X-Git-Url: http://git.salome-platform.org/gitweb/?p=modules%2Fsmesh.git;a=blobdiff_plain;f=src%2FStdMeshers%2FStdMeshers_Regular_1D.cxx;h=7118e0a2160c9973c10c5ab2f747810daa275ada;hp=78519c8617299661b7242bb2da885c1c6c3537db;hb=f3e2b7fea2d36b7dbe2df39f3e08e9c4d9b30e6d;hpb=57b43b4d010e2d0a1529d3c131bbb9d416e63258 diff --git a/src/StdMeshers/StdMeshers_Regular_1D.cxx b/src/StdMeshers/StdMeshers_Regular_1D.cxx index 78519c861..7118e0a21 100644 --- a/src/StdMeshers/StdMeshers_Regular_1D.cxx +++ b/src/StdMeshers/StdMeshers_Regular_1D.cxx @@ -1,103 +1,109 @@ -// SMESH SMESH : implementaion of SMESH idl descriptions +// Copyright (C) 2007-2016 CEA/DEN, EDF R&D, OPEN CASCADE // -// Copyright (C) 2003 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN, -// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS -// -// This library is free software; you can redistribute it and/or -// modify it under the terms of the GNU Lesser General Public -// License as published by the Free Software Foundation; either -// version 2.1 of the License. -// -// This library is distributed in the hope that it will be useful, -// but WITHOUT ANY WARRANTY; without even the implied warranty of -// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU -// Lesser General Public License for more details. -// -// You should have received a copy of the GNU Lesser General Public -// License along with this library; if not, write to the Free Software -// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA -// -// See http://www.opencascade.org/SALOME/ or email : webmaster.salome@opencascade.org +// Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN, +// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS // +// This library is free software; you can redistribute it and/or +// modify it under the terms of the GNU Lesser General Public +// License as published by the Free Software Foundation; either +// version 2.1 of the License, or (at your option) any later version. // +// This library is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +// Lesser General Public License for more details. // +// You should have received a copy of the GNU Lesser General Public +// License along with this library; if not, write to the Free Software +// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA +// +// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com +// + // File : StdMeshers_Regular_1D.cxx // Moved here from SMESH_Regular_1D.cxx // Author : Paul RASCLE, EDF // Module : SMESH -// $Header$ - -using namespace std; - +// #include "StdMeshers_Regular_1D.hxx" -#include "StdMeshers_Distribution.hxx" + +#include "SMDS_MeshElement.hxx" +#include "SMDS_MeshNode.hxx" +#include "SMESH_Comment.hxx" #include "SMESH_Gen.hxx" -#include "SMESH_Mesh.hxx" #include "SMESH_HypoFilter.hxx" +#include "SMESH_Mesh.hxx" #include "SMESH_subMesh.hxx" - +#include "SMESH_subMeshEventListener.hxx" +#include "StdMeshers_Adaptive1D.hxx" +#include "StdMeshers_Arithmetic1D.hxx" +#include "StdMeshers_Geometric1D.hxx" +#include "StdMeshers_AutomaticLength.hxx" +#include "StdMeshers_Deflection1D.hxx" +#include "StdMeshers_Distribution.hxx" +#include "StdMeshers_FixedPoints1D.hxx" #include "StdMeshers_LocalLength.hxx" +#include "StdMeshers_MaxLength.hxx" #include "StdMeshers_NumberOfSegments.hxx" -#include "StdMeshers_Arithmetic1D.hxx" +#include "StdMeshers_Propagation.hxx" +#include "StdMeshers_SegmentLengthAroundVertex.hxx" #include "StdMeshers_StartEndLength.hxx" -#include "StdMeshers_Deflection1D.hxx" -#include "StdMeshers_AutomaticLength.hxx" - -#include "SMDS_MeshElement.hxx" -#include "SMDS_MeshNode.hxx" -#include "SMDS_EdgePosition.hxx" #include "Utils_SALOME_Exception.hxx" #include "utilities.h" +#include #include -#include -#include -#include -#include #include #include #include -#include #include -#include -#include -#include -#include -#include -#include +#include +#include +#include +#include +#include #include -#include +#include using namespace std; +using namespace StdMeshers; //============================================================================= /*! - * + * */ //============================================================================= -StdMeshers_Regular_1D::StdMeshers_Regular_1D(int hypId, int studyId, - SMESH_Gen * gen):SMESH_1D_Algo(hypId, studyId, gen) +StdMeshers_Regular_1D::StdMeshers_Regular_1D(int hypId, + int studyId, + SMESH_Gen * gen) + :SMESH_1D_Algo( hypId, studyId, gen ) { - MESSAGE("StdMeshers_Regular_1D::StdMeshers_Regular_1D"); - _name = "Regular_1D"; - _shapeType = (1 << TopAbs_EDGE); - - _compatibleHypothesis.push_back("LocalLength"); - _compatibleHypothesis.push_back("NumberOfSegments"); - _compatibleHypothesis.push_back("StartEndLength"); - _compatibleHypothesis.push_back("Deflection1D"); - _compatibleHypothesis.push_back("Arithmetic1D"); - _compatibleHypothesis.push_back("AutomaticLength"); - - _compatibleHypothesis.push_back("QuadraticMesh"); // auxiliary !!! + _name = "Regular_1D"; + _shapeType = (1 << TopAbs_EDGE); + _fpHyp = 0; + + _compatibleHypothesis.push_back("LocalLength"); + _compatibleHypothesis.push_back("MaxLength"); + _compatibleHypothesis.push_back("NumberOfSegments"); + _compatibleHypothesis.push_back("StartEndLength"); + _compatibleHypothesis.push_back("Deflection1D"); + _compatibleHypothesis.push_back("Arithmetic1D"); + _compatibleHypothesis.push_back("GeometricProgression"); + _compatibleHypothesis.push_back("FixedPoints1D"); + _compatibleHypothesis.push_back("AutomaticLength"); + _compatibleHypothesis.push_back("Adaptive1D"); + // auxiliary: + _compatibleHypothesis.push_back("QuadraticMesh"); + _compatibleHypothesis.push_back("Propagation"); + _compatibleHypothesis.push_back("PropagOfDistribution"); } //============================================================================= /*! - * + * */ //============================================================================= @@ -107,29 +113,33 @@ StdMeshers_Regular_1D::~StdMeshers_Regular_1D() //============================================================================= /*! - * + * */ //============================================================================= -bool StdMeshers_Regular_1D::CheckHypothesis - (SMESH_Mesh& aMesh, - const TopoDS_Shape& aShape, - SMESH_Hypothesis::Hypothesis_Status& aStatus) +bool StdMeshers_Regular_1D::CheckHypothesis( SMESH_Mesh& aMesh, + const TopoDS_Shape& aShape, + Hypothesis_Status& aStatus ) { _hypType = NONE; _quadraticMesh = false; + _onlyUnaryInput = true; - const bool ignoreAuxiliaryHyps = false; const list & hyps = - GetUsedHypothesis(aMesh, aShape, ignoreAuxiliaryHyps); + GetUsedHypothesis(aMesh, aShape, /*ignoreAuxiliaryHyps=*/false); + + const SMESH_HypoFilter & propagFilter = StdMeshers_Propagation::GetFilter(); // find non-auxiliary hypothesis const SMESHDS_Hypothesis *theHyp = 0; + set< string > propagTypes; list ::const_iterator h = hyps.begin(); for ( ; h != hyps.end(); ++h ) { if ( static_cast(*h)->IsAuxiliary() ) { if ( strcmp( "QuadraticMesh", (*h)->GetName() ) == 0 ) _quadraticMesh = true; + if ( propagFilter.IsOk( static_cast< const SMESH_Hypothesis*>( *h ), aShape )) + propagTypes.insert( (*h)->GetName() ); } else { if ( !theHyp ) @@ -145,18 +155,34 @@ bool StdMeshers_Regular_1D::CheckHypothesis string hypName = theHyp->GetName(); - if (hypName == "LocalLength") + if ( hypName == "LocalLength" ) { const StdMeshers_LocalLength * hyp = dynamic_cast (theHyp); ASSERT(hyp); - _value[ BEG_LENGTH_IND ] = _value[ END_LENGTH_IND ] = hyp->GetLength(); + _value[ BEG_LENGTH_IND ] = hyp->GetLength(); + _value[ PRECISION_IND ] = hyp->GetPrecision(); ASSERT( _value[ BEG_LENGTH_IND ] > 0 ); _hypType = LOCAL_LENGTH; aStatus = SMESH_Hypothesis::HYP_OK; } - else if (hypName == "NumberOfSegments") + else if ( hypName == "MaxLength" ) + { + const StdMeshers_MaxLength * hyp = + dynamic_cast (theHyp); + ASSERT(hyp); + _value[ BEG_LENGTH_IND ] = hyp->GetLength(); + if ( hyp->GetUsePreestimatedLength() ) { + if ( int nbSeg = aMesh.GetGen()->GetBoundaryBoxSegmentation() ) + _value[ BEG_LENGTH_IND ] = aMesh.GetShapeDiagonalSize() / nbSeg; + } + ASSERT( _value[ BEG_LENGTH_IND ] > 0 ); + _hypType = MAX_LENGTH; + aStatus = SMESH_Hypothesis::HYP_OK; + } + + else if ( hypName == "NumberOfSegments" ) { const StdMeshers_NumberOfSegments * hyp = dynamic_cast (theHyp); @@ -168,12 +194,15 @@ bool StdMeshers_Regular_1D::CheckHypothesis { case StdMeshers_NumberOfSegments::DT_Scale: _value[ SCALE_FACTOR_IND ] = hyp->GetScaleFactor(); + _revEdgesIDs = hyp->GetReversedEdges(); break; case StdMeshers_NumberOfSegments::DT_TabFunc: _vvalue[ TAB_FUNC_IND ] = hyp->GetTableFunction(); + _revEdgesIDs = hyp->GetReversedEdges(); break; case StdMeshers_NumberOfSegments::DT_ExprFunc: _svalue[ EXPR_FUNC_IND ] = hyp->GetExpressionFunction(); + _revEdgesIDs = hyp->GetReversedEdges(); break; case StdMeshers_NumberOfSegments::DT_Regular: break; @@ -188,7 +217,7 @@ bool StdMeshers_Regular_1D::CheckHypothesis aStatus = SMESH_Hypothesis::HYP_OK; } - else if (hypName == "Arithmetic1D") + else if ( hypName == "Arithmetic1D" ) { const StdMeshers_Arithmetic1D * hyp = dynamic_cast (theHyp); @@ -197,10 +226,38 @@ bool StdMeshers_Regular_1D::CheckHypothesis _value[ END_LENGTH_IND ] = hyp->GetLength( false ); ASSERT( _value[ BEG_LENGTH_IND ] > 0 && _value[ END_LENGTH_IND ] > 0 ); _hypType = ARITHMETIC_1D; + + _revEdgesIDs = hyp->GetReversedEdges(); + + aStatus = SMESH_Hypothesis::HYP_OK; + } + + else if ( hypName == "GeometricProgression" ) + { + const StdMeshers_Geometric1D * hyp = + dynamic_cast (theHyp); + ASSERT(hyp); + _value[ BEG_LENGTH_IND ] = hyp->GetStartLength(); + _value[ END_LENGTH_IND ] = hyp->GetCommonRatio(); + ASSERT( _value[ BEG_LENGTH_IND ] > 0 && _value[ END_LENGTH_IND ] > 0 ); + _hypType = GEOMETRIC_1D; + + _revEdgesIDs = hyp->GetReversedEdges(); + aStatus = SMESH_Hypothesis::HYP_OK; } - else if (hypName == "StartEndLength") + else if ( hypName == "FixedPoints1D" ) { + _fpHyp = dynamic_cast (theHyp); + ASSERT(_fpHyp); + _hypType = FIXED_POINTS_1D; + + _revEdgesIDs = _fpHyp->GetReversedEdges(); + + aStatus = SMESH_Hypothesis::HYP_OK; + } + + else if ( hypName == "StartEndLength" ) { const StdMeshers_StartEndLength * hyp = dynamic_cast (theHyp); @@ -209,10 +266,13 @@ bool StdMeshers_Regular_1D::CheckHypothesis _value[ END_LENGTH_IND ] = hyp->GetLength( false ); ASSERT( _value[ BEG_LENGTH_IND ] > 0 && _value[ END_LENGTH_IND ] > 0 ); _hypType = BEG_END_LENGTH; + + _revEdgesIDs = hyp->GetReversedEdges(); + aStatus = SMESH_Hypothesis::HYP_OK; } - else if (hypName == "Deflection1D") + else if ( hypName == "Deflection1D" ) { const StdMeshers_Deflection1D * hyp = dynamic_cast (theHyp); @@ -223,105 +283,97 @@ bool StdMeshers_Regular_1D::CheckHypothesis aStatus = SMESH_Hypothesis::HYP_OK; } - else if (hypName == "AutomaticLength") + else if ( hypName == "AutomaticLength" ) { StdMeshers_AutomaticLength * hyp = const_cast (dynamic_cast (theHyp)); ASSERT(hyp); _value[ BEG_LENGTH_IND ] = _value[ END_LENGTH_IND ] = hyp->GetLength( &aMesh, aShape ); ASSERT( _value[ BEG_LENGTH_IND ] > 0 ); - _hypType = LOCAL_LENGTH; + _hypType = MAX_LENGTH; + aStatus = SMESH_Hypothesis::HYP_OK; + } + else if ( hypName == "Adaptive1D" ) + { + _adaptiveHyp = dynamic_cast < const StdMeshers_Adaptive1D* >(theHyp); + ASSERT(_adaptiveHyp); + _hypType = ADAPTIVE; + _onlyUnaryInput = false; aStatus = SMESH_Hypothesis::HYP_OK; } else + { aStatus = SMESH_Hypothesis::HYP_INCOMPATIBLE; + } - return ( _hypType != NONE ); -} - -//======================================================================= -//function : compensateError -//purpose : adjust theParams so that the last segment length == an -//======================================================================= - -static void compensateError(double a1, double an, - double U1, double Un, - double length, - GeomAdaptor_Curve& C3d, - list & theParams) -{ - int i, nPar = theParams.size(); - if ( a1 + an < length && nPar > 1 ) + if ( propagTypes.size() > 1 && aStatus == HYP_OK ) { - list::reverse_iterator itU = theParams.rbegin(); - double Ul = *itU++; - // dist from the last point to the edge end , it should be equal - double Ln = GCPnts_AbscissaPoint::Length( C3d, Ul, Un ); - double dLn = an - Ln; // error of - if ( Abs( dLn ) <= Precision::Confusion() ) - return; - double dU = Abs( Ul - *itU ); // parametric length of the last but one segment - double dUn = dLn * Abs( Un - U1 ) / length; // parametric error of - if ( dUn < 0.5 * dU ) { // last segment is a bit shorter than it should - dUn = -dUn; // move the last parameter to the edge beginning - } - else { // last segment is much shorter than it should -> remove the last param and - theParams.pop_back(); nPar--; // move the rest points toward the edge end - Ln = GCPnts_AbscissaPoint::Length( C3d, theParams.back(), Un ); - dUn = ( an - Ln ) * Abs( Un - U1 ) / length; - if ( dUn < 0.5 * dU ) - dUn = -dUn; - } - if ( U1 > Un ) - dUn = -dUn; - double q = dUn / ( nPar - 1 ); - for ( itU = theParams.rbegin(), i = 1; i < nPar; itU++, i++ ) { - (*itU) += dUn; - dUn -= q; + // detect concurrent Propagation hyps + _usedHypList.clear(); + list< TopoDS_Shape > assignedTo; + if ( aMesh.GetHypotheses( aShape, propagFilter, _usedHypList, true, &assignedTo ) > 1 ) + { + // find most simple shape and a hyp on it + int simpleShape = TopAbs_COMPOUND; + const SMESHDS_Hypothesis* localHyp = 0; + list< TopoDS_Shape >::iterator shape = assignedTo.begin(); + list< const SMESHDS_Hypothesis *>::iterator hyp = _usedHypList.begin(); + for ( ; shape != assignedTo.end(); ++shape ) + if ( shape->ShapeType() > simpleShape ) + { + simpleShape = shape->ShapeType(); + localHyp = (*hyp); + } + // check if there a different hyp on simpleShape + shape = assignedTo.begin(); + hyp = _usedHypList.begin(); + for ( ; hyp != _usedHypList.end(); ++hyp, ++shape ) + if ( shape->ShapeType() == simpleShape && + !localHyp->IsSameName( **hyp )) + { + aStatus = HYP_INCOMPAT_HYPS; + return error( SMESH_Comment("Hypotheses of both \"") + << StdMeshers_Propagation::GetName() << "\" and \"" + << StdMeshers_PropagOfDistribution::GetName() + << "\" types can't be applied to the same edge"); + } } } + + return ( aStatus == SMESH_Hypothesis::HYP_OK ); } -static bool computeParamByFunc(Adaptor3d_Curve& C3d, double first, double last, - double length, bool theReverse, - int nbSeg, Function& func, +static bool computeParamByFunc(Adaptor3d_Curve& C3d, + double first, double last, double length, + bool theReverse, int nbSeg, Function& func, list& theParams) { - OSD::SetSignal( true ); + // never do this way + //OSD::SetSignal( true ); - if( nbSeg<=0 ) + if ( nbSeg <= 0 ) return false; - MESSAGE( "computeParamByFunc" ); - int nbPnt = 1 + nbSeg; - vector x(nbPnt, 0.); + vector x( nbPnt, 0. ); - if( !buildDistribution( func, 0.0, 1.0, nbSeg, x, 1E-4 ) ) + if ( !buildDistribution( func, 0.0, 1.0, nbSeg, x, 1E-4 )) return false; - MESSAGE( "Points:\n" ); - char buf[1024]; - for( int i=0; i<=nbSeg; i++ ) - { - sprintf( buf, "%f\n", float(x[i] ) ); - MESSAGE( buf ); - } - - - // apply parameters in range [0,1] to the space of the curve double prevU = first; - double sign = 1.; - if (theReverse) + double sign = 1.; + if ( theReverse ) { prevU = last; - sign = -1.; + sign = -1.; } - for( int i = 1; i < nbSeg; i++ ) + + for ( int i = 1; i < nbSeg; i++ ) { double curvLength = length * (x[i] - x[i-1]) * sign; - GCPnts_AbscissaPoint Discret( C3d, curvLength, prevU ); + double tol = Min( Precision::Confusion(), curvLength / 100. ); + GCPnts_AbscissaPoint Discret( tol, C3d, curvLength, prevU ); if ( !Discret.IsDone() ) return false; double U = Discret.Parameter(); @@ -331,46 +383,407 @@ static bool computeParamByFunc(Adaptor3d_Curve& C3d, double first, double last, return false; prevU = U; } + if ( theReverse ) + theParams.reverse(); return true; } + +//================================================================================ +/*! + * \brief adjust internal node parameters so that the last segment length == an + * \param a1 - the first segment length + * \param an - the last segment length + * \param U1 - the first edge parameter + * \param Un - the last edge parameter + * \param length - the edge length + * \param C3d - the edge curve + * \param theParams - internal node parameters to adjust + * \param adjustNeighbors2an - to adjust length of segments next to the last one + * and not to remove parameters + */ +//================================================================================ + +static void compensateError(double a1, double an, + double U1, double Un, + double length, + Adaptor3d_Curve& C3d, + list & theParams, + bool adjustNeighbors2an = false) +{ + int i, nPar = theParams.size(); + if ( a1 + an <= length && nPar > 1 ) + { + bool reverse = ( U1 > Un ); + GCPnts_AbscissaPoint Discret(C3d, reverse ? an : -an, Un); + if ( !Discret.IsDone() ) + return; + double Utgt = Discret.Parameter(); // target value of the last parameter + list::reverse_iterator itU = theParams.rbegin(); + double Ul = *itU++; // real value of the last parameter + double dUn = Utgt - Ul; // parametric error of + if ( Abs(dUn) <= Precision::Confusion() ) + return; + double dU = Abs( Ul - *itU ); // parametric length of the last but one segment + if ( adjustNeighbors2an || Abs(dUn) < 0.5 * dU ) { // last segment is a bit shorter than it should + // move the last parameter to the edge beginning + } + else { // last segment is much shorter than it should -> remove the last param and + theParams.pop_back(); nPar--; // move the rest points toward the edge end + dUn = Utgt - theParams.back(); + } + + if ( !adjustNeighbors2an ) + { + double q = dUn / ( Utgt - Un ); // (signed) factor of segment length change + for ( itU = theParams.rbegin(), i = 1; i < nPar; i++ ) { + double prevU = *itU; + (*itU) += dUn; + ++itU; + dUn = q * (*itU - prevU) * (prevU-U1)/(Un-U1); + } + } + else if ( nPar == 1 ) + { + theParams.back() += dUn; + } + else + { + double q = dUn / ( nPar - 1 ); + theParams.back() += dUn; + double sign = reverse ? -1 : 1; + double prevU = theParams.back(); + itU = theParams.rbegin(); + for ( ++itU, i = 2; i < nPar; ++itU, i++ ) { + double newU = *itU + dUn; + if ( newU*sign < prevU*sign ) { + prevU = *itU = newU; + dUn -= q; + } + else { // set U between prevU and next valid param + list::reverse_iterator itU2 = itU; + ++itU2; + int nb = 2; + while ( (*itU2)*sign > prevU*sign ) { + ++itU2; ++nb; + } + dU = ( *itU2 - prevU ) / nb; + while ( itU != itU2 ) { + *itU += dU; ++itU; + } + break; + } + } + } + } +} + +//================================================================================ +/*! + * \brief Class used to clean mesh on edges when 0D hyp modified. + * Common approach doesn't work when 0D algo is missing because the 0D hyp is + * considered as not participating in computation whereas it is used by 1D algo. + */ +//================================================================================ + +// struct VertexEventListener : public SMESH_subMeshEventListener +// { +// VertexEventListener():SMESH_subMeshEventListener(0) // won't be deleted by submesh +// {} +// /*! +// * \brief Clean mesh on edges +// * \param event - algo_event or compute_event itself (of SMESH_subMesh) +// * \param eventType - ALGO_EVENT or COMPUTE_EVENT (of SMESH_subMesh) +// * \param subMesh - the submesh where the event occures +// */ +// void ProcessEvent(const int event, const int eventType, SMESH_subMesh* subMesh, +// EventListenerData*, const SMESH_Hypothesis*) +// { +// if ( eventType == SMESH_subMesh::ALGO_EVENT) // all algo events +// { +// subMesh->ComputeStateEngine( SMESH_subMesh::MODIF_ALGO_STATE ); +// } +// } +// }; // struct VertexEventListener + +//============================================================================= +/*! + * \brief Sets event listener to vertex submeshes + * \param subMesh - submesh where algo is set + * + * This method is called when a submesh gets HYP_OK algo_state. + * After being set, event listener is notified on each event of a submesh. + */ +//============================================================================= + +void StdMeshers_Regular_1D::SetEventListener(SMESH_subMesh* subMesh) +{ + StdMeshers_Propagation::SetPropagationMgr( subMesh ); +} + +//============================================================================= +/*! + * \brief Do nothing + * \param subMesh - restored submesh + * + * This method is called only if a submesh has HYP_OK algo_state. + */ +//============================================================================= + +void StdMeshers_Regular_1D::SubmeshRestored(SMESH_subMesh* subMesh) +{ +} + +//============================================================================= +/*! + * \brief Return StdMeshers_SegmentLengthAroundVertex assigned to vertex + */ +//============================================================================= + +const StdMeshers_SegmentLengthAroundVertex* +StdMeshers_Regular_1D::getVertexHyp(SMESH_Mesh & theMesh, + const TopoDS_Vertex & theV) +{ + static SMESH_HypoFilter filter( SMESH_HypoFilter::HasName("SegmentAroundVertex_0D")); + if ( const SMESH_Hypothesis * h = theMesh.GetHypothesis( theV, filter, true )) + { + SMESH_Algo* algo = const_cast< SMESH_Algo* >( static_cast< const SMESH_Algo* > ( h )); + const list & hypList = algo->GetUsedHypothesis( theMesh, theV, 0 ); + if ( !hypList.empty() && string("SegmentLengthAroundVertex") == hypList.front()->GetName() ) + return static_cast( hypList.front() ); + } + return 0; +} + +//================================================================================ +/*! + * \brief Tune parameters to fit "SegmentLengthAroundVertex" hypothesis + * \param theC3d - wire curve + * \param theLength - curve length + * \param theParameters - internal nodes parameters to modify + * \param theVf - 1st vertex + * \param theVl - 2nd vertex + */ +//================================================================================ + +void StdMeshers_Regular_1D::redistributeNearVertices (SMESH_Mesh & theMesh, + Adaptor3d_Curve & theC3d, + double theLength, + std::list< double > & theParameters, + const TopoDS_Vertex & theVf, + const TopoDS_Vertex & theVl) +{ + double f = theC3d.FirstParameter(), l = theC3d.LastParameter(); + int nPar = theParameters.size(); + for ( int isEnd1 = 0; isEnd1 < 2; ++isEnd1 ) + { + const TopoDS_Vertex & V = isEnd1 ? theVf : theVl; + const StdMeshers_SegmentLengthAroundVertex* hyp = getVertexHyp (theMesh, V ); + if ( hyp ) { + double vertexLength = hyp->GetLength(); + if ( vertexLength > theLength / 2.0 ) + continue; + if ( isEnd1 ) { // to have a segment of interest at end of theParameters + theParameters.reverse(); + std::swap( f, l ); + } + if ( _hypType == NB_SEGMENTS ) + { + compensateError(0, vertexLength, f, l, theLength, theC3d, theParameters, true ); + } + else if ( nPar <= 3 ) + { + if ( !isEnd1 ) + vertexLength = -vertexLength; + GCPnts_AbscissaPoint Discret(theC3d, vertexLength, l); + if ( Discret.IsDone() ) { + if ( nPar == 0 ) + theParameters.push_back( Discret.Parameter()); + else { + double L = GCPnts_AbscissaPoint::Length( theC3d, theParameters.back(), l); + if ( vertexLength < L / 2.0 ) + theParameters.push_back( Discret.Parameter()); + else + compensateError(0, vertexLength, f, l, theLength, theC3d, theParameters, true ); + } + } + } + else + { + // recompute params between the last segment and a middle one. + // find size of a middle segment + int nHalf = ( nPar-1 ) / 2; + list< double >::reverse_iterator itU = theParameters.rbegin(); + std::advance( itU, nHalf ); + double Um = *itU++; + double Lm = GCPnts_AbscissaPoint::Length( theC3d, Um, *itU); + double L = GCPnts_AbscissaPoint::Length( theC3d, *itU, l); + static StdMeshers_Regular_1D* auxAlgo = 0; + if ( !auxAlgo ) { + auxAlgo = new StdMeshers_Regular_1D( _gen->GetANewId(), _studyId, _gen ); + auxAlgo->_hypType = BEG_END_LENGTH; + } + auxAlgo->_value[ BEG_LENGTH_IND ] = Lm; + auxAlgo->_value[ END_LENGTH_IND ] = vertexLength; + double from = *itU, to = l; + if ( isEnd1 ) { + std::swap( from, to ); + std::swap( auxAlgo->_value[ BEG_LENGTH_IND ], auxAlgo->_value[ END_LENGTH_IND ]); + } + list params; + if ( auxAlgo->computeInternalParameters( theMesh, theC3d, L, from, to, params, false )) + { + if ( isEnd1 ) params.reverse(); + while ( 1 + nHalf-- ) + theParameters.pop_back(); + theParameters.splice( theParameters.end(), params ); + } + else + { + compensateError(0, vertexLength, f, l, theLength, theC3d, theParameters, true ); + } + } + if ( isEnd1 ) + theParameters.reverse(); + } + } +} + //============================================================================= /*! * */ //============================================================================= -bool StdMeshers_Regular_1D::computeInternalParameters(const TopoDS_Edge& theEdge, - list & theParams, - const bool theReverse) const +bool StdMeshers_Regular_1D::computeInternalParameters(SMESH_Mesh & theMesh, + Adaptor3d_Curve& theC3d, + double theLength, + double theFirstU, + double theLastU, + list & theParams, + const bool theReverse, + bool theConsiderPropagation) { theParams.clear(); - double f, l; - Handle(Geom_Curve) Curve = BRep_Tool::Curve(theEdge, f, l); - GeomAdaptor_Curve C3d (Curve, f, l); + double f = theFirstU, l = theLastU; + + // Propagation Of Distribution + // + if ( !_mainEdge.IsNull() && _isPropagOfDistribution ) + { + TopoDS_Edge mainEdge = TopoDS::Edge( _mainEdge ); // should not be a reference! + _gen->Compute( theMesh, mainEdge, /*aShapeOnly=*/true, /*anUpward=*/true); + + SMESHDS_SubMesh* smDS = theMesh.GetMeshDS()->MeshElements( mainEdge ); + if ( !smDS ) + return error("No mesh on the source edge of Propagation Of Distribution"); + if ( smDS->NbNodes() < 1 ) + return true; // 1 segment + + map< double, const SMDS_MeshNode* > mainEdgeParamsOfNodes; + if ( ! SMESH_Algo::GetSortedNodesOnEdge( theMesh.GetMeshDS(), mainEdge, _quadraticMesh, + mainEdgeParamsOfNodes, SMDSAbs_Edge )) + return error("Bad node parameters on the source edge of Propagation Of Distribution"); + vector< double > segLen( mainEdgeParamsOfNodes.size() - 1 ); + double totalLen = 0; + BRepAdaptor_Curve mainEdgeCurve( mainEdge ); + map< double, const SMDS_MeshNode* >::iterator + u_n2 = mainEdgeParamsOfNodes.begin(), u_n1 = u_n2++; + for ( size_t i = 1; i < mainEdgeParamsOfNodes.size(); ++i, ++u_n1, ++u_n2 ) + { + segLen[ i-1 ] = GCPnts_AbscissaPoint::Length( mainEdgeCurve, + u_n1->first, + u_n2->first); + totalLen += segLen[ i-1 ]; + } + for ( size_t i = 0; i < segLen.size(); ++i ) + segLen[ i ] *= theLength / totalLen; + + size_t iSeg = theReverse ? segLen.size()-1 : 0; + size_t dSeg = theReverse ? -1 : +1; + double param = theFirstU; + size_t nbParams = 0; + for ( int i = 0, nb = segLen.size()-1; i < nb; ++i, iSeg += dSeg ) + { + GCPnts_AbscissaPoint Discret( theC3d, segLen[ iSeg ], param ); + if ( !Discret.IsDone() ) break; + param = Discret.Parameter(); + theParams.push_back( param ); + ++nbParams; + } + if ( nbParams != segLen.size()-1 ) + return error( SMESH_Comment("Can't divide into ") << segLen.size() << " segments"); + + compensateError( segLen[ theReverse ? segLen.size()-1 : 0 ], + segLen[ theReverse ? 0 : segLen.size()-1 ], + f, l, theLength, theC3d, theParams, true ); + return true; + } - double length = EdgeLength(theEdge); switch( _hypType ) { case LOCAL_LENGTH: - case NB_SEGMENTS: { - + case MAX_LENGTH: + case NB_SEGMENTS: + { double eltSize = 1; - if ( _hypType == LOCAL_LENGTH ) + int nbSegments; + if ( _hypType == MAX_LENGTH ) + { + double nbseg = ceil(theLength / _value[ BEG_LENGTH_IND ]); // integer sup + if (nbseg <= 0) + nbseg = 1; // degenerated edge + eltSize = theLength / nbseg; + nbSegments = (int) nbseg; + } + else if ( _hypType == LOCAL_LENGTH ) { // Local Length hypothesis - double nbseg = ceil(length / _value[ BEG_LENGTH_IND ]); // integer sup + double nbseg = ceil(theLength / _value[ BEG_LENGTH_IND ]); // integer sup + + // NPAL17873: + bool isFound = false; + if (theConsiderPropagation && !_mainEdge.IsNull()) // propagated from some other edge + { + // Advanced processing to assure equal number of segments in case of Propagation + SMESH_subMesh* sm = theMesh.GetSubMeshContaining(_mainEdge); + if (sm) { + bool computed = sm->IsMeshComputed(); + if (!computed) { + if (sm->GetComputeState() == SMESH_subMesh::READY_TO_COMPUTE) { + _gen->Compute( theMesh, _mainEdge, /*anUpward=*/true); + computed = sm->IsMeshComputed(); + } + } + if (computed) { + SMESHDS_SubMesh* smds = sm->GetSubMeshDS(); + int nb_segments = smds->NbElements(); + if (nbseg - 1 <= nb_segments && nb_segments <= nbseg + 1) { + isFound = true; + nbseg = nb_segments; + } + } + } + } + if (!isFound) // not found by meshed edge in the propagation chain, use precision + { + double aPrecision = _value[ PRECISION_IND ]; + double nbseg_prec = ceil((theLength / _value[ BEG_LENGTH_IND ]) - aPrecision); + if (nbseg_prec == (nbseg - 1)) nbseg--; + } + if (nbseg <= 0) nbseg = 1; // degenerated edge - eltSize = length / nbseg; + eltSize = theLength / nbseg; + nbSegments = (int) nbseg; } else { // Number Of Segments hypothesis - int NbSegm = _ivalue[ NB_SEGMENTS_IND ]; - if ( NbSegm < 1 ) return false; - if ( NbSegm == 1 ) return true; + nbSegments = _ivalue[ NB_SEGMENTS_IND ]; + if ( nbSegments < 1 ) return false; + if ( nbSegments == 1 ) return true; switch (_ivalue[ DISTR_TYPE_IND ]) { @@ -379,9 +792,9 @@ bool StdMeshers_Regular_1D::computeInternalParameters(const TopoDS_Edge& theEdge double scale = _value[ SCALE_FACTOR_IND ]; if (fabs(scale - 1.0) < Precision::Confusion()) { - // special case to avoid division on zero - for (int i = 1; i < NbSegm; i++) { - double param = f + (l - f) * i / NbSegm; + // special case to avoid division by zero + for (int i = 1; i < nbSegments; i++) { + double param = f + (l - f) * i / nbSegments; theParams.push_back( param ); } } else { @@ -389,21 +802,29 @@ bool StdMeshers_Regular_1D::computeInternalParameters(const TopoDS_Edge& theEdge if ( theReverse ) scale = 1.0 / scale; - double alpha = pow(scale, 1.0 / (NbSegm - 1)); - double factor = (l - f) / (1.0 - pow(alpha, NbSegm)); + double alpha = pow(scale, 1.0 / (nbSegments - 1)); + double factor = (l - f) / (1.0 - pow(alpha, nbSegments)); - for (int i = 1; i < NbSegm; i++) { + for (int i = 1; i < nbSegments; i++) { double param = f + factor * (1.0 - pow(alpha, i)); theParams.push_back( param ); } } + const double lenFactor = theLength/(l-f); + list::iterator u = theParams.begin(), uEnd = theParams.end(); + for ( ; u != uEnd; ++u ) + { + GCPnts_AbscissaPoint Discret( theC3d, ((*u)-f) * lenFactor, f ); + if ( Discret.IsDone() ) + *u = Discret.Parameter(); + } return true; } break; case StdMeshers_NumberOfSegments::DT_TabFunc: { FunctionTable func(_vvalue[ TAB_FUNC_IND ], _ivalue[ CONV_MODE_IND ]); - return computeParamByFunc(C3d, f, l, length, theReverse, + return computeParamByFunc(theC3d, f, l, theLength, theReverse, _ivalue[ NB_SEGMENTS_IND ], func, theParams); } @@ -411,69 +832,76 @@ bool StdMeshers_Regular_1D::computeInternalParameters(const TopoDS_Edge& theEdge case StdMeshers_NumberOfSegments::DT_ExprFunc: { FunctionExpr func(_svalue[ EXPR_FUNC_IND ].c_str(), _ivalue[ CONV_MODE_IND ]); - return computeParamByFunc(C3d, f, l, length, theReverse, + return computeParamByFunc(theC3d, f, l, theLength, theReverse, _ivalue[ NB_SEGMENTS_IND ], func, theParams); } break; case StdMeshers_NumberOfSegments::DT_Regular: - eltSize = length / _ivalue[ NB_SEGMENTS_IND ]; + eltSize = theLength / nbSegments; break; default: return false; } } - GCPnts_UniformAbscissa Discret(C3d, eltSize, f, l); + GCPnts_UniformAbscissa Discret(theC3d, eltSize, f, l); if ( !Discret.IsDone() ) - return false; + return error( "GCPnts_UniformAbscissa failed"); - int NbPoints = Discret.NbPoints(); - for ( int i = 2; i < NbPoints; i++ ) + int NbPoints = Min( Discret.NbPoints(), nbSegments + 1 ); + for ( int i = 2; i < NbPoints; i++ ) // skip 1st and last points { double param = Discret.Parameter(i); theParams.push_back( param ); } - compensateError( eltSize, eltSize, f, l, length, C3d, theParams ); // for PAL9899 + compensateError( eltSize, eltSize, f, l, theLength, theC3d, theParams, true ); // for PAL9899 return true; } case BEG_END_LENGTH: { - // geometric progression: SUM(n) = ( a1 - an * q ) / ( 1 - q ) = length + // geometric progression: SUM(n) = ( a1 - an * q ) / ( 1 - q ) = theLength double a1 = _value[ BEG_LENGTH_IND ]; double an = _value[ END_LENGTH_IND ]; - double q = ( length - a1 ) / ( length - an ); + double q = ( theLength - a1 ) / ( theLength - an ); + if ( q < theLength/1e6 || 1.01*theLength < a1 + an) + return error ( SMESH_Comment("Invalid segment lengths (")< at the distance + // computes a point on a curve at the distance // from the point of parameter . - GCPnts_AbscissaPoint Discret( C3d, eltSize, param ); + GCPnts_AbscissaPoint Discret( theC3d, eltSize, param ); if ( !Discret.IsDone() ) break; param = Discret.Parameter(); - if ( param > f && param < l ) + if ( f < param && param < l ) theParams.push_back( param ); else break; eltSize *= q; } - compensateError( a1, an, U1, Un, length, C3d, theParams ); + compensateError( a1, an, U1, Un, theLength, theC3d, theParams ); + if (theReverse) theParams.reverse(); // NPAL18025 return true; } - case ARITHMETIC_1D: { - - // arithmetic progression: SUM(n) = ( an - a1 + q ) * ( a1 + an ) / ( 2 * q ) = length + case ARITHMETIC_1D: + { + // arithmetic progression: SUM(n) = ( an - a1 + q ) * ( a1 + an ) / ( 2 * q ) = theLength double a1 = _value[ BEG_LENGTH_IND ]; double an = _value[ END_LENGTH_IND ]; + if ( 1.01*theLength < a1 + an ) + return error ( SMESH_Comment("Invalid segment lengths (")< numeric_limits::min() ? ( 1+( an-a1 )/q ) : ( 1+theLength/a1 )); double U1 = theReverse ? l : f; double Un = theReverse ? f : l; @@ -484,9 +912,9 @@ bool StdMeshers_Regular_1D::computeInternalParameters(const TopoDS_Edge& theEdge q = -q; } while ( n-- > 0 && eltSize * ( Un - U1 ) > 0 ) { - // computes a point on a curve at the distance + // computes a point on a curve at the distance // from the point of parameter . - GCPnts_AbscissaPoint Discret( C3d, eltSize, param ); + GCPnts_AbscissaPoint Discret( theC3d, eltSize, param ); if ( !Discret.IsDone() ) break; param = Discret.Parameter(); if ( param > f && param < l ) @@ -495,14 +923,157 @@ bool StdMeshers_Regular_1D::computeInternalParameters(const TopoDS_Edge& theEdge break; eltSize += q; } - compensateError( a1, an, U1, Un, length, C3d, theParams ); + compensateError( a1, an, U1, Un, theLength, theC3d, theParams ); + if ( theReverse ) theParams.reverse(); // NPAL18025 + + return true; + } + + case GEOMETRIC_1D: + { + double a1 = _value[ BEG_LENGTH_IND ], an; + double q = _value[ END_LENGTH_IND ]; + + double U1 = theReverse ? l : f; + double Un = theReverse ? f : l; + double param = U1; + double eltSize = a1; + if ( theReverse ) + eltSize = -eltSize; + + int nbParams = 0; + while ( true ) { + // computes a point on a curve at the distance + // from the point of parameter . + GCPnts_AbscissaPoint Discret( theC3d, eltSize, param ); + if ( !Discret.IsDone() ) break; + param = Discret.Parameter(); + if ( f < param && param < l ) + theParams.push_back( param ); + else + break; + an = eltSize; + eltSize *= q; + ++nbParams; + } + if ( nbParams > 1 ) + { + if ( Abs( param - Un ) < 0.2 * Abs( param - theParams.back() )) + { + compensateError( a1, Abs(eltSize), U1, Un, theLength, theC3d, theParams ); + } + else if ( Abs( Un - theParams.back() ) < + 0.2 * Abs( theParams.back() - *(++theParams.rbegin()))) + { + theParams.pop_back(); + compensateError( a1, Abs(an), U1, Un, theLength, theC3d, theParams ); + } + } + if (theReverse) theParams.reverse(); // NPAL18025 return true; } - case DEFLECTION: { + case FIXED_POINTS_1D: + { + const std::vector& aPnts = _fpHyp->GetPoints(); + const std::vector& nbsegs = _fpHyp->GetNbSegments(); + TColStd_SequenceOfReal Params; + for ( size_t i = 0; i < aPnts.size(); i++ ) + { + if( aPnts[i]<0.0001 || aPnts[i]>0.9999 ) continue; + int j=1; + bool IsExist = false; + for ( ; j <= Params.Length(); j++ ) { + if ( Abs( aPnts[i] - Params.Value(j) ) < 1e-4 ) { + IsExist = true; + break; + } + if ( aPnts[i] (int)nbsegs.size()-1 ) ? nbsegs[0] : nbsegs[i]; + segmentSize = Params.Value( i+1 ) * theLength - currAbscissa; + currAbscissa += segmentSize; + GCPnts_AbscissaPoint APnt( theC3d, sign*segmentSize, par1 ); + if ( !APnt.IsDone() ) + return error( "GCPnts_AbscissaPoint failed"); + par2 = APnt.Parameter(); + eltSize = segmentSize/nbseg; + GCPnts_UniformAbscissa Discret( theC3d, eltSize, par1, par2 ); + if ( theReverse ) + Discret.Initialize( theC3d, eltSize, par2, par1 ); + else + Discret.Initialize( theC3d, eltSize, par1, par2 ); + if ( !Discret.IsDone() ) + return error( "GCPnts_UniformAbscissa failed"); + int NbPoints = Discret.NbPoints(); + list tmpParams; + for ( int i = 2; i < NbPoints; i++ ) { + double param = Discret.Parameter(i); + tmpParams.push_back( param ); + } + if ( theReverse ) { + compensateError( eltSize, eltSize, par2, par1, segmentSize, theC3d, tmpParams ); + tmpParams.reverse(); + } + else { + compensateError( eltSize, eltSize, par1, par2, segmentSize, theC3d, tmpParams ); + } + theParams.splice( theParams.end(), tmpParams ); + theParams.push_back( par2 ); - GCPnts_UniformDeflection Discret(C3d, _value[ DEFLECTION_IND ], f, l, true); + par1 = par2; + } + // add for last + int nbseg = ( (int)nbsegs.size() > Params.Length() ) ? nbsegs[Params.Length()] : nbsegs[0]; + segmentSize = theLength - currAbscissa; + eltSize = segmentSize/nbseg; + GCPnts_UniformAbscissa Discret; + if ( theReverse ) + Discret.Initialize( theC3d, eltSize, par1, lp ); + else + Discret.Initialize( theC3d, eltSize, lp, par1 ); + if ( !Discret.IsDone() ) + return error( "GCPnts_UniformAbscissa failed"); + int NbPoints = Discret.NbPoints(); + list tmpParams; + for ( int i = 2; i < NbPoints; i++ ) { + double param = Discret.Parameter(i); + tmpParams.push_back( param ); + } + if ( theReverse ) { + compensateError( eltSize, eltSize, lp, par1, segmentSize, theC3d, tmpParams ); + tmpParams.reverse(); + } + else { + compensateError( eltSize, eltSize, par1, lp, segmentSize, theC3d, tmpParams ); + } + theParams.splice( theParams.end(), tmpParams ); + + if ( theReverse ) + theParams.reverse(); // NPAL18025 + + return true; + } + + case DEFLECTION: + { + GCPnts_UniformDeflection Discret( theC3d, _value[ DEFLECTION_IND ], f, l, true ); if ( !Discret.IsDone() ) return false; @@ -513,7 +1084,6 @@ bool StdMeshers_Regular_1D::computeInternalParameters(const TopoDS_Edge& theEdge theParams.push_back( param ); } return true; - } default:; @@ -528,17 +1098,21 @@ bool StdMeshers_Regular_1D::computeInternalParameters(const TopoDS_Edge& theEdge */ //============================================================================= -bool StdMeshers_Regular_1D::Compute(SMESH_Mesh & aMesh, const TopoDS_Shape & aShape) +bool StdMeshers_Regular_1D::Compute(SMESH_Mesh & theMesh, const TopoDS_Shape & theShape) { - MESSAGE("StdMeshers_Regular_1D::Compute"); - if ( _hypType == NONE ) return false; - SMESHDS_Mesh * meshDS = aMesh.GetMeshDS(); - aMesh.GetSubMesh(aShape); + if ( _hypType == ADAPTIVE ) + { + _adaptiveHyp->GetAlgo()->InitComputeError(); + _adaptiveHyp->GetAlgo()->Compute( theMesh, theShape ); + return error( _adaptiveHyp->GetAlgo()->GetComputeError() ); + } + + SMESHDS_Mesh * meshDS = theMesh.GetMeshDS(); - const TopoDS_Edge & EE = TopoDS::Edge(aShape); + const TopoDS_Edge & EE = TopoDS::Edge(theShape); TopoDS_Edge E = TopoDS::Edge(EE.Oriented(TopAbs_FORWARD)); int shapeID = meshDS->ShapeToIndex( E ); @@ -549,37 +1123,59 @@ bool StdMeshers_Regular_1D::Compute(SMESH_Mesh & aMesh, const TopoDS_Shape & aSh TopExp::Vertices(E, VFirst, VLast); // Vfirst corresponds to f and Vlast to l ASSERT(!VFirst.IsNull()); - SMDS_NodeIteratorPtr lid= aMesh.GetSubMesh(VFirst)->GetSubMeshDS()->GetNodes(); - if (!lid->more()) - { - MESSAGE (" NO NODE BUILT ON VERTEX "); - return false; - } - const SMDS_MeshNode * idFirst = lid->next(); - ASSERT(!VLast.IsNull()); - lid=aMesh.GetSubMesh(VLast)->GetSubMeshDS()->GetNodes(); - if (!lid->more()) { - MESSAGE (" NO NODE BUILT ON VERTEX "); - return false; + const SMDS_MeshNode * idFirst = SMESH_Algo::VertexNode( VFirst, meshDS ); + const SMDS_MeshNode * idLast = SMESH_Algo::VertexNode( VLast, meshDS ); + if (!idFirst || !idLast) + return error( COMPERR_BAD_INPUT_MESH, "No node on vertex"); + + // remove elements created by e.g. patern mapping (PAL21999) + // CLEAN event is incorrectly ptopagated seemingly due to Propagation hyp + // so TEMPORARY solution is to clean the submesh manually + //theMesh.GetSubMesh(theShape)->ComputeStateEngine( SMESH_subMesh::CLEAN ); + if (SMESHDS_SubMesh * subMeshDS = meshDS->MeshElements(theShape)) + { + SMDS_ElemIteratorPtr ite = subMeshDS->GetElements(); + while (ite->more()) + meshDS->RemoveFreeElement(ite->next(), subMeshDS); + SMDS_NodeIteratorPtr itn = subMeshDS->GetNodes(); + while (itn->more()) { + const SMDS_MeshNode * node = itn->next(); + if ( node->NbInverseElements() == 0 ) + meshDS->RemoveFreeNode(node, subMeshDS); + else + meshDS->RemoveNode(node); + } } - const SMDS_MeshNode * idLast = lid->next(); - if (!Curve.IsNull()) { + if (!Curve.IsNull()) + { list< double > params; bool reversed = false; - if ( !_mainEdge.IsNull() ) - reversed = aMesh.IsReversedInChain( EE, _mainEdge ); - try { - if ( ! computeInternalParameters( E, params, reversed )) { - //cout << "computeInternalParameters() failed" <= TopAbs_WIRE ) { + // if the shape to mesh is WIRE or EDGE + reversed = ( EE.Orientation() == TopAbs_REVERSED ); + } + if ( !_mainEdge.IsNull() ) { + // take into account reversing the edge the hypothesis is propagated from + // (_mainEdge.Orientation() marks mutual orientation of EDGEs in propagation chain) + reversed = ( _mainEdge.Orientation() == TopAbs_REVERSED ); + if ( !_isPropagOfDistribution ) { + int mainID = meshDS->ShapeToIndex(_mainEdge); + if ( std::find( _revEdgesIDs.begin(), _revEdgesIDs.end(), mainID) != _revEdgesIDs.end()) + reversed = !reversed; } } - catch ( Standard_Failure ) { - //cout << "computeInternalParameters() failed, Standard_Failure" <::iterator itU = params.begin(); itU != params.end(); itU++) { double param = *itU; gp_Pnt P = Curve->Value(param); @@ -630,16 +1231,14 @@ bool StdMeshers_Regular_1D::Compute(SMESH_Mesh & aMesh, const TopoDS_Shape & aSh meshDS->SetMeshElementOnShape(edge, shapeID); } } - else { + else + { // Edge is a degenerated Edge : We put n = 5 points on the edge. const int NbPoints = 5; - BRep_Tool::Range(E, f, l); + BRep_Tool::Range( E, f, l ); // PAL15185 double du = (l - f) / (NbPoints - 1); - //MESSAGE("************* Degenerated edge! *****************"); - TopoDS_Vertex V1, V2; - TopExp::Vertices(E, V1, V2); - gp_Pnt P = BRep_Tool::Pnt(V1); + gp_Pnt P = BRep_Tool::Pnt(VFirst); const SMDS_MeshNode * idPrev = idFirst; for (int i = 2; i < NbPoints; i++) { @@ -676,6 +1275,84 @@ bool StdMeshers_Regular_1D::Compute(SMESH_Mesh & aMesh, const TopoDS_Shape & aSh return true; } + +//============================================================================= +/*! + * + */ +//============================================================================= + +bool StdMeshers_Regular_1D::Evaluate(SMESH_Mesh & theMesh, + const TopoDS_Shape & theShape, + MapShapeNbElems& aResMap) +{ + if ( _hypType == NONE ) + return false; + + if ( _hypType == ADAPTIVE ) + { + _adaptiveHyp->GetAlgo()->InitComputeError(); + _adaptiveHyp->GetAlgo()->Evaluate( theMesh, theShape, aResMap ); + return error( _adaptiveHyp->GetAlgo()->GetComputeError() ); + } + + const TopoDS_Edge & EE = TopoDS::Edge(theShape); + TopoDS_Edge E = TopoDS::Edge(EE.Oriented(TopAbs_FORWARD)); + + double f, l; + Handle(Geom_Curve) Curve = BRep_Tool::Curve(E, f, l); + + TopoDS_Vertex VFirst, VLast; + TopExp::Vertices(E, VFirst, VLast); // Vfirst corresponds to f and Vlast to l + + ASSERT(!VFirst.IsNull()); + ASSERT(!VLast.IsNull()); + + std::vector aVec(SMDSEntity_Last,0); + + if (!Curve.IsNull()) { + list< double > params; + + BRepAdaptor_Curve C3d( E ); + double length = EdgeLength( E ); + if ( ! computeInternalParameters( theMesh, C3d, length, f, l, params, false, true )) { + SMESH_subMesh * sm = theMesh.GetSubMesh(theShape); + aResMap.insert(std::make_pair(sm,aVec)); + SMESH_ComputeErrorPtr& smError = sm->GetComputeError(); + smError.reset( new SMESH_ComputeError(COMPERR_ALGO_FAILED,"Submesh can not be evaluated",this)); + return false; + } + redistributeNearVertices( theMesh, C3d, length, params, VFirst, VLast ); + + if(_quadraticMesh) { + aVec[SMDSEntity_Node] = 2*params.size() + 1; + aVec[SMDSEntity_Quad_Edge] = params.size() + 1; + } + else { + aVec[SMDSEntity_Node] = params.size(); + aVec[SMDSEntity_Edge] = params.size() + 1; + } + + } + else { + // Edge is a degenerated Edge : We put n = 5 points on the edge. + if ( _quadraticMesh ) { + aVec[SMDSEntity_Node] = 11; + aVec[SMDSEntity_Quad_Edge] = 6; + } + else { + aVec[SMDSEntity_Node] = 5; + aVec[SMDSEntity_Edge] = 6; + } + } + + SMESH_subMesh * sm = theMesh.GetSubMesh(theShape); + aResMap.insert(std::make_pair(sm,aVec)); + + return true; +} + + //============================================================================= /*! * See comments in SMESH_Algo.cxx @@ -690,23 +1367,22 @@ StdMeshers_Regular_1D::GetUsedHypothesis(SMESH_Mesh & aMesh, _usedHypList.clear(); _mainEdge.Nullify(); - SMESH_HypoFilter auxiliaryFilter, compatibleFilter; - auxiliaryFilter.Init( SMESH_HypoFilter::IsAuxiliary() ); - const bool ignoreAux = true; - InitCompatibleHypoFilter( compatibleFilter, ignoreAux ); + SMESH_HypoFilter auxiliaryFilter( SMESH_HypoFilter::IsAuxiliary() ); + const SMESH_HypoFilter* compatibleFilter = GetCompatibleHypoFilter(/*ignoreAux=*/true ); - // get non-auxiliary assigned to aShape - int nbHyp = aMesh.GetHypotheses( aShape, compatibleFilter, _usedHypList, false ); + // get non-auxiliary assigned directly to aShape + int nbHyp = aMesh.GetHypotheses( aShape, *compatibleFilter, _usedHypList, false ); - if (nbHyp == 0) + if (nbHyp == 0 && aShape.ShapeType() == TopAbs_EDGE) { // Check, if propagated from some other edge - if (aShape.ShapeType() == TopAbs_EDGE && - aMesh.IsPropagatedHypothesis(aShape, _mainEdge)) + _mainEdge = StdMeshers_Propagation::GetPropagationSource( aMesh, aShape, + _isPropagOfDistribution ); + if ( !_mainEdge.IsNull() ) { // Propagation of 1D hypothesis from on this edge; // get non-auxiliary assigned to _mainEdge - nbHyp = aMesh.GetHypotheses( _mainEdge, compatibleFilter, _usedHypList, true ); + nbHyp = aMesh.GetHypotheses( _mainEdge, *compatibleFilter, _usedHypList, true ); } } @@ -726,46 +1402,15 @@ StdMeshers_Regular_1D::GetUsedHypothesis(SMESH_Mesh & aMesh, return _usedHypList; } -//============================================================================= -/*! - * - */ -//============================================================================= - -ostream & StdMeshers_Regular_1D::SaveTo(ostream & save) -{ - return save; -} - -//============================================================================= +//================================================================================ /*! - * + * \brief Pass CancelCompute() to a child algorithm */ -//============================================================================= - -istream & StdMeshers_Regular_1D::LoadFrom(istream & load) -{ - return load; -} - -//============================================================================= -/*! - * - */ -//============================================================================= - -ostream & operator <<(ostream & save, StdMeshers_Regular_1D & hyp) -{ - return hyp.SaveTo( save ); -} - -//============================================================================= -/*! - * - */ -//============================================================================= +//================================================================================ -istream & operator >>(istream & load, StdMeshers_Regular_1D & hyp) +void StdMeshers_Regular_1D::CancelCompute() { - return hyp.LoadFrom( load ); + SMESH_Algo::CancelCompute(); + if ( _hypType == ADAPTIVE ) + _adaptiveHyp->GetAlgo()->CancelCompute(); }