X-Git-Url: http://git.salome-platform.org/gitweb/?p=modules%2Fsmesh.git;a=blobdiff_plain;f=src%2FStdMeshers%2FStdMeshers_Regular_1D.cxx;h=391bd38c3c11df989aa6073ca8e7585582870acd;hp=6a6f92a79c66db8d0123d394cd21e2e0ac8a5071;hb=6650dea1f85dd5c640829d6e0391d703a304a152;hpb=e4737e85f0da6d3f90fd08f6be1c2825195fe16f diff --git a/src/StdMeshers/StdMeshers_Regular_1D.cxx b/src/StdMeshers/StdMeshers_Regular_1D.cxx index 6a6f92a79..391bd38c3 100644 --- a/src/StdMeshers/StdMeshers_Regular_1D.cxx +++ b/src/StdMeshers/StdMeshers_Regular_1D.cxx @@ -1,6 +1,6 @@ -// SMESH SMESH : implementaion of SMESH idl descriptions +// Copyright (C) 2007-2010 CEA/DEN, EDF R&D, OPEN CASCADE // -// Copyright (C) 2003 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN, +// Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN, // CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS // // This library is free software; you can redistribute it and/or @@ -17,78 +17,87 @@ // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // -// See http://www.opencascade.org/SALOME/ or email : webmaster.salome@opencascade.org -// -// +// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com // + +// SMESH SMESH : implementaion of SMESH idl descriptions // File : StdMeshers_Regular_1D.cxx // Moved here from SMESH_Regular_1D.cxx // Author : Paul RASCLE, EDF // Module : SMESH -// $Header$ - -using namespace std; - +// #include "StdMeshers_Regular_1D.hxx" -#include "SMESH_Gen.hxx" -#include "SMESH_Mesh.hxx" +#include "StdMeshers_Distribution.hxx" -#include "StdMeshers_LocalLength.hxx" -#include "StdMeshers_NumberOfSegments.hxx" #include "StdMeshers_Arithmetic1D.hxx" -#include "StdMeshers_StartEndLength.hxx" +#include "StdMeshers_AutomaticLength.hxx" #include "StdMeshers_Deflection1D.hxx" +#include "StdMeshers_LocalLength.hxx" +#include "StdMeshers_MaxLength.hxx" +#include "StdMeshers_NumberOfSegments.hxx" #include "StdMeshers_Propagation.hxx" +#include "StdMeshers_SegmentLengthAroundVertex.hxx" +#include "StdMeshers_StartEndLength.hxx" + +#include "SMESH_Gen.hxx" +#include "SMESH_Mesh.hxx" +#include "SMESH_HypoFilter.hxx" +#include "SMESH_subMesh.hxx" +#include "SMESH_subMeshEventListener.hxx" +#include "SMESH_Comment.hxx" #include "SMDS_MeshElement.hxx" #include "SMDS_MeshNode.hxx" -#include "SMDS_EdgePosition.hxx" -#include "SMESH_subMesh.hxx" +#include "Utils_SALOME_Exception.hxx" #include "utilities.h" +#include #include -#include - -#include -#include -#include -#include - -#include #include #include #include - -#include #include +#include +#include +#include +#include #include -//#include +#include + +using namespace std; //============================================================================= /*! - * + * */ //============================================================================= StdMeshers_Regular_1D::StdMeshers_Regular_1D(int hypId, int studyId, - SMESH_Gen * gen):SMESH_1D_Algo(hypId, studyId, gen) + SMESH_Gen * gen):SMESH_1D_Algo(hypId, studyId, gen) { - MESSAGE("StdMeshers_Regular_1D::StdMeshers_Regular_1D"); - _name = "Regular_1D"; - _shapeType = (1 << TopAbs_EDGE); - - _compatibleHypothesis.push_back("LocalLength"); - _compatibleHypothesis.push_back("NumberOfSegments"); - _compatibleHypothesis.push_back("StartEndLength"); - _compatibleHypothesis.push_back("Deflection1D"); - _compatibleHypothesis.push_back("Arithmetic1D"); + MESSAGE("StdMeshers_Regular_1D::StdMeshers_Regular_1D"); + _name = "Regular_1D"; + _shapeType = (1 << TopAbs_EDGE); + _fpHyp = 0; + + _compatibleHypothesis.push_back("LocalLength"); + _compatibleHypothesis.push_back("MaxLength"); + _compatibleHypothesis.push_back("NumberOfSegments"); + _compatibleHypothesis.push_back("StartEndLength"); + _compatibleHypothesis.push_back("Deflection1D"); + _compatibleHypothesis.push_back("Arithmetic1D"); + _compatibleHypothesis.push_back("FixedPoints1D"); + _compatibleHypothesis.push_back("AutomaticLength"); + + _compatibleHypothesis.push_back("QuadraticMesh"); // auxiliary !!! + _compatibleHypothesis.push_back("Propagation"); // auxiliary !!! } //============================================================================= /*! - * + * */ //============================================================================= @@ -98,27 +107,42 @@ StdMeshers_Regular_1D::~StdMeshers_Regular_1D() //============================================================================= /*! - * + * */ //============================================================================= bool StdMeshers_Regular_1D::CheckHypothesis - (SMESH_Mesh& aMesh, - const TopoDS_Shape& aShape, + (SMESH_Mesh& aMesh, + const TopoDS_Shape& aShape, SMESH_Hypothesis::Hypothesis_Status& aStatus) { _hypType = NONE; + _quadraticMesh = false; + + const bool ignoreAuxiliaryHyps = false; + const list & hyps = + GetUsedHypothesis(aMesh, aShape, ignoreAuxiliaryHyps); + + // find non-auxiliary hypothesis + const SMESHDS_Hypothesis *theHyp = 0; + list ::const_iterator h = hyps.begin(); + for ( ; h != hyps.end(); ++h ) { + if ( static_cast(*h)->IsAuxiliary() ) { + if ( strcmp( "QuadraticMesh", (*h)->GetName() ) == 0 ) + _quadraticMesh = true; + } + else { + if ( !theHyp ) + theHyp = *h; // use only the first non-auxiliary hypothesis + } + } - const list &hyps = GetUsedHypothesis(aMesh, aShape); - if (hyps.size() == 0) + if ( !theHyp ) { aStatus = SMESH_Hypothesis::HYP_MISSING; return false; // can't work without a hypothesis } - // use only the first hypothesis - const SMESHDS_Hypothesis *theHyp = hyps.front(); - string hypName = theHyp->GetName(); if (hypName == "LocalLength") @@ -126,20 +150,59 @@ bool StdMeshers_Regular_1D::CheckHypothesis const StdMeshers_LocalLength * hyp = dynamic_cast (theHyp); ASSERT(hyp); - _value[ BEG_LENGTH_IND ] = _value[ END_LENGTH_IND ] = hyp->GetLength(); + _value[ BEG_LENGTH_IND ] = hyp->GetLength(); + _value[ PRECISION_IND ] = hyp->GetPrecision(); ASSERT( _value[ BEG_LENGTH_IND ] > 0 ); _hypType = LOCAL_LENGTH; aStatus = SMESH_Hypothesis::HYP_OK; } + else if (hypName == "MaxLength") + { + const StdMeshers_MaxLength * hyp = + dynamic_cast (theHyp); + ASSERT(hyp); + _value[ BEG_LENGTH_IND ] = hyp->GetLength(); + if ( hyp->GetUsePreestimatedLength() ) { + if ( int nbSeg = aMesh.GetGen()->GetBoundaryBoxSegmentation() ) + _value[ BEG_LENGTH_IND ] = aMesh.GetShapeDiagonalSize() / nbSeg; + } + ASSERT( _value[ BEG_LENGTH_IND ] > 0 ); + _hypType = MAX_LENGTH; + aStatus = SMESH_Hypothesis::HYP_OK; + } + else if (hypName == "NumberOfSegments") { const StdMeshers_NumberOfSegments * hyp = dynamic_cast (theHyp); ASSERT(hyp); - _value[ NB_SEGMENTS_IND ] = hyp->GetNumberOfSegments(); - _value[ SCALE_FACTOR_IND ] = hyp->GetScaleFactor(); - ASSERT( _value[ NB_SEGMENTS_IND ] > 0 ); + _ivalue[ NB_SEGMENTS_IND ] = hyp->GetNumberOfSegments(); + ASSERT( _ivalue[ NB_SEGMENTS_IND ] > 0 ); + _ivalue[ DISTR_TYPE_IND ] = (int) hyp->GetDistrType(); + switch (_ivalue[ DISTR_TYPE_IND ]) + { + case StdMeshers_NumberOfSegments::DT_Scale: + _value[ SCALE_FACTOR_IND ] = hyp->GetScaleFactor(); + _revEdgesIDs = hyp->GetReversedEdges(); + break; + case StdMeshers_NumberOfSegments::DT_TabFunc: + _vvalue[ TAB_FUNC_IND ] = hyp->GetTableFunction(); + _revEdgesIDs = hyp->GetReversedEdges(); + break; + case StdMeshers_NumberOfSegments::DT_ExprFunc: + _svalue[ EXPR_FUNC_IND ] = hyp->GetExpressionFunction(); + _revEdgesIDs = hyp->GetReversedEdges(); + break; + case StdMeshers_NumberOfSegments::DT_Regular: + break; + default: + ASSERT(0); + break; + } + if (_ivalue[ DISTR_TYPE_IND ] == StdMeshers_NumberOfSegments::DT_TabFunc || + _ivalue[ DISTR_TYPE_IND ] == StdMeshers_NumberOfSegments::DT_ExprFunc) + _ivalue[ CONV_MODE_IND ] = hyp->ConversionMode(); _hypType = NB_SEGMENTS; aStatus = SMESH_Hypothesis::HYP_OK; } @@ -153,6 +216,19 @@ bool StdMeshers_Regular_1D::CheckHypothesis _value[ END_LENGTH_IND ] = hyp->GetLength( false ); ASSERT( _value[ BEG_LENGTH_IND ] > 0 && _value[ END_LENGTH_IND ] > 0 ); _hypType = ARITHMETIC_1D; + + _revEdgesIDs = hyp->GetReversedEdges(); + + aStatus = SMESH_Hypothesis::HYP_OK; + } + + else if (hypName == "FixedPoints1D") { + _fpHyp = dynamic_cast (theHyp); + ASSERT(_fpHyp); + _hypType = FIXED_POINTS_1D; + + _revEdgesIDs = _fpHyp->GetReversedEdges(); + aStatus = SMESH_Hypothesis::HYP_OK; } @@ -165,6 +241,9 @@ bool StdMeshers_Regular_1D::CheckHypothesis _value[ END_LENGTH_IND ] = hyp->GetLength( false ); ASSERT( _value[ BEG_LENGTH_IND ] > 0 && _value[ END_LENGTH_IND ] > 0 ); _hypType = BEG_END_LENGTH; + + _revEdgesIDs = hyp->GetReversedEdges(); + aStatus = SMESH_Hypothesis::HYP_OK; } @@ -178,69 +257,462 @@ bool StdMeshers_Regular_1D::CheckHypothesis _hypType = DEFLECTION; aStatus = SMESH_Hypothesis::HYP_OK; } + + else if (hypName == "AutomaticLength") + { + StdMeshers_AutomaticLength * hyp = const_cast + (dynamic_cast (theHyp)); + ASSERT(hyp); + _value[ BEG_LENGTH_IND ] = _value[ END_LENGTH_IND ] = hyp->GetLength( &aMesh, aShape ); +// _value[ BEG_LENGTH_IND ] = hyp->GetLength( &aMesh, aShape ); +// _value[ END_LENGTH_IND ] = Precision::Confusion(); // ?? or set to zero? + ASSERT( _value[ BEG_LENGTH_IND ] > 0 ); + _hypType = MAX_LENGTH; + aStatus = SMESH_Hypothesis::HYP_OK; + } else aStatus = SMESH_Hypothesis::HYP_INCOMPATIBLE; return ( _hypType != NONE ); } +static bool computeParamByFunc(Adaptor3d_Curve& C3d, double first, double last, + double length, bool theReverse, + int nbSeg, Function& func, + list& theParams) +{ + // never do this way + //OSD::SetSignal( true ); + + if (nbSeg <= 0) + return false; + + MESSAGE( "computeParamByFunc" ); + + int nbPnt = 1 + nbSeg; + vector x(nbPnt, 0.); + + if (!buildDistribution(func, 0.0, 1.0, nbSeg, x, 1E-4)) + return false; + + MESSAGE( "Points:\n" ); + char buf[1024]; + for ( int i=0; i<=nbSeg; i++ ) + { + sprintf( buf, "%f\n", float(x[i] ) ); + MESSAGE( buf ); + } + + + + // apply parameters in range [0,1] to the space of the curve + double prevU = first; + double sign = 1.; + if (theReverse) + { + prevU = last; + sign = -1.; + } + for( int i = 1; i < nbSeg; i++ ) + { + double curvLength = length * (x[i] - x[i-1]) * sign; + GCPnts_AbscissaPoint Discret( C3d, curvLength, prevU ); + if ( !Discret.IsDone() ) + return false; + double U = Discret.Parameter(); + if ( U > first && U < last ) + theParams.push_back( U ); + else + return false; + prevU = U; + } + if ( theReverse ) + theParams.reverse(); + return true; +} + + +//================================================================================ +/*! + * \brief adjust internal node parameters so that the last segment length == an + * \param a1 - the first segment length + * \param an - the last segment length + * \param U1 - the first edge parameter + * \param Un - the last edge parameter + * \param length - the edge length + * \param C3d - the edge curve + * \param theParams - internal node parameters to adjust + * \param adjustNeighbors2an - to adjust length of segments next to the last one + * and not to remove parameters + */ +//================================================================================ + +static void compensateError(double a1, double an, + double U1, double Un, + double length, + Adaptor3d_Curve& C3d, + list & theParams, + bool adjustNeighbors2an = false) +{ + int i, nPar = theParams.size(); + if ( a1 + an < length && nPar > 1 ) + { + bool reverse = ( U1 > Un ); + GCPnts_AbscissaPoint Discret(C3d, reverse ? an : -an, Un); + if ( !Discret.IsDone() ) + return; + double Utgt = Discret.Parameter(); // target value of the last parameter + list::reverse_iterator itU = theParams.rbegin(); + double Ul = *itU++; // real value of the last parameter + double dUn = Utgt - Ul; // parametric error of + if ( Abs(dUn) <= Precision::Confusion() ) + return; + double dU = Abs( Ul - *itU ); // parametric length of the last but one segment + if ( adjustNeighbors2an || Abs(dUn) < 0.5 * dU ) { // last segment is a bit shorter than it should + // move the last parameter to the edge beginning + } + else { // last segment is much shorter than it should -> remove the last param and + theParams.pop_back(); nPar--; // move the rest points toward the edge end + dUn = Utgt - theParams.back(); + } + + double q = dUn / ( nPar - 1 ); + if ( !adjustNeighbors2an ) { + for ( itU = theParams.rbegin(), i = 1; i < nPar; itU++, i++ ) { + (*itU) += dUn; + dUn -= q; + } + } + else { + theParams.back() += dUn; + double sign = reverse ? -1 : 1; + double prevU = theParams.back(); + itU = theParams.rbegin(); + for ( ++itU, i = 2; i < nPar; ++itU, i++ ) { + double newU = *itU + dUn; + if ( newU*sign < prevU*sign ) { + prevU = *itU = newU; + dUn -= q; + } + else { // set U between prevU and next valid param + list::reverse_iterator itU2 = itU; + ++itU2; + int nb = 2; + while ( (*itU2)*sign > prevU*sign ) { + ++itU2; ++nb; + } + dU = ( *itU2 - prevU ) / nb; + while ( itU != itU2 ) { + *itU += dU; ++itU; + } + break; + } + } + } + } +} + +//================================================================================ +/*! + * \brief Class used to clean mesh on edges when 0D hyp modified. + * Common approach doesn't work when 0D algo is missing because the 0D hyp is + * considered as not participating in computation whereas it is used by 1D algo. + */ +//================================================================================ + +// struct VertexEventListener : public SMESH_subMeshEventListener +// { +// VertexEventListener():SMESH_subMeshEventListener(0) // won't be deleted by submesh +// {} +// /*! +// * \brief Clean mesh on edges +// * \param event - algo_event or compute_event itself (of SMESH_subMesh) +// * \param eventType - ALGO_EVENT or COMPUTE_EVENT (of SMESH_subMesh) +// * \param subMesh - the submesh where the event occures +// */ +// void ProcessEvent(const int event, const int eventType, SMESH_subMesh* subMesh, +// EventListenerData*, const SMESH_Hypothesis*) +// { +// if ( eventType == SMESH_subMesh::ALGO_EVENT) // all algo events +// { +// subMesh->ComputeStateEngine( SMESH_subMesh::MODIF_ALGO_STATE ); +// } +// } +// }; // struct VertexEventListener + //============================================================================= /*! + * \brief Sets event listener to vertex submeshes + * \param subMesh - submesh where algo is set * + * This method is called when a submesh gets HYP_OK algo_state. + * After being set, event listener is notified on each event of a submesh. */ //============================================================================= -bool StdMeshers_Regular_1D::computeInternalParameters(const TopoDS_Edge& theEdge, - list & theParams) const + +void StdMeshers_Regular_1D::SetEventListener(SMESH_subMesh* subMesh) { - theParams.clear(); + StdMeshers_Propagation::SetPropagationMgr( subMesh ); +} - double f, l; - Handle(Geom_Curve) Curve = BRep_Tool::Curve(theEdge, f, l); - GeomAdaptor_Curve C3d(Curve); +//============================================================================= +/*! + * \brief Do nothing + * \param subMesh - restored submesh + * + * This method is called only if a submesh has HYP_OK algo_state. + */ +//============================================================================= + +void StdMeshers_Regular_1D::SubmeshRestored(SMESH_subMesh* subMesh) +{ +} - double length = EdgeLength(theEdge); - //SCRUTE(length); +//============================================================================= +/*! + * \brief Return StdMeshers_SegmentLengthAroundVertex assigned to vertex + */ +//============================================================================= + +const StdMeshers_SegmentLengthAroundVertex* +StdMeshers_Regular_1D::getVertexHyp(SMESH_Mesh & theMesh, + const TopoDS_Vertex & theV) +{ + static SMESH_HypoFilter filter( SMESH_HypoFilter::HasName("SegmentAroundVertex_0D")); + if ( const SMESH_Hypothesis * h = theMesh.GetHypothesis( theV, filter, true )) + { + SMESH_Algo* algo = const_cast< SMESH_Algo* >( static_cast< const SMESH_Algo* > ( h )); + const list & hypList = algo->GetUsedHypothesis( theMesh, theV, 0 ); + if ( !hypList.empty() && string("SegmentLengthAroundVertex") == hypList.front()->GetName() ) + return static_cast( hypList.front() ); + } + return 0; +} + +//================================================================================ +/*! + * \brief Tune parameters to fit "SegmentLengthAroundVertex" hypothesis + * \param theC3d - wire curve + * \param theLength - curve length + * \param theParameters - internal nodes parameters to modify + * \param theVf - 1st vertex + * \param theVl - 2nd vertex + */ +//================================================================================ + +void StdMeshers_Regular_1D::redistributeNearVertices (SMESH_Mesh & theMesh, + Adaptor3d_Curve & theC3d, + double theLength, + std::list< double > & theParameters, + const TopoDS_Vertex & theVf, + const TopoDS_Vertex & theVl) +{ + double f = theC3d.FirstParameter(), l = theC3d.LastParameter(); + int nPar = theParameters.size(); + for ( int isEnd1 = 0; isEnd1 < 2; ++isEnd1 ) + { + const TopoDS_Vertex & V = isEnd1 ? theVf : theVl; + const StdMeshers_SegmentLengthAroundVertex* hyp = getVertexHyp (theMesh, V ); + if ( hyp ) { + double vertexLength = hyp->GetLength(); + if ( vertexLength > theLength / 2.0 ) + continue; + if ( isEnd1 ) { // to have a segment of interest at end of theParameters + theParameters.reverse(); + std::swap( f, l ); + } + if ( _hypType == NB_SEGMENTS ) + { + compensateError(0, vertexLength, f, l, theLength, theC3d, theParameters, true ); + } + else if ( nPar <= 3 ) + { + if ( !isEnd1 ) + vertexLength = -vertexLength; + GCPnts_AbscissaPoint Discret(theC3d, vertexLength, l); + if ( Discret.IsDone() ) { + if ( nPar == 0 ) + theParameters.push_back( Discret.Parameter()); + else { + double L = GCPnts_AbscissaPoint::Length( theC3d, theParameters.back(), l); + if ( vertexLength < L / 2.0 ) + theParameters.push_back( Discret.Parameter()); + else + compensateError(0, vertexLength, f, l, theLength, theC3d, theParameters, true ); + } + } + } + else + { + // recompute params between the last segment and a middle one. + // find size of a middle segment + int nHalf = ( nPar-1 ) / 2; + list< double >::reverse_iterator itU = theParameters.rbegin(); + std::advance( itU, nHalf ); + double Um = *itU++; + double Lm = GCPnts_AbscissaPoint::Length( theC3d, Um, *itU); + double L = GCPnts_AbscissaPoint::Length( theC3d, *itU, l); + StdMeshers_Regular_1D algo( *this ); + algo._hypType = BEG_END_LENGTH; + algo._value[ BEG_LENGTH_IND ] = Lm; + algo._value[ END_LENGTH_IND ] = vertexLength; + double from = *itU, to = l; + if ( isEnd1 ) { + std::swap( from, to ); + std::swap( algo._value[ BEG_LENGTH_IND ], algo._value[ END_LENGTH_IND ]); + } + list params; + if ( algo.computeInternalParameters( theMesh, theC3d, L, from, to, params, false )) + { + if ( isEnd1 ) params.reverse(); + while ( 1 + nHalf-- ) + theParameters.pop_back(); + theParameters.splice( theParameters.end(), params ); + } + else + { + compensateError(0, vertexLength, f, l, theLength, theC3d, theParameters, true ); + } + } + if ( isEnd1 ) + theParameters.reverse(); + } + } +} + +//============================================================================= +/*! + * + */ +//============================================================================= +bool StdMeshers_Regular_1D::computeInternalParameters(SMESH_Mesh & theMesh, + Adaptor3d_Curve& theC3d, + double theLength, + double theFirstU, + double theLastU, + list & theParams, + const bool theReverse, + bool theConsiderPropagation) +{ + theParams.clear(); + + double f = theFirstU, l = theLastU; switch( _hypType ) { case LOCAL_LENGTH: + case MAX_LENGTH: case NB_SEGMENTS: { double eltSize = 1; - if ( _hypType == LOCAL_LENGTH ) + if ( _hypType == MAX_LENGTH ) { - double nbseg = ceil(length / _value[ BEG_LENGTH_IND ]); // integer sup + double nbseg = ceil(theLength / _value[ BEG_LENGTH_IND ]); // integer sup if (nbseg <= 0) nbseg = 1; // degenerated edge - eltSize = length / nbseg; + eltSize = theLength / nbseg; } - else + else if ( _hypType == LOCAL_LENGTH ) { - double epsilon = 0.001; - if (fabs(_value[ SCALE_FACTOR_IND ] - 1.0) > epsilon) - { - double alpha = - pow( _value[ SCALE_FACTOR_IND ], 1.0 / (_value[ NB_SEGMENTS_IND ] - 1)); - double factor = - length / (1 - pow( alpha,_value[ NB_SEGMENTS_IND ])); + // Local Length hypothesis + double nbseg = ceil(theLength / _value[ BEG_LENGTH_IND ]); // integer sup - int i, NbPoints = (int) _value[ NB_SEGMENTS_IND ]; - for ( i = 2; i < NbPoints; i++ ) - { - double param = factor * (1 - pow(alpha, i - 1)); - theParams.push_back( param ); + // NPAL17873: + bool isFound = false; + if (theConsiderPropagation && !_mainEdge.IsNull()) // propagated from some other edge + { + // Advanced processing to assure equal number of segments in case of Propagation + SMESH_subMesh* sm = theMesh.GetSubMeshContaining(_mainEdge); + if (sm) { + bool computed = sm->IsMeshComputed(); + if (!computed) { + if (sm->GetComputeState() == SMESH_subMesh::READY_TO_COMPUTE) { + sm->ComputeStateEngine(SMESH_subMesh::COMPUTE); + computed = sm->IsMeshComputed(); + } + } + if (computed) { + SMESHDS_SubMesh* smds = sm->GetSubMeshDS(); + int nb_segments = smds->NbElements(); + if (nbseg - 1 <= nb_segments && nb_segments <= nbseg + 1) { + isFound = true; + nbseg = nb_segments; + } + } } - return true; } - else + if (!isFound) // not found by meshed edge in the propagation chain, use precision { - eltSize = length / _value[ NB_SEGMENTS_IND ]; + double aPrecision = _value[ PRECISION_IND ]; + double nbseg_prec = ceil((theLength / _value[ BEG_LENGTH_IND ]) - aPrecision); + if (nbseg_prec == (nbseg - 1)) nbseg--; } + + if (nbseg <= 0) + nbseg = 1; // degenerated edge + eltSize = theLength / nbseg; } + else + { + // Number Of Segments hypothesis + int NbSegm = _ivalue[ NB_SEGMENTS_IND ]; + if ( NbSegm < 1 ) return false; + if ( NbSegm == 1 ) return true; - GCPnts_UniformAbscissa Discret(C3d, eltSize, f, l); + switch (_ivalue[ DISTR_TYPE_IND ]) + { + case StdMeshers_NumberOfSegments::DT_Scale: + { + double scale = _value[ SCALE_FACTOR_IND ]; + + if (fabs(scale - 1.0) < Precision::Confusion()) { + // special case to avoid division by zero + for (int i = 1; i < NbSegm; i++) { + double param = f + (l - f) * i / NbSegm; + theParams.push_back( param ); + } + } else { + // general case of scale distribution + if ( theReverse ) + scale = 1.0 / scale; + + double alpha = pow(scale, 1.0 / (NbSegm - 1)); + double factor = (l - f) / (1.0 - pow(alpha, NbSegm)); + + for (int i = 1; i < NbSegm; i++) { + double param = f + factor * (1.0 - pow(alpha, i)); + theParams.push_back( param ); + } + } + return true; + } + break; + case StdMeshers_NumberOfSegments::DT_TabFunc: + { + FunctionTable func(_vvalue[ TAB_FUNC_IND ], _ivalue[ CONV_MODE_IND ]); + return computeParamByFunc(theC3d, f, l, theLength, theReverse, + _ivalue[ NB_SEGMENTS_IND ], func, + theParams); + } + break; + case StdMeshers_NumberOfSegments::DT_ExprFunc: + { + FunctionExpr func(_svalue[ EXPR_FUNC_IND ].c_str(), _ivalue[ CONV_MODE_IND ]); + return computeParamByFunc(theC3d, f, l, theLength, theReverse, + _ivalue[ NB_SEGMENTS_IND ], func, + theParams); + } + break; + case StdMeshers_NumberOfSegments::DT_Regular: + eltSize = theLength / _ivalue[ NB_SEGMENTS_IND ]; + break; + default: + return false; + } + } + GCPnts_UniformAbscissa Discret(theC3d, eltSize, f, l); if ( !Discret.IsDone() ) - return false; + return error( "GCPnts_UniformAbscissa failed"); int NbPoints = Discret.NbPoints(); for ( int i = 2; i < NbPoints; i++ ) @@ -248,113 +720,191 @@ bool StdMeshers_Regular_1D::computeInternalParameters(const TopoDS_Edge& theEdge double param = Discret.Parameter(i); theParams.push_back( param ); } + compensateError( eltSize, eltSize, f, l, theLength, theC3d, theParams ); // for PAL9899 return true; } case BEG_END_LENGTH: { - // geometric progression: SUM(n) = ( a1 - an * q ) / ( 1 - q ) = length + // geometric progression: SUM(n) = ( a1 - an * q ) / ( 1 - q ) = theLength double a1 = _value[ BEG_LENGTH_IND ]; double an = _value[ END_LENGTH_IND ]; - double q = ( length - a1 ) / ( length - an ); + double q = ( theLength - a1 ) / ( theLength - an ); - double U1 = Min ( f, l ); - double Un = Max ( f, l ); + double U1 = theReverse ? l : f; + double Un = theReverse ? f : l; double param = U1; - double eltSize = a1; + double eltSize = theReverse ? -a1 : a1; while ( 1 ) { - // computes a point on a curve at the distance + // computes a point on a curve at the distance // from the point of parameter . - GCPnts_AbscissaPoint Discret( C3d, eltSize, param ); + GCPnts_AbscissaPoint Discret( theC3d, eltSize, param ); if ( !Discret.IsDone() ) break; param = Discret.Parameter(); - if ( param < Un ) + if ( f < param && param < l ) theParams.push_back( param ); else break; eltSize *= q; } - if ( a1 + an < length ) { - // compensate error - double Ln = GCPnts_AbscissaPoint::Length( C3d, theParams.back(), Un ); - double dLn = an - Ln; - if ( dLn < 0.5 * an ) - dLn = -dLn; - else { - theParams.pop_back(); - Ln = GCPnts_AbscissaPoint::Length( C3d, theParams.back(), Un ); - dLn = an - Ln; - if ( dLn < 0.5 * an ) - dLn = -dLn; - } - double dUn = dLn * ( Un - U1 ) / length; -// SCRUTE( Ln ); -// SCRUTE( dLn ); -// SCRUTE( dUn ); - list::reverse_iterator itU = theParams.rbegin(); - int i, n = theParams.size(); - for ( i = 1 ; i < n; itU++, i++ ) { - (*itU) += dUn; - dUn /= q; - } - } - + compensateError( a1, an, U1, Un, theLength, theC3d, theParams ); + if (theReverse) theParams.reverse(); // NPAL18025 return true; } - case DEFLECTION: { - - GCPnts_UniformDeflection Discret(C3d, _value[ DEFLECTION_IND ], true); - if ( !Discret.IsDone() ) - return false; - - int NbPoints = Discret.NbPoints(); - for ( int i = 2; i < NbPoints; i++ ) - { - double param = Discret.Parameter(i); - theParams.push_back( param ); - } - return true; - - } - case ARITHMETIC_1D: { - // arithmetic progression: SUM(n) = ( an - a1 + q ) * ( a1 + an ) / ( 2 * q ) = length + + // arithmetic progression: SUM(n) = ( an - a1 + q ) * ( a1 + an ) / ( 2 * q ) = theLength double a1 = _value[ BEG_LENGTH_IND ]; double an = _value[ END_LENGTH_IND ]; - double nd = (2 * length) / (an + a1) - 1; - int n = int(nd); - if(n != nd) - n++; + double q = ( an - a1 ) / ( 2 *theLength/( a1 + an ) - 1 ); + int n = int(fabs(q) > numeric_limits::min() ? ( 1+( an-a1 )/q ) : ( 1+theLength/a1 )); - double q = ((2 * length) / (n + 1) - 2 * a1) / n; - double U1 = Min ( f, l ); - double Un = Max ( f, l ); + double U1 = theReverse ? l : f; + double Un = theReverse ? f : l; double param = U1; double eltSize = a1; - - double L=0; - while ( 1 ) { - L+=eltSize; - // computes a point on a curve at the distance + if ( theReverse ) { + eltSize = -eltSize; + q = -q; + } + while ( n-- > 0 && eltSize * ( Un - U1 ) > 0 ) { + // computes a point on a curve at the distance // from the point of parameter . - GCPnts_AbscissaPoint Discret( C3d, eltSize, param ); + GCPnts_AbscissaPoint Discret( theC3d, eltSize, param ); if ( !Discret.IsDone() ) break; param = Discret.Parameter(); - if ( fabs(param - Un) > Precision::Confusion() && param < Un) { + if ( param > f && param < l ) theParams.push_back( param ); - } else break; eltSize += q; } + compensateError( a1, an, U1, Un, theLength, theC3d, theParams ); + if (theReverse) theParams.reverse(); // NPAL18025 return true; } + case FIXED_POINTS_1D: { + const std::vector& aPnts = _fpHyp->GetPoints(); + const std::vector& nbsegs = _fpHyp->GetNbSegments(); + int i = 0; + TColStd_SequenceOfReal Params; + for(; i0.9999 ) continue; + int j=1; + bool IsExist = false; + for(; j<=Params.Length(); j++) { + if( fabs(aPnts[i]-Params.Value(j)) < 1e-4 ) { + IsExist = true; + break; + } + if( aPnts[i] nbsegs.size()-1 ) ? nbsegs[0] : nbsegs[i]; + segmentSize = Params.Value(i+1)*theLength - currAbscissa; + currAbscissa += segmentSize; + GCPnts_AbscissaPoint APnt(theC3d, sign*segmentSize, par1); + if( !APnt.IsDone() ) + return error( "GCPnts_AbscissaPoint failed"); + par2 = APnt.Parameter(); + eltSize = segmentSize/nbseg; + GCPnts_UniformAbscissa Discret(theC3d, eltSize, par1, par2); + if(theReverse) + Discret.Initialize(theC3d, eltSize, par2, par1); + else + Discret.Initialize(theC3d, eltSize, par1, par2); + if ( !Discret.IsDone() ) + return error( "GCPnts_UniformAbscissa failed"); + int NbPoints = Discret.NbPoints(); + list tmpParams; + for(int i=2; i::iterator itP = tmpParams.begin(); + for(; itP != tmpParams.end(); itP++) { + theParams.push_back( *(itP) ); + } + theParams.push_back( par2 ); + + par1 = par2; + } + // add for last + int nbseg = ( nbsegs.size() > Params.Length() ) ? nbsegs[Params.Length()] : nbsegs[0]; + segmentSize = theLength - currAbscissa; + eltSize = segmentSize/nbseg; + GCPnts_UniformAbscissa Discret; + if(theReverse) + Discret.Initialize(theC3d, eltSize, par1, lp); + else + Discret.Initialize(theC3d, eltSize, lp, par1); + if ( !Discret.IsDone() ) + return error( "GCPnts_UniformAbscissa failed"); + int NbPoints = Discret.NbPoints(); + list tmpParams; + for(int i=2; i::iterator itP = tmpParams.begin(); + for(; itP != tmpParams.end(); itP++) { + theParams.push_back( *(itP) ); + } + + if (theReverse) { + theParams.reverse(); // NPAL18025 + } + return true; + } + + case DEFLECTION: { + + GCPnts_UniformDeflection Discret(theC3d, _value[ DEFLECTION_IND ], f, l, true); + if ( !Discret.IsDone() ) + return false; + + int NbPoints = Discret.NbPoints(); + for ( int i = 2; i < NbPoints; i++ ) + { + double param = Discret.Parameter(i); + theParams.push_back( param ); + } + return true; + } + default:; } @@ -363,22 +913,20 @@ bool StdMeshers_Regular_1D::computeInternalParameters(const TopoDS_Edge& theEdge //============================================================================= /*! - * + * */ //============================================================================= -bool StdMeshers_Regular_1D::Compute(SMESH_Mesh & aMesh, const TopoDS_Shape & aShape) +bool StdMeshers_Regular_1D::Compute(SMESH_Mesh & theMesh, const TopoDS_Shape & theShape) { - MESSAGE("StdMeshers_Regular_1D::Compute"); - if ( _hypType == NONE ) return false; - SMESHDS_Mesh * meshDS = aMesh.GetMeshDS(); - aMesh.GetSubMesh(aShape); + SMESHDS_Mesh * meshDS = theMesh.GetMeshDS(); - const TopoDS_Edge & EE = TopoDS::Edge(aShape); + const TopoDS_Edge & EE = TopoDS::Edge(theShape); TopoDS_Edge E = TopoDS::Edge(EE.Oriented(TopAbs_FORWARD)); + int shapeID = meshDS->ShapeToIndex( E ); double f, l; Handle(Geom_Curve) Curve = BRep_Tool::Curve(E, f, l); @@ -387,256 +935,259 @@ bool StdMeshers_Regular_1D::Compute(SMESH_Mesh & aMesh, const TopoDS_Shape & aSh TopExp::Vertices(E, VFirst, VLast); // Vfirst corresponds to f and Vlast to l ASSERT(!VFirst.IsNull()); - SMDS_NodeIteratorPtr lid= aMesh.GetSubMesh(VFirst)->GetSubMeshDS()->GetNodes(); - if (!lid->more()) - { - MESSAGE (" NO NODE BUILT ON VERTEX "); - return false; - } - const SMDS_MeshNode * idFirst = lid->next(); - ASSERT(!VLast.IsNull()); - lid=aMesh.GetSubMesh(VLast)->GetSubMeshDS()->GetNodes(); - if (!lid->more()) - { - MESSAGE (" NO NODE BUILT ON VERTEX "); - return false; - } - const SMDS_MeshNode * idLast = lid->next(); + const SMDS_MeshNode * idFirst = SMESH_Algo::VertexNode( VFirst, meshDS ); + const SMDS_MeshNode * idLast = SMESH_Algo::VertexNode( VLast, meshDS ); + if (!idFirst || !idLast) + return error( COMPERR_BAD_INPUT_MESH, "No node on vertex"); if (!Curve.IsNull()) { list< double > params; - try { - if ( ! computeInternalParameters( E, params )) - return false; + bool reversed = false; + if ( theMesh.GetShapeToMesh().ShapeType() >= TopAbs_WIRE ) { + reversed = ( EE.Orientation() == TopAbs_REVERSED ); + } + if ( !_mainEdge.IsNull() ) { + reversed = ( _mainEdge.Orientation() == TopAbs_REVERSED ); + } + else if ( _revEdgesIDs.size() > 0 ) { + for ( int i = 0; i < _revEdgesIDs.size(); i++) { + if ( _revEdgesIDs[i] == shapeID ) { + reversed = !reversed; + } + } } - catch ( Standard_Failure ) { + + BRepAdaptor_Curve C3d( E ); + double length = EdgeLength( E ); + if ( ! computeInternalParameters( theMesh, C3d, length, f, l, params, reversed, true )) { return false; } + redistributeNearVertices( theMesh, C3d, length, params, VFirst, VLast ); // edge extrema (indexes : 1 & NbPoints) already in SMDS (TopoDS_Vertex) // only internal nodes receive an edge position with param on curve const SMDS_MeshNode * idPrev = idFirst; + double parPrev = f; + double parLast = l; + + /* NPAL18025 + if (reversed) { + idPrev = idLast; + idLast = idFirst; + idFirst = idPrev; + parPrev = l; + parLast = f; + } + */ - for (list::iterator itU = params.begin(); itU != params.end(); itU++) - { + for (list::iterator itU = params.begin(); itU != params.end(); itU++) { double param = *itU; gp_Pnt P = Curve->Value(param); //Add the Node in the DataStructure SMDS_MeshNode * node = meshDS->AddNode(P.X(), P.Y(), P.Z()); - meshDS->SetNodeOnEdge(node, E); - - // **** edgePosition associe au point = param. - SMDS_EdgePosition* epos = - dynamic_cast(node->GetPosition().get()); - epos->SetUParameter(param); + meshDS->SetNodeOnEdge(node, shapeID, param); + + if(_quadraticMesh) { + // create medium node + double prm = ( parPrev + param )/2; + gp_Pnt PM = Curve->Value(prm); + SMDS_MeshNode * NM = meshDS->AddNode(PM.X(), PM.Y(), PM.Z()); + meshDS->SetNodeOnEdge(NM, shapeID, prm); + SMDS_MeshEdge * edge = meshDS->AddEdge(idPrev, node, NM); + meshDS->SetMeshElementOnShape(edge, shapeID); + } + else { + SMDS_MeshEdge * edge = meshDS->AddEdge(idPrev, node); + meshDS->SetMeshElementOnShape(edge, shapeID); + } - SMDS_MeshEdge * edge = meshDS->AddEdge(idPrev, node); - meshDS->SetMeshElementOnShape(edge, E); idPrev = node; + parPrev = param; + } + if(_quadraticMesh) { + double prm = ( parPrev + parLast )/2; + gp_Pnt PM = Curve->Value(prm); + SMDS_MeshNode * NM = meshDS->AddNode(PM.X(), PM.Y(), PM.Z()); + meshDS->SetNodeOnEdge(NM, shapeID, prm); + SMDS_MeshEdge * edge = meshDS->AddEdge(idPrev, idLast, NM); + meshDS->SetMeshElementOnShape(edge, shapeID); + } + else { + SMDS_MeshEdge* edge = meshDS->AddEdge(idPrev, idLast); + meshDS->SetMeshElementOnShape(edge, shapeID); } - SMDS_MeshEdge* edge = meshDS->AddEdge(idPrev, idLast); - meshDS->SetMeshElementOnShape(edge, E); } else { + //MESSAGE("************* Degenerated edge! *****************"); + // Edge is a degenerated Edge : We put n = 5 points on the edge. - int NbPoints = 5; - BRep_Tool::Range(E, f, l); + const int NbPoints = 5; + BRep_Tool::Range( E, f, l ); // PAL15185 double du = (l - f) / (NbPoints - 1); - //MESSAGE("************* Degenerated edge! *****************"); - TopoDS_Vertex V1, V2; - TopExp::Vertices(E, V1, V2); - gp_Pnt P = BRep_Tool::Pnt(V1); + gp_Pnt P = BRep_Tool::Pnt(VFirst); const SMDS_MeshNode * idPrev = idFirst; - for (int i = 2; i < NbPoints; i++) - { + for (int i = 2; i < NbPoints; i++) { double param = f + (i - 1) * du; SMDS_MeshNode * node = meshDS->AddNode(P.X(), P.Y(), P.Z()); - meshDS->SetNodeOnEdge(node, E); - - SMDS_EdgePosition* epos = - dynamic_cast(node->GetPosition().get()); - epos->SetUParameter(param); - - SMDS_MeshEdge * edge = meshDS->AddEdge(idPrev, node); - meshDS->SetMeshElementOnShape(edge, E); + if(_quadraticMesh) { + // create medium node + double prm = param - du/2.; + SMDS_MeshNode * NM = meshDS->AddNode(P.X(), P.Y(), P.Z()); + meshDS->SetNodeOnEdge(NM, shapeID, prm); + SMDS_MeshEdge * edge = meshDS->AddEdge(idPrev, node, NM); + meshDS->SetMeshElementOnShape(edge, shapeID); + } + else { + SMDS_MeshEdge * edge = meshDS->AddEdge(idPrev, node); + meshDS->SetMeshElementOnShape(edge, shapeID); + } + meshDS->SetNodeOnEdge(node, shapeID, param); idPrev = node; } - SMDS_MeshEdge * edge = meshDS->AddEdge(idPrev, idLast); - meshDS->SetMeshElementOnShape(edge, E); + if(_quadraticMesh) { + // create medium node + double prm = l - du/2.; + SMDS_MeshNode * NM = meshDS->AddNode(P.X(), P.Y(), P.Z()); + meshDS->SetNodeOnEdge(NM, shapeID, prm); + SMDS_MeshEdge * edge = meshDS->AddEdge(idPrev, idLast, NM); + meshDS->SetMeshElementOnShape(edge, shapeID); + } + else { + SMDS_MeshEdge * edge = meshDS->AddEdge(idPrev, idLast); + meshDS->SetMeshElementOnShape(edge, shapeID); + } } return true; } + //============================================================================= /*! - * GetUsedHypothesis + * */ //============================================================================= -const list & StdMeshers_Regular_1D::GetUsedHypothesis - (SMESH_Mesh & aMesh, const TopoDS_Shape & aShape) +bool StdMeshers_Regular_1D::Evaluate(SMESH_Mesh & theMesh, + const TopoDS_Shape & theShape, + MapShapeNbElems& aResMap) { - _usedHypList.clear(); - _usedHypList = GetAppliedHypothesis(aMesh, aShape); // copy - int nbHyp = _usedHypList.size(); - - // try to find being propagated hypothesis - string propName = StdMeshers_Propagation::GetName(); - if (nbHyp == 0) { - // Get all opposite edges - TopTools_ListOfShape anOppositeEdges; - TopoDS_Shape mainShape = aMesh.GetMeshDS()->ShapeToMesh(); - GetOppositeEdges(mainShape, aShape, anOppositeEdges); - TopTools_ListIteratorOfListOfShape oppIt (anOppositeEdges); - for (; oppIt.More(); oppIt.Next()) { - const TopoDS_Shape& oppE = oppIt.Value(); - - // Find Propagation hypothesis on the opposite edge - if (IsPropagated(aMesh, oppE)) { - - // Get hypothesis, used by the opposite edge - _usedHypList = SMESH_Algo::GetUsedHypothesis(aMesh, oppE); - nbHyp = _usedHypList.size(); - if (nbHyp == 1) - break; - } - } - } + if ( _hypType == NONE ) + return false; - // try to find relevant 1D hypothesis on ancestors - if (nbHyp == 0) { - TopTools_ListIteratorOfListOfShape ancIt (aMesh.GetAncestors(aShape)); - for (; ancIt.More(); ancIt.Next()) { - const TopoDS_Shape& ancestor = ancIt.Value(); - _usedHypList = GetAppliedHypothesis(aMesh, ancestor); // copy - nbHyp = _usedHypList.size(); - if (nbHyp == 1) - break; - } - } + //SMESHDS_Mesh * meshDS = theMesh.GetMeshDS(); - if (nbHyp > 1) - _usedHypList.clear(); //only one compatible hypothesis allowed - return _usedHypList; -} + const TopoDS_Edge & EE = TopoDS::Edge(theShape); + TopoDS_Edge E = TopoDS::Edge(EE.Oriented(TopAbs_FORWARD)); + // int shapeID = meshDS->ShapeToIndex( E ); -//============================================================================= -/*! - * Is Propagation hypothesis assigned to theShape or its ancestors - */ -//============================================================================= -Standard_Boolean StdMeshers_Regular_1D::IsPropagated (SMESH_Mesh & theMesh, - const TopoDS_Shape & theShape) -{ - const SMESHDS_Mesh * meshDS = theMesh.GetMeshDS(); + double f, l; + Handle(Geom_Curve) Curve = BRep_Tool::Curve(E, f, l); - // try to find Propagation hypothesis on theShape - const list & listHyp = meshDS->GetHypothesis(theShape); + TopoDS_Vertex VFirst, VLast; + TopExp::Vertices(E, VFirst, VLast); // Vfirst corresponds to f and Vlast to l - list::const_iterator it = listHyp.begin(); - for (; it != listHyp.end(); it++) { - const SMESHDS_Hypothesis *anHyp = *it; - if (anHyp->GetName() == StdMeshers_Propagation::GetName()) - return Standard_True; - } + ASSERT(!VFirst.IsNull()); + ASSERT(!VLast.IsNull()); - // try to find Propagation hypothesis on ancestors - TopTools_ListIteratorOfListOfShape ancIt (theMesh.GetAncestors(theShape)); - for (; ancIt.More(); ancIt.Next()) { - const TopoDS_Shape& ancestor = ancIt.Value(); - const list & listAncHyp = meshDS->GetHypothesis(ancestor); + std::vector aVec(SMDSEntity_Last,0); - list::const_iterator itAnc = listAncHyp.begin(); - for (; itAnc != listAncHyp.end(); itAnc++) { - const SMESHDS_Hypothesis *anHyp = *itAnc; - if (anHyp->GetName() == StdMeshers_Propagation::GetName()) - return Standard_True; - } - } + if (!Curve.IsNull()) { + list< double > params; - return Standard_False; -} + BRepAdaptor_Curve C3d( E ); + double length = EdgeLength( E ); + if ( ! computeInternalParameters( theMesh, C3d, length, f, l, params, false, true )) { + SMESH_subMesh * sm = theMesh.GetSubMesh(theShape); + aResMap.insert(std::make_pair(sm,aVec)); + SMESH_ComputeErrorPtr& smError = sm->GetComputeError(); + smError.reset( new SMESH_ComputeError(COMPERR_ALGO_FAILED,"Submesh can not be evaluated",this)); + return false; + } + redistributeNearVertices( theMesh, C3d, length, params, VFirst, VLast ); -//============================================================================= -/*! - * GetOppositeEdges() - get all edges of theShape, - * laying on any quadrangle face in front of theEdge - */ -//============================================================================= -void StdMeshers_Regular_1D::GetOppositeEdges (const TopoDS_Shape& theShape, - const TopoDS_Shape& theEdge, - TopTools_ListOfShape& theOppositeEdges) const -{ - TopExp_Explorer aWires (theShape, TopAbs_WIRE); - for (; aWires.More(); aWires.Next()) { - const TopoDS_Shape& aWire = aWires.Current(); - BRepTools_WireExplorer aWE (TopoDS::Wire(aWire)); - Standard_Integer nb = 1, found = 0; - TopTools_Array1OfShape anEdges (1,4); - for (; aWE.More(); aWE.Next(), nb++) { - if (nb > 4) { - found = 0; - break; - } - anEdges(nb) = aWE.Current(); - if (anEdges(nb).IsSame(theEdge)) - found = nb; + if(_quadraticMesh) { + aVec[SMDSEntity_Node] = 2*params.size() + 1; + aVec[SMDSEntity_Quad_Edge] = params.size() + 1; } - if (nb == 5 && found > 0) { - Standard_Integer opp = found + 2; - if (opp > 4) opp -= 4; - theOppositeEdges.Append(anEdges(opp)); + else { + aVec[SMDSEntity_Node] = params.size(); + aVec[SMDSEntity_Edge] = params.size() + 1; + } + + } + else { + //MESSAGE("************* Degenerated edge! *****************"); + // Edge is a degenerated Edge : We put n = 5 points on the edge. + if(_quadraticMesh) { + aVec[SMDSEntity_Node] = 11; + aVec[SMDSEntity_Quad_Edge] = 6; + } + else { + aVec[SMDSEntity_Node] = 5; + aVec[SMDSEntity_Edge] = 6; } } -} -//============================================================================= -/*! - * - */ -//============================================================================= + SMESH_subMesh * sm = theMesh.GetSubMesh(theShape); + aResMap.insert(std::make_pair(sm,aVec)); -ostream & StdMeshers_Regular_1D::SaveTo(ostream & save) -{ - return save; + return true; } + //============================================================================= /*! - * + * See comments in SMESH_Algo.cxx */ //============================================================================= -istream & StdMeshers_Regular_1D::LoadFrom(istream & load) +const list & +StdMeshers_Regular_1D::GetUsedHypothesis(SMESH_Mesh & aMesh, + const TopoDS_Shape & aShape, + const bool ignoreAuxiliary) { - return load; -} + _usedHypList.clear(); + _mainEdge.Nullify(); -//============================================================================= -/*! - * - */ -//============================================================================= + SMESH_HypoFilter auxiliaryFilter, compatibleFilter; + auxiliaryFilter.Init( SMESH_HypoFilter::IsAuxiliary() ); + const bool ignoreAux = true; + InitCompatibleHypoFilter( compatibleFilter, ignoreAux ); -ostream & operator <<(ostream & save, StdMeshers_Regular_1D & hyp) -{ - return hyp.SaveTo( save ); -} + // get non-auxiliary assigned to aShape + int nbHyp = aMesh.GetHypotheses( aShape, compatibleFilter, _usedHypList, false ); -//============================================================================= -/*! - * - */ -//============================================================================= + if (nbHyp == 0 && aShape.ShapeType() == TopAbs_EDGE) + { + // Check, if propagated from some other edge + _mainEdge = StdMeshers_Propagation::GetPropagationSource( aMesh, aShape ); + if ( !_mainEdge.IsNull() ) + { + // Propagation of 1D hypothesis from on this edge; + // get non-auxiliary assigned to _mainEdge + nbHyp = aMesh.GetHypotheses( _mainEdge, compatibleFilter, _usedHypList, true ); + } + } -istream & operator >>(istream & load, StdMeshers_Regular_1D & hyp) -{ - return hyp.LoadFrom( load ); + if (nbHyp == 0) // nothing propagated nor assigned to aShape + { + SMESH_Algo::GetUsedHypothesis( aMesh, aShape, ignoreAuxiliary ); + nbHyp = _usedHypList.size(); + } + else + { + // get auxiliary hyps from aShape + aMesh.GetHypotheses( aShape, auxiliaryFilter, _usedHypList, true ); + } + if ( nbHyp > 1 && ignoreAuxiliary ) + _usedHypList.clear(); //only one compatible non-auxiliary hypothesis allowed + + return _usedHypList; }