X-Git-Url: http://git.salome-platform.org/gitweb/?p=modules%2Fsmesh.git;a=blobdiff_plain;f=src%2FSMESH_SWIG%2FsmeshBuilder.py;h=bd9966d40f171d4387c7768332265cfa5b6f17e6;hp=11ba7dcf72b55763411e21c5d6621de22fa550fa;hb=b7c268a645ad744752b5b3177560046c9d59f2bc;hpb=223c5b7f5d446e18785843d69964a4df5da7a9c5 diff --git a/src/SMESH_SWIG/smeshBuilder.py b/src/SMESH_SWIG/smeshBuilder.py index 11ba7dcf7..bd9966d40 100644 --- a/src/SMESH_SWIG/smeshBuilder.py +++ b/src/SMESH_SWIG/smeshBuilder.py @@ -966,6 +966,8 @@ class smeshBuilder(object, SMESH._objref_SMESH_Gen): functor = aFilterMgr.CreateLength() elif theCriterion == FT_Length2D: functor = aFilterMgr.CreateLength2D() + elif theCriterion == FT_Deflection2D: + functor = aFilterMgr.CreateDeflection2D() elif theCriterion == FT_NodeConnectivityNumber: functor = aFilterMgr.CreateNodeConnectivityNumber() elif theCriterion == FT_BallDiameter: @@ -1153,6 +1155,18 @@ class smeshBuilder(object, SMESH._objref_SMESH_Gen): aMeasurements.UnRegister() return value + ## Get gravity center of all nodes of the mesh object. + # @param obj mesh, submesh or group + # @return three components of the gravity center: x,y,z + # @ingroup l1_measurements + def GetGravityCenter(self, obj): + if isinstance(obj, Mesh): obj = obj.mesh + if isinstance(obj, Mesh_Algorithm): obj = obj.GetSubMesh() + aMeasurements = self.CreateMeasurements() + pointStruct = aMeasurements.GravityCenter(obj) + aMeasurements.UnRegister() + return pointStruct.x, pointStruct.y, pointStruct.z + pass # end of class smeshBuilder import omniORB @@ -1169,11 +1183,12 @@ omniORB.registerObjref(SMESH._objref_SMESH_Gen._NP_RepositoryId, smeshBuilder) # from salome.smesh import smeshBuilder # smesh = smeshBuilder.New(salome.myStudy) # \endcode -# @param study SALOME study, generally obtained by salome.myStudy. -# @param instance CORBA proxy of SMESH Engine. If None, the default Engine is used. +# @param study SALOME study, generally obtained by salome.myStudy. +# @param instance CORBA proxy of SMESH Engine. If None, the default Engine is used. +# @param instanceGeom CORBA proxy of GEOM Engine. If None, the default Engine is used. # @return smeshBuilder instance -def New( study, instance=None): +def New( study, instance=None, instanceGeom=None): """ Create a new smeshBuilder instance.The smeshBuilder class provides the Python interface to create or load meshes. @@ -1185,8 +1200,9 @@ def New( study, instance=None): smesh = smeshBuilder.New(salome.myStudy) Parameters: - study SALOME study, generally obtained by salome.myStudy. - instance CORBA proxy of SMESH Engine. If None, the default Engine is used. + study SALOME study, generally obtained by salome.myStudy. + instance CORBA proxy of SMESH Engine. If None, the default Engine is used. + instanceGeom CORBA proxy of GEOM Engine. If None, the default Engine is used. Returns: smeshBuilder instance """ @@ -1198,7 +1214,7 @@ def New( study, instance=None): doLcc = True smeshInst = smeshBuilder() assert isinstance(smeshInst,smeshBuilder), "Smesh engine class is %s but should be smeshBuilder.smeshBuilder. Import salome.smesh.smeshBuilder before creating the instance."%smeshInst.__class__ - smeshInst.init_smesh(study) + smeshInst.init_smesh(study, instanceGeom) return smeshInst @@ -1793,9 +1809,14 @@ class Mesh: # @param auto_groups boolean parameter for creating/not creating # the groups Group_On_All_Nodes, Group_On_All_Faces, ... ; # the typical use is auto_groups=False. - # @param version MED format version (MED_V2_1 or MED_V2_2, - # the latter meaning any current version). The parameter is - # obsolete since MED_V2_1 is no longer supported. + # @param version MED format version + # - MED_V2_1 is obsolete. + # - MED_V2_2 means current version (kept for compatibility reasons) + # - MED_LATEST means current version. + # - MED_MINOR_x where x from 0 to 9 indicates the minor version of MED + # to use for writing MED files, for backward compatibility : + # for instance, with SALOME 8.4 use MED 3.2 (minor=2) instead of 3.3, + # to allow the file to be read with SALOME 8.3. # @param overwrite boolean parameter for overwriting/not overwriting the file # @param meshPart a part of mesh (group, sub-mesh) to export instead of the mesh # @param autoDimension if @c True (default), a space dimension of a MED mesh can be either @@ -1811,7 +1832,7 @@ class Mesh: # - 'f' stands for "_faces _" field; # - 's' stands for "_solids _" field. # @ingroup l2_impexp - def ExportMED(self, f, auto_groups=0, version=MED_V2_2, + def ExportMED(self, f, auto_groups=0, version=MED_LATEST, overwrite=1, meshPart=None, autoDimension=True, fields=[], geomAssocFields=''): if meshPart or fields or geomAssocFields: unRegister = genObjUnRegister() @@ -1915,9 +1936,14 @@ class Mesh: # Export the mesh in a file in MED format # allowing to overwrite the file if it exists or add the exported data to its contents # @param f the file name - # @param version MED format version (MED_V2_1 or MED_V2_2, - # the latter meaning any current version). The parameter is - # obsolete since MED_V2_1 is no longer supported. + # @param version MED format version: + # - MED_V2_1 is obsolete. + # - MED_V2_2 means current version (kept for compatibility reasons) + # - MED_LATEST means current version. + # - MED_MINOR_x where x from 0 to 9 indicates the minor version of MED + # to use for writing MED files, for backward compatibility : + # for instance, with SALOME 8.4 use MED 3.2 (minor=2) instead of 3.3, + # to allow the file to be read with SALOME 8.3. # @param opt boolean parameter for creating/not creating # the groups Group_On_All_Nodes, Group_On_All_Faces, ... # @param overwrite boolean parameter for overwriting/not overwriting the file @@ -1927,7 +1953,7 @@ class Mesh: # - 3D in the rest cases.
# If @a autoDimension is @c False, the space dimension is always 3. # @ingroup l2_impexp - def ExportToMED(self, f, version=MED_V2_2, opt=0, overwrite=1, autoDimension=True): + def ExportToMED(self, f, version=MED_LATEST, opt=0, overwrite=1, autoDimension=True): self.mesh.ExportToMEDX(f, opt, version, overwrite, autoDimension) # Operations with groups: @@ -2301,10 +2327,10 @@ class Mesh: return self.editor.MakeIDSource(ids, elemType) - # Get informations about mesh contents: + # Get information about mesh contents: # ------------------------------------ - ## Get the mesh stattistic + ## Get the mesh statistic # @return dictionary type element - count of elements # @ingroup l1_meshinfo def GetMeshInfo(self, obj = None): @@ -3117,6 +3143,16 @@ class Mesh: def GetPointState(self, x, y, z): return self.editor.GetPointState(x, y, z) + ## Check if a 2D mesh is manifold + # @ingroup l1_controls + def IsManifold(self): + return self.editor.IsManifold() + + ## Check if orientation of 2D elements is coherent + # @ingroup l1_controls + def IsCoherentOrientation2D(self): + return self.editor.IsCoherentOrientation2D() + ## Find the node closest to a point and moves it to a point location # @param x the X coordinate of a point # @param y the Y coordinate of a point @@ -3237,7 +3273,7 @@ class Mesh: # Type SMESH.FunctorType._items in the Python Console to see all items. # Note that not all items correspond to numerical functors. # @param MaxAngle is the maximum angle between element normals at which the fusion - # is still performed; theMaxAngle is mesured in radians. + # is still performed; theMaxAngle is measured in radians. # Also it could be a name of variable which defines angle in degrees. # @return TRUE in case of success, FALSE otherwise. # @ingroup l2_modif_unitetri @@ -3256,7 +3292,7 @@ class Mesh: # Type SMESH.FunctorType._items in the Python Console to see all items. # Note that not all items correspond to numerical functors. # @param MaxAngle a max angle between element normals at which the fusion - # is still performed; theMaxAngle is mesured in radians. + # is still performed; theMaxAngle is measured in radians. # @return TRUE in case of success, FALSE otherwise. # @ingroup l2_modif_unitetri def TriToQuadObject (self, theObject, theCriterion, MaxAngle): @@ -3268,7 +3304,7 @@ class Mesh: return self.editor.TriToQuadObject(theObject, Functor, MaxAngle) ## Split quadrangles into triangles. - # @param IDsOfElements the faces to be splitted. + # @param IDsOfElements the faces to be split. # @param theCriterion is a numerical functor, in terms of enum SMESH.FunctorType, used to # choose a diagonal for splitting. If @a theCriterion is None, which is a default # value, then quadrangles will be split by the smallest diagonal. @@ -3304,7 +3340,7 @@ class Mesh: ## Split each of given quadrangles into 4 triangles. A node is added at the center of # a quadrangle. - # @param theElements the faces to be splitted. This can be either mesh, sub-mesh, + # @param theElements the faces to be split. This can be either mesh, sub-mesh, # group or a list of face IDs. By default all quadrangles are split # @ingroup l2_modif_cutquadr def QuadTo4Tri (self, theElements=[]): @@ -3319,7 +3355,7 @@ class Mesh: return self.editor.QuadTo4Tri( theElements ) ## Split quadrangles into triangles. - # @param IDsOfElements the faces to be splitted + # @param IDsOfElements the faces to be split # @param Diag13 is used to choose a diagonal for splitting. # @return TRUE in case of success, FALSE otherwise. # @ingroup l2_modif_cutquadr @@ -3340,7 +3376,7 @@ class Mesh: return self.editor.SplitQuadObject(theObject, Diag13) ## Find a better splitting of the given quadrangle. - # @param IDOfQuad the ID of the quadrangle to be splitted. + # @param IDOfQuad the ID of the quadrangle to be split. # @param theCriterion is a numerical functor, in terms of enum SMESH.FunctorType, used to # choose a diagonal for splitting. # Type SMESH.FunctorType._items in the Python Console to see all items. @@ -4549,6 +4585,24 @@ class Mesh: self.mesh.SetParameters(Parameters) return Mesh( self.smeshpyD, self.geompyD, mesh ) + ## Create an offset mesh from the given 2D object + # @param theObject the source object (mesh, submesh, group or filter) + # @param theValue signed offset size + # @param MakeGroups forces the generation of new groups from existing ones + # @param NewMeshName the name of a mesh to create. If empty, offset elements are added + # to this mesh + # @return a tuple (mesh, list_of_groups) + # @ingroup l2_modif_trsf + def Offset(self, theObject, theValue, MakeGroups=False, NewMeshName=''): + if isinstance( theObject, Mesh ): + theObject = theObject.GetMesh() + theValue,Parameters,hasVars = ParseParameters(theValue) + mesh_groups = self.editor.Offset(theObject, theValue, MakeGroups, NewMeshName ) + self.mesh.SetParameters(Parameters) + # if mesh_groups[0]: + # return Mesh( self.smeshpyD, self.geompyD, mesh_groups[0] ), mesh_groups[1] + return mesh_groups + ## Find groups of adjacent nodes within Tolerance. # @param Tolerance the value of tolerance # @param SeparateCornerAndMediumNodes if @c True, in quadratic mesh puts @@ -4619,6 +4673,24 @@ class Mesh: def MergeEqualElements(self): self.editor.MergeEqualElements() + ## Returns all or only closed free borders + # @return list of SMESH.FreeBorder's + # @ingroup l2_modif_trsf + def FindFreeBorders(self, ClosedOnly=True): + return self.editor.FindFreeBorders( ClosedOnly ) + + ## Fill with 2D elements a hole defined by a SMESH.FreeBorder. + # @param FreeBorder either a SMESH.FreeBorder or a list on node IDs. These nodes + # must describe all sequential nodes of the hole border. The first and the last + # nodes must be the same. Use FindFreeBorders() to get nodes of holes. + # @ingroup l2_modif_trsf + def FillHole(self, holeNodes): + if holeNodes and isinstance( holeNodes, list ) and isinstance( holeNodes[0], int ): + holeNodes = SMESH.FreeBorder(nodeIDs=holeNodes) + if not isinstance( holeNodes, SMESH.FreeBorder ): + raise TypeError, "holeNodes must be either SMESH.FreeBorder or list of integer and not %s" % holeNodes + self.editor.FillHole( holeNodes ) + ## Return groups of FreeBorder's coincident within the given tolerance. # @param tolerance the tolerance. If the tolerance <= 0.0 then one tenth of an average # size of elements adjacent to free borders being compared is used. @@ -4742,7 +4814,7 @@ class Mesh: # a Mesh, elements of highest dimension are duplicated # @param theGroupName - a name of group to contain the generated elements. # If a group with such a name already exists, the new elements - # are added to the existng group, else a new group is created. + # are added to the existing group, else a new group is created. # If \a theGroupName is empty, new elements are not added # in any group. # @return a group where the new elements are added. None if theGroupName == "". @@ -4894,12 +4966,12 @@ class Mesh: ## Identify the elements that will be affected by node duplication (actual duplication is not performed. # This method is the first step of DoubleNodeElemGroupsInRegion. - # @param theElems - list of groups of elements (edges or faces) to be replicated + # @param theElems - list of groups of nodes or elements (edges or faces) to be replicated # @param theNodesNot - list of groups of nodes not to replicated # @param theShape - shape to detect affected elements (element which geometric center # located on or inside shape). # The replicated nodes should be associated to affected elements. - # @return groups of affected elements + # @return groups of affected elements in order: volumes, faces, edges # @ingroup l2_modif_duplicat def AffectedElemGroupsInRegion(self, theElems, theNodesNot, theShape): return self.editor.AffectedElemGroupsInRegion(theElems, theNodesNot, theShape) @@ -4934,7 +5006,40 @@ class Mesh: def CreateHoleSkin(self, radius, theShape, groupName, theNodesCoords): return self.editor.CreateHoleSkin( radius, theShape, groupName, theNodesCoords ) - def _getFunctor(self, funcType ): + ## Create a polyline consisting of 1D mesh elements each lying on a 2D element of + # the initial mesh. Positions of new nodes are found by cutting the mesh by the + # plane passing through pairs of points specified by each PolySegment structure. + # If there are several paths connecting a pair of points, the shortest path is + # selected by the module. Position of the cutting plane is defined by the two + # points and an optional vector lying on the plane specified by a PolySegment. + # By default the vector is defined by Mesh module as following. A middle point + # of the two given points is computed. The middle point is projected to the mesh. + # The vector goes from the middle point to the projection point. In case of planar + # mesh, the vector is normal to the mesh. + # @param segments - PolySegment's defining positions of cutting planes. + # Return the used vector which goes from the middle point to its projection. + # @param groupName - optional name of a group where created mesh segments will + # be added. + # @ingroup l2_modif_duplicat + def MakePolyLine(self, segments, groupName='', isPreview=False ): + editor = self.editor + if isPreview: + editor = self.mesh.GetMeshEditPreviewer() + segmentsRes = editor.MakePolyLine( segments, groupName ) + for i, seg in enumerate( segmentsRes ): + segments[i].vector = seg.vector + if isPreview: + return editor.GetPreviewData() + return None + + ## Return a cached numerical functor by its type. + # @param theCriterion functor type - an item of SMESH.FunctorType enumeration. + # Type SMESH.FunctorType._items in the Python Console to see all items. + # Note that not all items correspond to numerical functors. + # @return SMESH_NumericalFunctor. The functor is already initialized + # with a mesh + # @ingroup l1_measurements + def GetFunctor(self, funcType ): fn = self.functors[ funcType._v ] if not fn: fn = self.smeshpyD.GetFunctor(funcType) @@ -4950,7 +5055,7 @@ class Mesh: # @return the functor value or zero in case of invalid arguments # @ingroup l1_measurements def FunctorValue(self, funcType, elemId, isElem=True): - fn = self._getFunctor( funcType ) + fn = self.GetFunctor( funcType ) if fn.GetElementType() == self.GetElementType(elemId, isElem): val = fn.GetValue(elemId) else: @@ -5056,7 +5161,7 @@ class Mesh: unRegister.set( meshPart ) if isinstance( meshPart, Mesh ): meshPart = meshPart.mesh - fun = self._getFunctor( funType ) + fun = self.GetFunctor( funType ) if fun: if meshPart: if hasattr( meshPart, "SetMesh" ): @@ -5255,7 +5360,7 @@ class algoCreator: if not algoType: algoType = self.defaultAlgoType if not algoType and self.algoTypeToClass: - algoType = self.algoTypeToClass.keys()[0] + algoType = sorted( self.algoTypeToClass.keys() )[0] if self.algoTypeToClass.has_key( algoType ): #print "Create algo",algoType return self.algoTypeToClass[ algoType ]( self.mesh, shape )