X-Git-Url: http://git.salome-platform.org/gitweb/?p=modules%2Fsmesh.git;a=blobdiff_plain;f=src%2FSMESH_SWIG%2FsmeshDC.py;h=db8a34ccd929a4e40eed1366d45a9464810d2fe8;hp=3715504373b269f91e5ada777e9ac91a8e0fc33c;hb=b6f1b3a4311f24679ba3c2898d99f5920776ee34;hpb=85b1cfc1f07d0b93d88803c6c0ccadf8f3349719 diff --git a/src/SMESH_SWIG/smeshDC.py b/src/SMESH_SWIG/smeshDC.py index 371550437..db8a34ccd 100644 --- a/src/SMESH_SWIG/smeshDC.py +++ b/src/SMESH_SWIG/smeshDC.py @@ -1,4 +1,6 @@ -# Copyright (C) 2005 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN, +# Copyright (C) 2007-2008 CEA/DEN, EDF R&D, OPEN CASCADE +# +# Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN, # CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS # # This library is free software; you can redistribute it and/or @@ -20,16 +22,77 @@ # File : smesh.py # Author : Francis KLOSS, OCC # Module : SMESH - +# """ \namespace smesh \brief Module smesh """ +## @defgroup l1_auxiliary Auxiliary methods and structures +## @defgroup l1_creating Creating meshes +## @{ +## @defgroup l2_impexp Importing and exporting meshes +## @defgroup l2_construct Constructing meshes +## @defgroup l2_algorithms Defining Algorithms +## @{ +## @defgroup l3_algos_basic Basic meshing algorithms +## @defgroup l3_algos_proj Projection Algorithms +## @defgroup l3_algos_radialp Radial Prism +## @defgroup l3_algos_segmarv Segments around Vertex +## @defgroup l3_algos_3dextr 3D extrusion meshing algorithm + +## @} +## @defgroup l2_hypotheses Defining hypotheses +## @{ +## @defgroup l3_hypos_1dhyps 1D Meshing Hypotheses +## @defgroup l3_hypos_2dhyps 2D Meshing Hypotheses +## @defgroup l3_hypos_maxvol Max Element Volume hypothesis +## @defgroup l3_hypos_netgen Netgen 2D and 3D hypotheses +## @defgroup l3_hypos_ghs3dh GHS3D Parameters hypothesis +## @defgroup l3_hypos_blsurf BLSURF Parameters hypothesis +## @defgroup l3_hypos_hexotic Hexotic Parameters hypothesis +## @defgroup l3_hypos_additi Additional Hypotheses + +## @} +## @defgroup l2_submeshes Constructing submeshes +## @defgroup l2_compounds Building Compounds +## @defgroup l2_editing Editing Meshes + +## @} +## @defgroup l1_meshinfo Mesh Information +## @defgroup l1_controls Quality controls and Filtering +## @defgroup l1_grouping Grouping elements +## @{ +## @defgroup l2_grps_create Creating groups +## @defgroup l2_grps_edit Editing groups +## @defgroup l2_grps_operon Using operations on groups +## @defgroup l2_grps_delete Deleting Groups + +## @} +## @defgroup l1_modifying Modifying meshes +## @{ +## @defgroup l2_modif_add Adding nodes and elements +## @defgroup l2_modif_del Removing nodes and elements +## @defgroup l2_modif_edit Modifying nodes and elements +## @defgroup l2_modif_renumber Renumbering nodes and elements +## @defgroup l2_modif_trsf Transforming meshes (Translation, Rotation, Symmetry, Sewing, Merging) +## @defgroup l2_modif_movenode Moving nodes +## @defgroup l2_modif_throughp Mesh through point +## @defgroup l2_modif_invdiag Diagonal inversion of elements +## @defgroup l2_modif_unitetri Uniting triangles +## @defgroup l2_modif_changori Changing orientation of elements +## @defgroup l2_modif_cutquadr Cutting quadrangles +## @defgroup l2_modif_smooth Smoothing +## @defgroup l2_modif_extrurev Extrusion and Revolution +## @defgroup l2_modif_patterns Pattern mapping +## @defgroup l2_modif_tofromqu Convert to/from Quadratic Mesh + +## @} + import salome import geompyDC -import SMESH # necessary for back compatibility +import SMESH # This is necessary for back compatibility from SMESH import * import StdMeshers @@ -44,10 +107,15 @@ except ImportError: noNETGENPlugin = 1 pass -# Types of algo +## @addtogroup l1_auxiliary +## @{ + +# Types of algorithms REGULAR = 1 PYTHON = 2 COMPOSITE = 3 +SOLE = 0 +SIMPLE = 1 MEFISTO = 3 NETGEN = 4 @@ -60,6 +128,7 @@ NETGEN_FULL = FULL_NETGEN Hexa = 8 Hexotic = 9 BLSURF = 10 +GHS3DPRL = 11 # MirrorType enumeration POINT = SMESH_MeshEditor.POINT @@ -70,13 +139,22 @@ PLANE = SMESH_MeshEditor.PLANE LAPLACIAN_SMOOTH = SMESH_MeshEditor.LAPLACIAN_SMOOTH CENTROIDAL_SMOOTH = SMESH_MeshEditor.CENTROIDAL_SMOOTH -# Fineness enumeration(for NETGEN) +# Fineness enumeration (for NETGEN) VeryCoarse = 0 -Coarse = 1 -Moderate = 2 -Fine = 3 -VeryFine = 4 -Custom = 5 +Coarse = 1 +Moderate = 2 +Fine = 3 +VeryFine = 4 +Custom = 5 + +# Optimization level of GHS3D +None_Optimization, Light_Optimization, Medium_Optimization, Strong_Optimization = 0,1,2,3 + +# Topology treatment way of BLSURF +FromCAD, PreProcess, PreProcessPlus = 0,1,2 + +# Element size flag of BLSURF +DefaultSize, DefaultGeom, Custom = 0,0,1 PrecisionConfusion = 1e-07 @@ -97,15 +175,19 @@ def GetName(obj): attr = sobj.FindAttribute("AttributeName")[1] return attr.Value() - ## Sets name to object +## Sets a name to the object def SetName(obj, name): + if isinstance( obj, Mesh ): + obj = obj.GetMesh() + elif isinstance( obj, Mesh_Algorithm ): + obj = obj.GetAlgorithm() ior = salome.orb.object_to_string(obj) sobj = salome.myStudy.FindObjectIOR(ior) if not sobj is None: attr = sobj.FindAttribute("AttributeName")[1] attr.SetValue(name) - ## Print error message if a hypothesis was not assigned. +## Prints error message if a hypothesis was not assigned. def TreatHypoStatus(status, hypName, geomName, isAlgo): if isAlgo: hypType = "algorithm" @@ -115,23 +197,25 @@ def TreatHypoStatus(status, hypName, geomName, isAlgo): if status == HYP_UNKNOWN_FATAL : reason = "for unknown reason" elif status == HYP_INCOMPATIBLE : - reason = "this hypothesis mismatches algorithm" + reason = "this hypothesis mismatches the algorithm" elif status == HYP_NOTCONFORM : - reason = "not conform mesh would be built" + reason = "a non-conform mesh would be built" elif status == HYP_ALREADY_EXIST : - reason = hypType + " of the same dimension already assigned to this shape" + reason = hypType + " of the same dimension is already assigned to this shape" elif status == HYP_BAD_DIM : - reason = hypType + " mismatches shape" + reason = hypType + " mismatches the shape" elif status == HYP_CONCURENT : reason = "there are concurrent hypotheses on sub-shapes" elif status == HYP_BAD_SUBSHAPE : - reason = "shape is neither the main one, nor its subshape, nor a valid group" + reason = "the shape is neither the main one, nor its subshape, nor a valid group" elif status == HYP_BAD_GEOMETRY: - reason = "geometry mismatches algorithm's expectation" + reason = "geometry mismatches the expectation of the algorithm" elif status == HYP_HIDDEN_ALGO: - reason = "it is hidden by an algorithm of upper dimension generating all-dimensions elements" + reason = "it is hidden by an algorithm of an upper dimension, which generates elements of all dimensions" elif status == HYP_HIDING_ALGO: - reason = "it hides algorithm(s) of lower dimension by generating all-dimensions elements" + reason = "it hides algorithms of lower dimensions by generating elements of all dimensions" + elif status == HYP_NEED_SHAPE: + reason = "Algorithm can't work without shape" else: return hypName = '"' + hypName + '"' @@ -142,31 +226,49 @@ def TreatHypoStatus(status, hypName, geomName, isAlgo): print hypName, "was not assigned to",geomName,":", reason pass +## Converts an angle from degrees to radians +def DegreesToRadians(AngleInDegrees): + from math import pi + return AngleInDegrees * pi / 180.0 + +# end of l1_auxiliary +## @} + +# All methods of this class are accessible directly from the smesh.py package. class smeshDC(SMESH._objref_SMESH_Gen): + ## Sets the current study and Geometry component + # @ingroup l1_auxiliary def init_smesh(self,theStudy,geompyD): - self.geompyD=geompyD - self.SetGeomEngine(geompyD) - self.SetCurrentStudy(theStudy) - + self.SetCurrentStudy(theStudy,geompyD) + + ## Creates an empty Mesh. This mesh can have an underlying geometry. + # @param obj the Geometrical object on which the mesh is built. If not defined, + # the mesh will have no underlying geometry. + # @param name the name for the new mesh. + # @return an instance of Mesh class. + # @ingroup l2_construct def Mesh(self, obj=0, name=0): return Mesh(self,self.geompyD,obj,name) - ## Returns long value from enumeration - # Uses for SMESH.FunctorType enumeration + ## Returns a long value from enumeration + # Should be used for SMESH.FunctorType enumeration + # @ingroup l1_controls def EnumToLong(self,theItem): return theItem._v - ## Get PointStruct from vertex - # @param theVertex is GEOM object(vertex) + ## Gets PointStruct from vertex + # @param theVertex a GEOM object(vertex) # @return SMESH.PointStruct + # @ingroup l1_auxiliary def GetPointStruct(self,theVertex): [x, y, z] = self.geompyD.PointCoordinates(theVertex) return PointStruct(x,y,z) - ## Get DirStruct from vector - # @param theVector is GEOM object(vector) + ## Gets DirStruct from vector + # @param theVector a GEOM object(vector) # @return SMESH.DirStruct + # @ingroup l1_auxiliary def GetDirStruct(self,theVector): vertices = self.geompyD.SubShapeAll( theVector, geompyDC.ShapeType["VERTEX"] ) if(len(vertices) != 2): @@ -178,16 +280,18 @@ class smeshDC(SMESH._objref_SMESH_Gen): dirst = DirStruct(pnt) return dirst - ## Make DirStruct from a triplet - # @param x,y,z are vector components + ## Makes DirStruct from a triplet + # @param x,y,z vector components # @return SMESH.DirStruct + # @ingroup l1_auxiliary def MakeDirStruct(self,x,y,z): pnt = PointStruct(x,y,z) return DirStruct(pnt) ## Get AxisStruct from object - # @param theObj is GEOM object(line or plane) + # @param theObj a GEOM object (line or plane) # @return SMESH.AxisStruct + # @ingroup l1_auxiliary def GetAxisStruct(self,theObj): edges = self.geompyD.SubShapeAll( theObj, geompyDC.ShapeType["EDGE"] ) if len(edges) > 1: @@ -213,35 +317,47 @@ class smeshDC(SMESH._objref_SMESH_Gen): # From SMESH_Gen interface: # ------------------------ - ## Set the current mode + ## Sets the current mode + # @ingroup l1_auxiliary def SetEmbeddedMode( self,theMode ): #self.SetEmbeddedMode(theMode) SMESH._objref_SMESH_Gen.SetEmbeddedMode(self,theMode) - ## Get the current mode + ## Gets the current mode + # @ingroup l1_auxiliary def IsEmbeddedMode(self): #return self.IsEmbeddedMode() return SMESH._objref_SMESH_Gen.IsEmbeddedMode(self) - ## Set the current study - def SetCurrentStudy( self, theStudy ): + ## Sets the current study + # @ingroup l1_auxiliary + def SetCurrentStudy( self, theStudy, geompyD = None ): #self.SetCurrentStudy(theStudy) + if not geompyD: + import geompy + geompyD = geompy.geom + pass + self.geompyD=geompyD + self.SetGeomEngine(geompyD) SMESH._objref_SMESH_Gen.SetCurrentStudy(self,theStudy) - ## Get the current study + ## Gets the current study + # @ingroup l1_auxiliary def GetCurrentStudy(self): #return self.GetCurrentStudy() return SMESH._objref_SMESH_Gen.GetCurrentStudy(self) - ## Create Mesh object importing data from given UNV file + ## Creates a Mesh object importing data from the given UNV file # @return an instance of Mesh class + # @ingroup l2_impexp def CreateMeshesFromUNV( self,theFileName ): aSmeshMesh = SMESH._objref_SMESH_Gen.CreateMeshesFromUNV(self,theFileName) aMesh = Mesh(self, self.geompyD, aSmeshMesh) return aMesh - ## Create Mesh object(s) importing data from given MED file + ## Creates a Mesh object(s) importing data from the given MED file # @return a list of Mesh class instances + # @ingroup l2_impexp def CreateMeshesFromMED( self,theFileName ): aSmeshMeshes, aStatus = SMESH._objref_SMESH_Gen.CreateMeshesFromMED(self,theFileName) aMeshes = [] @@ -250,28 +366,53 @@ class smeshDC(SMESH._objref_SMESH_Gen): aMeshes.append(aMesh) return aMeshes, aStatus - ## Create Mesh object importing data from given STL file + ## Creates a Mesh object importing data from the given STL file # @return an instance of Mesh class + # @ingroup l2_impexp def CreateMeshesFromSTL( self, theFileName ): aSmeshMesh = SMESH._objref_SMESH_Gen.CreateMeshesFromSTL(self,theFileName) aMesh = Mesh(self, self.geompyD, aSmeshMesh) return aMesh + ## Concatenate the given meshes into one mesh. + # @return an instance of Mesh class + # @param meshes the meshes to combine into one mesh + # @param uniteIdenticalGroups if true, groups with same names are united, else they are renamed + # @param mergeNodesAndElements if true, equal nodes and elements aremerged + # @param mergeTolerance tolerance for merging nodes + # @param allGroups forces creation of groups of all elements + def Concatenate( self, meshes, uniteIdenticalGroups, + mergeNodesAndElements = False, mergeTolerance = 1e-5, allGroups = False): + if allGroups: + aSmeshMesh = SMESH._objref_SMESH_Gen.ConcatenateWithGroups( + self,meshes,uniteIdenticalGroups,mergeNodesAndElements,mergeTolerance) + else: + aSmeshMesh = SMESH._objref_SMESH_Gen.Concatenate( + self,meshes,uniteIdenticalGroups,mergeNodesAndElements,mergeTolerance) + aMesh = Mesh(self, self.geompyD, aSmeshMesh) + return aMesh + ## From SMESH_Gen interface + # @return the list of integer values + # @ingroup l1_auxiliary def GetSubShapesId( self, theMainObject, theListOfSubObjects ): return SMESH._objref_SMESH_Gen.GetSubShapesId(self,theMainObject, theListOfSubObjects) - ## From SMESH_Gen interface. Creates pattern + ## From SMESH_Gen interface. Creates a pattern + # @return an instance of SMESH_Pattern + # + # Example of Patterns usage + # @ingroup l2_modif_patterns def GetPattern(self): return SMESH._objref_SMESH_Gen.GetPattern(self) - # Filtering. Auxiliary functions: # ------------------------------ ## Creates an empty criterion # @return SMESH.Filter.Criterion + # @ingroup l1_controls def GetEmptyCriterion(self): Type = self.EnumToLong(FT_Undefined) Compare = self.EnumToLong(FT_Undefined) @@ -286,15 +427,16 @@ class smeshDC(SMESH._objref_SMESH_Gen): return Filter.Criterion(Type, Compare, Threshold, ThresholdStr, ThresholdID, UnaryOp, BinaryOp, Tolerance, TypeOfElement, Precision) - ## Creates a criterion by given parameters - # @param elementType is the type of elements(NODE, EDGE, FACE, VOLUME) - # @param CritType is type of criterion( FT_Taper, FT_Area, FT_RangeOfIds, FT_LyingOnGeom etc. ) - # @param Compare belong to {FT_LessThan, FT_MoreThan, FT_EqualTo} - # @param Treshold is threshold value (range of ids as string, shape, numeric) - # @param UnaryOp is FT_LogicalNOT or FT_Undefined - # @param BinaryOp is binary logical operation FT_LogicalAND, FT_LogicalOR or - # FT_Undefined(must be for the last criterion in criteria) + ## Creates a criterion by the given parameters + # @param elementType the type of elements(NODE, EDGE, FACE, VOLUME) + # @param CritType the type of criterion (FT_Taper, FT_Area, FT_RangeOfIds, FT_LyingOnGeom etc.) + # @param Compare belongs to {FT_LessThan, FT_MoreThan, FT_EqualTo} + # @param Treshold the threshold value (range of ids as string, shape, numeric) + # @param UnaryOp FT_LogicalNOT or FT_Undefined + # @param BinaryOp a binary logical operation FT_LogicalAND, FT_LogicalOR or + # FT_Undefined (must be for the last criterion of all criteria) # @return SMESH.Filter.Criterion + # @ingroup l1_controls def GetCriterion(self,elementType, CritType, Compare = FT_EqualTo, @@ -321,22 +463,22 @@ class smeshDC(SMESH._objref_SMESH_Gen): if CritType in [FT_BelongToGeom, FT_BelongToPlane, FT_BelongToGenSurface, FT_BelongToCylinder, FT_LyingOnGeom]: - # Check treshold + # Checks the treshold if isinstance(aTreshold, geompyDC.GEOM._objref_GEOM_Object): aCriterion.ThresholdStr = GetName(aTreshold) aCriterion.ThresholdID = salome.ObjectToID(aTreshold) else: - print "Error: Treshold should be a shape." + print "Error: The treshold should be a shape." return None elif CritType == FT_RangeOfIds: - # Check treshold + # Checks the treshold if isinstance(aTreshold, str): aCriterion.ThresholdStr = aTreshold else: - print "Error: Treshold should be a string." + print "Error: The treshold should be a string." return None elif CritType in [FT_FreeBorders, FT_FreeEdges, FT_BadOrientedVolume]: - # Here we do not need treshold + # At this point the treshold is unnecessary if aTreshold == FT_LogicalNOT: aCriterion.UnaryOp = self.EnumToLong(FT_LogicalNOT) elif aTreshold in [FT_LogicalAND, FT_LogicalOR]: @@ -347,7 +489,7 @@ class smeshDC(SMESH._objref_SMESH_Gen): aTreshold = float(aTreshold) aCriterion.Threshold = aTreshold except: - print "Error: Treshold should be a number." + print "Error: The treshold should be a number." return None if Treshold == FT_LogicalNOT or UnaryOp == FT_LogicalNOT: @@ -364,13 +506,14 @@ class smeshDC(SMESH._objref_SMESH_Gen): return aCriterion - ## Creates filter by given parameters of criterion - # @param elementType is the type of elements in the group - # @param CritType is type of criterion( FT_Taper, FT_Area, FT_RangeOfIds, FT_LyingOnGeom etc. ) - # @param Compare belong to {FT_LessThan, FT_MoreThan, FT_EqualTo} - # @param Treshold is threshold value (range of id ids as string, shape, numeric) - # @param UnaryOp is FT_LogicalNOT or FT_Undefined + ## Creates a filter with the given parameters + # @param elementType the type of elements in the group + # @param CritType the type of criterion ( FT_Taper, FT_Area, FT_RangeOfIds, FT_LyingOnGeom etc. ) + # @param Compare belongs to {FT_LessThan, FT_MoreThan, FT_EqualTo} + # @param Treshold the threshold value (range of id ids as string, shape, numeric) + # @param UnaryOp FT_LogicalNOT or FT_Undefined # @return SMESH_Filter + # @ingroup l1_controls def GetFilter(self,elementType, CritType=FT_Undefined, Compare=FT_EqualTo, @@ -384,9 +527,10 @@ class smeshDC(SMESH._objref_SMESH_Gen): aFilter.SetCriteria(aCriteria) return aFilter - ## Creates numerical functor by its type - # @param theCrierion is FT_...; functor type + ## Creates a numerical functor by its type + # @param theCriterion FT_...; functor type # @return SMESH_NumericalFunctor + # @ingroup l1_controls def GetFunctor(self,theCriterion): aFilterMgr = self.CreateFilterManager() if theCriterion == FT_AspectRatio: @@ -416,2911 +560,3508 @@ class smeshDC(SMESH._objref_SMESH_Gen): else: print "Error: given parameter is not numerucal functor type." + import omniORB -#Register the new proxy for SMESH_Gen +#Registering the new proxy for SMESH_Gen omniORB.registerObjref(SMESH._objref_SMESH_Gen._NP_RepositoryId, smeshDC) -## Mother class to define algorithm, recommended to do not use directly. -# -# More details. -class Mesh_Algorithm: - # @class Mesh_Algorithm - # @brief Class Mesh_Algorithm +# Public class: Mesh +# ================== - #def __init__(self,smesh): - # self.smesh=smesh - def __init__(self): - self.mesh = None - self.geom = None - self.subm = None - self.algo = None +## This class allows defining and managing a mesh. +# It has a set of methods to build a mesh on the given geometry, including the definition of sub-meshes. +# It also has methods to define groups of mesh elements, to modify a mesh (by addition of +# new nodes and elements and by changing the existing entities), to get information +# about a mesh and to export a mesh into different formats. +class Mesh: - ## Find hypothesis in study by its type name and parameters. - # Find only those hypothesis, which was created in smeshpyD engine. - def FindHypothesis (self, hypname, args, CompareMethod, smeshpyD): - study = smeshpyD.GetCurrentStudy() - #to do: find component by smeshpyD object, not by its data type - scomp = study.FindComponent(smeshpyD.ComponentDataType()) - if scomp is not None: - res,hypRoot = scomp.FindSubObject(SMESH.Tag_HypothesisRoot) - # is hypotheses root label exists? - if res and hypRoot is not None: - iter = study.NewChildIterator(hypRoot) - # check all published hypotheses - while iter.More(): - hypo_so_i = iter.Value() - attr = hypo_so_i.FindAttribute("AttributeIOR")[1] - if attr is not None: - anIOR = attr.Value() - hypo_o_i = salome.orb.string_to_object(anIOR) - if hypo_o_i is not None: - # is hypothesis? - hypo_i = hypo_o_i._narrow(SMESH.SMESH_Hypothesis) - if hypo_i is not None: - # belongs to this engine? - if smeshpyD.GetObjectId(hypo_i) > 0: - # is it the needed hypothesis? - if hypo_i.GetName() == hypname: - # check args - if CompareMethod(hypo_i, args): - # found!!! - return hypo_i - pass - pass - pass - pass - pass - iter.Next() - pass - pass - pass - return None + geom = 0 + mesh = 0 + editor = 0 - ## Find algorithm in study by its type name. - # Find only those algorithm, which was created in smeshpyD engine. - def FindAlgorithm (self, algoname, smeshpyD): - study = smeshpyD.GetCurrentStudy() - #to do: find component by smeshpyD object, not by its data type - scomp = study.FindComponent(smeshpyD.ComponentDataType()) - if scomp is not None: - res,hypRoot = scomp.FindSubObject(SMESH.Tag_AlgorithmsRoot) - # is algorithms root label exists? - if res and hypRoot is not None: - iter = study.NewChildIterator(hypRoot) - # check all published algorithms - while iter.More(): - algo_so_i = iter.Value() - attr = algo_so_i.FindAttribute("AttributeIOR")[1] - if attr is not None: - anIOR = attr.Value() - algo_o_i = salome.orb.string_to_object(anIOR) - if algo_o_i is not None: - # is algorithm? - algo_i = algo_o_i._narrow(SMESH.SMESH_Algo) - if algo_i is not None: - # belongs to this engine? - if smeshpyD.GetObjectId(algo_i) > 0: - # is it the needed algorithm? - if algo_i.GetName() == algoname: - # found!!! - return algo_i - pass - pass - pass - pass - iter.Next() - pass - pass - pass - return None + ## Constructor + # + # Creates a mesh on the shape \a obj (or an empty mesh if \a obj is equal to 0) and + # sets the GUI name of this mesh to \a name. + # @param smeshpyD an instance of smeshDC class + # @param geompyD an instance of geompyDC class + # @param obj Shape to be meshed or SMESH_Mesh object + # @param name Study name of the mesh + # @ingroup l2_construct + def __init__(self, smeshpyD, geompyD, obj=0, name=0): + self.smeshpyD=smeshpyD + self.geompyD=geompyD + if obj is None: + obj = 0 + if obj != 0: + if isinstance(obj, geompyDC.GEOM._objref_GEOM_Object): + self.geom = obj + self.mesh = self.smeshpyD.CreateMesh(self.geom) + elif isinstance(obj, SMESH._objref_SMESH_Mesh): + self.SetMesh(obj) + else: + self.mesh = self.smeshpyD.CreateEmptyMesh() + if name != 0: + SetName(self.mesh, name) + elif obj != 0: + SetName(self.mesh, GetName(obj)) - ## If the algorithm is global, return 0; \n - # else return the submesh associated to this algorithm. - def GetSubMesh(self): - return self.subm + if not self.geom: + self.geom = self.mesh.GetShapeToMesh() - ## Return the wrapped mesher. - def GetAlgorithm(self): - return self.algo + self.editor = self.mesh.GetMeshEditor() - ## Get list of hypothesis that can be used with this algorithm - def GetCompatibleHypothesis(self): - mylist = [] - if self.algo: - mylist = self.algo.GetCompatibleHypothesis() - return mylist + ## Initializes the Mesh object from an instance of SMESH_Mesh interface + # @param theMesh a SMESH_Mesh object + # @ingroup l2_construct + def SetMesh(self, theMesh): + self.mesh = theMesh + self.geom = self.mesh.GetShapeToMesh() - ## Get name of algo + ## Returns the mesh, that is an instance of SMESH_Mesh interface + # @return a SMESH_Mesh object + # @ingroup l2_construct + def GetMesh(self): + return self.mesh + + ## Gets the name of the mesh + # @return the name of the mesh as a string + # @ingroup l2_construct def GetName(self): - GetName(self.algo) + name = GetName(self.GetMesh()) + return name - ## Set name to algo + ## Sets a name to the mesh + # @param name a new name of the mesh + # @ingroup l2_construct def SetName(self, name): - SetName(self.algo, name) + SetName(self.GetMesh(), name) - ## Get id of algo - def GetId(self): - return self.algo.GetId() + ## Gets the subMesh object associated to a \a theSubObject geometrical object. + # The subMesh object gives access to the IDs of nodes and elements. + # @param theSubObject a geometrical object (shape) + # @param theName a name for the submesh + # @return an object of type SMESH_SubMesh, representing a part of mesh, which lies on the given shape + # @ingroup l2_submeshes + def GetSubMesh(self, theSubObject, theName): + submesh = self.mesh.GetSubMesh(theSubObject, theName) + return submesh - ## Private method. - def Create(self, mesh, geom, hypo, so="libStdMeshersEngine.so"): - if geom is None: - raise RuntimeError, "Attemp to create " + hypo + " algoritm on None shape" - algo = self.FindAlgorithm(hypo, mesh.smeshpyD) - if algo is None: - algo = mesh.smeshpyD.CreateHypothesis(hypo, so) - pass - self.Assign(algo, mesh, geom) - return self.algo + ## Returns the shape associated to the mesh + # @return a GEOM_Object + # @ingroup l2_construct + def GetShape(self): + return self.geom - ## Private method - def Assign(self, algo, mesh, geom): - if geom is None: - raise RuntimeError, "Attemp to create " + algo + " algoritm on None shape" - self.mesh = mesh - piece = mesh.geom - if not geom: - self.geom = piece - else: - self.geom = geom - name = GetName(geom) - if name==NO_NAME: - name = mesh.geompyD.SubShapeName(geom, piece) - mesh.geompyD.addToStudyInFather(piece, geom, name) - self.subm = mesh.mesh.GetSubMesh(geom, algo.GetName()) + ## Associates the given shape to the mesh (entails the recreation of the mesh) + # @param geom the shape to be meshed (GEOM_Object) + # @ingroup l2_construct + def SetShape(self, geom): + self.mesh = self.smeshpyD.CreateMesh(geom) - self.algo = algo - status = mesh.mesh.AddHypothesis(self.geom, self.algo) - TreatHypoStatus( status, algo.GetName(), GetName(self.geom), True ) + ## Returns true if the hypotheses are defined well + # @param theSubObject a subshape of a mesh shape + # @return True or False + # @ingroup l2_construct + def IsReadyToCompute(self, theSubObject): + return self.smeshpyD.IsReadyToCompute(self.mesh, theSubObject) - def CompareHyp (self, hyp, args): - print "CompareHyp is not implemented for ", self.__class__.__name__, ":", hyp.GetName() - return False + ## Returns errors of hypotheses definition. + # The list of errors is empty if everything is OK. + # @param theSubObject a subshape of a mesh shape + # @return a list of errors + # @ingroup l2_construct + def GetAlgoState(self, theSubObject): + return self.smeshpyD.GetAlgoState(self.mesh, theSubObject) - def CompareEqualHyp (self, hyp, args): - return True + ## Returns a geometrical object on which the given element was built. + # The returned geometrical object, if not nil, is either found in the + # study or published by this method with the given name + # @param theElementID the id of the mesh element + # @param theGeomName the user-defined name of the geometrical object + # @return GEOM::GEOM_Object instance + # @ingroup l2_construct + def GetGeometryByMeshElement(self, theElementID, theGeomName): + return self.smeshpyD.GetGeometryByMeshElement( self.mesh, theElementID, theGeomName ) - ## Private method - def Hypothesis (self, hyp, args=[], so="libStdMeshersEngine.so", - UseExisting=0, CompareMethod=""): - hypo = None - if UseExisting: - if CompareMethod == "": CompareMethod = self.CompareHyp - hypo = self.FindHypothesis(hyp, args, CompareMethod, self.mesh.smeshpyD) - pass - if hypo is None: - hypo = self.mesh.smeshpyD.CreateHypothesis(hyp, so) - a = "" - s = "=" - i = 0 - n = len(args) - while i 0 : + return 3 + elif self.geompyD.NumberOfFaces( self.geom ) > 0 : + return 2 + elif self.geompyD.NumberOfEdges( self.geom ) > 0 : + return 1 + else: + return 0; + pass + ## Creates a segment discretization 1D algorithm. + # If the optional \a algo parameter is not set, this algorithm is REGULAR. + # \n If the optional \a geom parameter is not set, this algorithm is global. + # Otherwise, this algorithm defines a submesh based on \a geom subshape. + # @param algo the type of the required algorithm. Possible values are: + # - smesh.REGULAR, + # - smesh.PYTHON for discretization via a python function, + # - smesh.COMPOSITE for meshing a set of edges on one face side as a whole. + # @param geom If defined is the subshape to be meshed + # @return an instance of Mesh_Segment or Mesh_Segment_Python, or Mesh_CompositeSegment class + # @ingroup l3_algos_basic + def Segment(self, algo=REGULAR, geom=0): + ## if Segment(geom) is called by mistake + if isinstance( algo, geompyDC.GEOM._objref_GEOM_Object): + algo, geom = geom, algo + if not algo: algo = REGULAR + pass + if algo == REGULAR: + return Mesh_Segment(self, geom) + elif algo == PYTHON: + return Mesh_Segment_Python(self, geom) + elif algo == COMPOSITE: + return Mesh_CompositeSegment(self, geom) + else: + return Mesh_Segment(self, geom) -# Public class: Mesh_Segment -# -------------------------- + ## Enables creation of nodes and segments usable by 2D algoritms. + # The added nodes and segments must be bound to edges and vertices by + # SetNodeOnVertex(), SetNodeOnEdge() and SetMeshElementOnShape() + # If the optional \a geom parameter is not set, this algorithm is global. + # \n Otherwise, this algorithm defines a submesh based on \a geom subshape. + # @param geom the subshape to be manually meshed + # @return StdMeshers_UseExisting_1D algorithm that generates nothing + # @ingroup l3_algos_basic + def UseExistingSegments(self, geom=0): + algo = Mesh_UseExisting(1,self,geom) + return algo.GetAlgorithm() -## Class to define a segment 1D algorithm for discretization -# -# More details. -class Mesh_Segment(Mesh_Algorithm): - - ## Private constructor. - def __init__(self, mesh, geom=0): - Mesh_Algorithm.__init__(self) - self.Create(mesh, geom, "Regular_1D") - - ## Define "LocalLength" hypothesis to cut an edge in several segments with the same length - # @param l for the length of segments that cut an edge - # @param UseExisting if ==true - search existing hypothesis created with - # same parameters, else (default) - create new - # @param p precision, used for number of segments calculation. - # It must be pozitive, meaningfull values are in range [0,1]. - # In general, number of segments is calculated with formula: - # nb = ceil((edge_length / l) - p) - # Function ceil rounds its argument to the higher integer. - # So, p=0 means rounding of (edge_length / l) to the higher integer, - # p=0.5 means rounding of (edge_length / l) to the nearest integer, - # p=1 means rounding of (edge_length / l) to the lower integer. - # Default value is 1e-07. - def LocalLength(self, l, UseExisting=0, p=1e-07): - hyp = self.Hypothesis("LocalLength", [l,p], UseExisting=UseExisting, - CompareMethod=self.CompareLocalLength) - hyp.SetLength(l) - hyp.SetPrecision(p) - return hyp - - ## Check if the given "LocalLength" hypothesis has the same parameters as given arguments - def CompareLocalLength(self, hyp, args): - if IsEqual(hyp.GetLength(), args[0]): - return IsEqual(hyp.GetPrecision(), args[1]) - return False - - ## Define "NumberOfSegments" hypothesis to cut an edge in several fixed number of segments - # @param n for the number of segments that cut an edge - # @param s for the scale factor (optional) - # @param UseExisting if ==true - search existing hypothesis created with - # same parameters, else (default) - create new - def NumberOfSegments(self, n, s=[], UseExisting=0): - if s == []: - hyp = self.Hypothesis("NumberOfSegments", [n], UseExisting=UseExisting, - CompareMethod=self.CompareNumberOfSegments) - else: - hyp = self.Hypothesis("NumberOfSegments", [n,s], UseExisting=UseExisting, - CompareMethod=self.CompareNumberOfSegments) - hyp.SetDistrType( 1 ) - hyp.SetScaleFactor(s) - hyp.SetNumberOfSegments(n) - return hyp + ## Enables creation of nodes and faces usable by 3D algoritms. + # The added nodes and faces must be bound to geom faces by SetNodeOnFace() + # and SetMeshElementOnShape() + # If the optional \a geom parameter is not set, this algorithm is global. + # \n Otherwise, this algorithm defines a submesh based on \a geom subshape. + # @param geom the subshape to be manually meshed + # @return StdMeshers_UseExisting_2D algorithm that generates nothing + # @ingroup l3_algos_basic + def UseExistingFaces(self, geom=0): + algo = Mesh_UseExisting(2,self,geom) + return algo.GetAlgorithm() - ## Check if the given "NumberOfSegments" hypothesis has the same parameters as given arguments - def CompareNumberOfSegments(self, hyp, args): - if hyp.GetNumberOfSegments() == args[0]: - if len(args) == 1: - return True - else: - if hyp.GetDistrType() == 1: - if IsEqual(hyp.GetScaleFactor(), args[1]): - return True - return False + ## Creates a triangle 2D algorithm for faces. + # If the optional \a geom parameter is not set, this algorithm is global. + # \n Otherwise, this algorithm defines a submesh based on \a geom subshape. + # @param algo values are: smesh.MEFISTO || smesh.NETGEN_1D2D || smesh.NETGEN_2D || smesh.BLSURF + # @param geom If defined, the subshape to be meshed (GEOM_Object) + # @return an instance of Mesh_Triangle algorithm + # @ingroup l3_algos_basic + def Triangle(self, algo=MEFISTO, geom=0): + ## if Triangle(geom) is called by mistake + if (isinstance(algo, geompyDC.GEOM._objref_GEOM_Object)): + geom = algo + algo = MEFISTO - ## Define "Arithmetic1D" hypothesis to cut an edge in several segments with arithmetic length increasing - # @param start for the length of the first segment - # @param end for the length of the last segment - # @param UseExisting if ==true - search existing hypothesis created with - # same parameters, else (default) - create new - def Arithmetic1D(self, start, end, UseExisting=0): - hyp = self.Hypothesis("Arithmetic1D", [start, end], UseExisting=UseExisting, - CompareMethod=self.CompareArithmetic1D) - hyp.SetLength(start, 1) - hyp.SetLength(end , 0) - return hyp + return Mesh_Triangle(self, algo, geom) - ## Check if the given "Arithmetic1D" hypothesis has the same parameters as given arguments - def CompareArithmetic1D(self, hyp, args): - if IsEqual(hyp.GetLength(1), args[0]): - if IsEqual(hyp.GetLength(0), args[1]): - return True - return False + ## Creates a quadrangle 2D algorithm for faces. + # If the optional \a geom parameter is not set, this algorithm is global. + # \n Otherwise, this algorithm defines a submesh based on \a geom subshape. + # @param geom If defined, the subshape to be meshed (GEOM_Object) + # @return an instance of Mesh_Quadrangle algorithm + # @ingroup l3_algos_basic + def Quadrangle(self, geom=0): + return Mesh_Quadrangle(self, geom) - ## Define "StartEndLength" hypothesis to cut an edge in several segments with geometric length increasing - # @param start for the length of the first segment - # @param end for the length of the last segment - # @param UseExisting if ==true - search existing hypothesis created with - # same parameters, else (default) - create new - def StartEndLength(self, start, end, UseExisting=0): - hyp = self.Hypothesis("StartEndLength", [start, end], UseExisting=UseExisting, - CompareMethod=self.CompareStartEndLength) - hyp.SetLength(start, 1) - hyp.SetLength(end , 0) - return hyp + ## Creates a tetrahedron 3D algorithm for solids. + # The parameter \a algo permits to choose the algorithm: NETGEN or GHS3D + # If the optional \a geom parameter is not set, this algorithm is global. + # \n Otherwise, this algorithm defines a submesh based on \a geom subshape. + # @param algo values are: smesh.NETGEN, smesh.GHS3D, smesh.GHS3DPRL, smesh.FULL_NETGEN + # @param geom If defined, the subshape to be meshed (GEOM_Object) + # @return an instance of Mesh_Tetrahedron algorithm + # @ingroup l3_algos_basic + def Tetrahedron(self, algo=NETGEN, geom=0): + ## if Tetrahedron(geom) is called by mistake + if ( isinstance( algo, geompyDC.GEOM._objref_GEOM_Object)): + algo, geom = geom, algo + if not algo: algo = NETGEN + pass + return Mesh_Tetrahedron(self, algo, geom) - ## Check if the given "StartEndLength" hypothesis has the same parameters as given arguments - def CompareStartEndLength(self, hyp, args): - if IsEqual(hyp.GetLength(1), args[0]): - if IsEqual(hyp.GetLength(0), args[1]): - return True - return False + ## Creates a hexahedron 3D algorithm for solids. + # If the optional \a geom parameter is not set, this algorithm is global. + # \n Otherwise, this algorithm defines a submesh based on \a geom subshape. + # @param algo possible values are: smesh.Hexa, smesh.Hexotic + # @param geom If defined, the subshape to be meshed (GEOM_Object) + # @return an instance of Mesh_Hexahedron algorithm + # @ingroup l3_algos_basic + def Hexahedron(self, algo=Hexa, geom=0): + ## if Hexahedron(geom, algo) or Hexahedron(geom) is called by mistake + if ( isinstance(algo, geompyDC.GEOM._objref_GEOM_Object) ): + if geom in [Hexa, Hexotic]: algo, geom = geom, algo + elif geom == 0: algo, geom = Hexa, algo + return Mesh_Hexahedron(self, algo, geom) - ## Define "Deflection1D" hypothesis - # @param d for the deflection - # @param UseExisting if ==true - search existing hypothesis created with - # same parameters, else (default) - create new - def Deflection1D(self, d, UseExisting=0): - hyp = self.Hypothesis("Deflection1D", [d], UseExisting=UseExisting, - CompareMethod=self.CompareDeflection1D) - hyp.SetDeflection(d) - return hyp + ## Deprecated, used only for compatibility! + # @return an instance of Mesh_Netgen algorithm + # @ingroup l3_algos_basic + def Netgen(self, is3D, geom=0): + return Mesh_Netgen(self, is3D, geom) - ## Check if the given "Deflection1D" hypothesis has the same parameters as given arguments - def CompareDeflection1D(self, hyp, args): - return IsEqual(hyp.GetDeflection(), args[0]) + ## Creates a projection 1D algorithm for edges. + # If the optional \a geom parameter is not set, this algorithm is global. + # Otherwise, this algorithm defines a submesh based on \a geom subshape. + # @param geom If defined, the subshape to be meshed + # @return an instance of Mesh_Projection1D algorithm + # @ingroup l3_algos_proj + def Projection1D(self, geom=0): + return Mesh_Projection1D(self, geom) - ## Define "Propagation" hypothesis that propagate all other hypothesis on all others edges that are in - # the opposite side in the case of quadrangular faces - def Propagation(self): - return self.Hypothesis("Propagation", UseExisting=1, CompareMethod=self.CompareEqualHyp) + ## Creates a projection 2D algorithm for faces. + # If the optional \a geom parameter is not set, this algorithm is global. + # Otherwise, this algorithm defines a submesh based on \a geom subshape. + # @param geom If defined, the subshape to be meshed + # @return an instance of Mesh_Projection2D algorithm + # @ingroup l3_algos_proj + def Projection2D(self, geom=0): + return Mesh_Projection2D(self, geom) - ## Define "AutomaticLength" hypothesis - # @param fineness for the fineness [0-1] - # @param UseExisting if ==true - search existing hypothesis created with - # same parameters, else (default) - create new - def AutomaticLength(self, fineness=0, UseExisting=0): - hyp = self.Hypothesis("AutomaticLength",[fineness],UseExisting=UseExisting, - CompareMethod=self.CompareAutomaticLength) - hyp.SetFineness( fineness ) - return hyp + ## Creates a projection 3D algorithm for solids. + # If the optional \a geom parameter is not set, this algorithm is global. + # Otherwise, this algorithm defines a submesh based on \a geom subshape. + # @param geom If defined, the subshape to be meshed + # @return an instance of Mesh_Projection3D algorithm + # @ingroup l3_algos_proj + def Projection3D(self, geom=0): + return Mesh_Projection3D(self, geom) - ## Check if the given "AutomaticLength" hypothesis has the same parameters as given arguments - def CompareAutomaticLength(self, hyp, args): - return IsEqual(hyp.GetFineness(), args[0]) + ## Creates a 3D extrusion (Prism 3D) or RadialPrism 3D algorithm for solids. + # If the optional \a geom parameter is not set, this algorithm is global. + # Otherwise, this algorithm defines a submesh based on \a geom subshape. + # @param geom If defined, the subshape to be meshed + # @return an instance of Mesh_Prism3D or Mesh_RadialPrism3D algorithm + # @ingroup l3_algos_radialp l3_algos_3dextr + def Prism(self, geom=0): + shape = geom + if shape==0: + shape = self.geom + nbSolids = len( self.geompyD.SubShapeAll( shape, geompyDC.ShapeType["SOLID"] )) + nbShells = len( self.geompyD.SubShapeAll( shape, geompyDC.ShapeType["SHELL"] )) + if nbSolids == 0 or nbSolids == nbShells: + return Mesh_Prism3D(self, geom) + return Mesh_RadialPrism3D(self, geom) - ## Define "SegmentLengthAroundVertex" hypothesis - # @param length for the segment length - # @param vertex for the length localization: vertex index [0,1] | vertex object. - # Any other integer value means what hypo will be set on the - # whole 1D shape, where Mesh_Segment algorithm is assigned. - # @param UseExisting if ==true - search existing hypothesis created with - # same parameters, else (default) - create new - def LengthNearVertex(self, length, vertex=0, UseExisting=0): - import types - store_geom = self.geom - if type(vertex) is types.IntType: - if vertex == 0 or vertex == 1: - vertex = self.mesh.geompyD.SubShapeAllSorted(self.geom, geompyDC.ShapeType["VERTEX"])[vertex] - self.geom = vertex + ## Computes the mesh and returns the status of the computation + # @return True or False + # @ingroup l2_construct + def Compute(self, geom=0): + if geom == 0 or not isinstance(geom, geompyDC.GEOM._objref_GEOM_Object): + if self.geom == 0: + geom = self.mesh.GetShapeToMesh() + else: + geom = self.geom + ok = False + try: + ok = self.smeshpyD.Compute(self.mesh, geom) + except SALOME.SALOME_Exception, ex: + print "Mesh computation failed, exception caught:" + print " ", ex.details.text + except: + import traceback + print "Mesh computation failed, exception caught:" + traceback.print_exc() + if True:#not ok: + errors = self.smeshpyD.GetAlgoState( self.mesh, geom ) + allReasons = "" + for err in errors: + if err.isGlobalAlgo: + glob = "global" + else: + glob = "local" + pass + dim = err.algoDim + name = err.algoName + if len(name) == 0: + reason = '%s %sD algorithm is missing' % (glob, dim) + elif err.state == HYP_MISSING: + reason = ('%s %sD algorithm "%s" misses %sD hypothesis' + % (glob, dim, name, dim)) + elif err.state == HYP_NOTCONFORM: + reason = 'Global "Not Conform mesh allowed" hypothesis is missing' + elif err.state == HYP_BAD_PARAMETER: + reason = ('Hypothesis of %s %sD algorithm "%s" has a bad parameter value' + % ( glob, dim, name )) + elif err.state == HYP_BAD_GEOMETRY: + reason = ('%s %sD algorithm "%s" is assigned to mismatching' + 'geometry' % ( glob, dim, name )) + else: + reason = "For unknown reason."+\ + " Revise Mesh.Compute() implementation in smeshDC.py!" + pass + if allReasons != "": + allReasons += "\n" + pass + allReasons += reason + pass + if allReasons != "": + print '"' + GetName(self.mesh) + '"',"has not been computed:" + print allReasons + ok = False + elif not ok: + print '"' + GetName(self.mesh) + '"',"has not been computed." pass pass - else: - self.geom = vertex - pass - ### 0D algorithm - if self.geom is None: - raise RuntimeError, "Attemp to create SegmentAroundVertex_0D algoritm on None shape" - name = GetName(self.geom) - if name == NO_NAME: - piece = self.mesh.geom - name = self.mesh.geompyD.SubShapeName(self.geom, piece) - self.mesh.geompyD.addToStudyInFather(piece, self.geom, name) - algo = self.FindAlgorithm("SegmentAroundVertex_0D", self.mesh.smeshpyD) - if algo is None: - algo = self.mesh.smeshpyD.CreateHypothesis("SegmentAroundVertex_0D", "libStdMeshersEngine.so") + if salome.sg.hasDesktop(): + smeshgui = salome.ImportComponentGUI("SMESH") + smeshgui.Init(salome.myStudyId) + smeshgui.SetMeshIcon( salome.ObjectToID( self.mesh ), ok, (self.NbNodes()==0) ) + salome.sg.updateObjBrowser(1) pass - status = self.mesh.mesh.AddHypothesis(self.geom, algo) - TreatHypoStatus(status, "SegmentAroundVertex_0D", name, True) - ### - hyp = self.Hypothesis("SegmentLengthAroundVertex", [length], UseExisting=UseExisting, - CompareMethod=self.CompareLengthNearVertex) - self.geom = store_geom - hyp.SetLength( length ) - return hyp - - ## Check if the given "LengthNearVertex" hypothesis has the same parameters as given arguments - def CompareLengthNearVertex(self, hyp, args): - return IsEqual(hyp.GetLength(), args[0]) + return ok - ## Define "QuadraticMesh" hypothesis, forcing construction of quadratic edges. - # If the 2D mesher sees that all boundary edges are quadratic ones, - # it generates quadratic faces, else it generates linear faces using - # medium nodes as if they were vertex ones. - # The 3D mesher generates quadratic volumes only if all boundary faces - # are quadratic ones, else it fails. - def QuadraticMesh(self): - hyp = self.Hypothesis("QuadraticMesh", UseExisting=1, CompareMethod=self.CompareEqualHyp) - return hyp + ## Removes all nodes and elements + # @ingroup l2_construct + def Clear(self): + self.mesh.Clear() + if salome.sg.hasDesktop(): + smeshgui = salome.ImportComponentGUI("SMESH") + smeshgui.Init(salome.myStudyId) + smeshgui.SetMeshIcon( salome.ObjectToID( self.mesh ), False, True ) + salome.sg.updateObjBrowser(1) -# Public class: Mesh_CompositeSegment -# -------------------------- + ## Computes a tetrahedral mesh using AutomaticLength + MEFISTO + NETGEN + # @param fineness [0,-1] defines mesh fineness + # @return True or False + # @ingroup l3_algos_basic + def AutomaticTetrahedralization(self, fineness=0): + dim = self.MeshDimension() + # assign hypotheses + self.RemoveGlobalHypotheses() + self.Segment().AutomaticLength(fineness) + if dim > 1 : + self.Triangle().LengthFromEdges() + pass + if dim > 2 : + self.Tetrahedron(NETGEN) + pass + return self.Compute() -## Class to define a segment 1D algorithm for discretization -# -# More details. -class Mesh_CompositeSegment(Mesh_Segment): + ## Computes an hexahedral mesh using AutomaticLength + Quadrangle + Hexahedron + # @param fineness [0,-1] defines mesh fineness + # @return True or False + # @ingroup l3_algos_basic + def AutomaticHexahedralization(self, fineness=0): + dim = self.MeshDimension() + # assign the hypotheses + self.RemoveGlobalHypotheses() + self.Segment().AutomaticLength(fineness) + if dim > 1 : + self.Quadrangle() + pass + if dim > 2 : + self.Hexahedron() + pass + return self.Compute() - ## Private constructor. - def __init__(self, mesh, geom=0): - self.Create(mesh, geom, "CompositeSegment_1D") + ## Assigns a hypothesis + # @param hyp a hypothesis to assign + # @param geom a subhape of mesh geometry + # @return SMESH.Hypothesis_Status + # @ingroup l2_hypotheses + def AddHypothesis(self, hyp, geom=0): + if isinstance( hyp, Mesh_Algorithm ): + hyp = hyp.GetAlgorithm() + pass + if not geom: + geom = self.geom + if not geom: + geom = self.mesh.GetShapeToMesh() + pass + status = self.mesh.AddHypothesis(geom, hyp) + isAlgo = hyp._narrow( SMESH_Algo ) + TreatHypoStatus( status, GetName( hyp ), GetName( geom ), isAlgo ) + return status + ## Unassigns a hypothesis + # @param hyp a hypothesis to unassign + # @param geom a subshape of mesh geometry + # @return SMESH.Hypothesis_Status + # @ingroup l2_hypotheses + def RemoveHypothesis(self, hyp, geom=0): + if isinstance( hyp, Mesh_Algorithm ): + hyp = hyp.GetAlgorithm() + pass + if not geom: + geom = self.geom + pass + status = self.mesh.RemoveHypothesis(geom, hyp) + return status -# Public class: Mesh_Segment_Python -# --------------------------------- + ## Gets the list of hypotheses added on a geometry + # @param geom a subshape of mesh geometry + # @return the sequence of SMESH_Hypothesis + # @ingroup l2_hypotheses + def GetHypothesisList(self, geom): + return self.mesh.GetHypothesisList( geom ) -## Class to define a segment 1D algorithm for discretization with python function -# -# More details. -class Mesh_Segment_Python(Mesh_Segment): + ## Removes all global hypotheses + # @ingroup l2_hypotheses + def RemoveGlobalHypotheses(self): + current_hyps = self.mesh.GetHypothesisList( self.geom ) + for hyp in current_hyps: + self.mesh.RemoveHypothesis( self.geom, hyp ) + pass + pass - ## Private constructor. - def __init__(self, mesh, geom=0): - import Python1dPlugin - self.Create(mesh, geom, "Python_1D", "libPython1dEngine.so") + ## Creates a mesh group based on the geometric object \a grp + # and gives a \a name, \n if this parameter is not defined + # the name is the same as the geometric group name \n + # Note: Works like GroupOnGeom(). + # @param grp a geometric group, a vertex, an edge, a face or a solid + # @param name the name of the mesh group + # @return SMESH_GroupOnGeom + # @ingroup l2_grps_create + def Group(self, grp, name=""): + return self.GroupOnGeom(grp, name) - ## Define "PythonSplit1D" hypothesis based on the Erwan Adam patch, awaiting equivalent SALOME functionality - # @param n for the number of segments that cut an edge - # @param func for the python function that calculate the length of all segments - # @param UseExisting if ==true - search existing hypothesis created with - # same parameters, else (default) - create new - def PythonSplit1D(self, n, func, UseExisting=0): - hyp = self.Hypothesis("PythonSplit1D", [n], "libPython1dEngine.so", - UseExisting=UseExisting, CompareMethod=self.ComparePythonSplit1D) - hyp.SetNumberOfSegments(n) - hyp.SetPythonLog10RatioFunction(func) - return hyp + ## Deprecated, used only for compatibility! Please, use ExportMED() method instead. + # Exports the mesh in a file in MED format and chooses the \a version of MED format + # @param f the file name + # @param version values are SMESH.MED_V2_1, SMESH.MED_V2_2 + # @ingroup l2_impexp + def ExportToMED(self, f, version, opt=0): + self.mesh.ExportToMED(f, opt, version) - ## Check if the given "PythonSplit1D" hypothesis has the same parameters as given arguments - def ComparePythonSplit1D(self, hyp, args): - #if hyp.GetNumberOfSegments() == args[0]: - # if hyp.GetPythonLog10RatioFunction() == args[1]: - # return True - return False + ## Exports the mesh in a file in MED format + # @param f is the file name + # @param auto_groups boolean parameter for creating/not creating + # the groups Group_On_All_Nodes, Group_On_All_Faces, ... ; + # the typical use is auto_groups=false. + # @param version MED format version(MED_V2_1 or MED_V2_2) + # @ingroup l2_impexp + def ExportMED(self, f, auto_groups=0, version=MED_V2_2): + self.mesh.ExportToMED(f, auto_groups, version) -# Public class: Mesh_Triangle -# --------------------------- + ## Exports the mesh in a file in DAT format + # @param f the file name + # @ingroup l2_impexp + def ExportDAT(self, f): + self.mesh.ExportDAT(f) -## Class to define a triangle 2D algorithm -# -# More details. -class Mesh_Triangle(Mesh_Algorithm): + ## Exports the mesh in a file in UNV format + # @param f the file name + # @ingroup l2_impexp + def ExportUNV(self, f): + self.mesh.ExportUNV(f) - # default values - algoType = 0 - params = 0 + ## Export the mesh in a file in STL format + # @param f the file name + # @param ascii defines the file encoding + # @ingroup l2_impexp + def ExportSTL(self, f, ascii=1): + self.mesh.ExportSTL(f, ascii) - _angleMeshS = 8 - _gradation = 1.1 - ## Private constructor. - def __init__(self, mesh, algoType, geom=0): - Mesh_Algorithm.__init__(self) + # Operations with groups: + # ---------------------- - self.algoType = algoType - if algoType == MEFISTO: - self.Create(mesh, geom, "MEFISTO_2D") - pass - elif algoType == BLSURF: - import BLSURFPlugin - self.Create(mesh, geom, "BLSURF", "libBLSURFEngine.so") - self.SetPhysicalMesh() - elif algoType == NETGEN: - if noNETGENPlugin: - print "Warning: NETGENPlugin module unavailable" - pass - self.Create(mesh, geom, "NETGEN_2D", "libNETGENEngine.so") - pass - elif algoType == NETGEN_2D: - if noNETGENPlugin: - print "Warning: NETGENPlugin module unavailable" - pass - self.Create(mesh, geom, "NETGEN_2D_ONLY", "libNETGENEngine.so") - pass + ## Creates an empty mesh group + # @param elementType the type of elements in the group + # @param name the name of the mesh group + # @return SMESH_Group + # @ingroup l2_grps_create + def CreateEmptyGroup(self, elementType, name): + return self.mesh.CreateGroup(elementType, name) - ## Define "MaxElementArea" hypothesis to give the maximum area of each triangle - # @param area for the maximum area of each triangle - # @param UseExisting if ==true - search existing hypothesis created with - # same parameters, else (default) - create new - # - # Only for algoType == MEFISTO || NETGEN_2D - def MaxElementArea(self, area, UseExisting=0): - if self.algoType == MEFISTO or self.algoType == NETGEN_2D: - hyp = self.Hypothesis("MaxElementArea", [area], UseExisting=UseExisting, - CompareMethod=self.CompareMaxElementArea) - hyp.SetMaxElementArea(area) - return hyp - elif self.algoType == NETGEN: - print "Netgen 1D-2D algo doesn't support this hypothesis" - return None + ## Creates a mesh group based on the geometrical object \a grp + # and gives a \a name, \n if this parameter is not defined + # the name is the same as the geometrical group name + # @param grp a geometrical group, a vertex, an edge, a face or a solid + # @param name the name of the mesh group + # @param typ the type of elements in the group. If not set, it is + # automatically detected by the type of the geometry + # @return SMESH_GroupOnGeom + # @ingroup l2_grps_create + def GroupOnGeom(self, grp, name="", typ=None): + if name == "": + name = grp.GetName() - ## Check if the given "MaxElementArea" hypothesis has the same parameters as given arguments - def CompareMaxElementArea(self, hyp, args): - return IsEqual(hyp.GetMaxElementArea(), args[0]) + if typ == None: + tgeo = str(grp.GetShapeType()) + if tgeo == "VERTEX": + typ = NODE + elif tgeo == "EDGE": + typ = EDGE + elif tgeo == "FACE": + typ = FACE + elif tgeo == "SOLID": + typ = VOLUME + elif tgeo == "SHELL": + typ = VOLUME + elif tgeo == "COMPOUND": + if len( self.geompyD.GetObjectIDs( grp )) == 0: + print "Mesh.Group: empty geometric group", GetName( grp ) + return 0 + tgeo = self.geompyD.GetType(grp) + if tgeo == geompyDC.ShapeType["VERTEX"]: + typ = NODE + elif tgeo == geompyDC.ShapeType["EDGE"]: + typ = EDGE + elif tgeo == geompyDC.ShapeType["FACE"]: + typ = FACE + elif tgeo == geompyDC.ShapeType["SOLID"]: + typ = VOLUME - ## Define "LengthFromEdges" hypothesis to build triangles - # based on the length of the edges taken from the wire - # - # Only for algoType == MEFISTO || NETGEN_2D - def LengthFromEdges(self): - if self.algoType == MEFISTO or self.algoType == NETGEN_2D: - hyp = self.Hypothesis("LengthFromEdges", UseExisting=1, CompareMethod=self.CompareEqualHyp) - return hyp - elif self.algoType == NETGEN: - print "Netgen 1D-2D algo doesn't support this hypothesis" - return None + if typ == None: + print "Mesh.Group: bad first argument: expected a group, a vertex, an edge, a face or a solid" + return 0 + else: + return self.mesh.CreateGroupFromGEOM(typ, name, grp) - ## Set PhysicalMesh - # @param thePhysicalMesh is: - # DefaultSize or Custom - def SetPhysicalMesh(self, thePhysicalMesh=1): - if self.params == 0: - self.Parameters() - self.params.SetPhysicalMesh(thePhysicalMesh) + ## Creates a mesh group by the given ids of elements + # @param groupName the name of the mesh group + # @param elementType the type of elements in the group + # @param elemIDs the list of ids + # @return SMESH_Group + # @ingroup l2_grps_create + def MakeGroupByIds(self, groupName, elementType, elemIDs): + group = self.mesh.CreateGroup(elementType, groupName) + group.Add(elemIDs) + return group - ## Set PhySize flag - def SetPhySize(self, theVal): - if self.params == 0: - self.Parameters() - self.params.SetPhySize(theVal) + ## Creates a mesh group by the given conditions + # @param groupName the name of the mesh group + # @param elementType the type of elements in the group + # @param CritType the type of criterion( FT_Taper, FT_Area, FT_RangeOfIds, FT_LyingOnGeom etc. ) + # @param Compare belongs to {FT_LessThan, FT_MoreThan, FT_EqualTo} + # @param Treshold the threshold value (range of id ids as string, shape, numeric) + # @param UnaryOp FT_LogicalNOT or FT_Undefined + # @return SMESH_Group + # @ingroup l2_grps_create + def MakeGroup(self, + groupName, + elementType, + CritType=FT_Undefined, + Compare=FT_EqualTo, + Treshold="", + UnaryOp=FT_Undefined): + aCriterion = self.smeshpyD.GetCriterion(elementType, CritType, Compare, Treshold, UnaryOp, FT_Undefined) + group = self.MakeGroupByCriterion(groupName, aCriterion) + return group - ## Set GeometricMesh - # @param theGeometricMesh is: - # DefaultGeom or Custom - def SetGeometricMesh(self, theGeometricMesh=0): - if self.params == 0: - self.Parameters() - if self.params.GetPhysicalMesh() == 0: theGeometricMesh = 1 - self.params.SetGeometricMesh(theGeometricMesh) + ## Creates a mesh group by the given criterion + # @param groupName the name of the mesh group + # @param Criterion the instance of Criterion class + # @return SMESH_Group + # @ingroup l2_grps_create + def MakeGroupByCriterion(self, groupName, Criterion): + aFilterMgr = self.smeshpyD.CreateFilterManager() + aFilter = aFilterMgr.CreateFilter() + aCriteria = [] + aCriteria.append(Criterion) + aFilter.SetCriteria(aCriteria) + group = self.MakeGroupByFilter(groupName, aFilter) + return group - ## Set AngleMeshS flag - def SetAngleMeshS(self, theVal=_angleMeshS): - if self.params == 0: - self.Parameters() - if self.params.GetGeometricMesh() == 0: theVal = self._angleMeshS - self.params.SetAngleMeshS(theVal) + ## Creates a mesh group by the given criteria (list of criteria) + # @param groupName the name of the mesh group + # @param theCriteria the list of criteria + # @return SMESH_Group + # @ingroup l2_grps_create + def MakeGroupByCriteria(self, groupName, theCriteria): + aFilterMgr = self.smeshpyD.CreateFilterManager() + aFilter = aFilterMgr.CreateFilter() + aFilter.SetCriteria(theCriteria) + group = self.MakeGroupByFilter(groupName, aFilter) + return group - ## Set Gradation flag - def SetGradation(self, theVal=_gradation): - if self.params == 0: - self.Parameters() - if self.params.GetGeometricMesh() == 0: theVal = self._gradation - self.params.SetGradation(theVal) + ## Creates a mesh group by the given filter + # @param groupName the name of the mesh group + # @param theFilter the instance of Filter class + # @return SMESH_Group + # @ingroup l2_grps_create + def MakeGroupByFilter(self, groupName, theFilter): + anIds = theFilter.GetElementsId(self.mesh) + anElemType = theFilter.GetElementType() + group = self.MakeGroupByIds(groupName, anElemType, anIds) + return group - ## Set QuadAllowed flag - # - # Only for algoType == NETGEN || NETGEN_2D - def SetQuadAllowed(self, toAllow=True): - if self.algoType == NETGEN_2D: - if toAllow: # add QuadranglePreference - self.Hypothesis("QuadranglePreference", UseExisting=1, CompareMethod=self.CompareEqualHyp) - else: # remove QuadranglePreference - for hyp in self.mesh.GetHypothesisList( self.geom ): - if hyp.GetName() == "QuadranglePreference": - self.mesh.RemoveHypothesis( self.geom, hyp ) - pass - pass - pass - return - if self.params == 0: - self.Parameters() - if self.params: - self.params.SetQuadAllowed(toAllow) - return + ## Passes mesh elements through the given filter and return IDs of fitting elements + # @param theFilter SMESH_Filter + # @return a list of ids + # @ingroup l1_controls + def GetIdsFromFilter(self, theFilter): + return theFilter.GetElementsId(self.mesh) - ## Define "Netgen 2D Parameters" hypothesis - # - # Only for algoType == NETGEN - def Parameters(self): - if self.algoType == NETGEN: - self.params = self.Hypothesis("NETGEN_Parameters_2D", [], - "libNETGENEngine.so", UseExisting=0) - return self.params - elif self.algoType == MEFISTO: - print "Mefisto algo doesn't support NETGEN_Parameters_2D hypothesis" - return None - elif self.algoType == NETGEN_2D: - print "NETGEN_2D_ONLY algo doesn't support 'NETGEN_Parameters_2D' hypothesis" - print "NETGEN_2D_ONLY uses 'MaxElementArea' and 'LengthFromEdges' ones" - return None - elif self.algoType == BLSURF: - self.params = self.Hypothesis("BLSURF_Parameters", [], - "libBLSURFEngine.so", UseExisting=0) - return self.params - return None - - ## Set MaxSize - # - # Only for algoType == NETGEN - def SetMaxSize(self, theSize): - if self.params == 0: - self.Parameters() - if self.params is not None: - self.params.SetMaxSize(theSize) + ## Verifies whether a 2D mesh element has free edges (edges connected to one face only)\n + # Returns a list of special structures (borders). + # @return a list of SMESH.FreeEdges.Border structure: edge id and ids of two its nodes. + # @ingroup l1_controls + def GetFreeBorders(self): + aFilterMgr = self.smeshpyD.CreateFilterManager() + aPredicate = aFilterMgr.CreateFreeEdges() + aPredicate.SetMesh(self.mesh) + aBorders = aPredicate.GetBorders() + return aBorders - ## Set SecondOrder flag - # - # Only for algoType == NETGEN - def SetSecondOrder(self, theVal): - if self.params == 0: - self.Parameters() - if self.params is not None: - self.params.SetSecondOrder(theVal) + ## Removes a group + # @ingroup l2_grps_delete + def RemoveGroup(self, group): + self.mesh.RemoveGroup(group) - ## Set Optimize flag - # - # Only for algoType == NETGEN - def SetOptimize(self, theVal): - if self.params == 0: - self.Parameters() - if self.params is not None: - self.params.SetOptimize(theVal) + ## Removes a group with its contents + # @ingroup l2_grps_delete + def RemoveGroupWithContents(self, group): + self.mesh.RemoveGroupWithContents(group) - ## Set Fineness - # @param theFineness is: - # VeryCoarse, Coarse, Moderate, Fine, VeryFine or Custom - # - # Only for algoType == NETGEN - def SetFineness(self, theFineness): - if self.params == 0: - self.Parameters() - if self.params is not None: - self.params.SetFineness(theFineness) + ## Gets the list of groups existing in the mesh + # @return a sequence of SMESH_GroupBase + # @ingroup l2_grps_create + def GetGroups(self): + return self.mesh.GetGroups() - ## Set GrowthRate - # - # Only for algoType == NETGEN - def SetGrowthRate(self, theRate): - if self.params == 0: - self.Parameters() - if self.params is not None: - self.params.SetGrowthRate(theRate) + ## Gets the number of groups existing in the mesh + # @return the quantity of groups as an integer value + # @ingroup l2_grps_create + def NbGroups(self): + return self.mesh.NbGroups() - ## Set NbSegPerEdge - # - # Only for algoType == NETGEN - def SetNbSegPerEdge(self, theVal): - if self.params == 0: - self.Parameters() - if self.params is not None: - self.params.SetNbSegPerEdge(theVal) + ## Gets the list of names of groups existing in the mesh + # @return list of strings + # @ingroup l2_grps_create + def GetGroupNames(self): + groups = self.GetGroups() + names = [] + for group in groups: + names.append(group.GetName()) + return names - ## Set NbSegPerRadius - # - # Only for algoType == NETGEN - def SetNbSegPerRadius(self, theVal): - if self.params == 0: - self.Parameters() - if self.params is not None: - self.params.SetNbSegPerRadius(theVal) + ## Produces a union of two groups + # A new group is created. All mesh elements that are + # present in the initial groups are added to the new one + # @return an instance of SMESH_Group + # @ingroup l2_grps_operon + def UnionGroups(self, group1, group2, name): + return self.mesh.UnionGroups(group1, group2, name) - ## Set Decimesh flag - def SetDecimesh(self, toAllow=False): - if self.params == 0: - self.Parameters() - self.params.SetDecimesh(toAllow) + ## Prodices an intersection of two groups + # A new group is created. All mesh elements that are common + # for the two initial groups are added to the new one. + # @return an instance of SMESH_Group + # @ingroup l2_grps_operon + def IntersectGroups(self, group1, group2, name): + return self.mesh.IntersectGroups(group1, group2, name) - pass + ## Produces a cut of two groups + # A new group is created. All mesh elements that are present in + # the main group but are not present in the tool group are added to the new one + # @return an instance of SMESH_Group + # @ingroup l2_grps_operon + def CutGroups(self, mainGroup, toolGroup, name): + return self.mesh.CutGroups(mainGroup, toolGroup, name) -# Public class: Mesh_Quadrangle -# ----------------------------- + # Get some info about mesh: + # ------------------------ -## Class to define a quadrangle 2D algorithm -# -# More details. -class Mesh_Quadrangle(Mesh_Algorithm): + ## Returns the log of nodes and elements added or removed + # since the previous clear of the log. + # @param clearAfterGet log is emptied after Get (safe if concurrents access) + # @return list of log_block structures: + # commandType + # number + # coords + # indexes + # @ingroup l1_auxiliary + def GetLog(self, clearAfterGet): + return self.mesh.GetLog(clearAfterGet) - ## Private constructor. - def __init__(self, mesh, geom=0): - Mesh_Algorithm.__init__(self) - self.Create(mesh, geom, "Quadrangle_2D") + ## Clears the log of nodes and elements added or removed since the previous + # clear. Must be used immediately after GetLog if clearAfterGet is false. + # @ingroup l1_auxiliary + def ClearLog(self): + self.mesh.ClearLog() - ## Define "QuadranglePreference" hypothesis, forcing construction - # of quadrangles if the number of nodes on opposite edges is not the same - # in the case where the global number of nodes on edges is even - def QuadranglePreference(self): - hyp = self.Hypothesis("QuadranglePreference", UseExisting=1, - CompareMethod=self.CompareEqualHyp) - return hyp + ## Toggles auto color mode on the object. + # @param theAutoColor the flag which toggles auto color mode. + # @ingroup l1_auxiliary + def SetAutoColor(self, theAutoColor): + self.mesh.SetAutoColor(theAutoColor) -# Public class: Mesh_Tetrahedron -# ------------------------------ + ## Gets flag of object auto color mode. + # @return True or False + # @ingroup l1_auxiliary + def GetAutoColor(self): + return self.mesh.GetAutoColor() -## Class to define a tetrahedron 3D algorithm -# -# More details. -class Mesh_Tetrahedron(Mesh_Algorithm): + ## Gets the internal ID + # @return integer value, which is the internal Id of the mesh + # @ingroup l1_auxiliary + def GetId(self): + return self.mesh.GetId() - params = 0 - algoType = 0 + ## Get the study Id + # @return integer value, which is the study Id of the mesh + # @ingroup l1_auxiliary + def GetStudyId(self): + return self.mesh.GetStudyId() - ## Private constructor. - def __init__(self, mesh, algoType, geom=0): - Mesh_Algorithm.__init__(self) + ## Checks the group names for duplications. + # Consider the maximum group name length stored in MED file. + # @return True or False + # @ingroup l1_auxiliary + def HasDuplicatedGroupNamesMED(self): + return self.mesh.HasDuplicatedGroupNamesMED() - if algoType == NETGEN: - self.Create(mesh, geom, "NETGEN_3D", "libNETGENEngine.so") - pass + ## Obtains the mesh editor tool + # @return an instance of SMESH_MeshEditor + # @ingroup l1_modifying + def GetMeshEditor(self): + return self.mesh.GetMeshEditor() - elif algoType == GHS3D: - import GHS3DPlugin - self.Create(mesh, geom, "GHS3D_3D" , "libGHS3DEngine.so") - pass + ## Gets MED Mesh + # @return an instance of SALOME_MED::MESH + # @ingroup l1_auxiliary + def GetMEDMesh(self): + return self.mesh.GetMEDMesh() - elif algoType == FULL_NETGEN: - if noNETGENPlugin: - print "Warning: NETGENPlugin module has not been imported." - self.Create(mesh, geom, "NETGEN_2D3D", "libNETGENEngine.so") - pass - self.algoType = algoType + # Get informations about mesh contents: + # ------------------------------------ - ## Define "MaxElementVolume" hypothesis to give the maximun volume of each tetrahedral - # @param vol for the maximum volume of each tetrahedral - # @param UseExisting if ==true - search existing hypothesis created with - # same parameters, else (default) - create new - def MaxElementVolume(self, vol, UseExisting=0): - hyp = self.Hypothesis("MaxElementVolume", [vol], UseExisting=UseExisting, - CompareMethod=self.CompareMaxElementVolume) - hyp.SetMaxElementVolume(vol) - return hyp + ## Returns the number of nodes in the mesh + # @return an integer value + # @ingroup l1_meshinfo + def NbNodes(self): + return self.mesh.NbNodes() - ## Check if the given "MaxElementVolume" hypothesis has the same parameters as given arguments - def CompareMaxElementVolume(self, hyp, args): - return IsEqual(hyp.GetMaxElementVolume(), args[0]) + ## Returns the number of elements in the mesh + # @return an integer value + # @ingroup l1_meshinfo + def NbElements(self): + return self.mesh.NbElements() - ## Define "Netgen 3D Parameters" hypothesis - def Parameters(self): - if (self.algoType == FULL_NETGEN): - self.params = self.Hypothesis("NETGEN_Parameters", [], - "libNETGENEngine.so", UseExisting=0) - return self.params - else: - print "Algo doesn't support this hypothesis" - return None + ## Returns the number of edges in the mesh + # @return an integer value + # @ingroup l1_meshinfo + def NbEdges(self): + return self.mesh.NbEdges() - ## Set MaxSize - def SetMaxSize(self, theSize): - if self.params == 0: - self.Parameters() - self.params.SetMaxSize(theSize) + ## Returns the number of edges with the given order in the mesh + # @param elementOrder the order of elements: + # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC + # @return an integer value + # @ingroup l1_meshinfo + def NbEdgesOfOrder(self, elementOrder): + return self.mesh.NbEdgesOfOrder(elementOrder) - ## Set SecondOrder flag - def SetSecondOrder(self, theVal): - if self.params == 0: - self.Parameters() - self.params.SetSecondOrder(theVal) + ## Returns the number of faces in the mesh + # @return an integer value + # @ingroup l1_meshinfo + def NbFaces(self): + return self.mesh.NbFaces() - ## Set Optimize flag - def SetOptimize(self, theVal): - if self.params == 0: - self.Parameters() - self.params.SetOptimize(theVal) + ## Returns the number of faces with the given order in the mesh + # @param elementOrder the order of elements: + # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC + # @return an integer value + # @ingroup l1_meshinfo + def NbFacesOfOrder(self, elementOrder): + return self.mesh.NbFacesOfOrder(elementOrder) - ## Set Fineness - # @param theFineness is: - # VeryCoarse, Coarse, Moderate, Fine, VeryFine or Custom - def SetFineness(self, theFineness): - if self.params == 0: - self.Parameters() - self.params.SetFineness(theFineness) + ## Returns the number of triangles in the mesh + # @return an integer value + # @ingroup l1_meshinfo + def NbTriangles(self): + return self.mesh.NbTriangles() - ## Set GrowthRate - def SetGrowthRate(self, theRate): - if self.params == 0: - self.Parameters() - self.params.SetGrowthRate(theRate) + ## Returns the number of triangles with the given order in the mesh + # @param elementOrder is the order of elements: + # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC + # @return an integer value + # @ingroup l1_meshinfo + def NbTrianglesOfOrder(self, elementOrder): + return self.mesh.NbTrianglesOfOrder(elementOrder) - ## Set NbSegPerEdge - def SetNbSegPerEdge(self, theVal): - if self.params == 0: - self.Parameters() - self.params.SetNbSegPerEdge(theVal) + ## Returns the number of quadrangles in the mesh + # @return an integer value + # @ingroup l1_meshinfo + def NbQuadrangles(self): + return self.mesh.NbQuadrangles() - ## Set NbSegPerRadius - def SetNbSegPerRadius(self, theVal): - if self.params == 0: - self.Parameters() - self.params.SetNbSegPerRadius(theVal) + ## Returns the number of quadrangles with the given order in the mesh + # @param elementOrder the order of elements: + # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC + # @return an integer value + # @ingroup l1_meshinfo + def NbQuadranglesOfOrder(self, elementOrder): + return self.mesh.NbQuadranglesOfOrder(elementOrder) -# Public class: Mesh_Hexahedron -# ------------------------------ + ## Returns the number of polygons in the mesh + # @return an integer value + # @ingroup l1_meshinfo + def NbPolygons(self): + return self.mesh.NbPolygons() -## Class to define a hexahedron 3D algorithm -# -# More details. -class Mesh_Hexahedron(Mesh_Algorithm): + ## Returns the number of volumes in the mesh + # @return an integer value + # @ingroup l1_meshinfo + def NbVolumes(self): + return self.mesh.NbVolumes() - params = 0 - algoType = 0 + ## Returns the number of volumes with the given order in the mesh + # @param elementOrder the order of elements: + # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC + # @return an integer value + # @ingroup l1_meshinfo + def NbVolumesOfOrder(self, elementOrder): + return self.mesh.NbVolumesOfOrder(elementOrder) - ## Private constructor. - def __init__(self, mesh, algoType=Hexa, geom=0): - Mesh_Algorithm.__init__(self) + ## Returns the number of tetrahedrons in the mesh + # @return an integer value + # @ingroup l1_meshinfo + def NbTetras(self): + return self.mesh.NbTetras() - self.algoType = algoType + ## Returns the number of tetrahedrons with the given order in the mesh + # @param elementOrder the order of elements: + # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC + # @return an integer value + # @ingroup l1_meshinfo + def NbTetrasOfOrder(self, elementOrder): + return self.mesh.NbTetrasOfOrder(elementOrder) - if algoType == Hexa: - self.Create(mesh, geom, "Hexa_3D") - pass + ## Returns the number of hexahedrons in the mesh + # @return an integer value + # @ingroup l1_meshinfo + def NbHexas(self): + return self.mesh.NbHexas() - elif algoType == Hexotic: - import HexoticPlugin - self.Create(mesh, geom, "Hexotic_3D", "libHexoticEngine.so") - pass + ## Returns the number of hexahedrons with the given order in the mesh + # @param elementOrder the order of elements: + # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC + # @return an integer value + # @ingroup l1_meshinfo + def NbHexasOfOrder(self, elementOrder): + return self.mesh.NbHexasOfOrder(elementOrder) - ## Define "MinMaxQuad" hypothesis to give the three hexotic parameters - def MinMaxQuad(self, min=3, max=8, quad=True): - self.params = self.Hypothesis("Hexotic_Parameters", [], "libHexoticEngine.so", - UseExisting=0) - self.params.SetHexesMinLevel(min) - self.params.SetHexesMaxLevel(max) - self.params.SetHexoticQuadrangles(quad) - return self.params + ## Returns the number of pyramids in the mesh + # @return an integer value + # @ingroup l1_meshinfo + def NbPyramids(self): + return self.mesh.NbPyramids() -# Deprecated, only for compatibility! -# Public class: Mesh_Netgen -# ------------------------------ + ## Returns the number of pyramids with the given order in the mesh + # @param elementOrder the order of elements: + # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC + # @return an integer value + # @ingroup l1_meshinfo + def NbPyramidsOfOrder(self, elementOrder): + return self.mesh.NbPyramidsOfOrder(elementOrder) -## Class to define a NETGEN-based 2D or 3D algorithm -# that need no discrete boundary (i.e. independent) -# -# This class is deprecated, only for compatibility! -# -# More details. -class Mesh_Netgen(Mesh_Algorithm): + ## Returns the number of prisms in the mesh + # @return an integer value + # @ingroup l1_meshinfo + def NbPrisms(self): + return self.mesh.NbPrisms() - is3D = 0 + ## Returns the number of prisms with the given order in the mesh + # @param elementOrder the order of elements: + # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC + # @return an integer value + # @ingroup l1_meshinfo + def NbPrismsOfOrder(self, elementOrder): + return self.mesh.NbPrismsOfOrder(elementOrder) - ## Private constructor. - def __init__(self, mesh, is3D, geom=0): - Mesh_Algorithm.__init__(self) + ## Returns the number of polyhedrons in the mesh + # @return an integer value + # @ingroup l1_meshinfo + def NbPolyhedrons(self): + return self.mesh.NbPolyhedrons() - if noNETGENPlugin: - print "Warning: NETGENPlugin module has not been imported." + ## Returns the number of submeshes in the mesh + # @return an integer value + # @ingroup l1_meshinfo + def NbSubMesh(self): + return self.mesh.NbSubMesh() - self.is3D = is3D - if is3D: - self.Create(mesh, geom, "NETGEN_2D3D", "libNETGENEngine.so") - pass + ## Returns the list of mesh elements IDs + # @return the list of integer values + # @ingroup l1_meshinfo + def GetElementsId(self): + return self.mesh.GetElementsId() - else: - self.Create(mesh, geom, "NETGEN_2D", "libNETGENEngine.so") - pass + ## Returns the list of IDs of mesh elements with the given type + # @param elementType the required type of elements + # @return list of integer values + # @ingroup l1_meshinfo + def GetElementsByType(self, elementType): + return self.mesh.GetElementsByType(elementType) - ## Define hypothesis containing parameters of the algorithm - def Parameters(self): - if self.is3D: - hyp = self.Hypothesis("NETGEN_Parameters", [], - "libNETGENEngine.so", UseExisting=0) - else: - hyp = self.Hypothesis("NETGEN_Parameters_2D", [], - "libNETGENEngine.so", UseExisting=0) - return hyp + ## Returns the list of mesh nodes IDs + # @return the list of integer values + # @ingroup l1_meshinfo + def GetNodesId(self): + return self.mesh.GetNodesId() -# Public class: Mesh_Projection1D -# ------------------------------ + # Get the information about mesh elements: + # ------------------------------------ -## Class to define a projection 1D algorithm -# -# More details. -class Mesh_Projection1D(Mesh_Algorithm): + ## Returns the type of mesh element + # @return the value from SMESH::ElementType enumeration + # @ingroup l1_meshinfo + def GetElementType(self, id, iselem): + return self.mesh.GetElementType(id, iselem) - ## Private constructor. - def __init__(self, mesh, geom=0): - Mesh_Algorithm.__init__(self) - self.Create(mesh, geom, "Projection_1D") - - ## Define "Source Edge" hypothesis, specifying a meshed edge to - # take a mesh pattern from, and optionally association of vertices - # between the source edge and a target one (where a hipothesis is assigned to) - # @param edge to take nodes distribution from - # @param mesh to take nodes distribution from (optional) - # @param srcV is vertex of \a edge to associate with \a tgtV (optional) - # @param tgtV is vertex of \a the edge where the algorithm is assigned, - # to associate with \a srcV (optional) - # @param UseExisting if ==true - search existing hypothesis created with - # same parameters, else (default) - create new - def SourceEdge(self, edge, mesh=None, srcV=None, tgtV=None, UseExisting=0): - hyp = self.Hypothesis("ProjectionSource1D", [edge,mesh,srcV,tgtV], - UseExisting=0) - #UseExisting=UseExisting, CompareMethod=self.CompareSourceEdge) - hyp.SetSourceEdge( edge ) - if not mesh is None and isinstance(mesh, Mesh): - mesh = mesh.GetMesh() - hyp.SetSourceMesh( mesh ) - hyp.SetVertexAssociation( srcV, tgtV ) - return hyp + ## Returns the list of submesh elements IDs + # @param Shape a geom object(subshape) IOR + # Shape must be the subshape of a ShapeToMesh() + # @return the list of integer values + # @ingroup l1_meshinfo + def GetSubMeshElementsId(self, Shape): + if ( isinstance( Shape, geompyDC.GEOM._objref_GEOM_Object)): + ShapeID = Shape.GetSubShapeIndices()[0] + else: + ShapeID = Shape + return self.mesh.GetSubMeshElementsId(ShapeID) - ## Check if the given "SourceEdge" hypothesis has the same parameters as given arguments - #def CompareSourceEdge(self, hyp, args): - # # seems to be not really useful to reuse existing "SourceEdge" hypothesis - # return False + ## Returns the list of submesh nodes IDs + # @param Shape a geom object(subshape) IOR + # Shape must be the subshape of a ShapeToMesh() + # @param all If true, gives all nodes of submesh elements, otherwise gives only submesh nodes + # @return the list of integer values + # @ingroup l1_meshinfo + def GetSubMeshNodesId(self, Shape, all): + if ( isinstance( Shape, geompyDC.GEOM._objref_GEOM_Object)): + ShapeID = Shape.GetSubShapeIndices()[0] + else: + ShapeID = Shape + return self.mesh.GetSubMeshNodesId(ShapeID, all) + ## Returns the list of IDs of submesh elements with the given type + # @param Shape a geom object(subshape) IOR + # Shape must be a subshape of a ShapeToMesh() + # @return the list of integer values + # @ingroup l1_meshinfo + def GetSubMeshElementType(self, Shape): + if ( isinstance( Shape, geompyDC.GEOM._objref_GEOM_Object)): + ShapeID = Shape.GetSubShapeIndices()[0] + else: + ShapeID = Shape + return self.mesh.GetSubMeshElementType(ShapeID) -# Public class: Mesh_Projection2D -# ------------------------------ + ## Gets the mesh description + # @return string value + # @ingroup l1_meshinfo + def Dump(self): + return self.mesh.Dump() -## Class to define a projection 2D algorithm -# -# More details. -class Mesh_Projection2D(Mesh_Algorithm): - ## Private constructor. - def __init__(self, mesh, geom=0): - Mesh_Algorithm.__init__(self) - self.Create(mesh, geom, "Projection_2D") + # Get the information about nodes and elements of a mesh by its IDs: + # ----------------------------------------------------------- - ## Define "Source Face" hypothesis, specifying a meshed face to - # take a mesh pattern from, and optionally association of vertices - # between the source face and a target one (where a hipothesis is assigned to) - # @param face to take mesh pattern from - # @param mesh to take mesh pattern from (optional) - # @param srcV1 is vertex of \a face to associate with \a tgtV1 (optional) - # @param tgtV1 is vertex of \a the face where the algorithm is assigned, - # to associate with \a srcV1 (optional) - # @param srcV2 is vertex of \a face to associate with \a tgtV1 (optional) - # @param tgtV2 is vertex of \a the face where the algorithm is assigned, - # to associate with \a srcV2 (optional) - # @param UseExisting if ==true - search existing hypothesis created with - # same parameters, else (default) - create new - # - # Note: association vertices must belong to one edge of a face - def SourceFace(self, face, mesh=None, srcV1=None, tgtV1=None, - srcV2=None, tgtV2=None, UseExisting=0): - hyp = self.Hypothesis("ProjectionSource2D", [face,mesh,srcV1,tgtV1,srcV2,tgtV2], - UseExisting=0) - #UseExisting=UseExisting, CompareMethod=self.CompareSourceFace) - hyp.SetSourceFace( face ) - if not mesh is None and isinstance(mesh, Mesh): - mesh = mesh.GetMesh() - hyp.SetSourceMesh( mesh ) - hyp.SetVertexAssociation( srcV1, srcV2, tgtV1, tgtV2 ) - return hyp + ## Gets XYZ coordinates of a node + # \n If there is no nodes for the given ID - returns an empty list + # @return a list of double precision values + # @ingroup l1_meshinfo + def GetNodeXYZ(self, id): + return self.mesh.GetNodeXYZ(id) - ## Check if the given "SourceFace" hypothesis has the same parameters as given arguments - #def CompareSourceFace(self, hyp, args): - # # seems to be not really useful to reuse existing "SourceFace" hypothesis - # return False + ## Returns list of IDs of inverse elements for the given node + # \n If there is no node for the given ID - returns an empty list + # @return a list of integer values + # @ingroup l1_meshinfo + def GetNodeInverseElements(self, id): + return self.mesh.GetNodeInverseElements(id) -# Public class: Mesh_Projection3D -# ------------------------------ + ## @brief Returns the position of a node on the shape + # @return SMESH::NodePosition + # @ingroup l1_meshinfo + def GetNodePosition(self,NodeID): + return self.mesh.GetNodePosition(NodeID) -## Class to define a projection 3D algorithm -# -# More details. -class Mesh_Projection3D(Mesh_Algorithm): + ## If the given element is a node, returns the ID of shape + # \n If there is no node for the given ID - returns -1 + # @return an integer value + # @ingroup l1_meshinfo + def GetShapeID(self, id): + return self.mesh.GetShapeID(id) - ## Private constructor. - def __init__(self, mesh, geom=0): - Mesh_Algorithm.__init__(self) - self.Create(mesh, geom, "Projection_3D") + ## Returns the ID of the result shape after + # FindShape() from SMESH_MeshEditor for the given element + # \n If there is no element for the given ID - returns -1 + # @return an integer value + # @ingroup l1_meshinfo + def GetShapeIDForElem(self,id): + return self.mesh.GetShapeIDForElem(id) - ## Define "Source Shape 3D" hypothesis, specifying a meshed solid to - # take a mesh pattern from, and optionally association of vertices - # between the source solid and a target one (where a hipothesis is assigned to) - # @param solid to take mesh pattern from - # @param mesh to take mesh pattern from (optional) - # @param srcV1 is vertex of \a solid to associate with \a tgtV1 (optional) - # @param tgtV1 is vertex of \a the solid where the algorithm is assigned, - # to associate with \a srcV1 (optional) - # @param srcV2 is vertex of \a solid to associate with \a tgtV1 (optional) - # @param tgtV2 is vertex of \a the solid where the algorithm is assigned, - # to associate with \a srcV2 (optional) - # @param UseExisting - if ==true - search existing hypothesis created with - # same parameters, else (default) - create new - # - # Note: association vertices must belong to one edge of a solid - def SourceShape3D(self, solid, mesh=0, srcV1=0, tgtV1=0, - srcV2=0, tgtV2=0, UseExisting=0): - hyp = self.Hypothesis("ProjectionSource3D", - [solid,mesh,srcV1,tgtV1,srcV2,tgtV2], - UseExisting=0) - #UseExisting=UseExisting, CompareMethod=self.CompareSourceShape3D) - hyp.SetSource3DShape( solid ) - if not mesh is None and isinstance(mesh, Mesh): - mesh = mesh.GetMesh() - hyp.SetSourceMesh( mesh ) - hyp.SetVertexAssociation( srcV1, srcV2, tgtV1, tgtV2 ) - return hyp + ## Returns the number of nodes for the given element + # \n If there is no element for the given ID - returns -1 + # @return an integer value + # @ingroup l1_meshinfo + def GetElemNbNodes(self, id): + return self.mesh.GetElemNbNodes(id) - ## Check if the given "SourceShape3D" hypothesis has the same parameters as given arguments - #def CompareSourceShape3D(self, hyp, args): - # # seems to be not really useful to reuse existing "SourceShape3D" hypothesis - # return False + ## Returns the node ID the given index for the given element + # \n If there is no element for the given ID - returns -1 + # \n If there is no node for the given index - returns -2 + # @return an integer value + # @ingroup l1_meshinfo + def GetElemNode(self, id, index): + return self.mesh.GetElemNode(id, index) + ## Returns the IDs of nodes of the given element + # @return a list of integer values + # @ingroup l1_meshinfo + def GetElemNodes(self, id): + return self.mesh.GetElemNodes(id) -# Public class: Mesh_Prism -# ------------------------ + ## Returns true if the given node is the medium node in the given quadratic element + # @ingroup l1_meshinfo + def IsMediumNode(self, elementID, nodeID): + return self.mesh.IsMediumNode(elementID, nodeID) -## Class to define a 3D extrusion algorithm -# -# More details. -class Mesh_Prism3D(Mesh_Algorithm): + ## Returns true if the given node is the medium node in one of quadratic elements + # @ingroup l1_meshinfo + def IsMediumNodeOfAnyElem(self, nodeID, elementType): + return self.mesh.IsMediumNodeOfAnyElem(nodeID, elementType) - ## Private constructor. - def __init__(self, mesh, geom=0): - Mesh_Algorithm.__init__(self) - self.Create(mesh, geom, "Prism_3D") + ## Returns the number of edges for the given element + # @ingroup l1_meshinfo + def ElemNbEdges(self, id): + return self.mesh.ElemNbEdges(id) -# Public class: Mesh_RadialPrism -# ------------------------------- + ## Returns the number of faces for the given element + # @ingroup l1_meshinfo + def ElemNbFaces(self, id): + return self.mesh.ElemNbFaces(id) -## Class to define a Radial Prism 3D algorithm -# -# More details. -class Mesh_RadialPrism3D(Mesh_Algorithm): + ## Returns true if the given element is a polygon + # @ingroup l1_meshinfo + def IsPoly(self, id): + return self.mesh.IsPoly(id) - ## Private constructor. - def __init__(self, mesh, geom=0): - Mesh_Algorithm.__init__(self) - self.Create(mesh, geom, "RadialPrism_3D") + ## Returns true if the given element is quadratic + # @ingroup l1_meshinfo + def IsQuadratic(self, id): + return self.mesh.IsQuadratic(id) - self.distribHyp = self.Hypothesis("LayerDistribution", UseExisting=0) - self.nbLayers = None + ## Returns XYZ coordinates of the barycenter of the given element + # \n If there is no element for the given ID - returns an empty list + # @return a list of three double values + # @ingroup l1_meshinfo + def BaryCenter(self, id): + return self.mesh.BaryCenter(id) - ## Return 3D hypothesis holding the 1D one - def Get3DHypothesis(self): - return self.distribHyp - ## Private method creating 1D hypothes and storing it in the LayerDistribution - # hypothes. Returns the created hypothes - def OwnHypothesis(self, hypType, args=[], so="libStdMeshersEngine.so"): - #print "OwnHypothesis",hypType - if not self.nbLayers is None: - self.mesh.GetMesh().RemoveHypothesis( self.geom, self.nbLayers ) - self.mesh.GetMesh().AddHypothesis( self.geom, self.distribHyp ) - study = self.mesh.smeshpyD.GetCurrentStudy() # prevent publishing of own 1D hypothesis - hyp = self.mesh.smeshpyD.CreateHypothesis(hypType, so) - self.mesh.smeshpyD.SetCurrentStudy( study ) # anable publishing - self.distribHyp.SetLayerDistribution( hyp ) - return hyp + # Mesh edition (SMESH_MeshEditor functionality): + # --------------------------------------------- - ## Define "NumberOfLayers" hypothesis, specifying a number of layers of - # prisms to build between the inner and outer shells - # @param UseExisting if ==true - search existing hypothesis created with - # same parameters, else (default) - create new - def NumberOfLayers(self, n, UseExisting=0): - self.mesh.GetMesh().RemoveHypothesis( self.geom, self.distribHyp ) - self.nbLayers = self.Hypothesis("NumberOfLayers", [n], UseExisting=UseExisting, - CompareMethod=self.CompareNumberOfLayers) - self.nbLayers.SetNumberOfLayers( n ) - return self.nbLayers + ## Removes the elements from the mesh by ids + # @param IDsOfElements is a list of ids of elements to remove + # @return True or False + # @ingroup l2_modif_del + def RemoveElements(self, IDsOfElements): + return self.editor.RemoveElements(IDsOfElements) - ## Check if the given "NumberOfLayers" hypothesis has the same parameters as given arguments - def CompareNumberOfLayers(self, hyp, args): - return IsEqual(hyp.GetNumberOfLayers(), args[0]) + ## Removes nodes from mesh by ids + # @param IDsOfNodes is a list of ids of nodes to remove + # @return True or False + # @ingroup l2_modif_del + def RemoveNodes(self, IDsOfNodes): + return self.editor.RemoveNodes(IDsOfNodes) - ## Define "LocalLength" hypothesis, specifying segment length - # to build between the inner and outer shells - # @param l for the length of segments - # @param p for the precision of rounding - def LocalLength(self, l, p=1e-07): - hyp = self.OwnHypothesis("LocalLength", [l,p]) - hyp.SetLength(l) - hyp.SetPrecision(p) - return hyp + ## Add a node to the mesh by coordinates + # @return Id of the new node + # @ingroup l2_modif_add + def AddNode(self, x, y, z): + return self.editor.AddNode( x, y, z) - ## Define "NumberOfSegments" hypothesis, specifying a number of layers of - # prisms to build between the inner and outer shells - # @param n for the number of segments - # @param s for the scale factor (optional) - def NumberOfSegments(self, n, s=[]): - if s == []: - hyp = self.OwnHypothesis("NumberOfSegments", [n]) - else: - hyp = self.OwnHypothesis("NumberOfSegments", [n,s]) - hyp.SetDistrType( 1 ) - hyp.SetScaleFactor(s) - hyp.SetNumberOfSegments(n) - return hyp + ## Creates a linear or quadratic edge (this is determined + # by the number of given nodes). + # @param IDsOfNodes the list of node IDs for creation of the element. + # The order of nodes in this list should correspond to the description + # of MED. \n This description is located by the following link: + # http://www.salome-platform.org/salome2/web_med_internet/logiciels/medV2.2.2_doc_html/html/modele_de_donnees.html#3. + # @return the Id of the new edge + # @ingroup l2_modif_add + def AddEdge(self, IDsOfNodes): + return self.editor.AddEdge(IDsOfNodes) - ## Define "Arithmetic1D" hypothesis, specifying distribution of segments - # to build between the inner and outer shells as arithmetic length increasing - # @param start for the length of the first segment - # @param end for the length of the last segment - def Arithmetic1D(self, start, end ): - hyp = self.OwnHypothesis("Arithmetic1D", [start, end]) - hyp.SetLength(start, 1) - hyp.SetLength(end , 0) - return hyp + ## Creates a linear or quadratic face (this is determined + # by the number of given nodes). + # @param IDsOfNodes the list of node IDs for creation of the element. + # The order of nodes in this list should correspond to the description + # of MED. \n This description is located by the following link: + # http://www.salome-platform.org/salome2/web_med_internet/logiciels/medV2.2.2_doc_html/html/modele_de_donnees.html#3. + # @return the Id of the new face + # @ingroup l2_modif_add + def AddFace(self, IDsOfNodes): + return self.editor.AddFace(IDsOfNodes) - ## Define "StartEndLength" hypothesis, specifying distribution of segments - # to build between the inner and outer shells as geometric length increasing - # @param start for the length of the first segment - # @param end for the length of the last segment - def StartEndLength(self, start, end): - hyp = self.OwnHypothesis("StartEndLength", [start, end]) - hyp.SetLength(start, 1) - hyp.SetLength(end , 0) - return hyp + ## Adds a polygonal face to the mesh by the list of node IDs + # @param IdsOfNodes the list of node IDs for creation of the element. + # @return the Id of the new face + # @ingroup l2_modif_add + def AddPolygonalFace(self, IdsOfNodes): + return self.editor.AddPolygonalFace(IdsOfNodes) - ## Define "AutomaticLength" hypothesis, specifying number of segments - # to build between the inner and outer shells - # @param fineness for the fineness [0-1] - def AutomaticLength(self, fineness=0): - hyp = self.OwnHypothesis("AutomaticLength") - hyp.SetFineness( fineness ) - return hyp + ## Creates both simple and quadratic volume (this is determined + # by the number of given nodes). + # @param IDsOfNodes the list of node IDs for creation of the element. + # The order of nodes in this list should correspond to the description + # of MED. \n This description is located by the following link: + # http://www.salome-platform.org/salome2/web_med_internet/logiciels/medV2.2.2_doc_html/html/modele_de_donnees.html#3. + # @return the Id of the new volumic element + # @ingroup l2_modif_add + def AddVolume(self, IDsOfNodes): + return self.editor.AddVolume(IDsOfNodes) -# Private class: Mesh_UseExisting -# ------------------------------- -class Mesh_UseExisting(Mesh_Algorithm): + ## Creates a volume of many faces, giving nodes for each face. + # @param IdsOfNodes the list of node IDs for volume creation face by face. + # @param Quantities the list of integer values, Quantities[i] + # gives the quantity of nodes in face number i. + # @return the Id of the new volumic element + # @ingroup l2_modif_add + def AddPolyhedralVolume (self, IdsOfNodes, Quantities): + return self.editor.AddPolyhedralVolume(IdsOfNodes, Quantities) - def __init__(self, dim, mesh, geom=0): - if dim == 1: - self.Create(mesh, geom, "UseExisting_1D") - else: - self.Create(mesh, geom, "UseExisting_2D") + ## Creates a volume of many faces, giving the IDs of the existing faces. + # @param IdsOfFaces the list of face IDs for volume creation. + # + # Note: The created volume will refer only to the nodes + # of the given faces, not to the faces themselves. + # @return the Id of the new volumic element + # @ingroup l2_modif_add + def AddPolyhedralVolumeByFaces (self, IdsOfFaces): + return self.editor.AddPolyhedralVolumeByFaces(IdsOfFaces) -# Public class: Mesh -# ================== -## Class to define a mesh -# -# The class contains mesh shape, SMESH_Mesh, SMESH_MeshEditor -# More details. -class Mesh: + ## @brief Binds a node to a vertex + # @param NodeID a node ID + # @param Vertex a vertex or vertex ID + # @return True if succeed else raises an exception + # @ingroup l2_modif_add + def SetNodeOnVertex(self, NodeID, Vertex): + if ( isinstance( Vertex, geompyDC.GEOM._objref_GEOM_Object)): + VertexID = Vertex.GetSubShapeIndices()[0] + else: + VertexID = Vertex + try: + self.editor.SetNodeOnVertex(NodeID, VertexID) + except SALOME.SALOME_Exception, inst: + raise ValueError, inst.details.text + return True - geom = 0 - mesh = 0 - editor = 0 - ## Constructor - # - # Creates mesh on the shape \a geom(or the empty mesh if geom equal to 0), - # sets GUI name of this mesh to \a name. - # @param obj Shape to be meshed or SMESH_Mesh object - # @param name Study name of the mesh - def __init__(self, smeshpyD, geompyD, obj=0, name=0): - self.smeshpyD=smeshpyD - self.geompyD=geompyD - if obj is None: - obj = 0 - if obj != 0: - if isinstance(obj, geompyDC.GEOM._objref_GEOM_Object): - self.geom = obj - self.mesh = self.smeshpyD.CreateMesh(self.geom) - elif isinstance(obj, SMESH._objref_SMESH_Mesh): - self.SetMesh(obj) + ## @brief Stores the node position on an edge + # @param NodeID a node ID + # @param Edge an edge or edge ID + # @param paramOnEdge a parameter on the edge where the node is located + # @return True if succeed else raises an exception + # @ingroup l2_modif_add + def SetNodeOnEdge(self, NodeID, Edge, paramOnEdge): + if ( isinstance( Edge, geompyDC.GEOM._objref_GEOM_Object)): + EdgeID = Edge.GetSubShapeIndices()[0] else: - self.mesh = self.smeshpyD.CreateEmptyMesh() - if name != 0: - SetName(self.mesh, name) - elif obj != 0: - SetName(self.mesh, GetName(obj)) - - self.editor = self.mesh.GetMeshEditor() - - ## Method that inits the Mesh object from SMESH_Mesh interface - # @param theMesh is SMESH_Mesh object - def SetMesh(self, theMesh): - self.mesh = theMesh - self.geom = self.mesh.GetShapeToMesh() - - ## Method that returns the mesh - # @return SMESH_Mesh object - def GetMesh(self): - return self.mesh - - ## Get mesh name - def GetName(self): - name = GetName(self.GetMesh()) - return name - - ## Set name to mesh - def SetName(self, name): - SetName(self.GetMesh(), name) + EdgeID = Edge + try: + self.editor.SetNodeOnEdge(NodeID, EdgeID, paramOnEdge) + except SALOME.SALOME_Exception, inst: + raise ValueError, inst.details.text + return True - ## Get the subMesh object associated to a subShape. The subMesh object - # gives access to nodes and elements IDs. - # \n SubMesh will be used instead of SubShape in a next idl version to - # adress a specific subMesh... - def GetSubMesh(self, theSubObject, name): - submesh = self.mesh.GetSubMesh(theSubObject, name) - return submesh + ## @brief Stores node position on a face + # @param NodeID a node ID + # @param Face a face or face ID + # @param u U parameter on the face where the node is located + # @param v V parameter on the face where the node is located + # @return True if succeed else raises an exception + # @ingroup l2_modif_add + def SetNodeOnFace(self, NodeID, Face, u, v): + if ( isinstance( Face, geompyDC.GEOM._objref_GEOM_Object)): + FaceID = Face.GetSubShapeIndices()[0] + else: + FaceID = Face + try: + self.editor.SetNodeOnFace(NodeID, FaceID, u, v) + except SALOME.SALOME_Exception, inst: + raise ValueError, inst.details.text + return True - ## Method that returns the shape associated to the mesh - # @return GEOM_Object - def GetShape(self): - return self.geom + ## @brief Binds a node to a solid + # @param NodeID a node ID + # @param Solid a solid or solid ID + # @return True if succeed else raises an exception + # @ingroup l2_modif_add + def SetNodeInVolume(self, NodeID, Solid): + if ( isinstance( Solid, geompyDC.GEOM._objref_GEOM_Object)): + SolidID = Solid.GetSubShapeIndices()[0] + else: + SolidID = Solid + try: + self.editor.SetNodeInVolume(NodeID, SolidID) + except SALOME.SALOME_Exception, inst: + raise ValueError, inst.details.text + return True - ## Method that associates given shape to the mesh(entails the mesh recreation) - # @param geom shape to be meshed(GEOM_Object) - def SetShape(self, geom): - self.mesh = self.smeshpyD.CreateMesh(geom) + ## @brief Bind an element to a shape + # @param ElementID an element ID + # @param Shape a shape or shape ID + # @return True if succeed else raises an exception + # @ingroup l2_modif_add + def SetMeshElementOnShape(self, ElementID, Shape): + if ( isinstance( Shape, geompyDC.GEOM._objref_GEOM_Object)): + ShapeID = Shape.GetSubShapeIndices()[0] + else: + ShapeID = Shape + try: + self.editor.SetMeshElementOnShape(ElementID, ShapeID) + except SALOME.SALOME_Exception, inst: + raise ValueError, inst.details.text + return True - ## Return true if hypotheses are defined well - # @param theMesh is an instance of Mesh class - # @param theSubObject subshape of a mesh shape - def IsReadyToCompute(self, theSubObject): - return self.smeshpyD.IsReadyToCompute(self.mesh, theSubObject) - ## Return errors of hypotheses definintion - # error list is empty if everything is OK - # @param theMesh is an instance of Mesh class - # @param theSubObject subshape of a mesh shape - # @return a list of errors - def GetAlgoState(self, theSubObject): - return self.smeshpyD.GetAlgoState(self.mesh, theSubObject) + ## Moves the node with the given id + # @param NodeID the id of the node + # @param x a new X coordinate + # @param y a new Y coordinate + # @param z a new Z coordinate + # @return True if succeed else False + # @ingroup l2_modif_movenode + def MoveNode(self, NodeID, x, y, z): + return self.editor.MoveNode(NodeID, x, y, z) - ## Return geometrical object the given element is built on. - # The returned geometrical object, if not nil, is either found in the - # study or is published by this method with the given name - # @param theMesh is an instance of Mesh class - # @param theElementID an id of the mesh element - # @param theGeomName user defined name of geometrical object - # @return GEOM::GEOM_Object instance - def GetGeometryByMeshElement(self, theElementID, theGeomName): - return self.smeshpyD.GetGeometryByMeshElement( self.mesh, theElementID, theGeomName ) + ## Finds the node closest to a point + # @param x the X coordinate of a point + # @param y the Y coordinate of a point + # @param z the Z coordinate of a point + # @return the ID of a node + # @ingroup l2_modif_throughp + def FindNodeClosestTo(self, x, y, z): + preview = self.mesh.GetMeshEditPreviewer() + return preview.MoveClosestNodeToPoint(x, y, z, -1) - ## Returns mesh dimension depending on shape one - def MeshDimension(self): - shells = self.geompyD.SubShapeAllIDs( self.geom, geompyDC.ShapeType["SHELL"] ) - if len( shells ) > 0 : - return 3 - elif self.geompyD.NumberOfFaces( self.geom ) > 0 : - return 2 - elif self.geompyD.NumberOfEdges( self.geom ) > 0 : - return 1 - else: - return 0; - pass + ## Finds the node closest to a point and moves it to a point location + # @param x the X coordinate of a point + # @param y the Y coordinate of a point + # @param z the Z coordinate of a point + # @return the ID of a moved node + # @ingroup l2_modif_throughp + def MeshToPassThroughAPoint(self, x, y, z): + return self.editor.MoveClosestNodeToPoint(x, y, z, -1) - ## Creates a segment discretization 1D algorithm. - # If the optional \a algo parameter is not sets, this algorithm is REGULAR. - # If the optional \a geom parameter is not sets, this algorithm is global. - # \n Otherwise, this algorithm define a submesh based on \a geom subshape. - # @param algo values are smesh.REGULAR or smesh.PYTHON for discretization via python function - # @param geom If defined, subshape to be meshed - def Segment(self, algo=REGULAR, geom=0): - ## if Segment(geom) is called by mistake - if isinstance( algo, geompyDC.GEOM._objref_GEOM_Object): - algo, geom = geom, algo - if not algo: algo = REGULAR - pass - if algo == REGULAR: - return Mesh_Segment(self, geom) - elif algo == PYTHON: - return Mesh_Segment_Python(self, geom) - elif algo == COMPOSITE: - return Mesh_CompositeSegment(self, geom) - else: - return Mesh_Segment(self, geom) + ## Replaces two neighbour triangles sharing Node1-Node2 link + # with the triangles built on the same 4 nodes but having other common link. + # @param NodeID1 the ID of the first node + # @param NodeID2 the ID of the second node + # @return false if proper faces were not found + # @ingroup l2_modif_invdiag + def InverseDiag(self, NodeID1, NodeID2): + return self.editor.InverseDiag(NodeID1, NodeID2) - ## Enable creation of nodes and segments usable by 2D algoritms. - # Added nodes and segments must be bound to edges and vertices by - # SetNodeOnVertex(), SetNodeOnEdge() and SetMeshElementOnShape() - # If the optional \a geom parameter is not sets, this algorithm is global. - # \n Otherwise, this algorithm define a submesh based on \a geom subshape. - # @param geom subshape to be manually meshed - # @return StdMeshers_UseExisting_1D algorithm that generates nothing - def UseExistingSegments(self, geom=0): - algo = Mesh_UseExisting(1,self,geom) - return algo.GetAlgorithm() + ## Replaces two neighbour triangles sharing Node1-Node2 link + # with a quadrangle built on the same 4 nodes. + # @param NodeID1 the ID of the first node + # @param NodeID2 the ID of the second node + # @return false if proper faces were not found + # @ingroup l2_modif_unitetri + def DeleteDiag(self, NodeID1, NodeID2): + return self.editor.DeleteDiag(NodeID1, NodeID2) - ## Enable creation of nodes and faces usable by 3D algoritms. - # Added nodes and faces must be bound to geom faces by SetNodeOnFace() - # and SetMeshElementOnShape() - # If the optional \a geom parameter is not sets, this algorithm is global. - # \n Otherwise, this algorithm define a submesh based on \a geom subshape. - # @param geom subshape to be manually meshed - # @return StdMeshers_UseExisting_2D algorithm that generates nothing - def UseExistingFaces(self, geom=0): - algo = Mesh_UseExisting(2,self,geom) - return algo.GetAlgorithm() + ## Reorients elements by ids + # @param IDsOfElements if undefined reorients all mesh elements + # @return True if succeed else False + # @ingroup l2_modif_changori + def Reorient(self, IDsOfElements=None): + if IDsOfElements == None: + IDsOfElements = self.GetElementsId() + return self.editor.Reorient(IDsOfElements) - ## Creates a triangle 2D algorithm for faces. - # If the optional \a geom parameter is not sets, this algorithm is global. - # \n Otherwise, this algorithm define a submesh based on \a geom subshape. - # @param algo values are: smesh.MEFISTO || smesh.NETGEN_1D2D || smesh.NETGEN_2D - # @param geom If defined, subshape to be meshed - def Triangle(self, algo=MEFISTO, geom=0): - ## if Triangle(geom) is called by mistake - if ( isinstance( algo, geompyDC.GEOM._objref_GEOM_Object)): - geom = algo - algo = MEFISTO + ## Reorients all elements of the object + # @param theObject mesh, submesh or group + # @return True if succeed else False + # @ingroup l2_modif_changori + def ReorientObject(self, theObject): + if ( isinstance( theObject, Mesh )): + theObject = theObject.GetMesh() + return self.editor.ReorientObject(theObject) - return Mesh_Triangle(self, algo, geom) + ## Fuses the neighbouring triangles into quadrangles. + # @param IDsOfElements The triangles to be fused, + # @param theCriterion is FT_...; used to choose a neighbour to fuse with. + # @param MaxAngle is the maximum angle between element normals at which the fusion + # is still performed; theMaxAngle is mesured in radians. + # @return TRUE in case of success, FALSE otherwise. + # @ingroup l2_modif_unitetri + def TriToQuad(self, IDsOfElements, theCriterion, MaxAngle): + if IDsOfElements == []: + IDsOfElements = self.GetElementsId() + return self.editor.TriToQuad(IDsOfElements, self.smeshpyD.GetFunctor(theCriterion), MaxAngle) - ## Creates a quadrangle 2D algorithm for faces. - # If the optional \a geom parameter is not sets, this algorithm is global. - # \n Otherwise, this algorithm define a submesh based on \a geom subshape. - # @param geom If defined, subshape to be meshed - def Quadrangle(self, geom=0): - return Mesh_Quadrangle(self, geom) + ## Fuses the neighbouring triangles of the object into quadrangles + # @param theObject is mesh, submesh or group + # @param theCriterion is FT_...; used to choose a neighbour to fuse with. + # @param MaxAngle a max angle between element normals at which the fusion + # is still performed; theMaxAngle is mesured in radians. + # @return TRUE in case of success, FALSE otherwise. + # @ingroup l2_modif_unitetri + def TriToQuadObject (self, theObject, theCriterion, MaxAngle): + if ( isinstance( theObject, Mesh )): + theObject = theObject.GetMesh() + return self.editor.TriToQuadObject(theObject, self.smeshpyD.GetFunctor(theCriterion), MaxAngle) - ## Creates a tetrahedron 3D algorithm for solids. - # The parameter \a algo permits to choice the algorithm: NETGEN or GHS3D - # If the optional \a geom parameter is not sets, this algorithm is global. - # \n Otherwise, this algorithm define a submesh based on \a geom subshape. - # @param algo values are: smesh.NETGEN, smesh.GHS3D, smesh.FULL_NETGEN - # @param geom If defined, subshape to be meshed - def Tetrahedron(self, algo=NETGEN, geom=0): - ## if Tetrahedron(geom) is called by mistake - if ( isinstance( algo, geompyDC.GEOM._objref_GEOM_Object)): - algo, geom = geom, algo - if not algo: algo = NETGEN - pass - return Mesh_Tetrahedron(self, algo, geom) + ## Splits quadrangles into triangles. + # @param IDsOfElements the faces to be splitted. + # @param theCriterion FT_...; used to choose a diagonal for splitting. + # @return TRUE in case of success, FALSE otherwise. + # @ingroup l2_modif_cutquadr + def QuadToTri (self, IDsOfElements, theCriterion): + if IDsOfElements == []: + IDsOfElements = self.GetElementsId() + return self.editor.QuadToTri(IDsOfElements, self.smeshpyD.GetFunctor(theCriterion)) - ## Creates a hexahedron 3D algorithm for solids. - # If the optional \a geom parameter is not sets, this algorithm is global. - # \n Otherwise, this algorithm define a submesh based on \a geom subshape. - # @param geom If defined, subshape to be meshed - ## def Hexahedron(self, geom=0): - ## return Mesh_Hexahedron(self, geom) - def Hexahedron(self, algo=Hexa, geom=0): - ## if Hexahedron(geom, algo) or Hexahedron(geom) is called by mistake - if ( isinstance(algo, geompyDC.GEOM._objref_GEOM_Object) ): - if geom in [Hexa, Hexotic]: algo, geom = geom, algo - elif geom == 0: algo, geom = Hexa, algo - return Mesh_Hexahedron(self, algo, geom) + ## Splits quadrangles into triangles. + # @param theObject the object from which the list of elements is taken, this is mesh, submesh or group + # @param theCriterion FT_...; used to choose a diagonal for splitting. + # @return TRUE in case of success, FALSE otherwise. + # @ingroup l2_modif_cutquadr + def QuadToTriObject (self, theObject, theCriterion): + if ( isinstance( theObject, Mesh )): + theObject = theObject.GetMesh() + return self.editor.QuadToTriObject(theObject, self.smeshpyD.GetFunctor(theCriterion)) - ## Deprecated, only for compatibility! - def Netgen(self, is3D, geom=0): - return Mesh_Netgen(self, is3D, geom) + ## Splits quadrangles into triangles. + # @param IDsOfElements the faces to be splitted + # @param Diag13 is used to choose a diagonal for splitting. + # @return TRUE in case of success, FALSE otherwise. + # @ingroup l2_modif_cutquadr + def SplitQuad (self, IDsOfElements, Diag13): + if IDsOfElements == []: + IDsOfElements = self.GetElementsId() + return self.editor.SplitQuad(IDsOfElements, Diag13) - ## Creates a projection 1D algorithm for edges. - # If the optional \a geom parameter is not sets, this algorithm is global. - # Otherwise, this algorithm define a submesh based on \a geom subshape. - # @param geom If defined, subshape to be meshed - def Projection1D(self, geom=0): - return Mesh_Projection1D(self, geom) + ## Splits quadrangles into triangles. + # @param theObject the object from which the list of elements is taken, this is mesh, submesh or group + # @param Diag13 is used to choose a diagonal for splitting. + # @return TRUE in case of success, FALSE otherwise. + # @ingroup l2_modif_cutquadr + def SplitQuadObject (self, theObject, Diag13): + if ( isinstance( theObject, Mesh )): + theObject = theObject.GetMesh() + return self.editor.SplitQuadObject(theObject, Diag13) - ## Creates a projection 2D algorithm for faces. - # If the optional \a geom parameter is not sets, this algorithm is global. - # Otherwise, this algorithm define a submesh based on \a geom subshape. - # @param geom If defined, subshape to be meshed - def Projection2D(self, geom=0): - return Mesh_Projection2D(self, geom) + ## Finds a better splitting of the given quadrangle. + # @param IDOfQuad the ID of the quadrangle to be splitted. + # @param theCriterion FT_...; a criterion to choose a diagonal for splitting. + # @return 1 if 1-3 diagonal is better, 2 if 2-4 + # diagonal is better, 0 if error occurs. + # @ingroup l2_modif_cutquadr + def BestSplit (self, IDOfQuad, theCriterion): + return self.editor.BestSplit(IDOfQuad, self.smeshpyD.GetFunctor(theCriterion)) - ## Creates a projection 3D algorithm for solids. - # If the optional \a geom parameter is not sets, this algorithm is global. - # Otherwise, this algorithm define a submesh based on \a geom subshape. - # @param geom If defined, subshape to be meshed - def Projection3D(self, geom=0): - return Mesh_Projection3D(self, geom) + ## Splits quadrangle faces near triangular facets of volumes + # + # @ingroup l1_auxiliary + def SplitQuadsNearTriangularFacets(self): + faces_array = self.GetElementsByType(SMESH.FACE) + for face_id in faces_array: + if self.GetElemNbNodes(face_id) == 4: # quadrangle + quad_nodes = self.mesh.GetElemNodes(face_id) + node1_elems = self.GetNodeInverseElements(quad_nodes[1 -1]) + isVolumeFound = False + for node1_elem in node1_elems: + if not isVolumeFound: + if self.GetElementType(node1_elem, True) == SMESH.VOLUME: + nb_nodes = self.GetElemNbNodes(node1_elem) + if 3 < nb_nodes and nb_nodes < 7: # tetra or penta, or prism + volume_elem = node1_elem + volume_nodes = self.mesh.GetElemNodes(volume_elem) + if volume_nodes.count(quad_nodes[2 -1]) > 0: # 1,2 + if volume_nodes.count(quad_nodes[4 -1]) > 0: # 1,2,4 + isVolumeFound = True + if volume_nodes.count(quad_nodes[3 -1]) == 0: # 1,2,4 & !3 + self.SplitQuad([face_id], False) # diagonal 2-4 + elif volume_nodes.count(quad_nodes[3 -1]) > 0: # 1,2,3 & !4 + isVolumeFound = True + self.SplitQuad([face_id], True) # diagonal 1-3 + elif volume_nodes.count(quad_nodes[4 -1]) > 0: # 1,4 & !2 + if volume_nodes.count(quad_nodes[3 -1]) > 0: # 1,4,3 & !2 + isVolumeFound = True + self.SplitQuad([face_id], True) # diagonal 1-3 - ## Creates a 3D extrusion (Prism 3D) or RadialPrism 3D algorithm for solids. - # If the optional \a geom parameter is not sets, this algorithm is global. - # Otherwise, this algorithm define a submesh based on \a geom subshape. - # @param geom If defined, subshape to be meshed - def Prism(self, geom=0): - shape = geom - if shape==0: - shape = self.geom - nbSolids = len( self.geompyD.SubShapeAll( shape, geompyDC.ShapeType["SOLID"] )) - nbShells = len( self.geompyD.SubShapeAll( shape, geompyDC.ShapeType["SHELL"] )) - if nbSolids == 0 or nbSolids == nbShells: - return Mesh_Prism3D(self, geom) - return Mesh_RadialPrism3D(self, geom) + ## @brief Splits hexahedrons into tetrahedrons. + # + # This operation uses pattern mapping functionality for splitting. + # @param theObject the object from which the list of hexahedrons is taken; this is mesh, submesh or group. + # @param theNode000,theNode001 within the range [0,7]; gives the orientation of the + # pattern relatively each hexahedron: the (0,0,0) key-point of the pattern + # will be mapped into theNode000-th node of each volume, the (0,0,1) + # key-point will be mapped into theNode001-th node of each volume. + # The (0,0,0) key-point of the used pattern corresponds to a non-split corner. + # @return TRUE in case of success, FALSE otherwise. + # @ingroup l1_auxiliary + def SplitHexaToTetras (self, theObject, theNode000, theNode001): + # Pattern: 5.---------.6 + # /|#* /| + # / | #* / | + # / | # * / | + # / | # /* | + # (0,0,1) 4.---------.7 * | + # |#* |1 | # *| + # | # *.----|---#.2 + # | #/ * | / + # | /# * | / + # | / # * | / + # |/ #*|/ + # (0,0,0) 0.---------.3 + pattern_tetra = "!!! Nb of points: \n 8 \n\ + !!! Points: \n\ + 0 0 0 !- 0 \n\ + 0 1 0 !- 1 \n\ + 1 1 0 !- 2 \n\ + 1 0 0 !- 3 \n\ + 0 0 1 !- 4 \n\ + 0 1 1 !- 5 \n\ + 1 1 1 !- 6 \n\ + 1 0 1 !- 7 \n\ + !!! Indices of points of 6 tetras: \n\ + 0 3 4 1 \n\ + 7 4 3 1 \n\ + 4 7 5 1 \n\ + 6 2 5 7 \n\ + 1 5 2 7 \n\ + 2 3 1 7 \n" - ## Compute the mesh and return the status of the computation - def Compute(self, geom=0): - if geom == 0 or not isinstance(geom, geompyDC.GEOM._objref_GEOM_Object): - if self.geom == 0: - print "Compute impossible: mesh is not constructed on geom shape." - return 0 - else: - geom = self.geom - ok = False - try: - ok = self.smeshpyD.Compute(self.mesh, geom) - except SALOME.SALOME_Exception, ex: - print "Mesh computation failed, exception caught:" - print " ", ex.details.text - except: - import traceback - print "Mesh computation failed, exception caught:" - traceback.print_exc() - if not ok: - errors = self.smeshpyD.GetAlgoState( self.mesh, geom ) - allReasons = "" - for err in errors: - if err.isGlobalAlgo: - glob = "global" - else: - glob = "local" - pass - dim = err.algoDim - name = err.algoName - if len(name) == 0: - reason = '%s %sD algorithm is missing' % (glob, dim) - elif err.state == HYP_MISSING: - reason = ('%s %sD algorithm "%s" misses %sD hypothesis' - % (glob, dim, name, dim)) - elif err.state == HYP_NOTCONFORM: - reason = 'Global "Not Conform mesh allowed" hypothesis is missing' - elif err.state == HYP_BAD_PARAMETER: - reason = ('Hypothesis of %s %sD algorithm "%s" has a bad parameter value' - % ( glob, dim, name )) - elif err.state == HYP_BAD_GEOMETRY: - reason = ('%s %sD algorithm "%s" is assigned to geometry mismatching' - 'its expectation' % ( glob, dim, name )) - else: - reason = "For unknown reason."+\ - " Revise Mesh.Compute() implementation in smeshDC.py!" - pass - if allReasons != "": - allReasons += "\n" - pass - allReasons += reason - pass - if allReasons != "": - print '"' + GetName(self.mesh) + '"',"has not been computed:" - print allReasons - else: - print '"' + GetName(self.mesh) + '"',"has not been computed." - pass - pass - if salome.sg.hasDesktop(): - smeshgui = salome.ImportComponentGUI("SMESH") - smeshgui.Init(salome.myStudyId) - smeshgui.SetMeshIcon( salome.ObjectToID( self.mesh ), ok, (self.NbNodes()==0) ) - salome.sg.updateObjBrowser(1) - pass - return ok + pattern = self.smeshpyD.GetPattern() + isDone = pattern.LoadFromFile(pattern_tetra) + if not isDone: + print 'Pattern.LoadFromFile :', pattern.GetErrorCode() + return isDone - ## Compute tetrahedral mesh using AutomaticLength + MEFISTO + NETGEN - # The parameter \a fineness [0,-1] defines mesh fineness - def AutomaticTetrahedralization(self, fineness=0): - dim = self.MeshDimension() - # assign hypotheses - self.RemoveGlobalHypotheses() - self.Segment().AutomaticLength(fineness) - if dim > 1 : - self.Triangle().LengthFromEdges() - pass - if dim > 2 : - self.Tetrahedron(NETGEN) - pass - return self.Compute() + pattern.ApplyToHexahedrons(self.mesh, theObject.GetIDs(), theNode000, theNode001) + isDone = pattern.MakeMesh(self.mesh, False, False) + if not isDone: print 'Pattern.MakeMesh :', pattern.GetErrorCode() - ## Compute hexahedral mesh using AutomaticLength + Quadrangle + Hexahedron - # The parameter \a fineness [0,-1] defines mesh fineness - def AutomaticHexahedralization(self, fineness=0): - dim = self.MeshDimension() - # assign hypotheses - self.RemoveGlobalHypotheses() - self.Segment().AutomaticLength(fineness) - if dim > 1 : - self.Quadrangle() - pass - if dim > 2 : - self.Hexahedron() - pass - return self.Compute() + # split quafrangle faces near triangular facets of volumes + self.SplitQuadsNearTriangularFacets() - ## Assign hypothesis - # @param hyp is a hypothesis to assign - # @param geom is subhape of mesh geometry - def AddHypothesis(self, hyp, geom=0): - if isinstance( hyp, Mesh_Algorithm ): - hyp = hyp.GetAlgorithm() - pass - if not geom: - geom = self.geom - pass - status = self.mesh.AddHypothesis(geom, hyp) - isAlgo = hyp._narrow( SMESH_Algo ) - TreatHypoStatus( status, GetName( hyp ), GetName( geom ), isAlgo ) - return status + return isDone - ## Unassign hypothesis - # @param hyp is a hypothesis to unassign - # @param geom is subhape of mesh geometry - def RemoveHypothesis(self, hyp, geom=0): - if isinstance( hyp, Mesh_Algorithm ): - hyp = hyp.GetAlgorithm() - pass - if not geom: - geom = self.geom - pass - status = self.mesh.RemoveHypothesis(geom, hyp) - return status + ## @brief Split hexahedrons into prisms. + # + # Uses the pattern mapping functionality for splitting. + # @param theObject the object (mesh, submesh or group) from where the list of hexahedrons is taken; + # @param theNode000,theNode001 (within the range [0,7]) gives the orientation of the + # pattern relatively each hexahedron: keypoint (0,0,0) of the pattern + # will be mapped into the theNode000-th node of each volume, keypoint (0,0,1) + # will be mapped into the theNode001-th node of each volume. + # Edge (0,0,0)-(0,0,1) of used pattern connects two not split corners. + # @return TRUE in case of success, FALSE otherwise. + # @ingroup l1_auxiliary + def SplitHexaToPrisms (self, theObject, theNode000, theNode001): + # Pattern: 5.---------.6 + # /|# /| + # / | # / | + # / | # / | + # / | # / | + # (0,0,1) 4.---------.7 | + # | | | | + # | 1.----|----.2 + # | / * | / + # | / * | / + # | / * | / + # |/ *|/ + # (0,0,0) 0.---------.3 + pattern_prism = "!!! Nb of points: \n 8 \n\ + !!! Points: \n\ + 0 0 0 !- 0 \n\ + 0 1 0 !- 1 \n\ + 1 1 0 !- 2 \n\ + 1 0 0 !- 3 \n\ + 0 0 1 !- 4 \n\ + 0 1 1 !- 5 \n\ + 1 1 1 !- 6 \n\ + 1 0 1 !- 7 \n\ + !!! Indices of points of 2 prisms: \n\ + 0 1 3 4 5 7 \n\ + 2 3 1 6 7 5 \n" - ## Get the list of hypothesis added on a geom - # @param geom is subhape of mesh geometry - def GetHypothesisList(self, geom): - return self.mesh.GetHypothesisList( geom ) + pattern = self.smeshpyD.GetPattern() + isDone = pattern.LoadFromFile(pattern_prism) + if not isDone: + print 'Pattern.LoadFromFile :', pattern.GetErrorCode() + return isDone - ## Removes all global hypotheses - def RemoveGlobalHypotheses(self): - current_hyps = self.mesh.GetHypothesisList( self.geom ) - for hyp in current_hyps: - self.mesh.RemoveHypothesis( self.geom, hyp ) - pass - pass + pattern.ApplyToHexahedrons(self.mesh, theObject.GetIDs(), theNode000, theNode001) + isDone = pattern.MakeMesh(self.mesh, False, False) + if not isDone: print 'Pattern.MakeMesh :', pattern.GetErrorCode() + + # Splits quafrangle faces near triangular facets of volumes + self.SplitQuadsNearTriangularFacets() + + return isDone + + ## Smoothes elements + # @param IDsOfElements the list if ids of elements to smooth + # @param IDsOfFixedNodes the list of ids of fixed nodes. + # Note that nodes built on edges and boundary nodes are always fixed. + # @param MaxNbOfIterations the maximum number of iterations + # @param MaxAspectRatio varies in range [1.0, inf] + # @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH) + # @return TRUE in case of success, FALSE otherwise. + # @ingroup l2_modif_smooth + def Smooth(self, IDsOfElements, IDsOfFixedNodes, + MaxNbOfIterations, MaxAspectRatio, Method): + if IDsOfElements == []: + IDsOfElements = self.GetElementsId() + return self.editor.Smooth(IDsOfElements, IDsOfFixedNodes, + MaxNbOfIterations, MaxAspectRatio, Method) + + ## Smoothes elements which belong to the given object + # @param theObject the object to smooth + # @param IDsOfFixedNodes the list of ids of fixed nodes. + # Note that nodes built on edges and boundary nodes are always fixed. + # @param MaxNbOfIterations the maximum number of iterations + # @param MaxAspectRatio varies in range [1.0, inf] + # @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH) + # @return TRUE in case of success, FALSE otherwise. + # @ingroup l2_modif_smooth + def SmoothObject(self, theObject, IDsOfFixedNodes, + MaxNbOfIterations, MaxAspectRatio, Method): + if ( isinstance( theObject, Mesh )): + theObject = theObject.GetMesh() + return self.editor.SmoothObject(theObject, IDsOfFixedNodes, + MaxNbOfIterations, MaxAspectRatio, Method) + + ## Parametrically smoothes the given elements + # @param IDsOfElements the list if ids of elements to smooth + # @param IDsOfFixedNodes the list of ids of fixed nodes. + # Note that nodes built on edges and boundary nodes are always fixed. + # @param MaxNbOfIterations the maximum number of iterations + # @param MaxAspectRatio varies in range [1.0, inf] + # @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH) + # @return TRUE in case of success, FALSE otherwise. + # @ingroup l2_modif_smooth + def SmoothParametric(self, IDsOfElements, IDsOfFixedNodes, + MaxNbOfIterations, MaxAspectRatio, Method): + if IDsOfElements == []: + IDsOfElements = self.GetElementsId() + return self.editor.SmoothParametric(IDsOfElements, IDsOfFixedNodes, + MaxNbOfIterations, MaxAspectRatio, Method) + + ## Parametrically smoothes the elements which belong to the given object + # @param theObject the object to smooth + # @param IDsOfFixedNodes the list of ids of fixed nodes. + # Note that nodes built on edges and boundary nodes are always fixed. + # @param MaxNbOfIterations the maximum number of iterations + # @param MaxAspectRatio varies in range [1.0, inf] + # @param Method Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH) + # @return TRUE in case of success, FALSE otherwise. + # @ingroup l2_modif_smooth + def SmoothParametricObject(self, theObject, IDsOfFixedNodes, + MaxNbOfIterations, MaxAspectRatio, Method): + if ( isinstance( theObject, Mesh )): + theObject = theObject.GetMesh() + return self.editor.SmoothParametricObject(theObject, IDsOfFixedNodes, + MaxNbOfIterations, MaxAspectRatio, Method) + + ## Converts the mesh to quadratic, deletes old elements, replacing + # them with quadratic with the same id. + # @ingroup l2_modif_tofromqu + def ConvertToQuadratic(self, theForce3d): + self.editor.ConvertToQuadratic(theForce3d) + + ## Converts the mesh from quadratic to ordinary, + # deletes old quadratic elements, \n replacing + # them with ordinary mesh elements with the same id. + # @return TRUE in case of success, FALSE otherwise. + # @ingroup l2_modif_tofromqu + def ConvertFromQuadratic(self): + return self.editor.ConvertFromQuadratic() + + ## Renumber mesh nodes + # @ingroup l2_modif_renumber + def RenumberNodes(self): + self.editor.RenumberNodes() + + ## Renumber mesh elements + # @ingroup l2_modif_renumber + def RenumberElements(self): + self.editor.RenumberElements() + + ## Generates new elements by rotation of the elements around the axis + # @param IDsOfElements the list of ids of elements to sweep + # @param Axis the axis of rotation, AxisStruct or line(geom object) + # @param AngleInRadians the angle of Rotation + # @param NbOfSteps the number of steps + # @param Tolerance tolerance + # @param MakeGroups forces the generation of new groups from existing ones + # @param TotalAngle gives meaning of AngleInRadians: if True then it is an angular size + # of all steps, else - size of each step + # @return the list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise + # @ingroup l2_modif_extrurev + def RotationSweep(self, IDsOfElements, Axis, AngleInRadians, NbOfSteps, Tolerance, + MakeGroups=False, TotalAngle=False): + if IDsOfElements == []: + IDsOfElements = self.GetElementsId() + if ( isinstance( Axis, geompyDC.GEOM._objref_GEOM_Object)): + Axis = self.smeshpyD.GetAxisStruct(Axis) + if TotalAngle and NbOfSteps: + AngleInRadians /= NbOfSteps + if MakeGroups: + return self.editor.RotationSweepMakeGroups(IDsOfElements, Axis, + AngleInRadians, NbOfSteps, Tolerance) + self.editor.RotationSweep(IDsOfElements, Axis, AngleInRadians, NbOfSteps, Tolerance) + return [] + + ## Generates new elements by rotation of the elements of object around the axis + # @param theObject object which elements should be sweeped + # @param Axis the axis of rotation, AxisStruct or line(geom object) + # @param AngleInRadians the angle of Rotation + # @param NbOfSteps number of steps + # @param Tolerance tolerance + # @param MakeGroups forces the generation of new groups from existing ones + # @param TotalAngle gives meaning of AngleInRadians: if True then it is an angular size + # of all steps, else - size of each step + # @return the list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise + # @ingroup l2_modif_extrurev + def RotationSweepObject(self, theObject, Axis, AngleInRadians, NbOfSteps, Tolerance, + MakeGroups=False, TotalAngle=False): + if ( isinstance( theObject, Mesh )): + theObject = theObject.GetMesh() + if ( isinstance( Axis, geompyDC.GEOM._objref_GEOM_Object)): + Axis = self.smeshpyD.GetAxisStruct(Axis) + if TotalAngle and NbOfSteps: + AngleInRadians /= NbOfSteps + if MakeGroups: + return self.editor.RotationSweepObjectMakeGroups(theObject, Axis, AngleInRadians, + NbOfSteps, Tolerance) + self.editor.RotationSweepObject(theObject, Axis, AngleInRadians, NbOfSteps, Tolerance) + return [] - ## Create a mesh group based on geometric object \a grp - # and give a \a name, \n if this parameter is not defined - # the name is the same as the geometric group name \n - # Note: Works like GroupOnGeom(). - # @param grp is a geometric group, a vertex, an edge, a face or a solid - # @param name is the name of the mesh group - # @return SMESH_GroupOnGeom - def Group(self, grp, name=""): - return self.GroupOnGeom(grp, name) + ## Generates new elements by extrusion of the elements with given ids + # @param IDsOfElements the list of elements ids for extrusion + # @param StepVector vector, defining the direction and value of extrusion + # @param NbOfSteps the number of steps + # @param MakeGroups forces the generation of new groups from existing ones + # @return the list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise + # @ingroup l2_modif_extrurev + def ExtrusionSweep(self, IDsOfElements, StepVector, NbOfSteps, MakeGroups=False): + if IDsOfElements == []: + IDsOfElements = self.GetElementsId() + if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)): + StepVector = self.smeshpyD.GetDirStruct(StepVector) + if MakeGroups: + return self.editor.ExtrusionSweepMakeGroups(IDsOfElements, StepVector, NbOfSteps) + self.editor.ExtrusionSweep(IDsOfElements, StepVector, NbOfSteps) + return [] - ## Deprecated, only for compatibility! Please, use ExportMED() method instead. - # Export the mesh in a file with the MED format and choice the \a version of MED format - # @param f is the file name - # @param version values are SMESH.MED_V2_1, SMESH.MED_V2_2 - def ExportToMED(self, f, version, opt=0): - self.mesh.ExportToMED(f, opt, version) + ## Generates new elements by extrusion of the elements with given ids + # @param IDsOfElements is ids of elements + # @param StepVector vector, defining the direction and value of extrusion + # @param NbOfSteps the number of steps + # @param ExtrFlags sets flags for extrusion + # @param SewTolerance uses for comparing locations of nodes if flag + # EXTRUSION_FLAG_SEW is set + # @param MakeGroups forces the generation of new groups from existing ones + # @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise + # @ingroup l2_modif_extrurev + def AdvancedExtrusion(self, IDsOfElements, StepVector, NbOfSteps, + ExtrFlags, SewTolerance, MakeGroups=False): + if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)): + StepVector = self.smeshpyD.GetDirStruct(StepVector) + if MakeGroups: + return self.editor.AdvancedExtrusionMakeGroups(IDsOfElements, StepVector, NbOfSteps, + ExtrFlags, SewTolerance) + self.editor.AdvancedExtrusion(IDsOfElements, StepVector, NbOfSteps, + ExtrFlags, SewTolerance) + return [] - ## Export the mesh in a file with the MED format - # @param f is the file name - # @param auto_groups boolean parameter for creating/not creating - # the groups Group_On_All_Nodes, Group_On_All_Faces, ... ; - # the typical use is auto_groups=false. - # @param version MED format version(MED_V2_1 or MED_V2_2) - def ExportMED(self, f, auto_groups=0, version=MED_V2_2): - self.mesh.ExportToMED(f, auto_groups, version) + ## Generates new elements by extrusion of the elements which belong to the object + # @param theObject the object which elements should be processed + # @param StepVector vector, defining the direction and value of extrusion + # @param NbOfSteps the number of steps + # @param MakeGroups forces the generation of new groups from existing ones + # @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise + # @ingroup l2_modif_extrurev + def ExtrusionSweepObject(self, theObject, StepVector, NbOfSteps, MakeGroups=False): + if ( isinstance( theObject, Mesh )): + theObject = theObject.GetMesh() + if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)): + StepVector = self.smeshpyD.GetDirStruct(StepVector) + if MakeGroups: + return self.editor.ExtrusionSweepObjectMakeGroups(theObject, StepVector, NbOfSteps) + self.editor.ExtrusionSweepObject(theObject, StepVector, NbOfSteps) + return [] - ## Export the mesh in a file with the DAT format - # @param f is the file name - def ExportDAT(self, f): - self.mesh.ExportDAT(f) + ## Generates new elements by extrusion of the elements which belong to the object + # @param theObject object which elements should be processed + # @param StepVector vector, defining the direction and value of extrusion + # @param NbOfSteps the number of steps + # @param MakeGroups to generate new groups from existing ones + # @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise + # @ingroup l2_modif_extrurev + def ExtrusionSweepObject1D(self, theObject, StepVector, NbOfSteps, MakeGroups=False): + if ( isinstance( theObject, Mesh )): + theObject = theObject.GetMesh() + if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)): + StepVector = self.smeshpyD.GetDirStruct(StepVector) + if MakeGroups: + return self.editor.ExtrusionSweepObject1DMakeGroups(theObject, StepVector, NbOfSteps) + self.editor.ExtrusionSweepObject1D(theObject, StepVector, NbOfSteps) + return [] - ## Export the mesh in a file with the UNV format - # @param f is the file name - def ExportUNV(self, f): - self.mesh.ExportUNV(f) + ## Generates new elements by extrusion of the elements which belong to the object + # @param theObject object which elements should be processed + # @param StepVector vector, defining the direction and value of extrusion + # @param NbOfSteps the number of steps + # @param MakeGroups forces the generation of new groups from existing ones + # @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise + # @ingroup l2_modif_extrurev + def ExtrusionSweepObject2D(self, theObject, StepVector, NbOfSteps, MakeGroups=False): + if ( isinstance( theObject, Mesh )): + theObject = theObject.GetMesh() + if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)): + StepVector = self.smeshpyD.GetDirStruct(StepVector) + if MakeGroups: + return self.editor.ExtrusionSweepObject2DMakeGroups(theObject, StepVector, NbOfSteps) + self.editor.ExtrusionSweepObject2D(theObject, StepVector, NbOfSteps) + return [] - ## Export the mesh in a file with the STL format - # @param f is the file name - # @param ascii defined the kind of file contents - def ExportSTL(self, f, ascii=1): - self.mesh.ExportSTL(f, ascii) + ## Generates new elements by extrusion of the given elements + # The path of extrusion must be a meshed edge. + # @param IDsOfElements ids of elements + # @param PathMesh mesh containing a 1D sub-mesh on the edge, along which proceeds the extrusion + # @param PathShape shape(edge) defines the sub-mesh for the path + # @param NodeStart the first or the last node on the edge. Defines the direction of extrusion + # @param HasAngles allows the shape to be rotated around the path + # to get the resulting mesh in a helical fashion + # @param Angles list of angles + # @param HasRefPoint allows using the reference point + # @param RefPoint the point around which the shape is rotated (the mass center of the shape by default). + # The User can specify any point as the Reference Point. + # @param MakeGroups forces the generation of new groups from existing ones + # @param LinearVariation forces the computation of rotation angles as linear + # variation of the given Angles along path steps + # @return list of created groups (SMESH_GroupBase) and SMESH::Extrusion_Error if MakeGroups=True, + # only SMESH::Extrusion_Error otherwise + # @ingroup l2_modif_extrurev + def ExtrusionAlongPath(self, IDsOfElements, PathMesh, PathShape, NodeStart, + HasAngles, Angles, HasRefPoint, RefPoint, + MakeGroups=False, LinearVariation=False): + if IDsOfElements == []: + IDsOfElements = self.GetElementsId() + if ( isinstance( RefPoint, geompyDC.GEOM._objref_GEOM_Object)): + RefPoint = self.smeshpyD.GetPointStruct(RefPoint) + pass + if ( isinstance( PathMesh, Mesh )): + PathMesh = PathMesh.GetMesh() + if HasAngles and Angles and LinearVariation: + Angles = self.editor.LinearAnglesVariation( PathMesh, PathShape, Angles ) + pass + if MakeGroups: + return self.editor.ExtrusionAlongPathMakeGroups(IDsOfElements, PathMesh, + PathShape, NodeStart, HasAngles, + Angles, HasRefPoint, RefPoint) + return self.editor.ExtrusionAlongPath(IDsOfElements, PathMesh, PathShape, + NodeStart, HasAngles, Angles, HasRefPoint, RefPoint) + ## Generates new elements by extrusion of the elements which belong to the object + # The path of extrusion must be a meshed edge. + # @param theObject the object which elements should be processed + # @param PathMesh mesh containing a 1D sub-mesh on the edge, along which the extrusion proceeds + # @param PathShape shape(edge) defines the sub-mesh for the path + # @param NodeStart the first or the last node on the edge. Defines the direction of extrusion + # @param HasAngles allows the shape to be rotated around the path + # to get the resulting mesh in a helical fashion + # @param Angles list of angles + # @param HasRefPoint allows using the reference point + # @param RefPoint the point around which the shape is rotated (the mass center of the shape by default). + # The User can specify any point as the Reference Point. + # @param MakeGroups forces the generation of new groups from existing ones + # @param LinearVariation forces the computation of rotation angles as linear + # variation of the given Angles along path steps + # @return list of created groups (SMESH_GroupBase) and SMESH::Extrusion_Error if MakeGroups=True, + # only SMESH::Extrusion_Error otherwise + # @ingroup l2_modif_extrurev + def ExtrusionAlongPathObject(self, theObject, PathMesh, PathShape, NodeStart, + HasAngles, Angles, HasRefPoint, RefPoint, + MakeGroups=False, LinearVariation=False): + if ( isinstance( theObject, Mesh )): + theObject = theObject.GetMesh() + if ( isinstance( RefPoint, geompyDC.GEOM._objref_GEOM_Object)): + RefPoint = self.smeshpyD.GetPointStruct(RefPoint) + if ( isinstance( PathMesh, Mesh )): + PathMesh = PathMesh.GetMesh() + if HasAngles and Angles and LinearVariation: + Angles = self.editor.LinearAnglesVariation( PathMesh, PathShape, Angles ) + pass + if MakeGroups: + return self.editor.ExtrusionAlongPathObjectMakeGroups(theObject, PathMesh, + PathShape, NodeStart, HasAngles, + Angles, HasRefPoint, RefPoint) + return self.editor.ExtrusionAlongPathObject(theObject, PathMesh, PathShape, + NodeStart, HasAngles, Angles, HasRefPoint, + RefPoint) - # Operations with groups: - # ---------------------- + ## Creates a symmetrical copy of mesh elements + # @param IDsOfElements list of elements ids + # @param Mirror is AxisStruct or geom object(point, line, plane) + # @param theMirrorType is POINT, AXIS or PLANE + # If the Mirror is a geom object this parameter is unnecessary + # @param Copy allows to copy element (Copy is 1) or to replace with its mirroring (Copy is 0) + # @param MakeGroups forces the generation of new groups from existing ones (if Copy) + # @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise + # @ingroup l2_modif_trsf + def Mirror(self, IDsOfElements, Mirror, theMirrorType, Copy=0, MakeGroups=False): + if IDsOfElements == []: + IDsOfElements = self.GetElementsId() + if ( isinstance( Mirror, geompyDC.GEOM._objref_GEOM_Object)): + Mirror = self.smeshpyD.GetAxisStruct(Mirror) + if Copy and MakeGroups: + return self.editor.MirrorMakeGroups(IDsOfElements, Mirror, theMirrorType) + self.editor.Mirror(IDsOfElements, Mirror, theMirrorType, Copy) + return [] - ## Creates an empty mesh group - # @param elementType is the type of elements in the group - # @param name is the name of the mesh group - # @return SMESH_Group - def CreateEmptyGroup(self, elementType, name): - return self.mesh.CreateGroup(elementType, name) + ## Creates a new mesh by a symmetrical copy of mesh elements + # @param IDsOfElements the list of elements ids + # @param Mirror is AxisStruct or geom object (point, line, plane) + # @param theMirrorType is POINT, AXIS or PLANE + # If the Mirror is a geom object this parameter is unnecessary + # @param MakeGroups to generate new groups from existing ones + # @param NewMeshName a name of the new mesh to create + # @return instance of Mesh class + # @ingroup l2_modif_trsf + def MirrorMakeMesh(self, IDsOfElements, Mirror, theMirrorType, MakeGroups=0, NewMeshName=""): + if IDsOfElements == []: + IDsOfElements = self.GetElementsId() + if ( isinstance( Mirror, geompyDC.GEOM._objref_GEOM_Object)): + Mirror = self.smeshpyD.GetAxisStruct(Mirror) + mesh = self.editor.MirrorMakeMesh(IDsOfElements, Mirror, theMirrorType, + MakeGroups, NewMeshName) + return Mesh(self.smeshpyD,self.geompyD,mesh) - ## Creates a mesh group based on geometric object \a grp - # and give a \a name, \n if this parameter is not defined - # the name is the same as the geometric group name - # @param grp is a geometric group, a vertex, an edge, a face or a solid - # @param name is the name of the mesh group - # @return SMESH_GroupOnGeom - def GroupOnGeom(self, grp, name="", typ=None): - if name == "": - name = grp.GetName() + ## Creates a symmetrical copy of the object + # @param theObject mesh, submesh or group + # @param Mirror AxisStruct or geom object (point, line, plane) + # @param theMirrorType is POINT, AXIS or PLANE + # If the Mirror is a geom object this parameter is unnecessary + # @param Copy allows copying the element (Copy is 1) or replacing it with its mirror (Copy is 0) + # @param MakeGroups forces the generation of new groups from existing ones (if Copy) + # @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise + # @ingroup l2_modif_trsf + def MirrorObject (self, theObject, Mirror, theMirrorType, Copy=0, MakeGroups=False): + if ( isinstance( theObject, Mesh )): + theObject = theObject.GetMesh() + if ( isinstance( Mirror, geompyDC.GEOM._objref_GEOM_Object)): + Mirror = self.smeshpyD.GetAxisStruct(Mirror) + if Copy and MakeGroups: + return self.editor.MirrorObjectMakeGroups(theObject, Mirror, theMirrorType) + self.editor.MirrorObject(theObject, Mirror, theMirrorType, Copy) + return [] - if typ == None: - tgeo = str(grp.GetShapeType()) - if tgeo == "VERTEX": - typ = NODE - elif tgeo == "EDGE": - typ = EDGE - elif tgeo == "FACE": - typ = FACE - elif tgeo == "SOLID": - typ = VOLUME - elif tgeo == "SHELL": - typ = VOLUME - elif tgeo == "COMPOUND": - if len( self.geompyD.GetObjectIDs( grp )) == 0: - print "Mesh.Group: empty geometric group", GetName( grp ) - return 0 - tgeo = self.geompyD.GetType(grp) - if tgeo == geompyDC.ShapeType["VERTEX"]: - typ = NODE - elif tgeo == geompyDC.ShapeType["EDGE"]: - typ = EDGE - elif tgeo == geompyDC.ShapeType["FACE"]: - typ = FACE - elif tgeo == geompyDC.ShapeType["SOLID"]: - typ = VOLUME + ## Creates a new mesh by a symmetrical copy of the object + # @param theObject mesh, submesh or group + # @param Mirror AxisStruct or geom object (point, line, plane) + # @param theMirrorType POINT, AXIS or PLANE + # If the Mirror is a geom object this parameter is unnecessary + # @param MakeGroups forces the generation of new groups from existing ones + # @param NewMeshName the name of the new mesh to create + # @return instance of Mesh class + # @ingroup l2_modif_trsf + def MirrorObjectMakeMesh (self, theObject, Mirror, theMirrorType,MakeGroups=0, NewMeshName=""): + if ( isinstance( theObject, Mesh )): + theObject = theObject.GetMesh() + if (isinstance(Mirror, geompyDC.GEOM._objref_GEOM_Object)): + Mirror = self.smeshpyD.GetAxisStruct(Mirror) + mesh = self.editor.MirrorObjectMakeMesh(theObject, Mirror, theMirrorType, + MakeGroups, NewMeshName) + return Mesh( self.smeshpyD,self.geompyD,mesh ) - if typ == None: - print "Mesh.Group: bad first argument: expected a group, a vertex, an edge, a face or a solid" - return 0 - else: - return self.mesh.CreateGroupFromGEOM(typ, name, grp) + ## Translates the elements + # @param IDsOfElements list of elements ids + # @param Vector the direction of translation (DirStruct or vector) + # @param Copy allows copying the translated elements + # @param MakeGroups forces the generation of new groups from existing ones (if Copy) + # @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise + # @ingroup l2_modif_trsf + def Translate(self, IDsOfElements, Vector, Copy, MakeGroups=False): + if IDsOfElements == []: + IDsOfElements = self.GetElementsId() + if ( isinstance( Vector, geompyDC.GEOM._objref_GEOM_Object)): + Vector = self.smeshpyD.GetDirStruct(Vector) + if Copy and MakeGroups: + return self.editor.TranslateMakeGroups(IDsOfElements, Vector) + self.editor.Translate(IDsOfElements, Vector, Copy) + return [] - ## Create a mesh group by the given ids of elements - # @param groupName is the name of the mesh group - # @param elementType is the type of elements in the group - # @param elemIDs is the list of ids - # @return SMESH_Group - def MakeGroupByIds(self, groupName, elementType, elemIDs): - group = self.mesh.CreateGroup(elementType, groupName) - group.Add(elemIDs) - return group + ## Creates a new mesh of translated elements + # @param IDsOfElements list of elements ids + # @param Vector the direction of translation (DirStruct or vector) + # @param MakeGroups forces the generation of new groups from existing ones + # @param NewMeshName the name of the newly created mesh + # @return instance of Mesh class + # @ingroup l2_modif_trsf + def TranslateMakeMesh(self, IDsOfElements, Vector, MakeGroups=False, NewMeshName=""): + if IDsOfElements == []: + IDsOfElements = self.GetElementsId() + if ( isinstance( Vector, geompyDC.GEOM._objref_GEOM_Object)): + Vector = self.smeshpyD.GetDirStruct(Vector) + mesh = self.editor.TranslateMakeMesh(IDsOfElements, Vector, MakeGroups, NewMeshName) + return Mesh ( self.smeshpyD, self.geompyD, mesh ) - ## Create a mesh group by the given conditions - # @param groupName is the name of the mesh group - # @param elementType is the type of elements in the group - # @param CritType is type of criterion( FT_Taper, FT_Area, FT_RangeOfIds, FT_LyingOnGeom etc. ) - # @param Compare belong to {FT_LessThan, FT_MoreThan, FT_EqualTo} - # @param Treshold is threshold value (range of id ids as string, shape, numeric) - # @param UnaryOp is FT_LogicalNOT or FT_Undefined - # @return SMESH_Group - def MakeGroup(self, - groupName, - elementType, - CritType=FT_Undefined, - Compare=FT_EqualTo, - Treshold="", - UnaryOp=FT_Undefined): - aCriterion = self.smeshpyD.GetCriterion(elementType, CritType, Compare, Treshold, UnaryOp, FT_Undefined) - group = self.MakeGroupByCriterion(groupName, aCriterion) - return group + ## Translates the object + # @param theObject the object to translate (mesh, submesh, or group) + # @param Vector direction of translation (DirStruct or geom vector) + # @param Copy allows copying the translated elements + # @param MakeGroups forces the generation of new groups from existing ones (if Copy) + # @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise + # @ingroup l2_modif_trsf + def TranslateObject(self, theObject, Vector, Copy, MakeGroups=False): + if ( isinstance( theObject, Mesh )): + theObject = theObject.GetMesh() + if ( isinstance( Vector, geompyDC.GEOM._objref_GEOM_Object)): + Vector = self.smeshpyD.GetDirStruct(Vector) + if Copy and MakeGroups: + return self.editor.TranslateObjectMakeGroups(theObject, Vector) + self.editor.TranslateObject(theObject, Vector, Copy) + return [] - ## Create a mesh group by the given criterion - # @param groupName is the name of the mesh group - # @param Criterion is the instance of Criterion class - # @return SMESH_Group - def MakeGroupByCriterion(self, groupName, Criterion): - aFilterMgr = self.smeshpyD.CreateFilterManager() - aFilter = aFilterMgr.CreateFilter() - aCriteria = [] - aCriteria.append(Criterion) - aFilter.SetCriteria(aCriteria) - group = self.MakeGroupByFilter(groupName, aFilter) - return group + ## Creates a new mesh from the translated object + # @param theObject the object to translate (mesh, submesh, or group) + # @param Vector the direction of translation (DirStruct or geom vector) + # @param MakeGroups forces the generation of new groups from existing ones + # @param NewMeshName the name of the newly created mesh + # @return instance of Mesh class + # @ingroup l2_modif_trsf + def TranslateObjectMakeMesh(self, theObject, Vector, MakeGroups=False, NewMeshName=""): + if (isinstance(theObject, Mesh)): + theObject = theObject.GetMesh() + if (isinstance(Vector, geompyDC.GEOM._objref_GEOM_Object)): + Vector = self.smeshpyD.GetDirStruct(Vector) + mesh = self.editor.TranslateObjectMakeMesh(theObject, Vector, MakeGroups, NewMeshName) + return Mesh( self.smeshpyD, self.geompyD, mesh ) - ## Create a mesh group by the given criteria(list of criterions) - # @param groupName is the name of the mesh group - # @param Criteria is the list of criterions - # @return SMESH_Group - def MakeGroupByCriteria(self, groupName, theCriteria): - aFilterMgr = self.smeshpyD.CreateFilterManager() - aFilter = aFilterMgr.CreateFilter() - aFilter.SetCriteria(theCriteria) - group = self.MakeGroupByFilter(groupName, aFilter) - return group + ## Rotates the elements + # @param IDsOfElements list of elements ids + # @param Axis the axis of rotation (AxisStruct or geom line) + # @param AngleInRadians the angle of rotation (in radians) + # @param Copy allows copying the rotated elements + # @param MakeGroups forces the generation of new groups from existing ones (if Copy) + # @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise + # @ingroup l2_modif_trsf + def Rotate (self, IDsOfElements, Axis, AngleInRadians, Copy, MakeGroups=False): + if IDsOfElements == []: + IDsOfElements = self.GetElementsId() + if ( isinstance( Axis, geompyDC.GEOM._objref_GEOM_Object)): + Axis = self.smeshpyD.GetAxisStruct(Axis) + if Copy and MakeGroups: + return self.editor.RotateMakeGroups(IDsOfElements, Axis, AngleInRadians) + self.editor.Rotate(IDsOfElements, Axis, AngleInRadians, Copy) + return [] - ## Create a mesh group by the given filter - # @param groupName is the name of the mesh group - # @param Criterion is the instance of Filter class - # @return SMESH_Group - def MakeGroupByFilter(self, groupName, theFilter): - anIds = theFilter.GetElementsId(self.mesh) - anElemType = theFilter.GetElementType() - group = self.MakeGroupByIds(groupName, anElemType, anIds) - return group + ## Creates a new mesh of rotated elements + # @param IDsOfElements list of element ids + # @param Axis the axis of rotation (AxisStruct or geom line) + # @param AngleInRadians the angle of rotation (in radians) + # @param MakeGroups forces the generation of new groups from existing ones + # @param NewMeshName the name of the newly created mesh + # @return instance of Mesh class + # @ingroup l2_modif_trsf + def RotateMakeMesh (self, IDsOfElements, Axis, AngleInRadians, MakeGroups=0, NewMeshName=""): + if IDsOfElements == []: + IDsOfElements = self.GetElementsId() + if ( isinstance( Axis, geompyDC.GEOM._objref_GEOM_Object)): + Axis = self.smeshpyD.GetAxisStruct(Axis) + mesh = self.editor.RotateMakeMesh(IDsOfElements, Axis, AngleInRadians, + MakeGroups, NewMeshName) + return Mesh( self.smeshpyD, self.geompyD, mesh ) - ## Pass mesh elements through the given filter and return ids - # @param theFilter is SMESH_Filter - # @return list of ids - def GetIdsFromFilter(self, theFilter): - return theFilter.GetElementsId(self.mesh) + ## Rotates the object + # @param theObject the object to rotate( mesh, submesh, or group) + # @param Axis the axis of rotation (AxisStruct or geom line) + # @param AngleInRadians the angle of rotation (in radians) + # @param Copy allows copying the rotated elements + # @param MakeGroups forces the generation of new groups from existing ones (if Copy) + # @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise + # @ingroup l2_modif_trsf + def RotateObject (self, theObject, Axis, AngleInRadians, Copy, MakeGroups=False): + if (isinstance(theObject, Mesh)): + theObject = theObject.GetMesh() + if (isinstance(Axis, geompyDC.GEOM._objref_GEOM_Object)): + Axis = self.smeshpyD.GetAxisStruct(Axis) + if Copy and MakeGroups: + return self.editor.RotateObjectMakeGroups(theObject, Axis, AngleInRadians) + self.editor.RotateObject(theObject, Axis, AngleInRadians, Copy) + return [] - ## Verify whether 2D mesh element has free edges(edges connected to one face only)\n - # Returns list of special structures(borders). - # @return list of SMESH.FreeEdges.Border structure: edge id and two its nodes ids. - def GetFreeBorders(self): - aFilterMgr = self.smeshpyD.CreateFilterManager() - aPredicate = aFilterMgr.CreateFreeEdges() - aPredicate.SetMesh(self.mesh) - aBorders = aPredicate.GetBorders() - return aBorders + ## Creates a new mesh from the rotated object + # @param theObject the object to rotate (mesh, submesh, or group) + # @param Axis the axis of rotation (AxisStruct or geom line) + # @param AngleInRadians the angle of rotation (in radians) + # @param MakeGroups forces the generation of new groups from existing ones + # @param NewMeshName the name of the newly created mesh + # @return instance of Mesh class + # @ingroup l2_modif_trsf + def RotateObjectMakeMesh(self, theObject, Axis, AngleInRadians, MakeGroups=0,NewMeshName=""): + if (isinstance( theObject, Mesh )): + theObject = theObject.GetMesh() + if (isinstance(Axis, geompyDC.GEOM._objref_GEOM_Object)): + Axis = self.smeshpyD.GetAxisStruct(Axis) + mesh = self.editor.RotateObjectMakeMesh(theObject, Axis, AngleInRadians, + MakeGroups, NewMeshName) + return Mesh( self.smeshpyD, self.geompyD, mesh ) - ## Remove a group - def RemoveGroup(self, group): - self.mesh.RemoveGroup(group) + ## Finds groups of ajacent nodes within Tolerance. + # @param Tolerance the value of tolerance + # @return the list of groups of nodes + # @ingroup l2_modif_trsf + def FindCoincidentNodes (self, Tolerance): + return self.editor.FindCoincidentNodes(Tolerance) - ## Remove group with its contents - def RemoveGroupWithContents(self, group): - self.mesh.RemoveGroupWithContents(group) + ## Finds groups of ajacent nodes within Tolerance. + # @param Tolerance the value of tolerance + # @param SubMeshOrGroup SubMesh or Group + # @return the list of groups of nodes + # @ingroup l2_modif_trsf + def FindCoincidentNodesOnPart (self, SubMeshOrGroup, Tolerance): + return self.editor.FindCoincidentNodesOnPart(SubMeshOrGroup, Tolerance) - ## Get the list of groups existing in the mesh - def GetGroups(self): - return self.mesh.GetGroups() + ## Merges nodes + # @param GroupsOfNodes the list of groups of nodes + # @ingroup l2_modif_trsf + def MergeNodes (self, GroupsOfNodes): + self.editor.MergeNodes(GroupsOfNodes) - ## Get number of groups existing in the mesh - def NbGroups(self): - return self.mesh.NbGroups() + ## Finds the elements built on the same nodes. + # @param MeshOrSubMeshOrGroup Mesh or SubMesh, or Group of elements for searching + # @return a list of groups of equal elements + # @ingroup l2_modif_trsf + def FindEqualElements (self, MeshOrSubMeshOrGroup): + return self.editor.FindEqualElements(MeshOrSubMeshOrGroup) - ## Get the list of names of groups existing in the mesh - def GetGroupNames(self): - groups = self.GetGroups() - names = [] - for group in groups: - names.append(group.GetName()) - return names + ## Merges elements in each given group. + # @param GroupsOfElementsID groups of elements for merging + # @ingroup l2_modif_trsf + def MergeElements(self, GroupsOfElementsID): + self.editor.MergeElements(GroupsOfElementsID) - ## Union of two groups - # New group is created. All mesh elements that are - # present in initial groups are added to the new one - def UnionGroups(self, group1, group2, name): - return self.mesh.UnionGroups(group1, group2, name) + ## Leaves one element and removes all other elements built on the same nodes. + # @ingroup l2_modif_trsf + def MergeEqualElements(self): + self.editor.MergeEqualElements() - ## Intersection of two groups - # New group is created. All mesh elements that are - # present in both initial groups are added to the new one. - def IntersectGroups(self, group1, group2, name): - return self.mesh.IntersectGroups(group1, group2, name) + ## Sews free borders + # @return SMESH::Sew_Error + # @ingroup l2_modif_trsf + def SewFreeBorders (self, FirstNodeID1, SecondNodeID1, LastNodeID1, + FirstNodeID2, SecondNodeID2, LastNodeID2, + CreatePolygons, CreatePolyedrs): + return self.editor.SewFreeBorders(FirstNodeID1, SecondNodeID1, LastNodeID1, + FirstNodeID2, SecondNodeID2, LastNodeID2, + CreatePolygons, CreatePolyedrs) - ## Cut of two groups - # New group is created. All mesh elements that are present in - # main group but do not present in tool group are added to the new one - def CutGroups(self, mainGroup, toolGroup, name): - return self.mesh.CutGroups(mainGroup, toolGroup, name) + ## Sews conform free borders + # @return SMESH::Sew_Error + # @ingroup l2_modif_trsf + def SewConformFreeBorders (self, FirstNodeID1, SecondNodeID1, LastNodeID1, + FirstNodeID2, SecondNodeID2): + return self.editor.SewConformFreeBorders(FirstNodeID1, SecondNodeID1, LastNodeID1, + FirstNodeID2, SecondNodeID2) + ## Sews border to side + # @return SMESH::Sew_Error + # @ingroup l2_modif_trsf + def SewBorderToSide (self, FirstNodeIDOnFreeBorder, SecondNodeIDOnFreeBorder, LastNodeIDOnFreeBorder, + FirstNodeIDOnSide, LastNodeIDOnSide, CreatePolygons, CreatePolyedrs): + return self.editor.SewBorderToSide(FirstNodeIDOnFreeBorder, SecondNodeIDOnFreeBorder, LastNodeIDOnFreeBorder, + FirstNodeIDOnSide, LastNodeIDOnSide, CreatePolygons, CreatePolyedrs) - # Get some info about mesh: - # ------------------------ + ## Sews two sides of a mesh. The nodes belonging to Side1 are + # merged with the nodes of elements of Side2. + # The number of elements in theSide1 and in theSide2 must be + # equal and they should have similar nodal connectivity. + # The nodes to merge should belong to side borders and + # the first node should be linked to the second. + # @return SMESH::Sew_Error + # @ingroup l2_modif_trsf + def SewSideElements (self, IDsOfSide1Elements, IDsOfSide2Elements, + NodeID1OfSide1ToMerge, NodeID1OfSide2ToMerge, + NodeID2OfSide1ToMerge, NodeID2OfSide2ToMerge): + return self.editor.SewSideElements(IDsOfSide1Elements, IDsOfSide2Elements, + NodeID1OfSide1ToMerge, NodeID1OfSide2ToMerge, + NodeID2OfSide1ToMerge, NodeID2OfSide2ToMerge) - ## Get the log of nodes and elements added or removed since previous - # clear of the log. - # @param clearAfterGet log is emptied after Get (safe if concurrents access) - # @return list of log_block structures: - # commandType - # number - # coords - # indexes - def GetLog(self, clearAfterGet): - return self.mesh.GetLog(clearAfterGet) + ## Sets new nodes for the given element. + # @param ide the element id + # @param newIDs nodes ids + # @return If the number of nodes does not correspond to the type of element - returns false + # @ingroup l2_modif_edit + def ChangeElemNodes(self, ide, newIDs): + return self.editor.ChangeElemNodes(ide, newIDs) - ## Clear the log of nodes and elements added or removed since previous - # clear. Must be used immediately after GetLog if clearAfterGet is false. - def ClearLog(self): - self.mesh.ClearLog() + ## If during the last operation of MeshEditor some nodes were + # created, this method returns the list of their IDs, \n + # if new nodes were not created - returns empty list + # @return the list of integer values (can be empty) + # @ingroup l1_auxiliary + def GetLastCreatedNodes(self): + return self.editor.GetLastCreatedNodes() - def SetAutoColor(self, color): - self.mesh.SetAutoColor(color) + ## If during the last operation of MeshEditor some elements were + # created this method returns the list of their IDs, \n + # if new elements were not created - returns empty list + # @return the list of integer values (can be empty) + # @ingroup l1_auxiliary + def GetLastCreatedElems(self): + return self.editor.GetLastCreatedElems() - def GetAutoColor(self): - return self.mesh.GetAutoColor() +## The mother class to define algorithm, it is not recommended to use it directly. +# +# More details. +# @ingroup l2_algorithms +class Mesh_Algorithm: + # @class Mesh_Algorithm + # @brief Class Mesh_Algorithm - ## Get the internal Id - def GetId(self): - return self.mesh.GetId() + #def __init__(self,smesh): + # self.smesh=smesh + def __init__(self): + self.mesh = None + self.geom = None + self.subm = None + self.algo = None - ## Get the study Id - def GetStudyId(self): - return self.mesh.GetStudyId() + ## Finds a hypothesis in the study by its type name and parameters. + # Finds only the hypotheses created in smeshpyD engine. + # @return SMESH.SMESH_Hypothesis + def FindHypothesis (self, hypname, args, CompareMethod, smeshpyD): + study = smeshpyD.GetCurrentStudy() + #to do: find component by smeshpyD object, not by its data type + scomp = study.FindComponent(smeshpyD.ComponentDataType()) + if scomp is not None: + res,hypRoot = scomp.FindSubObject(SMESH.Tag_HypothesisRoot) + # Check if the root label of the hypotheses exists + if res and hypRoot is not None: + iter = study.NewChildIterator(hypRoot) + # Check all published hypotheses + while iter.More(): + hypo_so_i = iter.Value() + attr = hypo_so_i.FindAttribute("AttributeIOR")[1] + if attr is not None: + anIOR = attr.Value() + hypo_o_i = salome.orb.string_to_object(anIOR) + if hypo_o_i is not None: + # Check if this is a hypothesis + hypo_i = hypo_o_i._narrow(SMESH.SMESH_Hypothesis) + if hypo_i is not None: + # Check if the hypothesis belongs to current engine + if smeshpyD.GetObjectId(hypo_i) > 0: + # Check if this is the required hypothesis + if hypo_i.GetName() == hypname: + # Check arguments + if CompareMethod(hypo_i, args): + # found!!! + return hypo_i + pass + pass + pass + pass + pass + iter.Next() + pass + pass + pass + return None - ## Check group names for duplications. - # Consider maximum group name length stored in MED file. - def HasDuplicatedGroupNamesMED(self): - return self.mesh.HasDuplicatedGroupNamesMED() + ## Finds the algorithm in the study by its type name. + # Finds only the algorithms, which have been created in smeshpyD engine. + # @return SMESH.SMESH_Algo + def FindAlgorithm (self, algoname, smeshpyD): + study = smeshpyD.GetCurrentStudy() + #to do: find component by smeshpyD object, not by its data type + scomp = study.FindComponent(smeshpyD.ComponentDataType()) + if scomp is not None: + res,hypRoot = scomp.FindSubObject(SMESH.Tag_AlgorithmsRoot) + # Check if the root label of the algorithms exists + if res and hypRoot is not None: + iter = study.NewChildIterator(hypRoot) + # Check all published algorithms + while iter.More(): + algo_so_i = iter.Value() + attr = algo_so_i.FindAttribute("AttributeIOR")[1] + if attr is not None: + anIOR = attr.Value() + algo_o_i = salome.orb.string_to_object(anIOR) + if algo_o_i is not None: + # Check if this is an algorithm + algo_i = algo_o_i._narrow(SMESH.SMESH_Algo) + if algo_i is not None: + # Checks if the algorithm belongs to the current engine + if smeshpyD.GetObjectId(algo_i) > 0: + # Check if this is the required algorithm + if algo_i.GetName() == algoname: + # found!!! + return algo_i + pass + pass + pass + pass + iter.Next() + pass + pass + pass + return None - ## Obtain instance of SMESH_MeshEditor - def GetMeshEditor(self): - return self.mesh.GetMeshEditor() + ## If the algorithm is global, returns 0; \n + # else returns the submesh associated to this algorithm. + def GetSubMesh(self): + return self.subm - ## Get MED Mesh - def GetMEDMesh(self): - return self.mesh.GetMEDMesh() + ## Returns the wrapped mesher. + def GetAlgorithm(self): + return self.algo + ## Gets the list of hypothesis that can be used with this algorithm + def GetCompatibleHypothesis(self): + mylist = [] + if self.algo: + mylist = self.algo.GetCompatibleHypothesis() + return mylist - # Get informations about mesh contents: - # ------------------------------------ + ## Gets the name of the algorithm + def GetName(self): + GetName(self.algo) - ## Returns number of nodes in mesh - def NbNodes(self): - return self.mesh.NbNodes() + ## Sets the name to the algorithm + def SetName(self, name): + SetName(self.algo, name) - ## Returns number of elements in mesh - def NbElements(self): - return self.mesh.NbElements() + ## Gets the id of the algorithm + def GetId(self): + return self.algo.GetId() - ## Returns number of edges in mesh - def NbEdges(self): - return self.mesh.NbEdges() + ## Private method. + def Create(self, mesh, geom, hypo, so="libStdMeshersEngine.so"): + if geom is None: + raise RuntimeError, "Attemp to create " + hypo + " algoritm on None shape" + algo = self.FindAlgorithm(hypo, mesh.smeshpyD) + if algo is None: + algo = mesh.smeshpyD.CreateHypothesis(hypo, so) + pass + self.Assign(algo, mesh, geom) + return self.algo - ## Returns number of edges with given order in mesh - # @param elementOrder is order of elements: - # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC - def NbEdgesOfOrder(self, elementOrder): - return self.mesh.NbEdgesOfOrder(elementOrder) + ## Private method + def Assign(self, algo, mesh, geom): + if geom is None: + raise RuntimeError, "Attemp to create " + algo + " algoritm on None shape" + self.mesh = mesh + piece = mesh.geom + if not geom: + self.geom = piece + else: + self.geom = geom + name = GetName(geom) + if name==NO_NAME: + name = mesh.geompyD.SubShapeName(geom, piece) + mesh.geompyD.addToStudyInFather(piece, geom, name) + self.subm = mesh.mesh.GetSubMesh(geom, algo.GetName()) - ## Returns number of faces in mesh - def NbFaces(self): - return self.mesh.NbFaces() + self.algo = algo + status = mesh.mesh.AddHypothesis(self.geom, self.algo) + TreatHypoStatus( status, algo.GetName(), GetName(self.geom), True ) - ## Returns number of faces with given order in mesh - # @param elementOrder is order of elements: - # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC - def NbFacesOfOrder(self, elementOrder): - return self.mesh.NbFacesOfOrder(elementOrder) + def CompareHyp (self, hyp, args): + print "CompareHyp is not implemented for ", self.__class__.__name__, ":", hyp.GetName() + return False - ## Returns number of triangles in mesh - def NbTriangles(self): - return self.mesh.NbTriangles() + def CompareEqualHyp (self, hyp, args): + return True - ## Returns number of triangles with given order in mesh - # @param elementOrder is order of elements: - # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC - def NbTrianglesOfOrder(self, elementOrder): - return self.mesh.NbTrianglesOfOrder(elementOrder) + ## Private method + def Hypothesis (self, hyp, args=[], so="libStdMeshersEngine.so", + UseExisting=0, CompareMethod=""): + hypo = None + if UseExisting: + if CompareMethod == "": CompareMethod = self.CompareHyp + hypo = self.FindHypothesis(hyp, args, CompareMethod, self.mesh.smeshpyD) + pass + if hypo is None: + hypo = self.mesh.smeshpyD.CreateHypothesis(hyp, so) + a = "" + s = "=" + i = 0 + n = len(args) + while i + #
  • FromCAD - mesh conformity is assured by conformity of a shape
  • + #
  • PreProcess or PreProcessPlus - by pre-processing a CAD model
  • + # @ingroup l3_hypos_blsurf + def SetTopology(self, way): + # Parameter of BLSURF algo + self.Parameters().SetTopology(way) + + ## To respect geometrical edges or not. + # @ingroup l3_hypos_blsurf + def SetDecimesh(self, toIgnoreEdges=False): + # Parameter of BLSURF algo + self.Parameters().SetDecimesh(toIgnoreEdges) + + ## Sets verbosity level in the range 0 to 100. + # @ingroup l3_hypos_blsurf + def SetVerbosity(self, level): + # Parameter of BLSURF algo + self.Parameters().SetVerbosity(level) + + ## Sets advanced option value. + # @ingroup l3_hypos_blsurf + def SetOptionValue(self, optionName, level): + # Parameter of BLSURF algo + self.Parameters().SetOptionValue(optionName,level) + + ## Sets QuadAllowed flag. + # Only for algoType == NETGEN || NETGEN_2D || BLSURF + # @ingroup l3_hypos_netgen l3_hypos_blsurf + def SetQuadAllowed(self, toAllow=True): + if self.algoType == NETGEN_2D: + if toAllow: # add QuadranglePreference + self.Hypothesis("QuadranglePreference", UseExisting=1, CompareMethod=self.CompareEqualHyp) + else: # remove QuadranglePreference + for hyp in self.mesh.GetHypothesisList( self.geom ): + if hyp.GetName() == "QuadranglePreference": + self.mesh.RemoveHypothesis( self.geom, hyp ) + pass + pass + pass + return + if self.Parameters(): + self.params.SetQuadAllowed(toAllow) + return - ## Removes elements from mesh by ids - # @param IDsOfElements is list of ids of elements to remove - def RemoveElements(self, IDsOfElements): - return self.editor.RemoveElements(IDsOfElements) + ## Defines hypothesis having several parameters + # + # @ingroup l3_hypos_netgen + def Parameters(self, which=SOLE): + if self.params: + return self.params + if self.algoType == NETGEN: + if which == SIMPLE: + self.params = self.Hypothesis("NETGEN_SimpleParameters_2D", [], + "libNETGENEngine.so", UseExisting=0) + else: + self.params = self.Hypothesis("NETGEN_Parameters_2D", [], + "libNETGENEngine.so", UseExisting=0) + return self.params + elif self.algoType == MEFISTO: + print "Mefisto algo support no multi-parameter hypothesis" + return None + elif self.algoType == NETGEN_2D: + print "NETGEN_2D_ONLY algo support no multi-parameter hypothesis" + print "NETGEN_2D_ONLY uses 'MaxElementArea' and 'LengthFromEdges' ones" + return None + elif self.algoType == BLSURF: + self.params = self.Hypothesis("BLSURF_Parameters", [], + "libBLSURFEngine.so", UseExisting=0) + return self.params + else: + print "Mesh_Triangle with algo type %s does not have such a parameter, check algo type"%self.algoType + return None - ## Removes nodes from mesh by ids - # @param IDsOfNodes is list of ids of nodes to remove - def RemoveNodes(self, IDsOfNodes): - return self.editor.RemoveNodes(IDsOfNodes) + ## Sets MaxSize + # + # Only for algoType == NETGEN + # @ingroup l3_hypos_netgen + def SetMaxSize(self, theSize): + if self.Parameters(): + self.params.SetMaxSize(theSize) - ## Add node to mesh by coordinates - def AddNode(self, x, y, z): - return self.editor.AddNode( x, y, z) + ## Sets SecondOrder flag + # + # Only for algoType == NETGEN + # @ingroup l3_hypos_netgen + def SetSecondOrder(self, theVal): + if self.Parameters(): + self.params.SetSecondOrder(theVal) + ## Sets Optimize flag + # + # Only for algoType == NETGEN + # @ingroup l3_hypos_netgen + def SetOptimize(self, theVal): + if self.Parameters(): + self.params.SetOptimize(theVal) - ## Create edge both similar and quadratic (this is determed - # by number of given nodes). - # @param IdsOfNodes List of node IDs for creation of element. - # Needed order of nodes in this list corresponds to description - # of MED. \n This description is located by the following link: - # http://www.salome-platform.org/salome2/web_med_internet/logiciels/medV2.2.2_doc_html/html/modele_de_donnees.html#3. - def AddEdge(self, IDsOfNodes): - return self.editor.AddEdge(IDsOfNodes) + ## Sets Fineness + # @param theFineness is: + # VeryCoarse, Coarse, Moderate, Fine, VeryFine or Custom + # + # Only for algoType == NETGEN + # @ingroup l3_hypos_netgen + def SetFineness(self, theFineness): + if self.Parameters(): + self.params.SetFineness(theFineness) - ## Create face both similar and quadratic (this is determed - # by number of given nodes). - # @param IdsOfNodes List of node IDs for creation of element. - # Needed order of nodes in this list corresponds to description - # of MED. \n This description is located by the following link: - # http://www.salome-platform.org/salome2/web_med_internet/logiciels/medV2.2.2_doc_html/html/modele_de_donnees.html#3. - def AddFace(self, IDsOfNodes): - return self.editor.AddFace(IDsOfNodes) + ## Sets GrowthRate + # + # Only for algoType == NETGEN + # @ingroup l3_hypos_netgen + def SetGrowthRate(self, theRate): + if self.Parameters(): + self.params.SetGrowthRate(theRate) - ## Add polygonal face to mesh by list of nodes ids - def AddPolygonalFace(self, IdsOfNodes): - return self.editor.AddPolygonalFace(IdsOfNodes) + ## Sets NbSegPerEdge + # + # Only for algoType == NETGEN + # @ingroup l3_hypos_netgen + def SetNbSegPerEdge(self, theVal): + if self.Parameters(): + self.params.SetNbSegPerEdge(theVal) - ## Create volume both similar and quadratic (this is determed - # by number of given nodes). - # @param IdsOfNodes List of node IDs for creation of element. - # Needed order of nodes in this list corresponds to description - # of MED. \n This description is located by the following link: - # http://www.salome-platform.org/salome2/web_med_internet/logiciels/medV2.2.2_doc_html/html/modele_de_donnees.html#3. - def AddVolume(self, IDsOfNodes): - return self.editor.AddVolume(IDsOfNodes) + ## Sets NbSegPerRadius + # + # Only for algoType == NETGEN + # @ingroup l3_hypos_netgen + def SetNbSegPerRadius(self, theVal): + if self.Parameters(): + self.params.SetNbSegPerRadius(theVal) - ## Create volume of many faces, giving nodes for each face. - # @param IdsOfNodes List of node IDs for volume creation face by face. - # @param Quantities List of integer values, Quantities[i] - # gives quantity of nodes in face number i. - def AddPolyhedralVolume (self, IdsOfNodes, Quantities): - return self.editor.AddPolyhedralVolume(IdsOfNodes, Quantities) + ## Sets number of segments overriding value set by SetLocalLength() + # + # Only for algoType == NETGEN + # @ingroup l3_hypos_netgen + def SetNumberOfSegments(self, theVal): + self.Parameters(SIMPLE).SetNumberOfSegments(theVal) - ## Create volume of many faces, giving IDs of existing faces. - # @param IdsOfFaces List of face IDs for volume creation. + ## Sets number of segments overriding value set by SetNumberOfSegments() # - # Note: The created volume will refer only to nodes - # of the given faces, not to the faces itself. - def AddPolyhedralVolumeByFaces (self, IdsOfFaces): - return self.editor.AddPolyhedralVolumeByFaces(IdsOfFaces) + # Only for algoType == NETGEN + # @ingroup l3_hypos_netgen + def SetLocalLength(self, theVal): + self.Parameters(SIMPLE).SetLocalLength(theVal) + pass - ## @brief Bind a node to a vertex - # @param NodeID - node ID - # @param Vertex - vertex or vertex ID - # @return True if succeed else raise an exception - def SetNodeOnVertex(self, NodeID, Vertex): - if ( isinstance( Vertex, geompyDC.GEOM._objref_GEOM_Object)): - VertexID = Vertex.GetSubShapeIndices()[0] - else: - VertexID = Vertex - try: - self.editor.SetNodeOnVertex(NodeID, VertexID) - except SALOME.SALOME_Exception, inst: - raise ValueError, inst.details.text - return True +# Public class: Mesh_Quadrangle +# ----------------------------- - ## @brief Store node position on an edge - # @param NodeID - node ID - # @param Edge - edge or edge ID - # @param paramOnEdge - parameter on edge where the node is located - # @return True if succeed else raise an exception - def SetNodeOnEdge(self, NodeID, Edge, paramOnEdge): - if ( isinstance( Edge, geompyDC.GEOM._objref_GEOM_Object)): - EdgeID = Edge.GetSubShapeIndices()[0] - else: - EdgeID = Edge - try: - self.editor.SetNodeOnEdge(NodeID, EdgeID, paramOnEdge) - except SALOME.SALOME_Exception, inst: - raise ValueError, inst.details.text - return True +## Defines a quadrangle 2D algorithm +# +# @ingroup l3_algos_basic +class Mesh_Quadrangle(Mesh_Algorithm): - ## @brief Store node position on a face - # @param NodeID - node ID - # @param Face - face or face ID - # @param u - U parameter on face where the node is located - # @param v - V parameter on face where the node is located - # @return True if succeed else raise an exception - def SetNodeOnFace(self, NodeID, Face, u, v): - if ( isinstance( Face, geompyDC.GEOM._objref_GEOM_Object)): - FaceID = Face.GetSubShapeIndices()[0] - else: - FaceID = Face - try: - self.editor.SetNodeOnFace(NodeID, FaceID, u, v) - except SALOME.SALOME_Exception, inst: - raise ValueError, inst.details.text - return True + ## Private constructor. + def __init__(self, mesh, geom=0): + Mesh_Algorithm.__init__(self) + self.Create(mesh, geom, "Quadrangle_2D") + + ## Defines "QuadranglePreference" hypothesis, forcing construction + # of quadrangles if the number of nodes on the opposite edges is not the same + # while the total number of nodes on edges is even + # + # @ingroup l3_hypos_additi + def QuadranglePreference(self): + hyp = self.Hypothesis("QuadranglePreference", UseExisting=1, + CompareMethod=self.CompareEqualHyp) + return hyp + + ## Defines "TrianglePreference" hypothesis, forcing construction + # of triangles in the refinement area if the number of nodes + # on the opposite edges is not the same + # + # @ingroup l3_hypos_additi + def TrianglePreference(self): + hyp = self.Hypothesis("TrianglePreference", UseExisting=1, + CompareMethod=self.CompareEqualHyp) + return hyp + +# Public class: Mesh_Tetrahedron +# ------------------------------ - ## @brief Bind a node to a solid - # @param NodeID - node ID - # @param Solid - solid or solid ID - # @return True if succeed else raise an exception - def SetNodeInVolume(self, NodeID, Solid): - if ( isinstance( Solid, geompyDC.GEOM._objref_GEOM_Object)): - SolidID = Solid.GetSubShapeIndices()[0] - else: - SolidID = Solid - try: - self.editor.SetNodeInVolume(NodeID, SolidID) - except SALOME.SALOME_Exception, inst: - raise ValueError, inst.details.text - return True +## Defines a tetrahedron 3D algorithm +# +# @ingroup l3_algos_basic +class Mesh_Tetrahedron(Mesh_Algorithm): - ## @brief Bind an element to a shape - # @param ElementID - element ID - # @param Shape - shape or shape ID - # @return True if succeed else raise an exception - def SetMeshElementOnShape(self, ElementID, Shape): - if ( isinstance( Shape, geompyDC.GEOM._objref_GEOM_Object)): - ShapeID = Shape.GetSubShapeIndices()[0] - else: - ShapeID = Shape - try: - self.editor.SetMeshElementOnShape(ElementID, ShapeID) - except SALOME.SALOME_Exception, inst: - raise ValueError, inst.details.text - return True + params = 0 + algoType = 0 + ## Private constructor. + def __init__(self, mesh, algoType, geom=0): + Mesh_Algorithm.__init__(self) - ## Move node with given id - # @param NodeID id of the node - # @param x new X coordinate - # @param y new Y coordinate - # @param z new Z coordinate - def MoveNode(self, NodeID, x, y, z): - return self.editor.MoveNode(NodeID, x, y, z) + if algoType == NETGEN: + self.Create(mesh, geom, "NETGEN_3D", "libNETGENEngine.so") + pass - ## Find a node closest to a point - # @param x X coordinate of a point - # @param y Y coordinate of a point - # @param z Z coordinate of a point - # @return id of a node - def FindNodeClosestTo(self, x, y, z): - preview = self.mesh.GetMeshEditPreviewer() - return preview.MoveClosestNodeToPoint(x, y, z, -1) + elif algoType == FULL_NETGEN: + if noNETGENPlugin: + print "Warning: NETGENPlugin module has not been imported." + self.Create(mesh, geom, "NETGEN_2D3D", "libNETGENEngine.so") + pass - ## Find a node closest to a point and move it to a point location - # @param x X coordinate of a point - # @param y Y coordinate of a point - # @param z Z coordinate of a point - # @return id of a moved node - def MeshToPassThroughAPoint(self, x, y, z): - return self.editor.MoveClosestNodeToPoint(x, y, z, -1) + elif algoType == GHS3D: + import GHS3DPlugin + self.Create(mesh, geom, "GHS3D_3D" , "libGHS3DEngine.so") + pass - ## Replace two neighbour triangles sharing Node1-Node2 link - # with ones built on the same 4 nodes but having other common link. - # @param NodeID1 first node id - # @param NodeID2 second node id - # @return false if proper faces not found - def InverseDiag(self, NodeID1, NodeID2): - return self.editor.InverseDiag(NodeID1, NodeID2) + elif algoType == GHS3DPRL: + import GHS3DPRLPlugin + self.Create(mesh, geom, "GHS3DPRL_3D" , "libGHS3DPRLEngine.so") + pass - ## Replace two neighbour triangles sharing Node1-Node2 link - # with a quadrangle built on the same 4 nodes. - # @param NodeID1 first node id - # @param NodeID2 second node id - # @return false if proper faces not found - def DeleteDiag(self, NodeID1, NodeID2): - return self.editor.DeleteDiag(NodeID1, NodeID2) + self.algoType = algoType - ## Reorient elements by ids - # @param IDsOfElements if undefined reorient all mesh elements - def Reorient(self, IDsOfElements=None): - if IDsOfElements == None: - IDsOfElements = self.GetElementsId() - return self.editor.Reorient(IDsOfElements) + ## Defines "MaxElementVolume" hypothesis to give the maximun volume of each tetrahedron + # @param vol for the maximum volume of each tetrahedron + # @param UseExisting if ==true - searches for the existing hypothesis created with + # the same parameters, else (default) - creates a new one + # @ingroup l3_hypos_maxvol + def MaxElementVolume(self, vol, UseExisting=0): + if self.algoType == NETGEN: + hyp = self.Hypothesis("MaxElementVolume", [vol], UseExisting=UseExisting, + CompareMethod=self.CompareMaxElementVolume) + hyp.SetMaxElementVolume(vol) + return hyp + elif self.algoType == FULL_NETGEN: + self.Parameters(SIMPLE).SetMaxElementVolume(vol) + return None - ## Reorient all elements of the object - # @param theObject is mesh, submesh or group - def ReorientObject(self, theObject): - if ( isinstance( theObject, Mesh )): - theObject = theObject.GetMesh() - return self.editor.ReorientObject(theObject) + ## Checks if the given "MaxElementVolume" hypothesis has the same parameters as the given arguments + def CompareMaxElementVolume(self, hyp, args): + return IsEqual(hyp.GetMaxElementVolume(), args[0]) - ## Fuse neighbour triangles into quadrangles. - # @param IDsOfElements The triangles to be fused, - # @param theCriterion is FT_...; used to choose a neighbour to fuse with. - # @param MaxAngle is a max angle between element normals at which fusion - # is still performed; theMaxAngle is mesured in radians. - # @return TRUE in case of success, FALSE otherwise. - def TriToQuad(self, IDsOfElements, theCriterion, MaxAngle): - if IDsOfElements == []: - IDsOfElements = self.GetElementsId() - return self.editor.TriToQuad(IDsOfElements, self.smeshpyD.GetFunctor(theCriterion), MaxAngle) + ## Defines hypothesis having several parameters + # + # @ingroup l3_hypos_netgen + def Parameters(self, which=SOLE): + if self.params: + return self.params - ## Fuse neighbour triangles of the object into quadrangles - # @param theObject is mesh, submesh or group - # @param theCriterion is FT_...; used to choose a neighbour to fuse with. - # @param MaxAngle is a max angle between element normals at which fusion - # is still performed; theMaxAngle is mesured in radians. - # @return TRUE in case of success, FALSE otherwise. - def TriToQuadObject (self, theObject, theCriterion, MaxAngle): - if ( isinstance( theObject, Mesh )): - theObject = theObject.GetMesh() - return self.editor.TriToQuadObject(theObject, self.smeshpyD.GetFunctor(theCriterion), MaxAngle) + if self.algoType == FULL_NETGEN: + if which == SIMPLE: + self.params = self.Hypothesis("NETGEN_SimpleParameters_3D", [], + "libNETGENEngine.so", UseExisting=0) + else: + self.params = self.Hypothesis("NETGEN_Parameters", [], + "libNETGENEngine.so", UseExisting=0) + return self.params - ## Split quadrangles into triangles. - # @param IDsOfElements the faces to be splitted. - # @param theCriterion is FT_...; used to choose a diagonal for splitting. - # @return TRUE in case of success, FALSE otherwise. - def QuadToTri (self, IDsOfElements, theCriterion): - if IDsOfElements == []: - IDsOfElements = self.GetElementsId() - return self.editor.QuadToTri(IDsOfElements, self.smeshpyD.GetFunctor(theCriterion)) + if self.algoType == GHS3D: + self.params = self.Hypothesis("GHS3D_Parameters", [], + "libGHS3DEngine.so", UseExisting=0) + return self.params - ## Split quadrangles into triangles. - # @param theObject object to taking list of elements from, is mesh, submesh or group - # @param theCriterion is FT_...; used to choose a diagonal for splitting. - def QuadToTriObject (self, theObject, theCriterion): - if ( isinstance( theObject, Mesh )): - theObject = theObject.GetMesh() - return self.editor.QuadToTriObject(theObject, self.smeshpyD.GetFunctor(theCriterion)) + if self.algoType == GHS3DPRL: + self.params = self.Hypothesis("GHS3DPRL_Parameters", [], + "libGHS3DPRLEngine.so", UseExisting=0) + return self.params - ## Split quadrangles into triangles. - # @param theElems The faces to be splitted - # @param the13Diag is used to choose a diagonal for splitting. - # @return TRUE in case of success, FALSE otherwise. - def SplitQuad (self, IDsOfElements, Diag13): - if IDsOfElements == []: - IDsOfElements = self.GetElementsId() - return self.editor.SplitQuad(IDsOfElements, Diag13) + print "Algo supports no multi-parameter hypothesis" + return None - ## Split quadrangles into triangles. - # @param theObject is object to taking list of elements from, is mesh, submesh or group - def SplitQuadObject (self, theObject, Diag13): - if ( isinstance( theObject, Mesh )): - theObject = theObject.GetMesh() - return self.editor.SplitQuadObject(theObject, Diag13) + ## Sets MaxSize + # Parameter of FULL_NETGEN + # @ingroup l3_hypos_netgen + def SetMaxSize(self, theSize): + self.Parameters().SetMaxSize(theSize) - ## Find better splitting of the given quadrangle. - # @param IDOfQuad ID of the quadrangle to be splitted. - # @param theCriterion is FT_...; a criterion to choose a diagonal for splitting. - # @return 1 if 1-3 diagonal is better, 2 if 2-4 - # diagonal is better, 0 if error occurs. - def BestSplit (self, IDOfQuad, theCriterion): - return self.editor.BestSplit(IDOfQuad, self.smeshpyD.GetFunctor(theCriterion)) + ## Sets SecondOrder flag + # Parameter of FULL_NETGEN + # @ingroup l3_hypos_netgen + def SetSecondOrder(self, theVal): + self.Parameters().SetSecondOrder(theVal) - ## Split quafrangle faces near triangular facets of volumes - # - def SplitQuadsNearTriangularFacets(self): - faces_array = self.GetElementsByType(SMESH.FACE) - for face_id in faces_array: - if self.GetElemNbNodes(face_id) == 4: # quadrangle - quad_nodes = self.mesh.GetElemNodes(face_id) - node1_elems = self.GetNodeInverseElements(quad_nodes[1 -1]) - isVolumeFound = False - for node1_elem in node1_elems: - if not isVolumeFound: - if self.GetElementType(node1_elem, True) == SMESH.VOLUME: - nb_nodes = self.GetElemNbNodes(node1_elem) - if 3 < nb_nodes and nb_nodes < 7: # tetra or penta, or prism - volume_elem = node1_elem - volume_nodes = self.mesh.GetElemNodes(volume_elem) - if volume_nodes.count(quad_nodes[2 -1]) > 0: # 1,2 - if volume_nodes.count(quad_nodes[4 -1]) > 0: # 1,2,4 - isVolumeFound = True - if volume_nodes.count(quad_nodes[3 -1]) == 0: # 1,2,4 & !3 - self.SplitQuad([face_id], False) # diagonal 2-4 - elif volume_nodes.count(quad_nodes[3 -1]) > 0: # 1,2,3 & !4 - isVolumeFound = True - self.SplitQuad([face_id], True) # diagonal 1-3 - elif volume_nodes.count(quad_nodes[4 -1]) > 0: # 1,4 & !2 - if volume_nodes.count(quad_nodes[3 -1]) > 0: # 1,4,3 & !2 - isVolumeFound = True - self.SplitQuad([face_id], True) # diagonal 1-3 + ## Sets Optimize flag + # Parameter of FULL_NETGEN + # @ingroup l3_hypos_netgen + def SetOptimize(self, theVal): + self.Parameters().SetOptimize(theVal) - ## @brief Split hexahedrons into tetrahedrons. - # - # Use pattern mapping functionality for splitting. - # @param theObject object to take list of hexahedrons from; is mesh, submesh or group. - # @param theNode000,theNode001 is in range [0,7]; give an orientation of the - # pattern relatively each hexahedron: the (0,0,0) key-point of pattern - # will be mapped into -th node of each volume, the (0,0,1) - # key-point will be mapped into -th node of each volume. - # The (0,0,0) key-point of used pattern corresponds to not split corner. - # @return TRUE in case of success, FALSE otherwise. - def SplitHexaToTetras (self, theObject, theNode000, theNode001): - # Pattern: 5.---------.6 - # /|#* /| - # / | #* / | - # / | # * / | - # / | # /* | - # (0,0,1) 4.---------.7 * | - # |#* |1 | # *| - # | # *.----|---#.2 - # | #/ * | / - # | /# * | / - # | / # * | / - # |/ #*|/ - # (0,0,0) 0.---------.3 - pattern_tetra = "!!! Nb of points: \n 8 \n\ - !!! Points: \n\ - 0 0 0 !- 0 \n\ - 0 1 0 !- 1 \n\ - 1 1 0 !- 2 \n\ - 1 0 0 !- 3 \n\ - 0 0 1 !- 4 \n\ - 0 1 1 !- 5 \n\ - 1 1 1 !- 6 \n\ - 1 0 1 !- 7 \n\ - !!! Indices of points of 6 tetras: \n\ - 0 3 4 1 \n\ - 7 4 3 1 \n\ - 4 7 5 1 \n\ - 6 2 5 7 \n\ - 1 5 2 7 \n\ - 2 3 1 7 \n" + ## Sets Fineness + # @param theFineness is: + # VeryCoarse, Coarse, Moderate, Fine, VeryFine or Custom + # Parameter of FULL_NETGEN + # @ingroup l3_hypos_netgen + def SetFineness(self, theFineness): + self.Parameters().SetFineness(theFineness) - pattern = self.smeshpyD.GetPattern() - isDone = pattern.LoadFromFile(pattern_tetra) - if not isDone: - print 'Pattern.LoadFromFile :', pattern.GetErrorCode() - return isDone + ## Sets GrowthRate + # Parameter of FULL_NETGEN + # @ingroup l3_hypos_netgen + def SetGrowthRate(self, theRate): + self.Parameters().SetGrowthRate(theRate) - pattern.ApplyToHexahedrons(self.mesh, theObject.GetIDs(), theNode000, theNode001) - isDone = pattern.MakeMesh(self.mesh, False, False) - if not isDone: print 'Pattern.MakeMesh :', pattern.GetErrorCode() + ## Sets NbSegPerEdge + # Parameter of FULL_NETGEN + # @ingroup l3_hypos_netgen + def SetNbSegPerEdge(self, theVal): + self.Parameters().SetNbSegPerEdge(theVal) - # split quafrangle faces near triangular facets of volumes - self.SplitQuadsNearTriangularFacets() + ## Sets NbSegPerRadius + # Parameter of FULL_NETGEN + # @ingroup l3_hypos_netgen + def SetNbSegPerRadius(self, theVal): + self.Parameters().SetNbSegPerRadius(theVal) + + ## Sets number of segments overriding value set by SetLocalLength() + # Only for algoType == NETGEN_FULL + # @ingroup l3_hypos_netgen + def SetNumberOfSegments(self, theVal): + self.Parameters(SIMPLE).SetNumberOfSegments(theVal) + + ## Sets number of segments overriding value set by SetNumberOfSegments() + # Only for algoType == NETGEN_FULL + # @ingroup l3_hypos_netgen + def SetLocalLength(self, theVal): + self.Parameters(SIMPLE).SetLocalLength(theVal) + + ## Defines "MaxElementArea" parameter of NETGEN_SimpleParameters_3D hypothesis. + # Overrides value set by LengthFromEdges() + # Only for algoType == NETGEN_FULL + # @ingroup l3_hypos_netgen + def MaxElementArea(self, area): + self.Parameters(SIMPLE).SetMaxElementArea(area) + + ## Defines "LengthFromEdges" parameter of NETGEN_SimpleParameters_3D hypothesis + # Overrides value set by MaxElementArea() + # Only for algoType == NETGEN_FULL + # @ingroup l3_hypos_netgen + def LengthFromEdges(self): + self.Parameters(SIMPLE).LengthFromEdges() + + ## Defines "LengthFromFaces" parameter of NETGEN_SimpleParameters_3D hypothesis + # Overrides value set by MaxElementVolume() + # Only for algoType == NETGEN_FULL + # @ingroup l3_hypos_netgen + def LengthFromFaces(self): + self.Parameters(SIMPLE).LengthFromFaces() + + ## To mesh "holes" in a solid or not. Default is to mesh. + # @ingroup l3_hypos_ghs3dh + def SetToMeshHoles(self, toMesh): + # Parameter of GHS3D + self.Parameters().SetToMeshHoles(toMesh) + + ## Set Optimization level: + # None_Optimization, Light_Optimization, Medium_Optimization, Strong_Optimization. + # Default is Medium_Optimization + # @ingroup l3_hypos_ghs3dh + def SetOptimizationLevel(self, level): + # Parameter of GHS3D + self.Parameters().SetOptimizationLevel(level) + + ## Maximal size of memory to be used by the algorithm (in Megabytes). + # @ingroup l3_hypos_ghs3dh + def SetMaximumMemory(self, MB): + # Advanced parameter of GHS3D + self.Parameters().SetMaximumMemory(MB) + + ## Initial size of memory to be used by the algorithm (in Megabytes) in + # automatic memory adjustment mode. + # @ingroup l3_hypos_ghs3dh + def SetInitialMemory(self, MB): + # Advanced parameter of GHS3D + self.Parameters().SetInitialMemory(MB) + + ## Path to working directory. + # @ingroup l3_hypos_ghs3dh + def SetWorkingDirectory(self, path): + # Advanced parameter of GHS3D + self.Parameters().SetWorkingDirectory(path) + + ## To keep working files or remove them. Log file remains in case of errors anyway. + # @ingroup l3_hypos_ghs3dh + def SetKeepFiles(self, toKeep): + # Advanced parameter of GHS3D and GHS3DPRL + self.Parameters().SetKeepFiles(toKeep) + + ## To set verbose level [0-10].
      + #
    • 0 - no standard output, + #
    • 2 - prints the data, quality statistics of the skin and final meshes and + # indicates when the final mesh is being saved. In addition the software + # gives indication regarding the CPU time. + #
    • 10 - same as 2 plus the main steps in the computation, quality statistics + # histogram of the skin mesh, quality statistics histogram together with + # the characteristics of the final mesh.
    + # @ingroup l3_hypos_ghs3dh + def SetVerboseLevel(self, level): + # Advanced parameter of GHS3D + self.Parameters().SetVerboseLevel(level) + + ## To create new nodes. + # @ingroup l3_hypos_ghs3dh + def SetToCreateNewNodes(self, toCreate): + # Advanced parameter of GHS3D + self.Parameters().SetToCreateNewNodes(toCreate) + + ## To use boundary recovery version which tries to create mesh on a very poor + # quality surface mesh. + # @ingroup l3_hypos_ghs3dh + def SetToUseBoundaryRecoveryVersion(self, toUse): + # Advanced parameter of GHS3D + self.Parameters().SetToUseBoundaryRecoveryVersion(toUse) + + ## Sets command line option as text. + # @ingroup l3_hypos_ghs3dh + def SetTextOption(self, option): + # Advanced parameter of GHS3D + self.Parameters().SetTextOption(option) + + ## Sets MED files name and path. + def SetMEDName(self, value): + self.Parameters().SetMEDName(value) + + ## Sets the number of partition of the initial mesh + def SetNbPart(self, value): + self.Parameters().SetNbPart(value) + + ## When big mesh, start tepal in background + def SetBackground(self, value): + self.Parameters().SetBackground(value) - return isDone +# Public class: Mesh_Hexahedron +# ------------------------------ - ## @brief Split hexahedrons into prisms. - # - # Use pattern mapping functionality for splitting. - # @param theObject object to take list of hexahedrons from; is mesh, submesh or group. - # @param theNode000,theNode001 is in range [0,7]; give an orientation of the - # pattern relatively each hexahedron: the (0,0,0) key-point of pattern - # will be mapped into -th node of each volume, the (0,0,1) - # key-point will be mapped into -th node of each volume. - # The edge (0,0,0)-(0,0,1) of used pattern connects two not split corners. - # @return TRUE in case of success, FALSE otherwise. - def SplitHexaToPrisms (self, theObject, theNode000, theNode001): - # Pattern: 5.---------.6 - # /|# /| - # / | # / | - # / | # / | - # / | # / | - # (0,0,1) 4.---------.7 | - # | | | | - # | 1.----|----.2 - # | / * | / - # | / * | / - # | / * | / - # |/ *|/ - # (0,0,0) 0.---------.3 - pattern_prism = "!!! Nb of points: \n 8 \n\ - !!! Points: \n\ - 0 0 0 !- 0 \n\ - 0 1 0 !- 1 \n\ - 1 1 0 !- 2 \n\ - 1 0 0 !- 3 \n\ - 0 0 1 !- 4 \n\ - 0 1 1 !- 5 \n\ - 1 1 1 !- 6 \n\ - 1 0 1 !- 7 \n\ - !!! Indices of points of 2 prisms: \n\ - 0 1 3 4 5 7 \n\ - 2 3 1 6 7 5 \n" +## Defines a hexahedron 3D algorithm +# +# @ingroup l3_algos_basic +class Mesh_Hexahedron(Mesh_Algorithm): - pattern = self.smeshpyD.GetPattern() - isDone = pattern.LoadFromFile(pattern_prism) - if not isDone: - print 'Pattern.LoadFromFile :', pattern.GetErrorCode() - return isDone + params = 0 + algoType = 0 - pattern.ApplyToHexahedrons(self.mesh, theObject.GetIDs(), theNode000, theNode001) - isDone = pattern.MakeMesh(self.mesh, False, False) - if not isDone: print 'Pattern.MakeMesh :', pattern.GetErrorCode() + ## Private constructor. + def __init__(self, mesh, algoType=Hexa, geom=0): + Mesh_Algorithm.__init__(self) - # split quafrangle faces near triangular facets of volumes - self.SplitQuadsNearTriangularFacets() + self.algoType = algoType - return isDone + if algoType == Hexa: + self.Create(mesh, geom, "Hexa_3D") + pass + + elif algoType == Hexotic: + import HexoticPlugin + self.Create(mesh, geom, "Hexotic_3D", "libHexoticEngine.so") + pass - ## Smooth elements - # @param IDsOfElements list if ids of elements to smooth - # @param IDsOfFixedNodes list of ids of fixed nodes. - # Note that nodes built on edges and boundary nodes are always fixed. - # @param MaxNbOfIterations maximum number of iterations - # @param MaxAspectRatio varies in range [1.0, inf] - # @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH) - def Smooth(self, IDsOfElements, IDsOfFixedNodes, - MaxNbOfIterations, MaxAspectRatio, Method): - if IDsOfElements == []: - IDsOfElements = self.GetElementsId() - return self.editor.Smooth(IDsOfElements, IDsOfFixedNodes, - MaxNbOfIterations, MaxAspectRatio, Method) + ## Defines "MinMaxQuad" hypothesis to give three hexotic parameters + # @ingroup l3_hypos_hexotic + def MinMaxQuad(self, min=3, max=8, quad=True): + self.params = self.Hypothesis("Hexotic_Parameters", [], "libHexoticEngine.so", + UseExisting=0) + self.params.SetHexesMinLevel(min) + self.params.SetHexesMaxLevel(max) + self.params.SetHexoticQuadrangles(quad) + return self.params - ## Smooth elements belong to given object - # @param theObject object to smooth - # @param IDsOfFixedNodes list of ids of fixed nodes. - # Note that nodes built on edges and boundary nodes are always fixed. - # @param MaxNbOfIterations maximum number of iterations - # @param MaxAspectRatio varies in range [1.0, inf] - # @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH) - def SmoothObject(self, theObject, IDsOfFixedNodes, - MaxNbOfIterations, MaxxAspectRatio, Method): - if ( isinstance( theObject, Mesh )): - theObject = theObject.GetMesh() - return self.editor.SmoothObject(theObject, IDsOfFixedNodes, - MaxNbOfIterations, MaxxAspectRatio, Method) +# Deprecated, only for compatibility! +# Public class: Mesh_Netgen +# ------------------------------ - ## Parametric smooth the given elements - # @param IDsOfElements list if ids of elements to smooth - # @param IDsOfFixedNodes list of ids of fixed nodes. - # Note that nodes built on edges and boundary nodes are always fixed. - # @param MaxNbOfIterations maximum number of iterations - # @param MaxAspectRatio varies in range [1.0, inf] - # @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH) - def SmoothParametric(self, IDsOfElements, IDsOfFixedNodes, - MaxNbOfIterations, MaxAspectRatio, Method): - if IDsOfElements == []: - IDsOfElements = self.GetElementsId() - return self.editor.SmoothParametric(IDsOfElements, IDsOfFixedNodes, - MaxNbOfIterations, MaxAspectRatio, Method) +## Defines a NETGEN-based 2D or 3D algorithm +# that needs no discrete boundary (i.e. independent) +# +# This class is deprecated, only for compatibility! +# +# More details. +# @ingroup l3_algos_basic +class Mesh_Netgen(Mesh_Algorithm): - ## Parametric smooth elements belong to given object - # @param theObject object to smooth - # @param IDsOfFixedNodes list of ids of fixed nodes. - # Note that nodes built on edges and boundary nodes are always fixed. - # @param MaxNbOfIterations maximum number of iterations - # @param MaxAspectRatio varies in range [1.0, inf] - # @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH) - def SmoothParametricObject(self, theObject, IDsOfFixedNodes, - MaxNbOfIterations, MaxAspectRatio, Method): - if ( isinstance( theObject, Mesh )): - theObject = theObject.GetMesh() - return self.editor.SmoothParametricObject(theObject, IDsOfFixedNodes, - MaxNbOfIterations, MaxAspectRatio, Method) + is3D = 0 - ## Converts all mesh to quadratic one, deletes old elements, replacing - # them with quadratic ones with the same id. - def ConvertToQuadratic(self, theForce3d): - self.editor.ConvertToQuadratic(theForce3d) + ## Private constructor. + def __init__(self, mesh, is3D, geom=0): + Mesh_Algorithm.__init__(self) - ## Converts all mesh from quadratic to ordinary ones, - # deletes old quadratic elements, \n replacing - # them with ordinary mesh elements with the same id. - def ConvertFromQuadratic(self): - return self.editor.ConvertFromQuadratic() + if noNETGENPlugin: + print "Warning: NETGENPlugin module has not been imported." - ## Renumber mesh nodes - def RenumberNodes(self): - self.editor.RenumberNodes() + self.is3D = is3D + if is3D: + self.Create(mesh, geom, "NETGEN_2D3D", "libNETGENEngine.so") + pass - ## Renumber mesh elements - def RenumberElements(self): - self.editor.RenumberElements() + else: + self.Create(mesh, geom, "NETGEN_2D", "libNETGENEngine.so") + pass - ## Generate new elements by rotation of the elements around the axis - # @param IDsOfElements list of ids of elements to sweep - # @param Axix axis of rotation, AxisStruct or line(geom object) - # @param AngleInRadians angle of Rotation - # @param NbOfSteps number of steps - # @param Tolerance tolerance - # @param MakeGroups to generate new groups from existing ones - def RotationSweep(self, IDsOfElements, Axix, AngleInRadians, NbOfSteps, Tolerance, MakeGroups=False): - if IDsOfElements == []: - IDsOfElements = self.GetElementsId() - if ( isinstance( Axix, geompyDC.GEOM._objref_GEOM_Object)): - Axix = self.smeshpyD.GetAxisStruct(Axix) - if MakeGroups: - return self.editor.RotationSweepMakeGroups(IDsOfElements, Axix, - AngleInRadians, NbOfSteps, Tolerance) - self.editor.RotationSweep(IDsOfElements, Axix, AngleInRadians, NbOfSteps, Tolerance) - return [] + ## Defines the hypothesis containing parameters of the algorithm + def Parameters(self): + if self.is3D: + hyp = self.Hypothesis("NETGEN_Parameters", [], + "libNETGENEngine.so", UseExisting=0) + else: + hyp = self.Hypothesis("NETGEN_Parameters_2D", [], + "libNETGENEngine.so", UseExisting=0) + return hyp - ## Generate new elements by rotation of the elements of object around the axis - # @param theObject object wich elements should be sweeped - # @param Axix axis of rotation, AxisStruct or line(geom object) - # @param AngleInRadians angle of Rotation - # @param NbOfSteps number of steps - # @param Tolerance tolerance - # @param MakeGroups to generate new groups from existing ones - def RotationSweepObject(self, theObject, Axix, AngleInRadians, NbOfSteps, Tolerance, MakeGroups=False): - if ( isinstance( theObject, Mesh )): - theObject = theObject.GetMesh() - if ( isinstance( Axix, geompyDC.GEOM._objref_GEOM_Object)): - Axix = self.smeshpyD.GetAxisStruct(Axix) - if MakeGroups: - return self.editor.RotationSweepObjectMakeGroups(theObject, Axix, AngleInRadians, - NbOfSteps, Tolerance) - self.editor.RotationSweepObject(theObject, Axix, AngleInRadians, NbOfSteps, Tolerance) - return [] +# Public class: Mesh_Projection1D +# ------------------------------ - ## Generate new elements by extrusion of the elements with given ids - # @param IDsOfElements list of elements ids for extrusion - # @param StepVector vector, defining the direction and value of extrusion - # @param NbOfSteps the number of steps - # @param MakeGroups to generate new groups from existing ones - def ExtrusionSweep(self, IDsOfElements, StepVector, NbOfSteps, MakeGroups=False): - if IDsOfElements == []: - IDsOfElements = self.GetElementsId() - if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)): - StepVector = self.smeshpyD.GetDirStruct(StepVector) - if MakeGroups: - return self.editor.ExtrusionSweepMakeGroups(IDsOfElements, StepVector, NbOfSteps) - self.editor.ExtrusionSweep(IDsOfElements, StepVector, NbOfSteps) - return [] +## Defines a projection 1D algorithm +# @ingroup l3_algos_proj +# +class Mesh_Projection1D(Mesh_Algorithm): - ## Generate new elements by extrusion of the elements with given ids - # @param IDsOfElements is ids of elements - # @param StepVector vector, defining the direction and value of extrusion - # @param NbOfSteps the number of steps - # @param ExtrFlags set flags for performing extrusion - # @param SewTolerance uses for comparing locations of nodes if flag - # EXTRUSION_FLAG_SEW is set - # @param MakeGroups to generate new groups from existing ones - def AdvancedExtrusion(self, IDsOfElements, StepVector, NbOfSteps, ExtrFlags, SewTolerance, MakeGroups=False): - if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)): - StepVector = self.smeshpyD.GetDirStruct(StepVector) - if MakeGroups: - return self.editor.AdvancedExtrusionMakeGroups(IDsOfElements, StepVector, NbOfSteps, - ExtrFlags, SewTolerance) - self.editor.AdvancedExtrusion(IDsOfElements, StepVector, NbOfSteps, - ExtrFlags, SewTolerance) - return [] + ## Private constructor. + def __init__(self, mesh, geom=0): + Mesh_Algorithm.__init__(self) + self.Create(mesh, geom, "Projection_1D") - ## Generate new elements by extrusion of the elements belong to object - # @param theObject object wich elements should be processed - # @param StepVector vector, defining the direction and value of extrusion - # @param NbOfSteps the number of steps - # @param MakeGroups to generate new groups from existing ones - def ExtrusionSweepObject(self, theObject, StepVector, NbOfSteps, MakeGroups=False): - if ( isinstance( theObject, Mesh )): - theObject = theObject.GetMesh() - if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)): - StepVector = self.smeshpyD.GetDirStruct(StepVector) - if MakeGroups: - return self.editor.ExtrusionSweepObjectMakeGroups(theObject, StepVector, NbOfSteps) - self.editor.ExtrusionSweepObject(theObject, StepVector, NbOfSteps) - return [] + ## Defines "Source Edge" hypothesis, specifying a meshed edge, from where + # a mesh pattern is taken, and, optionally, the association of vertices + # between the source edge and a target edge (to which a hypothesis is assigned) + # @param edge from which nodes distribution is taken + # @param mesh from which nodes distribution is taken (optional) + # @param srcV a vertex of \a edge to associate with \a tgtV (optional) + # @param tgtV a vertex of \a the edge to which the algorithm is assigned, + # to associate with \a srcV (optional) + # @param UseExisting if ==true - searches for the existing hypothesis created with + # the same parameters, else (default) - creates a new one + def SourceEdge(self, edge, mesh=None, srcV=None, tgtV=None, UseExisting=0): + hyp = self.Hypothesis("ProjectionSource1D", [edge,mesh,srcV,tgtV], + UseExisting=0) + #UseExisting=UseExisting, CompareMethod=self.CompareSourceEdge) + hyp.SetSourceEdge( edge ) + if not mesh is None and isinstance(mesh, Mesh): + mesh = mesh.GetMesh() + hyp.SetSourceMesh( mesh ) + hyp.SetVertexAssociation( srcV, tgtV ) + return hyp - ## Generate new elements by extrusion of the elements belong to object - # @param theObject object wich elements should be processed - # @param StepVector vector, defining the direction and value of extrusion - # @param NbOfSteps the number of steps - # @param MakeGroups to generate new groups from existing ones - def ExtrusionSweepObject1D(self, theObject, StepVector, NbOfSteps, MakeGroups=False): - if ( isinstance( theObject, Mesh )): - theObject = theObject.GetMesh() - if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)): - StepVector = self.smeshpyD.GetDirStruct(StepVector) - if MakeGroups: - return self.editor.ExtrusionSweepObject1DMakeGroups(theObject, StepVector, NbOfSteps) - self.editor.ExtrusionSweepObject1D(theObject, StepVector, NbOfSteps) - return [] + ## Checks if the given "SourceEdge" hypothesis has the same parameters as the given arguments + #def CompareSourceEdge(self, hyp, args): + # # it does not seem to be useful to reuse the existing "SourceEdge" hypothesis + # return False - ## Generate new elements by extrusion of the elements belong to object - # @param theObject object wich elements should be processed - # @param StepVector vector, defining the direction and value of extrusion - # @param NbOfSteps the number of steps - # @param MakeGroups to generate new groups from existing ones - def ExtrusionSweepObject2D(self, theObject, StepVector, NbOfSteps, MakeGroups=False): - if ( isinstance( theObject, Mesh )): - theObject = theObject.GetMesh() - if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)): - StepVector = self.smeshpyD.GetDirStruct(StepVector) - if MakeGroups: - return self.editor.ExtrusionSweepObject2DMakeGroups(theObject, StepVector, NbOfSteps) - self.editor.ExtrusionSweepObject2D(theObject, StepVector, NbOfSteps) - return [] - ## Generate new elements by extrusion of the given elements - # A path of extrusion must be a meshed edge. - # @param IDsOfElements is ids of elements - # @param PathMesh mesh containing a 1D sub-mesh on the edge, along which proceeds the extrusion - # @param PathShape is shape(edge); as the mesh can be complex, the edge is used to define the sub-mesh for the path - # @param NodeStart the first or the last node on the edge. It is used to define the direction of extrusion - # @param HasAngles allows the shape to be rotated around the path to get the resulting mesh in a helical fashion - # @param Angles list of angles - # @param HasRefPoint allows to use base point - # @param RefPoint point around which the shape is rotated(the mass center of the shape by default). - # User can specify any point as the Base Point and the shape will be rotated with respect to this point. - # @param MakeGroups to generate new groups from existing ones - # @param LinearVariation makes compute rotation angles as linear variation of given Angles along path steps - def ExtrusionAlongPath(self, IDsOfElements, PathMesh, PathShape, NodeStart, - HasAngles, Angles, HasRefPoint, RefPoint, - MakeGroups=False, LinearVariation=False): - if IDsOfElements == []: - IDsOfElements = self.GetElementsId() - if ( isinstance( RefPoint, geompyDC.GEOM._objref_GEOM_Object)): - RefPoint = self.smeshpyD.GetPointStruct(RefPoint) - pass - if MakeGroups: - return self.editor.ExtrusionAlongPathMakeGroups(IDsOfElements, PathMesh.GetMesh(), - PathShape, NodeStart, HasAngles, - Angles, HasRefPoint, RefPoint) - return self.editor.ExtrusionAlongPath(IDsOfElements, PathMesh.GetMesh(), PathShape, - NodeStart, HasAngles, Angles, HasRefPoint, RefPoint) +# Public class: Mesh_Projection2D +# ------------------------------ - ## Generate new elements by extrusion of the elements belong to object - # A path of extrusion must be a meshed edge. - # @param IDsOfElements is ids of elements - # @param PathMesh mesh containing a 1D sub-mesh on the edge, along which proceeds the extrusion - # @param PathShape is shape(edge); as the mesh can be complex, the edge is used to define the sub-mesh for the path - # @param NodeStart the first or the last node on the edge. It is used to define the direction of extrusion - # @param HasAngles allows the shape to be rotated around the path to get the resulting mesh in a helical fashion - # @param Angles list of angles - # @param HasRefPoint allows to use base point - # @param RefPoint point around which the shape is rotated(the mass center of the shape by default). - # User can specify any point as the Base Point and the shape will be rotated with respect to this point. - # @param MakeGroups to generate new groups from existing ones - # @param LinearVariation makes compute rotation angles as linear variation of given Angles along path steps - def ExtrusionAlongPathObject(self, theObject, PathMesh, PathShape, NodeStart, - HasAngles, Angles, HasRefPoint, RefPoint, - MakeGroups=False, LinearVariation=False): - if ( isinstance( theObject, Mesh )): - theObject = theObject.GetMesh() - if ( isinstance( RefPoint, geompyDC.GEOM._objref_GEOM_Object)): - RefPoint = self.smeshpyD.GetPointStruct(RefPoint) - if MakeGroups: - return self.editor.ExtrusionAlongPathObjectMakeGroups(theObject, PathMesh.GetMesh(), - PathShape, NodeStart, HasAngles, - Angles, HasRefPoint, RefPoint) - return self.editor.ExtrusionAlongPathObject(theObject, PathMesh.GetMesh(), PathShape, - NodeStart, HasAngles, Angles, HasRefPoint, - RefPoint) +## Defines a projection 2D algorithm +# @ingroup l3_algos_proj +# +class Mesh_Projection2D(Mesh_Algorithm): - ## Symmetrical copy of mesh elements - # @param IDsOfElements list of elements ids - # @param Mirror is AxisStruct or geom object(point, line, plane) - # @param theMirrorType is POINT, AXIS or PLANE - # If the Mirror is geom object this parameter is unnecessary - # @param Copy allows to copy element(Copy is 1) or to replace with its mirroring(Copy is 0) - # @param MakeGroups to generate new groups from existing ones (if Copy) - def Mirror(self, IDsOfElements, Mirror, theMirrorType, Copy=0, MakeGroups=False): - if IDsOfElements == []: - IDsOfElements = self.GetElementsId() - if ( isinstance( Mirror, geompyDC.GEOM._objref_GEOM_Object)): - Mirror = self.smeshpyD.GetAxisStruct(Mirror) - if Copy and MakeGroups: - return self.editor.MirrorMakeGroups(IDsOfElements, Mirror, theMirrorType) - self.editor.Mirror(IDsOfElements, Mirror, theMirrorType, Copy) - return [] + ## Private constructor. + def __init__(self, mesh, geom=0): + Mesh_Algorithm.__init__(self) + self.Create(mesh, geom, "Projection_2D") - ## Create a new mesh by symmetrical copy of mesh elements - # @param IDsOfElements list of elements ids - # @param Mirror is AxisStruct or geom object(point, line, plane) - # @param theMirrorType is POINT, AXIS or PLANE - # If the Mirror is geom object this parameter is unnecessary - # @param MakeGroups to generate new groups from existing ones - # @param NewMeshName is a name of new mesh to create - def MirrorMakeMesh(self, IDsOfElements, Mirror, theMirrorType, MakeGroups=0, NewMeshName=""): - if IDsOfElements == []: - IDsOfElements = self.GetElementsId() - if ( isinstance( Mirror, geompyDC.GEOM._objref_GEOM_Object)): - Mirror = self.smeshpyD.GetAxisStruct(Mirror) - mesh = self.editor.MirrorMakeMesh(IDsOfElements, Mirror, theMirrorType, - MakeGroups, NewMeshName) - return Mesh(self.smeshpyD,self.geompyD,mesh) + ## Defines "Source Face" hypothesis, specifying a meshed face, from where + # a mesh pattern is taken, and, optionally, the association of vertices + # between the source face and the target face (to which a hypothesis is assigned) + # @param face from which the mesh pattern is taken + # @param mesh from which the mesh pattern is taken (optional) + # @param srcV1 a vertex of \a face to associate with \a tgtV1 (optional) + # @param tgtV1 a vertex of \a the face to which the algorithm is assigned, + # to associate with \a srcV1 (optional) + # @param srcV2 a vertex of \a face to associate with \a tgtV1 (optional) + # @param tgtV2 a vertex of \a the face to which the algorithm is assigned, + # to associate with \a srcV2 (optional) + # @param UseExisting if ==true - forces the search for the existing hypothesis created with + # the same parameters, else (default) - forces the creation a new one + # + # Note: all association vertices must belong to one edge of a face + def SourceFace(self, face, mesh=None, srcV1=None, tgtV1=None, + srcV2=None, tgtV2=None, UseExisting=0): + hyp = self.Hypothesis("ProjectionSource2D", [face,mesh,srcV1,tgtV1,srcV2,tgtV2], + UseExisting=0) + #UseExisting=UseExisting, CompareMethod=self.CompareSourceFace) + hyp.SetSourceFace( face ) + if not mesh is None and isinstance(mesh, Mesh): + mesh = mesh.GetMesh() + hyp.SetSourceMesh( mesh ) + hyp.SetVertexAssociation( srcV1, srcV2, tgtV1, tgtV2 ) + return hyp - ## Symmetrical copy of object - # @param theObject mesh, submesh or group - # @param Mirror is AxisStruct or geom object(point, line, plane) - # @param theMirrorType is POINT, AXIS or PLANE - # If the Mirror is geom object this parameter is unnecessary - # @param Copy allows to copy element(Copy is 1) or to replace with its mirroring(Copy is 0) - # @param MakeGroups to generate new groups from existing ones (if Copy) - def MirrorObject (self, theObject, Mirror, theMirrorType, Copy=0, MakeGroups=False): - if ( isinstance( theObject, Mesh )): - theObject = theObject.GetMesh() - if ( isinstance( Mirror, geompyDC.GEOM._objref_GEOM_Object)): - Mirror = self.smeshpyD.GetAxisStruct(Mirror) - if Copy and MakeGroups: - return self.editor.MirrorObjectMakeGroups(theObject, Mirror, theMirrorType) - self.editor.MirrorObject(theObject, Mirror, theMirrorType, Copy) - return [] + ## Checks if the given "SourceFace" hypothesis has the same parameters as the given arguments + #def CompareSourceFace(self, hyp, args): + # # it does not seem to be useful to reuse the existing "SourceFace" hypothesis + # return False - ## Create a new mesh by symmetrical copy of object - # @param theObject mesh, submesh or group - # @param Mirror is AxisStruct or geom object(point, line, plane) - # @param theMirrorType is POINT, AXIS or PLANE - # If the Mirror is geom object this parameter is unnecessary - # @param MakeGroups to generate new groups from existing ones - # @param NewMeshName is a name of new mesh to create - def MirrorObjectMakeMesh (self, theObject, Mirror, theMirrorType,MakeGroups=0, NewMeshName=""): - if ( isinstance( theObject, Mesh )): - theObject = theObject.GetMesh() - if (isinstance(Mirror, geompyDC.GEOM._objref_GEOM_Object)): - Mirror = self.smeshpyD.GetAxisStruct(Mirror) - mesh = self.editor.MirrorObjectMakeMesh(theObject, Mirror, theMirrorType, - MakeGroups, NewMeshName) - return Mesh( self.smeshpyD,self.geompyD,mesh ) +# Public class: Mesh_Projection3D +# ------------------------------ - ## Translates the elements - # @param IDsOfElements list of elements ids - # @param Vector direction of translation(DirStruct or vector) - # @param Copy allows to copy the translated elements - # @param MakeGroups to generate new groups from existing ones (if Copy) - def Translate(self, IDsOfElements, Vector, Copy, MakeGroups=False): - if IDsOfElements == []: - IDsOfElements = self.GetElementsId() - if ( isinstance( Vector, geompyDC.GEOM._objref_GEOM_Object)): - Vector = self.smeshpyD.GetDirStruct(Vector) - if Copy and MakeGroups: - return self.editor.TranslateMakeGroups(IDsOfElements, Vector) - self.editor.Translate(IDsOfElements, Vector, Copy) - return [] +## Defines a projection 3D algorithm +# @ingroup l3_algos_proj +# +class Mesh_Projection3D(Mesh_Algorithm): - ## Create a new mesh of translated elements - # @param IDsOfElements list of elements ids - # @param Vector direction of translation(DirStruct or vector) - # @param MakeGroups to generate new groups from existing ones - # @param NewMeshName is a name of new mesh to create - def TranslateMakeMesh(self, IDsOfElements, Vector, MakeGroups=False, NewMeshName=""): - if IDsOfElements == []: - IDsOfElements = self.GetElementsId() - if ( isinstance( Vector, geompyDC.GEOM._objref_GEOM_Object)): - Vector = self.smeshpyD.GetDirStruct(Vector) - mesh = self.editor.TranslateMakeMesh(IDsOfElements, Vector, MakeGroups, NewMeshName) - return Mesh ( self.smeshpyD, self.geompyD, mesh ) + ## Private constructor. + def __init__(self, mesh, geom=0): + Mesh_Algorithm.__init__(self) + self.Create(mesh, geom, "Projection_3D") - ## Translates the object - # @param theObject object to translate(mesh, submesh, or group) - # @param Vector direction of translation(DirStruct or geom vector) - # @param Copy allows to copy the translated elements - # @param MakeGroups to generate new groups from existing ones (if Copy) - def TranslateObject(self, theObject, Vector, Copy, MakeGroups=False): - if ( isinstance( theObject, Mesh )): - theObject = theObject.GetMesh() - if ( isinstance( Vector, geompyDC.GEOM._objref_GEOM_Object)): - Vector = self.smeshpyD.GetDirStruct(Vector) - if Copy and MakeGroups: - return self.editor.TranslateObjectMakeGroups(theObject, Vector) - self.editor.TranslateObject(theObject, Vector, Copy) - return [] + ## Defines the "Source Shape 3D" hypothesis, specifying a meshed solid, from where + # the mesh pattern is taken, and, optionally, the association of vertices + # between the source and the target solid (to which a hipothesis is assigned) + # @param solid from where the mesh pattern is taken + # @param mesh from where the mesh pattern is taken (optional) + # @param srcV1 a vertex of \a solid to associate with \a tgtV1 (optional) + # @param tgtV1 a vertex of \a the solid where the algorithm is assigned, + # to associate with \a srcV1 (optional) + # @param srcV2 a vertex of \a solid to associate with \a tgtV1 (optional) + # @param tgtV2 a vertex of \a the solid to which the algorithm is assigned, + # to associate with \a srcV2 (optional) + # @param UseExisting - if ==true - searches for the existing hypothesis created with + # the same parameters, else (default) - creates a new one + # + # Note: association vertices must belong to one edge of a solid + def SourceShape3D(self, solid, mesh=0, srcV1=0, tgtV1=0, + srcV2=0, tgtV2=0, UseExisting=0): + hyp = self.Hypothesis("ProjectionSource3D", + [solid,mesh,srcV1,tgtV1,srcV2,tgtV2], + UseExisting=0) + #UseExisting=UseExisting, CompareMethod=self.CompareSourceShape3D) + hyp.SetSource3DShape( solid ) + if not mesh is None and isinstance(mesh, Mesh): + mesh = mesh.GetMesh() + hyp.SetSourceMesh( mesh ) + hyp.SetVertexAssociation( srcV1, srcV2, tgtV1, tgtV2 ) + return hyp - ## Create a new mesh from translated object - # @param theObject object to translate(mesh, submesh, or group) - # @param Vector direction of translation(DirStruct or geom vector) - # @param MakeGroups to generate new groups from existing ones - # @param NewMeshName is a name of new mesh to create - def TranslateObjectMakeMesh(self, theObject, Vector, MakeGroups=False, NewMeshName=""): - if (isinstance(theObject, Mesh)): - theObject = theObject.GetMesh() - if (isinstance(Vector, geompyDC.GEOM._objref_GEOM_Object)): - Vector = self.smeshpyD.GetDirStruct(Vector) - mesh = self.editor.TranslateObjectMakeMesh(theObject, Vector, MakeGroups, NewMeshName) - return Mesh( self.smeshpyD, self.geompyD, mesh ) + ## Checks if the given "SourceShape3D" hypothesis has the same parameters as given arguments + #def CompareSourceShape3D(self, hyp, args): + # # seems to be not really useful to reuse existing "SourceShape3D" hypothesis + # return False - ## Rotates the elements - # @param IDsOfElements list of elements ids - # @param Axis axis of rotation(AxisStruct or geom line) - # @param AngleInRadians angle of rotation(in radians) - # @param Copy allows to copy the rotated elements - # @param MakeGroups to generate new groups from existing ones (if Copy) - def Rotate (self, IDsOfElements, Axis, AngleInRadians, Copy, MakeGroups=False): - if IDsOfElements == []: - IDsOfElements = self.GetElementsId() - if ( isinstance( Axis, geompyDC.GEOM._objref_GEOM_Object)): - Axis = self.smeshpyD.GetAxisStruct(Axis) - if Copy and MakeGroups: - return self.editor.RotateMakeGroups(IDsOfElements, Axis, AngleInRadians) - self.editor.Rotate(IDsOfElements, Axis, AngleInRadians, Copy) - return [] - ## Create a new mesh of rotated elements - # @param IDsOfElements list of element ids - # @param Axis axis of rotation(AxisStruct or geom line) - # @param AngleInRadians angle of rotation(in radians) - # @param MakeGroups to generate new groups from existing ones - # @param NewMeshName is a name of new mesh to create - def RotateMakeMesh (self, IDsOfElements, Axis, AngleInRadians, MakeGroups=0, NewMeshName=""): - if IDsOfElements == []: - IDsOfElements = self.GetElementsId() - if ( isinstance( Axis, geompyDC.GEOM._objref_GEOM_Object)): - Axis = self.smeshpyD.GetAxisStruct(Axis) - mesh = self.editor.RotateMakeMesh(IDsOfElements, Axis, AngleInRadians, - MakeGroups, NewMeshName) - return Mesh( self.smeshpyD, self.geompyD, mesh ) +# Public class: Mesh_Prism +# ------------------------ - ## Rotates the object - # @param theObject object to rotate(mesh, submesh, or group) - # @param Axis axis of rotation(AxisStruct or geom line) - # @param AngleInRadians angle of rotation(in radians) - # @param Copy allows to copy the rotated elements - # @param MakeGroups to generate new groups from existing ones (if Copy) - def RotateObject (self, theObject, Axis, AngleInRadians, Copy, MakeGroups=False): - if (isinstance(theObject, Mesh)): - theObject = theObject.GetMesh() - if (isinstance(Axis, geompyDC.GEOM._objref_GEOM_Object)): - Axis = self.smeshpyD.GetAxisStruct(Axis) - if Copy and MakeGroups: - return self.editor.RotateObjectMakeGroups(theObject, Axis, AngleInRadians) - self.editor.RotateObject(theObject, Axis, AngleInRadians, Copy) - return [] +## Defines a 3D extrusion algorithm +# @ingroup l3_algos_3dextr +# +class Mesh_Prism3D(Mesh_Algorithm): - ## Create a new mesh from a rotated object - # @param theObject object to rotate (mesh, submesh, or group) - # @param Axis axis of rotation(AxisStruct or geom line) - # @param AngleInRadians angle of rotation(in radians) - # @param MakeGroups to generate new groups from existing ones - # @param NewMeshName is a name of new mesh to create - def RotateObjectMakeMesh(self, theObject, Axis, AngleInRadians, MakeGroups=0,NewMeshName=""): - if (isinstance( theObject, Mesh )): - theObject = theObject.GetMesh() - if (isinstance(Axis, geompyDC.GEOM._objref_GEOM_Object)): - Axis = self.smeshpyD.GetAxisStruct(Axis) - mesh = self.editor.RotateObjectMakeMesh(theObject, Axis, AngleInRadians, - MakeGroups, NewMeshName) - return Mesh( self.smeshpyD, self.geompyD, mesh ) + ## Private constructor. + def __init__(self, mesh, geom=0): + Mesh_Algorithm.__init__(self) + self.Create(mesh, geom, "Prism_3D") - ## Find group of nodes close to each other within Tolerance. - # @param Tolerance tolerance value - # @param list of group of nodes - def FindCoincidentNodes (self, Tolerance): - return self.editor.FindCoincidentNodes(Tolerance) +# Public class: Mesh_RadialPrism +# ------------------------------- - ## Find group of nodes close to each other within Tolerance. - # @param Tolerance tolerance value - # @param SubMeshOrGroup SubMesh or Group - # @param list of group of nodes - def FindCoincidentNodesOnPart (self, SubMeshOrGroup, Tolerance): - return self.editor.FindCoincidentNodesOnPart(SubMeshOrGroup, Tolerance) +## Defines a Radial Prism 3D algorithm +# @ingroup l3_algos_radialp +# +class Mesh_RadialPrism3D(Mesh_Algorithm): - ## Merge nodes - # @param list of group of nodes - def MergeNodes (self, GroupsOfNodes): - self.editor.MergeNodes(GroupsOfNodes) + ## Private constructor. + def __init__(self, mesh, geom=0): + Mesh_Algorithm.__init__(self) + self.Create(mesh, geom, "RadialPrism_3D") - ## Find elements built on the same nodes. - # @param MeshOrSubMeshOrGroup Mesh or SubMesh, or Group of elements for searching - # @return a list of groups of equal elements - def FindEqualElements (self, MeshOrSubMeshOrGroup): - return self.editor.FindEqualElements(MeshOrSubMeshOrGroup) + self.distribHyp = self.Hypothesis("LayerDistribution", UseExisting=0) + self.nbLayers = None - ## Merge elements in each given group. - # @param GroupsOfElementsID groups of elements for merging - def MergeElements(self, GroupsOfElementsID): - self.editor.MergeElements(GroupsOfElementsID) + ## Return 3D hypothesis holding the 1D one + def Get3DHypothesis(self): + return self.distribHyp - ## Remove all but one of elements built on the same nodes. - def MergeEqualElements(self): - self.editor.MergeEqualElements() + ## Private method creating a 1D hypothesis and storing it in the LayerDistribution + # hypothesis. Returns the created hypothesis + def OwnHypothesis(self, hypType, args=[], so="libStdMeshersEngine.so"): + #print "OwnHypothesis",hypType + if not self.nbLayers is None: + self.mesh.GetMesh().RemoveHypothesis( self.geom, self.nbLayers ) + self.mesh.GetMesh().AddHypothesis( self.geom, self.distribHyp ) + study = self.mesh.smeshpyD.GetCurrentStudy() # prevents publishing own 1D hypothesis + hyp = self.mesh.smeshpyD.CreateHypothesis(hypType, so) + self.mesh.smeshpyD.SetCurrentStudy( study ) # enables publishing + self.distribHyp.SetLayerDistribution( hyp ) + return hyp - ## Sew free borders - def SewFreeBorders (self, FirstNodeID1, SecondNodeID1, LastNodeID1, - FirstNodeID2, SecondNodeID2, LastNodeID2, - CreatePolygons, CreatePolyedrs): - return self.editor.SewFreeBorders(FirstNodeID1, SecondNodeID1, LastNodeID1, - FirstNodeID2, SecondNodeID2, LastNodeID2, - CreatePolygons, CreatePolyedrs) + ## Defines "NumberOfLayers" hypothesis, specifying the number of layers of + # prisms to build between the inner and outer shells + # @param n number of layers + # @param UseExisting if ==true - searches for the existing hypothesis created with + # the same parameters, else (default) - creates a new one + def NumberOfLayers(self, n, UseExisting=0): + self.mesh.GetMesh().RemoveHypothesis( self.geom, self.distribHyp ) + self.nbLayers = self.Hypothesis("NumberOfLayers", [n], UseExisting=UseExisting, + CompareMethod=self.CompareNumberOfLayers) + self.nbLayers.SetNumberOfLayers( n ) + return self.nbLayers - ## Sew conform free borders - def SewConformFreeBorders (self, FirstNodeID1, SecondNodeID1, LastNodeID1, - FirstNodeID2, SecondNodeID2): - return self.editor.SewConformFreeBorders(FirstNodeID1, SecondNodeID1, LastNodeID1, - FirstNodeID2, SecondNodeID2) + ## Checks if the given "NumberOfLayers" hypothesis has the same parameters as the given arguments + def CompareNumberOfLayers(self, hyp, args): + return IsEqual(hyp.GetNumberOfLayers(), args[0]) - ## Sew border to side - def SewBorderToSide (self, FirstNodeIDOnFreeBorder, SecondNodeIDOnFreeBorder, LastNodeIDOnFreeBorder, - FirstNodeIDOnSide, LastNodeIDOnSide, CreatePolygons, CreatePolyedrs): - return self.editor.SewBorderToSide(FirstNodeIDOnFreeBorder, SecondNodeIDOnFreeBorder, LastNodeIDOnFreeBorder, - FirstNodeIDOnSide, LastNodeIDOnSide, CreatePolygons, CreatePolyedrs) + ## Defines "LocalLength" hypothesis, specifying the segment length + # to build between the inner and the outer shells + # @param l the length of segments + # @param p the precision of rounding + def LocalLength(self, l, p=1e-07): + hyp = self.OwnHypothesis("LocalLength", [l,p]) + hyp.SetLength(l) + hyp.SetPrecision(p) + return hyp - ## Sew two sides of a mesh. Nodes belonging to Side1 are - # merged with nodes of elements of Side2. - # Number of elements in theSide1 and in theSide2 must be - # equal and they should have similar node connectivity. - # The nodes to merge should belong to sides borders and - # the first node should be linked to the second. - def SewSideElements (self, IDsOfSide1Elements, IDsOfSide2Elements, - NodeID1OfSide1ToMerge, NodeID1OfSide2ToMerge, - NodeID2OfSide1ToMerge, NodeID2OfSide2ToMerge): - return self.editor.SewSideElements(IDsOfSide1Elements, IDsOfSide2Elements, - NodeID1OfSide1ToMerge, NodeID1OfSide2ToMerge, - NodeID2OfSide1ToMerge, NodeID2OfSide2ToMerge) + ## Defines "NumberOfSegments" hypothesis, specifying the number of layers of + # prisms to build between the inner and the outer shells. + # @param n the number of layers + # @param s the scale factor (optional) + def NumberOfSegments(self, n, s=[]): + if s == []: + hyp = self.OwnHypothesis("NumberOfSegments", [n]) + else: + hyp = self.OwnHypothesis("NumberOfSegments", [n,s]) + hyp.SetDistrType( 1 ) + hyp.SetScaleFactor(s) + hyp.SetNumberOfSegments(n) + return hyp - ## Set new nodes for given element. - # @param ide the element id - # @param newIDs nodes ids - # @return If number of nodes is not corresponded to type of element - returns false - def ChangeElemNodes(self, ide, newIDs): - return self.editor.ChangeElemNodes(ide, newIDs) + ## Defines "Arithmetic1D" hypothesis, specifying the distribution of segments + # to build between the inner and the outer shells with a length that changes in arithmetic progression + # @param start the length of the first segment + # @param end the length of the last segment + def Arithmetic1D(self, start, end ): + hyp = self.OwnHypothesis("Arithmetic1D", [start, end]) + hyp.SetLength(start, 1) + hyp.SetLength(end , 0) + return hyp - ## If during last operation of MeshEditor some nodes were - # created this method returns list of its IDs, \n - # if new nodes not created - returns empty list - def GetLastCreatedNodes(self): - return self.editor.GetLastCreatedNodes() + ## Defines "StartEndLength" hypothesis, specifying distribution of segments + # to build between the inner and the outer shells as geometric length increasing + # @param start for the length of the first segment + # @param end for the length of the last segment + def StartEndLength(self, start, end): + hyp = self.OwnHypothesis("StartEndLength", [start, end]) + hyp.SetLength(start, 1) + hyp.SetLength(end , 0) + return hyp - ## If during last operation of MeshEditor some elements were - # created this method returns list of its IDs, \n - # if new elements not creared - returns empty list - def GetLastCreatedElems(self): - return self.editor.GetLastCreatedElems() + ## Defines "AutomaticLength" hypothesis, specifying the number of segments + # to build between the inner and outer shells + # @param fineness defines the quality of the mesh within the range [0-1] + def AutomaticLength(self, fineness=0): + hyp = self.OwnHypothesis("AutomaticLength") + hyp.SetFineness( fineness ) + return hyp + +# Private class: Mesh_UseExisting +# ------------------------------- +class Mesh_UseExisting(Mesh_Algorithm): + + def __init__(self, dim, mesh, geom=0): + if dim == 1: + self.Create(mesh, geom, "UseExisting_1D") + else: + self.Create(mesh, geom, "UseExisting_2D")