.IsNull() ) + { + _eos[i]->_pos.back() = p; + } + else // project a new node position to a FACE + { + gp_Pnt2d uv ( _eos[i]->_pos.back().X(), _eos[i]->_pos.back().Y() ); + gp_Pnt2d uv2( surface->NextValueOfUV( uv, p, fTol )); + + p = surface->Value( uv2 ).XYZ(); + _eos[i]->_pos.back().SetCoord( uv2.X(), uv2.Y(), 0 ); + } + SMDS_MeshNode* tgtNode = const_cast( _eos[i]->_nodes.back() ); + tgtNode->setXYZ( p.X(), p.Y(), p.Z() ); + dumpMove( tgtNode ); + } + + _offPoints[ _iSeg[0] ]._xyz = opXYZ[0]; + _offPoints[ _iSeg[1]+1 ]._xyz = opXYZ[1]; + + return true; +} + +//================================================================================ +/*! + * \brief Prepare for smoothing + */ +//================================================================================ + +void _Smoother1D::prepare(_SolidData& data) +{ + const TopoDS_Edge& E = TopoDS::Edge( _eos._shape ); + _curveLen = SMESH_Algo::EdgeLength( E ); + + // sort _LayerEdge's by position on the EDGE + data.SortOnEdge( E, _eos._edges ); + + // compute normalized param of _eos._edges on EDGE + _leParams.resize( _eos._edges.size() + 1 ); + { + double curLen; + gp_Pnt pPrev = SMESH_TNodeXYZ( getLEdgeOnV( 0 )->_nodes[0] ); + _leParams[0] = 0; + for ( size_t i = 0; i < _eos._edges.size(); ++i ) + { + gp_Pnt p = SMESH_TNodeXYZ( _eos._edges[i]->_nodes[0] ); + curLen = p.Distance( pPrev ); + _leParams[i+1] = _leParams[i] + curLen; + pPrev = p; + } + double fullLen = _leParams.back() + pPrev.Distance( SMESH_TNodeXYZ( getLEdgeOnV(1)->_nodes[0])); + for ( size_t i = 0; i < _leParams.size()-1; ++i ) + _leParams[i] = _leParams[i+1] / fullLen; + _leParams.back() = 1.; + } + + _LayerEdge* leOnV[2] = { getLEdgeOnV(0), getLEdgeOnV(1) }; + + // get cosin to use in findEdgesToSmooth() + _edgeDir[0] = getEdgeDir( E, leOnV[0]->_nodes[0], data.GetHelper() ); + _edgeDir[1] = getEdgeDir( E, leOnV[1]->_nodes[0], data.GetHelper() ); + _leOnV[0]._cosin = Abs( leOnV[0]->_cosin ); + _leOnV[1]._cosin = Abs( leOnV[1]->_cosin ); + if ( _eos._sWOL.IsNull() ) // 3D + for ( int iEnd = 0; iEnd < 2; ++iEnd ) + _leOnV[iEnd]._cosin = Abs( _edgeDir[iEnd].Normalized() * leOnV[iEnd]->_normal ); + + if ( isAnalytic() ) + return; + + // divide E to have offset segments with low deflection + BRepAdaptor_Curve c3dAdaptor( E ); + const double curDeflect = 0.1; //0.01; // Curvature deflection == |p1p2]*sin(p1p2,p1pM) + const double angDeflect = 0.1; //0.09; // Angular deflection == sin(p1pM,pMp2) + GCPnts_TangentialDeflection discret(c3dAdaptor, angDeflect, curDeflect); + if ( discret.NbPoints() <= 2 ) + { + _anaCurve = new Geom_Line( gp::OX() ); // only type does matter + return; + } + + const double u0 = c3dAdaptor.FirstParameter(); + gp_Pnt p; gp_Vec tangent; + if ( discret.NbPoints() >= (int) _eos.size() + 2 ) + { + _offPoints.resize( discret.NbPoints() ); + for ( size_t i = 0; i < _offPoints.size(); i++ ) + { + double u = discret.Parameter( i+1 ); + c3dAdaptor.D1( u, p, tangent ); + _offPoints[i]._xyz = p.XYZ(); + _offPoints[i]._edgeDir = tangent.XYZ(); + _offPoints[i]._param = GCPnts_AbscissaPoint::Length( c3dAdaptor, u0, u ) / _curveLen; + } + } + else + { + std::vector< double > params( _eos.size() + 2 ); + + params[0] = data.GetHelper().GetNodeU( E, leOnV[0]->_nodes[0] ); + params.back() = data.GetHelper().GetNodeU( E, leOnV[1]->_nodes[0] ); + for ( size_t i = 0; i < _eos.size(); i++ ) + params[i+1] = data.GetHelper().GetNodeU( E, _eos[i]->_nodes[0] ); + + if ( params[1] > params[ _eos.size() ] ) + std::reverse( params.begin() + 1, params.end() - 1 ); + + _offPoints.resize( _eos.size() + 2 ); + for ( size_t i = 0; i < _offPoints.size(); i++ ) + { + const double u = params[i]; + c3dAdaptor.D1( u, p, tangent ); + _offPoints[i]._xyz = p.XYZ(); + _offPoints[i]._edgeDir = tangent.XYZ(); + _offPoints[i]._param = GCPnts_AbscissaPoint::Length( c3dAdaptor, u0, u ) / _curveLen; + } + } + + // set _2edges + _offPoints [0]._2edges.set( &_leOnV[0], &_leOnV[0], 0.5, 0.5 ); + _offPoints.back()._2edges.set( &_leOnV[1], &_leOnV[1], 0.5, 0.5 ); + _2NearEdges tmp2edges; + tmp2edges._edges[1] = _eos._edges[0]; + _leOnV[0]._2neibors = & tmp2edges; + _leOnV[0]._nodes = leOnV[0]->_nodes; + _leOnV[1]._nodes = leOnV[1]->_nodes; + _LayerEdge* eNext, *ePrev = & _leOnV[0]; + for ( size_t iLE = 0, i = 1; i < _offPoints.size()-1; i++ ) + { + // find _LayerEdge's located before and after an offset point + // (_eos._edges[ iLE ] is next after ePrev) + while ( iLE < _eos._edges.size() && _offPoints[i]._param > _leParams[ iLE ] ) + ePrev = _eos._edges[ iLE++ ]; + eNext = ePrev->_2neibors->_edges[1]; + + gp_Pnt p0 = SMESH_TNodeXYZ( ePrev->_nodes[0] ); + gp_Pnt p1 = SMESH_TNodeXYZ( eNext->_nodes[0] ); + double r = p0.Distance( _offPoints[i]._xyz ) / p0.Distance( p1 ); + _offPoints[i]._2edges.set( ePrev, eNext, 1-r, r ); + } + + // replace _LayerEdge's on VERTEX by _leOnV in _offPoints._2edges + for ( size_t i = 0; i < _offPoints.size(); i++ ) + if ( _offPoints[i]._2edges._edges[0] == leOnV[0] ) + _offPoints[i]._2edges._edges[0] = & _leOnV[0]; + else break; + for ( size_t i = _offPoints.size()-1; i > 0; i-- ) + if ( _offPoints[i]._2edges._edges[1] == leOnV[1] ) + _offPoints[i]._2edges._edges[1] = & _leOnV[1]; + else break; + + // set _normal of _leOnV[0] and _leOnV[1] to be normal to the EDGE + + int iLBO = _offPoints.size() - 2; // last but one + + if ( leOnV[ 0 ]->Is( _LayerEdge::MULTI_NORMAL )) + _leOnV[ 0 ]._normal = getNormalNormal( _eos._edges[1]->_normal, _edgeDir[0] ); + else + _leOnV[ 0 ]._normal = getNormalNormal( leOnV[0]->_normal, _edgeDir[0] ); + if ( leOnV[ 1 ]->Is( _LayerEdge::MULTI_NORMAL )) + _leOnV[ 1 ]._normal = getNormalNormal( _eos._edges.back()->_normal, _edgeDir[1] ); + else + _leOnV[ 1 ]._normal = getNormalNormal( leOnV[1]->_normal, _edgeDir[1] ); + _leOnV[ 0 ]._len = 0; + _leOnV[ 1 ]._len = 0; + _leOnV[ 0 ]._lenFactor = _offPoints[1 ]._2edges._edges[1]->_lenFactor; + _leOnV[ 1 ]._lenFactor = _offPoints[iLBO]._2edges._edges[0]->_lenFactor; + + _iSeg[0] = 0; + _iSeg[1] = _offPoints.size()-2; + + // initialize OffPnt::_len + for ( size_t i = 0; i < _offPoints.size(); ++i ) + _offPoints[i]._len = 0; + + if ( _eos._edges[0]->NbSteps() > 1 ) // already inflated several times, init _xyz + { + _leOnV[0]._len = leOnV[0]->_len; + _leOnV[1]._len = leOnV[1]->_len; + for ( size_t i = 0; i < _offPoints.size(); i++ ) + { + _LayerEdge* e0 = _offPoints[i]._2edges._edges[0]; + _LayerEdge* e1 = _offPoints[i]._2edges._edges[1]; + const double w0 = _offPoints[i]._2edges._wgt[0]; + const double w1 = _offPoints[i]._2edges._wgt[1]; + double avgLen = ( e0->_len * w0 + e1->_len * w1 ); + gp_XYZ avgXYZ = ( SMESH_TNodeXYZ( e0->_nodes.back() ) * w0 + + SMESH_TNodeXYZ( e1->_nodes.back() ) * w1 ); + _offPoints[i]._xyz = avgXYZ; + _offPoints[i]._len = avgLen; + } + } +} + +//================================================================================ +/*! + * \brief return _normal of _leOnV[is2nd] normal to the EDGE + */ +//================================================================================ + +gp_XYZ _Smoother1D::getNormalNormal( const gp_XYZ & normal, + const gp_XYZ& edgeDir) +{ + gp_XYZ cross = normal ^ edgeDir; + gp_XYZ norm = edgeDir ^ cross; + double size = norm.Modulus(); + + // if ( size == 0 ) // MULTI_NORMAL _LayerEdge + // return gp_XYZ( 1e-100, 1e-100, 1e-100 ); + + return norm / size; +} + +//================================================================================ +/*! + * \brief Writes a script creating a mesh composed of _offPoints + */ +//================================================================================ + +void _Smoother1D::offPointsToPython() const +{ + const char* fname = "/tmp/offPoints.py"; + cout << "execfile('"<& edges) +{ + map< double, _LayerEdge* > u2edge; + for ( size_t i = 0; i < edges.size(); ++i ) + u2edge.insert( u2edge.end(), + make_pair( _helper->GetNodeU( E, edges[i]->_nodes[0] ), edges[i] )); + + ASSERT( u2edge.size() == edges.size() ); + map< double, _LayerEdge* >::iterator u2e = u2edge.begin(); + for ( size_t i = 0; i < edges.size(); ++i, ++u2e ) + edges[i] = u2e->second; + + Sort2NeiborsOnEdge( edges ); +} + +//================================================================================ +/*! + * \brief Set _2neibors according to the order of _LayerEdge on EDGE + */ +//================================================================================ + +void _SolidData::Sort2NeiborsOnEdge( vector< _LayerEdge* >& edges ) +{ + if ( edges.size() < 2 || !edges[0]->_2neibors ) return; + + for ( size_t i = 0; i < edges.size()-1; ++i ) + if ( edges[i]->_2neibors->tgtNode(1) != edges[i+1]->_nodes.back() ) + edges[i]->_2neibors->reverse(); + + const size_t iLast = edges.size() - 1; + if ( edges.size() > 1 && + edges[iLast]->_2neibors->tgtNode(0) != edges[iLast-1]->_nodes.back() ) + edges[iLast]->_2neibors->reverse(); +} + +//================================================================================ +/*! + * \brief Return _EdgesOnShape* corresponding to the shape + */ +//================================================================================ + +_EdgesOnShape* _SolidData::GetShapeEdges(const TGeomID shapeID ) +{ + if ( shapeID < (int)_edgesOnShape.size() && + _edgesOnShape[ shapeID ]._shapeID == shapeID ) + return _edgesOnShape[ shapeID ]._subMesh ? & _edgesOnShape[ shapeID ] : 0; + + for ( size_t i = 0; i < _edgesOnShape.size(); ++i ) + if ( _edgesOnShape[i]._shapeID == shapeID ) + return _edgesOnShape[i]._subMesh ? & _edgesOnShape[i] : 0; + + return 0; +} + +//================================================================================ +/*! + * \brief Return _EdgesOnShape* corresponding to the shape + */ +//================================================================================ + +_EdgesOnShape* _SolidData::GetShapeEdges(const TopoDS_Shape& shape ) +{ + SMESHDS_Mesh* meshDS = _proxyMesh->GetMesh()->GetMeshDS(); + return GetShapeEdges( meshDS->ShapeToIndex( shape )); +} + +//================================================================================ +/*! + * \brief Prepare data of the _LayerEdge for smoothing on FACE + */ +//================================================================================ + +void _SolidData::PrepareEdgesToSmoothOnFace( _EdgesOnShape* eos, bool substituteSrcNodes ) +{ + SMESH_MesherHelper helper( *_proxyMesh->GetMesh() ); + + set< TGeomID > vertices; + TopoDS_Face F; + if ( eos->ShapeType() == TopAbs_FACE ) + { + // check FACE concavity and get concave VERTEXes + F = TopoDS::Face( eos->_shape ); + if ( isConcave( F, helper, &vertices )) + _concaveFaces.insert( eos->_shapeID ); + + // set eos._eosConcaVer + eos->_eosConcaVer.clear(); + eos->_eosConcaVer.reserve( vertices.size() ); + for ( set< TGeomID >::iterator v = vertices.begin(); v != vertices.end(); ++v ) + { + _EdgesOnShape* eov = GetShapeEdges( *v ); + if ( eov && eov->_edges.size() == 1 ) + { + eos->_eosConcaVer.push_back( eov ); + for ( size_t i = 0; i < eov->_edges[0]->_neibors.size(); ++i ) + eov->_edges[0]->_neibors[i]->Set( _LayerEdge::DIFFICULT ); + } + } + + // SetSmooLen() to _LayerEdge's on FACE + // for ( size_t i = 0; i < eos->_edges.size(); ++i ) + // { + // eos->_edges[i]->SetSmooLen( Precision::Infinite() ); + // } + // SMESH_subMeshIteratorPtr smIt = eos->_subMesh->getDependsOnIterator(/*includeSelf=*/false); + // while ( smIt->more() ) // loop on sub-shapes of the FACE + // { + // _EdgesOnShape* eoe = GetShapeEdges( smIt->next()->GetId() ); + // if ( !eoe ) continue; + + // vector<_LayerEdge*>& eE = eoe->_edges; + // for ( size_t iE = 0; iE < eE.size(); ++iE ) // loop on _LayerEdge's on EDGE or VERTEX + // { + // if ( eE[iE]->_cosin <= theMinSmoothCosin ) + // continue; + + // SMDS_ElemIteratorPtr segIt = eE[iE]->_nodes[0]->GetInverseElementIterator(SMDSAbs_Edge); + // while ( segIt->more() ) + // { + // const SMDS_MeshElement* seg = segIt->next(); + // if ( !eos->_subMesh->DependsOn( seg->getshapeId() )) + // continue; + // if ( seg->GetNode(0) != eE[iE]->_nodes[0] ) + // continue; // not to check a seg twice + // for ( size_t iN = 0; iN < eE[iE]->_neibors.size(); ++iN ) + // { + // _LayerEdge* eN = eE[iE]->_neibors[iN]; + // if ( eN->_nodes[0]->getshapeId() != eos->_shapeID ) + // continue; + // double dist = SMESH_MeshAlgos::GetDistance( seg, SMESH_TNodeXYZ( eN->_nodes[0] )); + // double smooLen = getSmoothingThickness( eE[iE]->_cosin, dist ); + // eN->SetSmooLen( Min( smooLen, eN->GetSmooLen() )); + // eN->Set( _LayerEdge::NEAR_BOUNDARY ); + // } + // } + // } + // } + } // if ( eos->ShapeType() == TopAbs_FACE ) + + for ( size_t i = 0; i < eos->_edges.size(); ++i ) + { + eos->_edges[i]->_smooFunction = 0; + eos->_edges[i]->Set( _LayerEdge::TO_SMOOTH ); + } + bool isCurved = false; + for ( size_t i = 0; i < eos->_edges.size(); ++i ) + { + _LayerEdge* edge = eos->_edges[i]; + + // get simplices sorted + _Simplex::SortSimplices( edge->_simplices ); + + // smoothing function + edge->ChooseSmooFunction( vertices, _n2eMap ); + + // set _curvature + double avgNormProj = 0, avgLen = 0; + for ( size_t iS = 0; iS < edge->_simplices.size(); ++iS ) + { + _Simplex& s = edge->_simplices[iS]; + + gp_XYZ vec = edge->_pos.back() - SMESH_TNodeXYZ( s._nPrev ); + avgNormProj += edge->_normal * vec; + avgLen += vec.Modulus(); + if ( substituteSrcNodes ) + { + s._nNext = _n2eMap[ s._nNext ]->_nodes.back(); + s._nPrev = _n2eMap[ s._nPrev ]->_nodes.back(); + } + } + avgNormProj /= edge->_simplices.size(); + avgLen /= edge->_simplices.size(); + if (( edge->_curvature = _Curvature::New( avgNormProj, avgLen ))) + { + edge->Set( _LayerEdge::SMOOTHED_C1 ); + isCurved = true; + SMDS_FacePosition* fPos = dynamic_cast( edge->_nodes[0]->GetPosition() ); + if ( !fPos ) + for ( size_t iS = 0; iS < edge->_simplices.size() && !fPos; ++iS ) + fPos = dynamic_cast( edge->_simplices[iS]._nPrev->GetPosition() ); + if ( fPos ) + edge->_curvature->_uv.SetCoord( fPos->GetUParameter(), fPos->GetVParameter() ); + } + } + + // prepare for putOnOffsetSurface() + if (( eos->ShapeType() == TopAbs_FACE ) && + ( isCurved || !eos->_eosConcaVer.empty() )) + { + eos->_offsetSurf = helper.GetSurface( TopoDS::Face( eos->_shape )); + eos->_edgeForOffset = 0; + + double maxCosin = -1; + for ( TopExp_Explorer eExp( eos->_shape, TopAbs_EDGE ); eExp.More(); eExp.Next() ) + { + _EdgesOnShape* eoe = GetShapeEdges( eExp.Current() ); + if ( !eoe || eoe->_edges.empty() ) continue; + + vector<_LayerEdge*>& eE = eoe->_edges; + _LayerEdge* e = eE[ eE.size() / 2 ]; + if ( e->_cosin > maxCosin ) + { + eos->_edgeForOffset = e; + maxCosin = e->_cosin; + } + } + } +} + +//================================================================================ +/*! + * \brief Add faces for smoothing + */ +//================================================================================ + +void _SolidData::AddShapesToSmooth( const set< _EdgesOnShape* >& eosToSmooth, + const set< _EdgesOnShape* >* edgesNoAnaSmooth ) +{ + set< _EdgesOnShape * >::const_iterator eos = eosToSmooth.begin(); + for ( ; eos != eosToSmooth.end(); ++eos ) + { + if ( !*eos || (*eos)->_toSmooth ) continue; + + (*eos)->_toSmooth = true; + + if ( (*eos)->ShapeType() == TopAbs_FACE ) + { + PrepareEdgesToSmoothOnFace( *eos, /*substituteSrcNodes=*/false ); + (*eos)->_toSmooth = true; + } + } + + // avoid _Smoother1D::smoothAnalyticEdge() of edgesNoAnaSmooth + if ( edgesNoAnaSmooth ) + for ( eos = edgesNoAnaSmooth->begin(); eos != edgesNoAnaSmooth->end(); ++eos ) + { + if ( (*eos)->_edgeSmoother ) + (*eos)->_edgeSmoother->_anaCurve.Nullify(); + } +} + +//================================================================================ +/*! + * \brief Limit _LayerEdge::_maxLen according to local curvature + */ +//================================================================================ + +void _ViscousBuilder::limitMaxLenByCurvature( _SolidData& data, SMESH_MesherHelper& helper ) +{ + // find intersection of neighbor _LayerEdge's to limit _maxLen + // according to local curvature (IPAL52648) + + // This method must be called after findCollisionEdges() where _LayerEdge's + // get _lenFactor initialized in the case of eos._hyp.IsOffsetMethod() + + for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS ) + { + _EdgesOnShape& eosI = data._edgesOnShape[iS]; + if ( eosI._edges.empty() ) continue; + if ( !eosI._hyp.ToSmooth() ) + { + for ( size_t i = 0; i < eosI._edges.size(); ++i ) + { + _LayerEdge* eI = eosI._edges[i]; + for ( size_t iN = 0; iN < eI->_neibors.size(); ++iN ) + { + _LayerEdge* eN = eI->_neibors[iN]; + if ( eI->_nodes[0]->GetID() < eN->_nodes[0]->GetID() ) // treat this pair once + { + _EdgesOnShape* eosN = data.GetShapeEdges( eN ); + limitMaxLenByCurvature( eI, eN, eosI, *eosN, eosI._hyp.ToSmooth() ); + } + } + } + } + else if ( eosI.ShapeType() == TopAbs_EDGE ) + { + const TopoDS_Edge& E = TopoDS::Edge( eosI._shape ); + if ( SMESH_Algo::IsStraight( E, /*degenResult=*/true )) continue; + + _LayerEdge* e0 = eosI._edges[0]; + for ( size_t i = 1; i < eosI._edges.size(); ++i ) + { + _LayerEdge* eI = eosI._edges[i]; + limitMaxLenByCurvature( eI, e0, eosI, eosI, eosI._hyp.ToSmooth() ); + e0 = eI; + } + } + } +} + +//================================================================================ +/*! + * \brief Limit _LayerEdge::_maxLen according to local curvature + */ +//================================================================================ + +void _ViscousBuilder::limitMaxLenByCurvature( _LayerEdge* e1, + _LayerEdge* e2, + _EdgesOnShape& eos1, + _EdgesOnShape& eos2, + const bool isSmoothable ) +{ + if (( e1->_nodes[0]->GetPosition()->GetDim() != + e2->_nodes[0]->GetPosition()->GetDim() ) && + ( e1->_cosin < 0.75 )) + return; // angle > 90 deg at e1 + + gp_XYZ plnNorm = e1->_normal ^ e2->_normal; + double norSize = plnNorm.SquareModulus(); + if ( norSize < std::numeric_limits::min() ) + return; // parallel normals + + // find closest points of skew _LayerEdge's + SMESH_TNodeXYZ src1( e1->_nodes[0] ), src2( e2->_nodes[0] ); + gp_XYZ dir12 = src2 - src1; + gp_XYZ perp1 = e1->_normal ^ plnNorm; + gp_XYZ perp2 = e2->_normal ^ plnNorm; + double dot1 = perp2 * e1->_normal; + double dot2 = perp1 * e2->_normal; + double u1 = ( perp2 * dir12 ) / dot1; + double u2 = - ( perp1 * dir12 ) / dot2; + if ( u1 > 0 && u2 > 0 ) + { + double ovl = ( u1 * e1->_normal * dir12 - + u2 * e2->_normal * dir12 ) / dir12.SquareModulus(); + if ( ovl > theSmoothThickToElemSizeRatio ) + { + const double coef = 0.75; + e1->SetMaxLen( Min( e1->_maxLen, coef * u1 / e1->_lenFactor )); + e2->SetMaxLen( Min( e2->_maxLen, coef * u2 / e2->_lenFactor )); + } + } +} + +//================================================================================ +/*! + * \brief Fill data._collisionEdges + */ +//================================================================================ + +void _ViscousBuilder::findCollisionEdges( _SolidData& data, SMESH_MesherHelper& helper ) +{ + data._collisionEdges.clear(); + + // set the full thickness of the layers to LEs + for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS ) + { + _EdgesOnShape& eos = data._edgesOnShape[iS]; + if ( eos._edges.empty() ) continue; + if ( eos.ShapeType() != TopAbs_EDGE && eos.ShapeType() != TopAbs_VERTEX ) continue; + + for ( size_t i = 0; i < eos._edges.size(); ++i ) + { + if ( eos._edges[i]->Is( _LayerEdge::BLOCKED )) continue; + double maxLen = eos._edges[i]->_maxLen; + eos._edges[i]->_maxLen = Precision::Infinite(); // avoid blocking + eos._edges[i]->SetNewLength( 1.5 * maxLen, eos, helper ); + eos._edges[i]->_maxLen = maxLen; + } + } + + // make temporary quadrangles got by extrusion of + // mesh edges along _LayerEdge._normal's + + vector< const SMDS_MeshElement* > tmpFaces; + + for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS ) + { + _EdgesOnShape& eos = data._edgesOnShape[ iS ]; + if ( eos.ShapeType() != TopAbs_EDGE ) + continue; + if ( eos._edges.empty() ) + { + _LayerEdge* edge[2] = { 0, 0 }; // LE of 2 VERTEX'es + SMESH_subMeshIteratorPtr smIt = eos._subMesh->getDependsOnIterator(/*includeSelf=*/false); + while ( smIt->more() ) + if ( _EdgesOnShape* eov = data.GetShapeEdges( smIt->next()->GetId() )) + if ( eov->_edges.size() == 1 ) + edge[ bool( edge[0]) ] = eov->_edges[0]; + + if ( edge[1] ) + { + _TmpMeshFaceOnEdge* f = new _TmpMeshFaceOnEdge( edge[0], edge[1], --_tmpFaceID ); + tmpFaces.push_back( f ); + } + } + for ( size_t i = 0; i < eos._edges.size(); ++i ) + { + _LayerEdge* edge = eos._edges[i]; + for ( int j = 0; j < 2; ++j ) // loop on _2NearEdges + { + const SMDS_MeshNode* src2 = edge->_2neibors->srcNode(j); + if ( src2->GetPosition()->GetDim() > 0 && + src2->GetID() < edge->_nodes[0]->GetID() ) + continue; // avoid using same segment twice + + // a _LayerEdge containg tgt2 + _LayerEdge* neiborEdge = edge->_2neibors->_edges[j]; + + _TmpMeshFaceOnEdge* f = new _TmpMeshFaceOnEdge( edge, neiborEdge, --_tmpFaceID ); + tmpFaces.push_back( f ); + } + } + } + + // Find _LayerEdge's intersecting tmpFaces. + + SMDS_ElemIteratorPtr fIt( new SMDS_ElementVectorIterator( tmpFaces.begin(), + tmpFaces.end())); + SMESHUtils::Deleter searcher + ( SMESH_MeshAlgos::GetElementSearcher( *getMeshDS(), fIt )); + + double dist1, dist2, segLen, eps = 0.5; + _CollisionEdges collEdges; + vector< const SMDS_MeshElement* > suspectFaces; + const double angle45 = Cos( 45. * M_PI / 180. ); + + for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS ) + { + _EdgesOnShape& eos = data._edgesOnShape[ iS ]; + if ( eos.ShapeType() == TopAbs_FACE || !eos._sWOL.IsNull() ) + continue; + // find sub-shapes whose VL can influence VL on eos + set< TGeomID > neighborShapes; + PShapeIteratorPtr fIt = helper.GetAncestors( eos._shape, *_mesh, TopAbs_FACE ); + while ( const TopoDS_Shape* face = fIt->next() ) + { + TGeomID faceID = getMeshDS()->ShapeToIndex( *face ); + if ( _EdgesOnShape* eof = data.GetShapeEdges( faceID )) + { + SMESH_subMeshIteratorPtr subIt = eof->_subMesh->getDependsOnIterator(/*includeSelf=*/false); + while ( subIt->more() ) + neighborShapes.insert( subIt->next()->GetId() ); + } + } + if ( eos.ShapeType() == TopAbs_VERTEX ) + { + PShapeIteratorPtr eIt = helper.GetAncestors( eos._shape, *_mesh, TopAbs_EDGE ); + while ( const TopoDS_Shape* edge = eIt->next() ) + neighborShapes.erase( getMeshDS()->ShapeToIndex( *edge )); + } + // find intersecting _LayerEdge's + for ( size_t i = 0; i < eos._edges.size(); ++i ) + { + if ( eos._edges[i]->Is( _LayerEdge::MULTI_NORMAL )) continue; + _LayerEdge* edge = eos._edges[i]; + gp_Ax1 lastSegment = edge->LastSegment( segLen, eos ); + segLen *= 1.2; + + gp_Vec eSegDir0, eSegDir1; + if ( edge->IsOnEdge() ) + { + SMESH_TNodeXYZ eP( edge->_nodes[0] ); + eSegDir0 = SMESH_TNodeXYZ( edge->_2neibors->srcNode(0) ) - eP; + eSegDir1 = SMESH_TNodeXYZ( edge->_2neibors->srcNode(1) ) - eP; + } + suspectFaces.clear(); + searcher->GetElementsInSphere( SMESH_TNodeXYZ( edge->_nodes.back()), edge->_len * 2, + SMDSAbs_Face, suspectFaces ); + collEdges._intEdges.clear(); + for ( size_t j = 0 ; j < suspectFaces.size(); ++j ) + { + const _TmpMeshFaceOnEdge* f = (const _TmpMeshFaceOnEdge*) suspectFaces[j]; + if ( f->_le1 == edge || f->_le2 == edge ) continue; + if ( !neighborShapes.count( f->_le1->_nodes[0]->getshapeId() )) continue; + if ( !neighborShapes.count( f->_le2->_nodes[0]->getshapeId() )) continue; + if ( edge->IsOnEdge() ) { + if ( edge->_2neibors->include( f->_le1 ) || + edge->_2neibors->include( f->_le2 )) continue; + } + else { + if (( f->_le1->IsOnEdge() && f->_le1->_2neibors->include( edge )) || + ( f->_le2->IsOnEdge() && f->_le2->_2neibors->include( edge ))) continue; + } + dist1 = dist2 = Precision::Infinite(); + if ( !edge->SegTriaInter( lastSegment, f->_nn[0], f->_nn[1], f->_nn[2], dist1, eps )) + dist1 = Precision::Infinite(); + if ( !edge->SegTriaInter( lastSegment, f->_nn[3], f->_nn[2], f->_nn[0], dist2, eps )) + dist2 = Precision::Infinite(); + if (( dist1 > segLen ) && ( dist2 > segLen )) + continue; + + if ( edge->IsOnEdge() ) + { + // skip perpendicular EDGEs + gp_Vec fSegDir = SMESH_TNodeXYZ( f->_nn[0] ) - SMESH_TNodeXYZ( f->_nn[3] ); + bool isParallel = ( isLessAngle( eSegDir0, fSegDir, angle45 ) || + isLessAngle( eSegDir1, fSegDir, angle45 ) || + isLessAngle( eSegDir0, fSegDir.Reversed(), angle45 ) || + isLessAngle( eSegDir1, fSegDir.Reversed(), angle45 )); + if ( !isParallel ) + continue; + } + + // either limit inflation of edges or remember them for updating _normal + // double dot = edge->_normal * f->GetDir(); + // if ( dot > 0.1 ) + { + collEdges._intEdges.push_back( f->_le1 ); + collEdges._intEdges.push_back( f->_le2 ); + } + // else + // { + // double shortLen = 0.75 * ( Min( dist1, dist2 ) / edge->_lenFactor ); + // edge->SetMaxLen( Min( shortLen, edge->_maxLen )); + // } + } + + if ( !collEdges._intEdges.empty() ) + { + collEdges._edge = edge; + data._collisionEdges.push_back( collEdges ); + } + } + } + + for ( size_t i = 0 ; i < tmpFaces.size(); ++i ) + delete tmpFaces[i]; + + // restore the zero thickness + for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS ) + { + _EdgesOnShape& eos = data._edgesOnShape[iS]; + if ( eos._edges.empty() ) continue; + if ( eos.ShapeType() != TopAbs_EDGE && eos.ShapeType() != TopAbs_VERTEX ) continue; + + for ( size_t i = 0; i < eos._edges.size(); ++i ) + { + eos._edges[i]->InvalidateStep( 1, eos ); + eos._edges[i]->_len = 0; + } + } +} + +//================================================================================ +/*! + * \brief Find _LayerEdge's located on boundary of a convex FACE whose normal + * will be updated at each inflation step + */ +//================================================================================ + +void _ViscousBuilder::findEdgesToUpdateNormalNearConvexFace( _ConvexFace & convFace, + _SolidData& data, + SMESH_MesherHelper& helper ) +{ + const TGeomID convFaceID = getMeshDS()->ShapeToIndex( convFace._face ); + const double preci = BRep_Tool::Tolerance( convFace._face ); + Handle(ShapeAnalysis_Surface) surface = helper.GetSurface( convFace._face ); + + bool edgesToUpdateFound = false; + + map< TGeomID, _EdgesOnShape* >::iterator id2eos = convFace._subIdToEOS.begin(); + for ( ; id2eos != convFace._subIdToEOS.end(); ++id2eos ) + { + _EdgesOnShape& eos = * id2eos->second; + if ( !eos._sWOL.IsNull() ) continue; + if ( !eos._hyp.ToSmooth() ) continue; + for ( size_t i = 0; i < eos._edges.size(); ++i ) + { + _LayerEdge* ledge = eos._edges[ i ]; + if ( ledge->Is( _LayerEdge::UPD_NORMAL_CONV )) continue; // already checked + if ( ledge->Is( _LayerEdge::MULTI_NORMAL )) continue; // not inflatable + + gp_XYZ tgtPos = ( SMESH_NodeXYZ( ledge->_nodes[0] ) + + ledge->_normal * ledge->_lenFactor * ledge->_maxLen ); + + // the normal must be updated if distance from tgtPos to surface is less than + // target thickness + + // find an initial UV for search of a projection of tgtPos to surface + const SMDS_MeshNode* nodeInFace = 0; + SMDS_ElemIteratorPtr fIt = ledge->_nodes[0]->GetInverseElementIterator(SMDSAbs_Face); + while ( fIt->more() && !nodeInFace ) + { + const SMDS_MeshElement* f = fIt->next(); + if ( convFaceID != f->getshapeId() ) continue; + + SMDS_ElemIteratorPtr nIt = f->nodesIterator(); + while ( nIt->more() && !nodeInFace ) + { + const SMDS_MeshElement* n = nIt->next(); + if ( n->getshapeId() == convFaceID ) + nodeInFace = static_cast< const SMDS_MeshNode* >( n ); + } + } + if ( !nodeInFace ) + continue; + gp_XY uv = helper.GetNodeUV( convFace._face, nodeInFace ); + + // projection + surface->NextValueOfUV( uv, tgtPos, preci ); + double dist = surface->Gap(); + if ( dist < 0.95 * ledge->_maxLen ) + { + ledge->Set( _LayerEdge::UPD_NORMAL_CONV ); + if ( !ledge->_curvature ) ledge->_curvature = new _Curvature; + ledge->_curvature->_uv.SetCoord( uv.X(), uv.Y() ); + edgesToUpdateFound = true; + } + } + } + + if ( !convFace._isTooCurved && edgesToUpdateFound ) + { + data._convexFaces.insert( make_pair( convFaceID, convFace )).first->second; + } +} + +//================================================================================ +/*! + * \brief Modify normals of _LayerEdge's on EDGE's to avoid intersection with + * _LayerEdge's on neighbor EDGE's + */ +//================================================================================ + +bool _ViscousBuilder::updateNormals( _SolidData& data, + SMESH_MesherHelper& helper, + int stepNb, + double stepSize) +{ + updateNormalsOfC1Vertices( data ); + + if ( stepNb > 0 && !updateNormalsOfConvexFaces( data, helper, stepNb )) + return false; + + // map to store new _normal and _cosin for each intersected edge + map< _LayerEdge*, _LayerEdge, _LayerEdgeCmp > edge2newEdge; + map< _LayerEdge*, _LayerEdge, _LayerEdgeCmp >::iterator e2neIt; + _LayerEdge zeroEdge; + zeroEdge._normal.SetCoord( 0,0,0 ); + zeroEdge._maxLen = Precision::Infinite(); + zeroEdge._nodes.resize(1); // to init _TmpMeshFaceOnEdge + + set< _EdgesOnShape* > shapesToSmooth, edgesNoAnaSmooth; + + double segLen, dist1, dist2, dist; + vector< pair< _LayerEdge*, double > > intEdgesDist; + _TmpMeshFaceOnEdge quad( &zeroEdge, &zeroEdge, 0 ); + + for ( int iter = 0; iter < 5; ++iter ) + { + edge2newEdge.clear(); + + for ( size_t iE = 0; iE < data._collisionEdges.size(); ++iE ) + { + _CollisionEdges& ce = data._collisionEdges[iE]; + _LayerEdge* edge1 = ce._edge; + if ( !edge1 /*|| edge1->Is( _LayerEdge::BLOCKED )*/) continue; + _EdgesOnShape* eos1 = data.GetShapeEdges( edge1 ); + if ( !eos1 ) continue; + + // detect intersections + gp_Ax1 lastSeg = edge1->LastSegment( segLen, *eos1 ); + double testLen = 1.5 * edge1->_maxLen * edge1->_lenFactor; + double eps = 0.5; + intEdgesDist.clear(); + double minIntDist = Precision::Infinite(); + for ( size_t i = 0; i < ce._intEdges.size(); i += 2 ) + { + if ( edge1->Is( _LayerEdge::BLOCKED ) && + ce._intEdges[i ]->Is( _LayerEdge::BLOCKED ) && + ce._intEdges[i+1]->Is( _LayerEdge::BLOCKED )) + continue; + double dot = edge1->_normal * quad.GetDir( ce._intEdges[i], ce._intEdges[i+1] ); + double fact = ( 1.1 + dot * dot ); + SMESH_TNodeXYZ pSrc0( ce.nSrc(i) ), pSrc1( ce.nSrc(i+1) ); + SMESH_TNodeXYZ pTgt0( ce.nTgt(i) ), pTgt1( ce.nTgt(i+1) ); + gp_XYZ pLast0 = pSrc0 + ( pTgt0 - pSrc0 ) * fact; + gp_XYZ pLast1 = pSrc1 + ( pTgt1 - pSrc1 ) * fact; + dist1 = dist2 = Precision::Infinite(); + if ( !edge1->SegTriaInter( lastSeg, pSrc0, pLast0, pSrc1, dist1, eps ) && + !edge1->SegTriaInter( lastSeg, pSrc1, pLast1, pLast0, dist2, eps )) + continue; + dist = dist1; + if ( dist > testLen || dist <= 0 ) + { + dist = dist2; + if ( dist > testLen || dist <= 0 ) + continue; + } + // choose a closest edge + gp_Pnt intP( lastSeg.Location().XYZ() + lastSeg.Direction().XYZ() * ( dist + segLen )); + double d1 = intP.SquareDistance( pSrc0 ); + double d2 = intP.SquareDistance( pSrc1 ); + int iClose = i + ( d2 < d1 ); + _LayerEdge* edge2 = ce._intEdges[iClose]; + edge2->Unset( _LayerEdge::MARKED ); + + // choose a closest edge among neighbors + gp_Pnt srcP( SMESH_TNodeXYZ( edge1->_nodes[0] )); + d1 = srcP.SquareDistance( SMESH_TNodeXYZ( edge2->_nodes[0] )); + for ( size_t j = 0; j < intEdgesDist.size(); ++j ) + { + _LayerEdge * edgeJ = intEdgesDist[j].first; + if ( edge2->IsNeiborOnEdge( edgeJ )) + { + d2 = srcP.SquareDistance( SMESH_TNodeXYZ( edgeJ->_nodes[0] )); + ( d1 < d2 ? edgeJ : edge2 )->Set( _LayerEdge::MARKED ); + } + } + intEdgesDist.push_back( make_pair( edge2, dist )); + // if ( Abs( d2 - d1 ) / Max( d2, d1 ) < 0.5 ) + // { + // iClose = i + !( d2 < d1 ); + // intEdges.push_back( ce._intEdges[iClose] ); + // ce._intEdges[iClose]->Unset( _LayerEdge::MARKED ); + // } + minIntDist = Min( edge1->_len * edge1->_lenFactor - segLen + dist, minIntDist ); + } + + //ce._edge = 0; + + // compute new _normals + for ( size_t i = 0; i < intEdgesDist.size(); ++i ) + { + _LayerEdge* edge2 = intEdgesDist[i].first; + double distWgt = edge1->_len / intEdgesDist[i].second; + // if ( edge1->Is( _LayerEdge::BLOCKED ) && + // edge2->Is( _LayerEdge::BLOCKED )) continue; + if ( edge2->Is( _LayerEdge::MARKED )) continue; + edge2->Set( _LayerEdge::MARKED ); + + // get a new normal + gp_XYZ dir1 = edge1->_normal, dir2 = edge2->_normal; + + double cos1 = Abs( edge1->_cosin ), cos2 = Abs( edge2->_cosin ); + double wgt1 = ( cos1 + 0.001 ) / ( cos1 + cos2 + 0.002 ); + double wgt2 = ( cos2 + 0.001 ) / ( cos1 + cos2 + 0.002 ); + // double cos1 = Abs( edge1->_cosin ), cos2 = Abs( edge2->_cosin ); + // double sgn1 = 0.1 * ( 1 + edge1->_cosin ), sgn2 = 0.1 * ( 1 + edge2->_cosin ); + // double wgt1 = ( cos1 + sgn1 ) / ( cos1 + cos2 + sgn1 + sgn2 ); + // double wgt2 = ( cos2 + sgn2 ) / ( cos1 + cos2 + sgn1 + sgn2 ); + gp_XYZ newNormal = wgt1 * dir1 + wgt2 * dir2; + newNormal.Normalize(); + + // get new cosin + double newCos; + double sgn1 = edge1->_cosin / cos1, sgn2 = edge2->_cosin / cos2; + if ( cos1 < theMinSmoothCosin ) + { + newCos = cos2 * sgn1; + } + else if ( cos2 > theMinSmoothCosin ) // both cos1 and cos2 > theMinSmoothCosin + { + newCos = ( wgt1 * cos1 + wgt2 * cos2 ) * edge1->_cosin / cos1; + } + else + { + newCos = edge1->_cosin; + } + + e2neIt = edge2newEdge.insert( make_pair( edge1, zeroEdge )).first; + e2neIt->second._normal += distWgt * newNormal; + e2neIt->second._cosin = newCos; + e2neIt->second.SetMaxLen( 0.7 * minIntDist / edge1->_lenFactor ); + if ( iter > 0 && sgn1 * sgn2 < 0 && edge1->_cosin < 0 ) + e2neIt->second._normal += dir2; + + e2neIt = edge2newEdge.insert( make_pair( edge2, zeroEdge )).first; + e2neIt->second._normal += distWgt * newNormal; + if ( Precision::IsInfinite( zeroEdge._maxLen )) + { + e2neIt->second._cosin = edge2->_cosin; + e2neIt->second.SetMaxLen( 1.3 * minIntDist / edge1->_lenFactor ); + } + if ( iter > 0 && sgn1 * sgn2 < 0 && edge2->_cosin < 0 ) + e2neIt->second._normal += dir1; + } + } + + if ( edge2newEdge.empty() ) + break; //return true; + + dumpFunction(SMESH_Comment("updateNormals")<< data._index << "_" << stepNb << "_it" << iter); + + // Update data of edges depending on a new _normal + + data.UnmarkEdges(); + for ( e2neIt = edge2newEdge.begin(); e2neIt != edge2newEdge.end(); ++e2neIt ) + { + _LayerEdge* edge = e2neIt->first; + _LayerEdge& newEdge = e2neIt->second; + _EdgesOnShape* eos = data.GetShapeEdges( edge ); + if ( edge->Is( _LayerEdge::BLOCKED && newEdge._maxLen > edge->_len )) + continue; + + // Check if a new _normal is OK: + newEdge._normal.Normalize(); + if ( !isNewNormalOk( data, *edge, newEdge._normal )) + { + if ( newEdge._maxLen < edge->_len && iter > 0 ) // limit _maxLen + { + edge->InvalidateStep( stepNb + 1, *eos, /*restoreLength=*/true ); + edge->SetMaxLen( newEdge._maxLen ); + edge->SetNewLength( newEdge._maxLen, *eos, helper ); + } + continue; // the new _normal is bad + } + // the new _normal is OK + + // find shapes that need smoothing due to change of _normal + if ( edge->_cosin < theMinSmoothCosin && + newEdge._cosin > theMinSmoothCosin ) + { + if ( eos->_sWOL.IsNull() ) + { + SMDS_ElemIteratorPtr fIt = edge->_nodes[0]->GetInverseElementIterator(SMDSAbs_Face); + while ( fIt->more() ) + shapesToSmooth.insert( data.GetShapeEdges( fIt->next()->getshapeId() )); + } + else // edge inflates along a FACE + { + TopoDS_Shape V = helper.GetSubShapeByNode( edge->_nodes[0], getMeshDS() ); + PShapeIteratorPtr eIt = helper.GetAncestors( V, *_mesh, TopAbs_EDGE, &eos->_sWOL ); + while ( const TopoDS_Shape* E = eIt->next() ) + { + gp_Vec edgeDir = getEdgeDir( TopoDS::Edge( *E ), TopoDS::Vertex( V )); + double angle = edgeDir.Angle( newEdge._normal ); // [0,PI] + if ( angle < M_PI / 2 ) + shapesToSmooth.insert( data.GetShapeEdges( *E )); + } + } + } + + double len = edge->_len; + edge->InvalidateStep( stepNb + 1, *eos, /*restoreLength=*/true ); + edge->SetNormal( newEdge._normal ); + edge->SetCosin( newEdge._cosin ); + edge->SetNewLength( len, *eos, helper ); + edge->Set( _LayerEdge::MARKED ); + edge->Set( _LayerEdge::NORMAL_UPDATED ); + edgesNoAnaSmooth.insert( eos ); + } + + // Update normals and other dependent data of not intersecting _LayerEdge's + // neighboring the intersecting ones + + for ( e2neIt = edge2newEdge.begin(); e2neIt != edge2newEdge.end(); ++e2neIt ) + { + _LayerEdge* edge1 = e2neIt->first; + _EdgesOnShape* eos1 = data.GetShapeEdges( edge1 ); + if ( !edge1->Is( _LayerEdge::MARKED )) + continue; + + if ( edge1->IsOnEdge() ) + { + const SMDS_MeshNode * n1 = edge1->_2neibors->srcNode(0); + const SMDS_MeshNode * n2 = edge1->_2neibors->srcNode(1); + edge1->SetDataByNeighbors( n1, n2, *eos1, helper ); + } + + if ( !edge1->_2neibors || !eos1->_sWOL.IsNull() ) + continue; + for ( int j = 0; j < 2; ++j ) // loop on 2 neighbors + { + _LayerEdge* neighbor = edge1->_2neibors->_edges[j]; + if ( neighbor->Is( _LayerEdge::MARKED ) /*edge2newEdge.count ( neighbor )*/) + continue; // j-th neighbor is also intersected + _LayerEdge* prevEdge = edge1; + const int nbSteps = 10; + for ( int step = nbSteps; step; --step ) // step from edge1 in j-th direction + { + if ( neighbor->Is( _LayerEdge::BLOCKED ) || + neighbor->Is( _LayerEdge::MARKED )) + break; + _EdgesOnShape* eos = data.GetShapeEdges( neighbor ); + if ( !eos ) continue; + _LayerEdge* nextEdge = neighbor; + if ( neighbor->_2neibors ) + { + int iNext = 0; + nextEdge = neighbor->_2neibors->_edges[iNext]; + if ( nextEdge == prevEdge ) + nextEdge = neighbor->_2neibors->_edges[ ++iNext ]; + } + double r = double(step-1)/nbSteps/(iter+1); + if ( !nextEdge->_2neibors ) + r = Min( r, 0.5 ); + + gp_XYZ newNorm = prevEdge->_normal * r + nextEdge->_normal * (1-r); + newNorm.Normalize(); + if ( !isNewNormalOk( data, *neighbor, newNorm )) + break; + + double len = neighbor->_len; + neighbor->InvalidateStep( stepNb + 1, *eos, /*restoreLength=*/true ); + neighbor->SetNormal( newNorm ); + neighbor->SetCosin( prevEdge->_cosin * r + nextEdge->_cosin * (1-r) ); + if ( neighbor->_2neibors ) + neighbor->SetDataByNeighbors( prevEdge->_nodes[0], nextEdge->_nodes[0], *eos, helper ); + neighbor->SetNewLength( len, *eos, helper ); + neighbor->Set( _LayerEdge::MARKED ); + neighbor->Set( _LayerEdge::NORMAL_UPDATED ); + edgesNoAnaSmooth.insert( eos ); + + if ( !neighbor->_2neibors ) + break; // neighbor is on VERTEX + + // goto the next neighbor + prevEdge = neighbor; + neighbor = nextEdge; + } + } + } + dumpFunctionEnd(); + } // iterations + + data.AddShapesToSmooth( shapesToSmooth, &edgesNoAnaSmooth ); + + return true; +} + +//================================================================================ +/*! + * \brief Check if a new normal is OK + */ +//================================================================================ + +bool _ViscousBuilder::isNewNormalOk( _SolidData& data, + _LayerEdge& edge, + const gp_XYZ& newNormal) +{ + // check a min angle between the newNormal and surrounding faces + vector<_Simplex> simplices; + SMESH_TNodeXYZ n0( edge._nodes[0] ), n1, n2; + _Simplex::GetSimplices( n0._node, simplices, data._ignoreFaceIds, &data ); + double newMinDot = 1, curMinDot = 1; + for ( size_t i = 0; i < simplices.size(); ++i ) + { + n1.Set( simplices[i]._nPrev ); + n2.Set( simplices[i]._nNext ); + gp_XYZ normFace = ( n1 - n0 ) ^ ( n2 - n0 ); + double normLen2 = normFace.SquareModulus(); + if ( normLen2 < std::numeric_limits::min() ) + continue; + normFace /= Sqrt( normLen2 ); + newMinDot = Min( newNormal * normFace, newMinDot ); + curMinDot = Min( edge._normal * normFace, curMinDot ); + } + bool ok = true; + if ( newMinDot < 0.5 ) + { + ok = ( newMinDot >= curMinDot * 0.9 ); + //return ( newMinDot >= ( curMinDot * ( 0.8 + 0.1 * edge.NbSteps() ))); + // double initMinDot2 = 1. - edge._cosin * edge._cosin; + // return ( newMinDot * newMinDot ) >= ( 0.8 * initMinDot2 ); + } + + return ok; +} + +//================================================================================ +/*! + * \brief Modify normals of _LayerEdge's on FACE to reflex smoothing + */ +//================================================================================ + +bool _ViscousBuilder::updateNormalsOfSmoothed( _SolidData& data, + SMESH_MesherHelper& helper, + const int nbSteps, + const double stepSize ) +{ + if ( data._nbShapesToSmooth == 0 || nbSteps == 0 ) + return true; // no shapes needing smoothing + + for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS ) + { + _EdgesOnShape& eos = data._edgesOnShape[ iS ]; + if ( //!eos._toSmooth || _eosC1 have _toSmooth == false + !eos._hyp.ToSmooth() || + eos.ShapeType() != TopAbs_FACE || + eos._edges.empty() ) + continue; + + bool toSmooth = ( eos._edges[ 0 ]->NbSteps() >= nbSteps+1 ); + if ( !toSmooth ) continue; + + for ( size_t i = 0; i < eos._edges.size(); ++i ) + { + _LayerEdge* edge = eos._edges[i]; + if ( !edge->Is( _LayerEdge::SMOOTHED )) + continue; + if ( edge->Is( _LayerEdge::DIFFICULT ) && nbSteps != 1 ) + continue; + + const gp_XYZ& pPrev = edge->PrevPos(); + const gp_XYZ& pLast = edge->_pos.back(); + gp_XYZ stepVec = pLast - pPrev; + double realStepSize = stepVec.Modulus(); + if ( realStepSize < numeric_limits::min() ) + continue; + + edge->_lenFactor = realStepSize / stepSize; + edge->_normal = stepVec / realStepSize; + edge->Set( _LayerEdge::NORMAL_UPDATED ); + } + } + + return true; +} + +//================================================================================ +/*! + * \brief Modify normals of _LayerEdge's on C1 VERTEXes + */ +//================================================================================ + +void _ViscousBuilder::updateNormalsOfC1Vertices( _SolidData& data ) +{ + for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS ) + { + _EdgesOnShape& eov = data._edgesOnShape[ iS ]; + if ( eov._eosC1.empty() || + eov.ShapeType() != TopAbs_VERTEX || + eov._edges.empty() ) + continue; + + gp_XYZ newNorm = eov._edges[0]->_normal; + double curThick = eov._edges[0]->_len * eov._edges[0]->_lenFactor; + bool normChanged = false; + + for ( size_t i = 0; i < eov._eosC1.size(); ++i ) + { + _EdgesOnShape* eoe = eov._eosC1[i]; + const TopoDS_Edge& e = TopoDS::Edge( eoe->_shape ); + const double eLen = SMESH_Algo::EdgeLength( e ); + TopoDS_Shape oppV = SMESH_MesherHelper::IthVertex( 0, e ); + if ( oppV.IsSame( eov._shape )) + oppV = SMESH_MesherHelper::IthVertex( 1, e ); + _EdgesOnShape* eovOpp = data.GetShapeEdges( oppV ); + if ( !eovOpp || eovOpp->_edges.empty() ) continue; + if ( eov._edges[0]->Is( _LayerEdge::BLOCKED )) continue; + + double curThickOpp = eovOpp->_edges[0]->_len * eovOpp->_edges[0]->_lenFactor; + if ( curThickOpp + curThick < eLen ) + continue; + + double wgt = 2. * curThick / eLen; + newNorm += wgt * eovOpp->_edges[0]->_normal; + normChanged = true; + } + if ( normChanged ) + { + eov._edges[0]->SetNormal( newNorm.Normalized() ); + eov._edges[0]->Set( _LayerEdge::NORMAL_UPDATED ); + } + } +} + +//================================================================================ +/*! + * \brief Modify normals of _LayerEdge's on _ConvexFace's + */ +//================================================================================ + +bool _ViscousBuilder::updateNormalsOfConvexFaces( _SolidData& data, + SMESH_MesherHelper& helper, + int stepNb ) +{ + SMESHDS_Mesh* meshDS = helper.GetMeshDS(); + bool isOK; + + map< TGeomID, _ConvexFace >::iterator id2face = data._convexFaces.begin(); + for ( ; id2face != data._convexFaces.end(); ++id2face ) + { + _ConvexFace & convFace = (*id2face).second; + convFace._normalsFixedOnBorders = false; // to update at each inflation step + + if ( convFace._normalsFixed ) + continue; // already fixed + if ( convFace.CheckPrisms() ) + continue; // nothing to fix + + convFace._normalsFixed = true; + + BRepAdaptor_Surface surface ( convFace._face, false ); + BRepLProp_SLProps surfProp( surface, 2, 1e-6 ); + + // check if the convex FACE is of spherical shape + + Bnd_B3d centersBox; // bbox of centers of curvature of _LayerEdge's on VERTEXes + Bnd_B3d nodesBox; + gp_Pnt center; + + map< TGeomID, _EdgesOnShape* >::iterator id2eos = convFace._subIdToEOS.begin(); + for ( ; id2eos != convFace._subIdToEOS.end(); ++id2eos ) + { + _EdgesOnShape& eos = *(id2eos->second); + if ( eos.ShapeType() == TopAbs_VERTEX ) + { + _LayerEdge* ledge = eos._edges[ 0 ]; + if ( convFace.GetCenterOfCurvature( ledge, surfProp, helper, center )) + centersBox.Add( center ); + } + for ( size_t i = 0; i < eos._edges.size(); ++i ) + nodesBox.Add( SMESH_TNodeXYZ( eos._edges[ i ]->_nodes[0] )); + } + if ( centersBox.IsVoid() ) + { + debugMsg( "Error: centersBox.IsVoid()" ); + return false; + } + const bool isSpherical = + ( centersBox.SquareExtent() < 1e-6 * nodesBox.SquareExtent() ); + + int nbEdges = helper.Count( convFace._face, TopAbs_EDGE, /*ignoreSame=*/false ); + vector < _CentralCurveOnEdge > centerCurves( nbEdges ); + + if ( isSpherical ) + { + // set _LayerEdge::_normal as average of all normals + + // WARNING: different density of nodes on EDGEs is not taken into account that + // can lead to an improper new normal + + gp_XYZ avgNormal( 0,0,0 ); + nbEdges = 0; + id2eos = convFace._subIdToEOS.begin(); + for ( ; id2eos != convFace._subIdToEOS.end(); ++id2eos ) + { + _EdgesOnShape& eos = *(id2eos->second); + // set data of _CentralCurveOnEdge + if ( eos.ShapeType() == TopAbs_EDGE ) + { + _CentralCurveOnEdge& ceCurve = centerCurves[ nbEdges++ ]; + ceCurve.SetShapes( TopoDS::Edge( eos._shape ), convFace, data, helper ); + if ( !eos._sWOL.IsNull() ) + ceCurve._adjFace.Nullify(); + else + ceCurve._ledges.insert( ceCurve._ledges.end(), + eos._edges.begin(), eos._edges.end()); + } + // summarize normals + for ( size_t i = 0; i < eos._edges.size(); ++i ) + avgNormal += eos._edges[ i ]->_normal; + } + double normSize = avgNormal.SquareModulus(); + if ( normSize < 1e-200 ) + { + debugMsg( "updateNormalsOfConvexFaces(): zero avgNormal" ); + return false; + } + avgNormal /= Sqrt( normSize ); + + // compute new _LayerEdge::_cosin on EDGEs + double avgCosin = 0; + int nbCosin = 0; + gp_Vec inFaceDir; + for ( size_t iE = 0; iE < centerCurves.size(); ++iE ) + { + _CentralCurveOnEdge& ceCurve = centerCurves[ iE ]; + if ( ceCurve._adjFace.IsNull() ) + continue; + for ( size_t iLE = 0; iLE < ceCurve._ledges.size(); ++iLE ) + { + const SMDS_MeshNode* node = ceCurve._ledges[ iLE ]->_nodes[0]; + inFaceDir = getFaceDir( ceCurve._adjFace, ceCurve._edge, node, helper, isOK ); + if ( isOK ) + { + double angle = inFaceDir.Angle( avgNormal ); // [0,PI] + ceCurve._ledges[ iLE ]->_cosin = Cos( angle ); + avgCosin += ceCurve._ledges[ iLE ]->_cosin; + nbCosin++; + } + } + } + if ( nbCosin > 0 ) + avgCosin /= nbCosin; + + // set _LayerEdge::_normal = avgNormal + id2eos = convFace._subIdToEOS.begin(); + for ( ; id2eos != convFace._subIdToEOS.end(); ++id2eos ) + { + _EdgesOnShape& eos = *(id2eos->second); + if ( eos.ShapeType() != TopAbs_EDGE ) + for ( size_t i = 0; i < eos._edges.size(); ++i ) + eos._edges[ i ]->_cosin = avgCosin; + + for ( size_t i = 0; i < eos._edges.size(); ++i ) + { + eos._edges[ i ]->SetNormal( avgNormal ); + eos._edges[ i ]->Set( _LayerEdge::NORMAL_UPDATED ); + } + } + } + else // if ( isSpherical ) + { + // We suppose that centers of curvature at all points of the FACE + // lie on some curve, let's call it "central curve". For all _LayerEdge's + // having a common center of curvature we define the same new normal + // as a sum of normals of _LayerEdge's on EDGEs among them. + + // get all centers of curvature for each EDGE + + helper.SetSubShape( convFace._face ); + _LayerEdge* vertexLEdges[2], **edgeLEdge, **edgeLEdgeEnd; + + TopExp_Explorer edgeExp( convFace._face, TopAbs_EDGE ); + for ( int iE = 0; edgeExp.More(); edgeExp.Next(), ++iE ) + { + const TopoDS_Edge& edge = TopoDS::Edge( edgeExp.Current() ); + + // set adjacent FACE + centerCurves[ iE ].SetShapes( edge, convFace, data, helper ); + + // get _LayerEdge's of the EDGE + TGeomID edgeID = meshDS->ShapeToIndex( edge ); + _EdgesOnShape* eos = data.GetShapeEdges( edgeID ); + if ( !eos || eos->_edges.empty() ) + { + // no _LayerEdge's on EDGE, use _LayerEdge's on VERTEXes + for ( int iV = 0; iV < 2; ++iV ) + { + TopoDS_Vertex v = helper.IthVertex( iV, edge ); + TGeomID vID = meshDS->ShapeToIndex( v ); + eos = data.GetShapeEdges( vID ); + vertexLEdges[ iV ] = eos->_edges[ 0 ]; + } + edgeLEdge = &vertexLEdges[0]; + edgeLEdgeEnd = edgeLEdge + 2; + + centerCurves[ iE ]._adjFace.Nullify(); + } + else + { + if ( ! eos->_toSmooth ) + data.SortOnEdge( edge, eos->_edges ); + edgeLEdge = &eos->_edges[ 0 ]; + edgeLEdgeEnd = edgeLEdge + eos->_edges.size(); + vertexLEdges[0] = eos->_edges.front()->_2neibors->_edges[0]; + vertexLEdges[1] = eos->_edges.back() ->_2neibors->_edges[1]; + + if ( ! eos->_sWOL.IsNull() ) + centerCurves[ iE ]._adjFace.Nullify(); + } + + // Get curvature centers + + centersBox.Clear(); + + if ( edgeLEdge[0]->IsOnEdge() && + convFace.GetCenterOfCurvature( vertexLEdges[0], surfProp, helper, center )) + { // 1st VERTEX + centerCurves[ iE ].Append( center, vertexLEdges[0] ); + centersBox.Add( center ); + } + for ( ; edgeLEdge < edgeLEdgeEnd; ++edgeLEdge ) + if ( convFace.GetCenterOfCurvature( *edgeLEdge, surfProp, helper, center )) + { // EDGE or VERTEXes + centerCurves[ iE ].Append( center, *edgeLEdge ); + centersBox.Add( center ); + } + if ( edgeLEdge[-1]->IsOnEdge() && + convFace.GetCenterOfCurvature( vertexLEdges[1], surfProp, helper, center )) + { // 2nd VERTEX + centerCurves[ iE ].Append( center, vertexLEdges[1] ); + centersBox.Add( center ); + } + centerCurves[ iE ]._isDegenerated = + ( centersBox.IsVoid() || centersBox.SquareExtent() < 1e-6 * nodesBox.SquareExtent() ); + + } // loop on EDGES of convFace._face to set up data of centerCurves + + // Compute new normals for _LayerEdge's on EDGEs + + double avgCosin = 0; + int nbCosin = 0; + gp_Vec inFaceDir; + for ( size_t iE1 = 0; iE1 < centerCurves.size(); ++iE1 ) + { + _CentralCurveOnEdge& ceCurve = centerCurves[ iE1 ]; + if ( ceCurve._isDegenerated ) + continue; + const vector< gp_Pnt >& centers = ceCurve._curvaCenters; + vector< gp_XYZ > & newNormals = ceCurve._normals; + for ( size_t iC1 = 0; iC1 < centers.size(); ++iC1 ) + { + isOK = false; + for ( size_t iE2 = 0; iE2 < centerCurves.size() && !isOK; ++iE2 ) + { + if ( iE1 != iE2 ) + isOK = centerCurves[ iE2 ].FindNewNormal( centers[ iC1 ], newNormals[ iC1 ]); + } + if ( isOK && !ceCurve._adjFace.IsNull() ) + { + // compute new _LayerEdge::_cosin + const SMDS_MeshNode* node = ceCurve._ledges[ iC1 ]->_nodes[0]; + inFaceDir = getFaceDir( ceCurve._adjFace, ceCurve._edge, node, helper, isOK ); + if ( isOK ) + { + double angle = inFaceDir.Angle( newNormals[ iC1 ] ); // [0,PI] + ceCurve._ledges[ iC1 ]->_cosin = Cos( angle ); + avgCosin += ceCurve._ledges[ iC1 ]->_cosin; + nbCosin++; + } + } + } + } + // set new normals to _LayerEdge's of NOT degenerated central curves + for ( size_t iE = 0; iE < centerCurves.size(); ++iE ) + { + if ( centerCurves[ iE ]._isDegenerated ) + continue; + for ( size_t iLE = 0; iLE < centerCurves[ iE ]._ledges.size(); ++iLE ) + { + centerCurves[ iE ]._ledges[ iLE ]->SetNormal( centerCurves[ iE ]._normals[ iLE ]); + centerCurves[ iE ]._ledges[ iLE ]->Set( _LayerEdge::NORMAL_UPDATED ); + } + } + // set new normals to _LayerEdge's of degenerated central curves + for ( size_t iE = 0; iE < centerCurves.size(); ++iE ) + { + if ( !centerCurves[ iE ]._isDegenerated || + centerCurves[ iE ]._ledges.size() < 3 ) + continue; + // new normal is an average of new normals at VERTEXes that + // was computed on non-degenerated _CentralCurveOnEdge's + gp_XYZ newNorm = ( centerCurves[ iE ]._ledges.front()->_normal + + centerCurves[ iE ]._ledges.back ()->_normal ); + double sz = newNorm.Modulus(); + if ( sz < 1e-200 ) + continue; + newNorm /= sz; + double newCosin = ( 0.5 * centerCurves[ iE ]._ledges.front()->_cosin + + 0.5 * centerCurves[ iE ]._ledges.back ()->_cosin ); + for ( size_t iLE = 1, nb = centerCurves[ iE ]._ledges.size() - 1; iLE < nb; ++iLE ) + { + centerCurves[ iE ]._ledges[ iLE ]->SetNormal( newNorm ); + centerCurves[ iE ]._ledges[ iLE ]->_cosin = newCosin; + centerCurves[ iE ]._ledges[ iLE ]->Set( _LayerEdge::NORMAL_UPDATED ); + } + } + + // Find new normals for _LayerEdge's based on FACE + + if ( nbCosin > 0 ) + avgCosin /= nbCosin; + const TGeomID faceID = meshDS->ShapeToIndex( convFace._face ); + map< TGeomID, _EdgesOnShape* >::iterator id2eos = convFace._subIdToEOS.find( faceID ); + if ( id2eos != convFace._subIdToEOS.end() ) + { + int iE = 0; + gp_XYZ newNorm; + _EdgesOnShape& eos = * ( id2eos->second ); + for ( size_t i = 0; i < eos._edges.size(); ++i ) + { + _LayerEdge* ledge = eos._edges[ i ]; + if ( !convFace.GetCenterOfCurvature( ledge, surfProp, helper, center )) + continue; + for ( size_t i = 0; i < centerCurves.size(); ++i, ++iE ) + { + iE = iE % centerCurves.size(); + if ( centerCurves[ iE ]._isDegenerated ) + continue; + newNorm.SetCoord( 0,0,0 ); + if ( centerCurves[ iE ].FindNewNormal( center, newNorm )) + { + ledge->SetNormal( newNorm ); + ledge->_cosin = avgCosin; + ledge->Set( _LayerEdge::NORMAL_UPDATED ); + break; + } + } + } + } + + } // not a quasi-spherical FACE + + // Update _LayerEdge's data according to a new normal + + dumpFunction(SMESH_Comment("updateNormalsOfConvexFaces")<ShapeToIndex( convFace._face )); + + id2eos = convFace._subIdToEOS.begin(); + for ( ; id2eos != convFace._subIdToEOS.end(); ++id2eos ) + { + _EdgesOnShape& eos = * ( id2eos->second ); + for ( size_t i = 0; i < eos._edges.size(); ++i ) + { + _LayerEdge* & ledge = eos._edges[ i ]; + double len = ledge->_len; + ledge->InvalidateStep( stepNb + 1, eos, /*restoreLength=*/true ); + ledge->SetCosin( ledge->_cosin ); + ledge->SetNewLength( len, eos, helper ); + } + if ( eos.ShapeType() != TopAbs_FACE ) + for ( size_t i = 0; i < eos._edges.size(); ++i ) + { + _LayerEdge* ledge = eos._edges[ i ]; + for ( size_t iN = 0; iN < ledge->_neibors.size(); ++iN ) + { + _LayerEdge* neibor = ledge->_neibors[iN]; + if ( neibor->_nodes[0]->GetPosition()->GetDim() == 2 ) + { + neibor->Set( _LayerEdge::NEAR_BOUNDARY ); + neibor->Set( _LayerEdge::MOVED ); + neibor->SetSmooLen( neibor->_len ); + } + } + } + } // loop on sub-shapes of convFace._face + + // Find FACEs adjacent to convFace._face that got necessity to smooth + // as a result of normals modification + + set< _EdgesOnShape* > adjFacesToSmooth; + for ( size_t iE = 0; iE < centerCurves.size(); ++iE ) + { + if ( centerCurves[ iE ]._adjFace.IsNull() || + centerCurves[ iE ]._adjFaceToSmooth ) + continue; + for ( size_t iLE = 0; iLE < centerCurves[ iE ]._ledges.size(); ++iLE ) + { + if ( centerCurves[ iE ]._ledges[ iLE ]->_cosin > theMinSmoothCosin ) + { + adjFacesToSmooth.insert( data.GetShapeEdges( centerCurves[ iE ]._adjFace )); + break; + } + } + } + data.AddShapesToSmooth( adjFacesToSmooth ); + + dumpFunctionEnd(); + + + } // loop on data._convexFaces + + return true; +} + +//================================================================================ +/*! + * \brief Return max curvature of a FACE + */ +//================================================================================ + +double _ConvexFace::GetMaxCurvature( _SolidData& data, + _EdgesOnShape& eof, + BRepLProp_SLProps& surfProp, + SMESH_MesherHelper& helper) +{ + double maxCurvature = 0; + + TopoDS_Face F = TopoDS::Face( eof._shape ); + + const int nbTestPnt = 5; + const double oriFactor = ( F.Orientation() == TopAbs_REVERSED ? +1. : -1. ); + SMESH_subMeshIteratorPtr smIt = eof._subMesh->getDependsOnIterator(/*includeSelf=*/true); + while ( smIt->more() ) + { + SMESH_subMesh* sm = smIt->next(); + const TGeomID subID = sm->GetId(); + + // find _LayerEdge's of a sub-shape + _EdgesOnShape* eos; + if (( eos = data.GetShapeEdges( subID ))) + this->_subIdToEOS.insert( make_pair( subID, eos )); + else + continue; + + // check concavity and curvature and limit data._stepSize + const double minCurvature = + 1. / ( eos->_hyp.GetTotalThickness() * ( 1 + theThickToIntersection )); + size_t iStep = Max( 1, eos->_edges.size() / nbTestPnt ); + for ( size_t i = 0; i < eos->_edges.size(); i += iStep ) + { + gp_XY uv = helper.GetNodeUV( F, eos->_edges[ i ]->_nodes[0] ); + surfProp.SetParameters( uv.X(), uv.Y() ); + if ( surfProp.IsCurvatureDefined() ) + { + double curvature = Max( surfProp.MaxCurvature() * oriFactor, + surfProp.MinCurvature() * oriFactor ); + maxCurvature = Max( maxCurvature, curvature ); + + if ( curvature > minCurvature ) + this->_isTooCurved = true; + } + } + } // loop on sub-shapes of the FACE + + return maxCurvature; +} + +//================================================================================ +/*! + * \brief Finds a center of curvature of a surface at a _LayerEdge + */ +//================================================================================ + +bool _ConvexFace::GetCenterOfCurvature( _LayerEdge* ledge, + BRepLProp_SLProps& surfProp, + SMESH_MesherHelper& helper, + gp_Pnt & center ) const +{ + gp_XY uv = helper.GetNodeUV( _face, ledge->_nodes[0] ); + surfProp.SetParameters( uv.X(), uv.Y() ); + if ( !surfProp.IsCurvatureDefined() ) + return false; + + const double oriFactor = ( _face.Orientation() == TopAbs_REVERSED ? +1. : -1. ); + double surfCurvatureMax = surfProp.MaxCurvature() * oriFactor; + double surfCurvatureMin = surfProp.MinCurvature() * oriFactor; + if ( surfCurvatureMin > surfCurvatureMax ) + center = surfProp.Value().Translated( surfProp.Normal().XYZ() / surfCurvatureMin * oriFactor ); + else + center = surfProp.Value().Translated( surfProp.Normal().XYZ() / surfCurvatureMax * oriFactor ); + + return true; +} + +//================================================================================ +/*! + * \brief Check that prisms are not distorted + */ +//================================================================================ + +bool _ConvexFace::CheckPrisms() const +{ + double vol = 0; + for ( size_t i = 0; i < _simplexTestEdges.size(); ++i ) + { + const _LayerEdge* edge = _simplexTestEdges[i]; + SMESH_TNodeXYZ tgtXYZ( edge->_nodes.back() ); + for ( size_t j = 0; j < edge->_simplices.size(); ++j ) + if ( !edge->_simplices[j].IsForward( edge->_nodes[0], tgtXYZ, vol )) + { + debugMsg( "Bad simplex of _simplexTestEdges (" + << " "<< edge->_nodes[0]->GetID()<< " "<< tgtXYZ._node->GetID() + << " "<< edge->_simplices[j]._nPrev->GetID() + << " "<< edge->_simplices[j]._nNext->GetID() << " )" ); + return false; + } + } + return true; +} + +//================================================================================ +/*! + * \brief Try to compute a new normal by interpolating normals of _LayerEdge's + * stored in this _CentralCurveOnEdge. + * \param [in] center - curvature center of a point of another _CentralCurveOnEdge. + * \param [in,out] newNormal - current normal at this point, to be redefined + * \return bool - true if succeeded. + */ +//================================================================================ + +bool _CentralCurveOnEdge::FindNewNormal( const gp_Pnt& center, gp_XYZ& newNormal ) +{ + if ( this->_isDegenerated ) + return false; + + // find two centers the given one lies between + + for ( size_t i = 0, nb = _curvaCenters.size()-1; i < nb; ++i ) + { + double sl2 = 1.001 * _segLength2[ i ]; + + double d1 = center.SquareDistance( _curvaCenters[ i ]); + if ( d1 > sl2 ) + continue; + + double d2 = center.SquareDistance( _curvaCenters[ i+1 ]); + if ( d2 > sl2 || d2 + d1 < 1e-100 ) + continue; + + d1 = Sqrt( d1 ); + d2 = Sqrt( d2 ); + double r = d1 / ( d1 + d2 ); + gp_XYZ norm = (( 1. - r ) * _ledges[ i ]->_normal + + ( r ) * _ledges[ i+1 ]->_normal ); + norm.Normalize(); + + newNormal += norm; + double sz = newNormal.Modulus(); + if ( sz < 1e-200 ) + break; + newNormal /= sz; + return true; + } + return false; +} + +//================================================================================ +/*! + * \brief Set shape members + */ +//================================================================================ + +void _CentralCurveOnEdge::SetShapes( const TopoDS_Edge& edge, + const _ConvexFace& convFace, + _SolidData& data, + SMESH_MesherHelper& helper) +{ + _edge = edge; + + PShapeIteratorPtr fIt = helper.GetAncestors( edge, *helper.GetMesh(), TopAbs_FACE ); + while ( const TopoDS_Shape* F = fIt->next()) + if ( !convFace._face.IsSame( *F )) + { + _adjFace = TopoDS::Face( *F ); + _adjFaceToSmooth = false; + // _adjFace already in a smoothing queue ? + if ( _EdgesOnShape* eos = data.GetShapeEdges( _adjFace )) + _adjFaceToSmooth = eos->_toSmooth; + break; + } +} + +//================================================================================ +/*! + * \brief Looks for intersection of it's last segment with faces + * \param distance - returns shortest distance from the last node to intersection + */ +//================================================================================ + +bool _LayerEdge::FindIntersection( SMESH_ElementSearcher& searcher, + double & distance, + const double& epsilon, + _EdgesOnShape& eos, + const SMDS_MeshElement** intFace) +{ + vector< const SMDS_MeshElement* > suspectFaces; + double segLen; + gp_Ax1 lastSegment = LastSegment( segLen, eos ); + searcher.GetElementsNearLine( lastSegment, SMDSAbs_Face, suspectFaces ); + + bool segmentIntersected = false; + distance = Precision::Infinite(); + int iFace = -1; // intersected face + for ( size_t j = 0 ; j < suspectFaces.size() /*&& !segmentIntersected*/; ++j ) + { + const SMDS_MeshElement* face = suspectFaces[j]; + if ( face->GetNodeIndex( _nodes.back() ) >= 0 || + face->GetNodeIndex( _nodes[0] ) >= 0 ) + continue; // face sharing _LayerEdge node + const int nbNodes = face->NbCornerNodes(); + bool intFound = false; + double dist; + SMDS_MeshElement::iterator nIt = face->begin_nodes(); + if ( nbNodes == 3 ) + { + intFound = SegTriaInter( lastSegment, *nIt++, *nIt++, *nIt++, dist, epsilon ); + } + else + { + const SMDS_MeshNode* tria[3]; + tria[0] = *nIt++; + tria[1] = *nIt++; + for ( int n2 = 2; n2 < nbNodes && !intFound; ++n2 ) + { + tria[2] = *nIt++; + intFound = SegTriaInter(lastSegment, tria[0], tria[1], tria[2], dist, epsilon ); + tria[1] = tria[2]; + } + } + if ( intFound ) + { + if ( dist < segLen*(1.01) && dist > -(_len*_lenFactor-segLen) ) + segmentIntersected = true; + if ( distance > dist ) + distance = dist, iFace = j; + } + } + if ( intFace ) *intFace = ( iFace != -1 ) ? suspectFaces[iFace] : 0; + + distance -= segLen; + + if ( segmentIntersected ) + { +#ifdef __myDEBUG + SMDS_MeshElement::iterator nIt = suspectFaces[iFace]->begin_nodes(); + gp_XYZ intP( lastSegment.Location().XYZ() + lastSegment.Direction().XYZ() * ( distance+segLen )); + cout << "nodes: tgt " << _nodes.back()->GetID() << " src " << _nodes[0]->GetID() + << ", intersection with face (" + << (*nIt++)->GetID()<<" "<< (*nIt++)->GetID()<<" "<< (*nIt++)->GetID() + << ") at point (" << intP.X() << ", " << intP.Y() << ", " << intP.Z() + << ") distance = " << distance << endl; +#endif } + + return segmentIntersected; } //================================================================================ /*! - * \brief Copy data from a _LayerEdge of other SOLID and based on the same node; - * this and other _LayerEdge's are inflated along a FACE or an EDGE + * \brief Returns a point used to check orientation of _simplices */ //================================================================================ -void _LayerEdge::Copy( _LayerEdge& other, SMESH_MesherHelper& helper ) +gp_XYZ _LayerEdge::PrevCheckPos( _EdgesOnShape* eos ) const { - _nodes = other._nodes; - _normal = other._normal; - _len = 0; - _lenFactor = other._lenFactor; - _cosin = other._cosin; - _sWOL = other._sWOL; - _2neibors = other._2neibors; - _curvature = 0; std::swap( _curvature, other._curvature ); - _2neibors = 0; std::swap( _2neibors, other._2neibors ); + size_t i = Is( NORMAL_UPDATED ) && IsOnFace() ? _pos.size()-2 : 0; - if ( _sWOL.ShapeType() == TopAbs_EDGE ) - { - double u = helper.GetNodeU( TopoDS::Edge( _sWOL ), _nodes[0] ); - _pos.push_back( gp_XYZ( u, 0, 0)); - } - else // TopAbs_FACE + if ( !eos || eos->_sWOL.IsNull() ) + return _pos[ i ]; + + if ( eos->SWOLType() == TopAbs_EDGE ) { - gp_XY uv = helper.GetNodeUV( TopoDS::Face( _sWOL ), _nodes[0]); - _pos.push_back( gp_XYZ( uv.X(), uv.Y(), 0)); + return BRepAdaptor_Curve( TopoDS::Edge( eos->_sWOL )).Value( _pos[i].X() ).XYZ(); } -} - -//================================================================================ -/*! - * \brief Set _cosin and _lenFactor - */ -//================================================================================ + //else // TopAbs_FACE -void _LayerEdge::SetCosin( double cosin ) -{ - _cosin = cosin; - _lenFactor = ( _cosin > 0.1 ) ? 1./sqrt(1-_cosin*_cosin) : 1.0; + return BRepAdaptor_Surface( TopoDS::Face( eos->_sWOL )).Value(_pos[i].X(), _pos[i].Y() ).XYZ(); } //================================================================================ /*! - * \brief Fills a vector<_Simplex > + * \brief Returns size and direction of the last segment */ //================================================================================ -void _ViscousBuilder::getSimplices( const SMDS_MeshNode* node, - vector<_Simplex>& simplices, - const set& ingnoreShapes, - const _SolidData* dataToCheckOri, - const bool toSort) +gp_Ax1 _LayerEdge::LastSegment(double& segLen, _EdgesOnShape& eos) const { - SMDS_ElemIteratorPtr fIt = node->GetInverseElementIterator(SMDSAbs_Face); - while ( fIt->more() ) + // find two non-coincident positions + gp_XYZ orig = _pos.back(); + gp_XYZ vec; + int iPrev = _pos.size() - 2; + //const double tol = ( _len > 0 ) ? 0.3*_len : 1e-100; // adjusted for IPAL52478 + PAL22576 + const double tol = ( _len > 0 ) ? ( 1e-6 * _len ) : 1e-100; + while ( iPrev >= 0 ) { - const SMDS_MeshElement* f = fIt->next(); - const TGeomID shapeInd = f->getshapeId(); - if ( ingnoreShapes.count( shapeInd )) continue; - const int nbNodes = f->NbCornerNodes(); - int srcInd = f->GetNodeIndex( node ); - const SMDS_MeshNode* nPrev = f->GetNode( SMESH_MesherHelper::WrapIndex( srcInd-1, nbNodes )); - const SMDS_MeshNode* nNext = f->GetNode( SMESH_MesherHelper::WrapIndex( srcInd+1, nbNodes )); - const SMDS_MeshNode* nOpp = f->GetNode( SMESH_MesherHelper::WrapIndex( srcInd+2, nbNodes )); - if ( dataToCheckOri && dataToCheckOri->_reversedFaceIds.count( shapeInd )) - std::swap( nPrev, nNext ); - simplices.push_back( _Simplex( nPrev, nNext, nOpp )); + vec = orig - _pos[iPrev]; + if ( vec.SquareModulus() > tol*tol ) + break; + else + iPrev--; } - if ( toSort ) + // make gp_Ax1 + gp_Ax1 segDir; + if ( iPrev < 0 ) + { + segDir.SetLocation( SMESH_TNodeXYZ( _nodes[0] )); + segDir.SetDirection( _normal ); + segLen = 0; + } + else { - vector<_Simplex> sortedSimplices( simplices.size() ); - sortedSimplices[0] = simplices[0]; - int nbFound = 0; - for ( size_t i = 1; i < simplices.size(); ++i ) + gp_Pnt pPrev = _pos[ iPrev ]; + if ( !eos._sWOL.IsNull() ) { - for ( size_t j = 1; j < simplices.size(); ++j ) - if ( sortedSimplices[i-1]._nNext == simplices[j]._nPrev ) - { - sortedSimplices[i] = simplices[j]; - nbFound++; - break; - } + TopLoc_Location loc; + if ( eos.SWOLType() == TopAbs_EDGE ) + { + double f,l; + Handle(Geom_Curve) curve = BRep_Tool::Curve( TopoDS::Edge( eos._sWOL ), loc, f,l); + pPrev = curve->Value( pPrev.X() ).Transformed( loc ); + } + else + { + Handle(Geom_Surface) surface = BRep_Tool::Surface( TopoDS::Face( eos._sWOL ), loc ); + pPrev = surface->Value( pPrev.X(), pPrev.Y() ).Transformed( loc ); + } + vec = SMESH_TNodeXYZ( _nodes.back() ) - pPrev.XYZ(); } - if ( nbFound == simplices.size() - 1 ) - simplices.swap( sortedSimplices ); + segDir.SetLocation( pPrev ); + segDir.SetDirection( vec ); + segLen = vec.Modulus(); } + + return segDir; } //================================================================================ /*! - * \brief DEBUG. Create groups contating temorary data of _LayerEdge's + * \brief Return the last (or \a which) position of the target node on a FACE. + * \param [in] F - the FACE this _LayerEdge is inflated along + * \param [in] which - index of position + * \return gp_XY - result UV */ //================================================================================ -void _ViscousBuilder::makeGroupOfLE() +gp_XY _LayerEdge::LastUV( const TopoDS_Face& F, _EdgesOnShape& eos, int which ) const { -#ifdef _DEBUG_ - for ( unsigned i = 0 ; i < _sdVec.size(); ++i ) - { - if ( _sdVec[i]._edges.empty() ) continue; -// string name = SMESH_Comment("_LayerEdge's_") << i; -// int id; -// SMESH_Group* g = _mesh->AddGroup(SMDSAbs_Edge, name.c_str(), id ); -// SMESHDS_Group* gDS = (SMESHDS_Group*)g->GetGroupDS(); -// SMESHDS_Mesh* mDS = _mesh->GetMeshDS(); + if ( F.IsSame( eos._sWOL )) // F is my FACE + return gp_XY( _pos.back().X(), _pos.back().Y() ); - dumpFunction( SMESH_Comment("make_LayerEdge_") << i ); - for ( unsigned j = 0 ; j < _sdVec[i]._edges.size(); ++j ) - { - _LayerEdge* le = _sdVec[i]._edges[j]; - for ( unsigned iN = 1; iN < le->_nodes.size(); ++iN ) - dumpCmd(SMESH_Comment("mesh.AddEdge([ ") <_nodes[iN-1]->GetID() - << ", " << le->_nodes[iN]->GetID() <<"])"); - //gDS->SMDSGroup().Add( mDS->AddEdge( le->_nodes[iN-1], le->_nodes[iN])); - } - dumpFunctionEnd(); + if ( eos.SWOLType() != TopAbs_EDGE ) // wrong call + return gp_XY( 1e100, 1e100 ); - dumpFunction( SMESH_Comment("makeNormals") << i ); - for ( unsigned j = 0 ; j < _sdVec[i]._edges.size(); ++j ) - { - _LayerEdge& edge = *_sdVec[i]._edges[j]; - SMESH_TNodeXYZ nXYZ( edge._nodes[0] ); - nXYZ += edge._normal * _sdVec[i]._stepSize; - dumpCmd(SMESH_Comment("mesh.AddEdge([ ") <GetID() - << ", mesh.AddNode( " << nXYZ.X()<<","<< nXYZ.Y()<<","<< nXYZ.Z()<<")])"); - } - dumpFunctionEnd(); + // _sWOL is EDGE of F; _pos.back().X() is the last U on the EDGE + double f, l, u = _pos[ which < 0 ? _pos.size()-1 : which ].X(); + Handle(Geom2d_Curve) C2d = BRep_Tool::CurveOnSurface( TopoDS::Edge(eos._sWOL), F, f,l); + if ( !C2d.IsNull() && f <= u && u <= l ) + return C2d->Value( u ).XY(); -// name = SMESH_Comment("tmp_faces ") << i; -// g = _mesh->AddGroup(SMDSAbs_Face, name.c_str(), id ); -// gDS = (SMESHDS_Group*)g->GetGroupDS(); -// SMESH_MeshEditor editor( _mesh ); - dumpFunction( SMESH_Comment("makeTmpFaces_") << i ); - TopExp_Explorer fExp( _sdVec[i]._solid, TopAbs_FACE ); - for ( ; fExp.More(); fExp.Next() ) - { - if (const SMESHDS_SubMesh* sm = _sdVec[i]._proxyMesh->GetProxySubMesh( fExp.Current())) - { - SMDS_ElemIteratorPtr fIt = sm->GetElements(); - while ( fIt->more()) - { - const SMDS_MeshElement* e = fIt->next(); - SMESH_Comment cmd("mesh.AddFace(["); - for ( int j=0; j < e->NbCornerNodes(); ++j ) - cmd << e->GetNode(j)->GetID() << (j+1NbCornerNodes() ? ",": "])"); - dumpCmd( cmd ); - //vector nodes( e->begin_nodes(), e->end_nodes() ); - //gDS->SMDSGroup().Add( editor.AddElement( nodes, e->GetType(), e->IsPoly())); - } - } - } - dumpFunctionEnd(); - } -#endif + return gp_XY( 1e100, 1e100 ); } //================================================================================ /*! - * \brief Increase length of _LayerEdge's to reach the required thickness of layers + * \brief Test intersection of the last segment with a given triangle + * using Moller-Trumbore algorithm + * Intersection is detected if distance to intersection is less than _LayerEdge._len */ //================================================================================ -bool _ViscousBuilder::inflate(_SolidData& data) +bool _LayerEdge::SegTriaInter( const gp_Ax1& lastSegment, + const gp_XYZ& vert0, + const gp_XYZ& vert1, + const gp_XYZ& vert2, + double& t, + const double& EPSILON) const { - SMESH_MesherHelper helper( *_mesh ); + const gp_Pnt& orig = lastSegment.Location(); + const gp_Dir& dir = lastSegment.Direction(); - // Limit inflation step size by geometry size found by itersecting - // normals of _LayerEdge's with mesh faces - double geomSize = Precision::Infinite(), intersecDist; - auto_ptr searcher - ( SMESH_MeshAlgos::GetElementSearcher( *getMeshDS(), - data._proxyMesh->GetFaces( data._solid )) ); - for ( unsigned i = 0; i < data._edges.size(); ++i ) - { - if ( data._edges[i]->IsOnEdge() ) continue; - data._edges[i]->FindIntersection( *searcher, intersecDist, data._epsilon ); - if ( geomSize > intersecDist && intersecDist > 0 ) - geomSize = intersecDist; - } - if ( data._stepSize > 0.3 * geomSize ) - limitStepSize( data, 0.3 * geomSize ); + /* calculate distance from vert0 to ray origin */ + //gp_XYZ tvec = orig.XYZ() - vert0; - const double tgtThick = data._hyp->GetTotalThickness(); - if ( data._stepSize > tgtThick ) - limitStepSize( data, tgtThick ); + //if ( tvec * dir > EPSILON ) + // intersected face is at back side of the temporary face this _LayerEdge belongs to + //return false; - if ( data._stepSize < 1. ) - data._epsilon = data._stepSize * 1e-7; + gp_XYZ edge1 = vert1 - vert0; + gp_XYZ edge2 = vert2 - vert0; -#ifdef __myDEBUG - cout << "-- geomSize = " << geomSize << ", stepSize = " << data._stepSize << endl; -#endif + /* begin calculating determinant - also used to calculate U parameter */ + gp_XYZ pvec = dir.XYZ() ^ edge2; - double avgThick = 0, curThick = 0, distToIntersection = Precision::Infinite(); - int nbSteps = 0, nbRepeats = 0; - while ( 1.01 * avgThick < tgtThick ) - { - // new target length - curThick += data._stepSize; - if ( curThick > tgtThick ) - { - curThick = tgtThick + ( tgtThick-avgThick ) * nbRepeats; - nbRepeats++; - } + /* if determinant is near zero, ray lies in plane of triangle */ + double det = edge1 * pvec; - // Elongate _LayerEdge's - dumpFunction(SMESH_Comment("inflate")<SetNewLength( curThick, helper ); - } - dumpFunctionEnd(); + const double ANGL_EPSILON = 1e-12; + if ( det > -ANGL_EPSILON && det < ANGL_EPSILON ) + return false; - if ( !nbSteps ) - if ( !updateNormals( data, helper ) ) - return false; + /* calculate distance from vert0 to ray origin */ + gp_XYZ tvec = orig.XYZ() - vert0; - // Improve and check quality - if ( !smoothAndCheck( data, nbSteps, distToIntersection )) - { - if ( nbSteps > 0 ) - { - dumpFunction(SMESH_Comment("invalidate")<InvalidateStep( nbSteps+1 ); - } - dumpFunctionEnd(); - } - break; // no more inflating possible - } - nbSteps++; + /* calculate U parameter and test bounds */ + double u = ( tvec * pvec ) / det; + //if (u < 0.0 || u > 1.0) + if ( u < -EPSILON || u > 1.0 + EPSILON ) + return false; - // Evaluate achieved thickness - avgThick = 0; - for ( unsigned i = 0; i < data._edges.size(); ++i ) - avgThick += data._edges[i]->_len; - avgThick /= data._edges.size(); -#ifdef __myDEBUG - cout << "-- Thickness " << avgThick << " reached" << endl; -#endif + /* prepare to test V parameter */ + gp_XYZ qvec = tvec ^ edge1; - if ( distToIntersection < avgThick*1.5 ) - { -#ifdef __myDEBUG - cout << "-- Stop inflation since distToIntersection( "< 1.0 ) + if ( v < -EPSILON || u + v > 1.0 + EPSILON ) + return false; - if (nbSteps == 0 ) - return error("failed at the very first inflation step", data._index); + /* calculate t, ray intersects triangle */ + t = (edge2 * qvec) / det; - return true; + //return true; + return t > 0.; } //================================================================================ /*! - * \brief Improve quality of layer inner surface and check intersection + * \brief _LayerEdge, located at a concave VERTEX of a FACE, moves target nodes of + * neighbor _LayerEdge's by it's own inflation vector. + * \param [in] eov - EOS of the VERTEX + * \param [in] eos - EOS of the FACE + * \param [in] step - inflation step + * \param [in,out] badSmooEdges - tangled _LayerEdge's */ //================================================================================ -bool _ViscousBuilder::smoothAndCheck(_SolidData& data, - const int nbSteps, - double & distToIntersection) +void _LayerEdge::MoveNearConcaVer( const _EdgesOnShape* eov, + const _EdgesOnShape* eos, + const int step, + vector< _LayerEdge* > & badSmooEdges ) { - if ( data._endEdgeToSmooth.empty() ) - return true; // no shapes needing smoothing + // check if any of _neibors is in badSmooEdges + if ( std::find_first_of( _neibors.begin(), _neibors.end(), + badSmooEdges.begin(), badSmooEdges.end() ) == _neibors.end() ) + return; - bool moved, improved; + // get all edges to move - SMESH_MesherHelper helper(*_mesh); - Handle(Geom_Surface) surface; - TopoDS_Face F; + set< _LayerEdge* > edges; - int iBeg, iEnd = 0; - for ( unsigned iS = 0; iS < data._endEdgeToSmooth.size(); ++iS ) + // find a distance between _LayerEdge on VERTEX and its neighbors + gp_XYZ curPosV = SMESH_TNodeXYZ( _nodes.back() ); + double dist2 = 0; + for ( size_t i = 0; i < _neibors.size(); ++i ) { - iBeg = iEnd; - iEnd = data._endEdgeToSmooth[ iS ]; - - if ( !data._edges[ iBeg ]->_sWOL.IsNull() && - data._edges[ iBeg ]->_sWOL.ShapeType() == TopAbs_FACE ) + _LayerEdge* nEdge = _neibors[i]; + if ( nEdge->_nodes[0]->getshapeId() == eos->_shapeID ) { - if ( !F.IsSame( data._edges[ iBeg ]->_sWOL )) { - F = TopoDS::Face( data._edges[ iBeg ]->_sWOL ); - helper.SetSubShape( F ); - surface = BRep_Tool::Surface( F ); - } + edges.insert( nEdge ); + dist2 = Max( dist2, ( curPosV - nEdge->_pos.back() ).SquareModulus() ); } - else + } + // add _LayerEdge's close to curPosV + size_t nbE; + do { + nbE = edges.size(); + for ( set< _LayerEdge* >::iterator e = edges.begin(); e != edges.end(); ++e ) { - F.Nullify(); surface.Nullify(); - } - TGeomID sInd = data._edges[ iBeg ]->_nodes[0]->getshapeId(); - - if ( data._edges[ iBeg ]->IsOnEdge() ) - { - dumpFunction(SMESH_Comment("smooth")<_neibors.size(); ++i ) { - // smooth on EDGE's - int step = 0; - do { - moved = false; - for ( int i = iBeg; i < iEnd; ++i ) - { - moved |= data._edges[i]->SmoothOnEdge(surface, F, helper); - } - dumpCmd( SMESH_Comment("# end step ")<_neibors[i]; + if ( nEdge->_nodes[0]->getshapeId() == eos->_shapeID && + dist2 > ( curPosV - nEdge->_pos.back() ).SquareModulus() ) + edges.insert( nEdge ); } - dumpFunctionEnd(); } - else - { - // smooth on FACE's - int step = 0, badNb = 0; moved = true; - while (( ++step <= 5 && moved ) || improved ) - { - dumpFunction(SMESH_Comment("smooth")<Smooth(badNb); - improved = ( badNb < oldBadNb ); + } + while ( nbE < edges.size() ); - dumpFunctionEnd(); + // move the target node of the got edges + + gp_XYZ prevPosV = PrevPos(); + if ( eov->SWOLType() == TopAbs_EDGE ) + { + BRepAdaptor_Curve curve ( TopoDS::Edge( eov->_sWOL )); + prevPosV = curve.Value( prevPosV.X() ).XYZ(); + } + else if ( eov->SWOLType() == TopAbs_FACE ) + { + BRepAdaptor_Surface surface( TopoDS::Face( eov->_sWOL )); + prevPosV = surface.Value( prevPosV.X(), prevPosV.Y() ).XYZ(); + } + + SMDS_FacePosition* fPos; + //double r = 1. - Min( 0.9, step / 10. ); + for ( set< _LayerEdge* >::iterator e = edges.begin(); e != edges.end(); ++e ) + { + _LayerEdge* edgeF = *e; + const gp_XYZ prevVF = edgeF->PrevPos() - prevPosV; + const gp_XYZ newPosF = curPosV + prevVF; + SMDS_MeshNode* tgtNodeF = const_cast( edgeF->_nodes.back() ); + tgtNodeF->setXYZ( newPosF.X(), newPosF.Y(), newPosF.Z() ); + edgeF->_pos.back() = newPosF; + dumpMoveComm( tgtNodeF, "MoveNearConcaVer" ); // debug + + // set _curvature to make edgeF updated by putOnOffsetSurface() + if ( !edgeF->_curvature ) + if (( fPos = dynamic_cast( edgeF->_nodes[0]->GetPosition() ))) + { + edgeF->_curvature = new _Curvature; + edgeF->_curvature->_r = 0; + edgeF->_curvature->_k = 0; + edgeF->_curvature->_h2lenRatio = 0; + edgeF->_curvature->_uv.SetCoord( fPos->GetUParameter(), fPos->GetVParameter() ); } - if ( badNb > 0 ) + } + // gp_XYZ inflationVec( SMESH_TNodeXYZ( _nodes.back() ) - + // SMESH_TNodeXYZ( _nodes[0] )); + // for ( set< _LayerEdge* >::iterator e = edges.begin(); e != edges.end(); ++e ) + // { + // _LayerEdge* edgeF = *e; + // gp_XYZ newPos = SMESH_TNodeXYZ( edgeF->_nodes[0] ) + inflationVec; + // SMDS_MeshNode* tgtNode = const_cast( edgeF->_nodes.back() ); + // tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() ); + // edgeF->_pos.back() = newPosF; + // dumpMoveComm( tgtNode, "MoveNearConcaVer" ); // debug + // } + + // smooth _LayerEdge's around moved nodes + //size_t nbBadBefore = badSmooEdges.size(); + for ( set< _LayerEdge* >::iterator e = edges.begin(); e != edges.end(); ++e ) + { + _LayerEdge* edgeF = *e; + for ( size_t j = 0; j < edgeF->_neibors.size(); ++j ) + if ( edgeF->_neibors[j]->_nodes[0]->getshapeId() == eos->_shapeID ) + //&& !edges.count( edgeF->_neibors[j] )) { -#ifdef __myDEBUG - for ( int i = iBeg; i < iEnd; ++i ) - { - _LayerEdge* edge = data._edges[i]; - SMESH_TNodeXYZ tgtXYZ( edge->_nodes.back() ); - for ( unsigned j = 0; j < edge->_simplices.size(); ++j ) - if ( !edge->_simplices[j].IsForward( edge->_nodes[0], &tgtXYZ )) - { - cout << "Bad simplex ( " << edge->_nodes[0]->GetID()<< " "<< tgtXYZ._node->GetID() - << " "<< edge->_simplices[j]._nPrev->GetID() - << " "<< edge->_simplices[j]._nNext->GetID() << " )" << endl; - return false; - } - } -#endif - return false; + _LayerEdge* edgeFN = edgeF->_neibors[j]; + edgeFN->Unset( SMOOTHED ); + int nbBad = edgeFN->Smooth( step, /*isConcaFace=*/true, /*findBest=*/true ); + // if ( nbBad > 0 ) + // { + // gp_XYZ newPos = SMESH_TNodeXYZ( edgeFN->_nodes[0] ) + inflationVec; + // const gp_XYZ& prevPos = edgeFN->_pos[ edgeFN->_pos.size()-2 ]; + // int nbBadAfter = edgeFN->_simplices.size(); + // double vol; + // for ( size_t iS = 0; iS < edgeFN->_simplices.size(); ++iS ) + // { + // nbBadAfter -= edgeFN->_simplices[iS].IsForward( &prevPos, &newPos, vol ); + // } + // if ( nbBadAfter <= nbBad ) + // { + // SMDS_MeshNode* tgtNode = const_cast( edgeFN->_nodes.back() ); + // tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() ); + // edgeF->_pos.back() = newPosF; + // dumpMoveComm( tgtNode, "MoveNearConcaVer 2" ); // debug + // nbBad = nbBadAfter; + // } + // } + if ( nbBad > 0 ) + badSmooEdges.push_back( edgeFN ); } - } - } // loop on shapes to smooth + } + // move a bit not smoothed around moved nodes + // for ( size_t i = nbBadBefore; i < badSmooEdges.size(); ++i ) + // { + // _LayerEdge* edgeF = badSmooEdges[i]; + // SMDS_MeshNode* tgtNode = const_cast( edgeF->_nodes.back() ); + // gp_XYZ newPos1 = SMESH_TNodeXYZ( edgeF->_nodes[0] ) + inflationVec; + // gp_XYZ newPos2 = 0.5 * ( newPos1 + SMESH_TNodeXYZ( tgtNode )); + // tgtNode->setXYZ( newPos2.X(), newPos2.Y(), newPos2.Z() ); + // edgeF->_pos.back() = newPosF; + // dumpMoveComm( tgtNode, "MoveNearConcaVer 2" ); // debug + // } +} - // Check if the last segments of _LayerEdge intersects 2D elements; - // checked elements are either temporary faces or faces on surfaces w/o the layers +//================================================================================ +/*! + * \brief Perform smooth of _LayerEdge's based on EDGE's + * \retval bool - true if node has been moved + */ +//================================================================================ + +bool _LayerEdge::SmoothOnEdge(Handle(ShapeAnalysis_Surface)& surface, + const TopoDS_Face& F, + SMESH_MesherHelper& helper) +{ + ASSERT( IsOnEdge() ); + + SMDS_MeshNode* tgtNode = const_cast( _nodes.back() ); + SMESH_TNodeXYZ oldPos( tgtNode ); + double dist01, distNewOld; + + SMESH_TNodeXYZ p0( _2neibors->tgtNode(0)); + SMESH_TNodeXYZ p1( _2neibors->tgtNode(1)); + dist01 = p0.Distance( _2neibors->tgtNode(1) ); + + gp_Pnt newPos = p0 * _2neibors->_wgt[0] + p1 * _2neibors->_wgt[1]; + double lenDelta = 0; + if ( _curvature ) + { + //lenDelta = _curvature->lenDelta( _len ); + lenDelta = _curvature->lenDeltaByDist( dist01 ); + newPos.ChangeCoord() += _normal * lenDelta; + } - auto_ptr searcher - ( SMESH_MeshAlgos::GetElementSearcher( *getMeshDS(), - data._proxyMesh->GetFaces( data._solid )) ); + distNewOld = newPos.Distance( oldPos ); - distToIntersection = Precision::Infinite(); - double dist; - const SMDS_MeshElement* intFace = 0; -#ifdef __myDEBUG - const SMDS_MeshElement* closestFace = 0; - int iLE = 0; -#endif - for ( unsigned i = 0; i < data._edges.size(); ++i ) + if ( F.IsNull() ) { - if ( data._edges[i]->FindIntersection( *searcher, dist, data._epsilon, &intFace )) - return false; - if ( distToIntersection > dist ) + if ( _2neibors->_plnNorm ) { - distToIntersection = dist; -#ifdef __myDEBUG - iLE = i; - closestFace = intFace; -#endif + // put newPos on the plane defined by source node and _plnNorm + gp_XYZ new2src = SMESH_TNodeXYZ( _nodes[0] ) - newPos.XYZ(); + double new2srcProj = (*_2neibors->_plnNorm) * new2src; + newPos.ChangeCoord() += (*_2neibors->_plnNorm) * new2srcProj; } + tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() ); + _pos.back() = newPos.XYZ(); } -#ifdef __myDEBUG - if ( closestFace ) + else { - SMDS_MeshElement::iterator nIt = closestFace->begin_nodes(); - cout << "Shortest distance: _LayerEdge nodes: tgt " << data._edges[iLE]->_nodes.back()->GetID() - << " src " << data._edges[iLE]->_nodes[0]->GetID()<< ", intersection with face (" - << (*nIt++)->GetID()<<" "<< (*nIt++)->GetID()<<" "<< (*nIt++)->GetID() - << ") distance = " << distToIntersection<< endl; + tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() ); + gp_XY uv( Precision::Infinite(), 0 ); + helper.CheckNodeUV( F, tgtNode, uv, 1e-10, /*force=*/true ); + _pos.back().SetCoord( uv.X(), uv.Y(), 0 ); + + newPos = surface->Value( uv ); + tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() ); } -#endif - return true; + // commented for IPAL0052478 + // if ( _curvature && lenDelta < 0 ) + // { + // gp_Pnt prevPos( _pos[ _pos.size()-2 ]); + // _len -= prevPos.Distance( oldPos ); + // _len += prevPos.Distance( newPos ); + // } + bool moved = distNewOld > dist01/50; + //if ( moved ) + dumpMove( tgtNode ); // debug + + return moved; } //================================================================================ /*! - * \brief Return a curve of the EDGE to be used for smoothing and arrange - * _LayerEdge's to be in a consequent order + * \brief Perform 3D smooth of nodes inflated from FACE. No check of validity */ //================================================================================ -Handle(Geom_Curve) _SolidData::CurveForSmooth( const TopoDS_Edge& E, - const int iFrom, - const int iTo, - Handle(Geom_Surface)& surface, - const TopoDS_Face& F, - SMESH_MesherHelper& helper) +void _LayerEdge::SmoothWoCheck() { - TGeomID eIndex = helper.GetMeshDS()->ShapeToIndex( E ); - - map< TGeomID, Handle(Geom_Curve)>::iterator i2curve = _edge2curve.find( eIndex ); - - if ( i2curve == _edge2curve.end() ) - { - // sort _LayerEdge's by position on the EDGE - { - map< double, _LayerEdge* > u2edge; - for ( int i = iFrom; i < iTo; ++i ) - u2edge.insert( make_pair( helper.GetNodeU( E, _edges[i]->_nodes[0] ), _edges[i] )); - - ASSERT( u2edge.size() == iTo - iFrom ); - map< double, _LayerEdge* >::iterator u2e = u2edge.begin(); - for ( int i = iFrom; i < iTo; ++i, ++u2e ) - _edges[i] = u2e->second; - - // set _2neibors according to the new order - for ( int i = iFrom; i < iTo-1; ++i ) - if ( _edges[i]->_2neibors->_nodes[1] != _edges[i+1]->_nodes.back() ) - _edges[i]->_2neibors->reverse(); - if ( u2edge.size() > 1 && - _edges[iTo-1]->_2neibors->_nodes[0] != _edges[iTo-2]->_nodes.back() ) - _edges[iTo-1]->_2neibors->reverse(); - } - - SMESHDS_SubMesh* smDS = helper.GetMeshDS()->MeshElements( eIndex ); - - TopLoc_Location loc; double f,l; + if ( Is( DIFFICULT )) + return; - Handle(Geom_Line) line; - Handle(Geom_Circle) circle; - bool isLine, isCirc; - if ( F.IsNull() ) // 3D case - { - // check if the EDGE is a line - Handle(Geom_Curve) curve = BRep_Tool::Curve( E, loc, f, l); - if ( curve->IsKind( STANDARD_TYPE( Geom_TrimmedCurve ))) - curve = Handle(Geom_TrimmedCurve)::DownCast( curve )->BasisCurve(); + bool moved = Is( SMOOTHED ); + for ( size_t i = 0; i < _neibors.size() && !moved; ++i ) + moved = _neibors[i]->Is( SMOOTHED ); + if ( !moved ) + return; - line = Handle(Geom_Line)::DownCast( curve ); - circle = Handle(Geom_Circle)::DownCast( curve ); - isLine = (!line.IsNull()); - isCirc = (!circle.IsNull()); + gp_XYZ newPos = (this->*_smooFunction)(); // fun chosen by ChooseSmooFunction() - if ( !isLine && !isCirc ) // Check if the EDGE is close to a line - { - Bnd_B3d bndBox; - SMDS_NodeIteratorPtr nIt = smDS->GetNodes(); - while ( nIt->more() ) - bndBox.Add( SMESH_TNodeXYZ( nIt->next() )); - gp_XYZ size = bndBox.CornerMax() - bndBox.CornerMin(); + SMDS_MeshNode* n = const_cast< SMDS_MeshNode* >( _nodes.back() ); + n->setXYZ( newPos.X(), newPos.Y(), newPos.Z()); + _pos.back() = newPos; - SMESH_TNodeXYZ p0( _edges[iFrom]->_2neibors->_nodes[0] ); - SMESH_TNodeXYZ p1( _edges[iFrom]->_2neibors->_nodes[1] ); - const double lineTol = 1e-2 * ( p0 - p1 ).Modulus(); - for ( int i = 0; i < 3 && !isLine; ++i ) - isLine = ( size.Coord( i+1 ) <= lineTol ); - } - if ( !isLine && !isCirc && iTo-iFrom > 2) // Check if the EDGE is close to a circle - { - // TODO - } - } - else // 2D case - { - // check if the EDGE is a line - Handle(Geom2d_Curve) curve = BRep_Tool::CurveOnSurface( E, F, f, l); - if ( curve->IsKind( STANDARD_TYPE( Geom2d_TrimmedCurve ))) - curve = Handle(Geom2d_TrimmedCurve)::DownCast( curve )->BasisCurve(); + dumpMoveComm( n, SMESH_Comment("No check - ") << _funNames[ smooFunID() ]); +} - Handle(Geom2d_Line) line2d = Handle(Geom2d_Line)::DownCast( curve ); - Handle(Geom2d_Circle) circle2d = Handle(Geom2d_Circle)::DownCast( curve ); - isLine = (!line2d.IsNull()); - isCirc = (!circle2d.IsNull()); +//================================================================================ +/*! + * \brief Checks validity of _neibors on EDGEs and VERTEXes + */ +//================================================================================ - if ( !isLine && !isCirc) // Check if the EDGE is close to a line - { - Bnd_B2d bndBox; - SMDS_NodeIteratorPtr nIt = smDS->GetNodes(); - while ( nIt->more() ) - bndBox.Add( helper.GetNodeUV( F, nIt->next() )); - gp_XY size = bndBox.CornerMax() - bndBox.CornerMin(); +int _LayerEdge::CheckNeiborsOnBoundary( vector< _LayerEdge* >* badNeibors, bool * needSmooth ) +{ + if ( ! Is( NEAR_BOUNDARY )) + return 0; - const double lineTol = 1e-2 * sqrt( bndBox.SquareExtent() ); - for ( int i = 0; i < 2 && !isLine; ++i ) - isLine = ( size.Coord( i+1 ) <= lineTol ); - } - if ( !isLine && !isCirc && iTo-iFrom > 2) // Check if the EDGE is close to a circle - { - // TODO - } - if ( isLine ) - { - line = new Geom_Line( gp::OX() ); // only type does matter - } - else if ( isCirc ) + int nbBad = 0; + double vol; + for ( size_t iN = 0; iN < _neibors.size(); ++iN ) + { + _LayerEdge* eN = _neibors[iN]; + if ( eN->_nodes[0]->getshapeId() == _nodes[0]->getshapeId() ) + continue; + if ( needSmooth ) + *needSmooth |= ( eN->Is( _LayerEdge::BLOCKED ) || + eN->Is( _LayerEdge::NORMAL_UPDATED ) || + eN->_pos.size() != _pos.size() ); + + SMESH_TNodeXYZ curPosN ( eN->_nodes.back() ); + SMESH_TNodeXYZ prevPosN( eN->_nodes[0] ); + for ( size_t i = 0; i < eN->_simplices.size(); ++i ) + if ( eN->_nodes.size() > 1 && + eN->_simplices[i].Includes( _nodes.back() ) && + !eN->_simplices[i].IsForward( &prevPosN, &curPosN, vol )) { - gp_Pnt2d p = circle2d->Location(); - gp_Ax2 ax( gp_Pnt( p.X(), p.Y(), 0), gp::DX()); - circle = new Geom_Circle( ax, 1.); // only center position does matter + ++nbBad; + if ( badNeibors ) + { + badNeibors->push_back( eN ); + debugMsg("Bad boundary simplex ( " + << " "<< eN->_nodes[0]->GetID() + << " "<< eN->_nodes.back()->GetID() + << " "<< eN->_simplices[i]._nPrev->GetID() + << " "<< eN->_simplices[i]._nNext->GetID() << " )" ); + } + else + { + break; + } } - } - - Handle(Geom_Curve)& res = _edge2curve[ eIndex ]; - if ( isLine ) - res = line; - else if ( isCirc ) - res = circle; - - return res; } - return i2curve->second; + return nbBad; } //================================================================================ /*! - * \brief smooth _LayerEdge's on a staight EDGE or circular EDGE + * \brief Perform 'smart' 3D smooth of nodes inflated from FACE + * \retval int - nb of bad simplices around this _LayerEdge */ //================================================================================ -bool _ViscousBuilder::smoothAnalyticEdge( _SolidData& data, - const int iFrom, - const int iTo, - Handle(Geom_Surface)& surface, - const TopoDS_Face& F, - SMESH_MesherHelper& helper) +int _LayerEdge::Smooth(const int step, bool findBest, vector< _LayerEdge* >& toSmooth ) { - TopoDS_Shape S = helper.GetSubShapeByNode( data._edges[ iFrom ]->_nodes[0], - helper.GetMeshDS()); - TopoDS_Edge E = TopoDS::Edge( S ); + if ( !Is( MOVED ) || Is( SMOOTHED ) || Is( BLOCKED )) + return 0; // shape of simplices not changed + if ( _simplices.size() < 2 ) + return 0; // _LayerEdge inflated along EDGE or FACE - Handle(Geom_Curve) curve = data.CurveForSmooth( E, iFrom, iTo, surface, F, helper ); - if ( curve.IsNull() ) return false; + if ( Is( DIFFICULT )) // || Is( ON_CONCAVE_FACE ) + findBest = true; - // compute a relative length of segments - vector< double > len( iTo-iFrom+1 ); + const gp_XYZ& curPos = _pos.back(); + const gp_XYZ& prevPos = _pos[0]; //PrevPos(); + + // quality metrics (orientation) of tetras around _tgtNode + int nbOkBefore = 0; + double vol, minVolBefore = 1e100; + for ( size_t i = 0; i < _simplices.size(); ++i ) { - double curLen, prevLen = len[0] = 1.0; - for ( int i = iFrom; i < iTo; ++i ) - { - curLen = prevLen * data._edges[i]->_2neibors->_wgt[0] / data._edges[i]->_2neibors->_wgt[1]; - len[i-iFrom+1] = len[i-iFrom] + curLen; - prevLen = curLen; - } + nbOkBefore += _simplices[i].IsForward( &prevPos, &curPos, vol ); + minVolBefore = Min( minVolBefore, vol ); } + int nbBad = _simplices.size() - nbOkBefore; + + bool bndNeedSmooth = false; + if ( nbBad == 0 ) + nbBad = CheckNeiborsOnBoundary( 0, & bndNeedSmooth ); + if ( nbBad > 0 ) + Set( DISTORTED ); - if ( curve->IsKind( STANDARD_TYPE( Geom_Line ))) + // evaluate min angle + if ( nbBad == 0 && !findBest && !bndNeedSmooth ) { - if ( F.IsNull() ) // 3D + size_t nbGoodAngles = _simplices.size(); + double angle; + for ( size_t i = 0; i < _simplices.size(); ++i ) { - SMESH_TNodeXYZ p0( data._edges[iFrom]->_2neibors->_nodes[0]); - SMESH_TNodeXYZ p1( data._edges[iTo-1]->_2neibors->_nodes[1]); - for ( int i = iFrom; i < iTo; ++i ) - { - double r = len[i-iFrom] / len.back(); - gp_XYZ newPos = p0 * ( 1. - r ) + p1 * r; - data._edges[i]->_pos.back() = newPos; - SMDS_MeshNode* tgtNode = const_cast( data._edges[i]->_nodes.back() ); - tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() ); - dumpMove( tgtNode ); - } + if ( !_simplices[i].IsMinAngleOK( curPos, angle ) && angle > _minAngle ) + --nbGoodAngles; } - else + if ( nbGoodAngles == _simplices.size() ) { - gp_XY uv0 = helper.GetNodeUV( F, data._edges[iFrom]->_2neibors->_nodes[0]); - gp_XY uv1 = helper.GetNodeUV( F, data._edges[iTo-1]->_2neibors->_nodes[1]); - if ( data._edges[iFrom]->_2neibors->_nodes[0] == - data._edges[iTo-1]->_2neibors->_nodes[1] ) // closed edge - { - int iPeriodic = helper.GetPeriodicIndex(); - if ( iPeriodic == 1 || iPeriodic == 2 ) - { - uv1.SetCoord( iPeriodic, helper.GetOtherParam( uv1.Coord( iPeriodic ))); - if ( uv0.Coord( iPeriodic ) > uv1.Coord( iPeriodic )) - std::swap( uv0, uv1 ); - } - } - const gp_XY rangeUV = uv1 - uv0; - for ( int i = iFrom; i < iTo; ++i ) - { - double r = len[i-iFrom] / len.back(); - gp_XY newUV = uv0 + r * rangeUV; - data._edges[i]->_pos.back().SetCoord( newUV.X(), newUV.Y(), 0 ); + Unset( MOVED ); + return 0; + } + } + if ( Is( ON_CONCAVE_FACE )) + findBest = true; - gp_Pnt newPos = surface->Value( newUV.X(), newUV.Y() ); - SMDS_MeshNode* tgtNode = const_cast( data._edges[i]->_nodes.back() ); - tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() ); - dumpMove( tgtNode ); + if ( step % 2 == 0 ) + findBest = false; - SMDS_FacePosition* pos = static_cast( tgtNode->GetPosition() ); - pos->SetUParameter( newUV.X() ); - pos->SetVParameter( newUV.Y() ); - } - } - return true; + if ( Is( ON_CONCAVE_FACE ) && !findBest ) // alternate FUN_CENTROIDAL and FUN_LAPLACIAN + { + if ( _smooFunction == _funs[ FUN_LAPLACIAN ] ) + _smooFunction = _funs[ FUN_CENTROIDAL ]; + else + _smooFunction = _funs[ FUN_LAPLACIAN ]; } - if ( curve->IsKind( STANDARD_TYPE( Geom_Circle ))) + // compute new position for the last _pos using different _funs + gp_XYZ newPos; + bool moved = false; + for ( int iFun = -1; iFun < theNbSmooFuns; ++iFun ) { - Handle(Geom_Circle) circle = Handle(Geom_Circle)::DownCast( curve ); - gp_Pnt center3D = circle->Location(); + if ( iFun < 0 ) + newPos = (this->*_smooFunction)(); // fun chosen by ChooseSmooFunction() + else if ( _funs[ iFun ] == _smooFunction ) + continue; // _smooFunction again + else if ( step > 1 ) + newPos = (this->*_funs[ iFun ])(); // try other smoothing fun + else + break; // let "easy" functions improve elements around distorted ones - if ( F.IsNull() ) // 3D + if ( _curvature ) { - if ( data._edges[iFrom]->_2neibors->_nodes[0] == - data._edges[iTo-1]->_2neibors->_nodes[1] ) - return true; // closed EDGE - nothing to do - - return false; // TODO ??? + double delta = _curvature->lenDelta( _len ); + if ( delta > 0 ) + newPos += _normal * delta; + else + { + double segLen = _normal * ( newPos - prevPos ); + if ( segLen + delta > 0 ) + newPos += _normal * delta; + } + // double segLenChange = _normal * ( curPos - newPos ); + // newPos += 0.5 * _normal * segLenChange; } - else // 2D + + int nbOkAfter = 0; + double minVolAfter = 1e100; + for ( size_t i = 0; i < _simplices.size(); ++i ) { - const gp_XY center( center3D.X(), center3D.Y() ); + nbOkAfter += _simplices[i].IsForward( &prevPos, &newPos, vol ); + minVolAfter = Min( minVolAfter, vol ); + } + // get worse? + if ( nbOkAfter < nbOkBefore ) + continue; - gp_XY uv0 = helper.GetNodeUV( F, data._edges[iFrom]->_2neibors->_nodes[0]); - gp_XY uvM = helper.GetNodeUV( F, data._edges[iFrom]->_nodes.back()); - gp_XY uv1 = helper.GetNodeUV( F, data._edges[iTo-1]->_2neibors->_nodes[1]); - gp_Vec2d vec0( center, uv0 ); - gp_Vec2d vecM( center, uvM ); - gp_Vec2d vec1( center, uv1 ); - double uLast = vec0.Angle( vec1 ); // -PI - +PI - double uMidl = vec0.Angle( vecM ); - if ( uLast * uMidl < 0. ) - uLast += ( uMidl > 0 ? +2. : -2. ) * M_PI; - const double radius = 0.5 * ( vec0.Magnitude() + vec1.Magnitude() ); + if (( findBest ) && + ( nbOkAfter == nbOkBefore ) && + ( minVolAfter <= minVolBefore )) + continue; - gp_Ax2d axis( center, vec0 ); - gp_Circ2d circ( axis, radius ); - for ( int i = iFrom; i < iTo; ++i ) - { - double newU = uLast * len[i-iFrom] / len.back(); - gp_Pnt2d newUV = ElCLib::Value( newU, circ ); - data._edges[i]->_pos.back().SetCoord( newUV.X(), newUV.Y(), 0 ); + nbBad = _simplices.size() - nbOkAfter; + minVolBefore = minVolAfter; + nbOkBefore = nbOkAfter; + moved = true; - gp_Pnt newPos = surface->Value( newUV.X(), newUV.Y() ); - SMDS_MeshNode* tgtNode = const_cast( data._edges[i]->_nodes.back() ); - tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() ); - dumpMove( tgtNode ); + SMDS_MeshNode* n = const_cast< SMDS_MeshNode* >( _nodes.back() ); + n->setXYZ( newPos.X(), newPos.Y(), newPos.Z()); + _pos.back() = newPos; - SMDS_FacePosition* pos = static_cast( tgtNode->GetPosition() ); - pos->SetUParameter( newUV.X() ); - pos->SetVParameter( newUV.Y() ); - } + dumpMoveComm( n, SMESH_Comment( _funNames[ iFun < 0 ? smooFunID() : iFun ] ) + << (nbBad ? " --BAD" : "")); + + if ( iFun > -1 ) + { + continue; // look for a better function } - return true; + + if ( !findBest ) + break; + + } // loop on smoothing functions + + if ( moved ) // notify _neibors + { + Set( SMOOTHED ); + for ( size_t i = 0; i < _neibors.size(); ++i ) + if ( !_neibors[i]->Is( MOVED )) + { + _neibors[i]->Set( MOVED ); + toSmooth.push_back( _neibors[i] ); + } } - return false; + return nbBad; } //================================================================================ /*! - * \brief Modify normals of _LayerEdge's on EDGE's to avoid intersection with - * _LayerEdge's on neighbor EDGE's + * \brief Perform 'smart' 3D smooth of nodes inflated from FACE + * \retval int - nb of bad simplices around this _LayerEdge */ //================================================================================ -bool _ViscousBuilder::updateNormals( _SolidData& data, - SMESH_MesherHelper& helper ) +int _LayerEdge::Smooth(const int step, const bool isConcaveFace, bool findBest ) { - // make temporary quadrangles got by extrusion of - // mesh edges along _LayerEdge._normal's + if ( !_smooFunction ) + return 0; // _LayerEdge inflated along EDGE or FACE + if ( Is( BLOCKED )) + return 0; // not inflated - vector< const SMDS_MeshElement* > tmpFaces; + const gp_XYZ& curPos = _pos.back(); + const gp_XYZ& prevPos = _pos[0]; //PrevCheckPos(); + + // quality metrics (orientation) of tetras around _tgtNode + int nbOkBefore = 0; + double vol, minVolBefore = 1e100; + for ( size_t i = 0; i < _simplices.size(); ++i ) { - set< SMESH_TLink > extrudedLinks; // contains target nodes - vector< const SMDS_MeshNode*> nodes(4); // of a tmp mesh face + nbOkBefore += _simplices[i].IsForward( &prevPos, &curPos, vol ); + minVolBefore = Min( minVolBefore, vol ); + } + int nbBad = _simplices.size() - nbOkBefore; - dumpFunction(SMESH_Comment("makeTmpFacesOnEdges")<IsOnEdge() || !edge->_sWOL.IsNull() ) continue; - const SMDS_MeshNode* tgt1 = edge->_nodes.back(); - for ( int j = 0; j < 2; ++j ) // loop on _2NearEdges - { - const SMDS_MeshNode* tgt2 = edge->_2neibors->_nodes[j]; - pair< set< SMESH_TLink >::iterator, bool > link_isnew = - extrudedLinks.insert( SMESH_TLink( tgt1, tgt2 )); - if ( !link_isnew.second ) - { - extrudedLinks.erase( link_isnew.first ); - continue; // already extruded and will no more encounter - } - // look for a _LayerEdge containg tgt2 -// _LayerEdge* neiborEdge = 0; -// unsigned di = 0; // check _edges[i+di] and _edges[i-di] -// while ( !neiborEdge && ++di <= data._edges.size() ) -// { -// if ( i+di < data._edges.size() && data._edges[i+di]->_nodes.back() == tgt2 ) -// neiborEdge = data._edges[i+di]; -// else if ( di <= i && data._edges[i-di]->_nodes.back() == tgt2 ) -// neiborEdge = data._edges[i-di]; -// } -// if ( !neiborEdge ) -// return error("updateNormals(): neighbor _LayerEdge not found", data._index); - _LayerEdge* neiborEdge = edge->_2neibors->_edges[j]; + if ( isConcaveFace ) // alternate FUN_CENTROIDAL and FUN_LAPLACIAN + { + if ( _smooFunction == _funs[ FUN_CENTROIDAL ] && step % 2 ) + _smooFunction = _funs[ FUN_LAPLACIAN ]; + else if ( _smooFunction == _funs[ FUN_LAPLACIAN ] && !( step % 2 )) + _smooFunction = _funs[ FUN_CENTROIDAL ]; + } - TmpMeshFaceOnEdge* f = new TmpMeshFaceOnEdge( edge, neiborEdge, --_tmpFaceID ); - tmpFaces.push_back( f ); + // compute new position for the last _pos using different _funs + gp_XYZ newPos; + for ( int iFun = -1; iFun < theNbSmooFuns; ++iFun ) + { + if ( iFun < 0 ) + newPos = (this->*_smooFunction)(); // fun chosen by ChooseSmooFunction() + else if ( _funs[ iFun ] == _smooFunction ) + continue; // _smooFunction again + else if ( step > 1 ) + newPos = (this->*_funs[ iFun ])(); // try other smoothing fun + else + break; // let "easy" functions improve elements around distorted ones - dumpCmd(SMESH_Comment("mesh.AddFace([ ") - <_nn[0]->GetID()<<", "<_nn[1]->GetID()<<", " - <_nn[2]->GetID()<<", "<_nn[3]->GetID()<<" ])"); + if ( _curvature ) + { + double delta = _curvature->lenDelta( _len ); + if ( delta > 0 ) + newPos += _normal * delta; + else + { + double segLen = _normal * ( newPos - prevPos ); + if ( segLen + delta > 0 ) + newPos += _normal * delta; } + // double segLenChange = _normal * ( curPos - newPos ); + // newPos += 0.5 * _normal * segLenChange; } - dumpFunctionEnd(); - } - // Check if _LayerEdge's based on EDGE's intersects tmpFaces. - // Perform two loops on _LayerEdge on EDGE's: - // 1) to find and fix intersection - // 2) to check that no new intersection appears as result of 1) - - SMDS_ElemIteratorPtr fIt( new SMDS_ElementVectorIterator( tmpFaces.begin(), - tmpFaces.end())); - auto_ptr searcher - ( SMESH_MeshAlgos::GetElementSearcher( *getMeshDS(), fIt )); - - // 1) Find intersections - double dist; - const SMDS_MeshElement* face; - typedef map< _LayerEdge*, set< _LayerEdge*, _LayerEdgeCmp >, _LayerEdgeCmp > TLEdge2LEdgeSet; - TLEdge2LEdgeSet edge2CloseEdge; - const double eps = data._epsilon * data._epsilon; - for ( unsigned i = 0; i < data._edges.size(); ++i ) - { - _LayerEdge* edge = data._edges[i]; - if ( !edge->IsOnEdge() || !edge->_sWOL.IsNull() ) continue; - if ( edge->FindIntersection( *searcher, dist, eps, &face )) + int nbOkAfter = 0; + double minVolAfter = 1e100; + for ( size_t i = 0; i < _simplices.size(); ++i ) { - const TmpMeshFaceOnEdge* f = (const TmpMeshFaceOnEdge*) face; - set< _LayerEdge*, _LayerEdgeCmp > & ee = edge2CloseEdge[ edge ]; - ee.insert( f->_le1 ); - ee.insert( f->_le2 ); - if ( f->_le1->IsOnEdge() && f->_le1->_sWOL.IsNull() ) - edge2CloseEdge[ f->_le1 ].insert( edge ); - if ( f->_le2->IsOnEdge() && f->_le2->_sWOL.IsNull() ) - edge2CloseEdge[ f->_le2 ].insert( edge ); + nbOkAfter += _simplices[i].IsForward( &prevPos, &newPos, vol ); + minVolAfter = Min( minVolAfter, vol ); } - } + // get worse? + if ( nbOkAfter < nbOkBefore ) + continue; + if (( isConcaveFace || findBest ) && + ( nbOkAfter == nbOkBefore ) && + ( minVolAfter <= minVolBefore ) + ) + continue; - // Set _LayerEdge._normal + nbBad = _simplices.size() - nbOkAfter; + minVolBefore = minVolAfter; + nbOkBefore = nbOkAfter; - if ( !edge2CloseEdge.empty() ) - { - dumpFunction(SMESH_Comment("updateNormals")<( _nodes.back() ); + n->setXYZ( newPos.X(), newPos.Y(), newPos.Z()); + _pos.back() = newPos; - TLEdge2LEdgeSet::iterator e2ee = edge2CloseEdge.begin(); - for ( ; e2ee != edge2CloseEdge.end(); ++e2ee ) - { - _LayerEdge* edge1 = e2ee->first; - _LayerEdge* edge2 = 0; - set< _LayerEdge*, _LayerEdgeCmp >& ee = e2ee->second; + dumpMoveComm( n, SMESH_Comment( _funNames[ iFun < 0 ? smooFunID() : iFun ] ) + << ( nbBad ? "--BAD" : "")); - // find EDGEs the edges reside - TopoDS_Edge E1, E2; - TopoDS_Shape S = helper.GetSubShapeByNode( edge1->_nodes[0], getMeshDS() ); - if ( S.ShapeType() != TopAbs_EDGE ) - continue; // TODO: find EDGE by VERTEX - E1 = TopoDS::Edge( S ); - set< _LayerEdge*, _LayerEdgeCmp >::iterator eIt = ee.begin(); - while ( E2.IsNull() && eIt != ee.end()) - { - _LayerEdge* e2 = *eIt++; - TopoDS_Shape S = helper.GetSubShapeByNode( e2->_nodes[0], getMeshDS() ); - if ( S.ShapeType() == TopAbs_EDGE ) - E2 = TopoDS::Edge( S ), edge2 = e2; - } - if ( E2.IsNull() ) continue; // TODO: find EDGE by VERTEX + // commented for IPAL0052478 + // _len -= prevPos.Distance(SMESH_TNodeXYZ( n )); + // _len += prevPos.Distance(newPos); - // find 3 FACEs sharing 2 EDGEs + if ( iFun > -1 ) // findBest || the chosen _fun makes worse + { + //_smooFunction = _funs[ iFun ]; + // cout << "# " << _funNames[ iFun ] << "\t N:" << _nodes.back()->GetID() + // << "\t nbBad: " << _simplices.size() - nbOkAfter + // << " minVol: " << minVolAfter + // << " " << newPos.X() << " " << newPos.Y() << " " << newPos.Z() + // << endl; + continue; // look for a better function + } - TopoDS_Face FF1[2], FF2[2]; - PShapeIteratorPtr fIt = helper.GetAncestors(E1, *_mesh, TopAbs_FACE); - while ( fIt->more() && FF1[1].IsNull()) - { - const TopoDS_Face *F = (const TopoDS_Face*) fIt->next(); - if ( helper.IsSubShape( *F, data._solid)) - FF1[ FF1[0].IsNull() ? 0 : 1 ] = *F; - } - fIt = helper.GetAncestors(E2, *_mesh, TopAbs_FACE); - while ( fIt->more() && FF2[1].IsNull()) - { - const TopoDS_Face *F = (const TopoDS_Face*) fIt->next(); - if ( helper.IsSubShape( *F, data._solid)) - FF2[ FF2[0].IsNull() ? 0 : 1 ] = *F; - } - // exclude a FACE common to E1 and E2 (put it at [1] in FF* ) - if ( FF1[0].IsSame( FF2[0]) || FF1[0].IsSame( FF2[1])) - std::swap( FF1[0], FF1[1] ); - if ( FF2[0].IsSame( FF1[0]) ) - std::swap( FF2[0], FF2[1] ); - if ( FF1[0].IsNull() || FF2[0].IsNull() ) - continue; + if ( !findBest ) + break; -// // get a new normal for edge1 - bool ok; - gp_Vec dir1 = edge1->_normal, dir2 = edge2->_normal; - if ( edge1->_cosin < 0 ) - dir1 = getFaceDir( FF1[0], E1, edge1->_nodes[0], helper, ok ).Normalized(); - if ( edge2->_cosin < 0 ) - dir2 = getFaceDir( FF2[0], E2, edge2->_nodes[0], helper, ok ).Normalized(); - // gp_Vec dir1 = getFaceDir( FF1[0], E1, edge1->_nodes[0], helper, ok ); -// gp_Vec dir2 = getFaceDir( FF2[0], E2, edge2->_nodes[0], helper, ok2 ); -// double wgt1 = ( edge1->_cosin + 1 ) / ( edge1->_cosin + edge2->_cosin + 2 ); -// double wgt2 = ( edge2->_cosin + 1 ) / ( edge1->_cosin + edge2->_cosin + 2 ); -// gp_Vec newNorm = wgt1 * dir1 + wgt2 * dir2; -// newNorm.Normalize(); - - double wgt1 = ( edge1->_cosin + 1 ) / ( edge1->_cosin + edge2->_cosin + 2 ); - double wgt2 = ( edge2->_cosin + 1 ) / ( edge1->_cosin + edge2->_cosin + 2 ); - gp_Vec newNorm = wgt1 * dir1 + wgt2 * dir2; - newNorm.Normalize(); - - edge1->_normal = newNorm.XYZ(); - - // update data of edge1 depending on _normal - const SMDS_MeshNode *n1, *n2; - n1 = edge1->_2neibors->_edges[0]->_nodes[0]; - n2 = edge1->_2neibors->_edges[1]->_nodes[0]; - //if ( !findNeiborsOnEdge( edge1, n1, n2, data )) - //continue; - edge1->SetDataByNeighbors( n1, n2, helper ); - gp_Vec dirInFace; - if ( edge1->_cosin < 0 ) - dirInFace = dir1; - else - getFaceDir( FF1[0], E1, edge1->_nodes[0], helper, ok ); - double angle = dir1.Angle( edge1->_normal ); // [0,PI] - edge1->SetCosin( cos( angle )); + } // loop on smoothing functions - // limit data._stepSize - if ( edge1->_cosin > 0.1 ) - { - SMDS_ElemIteratorPtr fIt = edge1->_nodes[0]->GetInverseElementIterator(SMDSAbs_Face); - while ( fIt->more() ) - limitStepSize( data, fIt->next(), edge1->_cosin ); - } - // set new XYZ of target node - edge1->InvalidateStep( 1 ); - edge1->_len = 0; - edge1->SetNewLength( data._stepSize, helper ); - } + return nbBad; +} - // Update normals and other dependent data of not intersecting _LayerEdge's - // neighboring the intersecting ones +//================================================================================ +/*! + * \brief Chooses a smoothing technic giving a position most close to an initial one. + * For a correct result, _simplices must contain nodes lying on geometry. + */ +//================================================================================ - for ( e2ee = edge2CloseEdge.begin(); e2ee != edge2CloseEdge.end(); ++e2ee ) - { - _LayerEdge* edge1 = e2ee->first; - if ( !edge1->_2neibors ) - continue; - for ( int j = 0; j < 2; ++j ) // loop on 2 neighbors - { - _LayerEdge* neighbor = edge1->_2neibors->_edges[j]; - if ( edge2CloseEdge.count ( neighbor )) - continue; // j-th neighbor is also intersected - _LayerEdge* prevEdge = edge1; - const int nbSteps = 6; - for ( int step = nbSteps; step; --step ) // step from edge1 in j-th direction - { - if ( !neighbor->_2neibors ) - break; // neighbor is on VERTEX - int iNext = 0; - _LayerEdge* nextEdge = neighbor->_2neibors->_edges[iNext]; - if ( nextEdge == prevEdge ) - nextEdge = neighbor->_2neibors->_edges[ ++iNext ]; -// const double& wgtPrev = neighbor->_2neibors->_wgt[1-iNext]; -// const double& wgtNext = neighbor->_2neibors->_wgt[iNext]; - double r = double(step-1)/nbSteps; - if ( !nextEdge->_2neibors ) - r = 0.5; +void _LayerEdge::ChooseSmooFunction( const set< TGeomID >& concaveVertices, + const TNode2Edge& n2eMap) +{ + if ( _smooFunction ) return; - gp_XYZ newNorm = prevEdge->_normal * r + nextEdge->_normal * (1-r); - newNorm.Normalize(); + // use smoothNefPolygon() near concaveVertices + if ( !concaveVertices.empty() ) + { + _smooFunction = _funs[ FUN_CENTROIDAL ]; - neighbor->_normal = newNorm; - neighbor->SetCosin( prevEdge->_cosin * r + nextEdge->_cosin * (1-r) ); - neighbor->SetDataByNeighbors( prevEdge->_nodes[0], nextEdge->_nodes[0], helper ); + Set( ON_CONCAVE_FACE ); - neighbor->InvalidateStep( 1 ); - neighbor->_len = 0; - neighbor->SetNewLength( data._stepSize, helper ); + for ( size_t i = 0; i < _simplices.size(); ++i ) + { + if ( concaveVertices.count( _simplices[i]._nPrev->getshapeId() )) + { + _smooFunction = _funs[ FUN_NEFPOLY ]; - // goto the next neighbor - prevEdge = neighbor; - neighbor = nextEdge; + // set FUN_CENTROIDAL to neighbor edges + for ( i = 0; i < _neibors.size(); ++i ) + { + if ( _neibors[i]->_nodes[0]->GetPosition()->GetDim() == 2 ) + { + _neibors[i]->_smooFunction = _funs[ FUN_CENTROIDAL ]; + } } + return; } } - dumpFunctionEnd(); + + // // this coice is done only if ( !concaveVertices.empty() ) for Grids/smesh/bugs_19/X1 + // // where the nodes are smoothed too far along a sphere thus creating + // // inverted _simplices + // double dist[theNbSmooFuns]; + // //double coef[theNbSmooFuns] = { 1., 1.2, 1.4, 1.4 }; + // double coef[theNbSmooFuns] = { 1., 1., 1., 1. }; + + // double minDist = Precision::Infinite(); + // gp_Pnt p = SMESH_TNodeXYZ( _nodes[0] ); + // for ( int i = 0; i < FUN_NEFPOLY; ++i ) + // { + // gp_Pnt newP = (this->*_funs[i])(); + // dist[i] = p.SquareDistance( newP ); + // if ( dist[i]*coef[i] < minDist ) + // { + // _smooFunction = _funs[i]; + // minDist = dist[i]*coef[i]; + // } + // } + } + else + { + _smooFunction = _funs[ FUN_LAPLACIAN ]; } - // 2) Check absence of intersections - // TODO? + // int minDim = 3; + // for ( size_t i = 0; i < _simplices.size(); ++i ) + // minDim = Min( minDim, _simplices[i]._nPrev->GetPosition()->GetDim() ); + // if ( minDim == 0 ) + // _smooFunction = _funs[ FUN_CENTROIDAL ]; + // else if ( minDim == 1 ) + // _smooFunction = _funs[ FUN_CENTROIDAL ]; + + + // int iMin; + // for ( int i = 0; i < FUN_NB; ++i ) + // { + // //cout << dist[i] << " "; + // if ( _smooFunction == _funs[i] ) { + // iMin = i; + // //debugMsg( fNames[i] ); + // break; + // } + // } + // cout << _funNames[ iMin ] << "\t N:" << _nodes.back()->GetID() << endl; +} - for ( unsigned i = 0 ; i < tmpFaces.size(); ++i ) - delete tmpFaces[i]; +//================================================================================ +/*! + * \brief Returns a name of _SmooFunction + */ +//================================================================================ - return true; +int _LayerEdge::smooFunID( _LayerEdge::PSmooFun fun) const +{ + if ( !fun ) + fun = _smooFunction; + for ( int i = 0; i < theNbSmooFuns; ++i ) + if ( fun == _funs[i] ) + return i; + + return theNbSmooFuns; } //================================================================================ /*! - * \brief Looks for intersection of it's last segment with faces - * \param distance - returns shortest distance from the last node to intersection + * \brief Computes a new node position using Laplacian smoothing */ //================================================================================ -bool _LayerEdge::FindIntersection( SMESH_ElementSearcher& searcher, - double & distance, - const double& epsilon, - const SMDS_MeshElement** face) +gp_XYZ _LayerEdge::smoothLaplacian() { - vector< const SMDS_MeshElement* > suspectFaces; - double segLen; - gp_Ax1 lastSegment = LastSegment(segLen); - searcher.GetElementsNearLine( lastSegment, SMDSAbs_Face, suspectFaces ); + gp_XYZ newPos (0,0,0); + for ( size_t i = 0; i < _simplices.size(); ++i ) + newPos += SMESH_TNodeXYZ( _simplices[i]._nPrev ); + newPos /= _simplices.size(); - bool segmentIntersected = false; - distance = Precision::Infinite(); - int iFace = -1; // intersected face - for ( unsigned j = 0 ; j < suspectFaces.size() && !segmentIntersected; ++j ) + return newPos; +} + +//================================================================================ +/*! + * \brief Computes a new node position using angular-based smoothing + */ +//================================================================================ + +gp_XYZ _LayerEdge::smoothAngular() +{ + vector< gp_Vec > edgeDir; edgeDir. reserve( _simplices.size() + 1 ); + vector< double > edgeSize; edgeSize.reserve( _simplices.size() ); + vector< gp_XYZ > points; points. reserve( _simplices.size() + 1 ); + + gp_XYZ pPrev = SMESH_TNodeXYZ( _simplices.back()._nPrev ); + gp_XYZ pN( 0,0,0 ); + for ( size_t i = 0; i < _simplices.size(); ++i ) { - const SMDS_MeshElement* face = suspectFaces[j]; - if ( face->GetNodeIndex( _nodes.back() ) >= 0 || - face->GetNodeIndex( _nodes[0] ) >= 0 ) - continue; // face sharing _LayerEdge node - const int nbNodes = face->NbCornerNodes(); - bool intFound = false; - double dist; - SMDS_MeshElement::iterator nIt = face->begin_nodes(); - if ( nbNodes == 3 ) + gp_XYZ p = SMESH_TNodeXYZ( _simplices[i]._nPrev ); + edgeDir.push_back( p - pPrev ); + edgeSize.push_back( edgeDir.back().Magnitude() ); + if ( edgeSize.back() < numeric_limits::min() ) { - intFound = SegTriaInter( lastSegment, *nIt++, *nIt++, *nIt++, dist, epsilon ); + edgeDir.pop_back(); + edgeSize.pop_back(); } else { - const SMDS_MeshNode* tria[3]; - tria[0] = *nIt++; - tria[1] = *nIt++;; - for ( int n2 = 2; n2 < nbNodes && !intFound; ++n2 ) - { - tria[2] = *nIt++; - intFound = SegTriaInter(lastSegment, tria[0], tria[1], tria[2], dist, epsilon ); - tria[1] = tria[2]; - } - } - if ( intFound ) - { - if ( dist < segLen*(1.01) && dist > -(_len-segLen) ) - segmentIntersected = true; - if ( distance > dist ) - distance = dist, iFace = j; + edgeDir.back() /= edgeSize.back(); + points.push_back( p ); + pN += p; } + pPrev = p; } - if ( iFace != -1 && face ) *face = suspectFaces[iFace]; -// if ( distance && iFace > -1 ) -// { -// // distance is used to limit size of inflation step which depends on -// // whether the intersected face bears viscous layers or not -// bool faceHasVL = suspectFaces[iFace]->GetID() < 1; -// if ( faceHasVL ) -// *distance /= 2; -// } - if ( segmentIntersected ) + edgeDir.push_back ( edgeDir[0] ); + edgeSize.push_back( edgeSize[0] ); + pN /= points.size(); + + gp_XYZ newPos(0,0,0); + double sumSize = 0; + for ( size_t i = 0; i < points.size(); ++i ) { -#ifdef __myDEBUG - SMDS_MeshElement::iterator nIt = suspectFaces[iFace]->begin_nodes(); - gp_XYZ intP( lastSegment.Location().XYZ() + lastSegment.Direction().XYZ() * distance ); - cout << "nodes: tgt " << _nodes.back()->GetID() << " src " << _nodes[0]->GetID() - << ", intersection with face (" - << (*nIt++)->GetID()<<" "<< (*nIt++)->GetID()<<" "<< (*nIt++)->GetID() - << ") at point (" << intP.X() << ", " << intP.Y() << ", " << intP.Z() - << ") distance = " << distance - segLen<< endl; + gp_Vec toN = pN - points[i]; + double toNLen = toN.Magnitude(); + if ( toNLen < numeric_limits::min() ) + { + newPos += pN; + continue; + } + gp_Vec bisec = edgeDir[i] + edgeDir[i+1]; + double bisecLen = bisec.SquareMagnitude(); + if ( bisecLen < numeric_limits::min() ) + { + gp_Vec norm = edgeDir[i] ^ toN; + bisec = norm ^ edgeDir[i]; + bisecLen = bisec.SquareMagnitude(); + } + bisecLen = Sqrt( bisecLen ); + bisec /= bisecLen; + +#if 1 + gp_XYZ pNew = ( points[i] + bisec.XYZ() * toNLen ) * bisecLen; + sumSize += bisecLen; +#else + gp_XYZ pNew = ( points[i] + bisec.XYZ() * toNLen ) * ( edgeSize[i] + edgeSize[i+1] ); + sumSize += ( edgeSize[i] + edgeSize[i+1] ); #endif + newPos += pNew; } + newPos /= sumSize; - distance -= segLen; + // project newPos to an average plane - return segmentIntersected; + gp_XYZ norm(0,0,0); // plane normal + points.push_back( points[0] ); + for ( size_t i = 1; i < points.size(); ++i ) + { + gp_XYZ vec1 = points[ i-1 ] - pN; + gp_XYZ vec2 = points[ i ] - pN; + gp_XYZ cross = vec1 ^ vec2; + try { + cross.Normalize(); + if ( cross * norm < numeric_limits::min() ) + norm += cross.Reversed(); + else + norm += cross; + } + catch (Standard_Failure) { // if |cross| == 0. + } + } + gp_XYZ vec = newPos - pN; + double r = ( norm * vec ) / norm.SquareModulus(); // param [0,1] on norm + newPos = newPos - r * norm; + + return newPos; } //================================================================================ /*! - * \brief Returns size and direction of the last segment + * \brief Computes a new node position using weigthed node positions */ //================================================================================ -gp_Ax1 _LayerEdge::LastSegment(double& segLen) const +gp_XYZ _LayerEdge::smoothLengthWeighted() { - // find two non-coincident positions - gp_XYZ orig = _pos.back(); - gp_XYZ dir; - int iPrev = _pos.size() - 2; - while ( iPrev >= 0 ) - { - dir = orig - _pos[iPrev]; - if ( dir.SquareModulus() > 1e-100 ) - break; - else - iPrev--; - } + vector< double > edgeSize; edgeSize.reserve( _simplices.size() + 1); + vector< gp_XYZ > points; points. reserve( _simplices.size() ); - // make gp_Ax1 - gp_Ax1 segDir; - if ( iPrev < 0 ) - { - segDir.SetLocation( SMESH_TNodeXYZ( _nodes[0] )); - segDir.SetDirection( _normal ); - segLen = 0; - } - else + gp_XYZ pPrev = SMESH_TNodeXYZ( _simplices.back()._nPrev ); + for ( size_t i = 0; i < _simplices.size(); ++i ) { - gp_Pnt pPrev = _pos[ iPrev ]; - if ( !_sWOL.IsNull() ) + gp_XYZ p = SMESH_TNodeXYZ( _simplices[i]._nPrev ); + edgeSize.push_back( ( p - pPrev ).Modulus() ); + if ( edgeSize.back() < numeric_limits::min() ) { - TopLoc_Location loc; - if ( _sWOL.ShapeType() == TopAbs_EDGE ) - { - double f,l; - Handle(Geom_Curve) curve = BRep_Tool::Curve( TopoDS::Edge( _sWOL ), loc, f,l); - pPrev = curve->Value( pPrev.X() ).Transformed( loc ); - } - else - { - Handle(Geom_Surface) surface = BRep_Tool::Surface( TopoDS::Face(_sWOL), loc ); - pPrev = surface->Value( pPrev.X(), pPrev.Y() ).Transformed( loc ); - } - dir = SMESH_TNodeXYZ( _nodes.back() ) - pPrev.XYZ(); + edgeSize.pop_back(); } - segDir.SetLocation( pPrev ); - segDir.SetDirection( dir ); - segLen = dir.Modulus(); + else + { + points.push_back( p ); + } + pPrev = p; } + edgeSize.push_back( edgeSize[0] ); - return segDir; + gp_XYZ newPos(0,0,0); + double sumSize = 0; + for ( size_t i = 0; i < points.size(); ++i ) + { + newPos += points[i] * ( edgeSize[i] + edgeSize[i+1] ); + sumSize += edgeSize[i] + edgeSize[i+1]; + } + newPos /= sumSize; + return newPos; } //================================================================================ /*! - * \brief Test intersection of the last segment with a given triangle - * using Moller-Trumbore algorithm - * Intersection is detected if distance to intersection is less than _LayerEdge._len + * \brief Computes a new node position using angular-based smoothing */ //================================================================================ -bool _LayerEdge::SegTriaInter( const gp_Ax1& lastSegment, - const SMDS_MeshNode* n0, - const SMDS_MeshNode* n1, - const SMDS_MeshNode* n2, - double& t, - const double& EPSILON) const +gp_XYZ _LayerEdge::smoothCentroidal() { - //const double EPSILON = 1e-6; + gp_XYZ newPos(0,0,0); + gp_XYZ pN = SMESH_TNodeXYZ( _nodes.back() ); + double sumSize = 0; + for ( size_t i = 0; i < _simplices.size(); ++i ) + { + gp_XYZ p1 = SMESH_TNodeXYZ( _simplices[i]._nPrev ); + gp_XYZ p2 = SMESH_TNodeXYZ( _simplices[i]._nNext ); + gp_XYZ gc = ( pN + p1 + p2 ) / 3.; + double size = (( p1 - pN ) ^ ( p2 - pN )).Modulus(); - gp_XYZ orig = lastSegment.Location().XYZ(); - gp_XYZ dir = lastSegment.Direction().XYZ(); + sumSize += size; + newPos += gc * size; + } + newPos /= sumSize; - SMESH_TNodeXYZ vert0( n0 ); - SMESH_TNodeXYZ vert1( n1 ); - SMESH_TNodeXYZ vert2( n2 ); + return newPos; +} - /* calculate distance from vert0 to ray origin */ - gp_XYZ tvec = orig - vert0; +//================================================================================ +/*! + * \brief Computes a new node position located inside a Nef polygon + */ +//================================================================================ - if ( tvec * dir > EPSILON ) - // intersected face is at back side of the temporary face this _LayerEdge belongs to - return false; +gp_XYZ _LayerEdge::smoothNefPolygon() +#ifdef OLD_NEF_POLYGON +{ + gp_XYZ newPos(0,0,0); - gp_XYZ edge1 = vert1 - vert0; - gp_XYZ edge2 = vert2 - vert0; + // get a plane to search a solution on - /* begin calculating determinant - also used to calculate U parameter */ - gp_XYZ pvec = dir ^ edge2; + vector< gp_XYZ > vecs( _simplices.size() + 1 ); + size_t i; + const double tol = numeric_limits::min(); + gp_XYZ center(0,0,0); + for ( i = 0; i < _simplices.size(); ++i ) + { + vecs[i] = ( SMESH_TNodeXYZ( _simplices[i]._nNext ) - + SMESH_TNodeXYZ( _simplices[i]._nPrev )); + center += SMESH_TNodeXYZ( _simplices[i]._nPrev ); + } + vecs.back() = vecs[0]; + center /= _simplices.size(); - /* if determinant is near zero, ray lies in plane of triangle */ - double det = edge1 * pvec; + gp_XYZ zAxis(0,0,0); + for ( i = 0; i < _simplices.size(); ++i ) + zAxis += vecs[i] ^ vecs[i+1]; - if (det > -EPSILON && det < EPSILON) - return 0; - double inv_det = 1.0 / det; + gp_XYZ yAxis; + for ( i = 0; i < _simplices.size(); ++i ) + { + yAxis = vecs[i]; + if ( yAxis.SquareModulus() > tol ) + break; + } + gp_XYZ xAxis = yAxis ^ zAxis; + // SMESH_TNodeXYZ p0( _simplices[0]._nPrev ); + // const double tol = 1e-6 * ( p0.Distance( _simplices[1]._nPrev ) + + // p0.Distance( _simplices[2]._nPrev )); + // gp_XYZ center = smoothLaplacian(); + // gp_XYZ xAxis, yAxis, zAxis; + // for ( i = 0; i < _simplices.size(); ++i ) + // { + // xAxis = SMESH_TNodeXYZ( _simplices[i]._nPrev ) - center; + // if ( xAxis.SquareModulus() > tol*tol ) + // break; + // } + // for ( i = 1; i < _simplices.size(); ++i ) + // { + // yAxis = SMESH_TNodeXYZ( _simplices[i]._nPrev ) - center; + // zAxis = xAxis ^ yAxis; + // if ( zAxis.SquareModulus() > tol*tol ) + // break; + // } + // if ( i == _simplices.size() ) return newPos; + + yAxis = zAxis ^ xAxis; + xAxis /= xAxis.Modulus(); + yAxis /= yAxis.Modulus(); + + // get half-planes of _simplices + + vector< _halfPlane > halfPlns( _simplices.size() ); + int nbHP = 0; + for ( size_t i = 0; i < _simplices.size(); ++i ) + { + gp_XYZ OP1 = SMESH_TNodeXYZ( _simplices[i]._nPrev ) - center; + gp_XYZ OP2 = SMESH_TNodeXYZ( _simplices[i]._nNext ) - center; + gp_XY p1( OP1 * xAxis, OP1 * yAxis ); + gp_XY p2( OP2 * xAxis, OP2 * yAxis ); + gp_XY vec12 = p2 - p1; + double dist12 = vec12.Modulus(); + if ( dist12 < tol ) + continue; + vec12 /= dist12; + halfPlns[ nbHP ]._pos = p1; + halfPlns[ nbHP ]._dir = vec12; + halfPlns[ nbHP ]._inNorm.SetCoord( -vec12.Y(), vec12.X() ); + ++nbHP; + } - /* calculate U parameter and test bounds */ - double u = ( tvec * pvec ) * inv_det; - if (u < 0.0 || u > 1.0) - return 0; + // intersect boundaries of half-planes, define state of intersection points + // in relation to all half-planes and calculate internal point of a 2D polygon - /* prepare to test V parameter */ - gp_XYZ qvec = tvec ^ edge1; + double sumLen = 0; + gp_XY newPos2D (0,0); - /* calculate V parameter and test bounds */ - double v = (dir * qvec) * inv_det; - if ( v < 0.0 || u + v > 1.0 ) - return 0; + enum { UNDEF = -1, NOT_OUT, IS_OUT, NO_INT }; + typedef std::pair< gp_XY, int > TIntPntState; // coord and isOut state + TIntPntState undefIPS( gp_XY(1e100,1e100), UNDEF ); - /* calculate t, ray intersects triangle */ - t = (edge2 * qvec) * inv_det; + vector< vector< TIntPntState > > allIntPnts( nbHP ); + for ( int iHP1 = 0; iHP1 < nbHP; ++iHP1 ) + { + vector< TIntPntState > & intPnts1 = allIntPnts[ iHP1 ]; + if ( intPnts1.empty() ) intPnts1.resize( nbHP, undefIPS ); - // if (det < EPSILON) - // return false; + int iPrev = SMESH_MesherHelper::WrapIndex( iHP1 - 1, nbHP ); + int iNext = SMESH_MesherHelper::WrapIndex( iHP1 + 1, nbHP ); - // /* calculate distance from vert0 to ray origin */ - // gp_XYZ tvec = orig - vert0; + int nbNotOut = 0; + const gp_XY* segEnds[2] = { 0, 0 }; // NOT_OUT points - // /* calculate U parameter and test bounds */ - // double u = tvec * pvec; - // if (u < 0.0 || u > det) -// return 0; + for ( int iHP2 = 0; iHP2 < nbHP; ++iHP2 ) + { + if ( iHP1 == iHP2 ) continue; -// /* prepare to test V parameter */ -// gp_XYZ qvec = tvec ^ edge1; + TIntPntState & ips1 = intPnts1[ iHP2 ]; + if ( ips1.second == UNDEF ) + { + // find an intersection point of boundaries of iHP1 and iHP2 -// /* calculate V parameter and test bounds */ -// double v = dir * qvec; -// if (v < 0.0 || u + v > det) -// return 0; + if ( iHP2 == iPrev ) // intersection with neighbors is known + ips1.first = halfPlns[ iHP1 ]._pos; + else if ( iHP2 == iNext ) + ips1.first = halfPlns[ iHP2 ]._pos; + else if ( !halfPlns[ iHP1 ].FindIntersection( halfPlns[ iHP2 ], ips1.first )) + ips1.second = NO_INT; -// /* calculate t, scale parameters, ray intersects triangle */ -// double t = edge2 * qvec; -// double inv_det = 1.0 / det; -// t *= inv_det; -// //u *= inv_det; -// //v *= inv_det; + // classify the found intersection point + if ( ips1.second != NO_INT ) + { + ips1.second = NOT_OUT; + for ( int i = 0; i < nbHP && ips1.second == NOT_OUT; ++i ) + if ( i != iHP1 && i != iHP2 && + halfPlns[ i ].IsOut( ips1.first, tol )) + ips1.second = IS_OUT; + } + vector< TIntPntState > & intPnts2 = allIntPnts[ iHP2 ]; + if ( intPnts2.empty() ) intPnts2.resize( nbHP, undefIPS ); + TIntPntState & ips2 = intPnts2[ iHP1 ]; + ips2 = ips1; + } + if ( ips1.second == NOT_OUT ) + { + ++nbNotOut; + segEnds[ bool(segEnds[0]) ] = & ips1.first; + } + } - return true; -} + // find a NOT_OUT segment of boundary which is located between + // two NOT_OUT int points -//================================================================================ -/*! - * \brief Perform smooth of _LayerEdge's based on EDGE's - * \retval bool - true if node has been moved - */ -//================================================================================ + if ( nbNotOut < 2 ) + continue; // no such a segment -bool _LayerEdge::SmoothOnEdge(Handle(Geom_Surface)& surface, - const TopoDS_Face& F, - SMESH_MesherHelper& helper) -{ - ASSERT( IsOnEdge() ); + if ( nbNotOut > 2 ) + { + // sort points along the boundary + map< double, TIntPntState* > ipsByParam; + for ( int iHP2 = 0; iHP2 < nbHP; ++iHP2 ) + { + TIntPntState & ips1 = intPnts1[ iHP2 ]; + if ( ips1.second != NO_INT ) + { + gp_XY op = ips1.first - halfPlns[ iHP1 ]._pos; + double param = op * halfPlns[ iHP1 ]._dir; + ipsByParam.insert( make_pair( param, & ips1 )); + } + } + // look for two neighboring NOT_OUT points + nbNotOut = 0; + map< double, TIntPntState* >::iterator u2ips = ipsByParam.begin(); + for ( ; u2ips != ipsByParam.end(); ++u2ips ) + { + TIntPntState & ips1 = *(u2ips->second); + if ( ips1.second == NOT_OUT ) + segEnds[ bool( nbNotOut++ ) ] = & ips1.first; + else if ( nbNotOut >= 2 ) + break; + else + nbNotOut = 0; + } + } - SMDS_MeshNode* tgtNode = const_cast( _nodes.back() ); - SMESH_TNodeXYZ oldPos( tgtNode ); - double dist01, distNewOld; - - SMESH_TNodeXYZ p0( _2neibors->_nodes[0]); - SMESH_TNodeXYZ p1( _2neibors->_nodes[1]); - dist01 = p0.Distance( _2neibors->_nodes[1] ); + if ( nbNotOut >= 2 ) + { + double len = ( *segEnds[0] - *segEnds[1] ).Modulus(); + sumLen += len; - gp_Pnt newPos = p0 * _2neibors->_wgt[0] + p1 * _2neibors->_wgt[1]; - double lenDelta = 0; - if ( _curvature ) - { - //lenDelta = _curvature->lenDelta( _len ); - lenDelta = _curvature->lenDeltaByDist( dist01 ); - newPos.ChangeCoord() += _normal * lenDelta; + newPos2D += 0.5 * len * ( *segEnds[0] + *segEnds[1] ); + } } - distNewOld = newPos.Distance( oldPos ); - - if ( F.IsNull() ) + if ( sumLen > 0 ) { - if ( _2neibors->_plnNorm ) - { - // put newPos on the plane defined by source node and _plnNorm - gp_XYZ new2src = SMESH_TNodeXYZ( _nodes[0] ) - newPos.XYZ(); - double new2srcProj = (*_2neibors->_plnNorm) * new2src; - newPos.ChangeCoord() += (*_2neibors->_plnNorm) * new2srcProj; - } - tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() ); - _pos.back() = newPos.XYZ(); + newPos2D /= sumLen; + newPos = center + xAxis * newPos2D.X() + yAxis * newPos2D.Y(); } else { - tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() ); - gp_XY uv( Precision::Infinite(), 0 ); - helper.CheckNodeUV( F, tgtNode, uv, 1e-10, /*force=*/true ); - _pos.back().SetCoord( uv.X(), uv.Y(), 0 ); + newPos = center; + } - newPos = surface->Value( uv.X(), uv.Y() ); - tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() ); + return newPos; +} +#else // OLD_NEF_POLYGON +{ ////////////////////////////////// NEW + gp_XYZ newPos(0,0,0); + + // get a plane to search a solution on + + size_t i; + gp_XYZ center(0,0,0); + for ( i = 0; i < _simplices.size(); ++i ) + center += SMESH_TNodeXYZ( _simplices[i]._nPrev ); + center /= _simplices.size(); + + vector< gp_XYZ > vecs( _simplices.size() + 1 ); + for ( i = 0; i < _simplices.size(); ++i ) + vecs[i] = SMESH_TNodeXYZ( _simplices[i]._nPrev ) - center; + vecs.back() = vecs[0]; + + const double tol = numeric_limits::min(); + gp_XYZ zAxis(0,0,0); + for ( i = 0; i < _simplices.size(); ++i ) + { + gp_XYZ cross = vecs[i] ^ vecs[i+1]; + try { + cross.Normalize(); + if ( cross * zAxis < tol ) + zAxis += cross.Reversed(); + else + zAxis += cross; + } + catch (Standard_Failure) { // if |cross| == 0. + } } - if ( _curvature && lenDelta < 0 ) + gp_XYZ yAxis; + for ( i = 0; i < _simplices.size(); ++i ) { - gp_Pnt prevPos( _pos[ _pos.size()-2 ]); - _len -= prevPos.Distance( oldPos ); - _len += prevPos.Distance( newPos ); + yAxis = vecs[i]; + if ( yAxis.SquareModulus() > tol ) + break; + } + gp_XYZ xAxis = yAxis ^ zAxis; + // SMESH_TNodeXYZ p0( _simplices[0]._nPrev ); + // const double tol = 1e-6 * ( p0.Distance( _simplices[1]._nPrev ) + + // p0.Distance( _simplices[2]._nPrev )); + // gp_XYZ center = smoothLaplacian(); + // gp_XYZ xAxis, yAxis, zAxis; + // for ( i = 0; i < _simplices.size(); ++i ) + // { + // xAxis = SMESH_TNodeXYZ( _simplices[i]._nPrev ) - center; + // if ( xAxis.SquareModulus() > tol*tol ) + // break; + // } + // for ( i = 1; i < _simplices.size(); ++i ) + // { + // yAxis = SMESH_TNodeXYZ( _simplices[i]._nPrev ) - center; + // zAxis = xAxis ^ yAxis; + // if ( zAxis.SquareModulus() > tol*tol ) + // break; + // } + // if ( i == _simplices.size() ) return newPos; + + yAxis = zAxis ^ xAxis; + xAxis /= xAxis.Modulus(); + yAxis /= yAxis.Modulus(); + + // get half-planes of _simplices + + vector< _halfPlane > halfPlns( _simplices.size() ); + int nbHP = 0; + for ( size_t i = 0; i < _simplices.size(); ++i ) + { + const gp_XYZ& OP1 = vecs[ i ]; + const gp_XYZ& OP2 = vecs[ i+1 ]; + gp_XY p1( OP1 * xAxis, OP1 * yAxis ); + gp_XY p2( OP2 * xAxis, OP2 * yAxis ); + gp_XY vec12 = p2 - p1; + double dist12 = vec12.Modulus(); + if ( dist12 < tol ) + continue; + vec12 /= dist12; + halfPlns[ nbHP ]._pos = p1; + halfPlns[ nbHP ]._dir = vec12; + halfPlns[ nbHP ]._inNorm.SetCoord( -vec12.Y(), vec12.X() ); + ++nbHP; } - bool moved = distNewOld > dist01/50; - //if ( moved ) - dumpMove( tgtNode ); // debug - return moved; -} + // intersect boundaries of half-planes, define state of intersection points + // in relation to all half-planes and calculate internal point of a 2D polygon -//================================================================================ -/*! - * \brief Perform laplacian smooth in 3D of nodes inflated from FACE - * \retval bool - true if _tgtNode has been moved - */ -//================================================================================ + double sumLen = 0; + gp_XY newPos2D (0,0); -bool _LayerEdge::Smooth(int& badNb) -{ - if ( _simplices.size() < 2 ) - return false; // _LayerEdge inflated along EDGE or FACE + enum { UNDEF = -1, NOT_OUT, IS_OUT, NO_INT }; + typedef std::pair< gp_XY, int > TIntPntState; // coord and isOut state + TIntPntState undefIPS( gp_XY(1e100,1e100), UNDEF ); + + vector< vector< TIntPntState > > allIntPnts( nbHP ); + for ( int iHP1 = 0; iHP1 < nbHP; ++iHP1 ) + { + vector< TIntPntState > & intPnts1 = allIntPnts[ iHP1 ]; + if ( intPnts1.empty() ) intPnts1.resize( nbHP, undefIPS ); + + int iPrev = SMESH_MesherHelper::WrapIndex( iHP1 - 1, nbHP ); + int iNext = SMESH_MesherHelper::WrapIndex( iHP1 + 1, nbHP ); + + int nbNotOut = 0; + const gp_XY* segEnds[2] = { 0, 0 }; // NOT_OUT points - // compute new position for the last _pos - gp_XYZ newPos (0,0,0); - for ( unsigned i = 0; i < _simplices.size(); ++i ) - newPos += SMESH_TNodeXYZ( _simplices[i]._nPrev ); - newPos /= _simplices.size(); + for ( int iHP2 = 0; iHP2 < nbHP; ++iHP2 ) + { + if ( iHP1 == iHP2 ) continue; - if ( _curvature ) - newPos += _normal * _curvature->lenDelta( _len ); - - gp_Pnt prevPos( _pos[ _pos.size()-2 ]); -// if ( _cosin < -0.1) -// { -// // Avoid decreasing length of edge on concave surface -// //gp_Vec oldMove( _pos[ _pos.size()-2 ], _pos.back() ); -// gp_Vec newMove( prevPos, newPos ); -// newPos = _pos.back() + newMove.XYZ(); -// } -// else if ( _cosin > 0.3 ) -// { -// // Avoid increasing length of edge too much - -// } - // count quality metrics (orientation) of tetras around _tgtNode - int nbOkBefore = 0; - SMESH_TNodeXYZ tgtXYZ( _nodes.back() ); - for ( unsigned i = 0; i < _simplices.size(); ++i ) - nbOkBefore += _simplices[i].IsForward( _nodes[0], &tgtXYZ ); + TIntPntState & ips1 = intPnts1[ iHP2 ]; + if ( ips1.second == UNDEF ) + { + // find an intersection point of boundaries of iHP1 and iHP2 - int nbOkAfter = 0; - for ( unsigned i = 0; i < _simplices.size(); ++i ) - nbOkAfter += _simplices[i].IsForward( _nodes[0], &newPos ); + if ( iHP2 == iPrev ) // intersection with neighbors is known + ips1.first = halfPlns[ iHP1 ]._pos; + else if ( iHP2 == iNext ) + ips1.first = halfPlns[ iHP2 ]._pos; + else if ( !halfPlns[ iHP1 ].FindIntersection( halfPlns[ iHP2 ], ips1.first )) + ips1.second = NO_INT; - if ( nbOkAfter < nbOkBefore ) - return false; + // classify the found intersection point + if ( ips1.second != NO_INT ) + { + ips1.second = NOT_OUT; + for ( int i = 0; i < nbHP && ips1.second == NOT_OUT; ++i ) + if ( i != iHP1 && i != iHP2 && + halfPlns[ i ].IsOut( ips1.first, tol )) + ips1.second = IS_OUT; + } + vector< TIntPntState > & intPnts2 = allIntPnts[ iHP2 ]; + if ( intPnts2.empty() ) intPnts2.resize( nbHP, undefIPS ); + TIntPntState & ips2 = intPnts2[ iHP1 ]; + ips2 = ips1; + } + if ( ips1.second == NOT_OUT ) + { + ++nbNotOut; + segEnds[ bool(segEnds[0]) ] = & ips1.first; + } + } - SMDS_MeshNode* n = const_cast< SMDS_MeshNode* >( _nodes.back() ); + // find a NOT_OUT segment of boundary which is located between + // two NOT_OUT int points - _len -= prevPos.Distance(SMESH_TNodeXYZ( n )); - _len += prevPos.Distance(newPos); + if ( nbNotOut < 2 ) + continue; // no such a segment - n->setXYZ( newPos.X(), newPos.Y(), newPos.Z()); - _pos.back() = newPos; + if ( nbNotOut > 2 ) + { + // sort points along the boundary + map< double, TIntPntState* > ipsByParam; + for ( int iHP2 = 0; iHP2 < nbHP; ++iHP2 ) + { + TIntPntState & ips1 = intPnts1[ iHP2 ]; + if ( ips1.second != NO_INT ) + { + gp_XY op = ips1.first - halfPlns[ iHP1 ]._pos; + double param = op * halfPlns[ iHP1 ]._dir; + ipsByParam.insert( make_pair( param, & ips1 )); + } + } + // look for two neighboring NOT_OUT points + nbNotOut = 0; + map< double, TIntPntState* >::iterator u2ips = ipsByParam.begin(); + for ( ; u2ips != ipsByParam.end(); ++u2ips ) + { + TIntPntState & ips1 = *(u2ips->second); + if ( ips1.second == NOT_OUT ) + segEnds[ bool( nbNotOut++ ) ] = & ips1.first; + else if ( nbNotOut >= 2 ) + break; + else + nbNotOut = 0; + } + } + + if ( nbNotOut >= 2 ) + { + double len = ( *segEnds[0] - *segEnds[1] ).Modulus(); + sumLen += len; - badNb += _simplices.size() - nbOkAfter; + newPos2D += 0.5 * len * ( *segEnds[0] + *segEnds[1] ); + } + } - dumpMove( n ); + if ( sumLen > 0 ) + { + newPos2D /= sumLen; + newPos = center + xAxis * newPos2D.X() + yAxis * newPos2D.Y(); + } + else + { + newPos = center; + } - return true; + return newPos; } +#endif // OLD_NEF_POLYGON //================================================================================ /*! @@ -3193,68 +9417,203 @@ bool _LayerEdge::Smooth(int& badNb) */ //================================================================================ -void _LayerEdge::SetNewLength( double len, SMESH_MesherHelper& helper ) +void _LayerEdge::SetNewLength( double len, _EdgesOnShape& eos, SMESH_MesherHelper& helper ) { - if ( _len - len > -1e-6 ) + if ( Is( BLOCKED )) + return; + + if ( len > _maxLen ) + { + len = _maxLen; + Block( eos.GetData() ); + } + const double lenDelta = len - _len; + if ( lenDelta < len * 1e-3 ) { - _pos.push_back( _pos.back() ); + Block( eos.GetData() ); return; } SMDS_MeshNode* n = const_cast< SMDS_MeshNode*>( _nodes.back() ); - SMESH_TNodeXYZ oldXYZ( n ); - gp_XYZ nXYZ = oldXYZ + _normal * ( len - _len ) * _lenFactor; - n->setXYZ( nXYZ.X(), nXYZ.Y(), nXYZ.Z() ); + gp_XYZ oldXYZ = SMESH_TNodeXYZ( n ); + gp_XYZ newXYZ; + if ( eos._hyp.IsOffsetMethod() ) + { + newXYZ = oldXYZ; + gp_Vec faceNorm; + SMDS_ElemIteratorPtr faceIt = _nodes[0]->GetInverseElementIterator( SMDSAbs_Face ); + while ( faceIt->more() ) + { + const SMDS_MeshElement* face = faceIt->next(); + if ( !eos.GetNormal( face, faceNorm )) + continue; - _pos.push_back( nXYZ ); - _len = len; - if ( !_sWOL.IsNull() ) + // translate plane of a face + gp_XYZ baryCenter = oldXYZ + faceNorm.XYZ() * lenDelta; + + // find point of intersection of the face plane located at baryCenter + // and _normal located at newXYZ + double d = -( faceNorm.XYZ() * baryCenter ); // d of plane equation ax+by+cz+d=0 + double dot = ( faceNorm.XYZ() * _normal ); + if ( dot < std::numeric_limits::min() ) + dot = lenDelta * 1e-3; + double step = -( faceNorm.XYZ() * newXYZ + d ) / dot; + newXYZ += step * _normal; + } + _lenFactor = _normal * ( newXYZ - oldXYZ ) / lenDelta; // _lenFactor is used in InvalidateStep() + } + else + { + newXYZ = oldXYZ + _normal * lenDelta * _lenFactor; + } + + n->setXYZ( newXYZ.X(), newXYZ.Y(), newXYZ.Z() ); + _pos.push_back( newXYZ ); + + if ( !eos._sWOL.IsNull() ) { double distXYZ[4]; - if ( _sWOL.ShapeType() == TopAbs_EDGE ) + bool uvOK = false; + if ( eos.SWOLType() == TopAbs_EDGE ) { double u = Precision::Infinite(); // to force projection w/o distance check - helper.CheckNodeU( TopoDS::Edge( _sWOL ), n, u, 1e-10, /*force=*/true, distXYZ ); + uvOK = helper.CheckNodeU( TopoDS::Edge( eos._sWOL ), n, u, + /*tol=*/2*lenDelta, /*force=*/true, distXYZ ); _pos.back().SetCoord( u, 0, 0 ); - SMDS_EdgePosition* pos = static_cast( n->GetPosition() ); - pos->SetUParameter( u ); + if ( _nodes.size() > 1 && uvOK ) + { + SMDS_EdgePosition* pos = static_cast( n->GetPosition() ); + pos->SetUParameter( u ); + } } else // TopAbs_FACE { gp_XY uv( Precision::Infinite(), 0 ); - helper.CheckNodeUV( TopoDS::Face( _sWOL ), n, uv, 1e-10, /*force=*/true, distXYZ ); + uvOK = helper.CheckNodeUV( TopoDS::Face( eos._sWOL ), n, uv, + /*tol=*/2*lenDelta, /*force=*/true, distXYZ ); _pos.back().SetCoord( uv.X(), uv.Y(), 0 ); - SMDS_FacePosition* pos = static_cast( n->GetPosition() ); - pos->SetUParameter( uv.X() ); - pos->SetVParameter( uv.Y() ); + if ( _nodes.size() > 1 && uvOK ) + { + SMDS_FacePosition* pos = static_cast( n->GetPosition() ); + pos->SetUParameter( uv.X() ); + pos->SetVParameter( uv.Y() ); + } + } + if ( uvOK ) + { + n->setXYZ( distXYZ[1], distXYZ[2], distXYZ[3]); } - n->setXYZ( distXYZ[1], distXYZ[2], distXYZ[3]); + else + { + n->setXYZ( oldXYZ.X(), oldXYZ.Y(), oldXYZ.Z() ); + _pos.pop_back(); + Block( eos.GetData() ); + return; + } + } + + _len = len; + + // notify _neibors + if ( eos.ShapeType() != TopAbs_FACE ) + { + for ( size_t i = 0; i < _neibors.size(); ++i ) + //if ( _len > _neibors[i]->GetSmooLen() ) + _neibors[i]->Set( MOVED ); + + Set( MOVED ); } dumpMove( n ); //debug } +//================================================================================ +/*! + * \brief Set BLOCKED flag and propagate limited _maxLen to _neibors + */ +//================================================================================ + +void _LayerEdge::Block( _SolidData& data ) +{ + //if ( Is( BLOCKED )) return; + Set( BLOCKED ); + + SMESH_Comment msg( "#BLOCK shape="); + msg << data.GetShapeEdges( this )->_shapeID + << ", nodes " << _nodes[0]->GetID() << ", " << _nodes.back()->GetID(); + dumpCmd( msg + " -- BEGIN"); + + SetMaxLen( _len ); + std::queue<_LayerEdge*> queue; + queue.push( this ); + + gp_Pnt pSrc, pTgt, pSrcN, pTgtN; + while ( !queue.empty() ) + { + _LayerEdge* edge = queue.front(); queue.pop(); + pSrc = SMESH_TNodeXYZ( edge->_nodes[0] ); + pTgt = SMESH_TNodeXYZ( edge->_nodes.back() ); + for ( size_t iN = 0; iN < edge->_neibors.size(); ++iN ) + { + _LayerEdge* neibor = edge->_neibors[iN]; + if ( neibor->_maxLen < edge->_maxLen * 1.01 ) + continue; + pSrcN = SMESH_TNodeXYZ( neibor->_nodes[0] ); + pTgtN = SMESH_TNodeXYZ( neibor->_nodes.back() ); + double minDist = pSrc.SquareDistance( pSrcN ); + minDist = Min( pTgt.SquareDistance( pTgtN ), minDist ); + minDist = Min( pSrc.SquareDistance( pTgtN ), minDist ); + minDist = Min( pTgt.SquareDistance( pSrcN ), minDist ); + double newMaxLen = edge->_maxLen + 0.5 * Sqrt( minDist ); + //if ( edge->_nodes[0]->getshapeId() == neibor->_nodes[0]->getshapeId() ) viscous_layers_00/A3 + { + //newMaxLen *= edge->_lenFactor / neibor->_lenFactor; + // newMaxLen *= Min( edge->_lenFactor / neibor->_lenFactor, + // neibor->_lenFactor / edge->_lenFactor ); + } + if ( neibor->_maxLen > newMaxLen ) + { + neibor->SetMaxLen( newMaxLen ); + if ( neibor->_maxLen < neibor->_len ) + { + _EdgesOnShape* eos = data.GetShapeEdges( neibor ); + int lastStep = neibor->Is( BLOCKED ) ? 1 : 0; + while ( neibor->_len > neibor->_maxLen && + neibor->NbSteps() > lastStep ) + neibor->InvalidateStep( neibor->NbSteps(), *eos, /*restoreLength=*/true ); + neibor->SetNewLength( neibor->_maxLen, *eos, data.GetHelper() ); + //neibor->Block( data ); + } + queue.push( neibor ); + } + } + } + dumpCmd( msg + " -- END"); +} + //================================================================================ /*! * \brief Remove last inflation step */ //================================================================================ -void _LayerEdge::InvalidateStep( int curStep ) +void _LayerEdge::InvalidateStep( size_t curStep, const _EdgesOnShape& eos, bool restoreLength ) { - if ( _pos.size() > curStep ) + if ( _pos.size() > curStep && _nodes.size() > 1 ) { _pos.resize( curStep ); - gp_Pnt nXYZ = _pos.back(); + + gp_Pnt nXYZ = _pos.back(); SMDS_MeshNode* n = const_cast< SMDS_MeshNode*>( _nodes.back() ); - if ( !_sWOL.IsNull() ) + SMESH_TNodeXYZ curXYZ( n ); + if ( !eos._sWOL.IsNull() ) { TopLoc_Location loc; - if ( _sWOL.ShapeType() == TopAbs_EDGE ) + if ( eos.SWOLType() == TopAbs_EDGE ) { SMDS_EdgePosition* pos = static_cast( n->GetPosition() ); pos->SetUParameter( nXYZ.X() ); double f,l; - Handle(Geom_Curve) curve = BRep_Tool::Curve( TopoDS::Edge( _sWOL ), loc, f,l); + Handle(Geom_Curve) curve = BRep_Tool::Curve( TopoDS::Edge( eos._sWOL ), loc, f,l); nXYZ = curve->Value( nXYZ.X() ).Transformed( loc ); } else @@ -3262,15 +9621,150 @@ void _LayerEdge::InvalidateStep( int curStep ) SMDS_FacePosition* pos = static_cast( n->GetPosition() ); pos->SetUParameter( nXYZ.X() ); pos->SetVParameter( nXYZ.Y() ); - Handle(Geom_Surface) surface = BRep_Tool::Surface( TopoDS::Face(_sWOL), loc ); + Handle(Geom_Surface) surface = BRep_Tool::Surface( TopoDS::Face(eos._sWOL), loc ); nXYZ = surface->Value( nXYZ.X(), nXYZ.Y() ).Transformed( loc ); } } n->setXYZ( nXYZ.X(), nXYZ.Y(), nXYZ.Z() ); dumpMove( n ); + + if ( restoreLength ) + { + if ( NbSteps() == 0 ) + _len = 0.; + else if ( IsOnFace() && Is( MOVED )) + _len = ( nXYZ.XYZ() - SMESH_NodeXYZ( _nodes[0] )) * _normal; + else + _len -= ( nXYZ.XYZ() - curXYZ ).Modulus() / _lenFactor; + } + } + return; +} + +//================================================================================ +/*! + * \brief Return index of a _pos distant from _normal + */ +//================================================================================ + +int _LayerEdge::GetSmoothedPos( const double tol ) +{ + int iSmoothed = 0; + for ( size_t i = 1; i < _pos.size() && !iSmoothed; ++i ) + { + double normDist = ( _pos[i] - _pos[0] ).Crossed( _normal ).SquareModulus(); + if ( normDist > tol * tol ) + iSmoothed = i; + } + return iSmoothed; +} + +//================================================================================ +/*! + * \brief Smooth a path formed by _pos of a _LayerEdge smoothed on FACE + */ +//================================================================================ + +void _LayerEdge::SmoothPos( const vector< double >& segLen, const double tol ) +{ + if ( /*Is( NORMAL_UPDATED ) ||*/ _pos.size() <= 2 ) + return; + + // find the 1st smoothed _pos + int iSmoothed = GetSmoothedPos( tol ); + if ( !iSmoothed ) return; + + gp_XYZ normal = _normal; + if ( Is( NORMAL_UPDATED )) + { + double minDot = 1; + for ( size_t i = 0; i < _neibors.size(); ++i ) + { + if ( _neibors[i]->IsOnFace() ) + { + double dot = _normal * _neibors[i]->_normal; + if ( dot < minDot ) + { + normal = _neibors[i]->_normal; + minDot = dot; + } + } + } + if ( minDot == 1. ) + for ( size_t i = 1; i < _pos.size(); ++i ) + { + normal = _pos[i] - _pos[0]; + double size = normal.Modulus(); + if ( size > RealSmall() ) + { + normal /= size; + break; + } + } + } + const double r = 0.2; + for ( int iter = 0; iter < 50; ++iter ) + { + double minDot = 1; + for ( size_t i = Max( 1, iSmoothed-1-iter ); i < _pos.size()-1; ++i ) + { + gp_XYZ midPos = 0.5 * ( _pos[i-1] + _pos[i+1] ); + gp_XYZ newPos = ( 1-r ) * midPos + r * _pos[i]; + _pos[i] = newPos; + double midLen = 0.5 * ( segLen[i-1] + segLen[i+1] ); + double newLen = ( 1-r ) * midLen + r * segLen[i]; + const_cast< double& >( segLen[i] ) = newLen; + // check angle between normal and (_pos[i+1], _pos[i] ) + gp_XYZ posDir = _pos[i+1] - _pos[i]; + double size = posDir.SquareModulus(); + if ( size > RealSmall() ) + minDot = Min( minDot, ( normal * posDir ) * ( normal * posDir ) / size ); + } + if ( minDot > 0.5 * 0.5 ) + break; } + return; +} + +//================================================================================ +/*! + * \brief Print flags + */ +//================================================================================ + +std::string _LayerEdge::DumpFlags() const +{ + SMESH_Comment dump; + for ( int flag = 1; flag < 0x1000000; flag *= 2 ) + if ( _flags & flag ) + { + EFlags f = (EFlags) flag; + switch ( f ) { + case TO_SMOOTH: dump << "TO_SMOOTH"; break; + case MOVED: dump << "MOVED"; break; + case SMOOTHED: dump << "SMOOTHED"; break; + case DIFFICULT: dump << "DIFFICULT"; break; + case ON_CONCAVE_FACE: dump << "ON_CONCAVE_FACE"; break; + case BLOCKED: dump << "BLOCKED"; break; + case INTERSECTED: dump << "INTERSECTED"; break; + case NORMAL_UPDATED: dump << "NORMAL_UPDATED"; break; + case UPD_NORMAL_CONV: dump << "UPD_NORMAL_CONV"; break; + case MARKED: dump << "MARKED"; break; + case MULTI_NORMAL: dump << "MULTI_NORMAL"; break; + case NEAR_BOUNDARY: dump << "NEAR_BOUNDARY"; break; + case SMOOTHED_C1: dump << "SMOOTHED_C1"; break; + case DISTORTED: dump << "DISTORTED"; break; + case RISKY_SWOL: dump << "RISKY_SWOL"; break; + case SHRUNK: dump << "SHRUNK"; break; + case UNUSED_FLAG: dump << "UNUSED_FLAG"; break; + } + dump << " "; + } + cout << dump << endl; + return dump; } + //================================================================================ /*! * \brief Create layers of prisms @@ -3279,193 +9773,502 @@ void _LayerEdge::InvalidateStep( int curStep ) bool _ViscousBuilder::refine(_SolidData& data) { - SMESH_MesherHelper helper( *_mesh ); - helper.SetSubShape( data._solid ); + SMESH_MesherHelper& helper = data.GetHelper(); helper.SetElementsOnShape(false); Handle(Geom_Curve) curve; - Handle(Geom_Surface) surface; + Handle(ShapeAnalysis_Surface) surface; TopoDS_Edge geomEdge; TopoDS_Face geomFace; TopLoc_Location loc; - double f,l, u/*, distXYZ[4]*/; + double f,l, u = 0; gp_XY uv; - bool isOnEdge; + vector< gp_XYZ > pos3D; + bool isOnEdge, isTooConvexFace = false; + TGeomID prevBaseId = -1; + TNode2Edge* n2eMap = 0; + TNode2Edge::iterator n2e; + + // Create intermediate nodes on each _LayerEdge - for ( unsigned i = 0; i < data._edges.size(); ++i ) + for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS ) { - _LayerEdge& edge = *data._edges[i]; + _EdgesOnShape& eos = data._edgesOnShape[iS]; + if ( eos._edges.empty() ) continue; - // get accumulated length of segments - vector< double > segLen( edge._pos.size() ); - segLen[0] = 0.0; - for ( unsigned j = 1; j < edge._pos.size(); ++j ) - segLen[j] = segLen[j-1] + (edge._pos[j-1] - edge._pos[j] ).Modulus(); + if ( eos._edges[0]->_nodes.size() < 2 ) + continue; // on _noShrinkShapes - // allocate memory for new nodes if it is not yet refined - const SMDS_MeshNode* tgtNode = edge._nodes.back(); - if ( edge._nodes.size() == 2 ) - { - edge._nodes.resize( data._hyp->GetNumberLayers() + 1, 0 ); - edge._nodes[1] = 0; - edge._nodes.back() = tgtNode; - } - if ( !edge._sWOL.IsNull() ) + // get data of a shrink shape + isOnEdge = false; + geomEdge.Nullify(); geomFace.Nullify(); + curve.Nullify(); surface.Nullify(); + if ( !eos._sWOL.IsNull() ) { - isOnEdge = ( edge._sWOL.ShapeType() == TopAbs_EDGE ); - // restore position of the last node -// gp_Pnt p; + isOnEdge = ( eos.SWOLType() == TopAbs_EDGE ); if ( isOnEdge ) { - geomEdge = TopoDS::Edge( edge._sWOL ); - curve = BRep_Tool::Curve( geomEdge, loc, f,l); -// double u = helper.GetNodeU( tgtNode ); -// p = curve->Value( u ); + geomEdge = TopoDS::Edge( eos._sWOL ); + curve = BRep_Tool::Curve( geomEdge, loc, f,l); } else { - geomFace = TopoDS::Face( edge._sWOL ); - surface = BRep_Tool::Surface( geomFace, loc ); -// gp_XY uv = helper.GetNodeUV( tgtNode ); -// p = surface->Value( uv.X(), uv.Y() ); - } -// p.Transform( loc ); -// const_cast< SMDS_MeshNode* >( tgtNode )->setXYZ( p.X(), p.Y(), p.Z() ); - } - // calculate height of the first layer - double h0; - const double T = segLen.back(); //data._hyp.GetTotalThickness(); - const double f = data._hyp->GetStretchFactor(); - const int N = data._hyp->GetNumberLayers(); - const double fPowN = pow( f, N ); - if ( fPowN - 1 <= numeric_limits::min() ) - h0 = T / N; - else - h0 = T * ( f - 1 )/( fPowN - 1 ); - - const double zeroLen = std::numeric_limits::min(); - - // create intermediate nodes - double hSum = 0, hi = h0/f; - unsigned iSeg = 1; - for ( unsigned iStep = 1; iStep < edge._nodes.size(); ++iStep ) - { - // compute an intermediate position - hi *= f; - hSum += hi; - while ( hSum > segLen[iSeg] && iSeg < segLen.size()-1) - ++iSeg; - int iPrevSeg = iSeg-1; - while ( fabs( segLen[iPrevSeg] - segLen[iSeg]) <= zeroLen && iPrevSeg > 0 ) - --iPrevSeg; - double r = ( segLen[iSeg] - hSum ) / ( segLen[iSeg] - segLen[iPrevSeg] ); - gp_Pnt pos = r * edge._pos[iPrevSeg] + (1-r) * edge._pos[iSeg]; - - SMDS_MeshNode*& node = const_cast< SMDS_MeshNode*& >(edge._nodes[ iStep ]); - if ( !edge._sWOL.IsNull() ) - { - // compute XYZ by parameters - if ( isOnEdge ) + geomFace = TopoDS::Face( eos._sWOL ); + surface = helper.GetSurface( geomFace ); + } + } + else if ( eos.ShapeType() == TopAbs_FACE && eos._toSmooth ) + { + geomFace = TopoDS::Face( eos._shape ); + surface = helper.GetSurface( geomFace ); + // propagate _toSmooth back to _eosC1, which was unset in findShapesToSmooth() + for ( size_t i = 0; i < eos._eosC1.size(); ++i ) + eos._eosC1[ i ]->_toSmooth = true; + + isTooConvexFace = false; + if ( _ConvexFace* cf = data.GetConvexFace( eos._shapeID )) + isTooConvexFace = cf->_isTooCurved; + } + + vector< double > segLen; + for ( size_t i = 0; i < eos._edges.size(); ++i ) + { + _LayerEdge& edge = *eos._edges[i]; + if ( edge._pos.size() < 2 ) + continue; + + // get accumulated length of segments + segLen.resize( edge._pos.size() ); + segLen[0] = 0.0; + if ( eos._sWOL.IsNull() ) + { + bool useNormal = true; + bool usePos = false; + bool smoothed = false; + double preci = 0.1 * edge._len; + if ( eos._toSmooth && edge._pos.size() > 2 ) + { + smoothed = edge.GetSmoothedPos( preci ); + } + if ( smoothed ) + { + if ( !surface.IsNull() && !isTooConvexFace ) // edge smoothed on FACE + { + useNormal = usePos = false; + gp_Pnt2d uv = helper.GetNodeUV( geomFace, edge._nodes[0] ); + for ( size_t j = 1; j < edge._pos.size() && !useNormal; ++j ) + { + uv = surface->NextValueOfUV( uv, edge._pos[j], preci ); + if ( surface->Gap() < 2. * edge._len ) + segLen[j] = surface->Gap(); + else + useNormal = true; + } + } + } + else if ( !edge.Is( _LayerEdge::NORMAL_UPDATED )) + { +#ifndef __NODES_AT_POS + useNormal = usePos = false; + edge._pos[1] = edge._pos.back(); + edge._pos.resize( 2 ); + segLen.resize( 2 ); + segLen[ 1 ] = edge._len; +#endif + } + if ( useNormal && edge.Is( _LayerEdge::NORMAL_UPDATED )) + { + useNormal = usePos = false; + _LayerEdge tmpEdge; // get original _normal + tmpEdge._nodes.push_back( edge._nodes[0] ); + if ( !setEdgeData( tmpEdge, eos, helper, data )) + usePos = true; + else + for ( size_t j = 1; j < edge._pos.size(); ++j ) + segLen[j] = ( edge._pos[j] - edge._pos[0] ) * tmpEdge._normal; + } + if ( useNormal ) { - u = pos.X(); - pos = curve->Value( u ).Transformed(loc); + for ( size_t j = 1; j < edge._pos.size(); ++j ) + segLen[j] = ( edge._pos[j] - edge._pos[0] ) * edge._normal; + } + if ( usePos ) + { + for ( size_t j = 1; j < edge._pos.size(); ++j ) + segLen[j] = segLen[j-1] + ( edge._pos[j-1] - edge._pos[j] ).Modulus(); } else { - uv.SetCoord( pos.X(), pos.Y() ); - pos = surface->Value( pos.X(), pos.Y() ).Transformed(loc); + bool swapped = ( edge._pos.size() > 2 ); + while ( swapped ) + { + swapped = false; + for ( size_t j = 1; j < edge._pos.size()-1; ++j ) + if ( segLen[j] > segLen.back() ) + { + segLen.erase( segLen.begin() + j ); + edge._pos.erase( edge._pos.begin() + j ); + --j; + } + else if ( segLen[j] < segLen[j-1] ) + { + std::swap( segLen[j], segLen[j-1] ); + std::swap( edge._pos[j], edge._pos[j-1] ); + swapped = true; + } + } } + // smooth a path formed by edge._pos +#ifndef __NODES_AT_POS + if (( smoothed ) /*&& + ( eos.ShapeType() == TopAbs_FACE || edge.Is( _LayerEdge::SMOOTHED_C1 ))*/) + edge.SmoothPos( segLen, preci ); +#endif } - // create or update the node - if ( !node ) + else if ( eos._isRegularSWOL ) // usual SWOL { - node = helper.AddNode( pos.X(), pos.Y(), pos.Z()); - if ( !edge._sWOL.IsNull() ) + if ( edge.Is( _LayerEdge::SMOOTHED )) { - if ( isOnEdge ) - getMeshDS()->SetNodeOnEdge( node, geomEdge, u ); - else - getMeshDS()->SetNodeOnFace( node, geomFace, uv.X(), uv.Y() ); + SMESH_NodeXYZ p0( edge._nodes[0] ); + for ( size_t j = 1; j < edge._pos.size(); ++j ) + { + gp_XYZ pj = surface->Value( edge._pos[j].X(), edge._pos[j].Y() ).XYZ(); + segLen[j] = ( pj - p0 ) * edge._normal; + } + } + else + { + for ( size_t j = 1; j < edge._pos.size(); ++j ) + segLen[j] = segLen[j-1] + (edge._pos[j-1] - edge._pos[j] ).Modulus(); + } + } + else if ( !surface.IsNull() ) // SWOL surface with singularities + { + pos3D.resize( edge._pos.size() ); + for ( size_t j = 0; j < edge._pos.size(); ++j ) + pos3D[j] = surface->Value( edge._pos[j].X(), edge._pos[j].Y() ).XYZ(); + + for ( size_t j = 1; j < edge._pos.size(); ++j ) + segLen[j] = segLen[j-1] + ( pos3D[j-1] - pos3D[j] ).Modulus(); + } + + // allocate memory for new nodes if it is not yet refined + const SMDS_MeshNode* tgtNode = edge._nodes.back(); + if ( edge._nodes.size() == 2 ) + { +#ifdef __NODES_AT_POS + int nbNodes = edge._pos.size(); +#else + int nbNodes = eos._hyp.GetNumberLayers() + 1; +#endif + edge._nodes.resize( nbNodes, 0 ); + edge._nodes[1] = 0; + edge._nodes.back() = tgtNode; + } + // restore shapePos of the last node by already treated _LayerEdge of another _SolidData + const TGeomID baseShapeId = edge._nodes[0]->getshapeId(); + if ( baseShapeId != prevBaseId ) + { + map< TGeomID, TNode2Edge* >::iterator s2ne = data._s2neMap.find( baseShapeId ); + n2eMap = ( s2ne == data._s2neMap.end() ) ? 0 : s2ne->second; + prevBaseId = baseShapeId; + } + _LayerEdge* edgeOnSameNode = 0; + bool useExistingPos = false; + if ( n2eMap && (( n2e = n2eMap->find( edge._nodes[0] )) != n2eMap->end() )) + { + edgeOnSameNode = n2e->second; + useExistingPos = ( edgeOnSameNode->_len < edge._len ); + const gp_XYZ& otherTgtPos = edgeOnSameNode->_pos.back(); + SMDS_PositionPtr lastPos = tgtNode->GetPosition(); + if ( isOnEdge ) + { + SMDS_EdgePosition* epos = static_cast( lastPos ); + epos->SetUParameter( otherTgtPos.X() ); } else { - getMeshDS()->SetNodeInVolume( node, helper.GetSubShapeID() ); + SMDS_FacePosition* fpos = static_cast( lastPos ); + fpos->SetUParameter( otherTgtPos.X() ); + fpos->SetVParameter( otherTgtPos.Y() ); } } + // calculate height of the first layer + double h0; + const double T = segLen.back(); //data._hyp.GetTotalThickness(); + const double f = eos._hyp.GetStretchFactor(); + const int N = eos._hyp.GetNumberLayers(); + const double fPowN = pow( f, N ); + if ( fPowN - 1 <= numeric_limits::min() ) + h0 = T / N; else + h0 = T * ( f - 1 )/( fPowN - 1 ); + + const double zeroLen = std::numeric_limits::min(); + + // create intermediate nodes + double hSum = 0, hi = h0/f; + size_t iSeg = 1; + for ( size_t iStep = 1; iStep < edge._nodes.size(); ++iStep ) { - if ( !edge._sWOL.IsNull() ) + // compute an intermediate position + hi *= f; + hSum += hi; + while ( hSum > segLen[iSeg] && iSeg < segLen.size()-1 ) + ++iSeg; + int iPrevSeg = iSeg-1; + while ( fabs( segLen[iPrevSeg] - segLen[iSeg]) <= zeroLen && iPrevSeg > 0 ) + --iPrevSeg; + double r = ( segLen[iSeg] - hSum ) / ( segLen[iSeg] - segLen[iPrevSeg] ); + gp_Pnt pos = r * edge._pos[iPrevSeg] + (1-r) * edge._pos[iSeg]; +#ifdef __NODES_AT_POS + pos = edge._pos[ iStep ]; +#endif + SMDS_MeshNode*& node = const_cast< SMDS_MeshNode*& >( edge._nodes[ iStep ]); + if ( !eos._sWOL.IsNull() ) { - // make average pos from new and current parameters + // compute XYZ by parameters if ( isOnEdge ) { - u = 0.5 * ( u + helper.GetNodeU( geomEdge, node )); - pos = curve->Value( u ).Transformed(loc); + u = pos.X(); + if ( !node ) + pos = curve->Value( u ).Transformed(loc); + } + else if ( eos._isRegularSWOL ) + { + uv.SetCoord( pos.X(), pos.Y() ); + if ( !node ) + pos = surface->Value( pos.X(), pos.Y() ); + } + else + { + uv.SetCoord( pos.X(), pos.Y() ); + gp_Pnt p = r * pos3D[ iPrevSeg ] + (1-r) * pos3D[ iSeg ]; + uv = surface->NextValueOfUV( uv, p, BRep_Tool::Tolerance( geomFace )).XY(); + if ( !node ) + pos = surface->Value( uv ); + } + } + // create or update the node + if ( !node ) + { + node = helper.AddNode( pos.X(), pos.Y(), pos.Z()); + if ( !eos._sWOL.IsNull() ) + { + if ( isOnEdge ) + getMeshDS()->SetNodeOnEdge( node, geomEdge, u ); + else + getMeshDS()->SetNodeOnFace( node, geomFace, uv.X(), uv.Y() ); } else { - uv = 0.5 * ( uv + helper.GetNodeUV( geomFace, node )); - pos = surface->Value( uv.X(), uv.Y()).Transformed(loc); + getMeshDS()->SetNodeInVolume( node, helper.GetSubShapeID() ); } } - node->setXYZ( pos.X(), pos.Y(), pos.Z() ); + else + { + if ( !eos._sWOL.IsNull() ) + { + // make average pos from new and current parameters + if ( isOnEdge ) + { + //u = 0.5 * ( u + helper.GetNodeU( geomEdge, node )); + if ( useExistingPos ) + u = helper.GetNodeU( geomEdge, node ); + pos = curve->Value( u ).Transformed(loc); + + SMDS_EdgePosition* epos = static_cast( node->GetPosition() ); + epos->SetUParameter( u ); + } + else + { + //uv = 0.5 * ( uv + helper.GetNodeUV( geomFace, node )); + if ( useExistingPos ) + uv = helper.GetNodeUV( geomFace, node ); + pos = surface->Value( uv ); + + SMDS_FacePosition* fpos = static_cast( node->GetPosition() ); + fpos->SetUParameter( uv.X() ); + fpos->SetVParameter( uv.Y() ); + } + } + node->setXYZ( pos.X(), pos.Y(), pos.Z() ); + } + } // loop on edge._nodes + + if ( !eos._sWOL.IsNull() ) // prepare for shrink() + { + if ( isOnEdge ) + edge._pos.back().SetCoord( u, 0,0); + else + edge._pos.back().SetCoord( uv.X(), uv.Y() ,0); + + if ( edgeOnSameNode ) + edgeOnSameNode->_pos.back() = edge._pos.back(); + } + + } // loop on eos._edges to create nodes + + + if ( !getMeshDS()->IsEmbeddedMode() ) + // Log node movement + for ( size_t i = 0; i < eos._edges.size(); ++i ) + { + SMESH_TNodeXYZ p ( eos._edges[i]->_nodes.back() ); + getMeshDS()->MoveNode( p._node, p.X(), p.Y(), p.Z() ); } - } } - if ( !getMeshDS()->IsEmbeddedMode() ) - // Log node movement - for ( unsigned i = 0; i < data._edges.size(); ++i ) - { - _LayerEdge& edge = *data._edges[i]; - SMESH_TNodeXYZ p ( edge._nodes.back() ); - getMeshDS()->MoveNode( p._node, p.X(), p.Y(), p.Z() ); - } - // TODO: make quadratic prisms and polyhedrons(?) + // Create volumes helper.SetElementsOnShape(true); + vector< vector* > nnVec; + set< vector* > nnSet; + set< int > degenEdgeInd; + vector degenVols; + TopExp_Explorer exp( data._solid, TopAbs_FACE ); for ( ; exp.More(); exp.Next() ) { - if ( _ignoreShapeIds.count( getMeshDS()->ShapeToIndex( exp.Current() ))) + const TGeomID faceID = getMeshDS()->ShapeToIndex( exp.Current() ); + if ( data._ignoreFaceIds.count( faceID )) continue; - SMESHDS_SubMesh* fSubM = getMeshDS()->MeshElements( exp.Current() ); - SMDS_ElemIteratorPtr fIt = fSubM->GetElements(); - vector< vector* > nnVec; + const bool isReversedFace = data._reversedFaceIds.count( faceID ); + SMESHDS_SubMesh* fSubM = getMeshDS()->MeshElements( exp.Current() ); + SMDS_ElemIteratorPtr fIt = fSubM->GetElements(); while ( fIt->more() ) { const SMDS_MeshElement* face = fIt->next(); - int nbNodes = face->NbCornerNodes(); + const int nbNodes = face->NbCornerNodes(); nnVec.resize( nbNodes ); - SMDS_ElemIteratorPtr nIt = face->nodesIterator(); + nnSet.clear(); + degenEdgeInd.clear(); + size_t maxZ = 0, minZ = std::numeric_limits::max(); + SMDS_NodeIteratorPtr nIt = face->nodeIterator(); for ( int iN = 0; iN < nbNodes; ++iN ) { - const SMDS_MeshNode* n = static_cast( nIt->next() ); - nnVec[ iN ] = & data._n2eMap[ n ]->_nodes; + const SMDS_MeshNode* n = nIt->next(); + _LayerEdge* edge = data._n2eMap[ n ]; + const int i = isReversedFace ? nbNodes-1-iN : iN; + nnVec[ i ] = & edge->_nodes; + maxZ = std::max( maxZ, nnVec[ i ]->size() ); + minZ = std::min( minZ, nnVec[ i ]->size() ); + + if ( helper.HasDegeneratedEdges() ) + nnSet.insert( nnVec[ i ]); } - int nbZ = nnVec[0]->size(); + if ( maxZ == 0 ) + continue; + if ( 0 < nnSet.size() && nnSet.size() < 3 ) + continue; + switch ( nbNodes ) { - case 3: - for ( int iZ = 1; iZ < nbZ; ++iZ ) + case 3: // TRIA + { + // PENTA + for ( size_t iZ = 1; iZ < minZ; ++iZ ) helper.AddVolume( (*nnVec[0])[iZ-1], (*nnVec[1])[iZ-1], (*nnVec[2])[iZ-1], (*nnVec[0])[iZ], (*nnVec[1])[iZ], (*nnVec[2])[iZ]); - break; - case 4: - for ( int iZ = 1; iZ < nbZ; ++iZ ) + + for ( size_t iZ = minZ; iZ < maxZ; ++iZ ) + { + for ( int iN = 0; iN < nbNodes; ++iN ) + if ( nnVec[ iN ]->size() < iZ+1 ) + degenEdgeInd.insert( iN ); + + if ( degenEdgeInd.size() == 1 ) // PYRAM + { + int i2 = *degenEdgeInd.begin(); + int i0 = helper.WrapIndex( i2 - 1, nbNodes ); + int i1 = helper.WrapIndex( i2 + 1, nbNodes ); + helper.AddVolume( (*nnVec[i0])[iZ-1], (*nnVec[i1])[iZ-1], + (*nnVec[i1])[iZ ], (*nnVec[i0])[iZ ], (*nnVec[i2]).back()); + } + else // TETRA + { + int i3 = !degenEdgeInd.count(0) ? 0 : !degenEdgeInd.count(1) ? 1 : 2; + helper.AddVolume( (*nnVec[ 0 ])[ i3 == 0 ? iZ-1 : nnVec[0]->size()-1 ], + (*nnVec[ 1 ])[ i3 == 1 ? iZ-1 : nnVec[1]->size()-1 ], + (*nnVec[ 2 ])[ i3 == 2 ? iZ-1 : nnVec[2]->size()-1 ], + (*nnVec[ i3 ])[ iZ ]); + } + } + break; // TRIA + } + case 4: // QUAD + { + // HEX + for ( size_t iZ = 1; iZ < minZ; ++iZ ) helper.AddVolume( (*nnVec[0])[iZ-1], (*nnVec[1])[iZ-1], (*nnVec[2])[iZ-1], (*nnVec[3])[iZ-1], (*nnVec[0])[iZ], (*nnVec[1])[iZ], (*nnVec[2])[iZ], (*nnVec[3])[iZ]); - break; + + for ( size_t iZ = minZ; iZ < maxZ; ++iZ ) + { + for ( int iN = 0; iN < nbNodes; ++iN ) + if ( nnVec[ iN ]->size() < iZ+1 ) + degenEdgeInd.insert( iN ); + + switch ( degenEdgeInd.size() ) + { + case 2: // PENTA + { + int i2 = *degenEdgeInd.begin(); + int i3 = *degenEdgeInd.rbegin(); + bool ok = ( i3 - i2 == 1 ); + if ( i2 == 0 && i3 == 3 ) { i2 = 3; i3 = 0; ok = true; } + int i0 = helper.WrapIndex( i3 + 1, nbNodes ); + int i1 = helper.WrapIndex( i0 + 1, nbNodes ); + + const SMDS_MeshElement* vol = + helper.AddVolume( nnVec[i3]->back(), (*nnVec[i0])[iZ], (*nnVec[i0])[iZ-1], + nnVec[i2]->back(), (*nnVec[i1])[iZ], (*nnVec[i1])[iZ-1]); + if ( !ok && vol ) + degenVols.push_back( vol ); + } + break; + + default: // degen HEX + { + const SMDS_MeshElement* vol = + helper.AddVolume( nnVec[0]->size() > iZ-1 ? (*nnVec[0])[iZ-1] : nnVec[0]->back(), + nnVec[1]->size() > iZ-1 ? (*nnVec[1])[iZ-1] : nnVec[1]->back(), + nnVec[2]->size() > iZ-1 ? (*nnVec[2])[iZ-1] : nnVec[2]->back(), + nnVec[3]->size() > iZ-1 ? (*nnVec[3])[iZ-1] : nnVec[3]->back(), + nnVec[0]->size() > iZ ? (*nnVec[0])[iZ] : nnVec[0]->back(), + nnVec[1]->size() > iZ ? (*nnVec[1])[iZ] : nnVec[1]->back(), + nnVec[2]->size() > iZ ? (*nnVec[2])[iZ] : nnVec[2]->back(), + nnVec[3]->size() > iZ ? (*nnVec[3])[iZ] : nnVec[3]->back()); + degenVols.push_back( vol ); + } + } + } + break; // HEX + } default: return error("Not supported type of element", data._index); - } + + } // switch ( nbNodes ) + } // while ( fIt->more() ) + } // loop on FACEs + + if ( !degenVols.empty() ) + { + SMESH_ComputeErrorPtr& err = _mesh->GetSubMesh( data._solid )->GetComputeError(); + if ( !err || err->IsOK() ) + { + err.reset( new SMESH_ComputeError( COMPERR_WARNING, + "Bad quality volumes created" )); + err->myBadElements.insert( err->myBadElements.end(), + degenVols.begin(),degenVols.end() ); } } + return true; } @@ -3475,71 +10278,94 @@ bool _ViscousBuilder::refine(_SolidData& data) */ //================================================================================ -bool _ViscousBuilder::shrink() +bool _ViscousBuilder::shrink(_SolidData& theData) { - // make map of (ids of FACEs to shrink mesh on) to (_SolidData containing _LayerEdge's - // inflated along FACE or EDGE) - map< TGeomID, _SolidData* > f2sdMap; - for ( unsigned i = 0 ; i < _sdVec.size(); ++i ) + // make map of (ids of FACEs to shrink mesh on) to (list of _SolidData containing + // _LayerEdge's inflated along FACE or EDGE) + map< TGeomID, list< _SolidData* > > f2sdMap; + for ( size_t i = 0 ; i < _sdVec.size(); ++i ) { _SolidData& data = _sdVec[i]; - TopTools_MapOfShape FFMap; map< TGeomID, TopoDS_Shape >::iterator s2s = data._shrinkShape2Shape.begin(); for (; s2s != data._shrinkShape2Shape.end(); ++s2s ) - if ( s2s->second.ShapeType() == TopAbs_FACE ) + if ( s2s->second.ShapeType() == TopAbs_FACE && !_shrinkedFaces.Contains( s2s->second )) { - f2sdMap.insert( make_pair( getMeshDS()->ShapeToIndex( s2s->second ), &data )); + f2sdMap[ getMeshDS()->ShapeToIndex( s2s->second )].push_back( &data ); - if ( FFMap.Add( (*s2s).second )) - // Put mesh faces on the shrinked FACE to the proxy sub-mesh to avoid - // usage of mesh faces made in addBoundaryElements() by the 3D algo or - // by StdMeshers_QuadToTriaAdaptor - if ( SMESHDS_SubMesh* smDS = getMeshDS()->MeshElements( s2s->second )) + // Put mesh faces on the shrinked FACE to the proxy sub-mesh to avoid + // usage of mesh faces made in addBoundaryElements() by the 3D algo or + // by StdMeshers_QuadToTriaAdaptor + if ( SMESHDS_SubMesh* smDS = getMeshDS()->MeshElements( s2s->second )) + { + SMESH_ProxyMesh::SubMesh* proxySub = + data._proxyMesh->getFaceSubM( TopoDS::Face( s2s->second ), /*create=*/true); + if ( proxySub->NbElements() == 0 ) { - SMESH_ProxyMesh::SubMesh* proxySub = - data._proxyMesh->getFaceSubM( TopoDS::Face( s2s->second ), /*create=*/true); SMDS_ElemIteratorPtr fIt = smDS->GetElements(); while ( fIt->more() ) - proxySub->AddElement( fIt->next() ); - // as a result 3D algo will use elements from proxySub and not from smDS + { + const SMDS_MeshElement* f = fIt->next(); + // as a result 3D algo will use elements from proxySub and not from smDS + proxySub->AddElement( f ); + f->setIsMarked( true ); + + // Mark nodes on the FACE to discriminate them from nodes + // added by addBoundaryElements(); marked nodes are to be smoothed while shrink() + for ( int iN = 0, nbN = f->NbNodes(); iN < nbN; ++iN ) + { + const SMDS_MeshNode* n = f->GetNode( iN ); + if ( n->GetPosition()->GetDim() == 2 ) + n->setIsMarked( true ); + } + } } + } } } SMESH_MesherHelper helper( *_mesh ); helper.ToFixNodeParameters( true ); - // EDGE's to shrink + // EDGEs to shrink map< TGeomID, _Shrinker1D > e2shrMap; + vector< _EdgesOnShape* > subEOS; + vector< _LayerEdge* > lEdges; - // loop on FACES to srink mesh on - map< TGeomID, _SolidData* >::iterator f2sd = f2sdMap.begin(); + // loop on FACEs to srink mesh on + map< TGeomID, list< _SolidData* > >::iterator f2sd = f2sdMap.begin(); for ( ; f2sd != f2sdMap.end(); ++f2sd ) { - _SolidData& data = *f2sd->second; - TNode2Edge& n2eMap = data._n2eMap; - const TopoDS_Face& F = TopoDS::Face( getMeshDS()->IndexToShape( f2sd->first )); - - Handle(Geom_Surface) surface = BRep_Tool::Surface(F); + list< _SolidData* > & dataList = f2sd->second; + if ( dataList.front()->_n2eMap.empty() || + dataList.back() ->_n2eMap.empty() ) + continue; // not yet computed + if ( dataList.front() != &theData && + dataList.back() != &theData ) + continue; + _SolidData& data = *dataList.front(); + _SolidData* data2 = dataList.size() > 1 ? dataList.back() : 0; + const TopoDS_Face& F = TopoDS::Face( getMeshDS()->IndexToShape( f2sd->first )); SMESH_subMesh* sm = _mesh->GetSubMesh( F ); SMESHDS_SubMesh* smDS = sm->GetSubMeshDS(); - helper.SetSubShape(F); + Handle(Geom_Surface) surface = BRep_Tool::Surface( F ); + + _shrinkedFaces.Add( F ); + helper.SetSubShape( F ); // =========================== // Prepare data for shrinking // =========================== - // Collect nodes to smooth, as src nodes are not yet replaced by tgt ones - // and thus all nodes on a FACE connected to 2d elements are to be smoothed + // Collect nodes to smooth (they are marked at the beginning of this method) vector < const SMDS_MeshNode* > smoothNodes; { SMDS_NodeIteratorPtr nIt = smDS->GetNodes(); while ( nIt->more() ) { const SMDS_MeshNode* n = nIt->next(); - if ( n->NbInverseElements( SMDSAbs_Face ) > 0 ) + if ( n->isMarked() ) smoothNodes.push_back( n ); } } @@ -3550,57 +10376,79 @@ bool _ViscousBuilder::shrink() if ( !smoothNodes.empty() ) { vector<_Simplex> simplices; - getSimplices( smoothNodes[0], simplices, ignoreShapes ); - helper.GetNodeUV( F, simplices[0]._nPrev, 0, &isOkUV ); // fix UV of silpmex nodes + _Simplex::GetSimplices( smoothNodes[0], simplices, ignoreShapes ); + helper.GetNodeUV( F, simplices[0]._nPrev, 0, &isOkUV ); // fix UV of simplex nodes helper.GetNodeUV( F, simplices[0]._nNext, 0, &isOkUV ); gp_XY uv = helper.GetNodeUV( F, smoothNodes[0], 0, &isOkUV ); - if ( !simplices[0].IsForward(uv, smoothNodes[0], F, helper,refSign) ) + if ( !simplices[0].IsForward(uv, smoothNodes[0], F, helper, refSign )) refSign = -1; } // Find _LayerEdge's inflated along F - vector< _LayerEdge* > lEdges; + subEOS.clear(); + lEdges.clear(); { - SMESH_subMeshIteratorPtr subIt = - sm->getDependsOnIterator(/*includeSelf=*/false, /*complexShapeFirst=*/false); + SMESH_subMeshIteratorPtr subIt = sm->getDependsOnIterator(/*includeSelf=*/false, + /*complexFirst=*/true); //!!! while ( subIt->more() ) { - SMESH_subMesh* sub = subIt->next(); - SMESHDS_SubMesh* subDS = sub->GetSubMeshDS(); - if ( subDS->NbNodes() == 0 || !n2eMap.count( subDS->GetNodes()->next() )) + const TGeomID subID = subIt->next()->GetId(); + if ( data._noShrinkShapes.count( subID )) continue; - SMDS_NodeIteratorPtr nIt = subDS->GetNodes(); - while ( nIt->more() ) + _EdgesOnShape* eos = data.GetShapeEdges( subID ); + if ( !eos || eos->_sWOL.IsNull() ) + if ( data2 ) // check in adjacent SOLID + { + eos = data2->GetShapeEdges( subID ); + if ( !eos || eos->_sWOL.IsNull() ) + continue; + } + subEOS.push_back( eos ); + + for ( size_t i = 0; i < eos->_edges.size(); ++i ) { - _LayerEdge* edge = n2eMap[ nIt->next() ]; - lEdges.push_back( edge ); - prepareEdgeToShrink( *edge, F, helper, smDS ); + lEdges.push_back( eos->_edges[ i ] ); + prepareEdgeToShrink( *eos->_edges[ i ], *eos, helper, smDS ); } } } + dumpFunction(SMESH_Comment("beforeShrinkFace")<first); // debug + SMDS_ElemIteratorPtr fIt = smDS->GetElements(); + while ( fIt->more() ) + if ( const SMDS_MeshElement* f = fIt->next() ) + dumpChangeNodes( f ); + dumpFunctionEnd(); + // Replace source nodes by target nodes in mesh faces to shrink + dumpFunction(SMESH_Comment("replNodesOnFace")<first); // debug const SMDS_MeshNode* nodes[20]; - for ( unsigned i = 0; i < lEdges.size(); ++i ) + for ( size_t iS = 0; iS < subEOS.size(); ++iS ) { - _LayerEdge& edge = *lEdges[i]; - const SMDS_MeshNode* srcNode = edge._nodes[0]; - const SMDS_MeshNode* tgtNode = edge._nodes.back(); - SMDS_ElemIteratorPtr fIt = srcNode->GetInverseElementIterator(SMDSAbs_Face); - while ( fIt->more() ) + _EdgesOnShape& eos = * subEOS[ iS ]; + for ( size_t i = 0; i < eos._edges.size(); ++i ) { - const SMDS_MeshElement* f = fIt->next(); - if ( !smDS->Contains( f )) - continue; - SMDS_ElemIteratorPtr nIt = f->nodesIterator(); - for ( int iN = 0; iN < f->NbNodes(); ++iN ) + _LayerEdge& edge = *eos._edges[i]; + const SMDS_MeshNode* srcNode = edge._nodes[0]; + const SMDS_MeshNode* tgtNode = edge._nodes.back(); + SMDS_ElemIteratorPtr fIt = srcNode->GetInverseElementIterator(SMDSAbs_Face); + while ( fIt->more() ) { - const SMDS_MeshNode* n = static_cast( nIt->next() ); - nodes[iN] = ( n == srcNode ? tgtNode : n ); + const SMDS_MeshElement* f = fIt->next(); + if ( !smDS->Contains( f ) || !f->isMarked() ) + continue; + SMDS_NodeIteratorPtr nIt = f->nodeIterator(); + for ( int iN = 0; nIt->more(); ++iN ) + { + const SMDS_MeshNode* n = nIt->next(); + nodes[iN] = ( n == srcNode ? tgtNode : n ); + } + helper.GetMeshDS()->ChangeElementNodes( f, nodes, f->NbNodes() ); + dumpChangeNodes( f ); } - helper.GetMeshDS()->ChangeElementNodes( f, nodes, f->NbNodes() ); } } + dumpFunctionEnd(); // find out if a FACE is concave const bool isConcaveFace = isConcave( F, helper ); @@ -3608,14 +10456,14 @@ bool _ViscousBuilder::shrink() // Create _SmoothNode's on face F vector< _SmoothNode > nodesToSmooth( smoothNodes.size() ); { - dumpFunction(SMESH_Comment("beforeShrinkFace")<first); // debug + dumpFunction(SMESH_Comment("fixUVOnFace")<first); // debug const bool sortSimplices = isConcaveFace; - for ( unsigned i = 0; i < smoothNodes.size(); ++i ) + for ( size_t i = 0; i < smoothNodes.size(); ++i ) { const SMDS_MeshNode* n = smoothNodes[i]; nodesToSmooth[ i ]._node = n; - // src nodes must be replaced by tgt nodes to have tgt nodes in _simplices - getSimplices( n, nodesToSmooth[ i ]._simplices, ignoreShapes, NULL, sortSimplices ); + // src nodes must be already replaced by tgt nodes to have tgt nodes in _simplices + _Simplex::GetSimplices( n, nodesToSmooth[ i ]._simplices, ignoreShapes, 0, sortSimplices); // fix up incorrect uv of nodes on the FACE helper.GetNodeUV( F, n, 0, &isOkUV); dumpMove( n ); @@ -3624,23 +10472,48 @@ bool _ViscousBuilder::shrink() } //if ( nodesToSmooth.empty() ) continue; - // Find EDGE's to shrink + // Find EDGE's to shrink and set simpices to LayerEdge's set< _Shrinker1D* > eShri1D; { - for ( unsigned i = 0; i < lEdges.size(); ++i ) + for ( size_t iS = 0; iS < subEOS.size(); ++iS ) { - _LayerEdge* edge = lEdges[i]; - if ( edge->_sWOL.ShapeType() == TopAbs_EDGE ) + _EdgesOnShape& eos = * subEOS[ iS ]; + if ( eos.SWOLType() == TopAbs_EDGE ) { - TGeomID edgeIndex = getMeshDS()->ShapeToIndex( edge->_sWOL ); - _Shrinker1D& srinker = e2shrMap[ edgeIndex ]; + SMESH_subMesh* edgeSM = _mesh->GetSubMesh( eos._sWOL ); + _Shrinker1D& srinker = e2shrMap[ edgeSM->GetId() ]; eShri1D.insert( & srinker ); - srinker.AddEdge( edge, helper ); - VISCOUS_3D::ToClearSubWithMain( _mesh->GetSubMesh( edge->_sWOL ), data._solid ); + srinker.AddEdge( eos._edges[0], eos, helper ); + VISCOUS_3D::ToClearSubWithMain( edgeSM, data._solid ); // restore params of nodes on EGDE if the EDGE has been already - // srinked while srinking another FACE + // srinked while srinking other FACE srinker.RestoreParams(); } + for ( size_t i = 0; i < eos._edges.size(); ++i ) + { + _LayerEdge& edge = * eos._edges[i]; + _Simplex::GetSimplices( /*tgtNode=*/edge._nodes.back(), edge._simplices, ignoreShapes ); + + // additionally mark tgt node; only marked nodes will be used in SetNewLength2d() + // not-marked nodes are those added by refine() + edge._nodes.back()->setIsMarked( true ); + } + } + } + + bool toFixTria = false; // to improve quality of trias by diagonal swap + if ( isConcaveFace ) + { + const bool hasTria = _mesh->NbTriangles(), hasQuad = _mesh->NbQuadrangles(); + if ( hasTria != hasQuad ) { + toFixTria = hasTria; + } + else { + set nbNodesSet; + SMDS_ElemIteratorPtr fIt = smDS->GetElements(); + while ( fIt->more() && nbNodesSet.size() < 2 ) + nbNodesSet.insert( fIt->next()->NbCornerNodes() ); + toFixTria = ( *nbNodesSet.begin() == 3 ); } } @@ -3649,18 +10522,24 @@ bool _ViscousBuilder::shrink() // ================== bool shrinked = true; - int badNb, shriStep=0, smooStep=0; + int nbBad, shriStep=0, smooStep=0; _SmoothNode::SmoothType smoothType - = isConcaveFace ? _SmoothNode::CENTROIDAL : _SmoothNode::LAPLACIAN; + = isConcaveFace ? _SmoothNode::ANGULAR : _SmoothNode::LAPLACIAN; + SMESH_Comment errMsg; while ( shrinked ) { + shriStep++; // Move boundary nodes (actually just set new UV) // ----------------------------------------------- - dumpFunction(SMESH_Comment("moveBoundaryOnF")<first<<"_st"<first<<"_st"<SetNewLength2d( surface,F,helper ); + _EdgesOnShape& eos = * subEOS[ iS ]; + for ( size_t i = 0; i < eos._edges.size(); ++i ) + { + shrinked |= eos._edges[i]->SetNewLength2d( surface, F, eos, helper ); + } } dumpFunctionEnd(); @@ -3673,60 +10552,287 @@ bool _ViscousBuilder::shrink() // Smoothing in 2D // ----------------- int nbNoImpSteps = 0; - bool moved = true; - badNb = 1; - while (( nbNoImpSteps < 5 && badNb > 0) && moved) + bool moved = true; + nbBad = 1; + while (( nbNoImpSteps < 5 && nbBad > 0) && moved) { dumpFunction(SMESH_Comment("shrinkFace")<first<<"_st"<<++smooStep); // debug - int oldBadNb = badNb; - badNb = 0; + int oldBadNb = nbBad; + nbBad = 0; moved = false; - for ( unsigned i = 0; i < nodesToSmooth.size(); ++i ) + // '% 5' minimizes NB FUNCTIONS on viscous_layers_00/B2 case + _SmoothNode::SmoothType smooTy = ( smooStep % 5 ) ? smoothType : _SmoothNode::LAPLACIAN; + for ( size_t i = 0; i < nodesToSmooth.size(); ++i ) { - moved |= nodesToSmooth[i].Smooth( badNb,surface,helper,refSign, - smoothType, /*set3D=*/isConcaveFace); + moved |= nodesToSmooth[i].Smooth( nbBad, surface, helper, refSign, + smooTy, /*set3D=*/isConcaveFace); } - if ( badNb < oldBadNb ) + if ( nbBad < oldBadNb ) nbNoImpSteps = 0; else nbNoImpSteps++; dumpFunctionEnd(); } - if ( badNb > 0 ) - return error(SMESH_Comment("Can't shrink 2D mesh on face ") << f2sd->first ); - } - // No wrongly shaped faces remain; final smooth. Set node XYZ. - bool isStructuredFixed = false; - if ( SMESH_2D_Algo* algo = dynamic_cast( sm->GetAlgo() )) - isStructuredFixed = algo->FixInternalNodes( *data._proxyMesh, F ); - if ( !isStructuredFixed ) + errMsg.clear(); + if ( nbBad > 0 ) + errMsg << "Can't shrink 2D mesh on face " << f2sd->first; + if ( shriStep > 200 ) + errMsg << "Infinite loop at shrinking 2D mesh on face " << f2sd->first; + if ( !errMsg.empty() ) + break; + + // Fix narrow triangles by swapping diagonals + // --------------------------------------- + if ( toFixTria ) + { + set usedNodes; + fixBadFaces( F, helper, /*is2D=*/true, shriStep, & usedNodes); // swap diagonals + + // update working data + set::iterator n; + for ( size_t i = 0; i < nodesToSmooth.size() && !usedNodes.empty(); ++i ) + { + n = usedNodes.find( nodesToSmooth[ i ]._node ); + if ( n != usedNodes.end()) + { + _Simplex::GetSimplices( nodesToSmooth[ i ]._node, + nodesToSmooth[ i ]._simplices, + ignoreShapes, NULL, + /*sortSimplices=*/ smoothType == _SmoothNode::ANGULAR ); + usedNodes.erase( n ); + } + } + for ( size_t i = 0; i < lEdges.size() && !usedNodes.empty(); ++i ) + { + n = usedNodes.find( /*tgtNode=*/ lEdges[i]->_nodes.back() ); + if ( n != usedNodes.end()) + { + _Simplex::GetSimplices( lEdges[i]->_nodes.back(), + lEdges[i]->_simplices, + ignoreShapes ); + usedNodes.erase( n ); + } + } + } + // TODO: check effect of this additional smooth + // additional laplacian smooth to increase allowed shrink step + // for ( int st = 1; st; --st ) + // { + // dumpFunction(SMESH_Comment("shrinkFace")<first<<"_st"<<++smooStep); // debug + // for ( size_t i = 0; i < nodesToSmooth.size(); ++i ) + // { + // nodesToSmooth[i].Smooth( nbBad,surface,helper,refSign, + // _SmoothNode::LAPLACIAN,/*set3D=*/false); + // } + // } + + } // while ( shrinked ) + + if ( !errMsg.empty() ) // Try to re-compute the shrink FACE { - if ( isConcaveFace ) - fixBadFaces( F, helper ); // fix narrow faces by swapping diagonals - for ( int st = /*highQuality ? 10 :*/ 3; st; --st ) + debugMsg( "Re-compute FACE " << f2sd->first << " because " << errMsg ); + + // remove faces + SMESHDS_SubMesh* psm = data._proxyMesh->getFaceSubM( F ); { - dumpFunction(SMESH_Comment("shrinkFace")<first<<"_st"<<++smooStep); // debug - for ( unsigned i = 0; i < nodesToSmooth.size(); ++i ) + vector< const SMDS_MeshElement* > facesToRm; + if ( psm ) { - nodesToSmooth[i].Smooth( badNb,surface,helper,refSign, - smoothType,/*set3D=*/st==1 ); + facesToRm.reserve( psm->NbElements() ); + for ( SMDS_ElemIteratorPtr ite = psm->GetElements(); ite->more(); ) + facesToRm.push_back( ite->next() ); + + for ( size_t i = 0 ; i < _sdVec.size(); ++i ) + if (( psm = _sdVec[i]._proxyMesh->getFaceSubM( F ))) + psm->Clear(); } - dumpFunctionEnd(); + for ( size_t i = 0; i < facesToRm.size(); ++i ) + getMeshDS()->RemoveFreeElement( facesToRm[i], smDS, /*fromGroups=*/false ); + } + // remove nodes + { + TIDSortedNodeSet nodesToKeep; // nodes of _LayerEdge to keep + for ( size_t iS = 0; iS < subEOS.size(); ++iS ) { + for ( size_t i = 0; i < subEOS[iS]->_edges.size(); ++i ) + nodesToKeep.insert( ++( subEOS[iS]->_edges[i]->_nodes.begin() ), + subEOS[iS]->_edges[i]->_nodes.end() ); + } + SMDS_NodeIteratorPtr itn = smDS->GetNodes(); + while ( itn->more() ) { + const SMDS_MeshNode* n = itn->next(); + if ( !nodesToKeep.count( n )) + getMeshDS()->RemoveFreeNode( n, smDS, /*fromGroups=*/false ); + } + } + // restore position and UV of target nodes + gp_Pnt p; + for ( size_t iS = 0; iS < subEOS.size(); ++iS ) + for ( size_t i = 0; i < subEOS[iS]->_edges.size(); ++i ) + { + _LayerEdge* edge = subEOS[iS]->_edges[i]; + SMDS_MeshNode* tgtNode = const_cast< SMDS_MeshNode*& >( edge->_nodes.back() ); + if ( edge->_pos.empty() || + edge->Is( _LayerEdge::SHRUNK )) continue; + if ( subEOS[iS]->SWOLType() == TopAbs_FACE ) + { + SMDS_FacePosition* pos = static_cast( tgtNode->GetPosition() ); + pos->SetUParameter( edge->_pos[0].X() ); + pos->SetVParameter( edge->_pos[0].Y() ); + p = surface->Value( edge->_pos[0].X(), edge->_pos[0].Y() ); + } + else + { + SMDS_EdgePosition* pos = static_cast( tgtNode->GetPosition() ); + pos->SetUParameter( edge->_pos[0].Coord( U_TGT )); + p = BRepAdaptor_Curve( TopoDS::Edge( subEOS[iS]->_sWOL )).Value( pos->GetUParameter() ); + } + tgtNode->setXYZ( p.X(), p.Y(), p.Z() ); + dumpMove( tgtNode ); + } + // shrink EDGE sub-meshes and set proxy sub-meshes + UVPtStructVec uvPtVec; + set< _Shrinker1D* >::iterator shrIt = eShri1D.begin(); + for ( shrIt = eShri1D.begin(); shrIt != eShri1D.end(); ++shrIt ) + { + _Shrinker1D* shr = (*shrIt); + shr->Compute( /*set3D=*/true, helper ); + + // set proxy mesh of EDGEs w/o layers + map< double, const SMDS_MeshNode* > nodes; + SMESH_Algo::GetSortedNodesOnEdge( getMeshDS(), shr->GeomEdge(),/*skipMedium=*/true, nodes); + // remove refinement nodes + const SMDS_MeshNode* sn0 = shr->SrcNode(0), *sn1 = shr->SrcNode(1); + const SMDS_MeshNode* tn0 = shr->TgtNode(0), *tn1 = shr->TgtNode(1); + map< double, const SMDS_MeshNode* >::iterator u2n = nodes.begin(); + if ( u2n->second == sn0 || u2n->second == sn1 ) + { + while ( u2n->second != tn0 && u2n->second != tn1 ) + ++u2n; + nodes.erase( nodes.begin(), u2n ); + } + u2n = --nodes.end(); + if ( u2n->second == sn0 || u2n->second == sn1 ) + { + while ( u2n->second != tn0 && u2n->second != tn1 ) + --u2n; + nodes.erase( ++u2n, nodes.end() ); + } + // set proxy sub-mesh + uvPtVec.resize( nodes.size() ); + u2n = nodes.begin(); + BRepAdaptor_Curve2d curve( shr->GeomEdge(), F ); + for ( size_t i = 0; i < nodes.size(); ++i, ++u2n ) + { + uvPtVec[ i ].node = u2n->second; + uvPtVec[ i ].param = u2n->first; + uvPtVec[ i ].SetUV( curve.Value( u2n->first ).XY() ); + } + StdMeshers_FaceSide fSide( uvPtVec, F, shr->GeomEdge(), _mesh ); + StdMeshers_ViscousLayers2D::SetProxyMeshOfEdge( fSide ); } - } - // Set an event listener to clear FACE sub-mesh together with SOLID sub-mesh - VISCOUS_3D::ToClearSubWithMain( sm, data._solid ); - if ( !getMeshDS()->IsEmbeddedMode() ) - // Log node movement - for ( unsigned i = 0; i < nodesToSmooth.size(); ++i ) + // set proxy mesh of EDGEs with layers + vector< _LayerEdge* > edges; + for ( size_t iS = 0; iS < subEOS.size(); ++iS ) + { + _EdgesOnShape& eos = * subEOS[ iS ]; + if ( eos.ShapeType() != TopAbs_EDGE ) continue; + + const TopoDS_Edge& E = TopoDS::Edge( eos._shape ); + data.SortOnEdge( E, eos._edges ); + + edges.clear(); + if ( _EdgesOnShape* eov = data.GetShapeEdges( helper.IthVertex( 0, E, /*CumOri=*/false ))) + if ( !eov->_edges.empty() ) + edges.push_back( eov->_edges[0] ); // on 1st VERTEX + + edges.insert( edges.end(), eos._edges.begin(), eos._edges.end() ); + + if ( _EdgesOnShape* eov = data.GetShapeEdges( helper.IthVertex( 1, E, /*CumOri=*/false ))) + if ( !eov->_edges.empty() ) + edges.push_back( eov->_edges[0] ); // on last VERTEX + + uvPtVec.resize( edges.size() ); + for ( size_t i = 0; i < edges.size(); ++i ) + { + uvPtVec[ i ].node = edges[i]->_nodes.back(); + uvPtVec[ i ].param = helper.GetNodeU( E, edges[i]->_nodes[0] ); + uvPtVec[ i ].SetUV( helper.GetNodeUV( F, edges[i]->_nodes.back() )); + } + BRep_Tool::Range( E, uvPtVec[0].param, uvPtVec.back().param ); + StdMeshers_FaceSide fSide( uvPtVec, F, E, _mesh ); + StdMeshers_ViscousLayers2D::SetProxyMeshOfEdge( fSide ); + } + // temporary clear the FACE sub-mesh from faces made by refine() + vector< const SMDS_MeshElement* > elems; + elems.reserve( smDS->NbElements() + smDS->NbNodes() ); + for ( SMDS_ElemIteratorPtr ite = smDS->GetElements(); ite->more(); ) + elems.push_back( ite->next() ); + for ( SMDS_NodeIteratorPtr ite = smDS->GetNodes(); ite->more(); ) + elems.push_back( ite->next() ); + smDS->Clear(); + + // compute the mesh on the FACE + sm->ComputeStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE ); + sm->ComputeStateEngine( SMESH_subMesh::COMPUTE_SUBMESH ); + + // re-fill proxy sub-meshes of the FACE + for ( size_t i = 0 ; i < _sdVec.size(); ++i ) + if (( psm = _sdVec[i]._proxyMesh->getFaceSubM( F ))) + for ( SMDS_ElemIteratorPtr ite = smDS->GetElements(); ite->more(); ) + psm->AddElement( ite->next() ); + + // re-fill smDS + for ( size_t i = 0; i < elems.size(); ++i ) + smDS->AddElement( elems[i] ); + + if ( sm->GetComputeState() != SMESH_subMesh::COMPUTE_OK ) + return error( errMsg ); + + } // end of re-meshing in case of failed smoothing + else + { + // No wrongly shaped faces remain; final smooth. Set node XYZ. + bool isStructuredFixed = false; + if ( SMESH_2D_Algo* algo = dynamic_cast( sm->GetAlgo() )) + isStructuredFixed = algo->FixInternalNodes( *data._proxyMesh, F ); + if ( !isStructuredFixed ) { - SMESH_TNodeXYZ p ( nodesToSmooth[i]._node ); - getMeshDS()->MoveNode( nodesToSmooth[i]._node, p.X(), p.Y(), p.Z() ); + if ( isConcaveFace ) // fix narrow faces by swapping diagonals + fixBadFaces( F, helper, /*is2D=*/false, ++shriStep ); + + for ( int st = 3; st; --st ) + { + switch( st ) { + case 1: smoothType = _SmoothNode::LAPLACIAN; break; + case 2: smoothType = _SmoothNode::LAPLACIAN; break; + case 3: smoothType = _SmoothNode::ANGULAR; break; + } + dumpFunction(SMESH_Comment("shrinkFace")<first<<"_st"<<++smooStep); // debug + for ( size_t i = 0; i < nodesToSmooth.size(); ++i ) + { + nodesToSmooth[i].Smooth( nbBad,surface,helper,refSign, + smoothType,/*set3D=*/st==1 ); + } + dumpFunctionEnd(); + } } + if ( !getMeshDS()->IsEmbeddedMode() ) + // Log node movement + for ( size_t i = 0; i < nodesToSmooth.size(); ++i ) + { + SMESH_TNodeXYZ p ( nodesToSmooth[i]._node ); + getMeshDS()->MoveNode( nodesToSmooth[i]._node, p.X(), p.Y(), p.Z() ); + } + } + + // Set an event listener to clear FACE sub-mesh together with SOLID sub-mesh + VISCOUS_3D::ToClearSubWithMain( sm, data._solid ); + if ( data2 ) + VISCOUS_3D::ToClearSubWithMain( sm, data2->_solid ); } // loop on FACES to srink mesh on @@ -3747,73 +10853,32 @@ bool _ViscousBuilder::shrink() //================================================================================ bool _ViscousBuilder::prepareEdgeToShrink( _LayerEdge& edge, - const TopoDS_Face& F, + _EdgesOnShape& eos, SMESH_MesherHelper& helper, const SMESHDS_SubMesh* faceSubMesh) { const SMDS_MeshNode* srcNode = edge._nodes[0]; const SMDS_MeshNode* tgtNode = edge._nodes.back(); - edge._pos.clear(); - - if ( edge._sWOL.ShapeType() == TopAbs_FACE ) + if ( eos.SWOLType() == TopAbs_FACE ) { - gp_XY srcUV = helper.GetNodeUV( F, srcNode ); - gp_XY tgtUV = helper.GetNodeUV( F, tgtNode ); + if ( tgtNode->GetPosition()->GetDim() != 2 ) // not inflated edge + { + edge._pos.clear(); + edge.Set( _LayerEdge::SHRUNK ); + return srcNode == tgtNode; + } + gp_XY srcUV ( edge._pos[0].X(), edge._pos[0].Y() ); //helper.GetNodeUV( F, srcNode ); + gp_XY tgtUV = edge.LastUV( TopoDS::Face( eos._sWOL ), eos ); //helper.GetNodeUV( F, tgtNode ); gp_Vec2d uvDir( srcUV, tgtUV ); double uvLen = uvDir.Magnitude(); uvDir /= uvLen; - edge._normal.SetCoord( uvDir.X(),uvDir.Y(), 0); + edge._normal.SetCoord( uvDir.X(),uvDir.Y(), 0 ); edge._len = uvLen; - // IMPORTANT to have src nodes NOT yet REPLACED by tgt nodes in shrinked faces - vector faces; - multimap< double, const SMDS_MeshNode* > proj2node; - SMDS_ElemIteratorPtr fIt = srcNode->GetInverseElementIterator(SMDSAbs_Face); - while ( fIt->more() ) - { - const SMDS_MeshElement* f = fIt->next(); - if ( faceSubMesh->Contains( f )) - faces.push_back( f ); - } - for ( unsigned i = 0; i < faces.size(); ++i ) - { - const int nbNodes = faces[i]->NbCornerNodes(); - for ( int j = 0; j < nbNodes; ++j ) - { - const SMDS_MeshNode* n = faces[i]->GetNode(j); - if ( n == srcNode ) continue; - if ( n->GetPosition()->GetTypeOfPosition() != SMDS_TOP_FACE && - ( faces.size() > 1 || nbNodes > 3 )) - continue; - gp_Pnt2d uv = helper.GetNodeUV( F, n ); - gp_Vec2d uvDirN( srcUV, uv ); - double proj = uvDirN * uvDir; - proj2node.insert( make_pair( proj, n )); - } - } - - multimap< double, const SMDS_MeshNode* >::iterator p2n = proj2node.begin(), p2nEnd; - const double minProj = p2n->first; - const double projThreshold = 1.1 * uvLen; - if ( minProj > projThreshold ) - { - // tgtNode is located so that it does not make faces with wrong orientation - return true; - } - edge._pos.resize(1); + //edge._pos.resize(1); edge._pos[0].SetCoord( tgtUV.X(), tgtUV.Y(), 0 ); - // store most risky nodes in _simplices - p2nEnd = proj2node.lower_bound( projThreshold ); - int nbSimpl = ( std::distance( p2n, p2nEnd ) + 1) / 2; - edge._simplices.resize( nbSimpl ); - for ( int i = 0; i < nbSimpl; ++i ) - { - edge._simplices[i]._nPrev = p2n->second; - if ( ++p2n != p2nEnd ) - edge._simplices[i]._nNext = p2n->second; - } // set UV of source node to target node SMDS_FacePosition* pos = static_cast( tgtNode->GetPosition() ); pos->SetUParameter( srcUV.X() ); @@ -3821,7 +10886,13 @@ bool _ViscousBuilder::prepareEdgeToShrink( _LayerEdge& edge, } else // _sWOL is TopAbs_EDGE { - TopoDS_Edge E = TopoDS::Edge( edge._sWOL); + if ( tgtNode->GetPosition()->GetDim() != 1 ) // not inflated edge + { + edge._pos.clear(); + edge.Set( _LayerEdge::SHRUNK ); + return srcNode == tgtNode; + } + const TopoDS_Edge& E = TopoDS::Edge( eos._sWOL ); SMESHDS_SubMesh* edgeSM = getMeshDS()->MeshElements( E ); if ( !edgeSM || edgeSM->NbElements() == 0 ) return error(SMESH_Comment("Not meshed EDGE ") << getMeshDS()->ShapeToIndex( E )); @@ -3842,12 +10913,15 @@ bool _ViscousBuilder::prepareEdgeToShrink( _LayerEdge& edge, double uTgt = helper.GetNodeU( E, tgtNode, srcNode ); double u2 = helper.GetNodeU( E, n2, srcNode ); + //edge._pos.clear(); + if ( fabs( uSrc-uTgt ) < 0.99 * fabs( uSrc-u2 )) { // tgtNode is located so that it does not make faces with wrong orientation + edge.Set( _LayerEdge::SHRUNK ); return true; } - edge._pos.resize(1); + //edge._pos.resize(1); edge._pos[0].SetCoord( U_TGT, uTgt ); edge._pos[0].SetCoord( U_SRC, uSrc ); edge._pos[0].SetCoord( LEN_TGT, fabs( uSrc-uTgt )); @@ -3855,64 +10929,54 @@ bool _ViscousBuilder::prepareEdgeToShrink( _LayerEdge& edge, edge._simplices.resize( 1 ); edge._simplices[0]._nPrev = n2; - // set UV of source node to target node + // set U of source node to the target node SMDS_EdgePosition* pos = static_cast( tgtNode->GetPosition() ); pos->SetUParameter( uSrc ); } return true; +} - //================================================================================ - /*! - * \brief Compute positions (UV) to set to a node on edge moved during shrinking - */ - //================================================================================ - - // Compute UV to follow during shrinking - -// const SMDS_MeshNode* srcNode = edge._nodes[0]; -// const SMDS_MeshNode* tgtNode = edge._nodes.back(); - -// gp_XY srcUV = helper.GetNodeUV( F, srcNode ); -// gp_XY tgtUV = helper.GetNodeUV( F, tgtNode ); -// gp_Vec2d uvDir( srcUV, tgtUV ); -// double uvLen = uvDir.Magnitude(); -// uvDir /= uvLen; - -// // Select shrinking step such that not to make faces with wrong orientation. -// // IMPORTANT to have src nodes NOT yet REPLACED by tgt nodes in shrinked faces -// const double minStepSize = uvLen / 20; -// double stepSize = uvLen; -// SMDS_ElemIteratorPtr fIt = srcNode->GetInverseElementIterator(SMDSAbs_Face); -// while ( fIt->more() ) -// { -// const SMDS_MeshElement* f = fIt->next(); -// if ( !faceSubMesh->Contains( f )) continue; -// const int nbNodes = f->NbCornerNodes(); -// for ( int i = 0; i < nbNodes; ++i ) -// { -// const SMDS_MeshNode* n = f->GetNode(i); -// if ( n->GetPosition()->GetTypeOfPosition() != SMDS_TOP_FACE || n == srcNode) -// continue; -// gp_XY uv = helper.GetNodeUV( F, n ); -// gp_Vec2d uvDirN( srcUV, uv ); -// double proj = uvDirN * uvDir; -// if ( proj < stepSize && proj > minStepSize ) -// stepSize = proj; -// } -// } -// stepSize *= 0.8; - -// const int nbSteps = ceil( uvLen / stepSize ); -// gp_XYZ srcUV0( srcUV.X(), srcUV.Y(), 0 ); -// gp_XYZ tgtUV0( tgtUV.X(), tgtUV.Y(), 0 ); -// edge._pos.resize( nbSteps ); -// edge._pos[0] = tgtUV0; -// for ( int i = 1; i < nbSteps; ++i ) -// { -// double r = i / double( nbSteps ); -// edge._pos[i] = (1-r) * tgtUV0 + r * srcUV0; -// } -// return true; +//================================================================================ +/*! + * \brief Restore position of a sole node of a _LayerEdge based on _noShrinkShapes + */ +//================================================================================ + +void _ViscousBuilder::restoreNoShrink( _LayerEdge& edge ) const +{ + if ( edge._nodes.size() == 1 ) + { + edge._pos.clear(); + edge._len = 0; + + const SMDS_MeshNode* srcNode = edge._nodes[0]; + TopoDS_Shape S = SMESH_MesherHelper::GetSubShapeByNode( srcNode, getMeshDS() ); + if ( S.IsNull() ) return; + + gp_Pnt p; + + switch ( S.ShapeType() ) + { + case TopAbs_EDGE: + { + double f,l; + TopLoc_Location loc; + Handle(Geom_Curve) curve = BRep_Tool::Curve( TopoDS::Edge( S ), loc, f, l ); + if ( curve.IsNull() ) return; + SMDS_EdgePosition* ePos = static_cast( srcNode->GetPosition() ); + p = curve->Value( ePos->GetUParameter() ); + break; + } + case TopAbs_VERTEX: + { + p = BRep_Tool::Pnt( TopoDS::Vertex( S )); + break; + } + default: return; + } + getMeshDS()->MoveNode( srcNode, p.X(), p.Y(), p.Z() ); + dumpMove( srcNode ); + } } //================================================================================ @@ -3921,23 +10985,28 @@ bool _ViscousBuilder::prepareEdgeToShrink( _LayerEdge& edge, */ //================================================================================ -void _ViscousBuilder::fixBadFaces(const TopoDS_Face& F, SMESH_MesherHelper& helper) +void _ViscousBuilder::fixBadFaces(const TopoDS_Face& F, + SMESH_MesherHelper& helper, + const bool is2D, + const int step, + set * involvedNodes) { SMESH::Controls::AspectRatio qualifier; SMESH::Controls::TSequenceOfXYZ points(3), points1(3), points2(3); - const double maxAspectRatio = 4.; + const double maxAspectRatio = is2D ? 4. : 2; + _NodeCoordHelper xyz( F, helper, is2D ); // find bad triangles vector< const SMDS_MeshElement* > badTrias; vector< double > badAspects; - SMESHDS_SubMesh* sm = helper.GetMeshDS()->MeshElements( F ); + SMESHDS_SubMesh* sm = helper.GetMeshDS()->MeshElements( F ); SMDS_ElemIteratorPtr fIt = sm->GetElements(); while ( fIt->more() ) { const SMDS_MeshElement * f = fIt->next(); if ( f->NbCornerNodes() != 3 ) continue; - for ( int iP = 0; iP < 3; ++iP ) points(iP+1) = SMESH_TNodeXYZ( f->GetNode(iP)); + for ( int iP = 0; iP < 3; ++iP ) points(iP+1) = xyz( f->GetNode(iP)); double aspect = qualifier.GetValue( points ); if ( aspect > maxAspectRatio ) { @@ -3945,6 +11014,18 @@ void _ViscousBuilder::fixBadFaces(const TopoDS_Face& F, SMESH_MesherHelper& help badAspects.push_back( aspect ); } } + if ( step == 1 ) + { + dumpFunction(SMESH_Comment("beforeSwapDiagonals_F")<GetElements(); + while ( fIt->more() ) + { + const SMDS_MeshElement * f = fIt->next(); + if ( f->NbCornerNodes() == 3 ) + dumpChangeNodes( f ); + } + dumpFunctionEnd(); + } if ( badTrias.empty() ) return; @@ -3960,9 +11041,10 @@ void _ViscousBuilder::fixBadFaces(const TopoDS_Face& F, SMESH_MesherHelper& help double aspRatio [3]; int i1, i2, i3; - involvedFaces.insert( badTrias[iTia] ); + if ( !involvedFaces.insert( badTrias[iTia] ).second ) + continue; for ( int iP = 0; iP < 3; ++iP ) - points(iP+1) = SMESH_TNodeXYZ( badTrias[iTia]->GetNode(iP)); + points(iP+1) = xyz( badTrias[iTia]->GetNode(iP)); // find triangles adjacent to badTrias[iTia] with better aspect ratio after diag-swaping int bestCouple = -1; @@ -3973,12 +11055,14 @@ void _ViscousBuilder::fixBadFaces(const TopoDS_Face& F, SMESH_MesherHelper& help trias [iSide].first = badTrias[iTia]; trias [iSide].second = SMESH_MeshAlgos::FindFaceInSet( n1, n2, emptySet, involvedFaces, & i1, & i2 ); - if ( ! trias[iSide].second || trias[iSide].second->NbCornerNodes() != 3 ) + if (( ! trias[iSide].second ) || + ( trias[iSide].second->NbCornerNodes() != 3 ) || + ( ! sm->Contains( trias[iSide].second ))) continue; // aspect ratio of an adjacent tria for ( int iP = 0; iP < 3; ++iP ) - points2(iP+1) = SMESH_TNodeXYZ( trias[iSide].second->GetNode(iP)); + points2(iP+1) = xyz( trias[iSide].second->GetNode(iP)); double aspectInit = qualifier.GetValue( points2 ); // arrange nodes as after diag-swaping @@ -3995,6 +11079,12 @@ void _ViscousBuilder::fixBadFaces(const TopoDS_Face& F, SMESH_MesherHelper& help if ( aspRatio[ iSide ] > aspectInit + badAspects[ iTia ] ) continue; + // prevent inversion of a triangle + gp_Vec norm1 = gp_Vec( points1(1), points1(3) ) ^ gp_Vec( points1(1), points1(2) ); + gp_Vec norm2 = gp_Vec( points2(1), points2(3) ) ^ gp_Vec( points2(1), points2(2) ); + if ( norm1 * norm2 < 0. && norm1.Angle( norm2 ) > 70./180.*M_PI ) + continue; + if ( bestCouple < 0 || aspRatio[ bestCouple ] > aspRatio[ iSide ] ) bestCouple = iSide; } @@ -4015,17 +11105,25 @@ void _ViscousBuilder::fixBadFaces(const TopoDS_Face& F, SMESH_MesherHelper& help // swap diagonals SMESH_MeshEditor editor( helper.GetMesh() ); - dumpFunction(SMESH_Comment("beforeSwapDiagonals_F")<insert( triaCouples[i].first->begin_nodes(), + triaCouples[i].first->end_nodes() ); + involvedNodes->insert( triaCouples[i].second->begin_nodes(), + triaCouples[i].second->end_nodes() ); + } // just for debug dump resulting triangles - dumpFunction(SMESH_Comment("swapDiagonals_F")<( _nodes.back() ); - if ( _sWOL.ShapeType() == TopAbs_FACE ) + if ( eos.SWOLType() == TopAbs_FACE ) { gp_XY curUV = helper.GetNodeUV( F, tgtNode ); - gp_Pnt2d tgtUV( _pos[0].X(), _pos[0].Y()); + gp_Pnt2d tgtUV( _pos[0].X(), _pos[0].Y() ); gp_Vec2d uvDir( _normal.X(), _normal.Y() ); const double uvLen = tgtUV.Distance( curUV ); + const double kSafe = Max( 0.5, 1. - 0.1 * _simplices.size() ); // Select shrinking step such that not to make faces with wrong orientation. - const double kSafe = 0.8; - const double minStepSize = uvLen / 10; - double stepSize = uvLen; - for ( unsigned i = 0; i < _simplices.size(); ++i ) + double stepSize = 1e100; + for ( size_t i = 0; i < _simplices.size(); ++i ) { - const SMDS_MeshNode* nn[2] = { _simplices[i]._nPrev, _simplices[i]._nNext }; - for ( int j = 0; j < 2; ++j ) - if ( const SMDS_MeshNode* n = nn[j] ) - { - gp_XY uv = helper.GetNodeUV( F, n ); - gp_Vec2d uvDirN( curUV, uv ); - double proj = uvDirN * uvDir * kSafe; - if ( proj < stepSize && proj > minStepSize ) - stepSize = proj; - else if ( proj < minStepSize ) - stepSize = minStepSize; - } + if ( !_simplices[i]._nPrev->isMarked() || + !_simplices[i]._nNext->isMarked() ) + continue; // simplex of quadrangle created by addBoundaryElements() + + // find intersection of 2 lines: curUV-tgtUV and that connecting simplex nodes + gp_XY uvN1 = helper.GetNodeUV( F, _simplices[i]._nPrev ); + gp_XY uvN2 = helper.GetNodeUV( F, _simplices[i]._nNext ); + gp_XY dirN = uvN2 - uvN1; + double det = uvDir.Crossed( dirN ); + if ( Abs( det ) < std::numeric_limits::min() ) continue; + gp_XY dirN2Cur = curUV - uvN1; + double step = dirN.Crossed( dirN2Cur ) / det; + if ( step > 0 ) + stepSize = Min( step, stepSize ); } - gp_Pnt2d newUV; - if ( uvLen - stepSize < _len / 20. ) + if ( uvLen <= stepSize ) { newUV = tgtUV; - _pos.clear(); + Set( SHRUNK ); + //_pos.clear(); + } + else if ( stepSize > 0 ) + { + newUV = curUV + uvDir.XY() * stepSize * kSafe; } else { - newUV = curUV + uvDir.XY() * stepSize; + return true; } - SMDS_FacePosition* pos = static_cast( tgtNode->GetPosition() ); pos->SetUParameter( newUV.X() ); pos->SetVParameter( newUV.Y() ); @@ -4098,18 +11201,19 @@ bool _LayerEdge::SetNewLength2d( Handle(Geom_Surface)& surface, } else // _sWOL is TopAbs_EDGE { - TopoDS_Edge E = TopoDS::Edge( _sWOL ); - const SMDS_MeshNode* n2 = _simplices[0]._nPrev; + const TopoDS_Edge& E = TopoDS::Edge( eos._sWOL ); + const SMDS_MeshNode* n2 = _simplices[0]._nPrev; SMDS_EdgePosition* tgtPos = static_cast( tgtNode->GetPosition() ); - const double u2 = helper.GetNodeU( E, n2, tgtNode ); + const double u2 = helper.GetNodeU( E, n2, tgtNode ); const double uSrc = _pos[0].Coord( U_SRC ); const double lenTgt = _pos[0].Coord( LEN_TGT ); double newU = _pos[0].Coord( U_TGT ); if ( lenTgt < 0.99 * fabs( uSrc-u2 )) // n2 got out of src-tgt range { - _pos.clear(); + Set( _LayerEdge::SHRUNK ); + //_pos.clear(); } else { @@ -4123,6 +11227,7 @@ bool _LayerEdge::SetNewLength2d( Handle(Geom_Surface)& surface, dumpMove( tgtNode ); #endif } + return true; } @@ -4133,7 +11238,7 @@ bool _LayerEdge::SetNewLength2d( Handle(Geom_Surface)& surface, */ //================================================================================ -bool _SmoothNode::Smooth(int& badNb, +bool _SmoothNode::Smooth(int& nbBad, Handle(Geom_Surface)& surface, SMESH_MesherHelper& helper, const double refSign, @@ -4149,30 +11254,24 @@ bool _SmoothNode::Smooth(int& badNb, // compute new UV for the node gp_XY newPos (0,0); -/* if ( how == ANGULAR && _simplices.size() == 4 ) + if ( how == TFI && _simplices.size() == 4 ) { - vector corners; corners.reserve(4); + gp_XY corners[4]; for ( size_t i = 0; i < _simplices.size(); ++i ) if ( _simplices[i]._nOpp ) - corners.push_back( helper.GetNodeUV( face, _simplices[i]._nOpp, _node )); - if ( corners.size() == 4 ) - { - newPos = helper.calcTFI - ( 0.5, 0.5, - corners[0], corners[1], corners[2], corners[3], - uv[1], uv[2], uv[3], uv[0] ); - } - // vector p( _simplices.size() * 2 + 1 ); - // p.clear(); - // for ( size_t i = 0; i < _simplices.size(); ++i ) - // { - // p.push_back( uv[i] ); - // if ( _simplices[i]._nOpp ) - // p.push_back( helper.GetNodeUV( face, _simplices[i]._nOpp, _node )); - // } - // newPos = computeAngularPos( p, helper.GetNodeUV( face, _node ), refSign ); + corners[i] = helper.GetNodeUV( face, _simplices[i]._nOpp, _node ); + else + throw SALOME_Exception(LOCALIZED("TFI smoothing: _Simplex::_nOpp not set!")); + + newPos = helper.calcTFI ( 0.5, 0.5, + corners[0], corners[1], corners[2], corners[3], + uv[1], uv[2], uv[3], uv[0] ); + } + else if ( how == ANGULAR ) + { + newPos = computeAngularPos( uv, helper.GetNodeUV( face, _node ), refSign ); } - else*/ if ( how == CENTROIDAL && _simplices.size() > 3 ) + else if ( how == CENTROIDAL && _simplices.size() > 3 ) { // average centers of diagonals wieghted with their reciprocal lengths if ( _simplices.size() == 4 ) @@ -4203,7 +11302,6 @@ bool _SmoothNode::Smooth(int& badNb, else { // Laplacian smooth - //isCentroidal = false; for ( size_t i = 0; i < _simplices.size(); ++i ) newPos += uv[i]; newPos /= _simplices.size(); @@ -4212,18 +11310,16 @@ bool _SmoothNode::Smooth(int& badNb, // count quality metrics (orientation) of triangles around the node int nbOkBefore = 0; gp_XY tgtUV = helper.GetNodeUV( face, _node ); - for ( unsigned i = 0; i < _simplices.size(); ++i ) + for ( size_t i = 0; i < _simplices.size(); ++i ) nbOkBefore += _simplices[i].IsForward( tgtUV, _node, face, helper, refSign ); int nbOkAfter = 0; - for ( unsigned i = 0; i < _simplices.size(); ++i ) + for ( size_t i = 0; i < _simplices.size(); ++i ) nbOkAfter += _simplices[i].IsForward( newPos, _node, face, helper, refSign ); if ( nbOkAfter < nbOkBefore ) { - // if ( isCentroidal ) - // return Smooth( badNb, surface, helper, refSign, !isCentroidal, set3D ); - badNb += _simplices.size() - nbOkBefore; + nbBad += _simplices.size() - nbOkBefore; return false; } @@ -4241,7 +11337,7 @@ bool _SmoothNode::Smooth(int& badNb, dumpMove( _node ); } - badNb += _simplices.size() - nbOkAfter; + nbBad += _simplices.size() - nbOkAfter; return ( (tgtUV-newPos).SquareModulus() > 1e-10 ); } @@ -4257,22 +11353,22 @@ gp_XY _SmoothNode::computeAngularPos(vector& uv, { uv.push_back( uv.front() ); - vector< gp_XY > edgeDir( uv.size() ); + vector< gp_XY > edgeDir ( uv.size() ); vector< double > edgeSize( uv.size() ); for ( size_t i = 1; i < edgeDir.size(); ++i ) { - edgeDir[i-1] = uv[i] - uv[i-1]; + edgeDir [i-1] = uv[i] - uv[i-1]; edgeSize[i-1] = edgeDir[i-1].Modulus(); if ( edgeSize[i-1] < numeric_limits::min() ) edgeDir[i-1].SetX( 100 ); else edgeDir[i-1] /= edgeSize[i-1] * refSign; } - edgeDir.back() = edgeDir.front(); + edgeDir.back() = edgeDir.front(); edgeSize.back() = edgeSize.front(); - gp_XY newPos(0,0); - int nbEdges = 0; + gp_XY newPos(0,0); + //int nbEdges = 0; double sumSize = 0; for ( size_t i = 1; i < edgeDir.size(); ++i ) { @@ -4292,13 +11388,13 @@ gp_XY _SmoothNode::computeAngularPos(vector& uv, } bisec /= bisecSize; - gp_XY dirToN = uvToFix - p; + gp_XY dirToN = uvToFix - p; double distToN = dirToN.Modulus(); if ( bisec * dirToN < 0 ) distToN = -distToN; newPos += ( p + bisec * distToN ) * ( edgeSize[i1] + edgeSize[i] ); - ++nbEdges; + //++nbEdges; sumSize += edgeSize[i1] + edgeSize[i]; } newPos /= /*nbEdges * */sumSize; @@ -4313,21 +11409,35 @@ gp_XY _SmoothNode::computeAngularPos(vector& uv, _SolidData::~_SolidData() { - for ( unsigned i = 0; i < _edges.size(); ++i ) + TNode2Edge::iterator n2e = _n2eMap.begin(); + for ( ; n2e != _n2eMap.end(); ++n2e ) { - if ( _edges[i] && _edges[i]->_2neibors ) - delete _edges[i]->_2neibors; - delete _edges[i]; + _LayerEdge* & e = n2e->second; + if ( e ) + { + delete e->_curvature; + if ( e->_2neibors ) + delete e->_2neibors->_plnNorm; + delete e->_2neibors; + } + delete e; + e = 0; } - _edges.clear(); + _n2eMap.clear(); + + delete _helper; + _helper = 0; } + //================================================================================ /*! - * \brief Add a _LayerEdge inflated along the EDGE + * \brief Keep a _LayerEdge inflated along the EDGE */ //================================================================================ -void _Shrinker1D::AddEdge( const _LayerEdge* e, SMESH_MesherHelper& helper ) +void _Shrinker1D::AddEdge( const _LayerEdge* e, + _EdgesOnShape& eos, + SMESH_MesherHelper& helper ) { // init if ( _nodes.empty() ) @@ -4336,32 +11446,32 @@ void _Shrinker1D::AddEdge( const _LayerEdge* e, SMESH_MesherHelper& helper ) _done = false; } // check _LayerEdge - if ( e == _edges[0] || e == _edges[1] ) + if ( e == _edges[0] || e == _edges[1] || e->_nodes.size() < 2 ) return; - if ( e->_sWOL.IsNull() || e->_sWOL.ShapeType() != TopAbs_EDGE ) + if ( eos.SWOLType() != TopAbs_EDGE ) throw SALOME_Exception(LOCALIZED("Wrong _LayerEdge is added")); - if ( _edges[0] && _edges[0]->_sWOL != e->_sWOL ) + if ( _edges[0] && !_geomEdge.IsSame( eos._sWOL )) throw SALOME_Exception(LOCALIZED("Wrong _LayerEdge is added")); // store _LayerEdge - const TopoDS_Edge& E = TopoDS::Edge( e->_sWOL ); + _geomEdge = TopoDS::Edge( eos._sWOL ); double f,l; - BRep_Tool::Range( E, f,l ); - double u = helper.GetNodeU( E, e->_nodes[0], e->_nodes.back()); + BRep_Tool::Range( _geomEdge, f,l ); + double u = helper.GetNodeU( _geomEdge, e->_nodes[0], e->_nodes.back()); _edges[ u < 0.5*(f+l) ? 0 : 1 ] = e; // Update _nodes - const SMDS_MeshNode* tgtNode0 = _edges[0] ? _edges[0]->_nodes.back() : 0; - const SMDS_MeshNode* tgtNode1 = _edges[1] ? _edges[1]->_nodes.back() : 0; + const SMDS_MeshNode* tgtNode0 = TgtNode( 0 ); + const SMDS_MeshNode* tgtNode1 = TgtNode( 1 ); if ( _nodes.empty() ) { - SMESHDS_SubMesh * eSubMesh = helper.GetMeshDS()->MeshElements( E ); + SMESHDS_SubMesh * eSubMesh = helper.GetMeshDS()->MeshElements( _geomEdge ); if ( !eSubMesh || eSubMesh->NbNodes() < 1 ) return; TopLoc_Location loc; - Handle(Geom_Curve) C = BRep_Tool::Curve(E, loc, f,l); + Handle(Geom_Curve) C = BRep_Tool::Curve( _geomEdge, loc, f,l ); GeomAdaptor_Curve aCurve(C, f,l); const double totLen = GCPnts_AbscissaPoint::Length(aCurve, f, l); @@ -4373,11 +11483,20 @@ void _Shrinker1D::AddEdge( const _LayerEdge* e, SMESH_MesherHelper& helper ) while ( nIt->more() ) { const SMDS_MeshNode* node = nIt->next(); + + // skip refinement nodes if ( node->NbInverseElements(SMDSAbs_Edge) == 0 || node == tgtNode0 || node == tgtNode1 ) - continue; // refinement nodes + continue; + bool hasMarkedFace = false; + SMDS_ElemIteratorPtr fIt = node->GetInverseElementIterator(SMDSAbs_Face); + while ( fIt->more() && !hasMarkedFace ) + hasMarkedFace = fIt->next()->isMarked(); + if ( !hasMarkedFace ) + continue; + _nodes.push_back( node ); - _initU.push_back( helper.GetNodeU( E, node )); + _initU.push_back( helper.GetNodeU( _geomEdge, node )); double len = GCPnts_AbscissaPoint::Length(aCurve, f, _initU.back()); _normPar.push_back( len / totLen ); } @@ -4385,8 +11504,8 @@ void _Shrinker1D::AddEdge( const _LayerEdge* e, SMESH_MesherHelper& helper ) else { // remove target node of the _LayerEdge from _nodes - int nbFound = 0; - for ( unsigned i = 0; i < _nodes.size(); ++i ) + size_t nbFound = 0; + for ( size_t i = 0; i < _nodes.size(); ++i ) if ( !_nodes[i] || _nodes[i] == tgtNode0 || _nodes[i] == tgtNode1 ) _nodes[i] = 0, nbFound++; if ( nbFound == _nodes.size() ) @@ -4408,23 +11527,22 @@ void _Shrinker1D::Compute(bool set3D, SMESH_MesherHelper& helper) if ( !e ) e = _edges[1]; if ( !e ) return; - _done = (( !_edges[0] || _edges[0]->_pos.empty() ) && - ( !_edges[1] || _edges[1]->_pos.empty() )); + _done = (( !_edges[0] || _edges[0]->Is( _LayerEdge::SHRUNK )) && + ( !_edges[1] || _edges[1]->Is( _LayerEdge::SHRUNK ))); - const TopoDS_Edge& E = TopoDS::Edge( e->_sWOL ); double f,l; if ( set3D || _done ) { - Handle(Geom_Curve) C = BRep_Tool::Curve(E, f,l); + Handle(Geom_Curve) C = BRep_Tool::Curve(_geomEdge, f,l); GeomAdaptor_Curve aCurve(C, f,l); if ( _edges[0] ) - f = helper.GetNodeU( E, _edges[0]->_nodes.back(), _nodes[0] ); + f = helper.GetNodeU( _geomEdge, _edges[0]->_nodes.back(), _nodes[0] ); if ( _edges[1] ) - l = helper.GetNodeU( E, _edges[1]->_nodes.back(), _nodes.back() ); + l = helper.GetNodeU( _geomEdge, _edges[1]->_nodes.back(), _nodes.back() ); double totLen = GCPnts_AbscissaPoint::Length( aCurve, f, l ); - for ( unsigned i = 0; i < _nodes.size(); ++i ) + for ( size_t i = 0; i < _nodes.size(); ++i ) { if ( !_nodes[i] ) continue; double len = totLen * _normPar[i]; @@ -4440,13 +11558,13 @@ void _Shrinker1D::Compute(bool set3D, SMESH_MesherHelper& helper) } else { - BRep_Tool::Range( E, f,l ); + BRep_Tool::Range( _geomEdge, f,l ); if ( _edges[0] ) - f = helper.GetNodeU( E, _edges[0]->_nodes.back(), _nodes[0] ); + f = helper.GetNodeU( _geomEdge, _edges[0]->_nodes.back(), _nodes[0] ); if ( _edges[1] ) - l = helper.GetNodeU( E, _edges[1]->_nodes.back(), _nodes.back() ); + l = helper.GetNodeU( _geomEdge, _edges[1]->_nodes.back(), _nodes.back() ); - for ( unsigned i = 0; i < _nodes.size(); ++i ) + for ( size_t i = 0; i < _nodes.size(); ++i ) { if ( !_nodes[i] ) continue; double u = f * ( 1-_normPar[i] ) + l * _normPar[i]; @@ -4465,7 +11583,7 @@ void _Shrinker1D::Compute(bool set3D, SMESH_MesherHelper& helper) void _Shrinker1D::RestoreParams() { if ( _done ) - for ( unsigned i = 0; i < _nodes.size(); ++i ) + for ( size_t i = 0; i < _nodes.size(); ++i ) { if ( !_nodes[i] ) continue; SMDS_EdgePosition* pos = static_cast( _nodes[i]->GetPosition() ); @@ -4487,15 +11605,16 @@ void _Shrinker1D::SwapSrcTgtNodes( SMESHDS_Mesh* mesh ) { if ( !_edges[i] ) continue; - SMESHDS_SubMesh * eSubMesh = mesh->MeshElements( _edges[i]->_sWOL ); + SMESHDS_SubMesh * eSubMesh = mesh->MeshElements( _geomEdge ); if ( !eSubMesh ) return; const SMDS_MeshNode* srcNode = _edges[i]->_nodes[0]; const SMDS_MeshNode* tgtNode = _edges[i]->_nodes.back(); + const SMDS_MeshNode* scdNode = _edges[i]->_nodes[1]; SMDS_ElemIteratorPtr eIt = srcNode->GetInverseElementIterator(SMDSAbs_Edge); while ( eIt->more() ) { const SMDS_MeshElement* e = eIt->next(); - if ( !eSubMesh->Contains( e )) + if ( !eSubMesh->Contains( e ) || e->GetNodeIndex( scdNode ) >= 0 ) continue; SMDS_ElemIteratorPtr nIt = e->nodesIterator(); for ( int iN = 0; iN < e->NbNodes(); ++iN ) @@ -4514,18 +11633,23 @@ void _Shrinker1D::SwapSrcTgtNodes( SMESHDS_Mesh* mesh ) */ //================================================================================ -bool _ViscousBuilder::addBoundaryElements() +bool _ViscousBuilder::addBoundaryElements(_SolidData& data) { SMESH_MesherHelper helper( *_mesh ); - for ( unsigned i = 0; i < _sdVec.size(); ++i ) + vector< const SMDS_MeshNode* > faceNodes; + + //for ( size_t i = 0; i < _sdVec.size(); ++i ) { - _SolidData& data = _sdVec[i]; + //_SolidData& data = _sdVec[i]; TopTools_IndexedMapOfShape geomEdges; TopExp::MapShapes( data._solid, TopAbs_EDGE, geomEdges ); for ( int iE = 1; iE <= geomEdges.Extent(); ++iE ) { const TopoDS_Edge& E = TopoDS::Edge( geomEdges(iE)); + const TGeomID edgeID = getMeshDS()->ShapeToIndex( E ); + if ( data._noShrinkShapes.count( edgeID )) + continue; // Get _LayerEdge's based on E @@ -4549,17 +11673,22 @@ bool _ViscousBuilder::addBoundaryElements() const SMDS_MeshNode* tgtN0 = ledges[0]->_nodes.back(); const SMDS_MeshNode* tgtN1 = ledges[1]->_nodes.back(); int nbSharedPyram = 0; - SMDS_ElemIteratorPtr vIt = tgtN0->GetInverseElementIterator(SMDSAbs_Volume); + SMDS_ElemIteratorPtr vIt = tgtN1->GetInverseElementIterator(SMDSAbs_Volume); while ( vIt->more() ) { const SMDS_MeshElement* v = vIt->next(); - nbSharedPyram += int( v->GetNodeIndex( tgtN1 ) >= 0 ); + nbSharedPyram += int( v->GetNodeIndex( tgtN0 ) >= 0 ); } if ( nbSharedPyram > 1 ) continue; // not free border of the pyramid - if ( getMeshDS()->FindFace( ledges[0]->_nodes[0], ledges[0]->_nodes[1], - ledges[1]->_nodes[0], ledges[1]->_nodes[1])) + faceNodes.clear(); + faceNodes.push_back( ledges[0]->_nodes[0] ); + faceNodes.push_back( ledges[1]->_nodes[0] ); + if ( ledges[0]->_nodes.size() > 1 ) faceNodes.push_back( ledges[0]->_nodes[1] ); + if ( ledges[1]->_nodes.size() > 1 ) faceNodes.push_back( ledges[1]->_nodes[1] ); + + if ( getMeshDS()->FindElement( faceNodes, SMDSAbs_Face, /*noMedium=*/true)) continue; // faces already created } for ( ++u2n; u2n != u2nodes.end(); ++u2n ) @@ -4568,10 +11697,9 @@ bool _ViscousBuilder::addBoundaryElements() // Find out orientation and type of face to create bool reverse = false, isOnFace; - - map< TGeomID, TopoDS_Shape >::iterator e2f = - data._shrinkShape2Shape.find( getMeshDS()->ShapeToIndex( E )); TopoDS_Shape F; + + map< TGeomID, TopoDS_Shape >::iterator e2f = data._shrinkShape2Shape.find( edgeID ); if (( isOnFace = ( e2f != data._shrinkShape2Shape.end() ))) { F = e2f->second.Oriented( TopAbs_FORWARD ); @@ -4581,17 +11709,12 @@ bool _ViscousBuilder::addBoundaryElements() if ( helper.IsReversedSubMesh( TopoDS::Face(F) )) reverse = !reverse; } - else + else if ( !data._ignoreFaceIds.count( e2f->first )) { // find FACE with layers sharing E - PShapeIteratorPtr fIt = helper.GetAncestors( E, *_mesh, TopAbs_FACE ); - while ( fIt->more() && F.IsNull() ) - { - const TopoDS_Shape* pF = fIt->next(); - if ( helper.IsSubShape( *pF, data._solid) && - !_ignoreShapeIds.count( e2f->first )) - F = *pF; - } + PShapeIteratorPtr fIt = helper.GetAncestors( E, *_mesh, TopAbs_FACE, &data._solid ); + if ( fIt->more() ) + F = *( fIt->next() ); } // Find the sub-mesh to add new faces SMESHDS_SubMesh* sm = 0; @@ -4602,38 +11725,95 @@ bool _ViscousBuilder::addBoundaryElements() if ( !sm ) return error("error in addBoundaryElements()", data._index); + // Find a proxy sub-mesh of the FACE of an adjacent SOLID, which will use the new boundary + // faces for 3D meshing (PAL23414) + SMESHDS_SubMesh* adjSM = 0; + if ( isOnFace ) + { + const TGeomID faceID = sm->GetID(); + PShapeIteratorPtr soIt = helper.GetAncestors( F, *_mesh, TopAbs_SOLID ); + while ( const TopoDS_Shape* solid = soIt->next() ) + if ( !solid->IsSame( data._solid )) + { + size_t iData = _solids.FindIndex( *solid ) - 1; + if ( iData < _sdVec.size() && + _sdVec[ iData ]._ignoreFaceIds.count( faceID ) && + _sdVec[ iData ]._shrinkShape2Shape.count( edgeID ) == 0 ) + { + SMESH_ProxyMesh::SubMesh* proxySub = + _sdVec[ iData ]._proxyMesh->getFaceSubM( TopoDS::Face( F ), /*create=*/false); + if ( proxySub && proxySub->NbElements() > 0 ) + adjSM = proxySub; + } + } + } + // Make faces const int dj1 = reverse ? 0 : 1; const int dj2 = reverse ? 1 : 0; - for ( unsigned j = 1; j < ledges.size(); ++j ) + vector< const SMDS_MeshElement*> ff; // new faces row + SMESHDS_Mesh* m = getMeshDS(); + for ( size_t j = 1; j < ledges.size(); ++j ) { vector< const SMDS_MeshNode*>& nn1 = ledges[j-dj1]->_nodes; vector< const SMDS_MeshNode*>& nn2 = ledges[j-dj2]->_nodes; - if ( isOnFace ) - for ( size_t z = 1; z < nn1.size(); ++z ) - sm->AddElement( getMeshDS()->AddFace( nn1[z-1], nn2[z-1], nn2[z], nn1[z] )); + ff.resize( std::max( nn1.size(), nn2.size() ), NULL ); + if ( nn1.size() == nn2.size() ) + { + if ( isOnFace ) + for ( size_t z = 1; z < nn1.size(); ++z ) + sm->AddElement( ff[z-1] = m->AddFace( nn1[z-1], nn2[z-1], nn2[z], nn1[z] )); + else + for ( size_t z = 1; z < nn1.size(); ++z ) + sm->AddElement( new SMDS_FaceOfNodes( nn1[z-1], nn2[z-1], nn2[z], nn1[z] )); + } + else if ( nn1.size() == 1 ) + { + if ( isOnFace ) + for ( size_t z = 1; z < nn2.size(); ++z ) + sm->AddElement( ff[z-1] = m->AddFace( nn1[0], nn2[z-1], nn2[z] )); + else + for ( size_t z = 1; z < nn2.size(); ++z ) + sm->AddElement( new SMDS_FaceOfNodes( nn1[0], nn2[z-1], nn2[z] )); + } else - for ( size_t z = 1; z < nn1.size(); ++z ) - sm->AddElement( new SMDS_FaceOfNodes( nn1[z-1], nn2[z-1], nn2[z], nn1[z])); + { + if ( isOnFace ) + for ( size_t z = 1; z < nn1.size(); ++z ) + sm->AddElement( ff[z-1] = m->AddFace( nn1[z-1], nn2[0], nn1[z] )); + else + for ( size_t z = 1; z < nn1.size(); ++z ) + sm->AddElement( new SMDS_FaceOfNodes( nn1[z-1], nn2[0], nn2[z] )); + } + + if ( adjSM ) // add faces to a proxy SM of the adjacent SOLID + { + for ( size_t z = 0; z < ff.size(); ++z ) + if ( ff[ z ]) + adjSM->AddElement( ff[ z ]); + ff.clear(); + } } // Make edges for ( int isFirst = 0; isFirst < 2; ++isFirst ) { _LayerEdge* edge = isFirst ? ledges.front() : ledges.back(); - if ( !edge->_sWOL.IsNull() && edge->_sWOL.ShapeType() == TopAbs_EDGE ) + _EdgesOnShape* eos = data.GetShapeEdges( edge ); + if ( eos && eos->SWOLType() == TopAbs_EDGE ) { vector< const SMDS_MeshNode*>& nn = edge->_nodes; - if ( nn[1]->GetInverseElementIterator( SMDSAbs_Edge )->more() ) + if ( nn.size() < 2 || nn[1]->NbInverseElements( SMDSAbs_Edge ) >= 2 ) continue; - helper.SetSubShape( edge->_sWOL ); + helper.SetSubShape( eos->_sWOL ); helper.SetElementsOnShape( true ); for ( size_t z = 1; z < nn.size(); ++z ) helper.AddEdge( nn[z-1], nn[z] ); } } - } - } + + } // loop on EDGE's + } // loop on _SolidData's return true; }