X-Git-Url: http://git.salome-platform.org/gitweb/?p=modules%2Fsmesh.git;a=blobdiff_plain;f=src%2FStdMeshers%2FStdMeshers_Regular_1D.cxx;h=1b2ba291f06a886ea4d02ef6b8d7fee14235eb00;hp=6ea520001c195e66985a5b9e329d9c9ff0e0c099;hb=83b0c984cc12946923dc2640d68ba3a2700faa28;hpb=f5016d85b7b4b88623723027a1585c6414c4dc66 diff --git a/src/StdMeshers/StdMeshers_Regular_1D.cxx b/src/StdMeshers/StdMeshers_Regular_1D.cxx index 6ea520001..1b2ba291f 100644 --- a/src/StdMeshers/StdMeshers_Regular_1D.cxx +++ b/src/StdMeshers/StdMeshers_Regular_1D.cxx @@ -1,4 +1,4 @@ -// Copyright (C) 2007-2012 CEA/DEN, EDF R&D, OPEN CASCADE +// Copyright (C) 2007-2016 CEA/DEN, EDF R&D, OPEN CASCADE // // Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN, // CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS @@ -6,7 +6,7 @@ // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either -// version 2.1 of the License. +// version 2.1 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of @@ -26,11 +26,23 @@ // Module : SMESH // #include "StdMeshers_Regular_1D.hxx" -#include "StdMeshers_Distribution.hxx" +#include "SMDS_MeshElement.hxx" +#include "SMDS_MeshNode.hxx" +#include "SMESHDS_Mesh.hxx" +#include "SMESH_Comment.hxx" +#include "SMESH_Gen.hxx" +#include "SMESH_HypoFilter.hxx" +#include "SMESH_Mesh.hxx" +#include "SMESH_subMesh.hxx" +#include "SMESH_subMeshEventListener.hxx" +#include "StdMeshers_Adaptive1D.hxx" #include "StdMeshers_Arithmetic1D.hxx" #include "StdMeshers_AutomaticLength.hxx" +#include "StdMeshers_Geometric1D.hxx" #include "StdMeshers_Deflection1D.hxx" +#include "StdMeshers_Distribution.hxx" +#include "StdMeshers_FixedPoints1D.hxx" #include "StdMeshers_LocalLength.hxx" #include "StdMeshers_MaxLength.hxx" #include "StdMeshers_NumberOfSegments.hxx" @@ -38,16 +50,6 @@ #include "StdMeshers_SegmentLengthAroundVertex.hxx" #include "StdMeshers_StartEndLength.hxx" -#include "SMESH_Gen.hxx" -#include "SMESH_Mesh.hxx" -#include "SMESH_HypoFilter.hxx" -#include "SMESH_subMesh.hxx" -#include "SMESH_subMeshEventListener.hxx" -#include "SMESH_Comment.hxx" - -#include "SMDS_MeshElement.hxx" -#include "SMDS_MeshNode.hxx" - #include "Utils_SALOME_Exception.hxx" #include "utilities.h" @@ -67,37 +69,42 @@ #include using namespace std; +using namespace StdMeshers; //============================================================================= /*! - * + * */ //============================================================================= -StdMeshers_Regular_1D::StdMeshers_Regular_1D(int hypId, int studyId, - SMESH_Gen * gen):SMESH_1D_Algo(hypId, studyId, gen) +StdMeshers_Regular_1D::StdMeshers_Regular_1D(int hypId, + int studyId, + SMESH_Gen * gen) + :SMESH_1D_Algo( hypId, studyId, gen ) { - MESSAGE("StdMeshers_Regular_1D::StdMeshers_Regular_1D"); - _name = "Regular_1D"; - _shapeType = (1 << TopAbs_EDGE); - _fpHyp = 0; - - _compatibleHypothesis.push_back("LocalLength"); - _compatibleHypothesis.push_back("MaxLength"); - _compatibleHypothesis.push_back("NumberOfSegments"); - _compatibleHypothesis.push_back("StartEndLength"); - _compatibleHypothesis.push_back("Deflection1D"); - _compatibleHypothesis.push_back("Arithmetic1D"); - _compatibleHypothesis.push_back("FixedPoints1D"); - _compatibleHypothesis.push_back("AutomaticLength"); - - _compatibleHypothesis.push_back("QuadraticMesh"); // auxiliary !!! - _compatibleHypothesis.push_back("Propagation"); // auxiliary !!! + _name = "Regular_1D"; + _shapeType = (1 << TopAbs_EDGE); + _fpHyp = 0; + + _compatibleHypothesis.push_back("LocalLength"); + _compatibleHypothesis.push_back("MaxLength"); + _compatibleHypothesis.push_back("NumberOfSegments"); + _compatibleHypothesis.push_back("StartEndLength"); + _compatibleHypothesis.push_back("Deflection1D"); + _compatibleHypothesis.push_back("Arithmetic1D"); + _compatibleHypothesis.push_back("GeometricProgression"); + _compatibleHypothesis.push_back("FixedPoints1D"); + _compatibleHypothesis.push_back("AutomaticLength"); + _compatibleHypothesis.push_back("Adaptive1D"); + // auxiliary: + _compatibleHypothesis.push_back("QuadraticMesh"); + _compatibleHypothesis.push_back("Propagation"); + _compatibleHypothesis.push_back("PropagOfDistribution"); } //============================================================================= /*! - * + * */ //============================================================================= @@ -107,28 +114,33 @@ StdMeshers_Regular_1D::~StdMeshers_Regular_1D() //============================================================================= /*! - * + * */ //============================================================================= -bool StdMeshers_Regular_1D::CheckHypothesis - (SMESH_Mesh& aMesh, - const TopoDS_Shape& aShape, - SMESH_Hypothesis::Hypothesis_Status& aStatus) +bool StdMeshers_Regular_1D::CheckHypothesis( SMESH_Mesh& aMesh, + const TopoDS_Shape& aShape, + Hypothesis_Status& aStatus ) { _hypType = NONE; _quadraticMesh = false; + _onlyUnaryInput = true; const list & hyps = GetUsedHypothesis(aMesh, aShape, /*ignoreAuxiliaryHyps=*/false); + const SMESH_HypoFilter & propagFilter = StdMeshers_Propagation::GetFilter(); + // find non-auxiliary hypothesis const SMESHDS_Hypothesis *theHyp = 0; + set< string > propagTypes; list ::const_iterator h = hyps.begin(); for ( ; h != hyps.end(); ++h ) { if ( static_cast(*h)->IsAuxiliary() ) { if ( strcmp( "QuadraticMesh", (*h)->GetName() ) == 0 ) _quadraticMesh = true; + if ( propagFilter.IsOk( static_cast< const SMESH_Hypothesis*>( *h ), aShape )) + propagTypes.insert( (*h)->GetName() ); } else { if ( !theHyp ) @@ -144,7 +156,7 @@ bool StdMeshers_Regular_1D::CheckHypothesis string hypName = theHyp->GetName(); - if (hypName == "LocalLength") + if ( hypName == "LocalLength" ) { const StdMeshers_LocalLength * hyp = dynamic_cast (theHyp); @@ -156,7 +168,7 @@ bool StdMeshers_Regular_1D::CheckHypothesis aStatus = SMESH_Hypothesis::HYP_OK; } - else if (hypName == "MaxLength") + else if ( hypName == "MaxLength" ) { const StdMeshers_MaxLength * hyp = dynamic_cast (theHyp); @@ -171,7 +183,7 @@ bool StdMeshers_Regular_1D::CheckHypothesis aStatus = SMESH_Hypothesis::HYP_OK; } - else if (hypName == "NumberOfSegments") + else if ( hypName == "NumberOfSegments" ) { const StdMeshers_NumberOfSegments * hyp = dynamic_cast (theHyp); @@ -206,7 +218,7 @@ bool StdMeshers_Regular_1D::CheckHypothesis aStatus = SMESH_Hypothesis::HYP_OK; } - else if (hypName == "Arithmetic1D") + else if ( hypName == "Arithmetic1D" ) { const StdMeshers_Arithmetic1D * hyp = dynamic_cast (theHyp); @@ -221,7 +233,22 @@ bool StdMeshers_Regular_1D::CheckHypothesis aStatus = SMESH_Hypothesis::HYP_OK; } - else if (hypName == "FixedPoints1D") { + else if ( hypName == "GeometricProgression" ) + { + const StdMeshers_Geometric1D * hyp = + dynamic_cast (theHyp); + ASSERT(hyp); + _value[ BEG_LENGTH_IND ] = hyp->GetStartLength(); + _value[ END_LENGTH_IND ] = hyp->GetCommonRatio(); + ASSERT( _value[ BEG_LENGTH_IND ] > 0 && _value[ END_LENGTH_IND ] > 0 ); + _hypType = GEOMETRIC_1D; + + _revEdgesIDs = hyp->GetReversedEdges(); + + aStatus = SMESH_Hypothesis::HYP_OK; + } + + else if ( hypName == "FixedPoints1D" ) { _fpHyp = dynamic_cast (theHyp); ASSERT(_fpHyp); _hypType = FIXED_POINTS_1D; @@ -231,7 +258,7 @@ bool StdMeshers_Regular_1D::CheckHypothesis aStatus = SMESH_Hypothesis::HYP_OK; } - else if (hypName == "StartEndLength") + else if ( hypName == "StartEndLength" ) { const StdMeshers_StartEndLength * hyp = dynamic_cast (theHyp); @@ -246,7 +273,7 @@ bool StdMeshers_Regular_1D::CheckHypothesis aStatus = SMESH_Hypothesis::HYP_OK; } - else if (hypName == "Deflection1D") + else if ( hypName == "Deflection1D" ) { const StdMeshers_Deflection1D * hyp = dynamic_cast (theHyp); @@ -257,65 +284,97 @@ bool StdMeshers_Regular_1D::CheckHypothesis aStatus = SMESH_Hypothesis::HYP_OK; } - else if (hypName == "AutomaticLength") + else if ( hypName == "AutomaticLength" ) { StdMeshers_AutomaticLength * hyp = const_cast (dynamic_cast (theHyp)); ASSERT(hyp); _value[ BEG_LENGTH_IND ] = _value[ END_LENGTH_IND ] = hyp->GetLength( &aMesh, aShape ); -// _value[ BEG_LENGTH_IND ] = hyp->GetLength( &aMesh, aShape ); -// _value[ END_LENGTH_IND ] = Precision::Confusion(); // ?? or set to zero? ASSERT( _value[ BEG_LENGTH_IND ] > 0 ); _hypType = MAX_LENGTH; aStatus = SMESH_Hypothesis::HYP_OK; } + else if ( hypName == "Adaptive1D" ) + { + _adaptiveHyp = dynamic_cast < const StdMeshers_Adaptive1D* >(theHyp); + ASSERT(_adaptiveHyp); + _hypType = ADAPTIVE; + _onlyUnaryInput = false; + aStatus = SMESH_Hypothesis::HYP_OK; + } else + { aStatus = SMESH_Hypothesis::HYP_INCOMPATIBLE; + } - return ( _hypType != NONE ); + if ( propagTypes.size() > 1 && aStatus == HYP_OK ) + { + // detect concurrent Propagation hyps + _usedHypList.clear(); + list< TopoDS_Shape > assignedTo; + if ( aMesh.GetHypotheses( aShape, propagFilter, _usedHypList, true, &assignedTo ) > 1 ) + { + // find most simple shape and a hyp on it + int simpleShape = TopAbs_COMPOUND; + const SMESHDS_Hypothesis* localHyp = 0; + list< TopoDS_Shape >::iterator shape = assignedTo.begin(); + list< const SMESHDS_Hypothesis *>::iterator hyp = _usedHypList.begin(); + for ( ; shape != assignedTo.end(); ++shape ) + if ( shape->ShapeType() > simpleShape ) + { + simpleShape = shape->ShapeType(); + localHyp = (*hyp); + } + // check if there a different hyp on simpleShape + shape = assignedTo.begin(); + hyp = _usedHypList.begin(); + for ( ; hyp != _usedHypList.end(); ++hyp, ++shape ) + if ( shape->ShapeType() == simpleShape && + !localHyp->IsSameName( **hyp )) + { + aStatus = HYP_INCOMPAT_HYPS; + return error( SMESH_Comment("Hypotheses of both \"") + << StdMeshers_Propagation::GetName() << "\" and \"" + << StdMeshers_PropagOfDistribution::GetName() + << "\" types can't be applied to the same edge"); + } + } + } + + return ( aStatus == SMESH_Hypothesis::HYP_OK ); } -static bool computeParamByFunc(Adaptor3d_Curve& C3d, double first, double last, - double length, bool theReverse, - int nbSeg, Function& func, +static bool computeParamByFunc(Adaptor3d_Curve& C3d, + double first, double last, double length, + bool theReverse, int nbSeg, Function& func, list& theParams) { // never do this way //OSD::SetSignal( true ); - if (nbSeg <= 0) + if ( nbSeg <= 0 ) return false; - MESSAGE( "computeParamByFunc" ); - int nbPnt = 1 + nbSeg; - vector x(nbPnt, 0.); + vector x( nbPnt, 0. ); - if (!buildDistribution(func, 0.0, 1.0, nbSeg, x, 1E-4)) + if ( !buildDistribution( func, 0.0, 1.0, nbSeg, x, 1E-4 )) return false; - MESSAGE( "Points:\n" ); - char buf[1024]; - for ( int i=0; i<=nbSeg; i++ ) - { - sprintf( buf, "%f\n", float(x[i] ) ); - MESSAGE( buf ); - } - - - // apply parameters in range [0,1] to the space of the curve double prevU = first; - double sign = 1.; - if (theReverse) + double sign = 1.; + if ( theReverse ) { prevU = last; - sign = -1.; + sign = -1.; } - for( int i = 1; i < nbSeg; i++ ) + + for ( int i = 1; i < nbSeg; i++ ) { double curvLength = length * (x[i] - x[i-1]) * sign; - GCPnts_AbscissaPoint Discret( C3d, curvLength, prevU ); + double tol = Min( Precision::Confusion(), curvLength / 100. ); + GCPnts_AbscissaPoint Discret( tol, C3d, curvLength, prevU ); if ( !Discret.IsDone() ) return false; double U = Discret.Parameter(); @@ -357,16 +416,17 @@ static void compensateError(double a1, double an, if ( a1 + an <= length && nPar > 1 ) { bool reverse = ( U1 > Un ); - GCPnts_AbscissaPoint Discret(C3d, reverse ? an : -an, Un); + double tol = Min( Precision::Confusion(), 0.01 * an ); + GCPnts_AbscissaPoint Discret( tol, C3d, reverse ? an : -an, Un ); if ( !Discret.IsDone() ) return; double Utgt = Discret.Parameter(); // target value of the last parameter list::reverse_iterator itU = theParams.rbegin(); double Ul = *itU++; // real value of the last parameter double dUn = Utgt - Ul; // parametric error of - if ( Abs(dUn) <= Precision::Confusion() ) - return; double dU = Abs( Ul - *itU ); // parametric length of the last but one segment + if ( Abs(dUn) <= 1e-3 * dU ) + return; if ( adjustNeighbors2an || Abs(dUn) < 0.5 * dU ) { // last segment is a bit shorter than it should // move the last parameter to the edge beginning } @@ -537,7 +597,8 @@ void StdMeshers_Regular_1D::redistributeNearVertices (SMESH_Mesh & theM { if ( !isEnd1 ) vertexLength = -vertexLength; - GCPnts_AbscissaPoint Discret(theC3d, vertexLength, l); + double tol = Min( Precision::Confusion(), 0.01 * vertexLength ); + GCPnts_AbscissaPoint Discret( tol, theC3d, vertexLength, l ); if ( Discret.IsDone() ) { if ( nPar == 0 ) theParameters.push_back( Discret.Parameter()); @@ -560,17 +621,20 @@ void StdMeshers_Regular_1D::redistributeNearVertices (SMESH_Mesh & theM double Um = *itU++; double Lm = GCPnts_AbscissaPoint::Length( theC3d, Um, *itU); double L = GCPnts_AbscissaPoint::Length( theC3d, *itU, l); - StdMeshers_Regular_1D algo( *this ); - algo._hypType = BEG_END_LENGTH; - algo._value[ BEG_LENGTH_IND ] = Lm; - algo._value[ END_LENGTH_IND ] = vertexLength; + static StdMeshers_Regular_1D* auxAlgo = 0; + if ( !auxAlgo ) { + auxAlgo = new StdMeshers_Regular_1D( _gen->GetANewId(), _studyId, _gen ); + auxAlgo->_hypType = BEG_END_LENGTH; + } + auxAlgo->_value[ BEG_LENGTH_IND ] = Lm; + auxAlgo->_value[ END_LENGTH_IND ] = vertexLength; double from = *itU, to = l; if ( isEnd1 ) { std::swap( from, to ); - std::swap( algo._value[ BEG_LENGTH_IND ], algo._value[ END_LENGTH_IND ]); + std::swap( auxAlgo->_value[ BEG_LENGTH_IND ], auxAlgo->_value[ END_LENGTH_IND ]); } list params; - if ( algo.computeInternalParameters( theMesh, theC3d, L, from, to, params, false )) + if ( auxAlgo->computeInternalParameters( theMesh, theC3d, L, from, to, params, false )) { if ( isEnd1 ) params.reverse(); while ( 1 + nHalf-- ) @@ -606,20 +670,75 @@ bool StdMeshers_Regular_1D::computeInternalParameters(SMESH_Mesh & theMesh, double f = theFirstU, l = theLastU; + // Propagation Of Distribution + // + if ( !_mainEdge.IsNull() && _isPropagOfDistribution ) + { + TopoDS_Edge mainEdge = TopoDS::Edge( _mainEdge ); // should not be a reference! + _gen->Compute( theMesh, mainEdge, /*aShapeOnly=*/true, /*anUpward=*/true); + + SMESHDS_SubMesh* smDS = theMesh.GetMeshDS()->MeshElements( mainEdge ); + if ( !smDS ) + return error("No mesh on the source edge of Propagation Of Distribution"); + if ( smDS->NbNodes() < 1 ) + return true; // 1 segment + + map< double, const SMDS_MeshNode* > mainEdgeParamsOfNodes; + if ( ! SMESH_Algo::GetSortedNodesOnEdge( theMesh.GetMeshDS(), mainEdge, _quadraticMesh, + mainEdgeParamsOfNodes, SMDSAbs_Edge )) + return error("Bad node parameters on the source edge of Propagation Of Distribution"); + vector< double > segLen( mainEdgeParamsOfNodes.size() - 1 ); + double totalLen = 0; + BRepAdaptor_Curve mainEdgeCurve( mainEdge ); + map< double, const SMDS_MeshNode* >::iterator + u_n2 = mainEdgeParamsOfNodes.begin(), u_n1 = u_n2++; + for ( size_t i = 1; i < mainEdgeParamsOfNodes.size(); ++i, ++u_n1, ++u_n2 ) + { + segLen[ i-1 ] = GCPnts_AbscissaPoint::Length( mainEdgeCurve, + u_n1->first, + u_n2->first); + totalLen += segLen[ i-1 ]; + } + for ( size_t i = 0; i < segLen.size(); ++i ) + segLen[ i ] *= theLength / totalLen; + + size_t iSeg = theReverse ? segLen.size()-1 : 0; + size_t dSeg = theReverse ? -1 : +1; + double param = theFirstU; + size_t nbParams = 0; + for ( int i = 0, nb = segLen.size()-1; i < nb; ++i, iSeg += dSeg ) + { + double tol = Min( Precision::Confusion(), 0.01 * segLen[ iSeg ]); + GCPnts_AbscissaPoint Discret( tol, theC3d, segLen[ iSeg ], param ); + if ( !Discret.IsDone() ) break; + param = Discret.Parameter(); + theParams.push_back( param ); + ++nbParams; + } + if ( nbParams != segLen.size()-1 ) + return error( SMESH_Comment("Can't divide into ") << segLen.size() << " segments"); + + compensateError( segLen[ theReverse ? segLen.size()-1 : 0 ], + segLen[ theReverse ? 0 : segLen.size()-1 ], + f, l, theLength, theC3d, theParams, true ); + return true; + } + + switch( _hypType ) { case LOCAL_LENGTH: case MAX_LENGTH: - case NB_SEGMENTS: { - + case NB_SEGMENTS: + { double eltSize = 1; int nbSegments; if ( _hypType == MAX_LENGTH ) { double nbseg = ceil(theLength / _value[ BEG_LENGTH_IND ]); // integer sup if (nbseg <= 0) - nbseg = 1; // degenerated edge - eltSize = theLength / nbseg; + nbseg = 1; // degenerated edge + eltSize = theLength / nbseg * ( 1. - 1e-9 ); nbSegments = (int) nbseg; } else if ( _hypType == LOCAL_LENGTH ) @@ -643,7 +762,7 @@ bool StdMeshers_Regular_1D::computeInternalParameters(SMESH_Mesh & theMesh, } if (computed) { SMESHDS_SubMesh* smds = sm->GetSubMeshDS(); - int nb_segments = smds->NbElements(); + int nb_segments = smds->NbElements(); if (nbseg - 1 <= nb_segments && nb_segments <= nbseg + 1) { isFound = true; nbseg = nb_segments; @@ -687,7 +806,7 @@ bool StdMeshers_Regular_1D::computeInternalParameters(SMESH_Mesh & theMesh, if ( theReverse ) scale = 1.0 / scale; - double alpha = pow(scale, 1.0 / (nbSegments - 1)); + double alpha = pow(scale, 1.0 / (nbSegments - 1)); double factor = (l - f) / (1.0 - pow(alpha, nbSegments)); for (int i = 1; i < nbSegments; i++) { @@ -696,10 +815,12 @@ bool StdMeshers_Regular_1D::computeInternalParameters(SMESH_Mesh & theMesh, } } const double lenFactor = theLength/(l-f); + const double minSegLen = Min( theParams.front() - f, l - theParams.back() ); + const double tol = Min( Precision::Confusion(), 0.01 * minSegLen ); list::iterator u = theParams.begin(), uEnd = theParams.end(); for ( ; u != uEnd; ++u ) { - GCPnts_AbscissaPoint Discret( theC3d, ((*u)-f) * lenFactor, f ); + GCPnts_AbscissaPoint Discret( tol, theC3d, ((*u)-f) * lenFactor, f ); if ( Discret.IsDone() ) *u = Discret.Parameter(); } @@ -729,9 +850,13 @@ bool StdMeshers_Regular_1D::computeInternalParameters(SMESH_Mesh & theMesh, return false; } } - GCPnts_UniformAbscissa Discret(theC3d, eltSize, f, l); + + double tol = Min( Precision::Confusion(), 0.01 * eltSize ); + GCPnts_UniformAbscissa Discret(theC3d, nbSegments + 1, f, l, tol ); if ( !Discret.IsDone() ) return error( "GCPnts_UniformAbscissa failed"); + if ( Discret.NbPoints() < nbSegments + 1 ) + Discret.Initialize(theC3d, nbSegments + 2, f, l, tol ); int NbPoints = Min( Discret.NbPoints(), nbSegments + 1 ); for ( int i = 2; i < NbPoints; i++ ) // skip 1st and last points @@ -743,6 +868,7 @@ bool StdMeshers_Regular_1D::computeInternalParameters(SMESH_Mesh & theMesh, return true; } + case BEG_END_LENGTH: { // geometric progression: SUM(n) = ( a1 - an * q ) / ( 1 - q ) = theLength @@ -754,14 +880,15 @@ bool StdMeshers_Regular_1D::computeInternalParameters(SMESH_Mesh & theMesh, return error ( SMESH_Comment("Invalid segment lengths (")< at the distance // from the point of parameter . - GCPnts_AbscissaPoint Discret( theC3d, eltSize, param ); + GCPnts_AbscissaPoint Discret( tol, theC3d, eltSize, param ); if ( !Discret.IsDone() ) break; param = Discret.Parameter(); if ( f < param && param < l ) @@ -775,23 +902,24 @@ bool StdMeshers_Regular_1D::computeInternalParameters(SMESH_Mesh & theMesh, return true; } - case ARITHMETIC_1D: { - + case ARITHMETIC_1D: + { // arithmetic progression: SUM(n) = ( an - a1 + q ) * ( a1 + an ) / ( 2 * q ) = theLength double a1 = _value[ BEG_LENGTH_IND ]; double an = _value[ END_LENGTH_IND ]; - if ( 1.01*theLength < a1 + an) + if ( 1.01*theLength < a1 + an ) return error ( SMESH_Comment("Invalid segment lengths (")< numeric_limits::min() ? ( 1+( an-a1 )/q ) : ( 1+theLength/a1 )); + double q = ( an - a1 ) / ( 2 *theLength/( a1 + an ) - 1 ); + int n = int(fabs(q) > numeric_limits::min() ? ( 1+( an-a1 )/q ) : ( 1+theLength/a1 )); - double U1 = theReverse ? l : f; - double Un = theReverse ? f : l; - double param = U1; + double U1 = theReverse ? l : f; + double Un = theReverse ? f : l; + double param = U1; double eltSize = a1; + double tol = Min( Precision::Confusion(), 0.01 * Min( a1, an )); if ( theReverse ) { eltSize = -eltSize; q = -q; @@ -799,7 +927,7 @@ bool StdMeshers_Regular_1D::computeInternalParameters(SMESH_Mesh & theMesh, while ( n-- > 0 && eltSize * ( Un - U1 ) > 0 ) { // computes a point on a curve at the distance // from the point of parameter . - GCPnts_AbscissaPoint Discret( theC3d, eltSize, param ); + GCPnts_AbscissaPoint Discret( tol, theC3d, eltSize, param ); if ( !Discret.IsDone() ) break; param = Discret.Parameter(); if ( param > f && param < l ) @@ -809,115 +937,139 @@ bool StdMeshers_Regular_1D::computeInternalParameters(SMESH_Mesh & theMesh, eltSize += q; } compensateError( a1, an, U1, Un, theLength, theC3d, theParams ); + if ( theReverse ) theParams.reverse(); // NPAL18025 + + return true; + } + + case GEOMETRIC_1D: + { + double a1 = _value[ BEG_LENGTH_IND ], an = 0; + double q = _value[ END_LENGTH_IND ]; + + double U1 = theReverse ? l : f; + double Un = theReverse ? f : l; + double param = U1; + double eltSize = a1; + if ( theReverse ) + eltSize = -eltSize; + + int nbParams = 0; + while ( true ) { + // computes a point on a curve at the distance + // from the point of parameter . + double tol = Min( Precision::Confusion(), 0.01 * eltSize ); + GCPnts_AbscissaPoint Discret( tol, theC3d, eltSize, param ); + if ( !Discret.IsDone() ) break; + param = Discret.Parameter(); + if ( f < param && param < l ) + theParams.push_back( param ); + else + break; + an = eltSize; + eltSize *= q; + ++nbParams; + } + if ( nbParams > 1 ) + { + if ( Abs( param - Un ) < 0.2 * Abs( param - theParams.back() )) + { + compensateError( a1, Abs(eltSize), U1, Un, theLength, theC3d, theParams ); + } + else if ( Abs( Un - theParams.back() ) < + 0.2 * Abs( theParams.back() - *(++theParams.rbegin()))) + { + theParams.pop_back(); + compensateError( a1, Abs(an), U1, Un, theLength, theC3d, theParams ); + } + } if (theReverse) theParams.reverse(); // NPAL18025 return true; } - case FIXED_POINTS_1D: { + case FIXED_POINTS_1D: + { const std::vector& aPnts = _fpHyp->GetPoints(); - const std::vector& nbsegs = _fpHyp->GetNbSegments(); - int i = 0; + std::vector nbsegs = _fpHyp->GetNbSegments(); + if ( theReverse ) + std::reverse( nbsegs.begin(), nbsegs.end() ); + + // sort normalized params, taking into account theReverse TColStd_SequenceOfReal Params; - for(; i0.9999 ) continue; - int j=1; + double tol = 1e-7 / theLength; // GCPnts_UniformAbscissa allows u2-u1 > 1e-7 + for ( size_t i = 0; i < aPnts.size(); i++ ) + { + if( aPnts[i] < tol || aPnts[i] > 1 - tol ) + continue; + double u = theReverse ? ( 1 - aPnts[i] ) : aPnts[i]; + int j = 1; bool IsExist = false; - for(; j<=Params.Length(); j++) { - if( fabs(aPnts[i]-Params.Value(j)) < 1e-4 ) { + for ( ; j <= Params.Length(); j++ ) { + if ( Abs( u - Params.Value(j) ) < tol ) { IsExist = true; break; } - if( aPnts[i] nbsegs.size()-1 ) ? nbsegs[0] : nbsegs[i]; - segmentSize = Params.Value(i+1)*theLength - currAbscissa; - currAbscissa += segmentSize; - GCPnts_AbscissaPoint APnt(theC3d, sign*segmentSize, par1); - if( !APnt.IsDone() ) + + // transform normalized Params into real ones + std::vector< double > uVec( Params.Length() + 2 ); + uVec[ 0 ] = theFirstU; + double abscissa; + for ( int i = 1; i <= Params.Length(); i++ ) + { + abscissa = Params( i ) * theLength; + tol = Min( Precision::Confusion(), 0.01 * abscissa ); + GCPnts_AbscissaPoint APnt( tol, theC3d, abscissa, theFirstU ); + if ( !APnt.IsDone() ) return error( "GCPnts_AbscissaPoint failed"); - par2 = APnt.Parameter(); - eltSize = segmentSize/nbseg; - GCPnts_UniformAbscissa Discret(theC3d, eltSize, par1, par2); - if(theReverse) - Discret.Initialize(theC3d, eltSize, par2, par1); - else - Discret.Initialize(theC3d, eltSize, par1, par2); - if ( !Discret.IsDone() ) - return error( "GCPnts_UniformAbscissa failed"); - int NbPoints = Discret.NbPoints(); - list tmpParams; - for(int i=2; i::iterator itP = tmpParams.begin(); - for(; itP != tmpParams.end(); itP++) { - theParams.push_back( *(itP) ); + else + { + segmentSize = ( Params( i+2 ) - Params( i+1 )) * theLength; + eltSize = segmentSize / nbseg; + tol = Min( Precision::Confusion(), 0.01 * eltSize ); + GCPnts_UniformAbscissa Discret( theC3d, eltSize, par1, par2, tol ); + if ( !Discret.IsDone() ) + return error( "GCPnts_UniformAbscissa failed"); + if ( Discret.NbPoints() < nbseg + 1 ) { + eltSize = segmentSize / ( nbseg + 0.5 ); + Discret.Initialize( theC3d, eltSize, par1, par2, tol ); + } + int NbPoints = Discret.NbPoints(); + for ( int i = 2; i <= NbPoints; i++ ) { + double param = Discret.Parameter(i); + theParams.push_back( param ); + } } - theParams.push_back( par2 ); - - par1 = par2; - } - // add for last - int nbseg = ( nbsegs.size() > Params.Length() ) ? nbsegs[Params.Length()] : nbsegs[0]; - segmentSize = theLength - currAbscissa; - eltSize = segmentSize/nbseg; - GCPnts_UniformAbscissa Discret; - if(theReverse) - Discret.Initialize(theC3d, eltSize, par1, lp); - else - Discret.Initialize(theC3d, eltSize, lp, par1); - if ( !Discret.IsDone() ) - return error( "GCPnts_UniformAbscissa failed"); - int NbPoints = Discret.NbPoints(); - list tmpParams; - for(int i=2; i::iterator itP = tmpParams.begin(); - for(; itP != tmpParams.end(); itP++) { - theParams.push_back( *(itP) ); } + theParams.pop_back(); - if (theReverse) { - theParams.reverse(); // NPAL18025 - } return true; } - case DEFLECTION: { - - GCPnts_UniformDeflection Discret(theC3d, _value[ DEFLECTION_IND ], f, l, true); + case DEFLECTION: + { + GCPnts_UniformDeflection Discret( theC3d, _value[ DEFLECTION_IND ], f, l, true ); if ( !Discret.IsDone() ) return false; @@ -947,6 +1099,13 @@ bool StdMeshers_Regular_1D::Compute(SMESH_Mesh & theMesh, const TopoDS_Shape & t if ( _hypType == NONE ) return false; + if ( _hypType == ADAPTIVE ) + { + _adaptiveHyp->GetAlgo()->InitComputeError(); + _adaptiveHyp->GetAlgo()->Compute( theMesh, theShape ); + return error( _adaptiveHyp->GetAlgo()->GetComputeError() ); + } + SMESHDS_Mesh * meshDS = theMesh.GetMeshDS(); const TopoDS_Edge & EE = TopoDS::Edge(theShape); @@ -989,16 +1148,19 @@ bool StdMeshers_Regular_1D::Compute(SMESH_Mesh & theMesh, const TopoDS_Shape & t { list< double > params; bool reversed = false; - if ( theMesh.GetShapeToMesh().ShapeType() >= TopAbs_WIRE ) { + if ( theMesh.GetShapeToMesh().ShapeType() >= TopAbs_WIRE && _revEdgesIDs.empty() ) { // if the shape to mesh is WIRE or EDGE reversed = ( EE.Orientation() == TopAbs_REVERSED ); } if ( !_mainEdge.IsNull() ) { // take into account reversing the edge the hypothesis is propagated from + // (_mainEdge.Orientation() marks mutual orientation of EDGEs in propagation chain) reversed = ( _mainEdge.Orientation() == TopAbs_REVERSED ); - int mainID = meshDS->ShapeToIndex(_mainEdge); - if ( std::find( _revEdgesIDs.begin(), _revEdgesIDs.end(), mainID) != _revEdgesIDs.end()) - reversed = !reversed; + if ( !_isPropagOfDistribution ) { + int mainID = meshDS->ShapeToIndex(_mainEdge); + if ( std::find( _revEdgesIDs.begin(), _revEdgesIDs.end(), mainID) != _revEdgesIDs.end()) + reversed = !reversed; + } } // take into account this edge reversing if ( std::find( _revEdgesIDs.begin(), _revEdgesIDs.end(), shapeID) != _revEdgesIDs.end()) @@ -1067,8 +1229,6 @@ bool StdMeshers_Regular_1D::Compute(SMESH_Mesh & theMesh, const TopoDS_Shape & t } else { - //MESSAGE("************* Degenerated edge! *****************"); - // Edge is a degenerated Edge : We put n = 5 points on the edge. const int NbPoints = 5; BRep_Tool::Range( E, f, l ); // PAL15185 @@ -1125,11 +1285,15 @@ bool StdMeshers_Regular_1D::Evaluate(SMESH_Mesh & theMesh, if ( _hypType == NONE ) return false; - //SMESHDS_Mesh * meshDS = theMesh.GetMeshDS(); + if ( _hypType == ADAPTIVE ) + { + _adaptiveHyp->GetAlgo()->InitComputeError(); + _adaptiveHyp->GetAlgo()->Evaluate( theMesh, theShape, aResMap ); + return error( _adaptiveHyp->GetAlgo()->GetComputeError() ); + } const TopoDS_Edge & EE = TopoDS::Edge(theShape); TopoDS_Edge E = TopoDS::Edge(EE.Oriented(TopAbs_FORWARD)); - // int shapeID = meshDS->ShapeToIndex( E ); double f, l; Handle(Geom_Curve) Curve = BRep_Tool::Curve(E, f, l); @@ -1167,9 +1331,8 @@ bool StdMeshers_Regular_1D::Evaluate(SMESH_Mesh & theMesh, } else { - //MESSAGE("************* Degenerated edge! *****************"); // Edge is a degenerated Edge : We put n = 5 points on the edge. - if(_quadraticMesh) { + if ( _quadraticMesh ) { aVec[SMDSEntity_Node] = 11; aVec[SMDSEntity_Quad_Edge] = 6; } @@ -1200,22 +1363,22 @@ StdMeshers_Regular_1D::GetUsedHypothesis(SMESH_Mesh & aMesh, _usedHypList.clear(); _mainEdge.Nullify(); - SMESH_HypoFilter auxiliaryFilter, compatibleFilter; - auxiliaryFilter.Init( SMESH_HypoFilter::IsAuxiliary() ); - InitCompatibleHypoFilter( compatibleFilter, /*ignoreAux=*/true ); + SMESH_HypoFilter auxiliaryFilter( SMESH_HypoFilter::IsAuxiliary() ); + const SMESH_HypoFilter* compatibleFilter = GetCompatibleHypoFilter(/*ignoreAux=*/true ); // get non-auxiliary assigned directly to aShape - int nbHyp = aMesh.GetHypotheses( aShape, compatibleFilter, _usedHypList, false ); + int nbHyp = aMesh.GetHypotheses( aShape, *compatibleFilter, _usedHypList, false ); if (nbHyp == 0 && aShape.ShapeType() == TopAbs_EDGE) { // Check, if propagated from some other edge - _mainEdge = StdMeshers_Propagation::GetPropagationSource( aMesh, aShape ); + _mainEdge = StdMeshers_Propagation::GetPropagationSource( aMesh, aShape, + _isPropagOfDistribution ); if ( !_mainEdge.IsNull() ) { // Propagation of 1D hypothesis from on this edge; // get non-auxiliary assigned to _mainEdge - nbHyp = aMesh.GetHypotheses( _mainEdge, compatibleFilter, _usedHypList, true ); + nbHyp = aMesh.GetHypotheses( _mainEdge, *compatibleFilter, _usedHypList, true ); } } @@ -1234,3 +1397,16 @@ StdMeshers_Regular_1D::GetUsedHypothesis(SMESH_Mesh & aMesh, return _usedHypList; } + +//================================================================================ +/*! + * \brief Pass CancelCompute() to a child algorithm + */ +//================================================================================ + +void StdMeshers_Regular_1D::CancelCompute() +{ + SMESH_Algo::CancelCompute(); + if ( _hypType == ADAPTIVE ) + _adaptiveHyp->GetAlgo()->CancelCompute(); +}