X-Git-Url: http://git.salome-platform.org/gitweb/?p=modules%2Fsmesh.git;a=blobdiff_plain;f=src%2FSMESH%2FSMESH_MeshEditor.cxx;h=f5bc661fbe1db0e0597e36aff91ac17280bab22c;hp=71a4d3c1136e7bb1d70a09471d8f6d99c137ee71;hb=85cd6043817a6218e3ff7c01b62f247d791a434f;hpb=e4737e85f0da6d3f90fd08f6be1c2825195fe16f diff --git a/src/SMESH/SMESH_MeshEditor.cxx b/src/SMESH/SMESH_MeshEditor.cxx index 71a4d3c11..f5bc661fb 100644 --- a/src/SMESH/SMESH_MeshEditor.cxx +++ b/src/SMESH/SMESH_MeshEditor.cxx @@ -1,67 +1,335 @@ -// SMESH SMESH : idl implementation based on 'SMESH' unit's classes +// Copyright (C) 2007-2013 CEA/DEN, EDF R&D, OPEN CASCADE // -// Copyright (C) 2003 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN, -// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS -// -// This library is free software; you can redistribute it and/or -// modify it under the terms of the GNU Lesser General Public -// License as published by the Free Software Foundation; either -// version 2.1 of the License. -// -// This library is distributed in the hope that it will be useful, -// but WITHOUT ANY WARRANTY; without even the implied warranty of -// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU -// Lesser General Public License for more details. -// -// You should have received a copy of the GNU Lesser General Public -// License along with this library; if not, write to the Free Software -// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA -// -// See http://www.opencascade.org/SALOME/ or email : webmaster.salome@opencascade.org +// Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN, +// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS // +// This library is free software; you can redistribute it and/or +// modify it under the terms of the GNU Lesser General Public +// License as published by the Free Software Foundation; either +// version 2.1 of the License. // +// This library is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +// Lesser General Public License for more details. // +// You should have received a copy of the GNU Lesser General Public +// License along with this library; if not, write to the Free Software +// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA +// +// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com +// + // File : SMESH_MeshEditor.cxx // Created : Mon Apr 12 16:10:22 2004 // Author : Edward AGAPOV (eap) - #include "SMESH_MeshEditor.hxx" #include "SMDS_FaceOfNodes.hxx" #include "SMDS_VolumeTool.hxx" +#include "SMDS_EdgePosition.hxx" +#include "SMDS_FacePosition.hxx" +#include "SMDS_SpacePosition.hxx" +#include "SMDS_MeshGroup.hxx" +#include "SMDS_LinearEdge.hxx" +#include "SMDS_Downward.hxx" +#include "SMDS_SetIterator.hxx" + #include "SMESHDS_Group.hxx" #include "SMESHDS_Mesh.hxx" + +#include "SMESH_Algo.hxx" +#include "SMESH_ControlsDef.hxx" +#include "SMESH_Group.hxx" +#include "SMESH_MesherHelper.hxx" +#include "SMESH_OctreeNode.hxx" #include "SMESH_subMesh.hxx" +#include + #include "utilities.h" -#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include #include #include -#include +#include +#include +#include +#include +#include #include -#include +#include #include -#include #include +#include +#include +#include +#include + +#include #include +#include +#include +#include +#include +#include + +#include + +#include +#include + +#define cast2Node(elem) static_cast( elem ) using namespace std; +using namespace SMESH::Controls; -typedef map TNodeNodeMap; -typedef map > TNodeOfNodeListMap; -typedef map > TElemOfNodeListMap; +typedef SMDS_SetIterator< SMDS_pElement, TIDSortedElemSet::const_iterator> TSetIterator; //======================================================================= //function : SMESH_MeshEditor -//purpose : +//purpose : +//======================================================================= + +SMESH_MeshEditor::SMESH_MeshEditor( SMESH_Mesh* theMesh ) + :myMesh( theMesh ) // theMesh may be NULL +{ +} + +//================================================================================ +/*! + * \brief Clears myLastCreatedNodes and myLastCreatedElems + */ +//================================================================================ + +void SMESH_MeshEditor::CrearLastCreated() +{ + myLastCreatedNodes.Clear(); + myLastCreatedElems.Clear(); +} + + +//======================================================================= +/*! + * \brief Add element + */ +//======================================================================= + +SMDS_MeshElement* +SMESH_MeshEditor::AddElement(const vector & node, + const SMDSAbs_ElementType type, + const bool isPoly, + const int ID, + const double ballDiameter) +{ + //MESSAGE("AddElement " <= 1 ) e = mesh->AddFaceWithID(node[0], node[1], node[2], ID); + else e = mesh->AddFace (node[0], node[1], node[2] ); + } + else if (nbnode == 4) { + if ( ID >= 1 ) e = mesh->AddFaceWithID(node[0], node[1], node[2], node[3], ID); + else e = mesh->AddFace (node[0], node[1], node[2], node[3] ); + } + else if (nbnode == 6) { + if ( ID >= 1 ) e = mesh->AddFaceWithID(node[0], node[1], node[2], node[3], + node[4], node[5], ID); + else e = mesh->AddFace (node[0], node[1], node[2], node[3], + node[4], node[5] ); + } + else if (nbnode == 8) { + if ( ID >= 1 ) e = mesh->AddFaceWithID(node[0], node[1], node[2], node[3], + node[4], node[5], node[6], node[7], ID); + else e = mesh->AddFace (node[0], node[1], node[2], node[3], + node[4], node[5], node[6], node[7] ); + } + else if (nbnode == 9) { + if ( ID >= 1 ) e = mesh->AddFaceWithID(node[0], node[1], node[2], node[3], + node[4], node[5], node[6], node[7], node[8], ID); + else e = mesh->AddFace (node[0], node[1], node[2], node[3], + node[4], node[5], node[6], node[7], node[8] ); + } + } else { + if ( ID >= 1 ) e = mesh->AddPolygonalFaceWithID(node, ID); + else e = mesh->AddPolygonalFace (node ); + } + break; + + case SMDSAbs_Volume: + if ( !isPoly ) { + if (nbnode == 4) { + if ( ID >= 1 ) e = mesh->AddVolumeWithID(node[0], node[1], node[2], node[3], ID); + else e = mesh->AddVolume (node[0], node[1], node[2], node[3] ); + } + else if (nbnode == 5) { + if ( ID >= 1 ) e = mesh->AddVolumeWithID(node[0], node[1], node[2], node[3], + node[4], ID); + else e = mesh->AddVolume (node[0], node[1], node[2], node[3], + node[4] ); + } + else if (nbnode == 6) { + if ( ID >= 1 ) e = mesh->AddVolumeWithID(node[0], node[1], node[2], node[3], + node[4], node[5], ID); + else e = mesh->AddVolume (node[0], node[1], node[2], node[3], + node[4], node[5] ); + } + else if (nbnode == 8) { + if ( ID >= 1 ) e = mesh->AddVolumeWithID(node[0], node[1], node[2], node[3], + node[4], node[5], node[6], node[7], ID); + else e = mesh->AddVolume (node[0], node[1], node[2], node[3], + node[4], node[5], node[6], node[7] ); + } + else if (nbnode == 10) { + if ( ID >= 1 ) e = mesh->AddVolumeWithID(node[0], node[1], node[2], node[3], + node[4], node[5], node[6], node[7], + node[8], node[9], ID); + else e = mesh->AddVolume (node[0], node[1], node[2], node[3], + node[4], node[5], node[6], node[7], + node[8], node[9] ); + } + else if (nbnode == 12) { + if ( ID >= 1 ) e = mesh->AddVolumeWithID(node[0], node[1], node[2], node[3], + node[4], node[5], node[6], node[7], + node[8], node[9], node[10], node[11], ID); + else e = mesh->AddVolume (node[0], node[1], node[2], node[3], + node[4], node[5], node[6], node[7], + node[8], node[9], node[10], node[11] ); + } + else if (nbnode == 13) { + if ( ID >= 1 ) e = mesh->AddVolumeWithID(node[0], node[1], node[2], node[3], + node[4], node[5], node[6], node[7], + node[8], node[9], node[10],node[11], + node[12],ID); + else e = mesh->AddVolume (node[0], node[1], node[2], node[3], + node[4], node[5], node[6], node[7], + node[8], node[9], node[10],node[11], + node[12] ); + } + else if (nbnode == 15) { + if ( ID >= 1 ) e = mesh->AddVolumeWithID(node[0], node[1], node[2], node[3], + node[4], node[5], node[6], node[7], + node[8], node[9], node[10],node[11], + node[12],node[13],node[14],ID); + else e = mesh->AddVolume (node[0], node[1], node[2], node[3], + node[4], node[5], node[6], node[7], + node[8], node[9], node[10],node[11], + node[12],node[13],node[14] ); + } + else if (nbnode == 20) { + if ( ID >= 1 ) e = mesh->AddVolumeWithID(node[0], node[1], node[2], node[3], + node[4], node[5], node[6], node[7], + node[8], node[9], node[10],node[11], + node[12],node[13],node[14],node[15], + node[16],node[17],node[18],node[19],ID); + else e = mesh->AddVolume (node[0], node[1], node[2], node[3], + node[4], node[5], node[6], node[7], + node[8], node[9], node[10],node[11], + node[12],node[13],node[14],node[15], + node[16],node[17],node[18],node[19] ); + } + else if (nbnode == 27) { + if ( ID >= 1 ) e = mesh->AddVolumeWithID(node[0], node[1], node[2], node[3], + node[4], node[5], node[6], node[7], + node[8], node[9], node[10],node[11], + node[12],node[13],node[14],node[15], + node[16],node[17],node[18],node[19], + node[20],node[21],node[22],node[23], + node[24],node[25],node[26], ID); + else e = mesh->AddVolume (node[0], node[1], node[2], node[3], + node[4], node[5], node[6], node[7], + node[8], node[9], node[10],node[11], + node[12],node[13],node[14],node[15], + node[16],node[17],node[18],node[19], + node[20],node[21],node[22],node[23], + node[24],node[25],node[26] ); + } + } + break; + + case SMDSAbs_Edge: + if ( nbnode == 2 ) { + if ( ID >= 1 ) e = mesh->AddEdgeWithID(node[0], node[1], ID); + else e = mesh->AddEdge (node[0], node[1] ); + } + else if ( nbnode == 3 ) { + if ( ID >= 1 ) e = mesh->AddEdgeWithID(node[0], node[1], node[2], ID); + else e = mesh->AddEdge (node[0], node[1], node[2] ); + } + break; + + case SMDSAbs_0DElement: + if ( nbnode == 1 ) { + if ( ID >= 1 ) e = mesh->Add0DElementWithID(node[0], ID); + else e = mesh->Add0DElement (node[0] ); + } + break; + + case SMDSAbs_Node: + if ( ID >= 1 ) e = mesh->AddNodeWithID(node[0]->X(), node[0]->Y(), node[0]->Z(), ID); + else e = mesh->AddNode (node[0]->X(), node[0]->Y(), node[0]->Z()); + break; + + case SMDSAbs_Ball: + if ( ID >= 1 ) e = mesh->AddBallWithID(node[0], ballDiameter, ID); + else e = mesh->AddBall (node[0], ballDiameter); + break; + + default:; + } + if ( e ) myLastCreatedElems.Append( e ); + return e; +} + +//======================================================================= +/*! + * \brief Add element + */ //======================================================================= -SMESH_MeshEditor::SMESH_MeshEditor( SMESH_Mesh* theMesh ): -myMesh( theMesh ) +SMDS_MeshElement* SMESH_MeshEditor::AddElement(const vector & nodeIDs, + const SMDSAbs_ElementType type, + const bool isPoly, + const int ID) { + vector nodes; + nodes.reserve( nodeIDs.size() ); + vector::const_iterator id = nodeIDs.begin(); + while ( id != nodeIDs.end() ) { + if ( const SMDS_MeshNode* node = GetMeshDS()->FindNode( *id++ )) + nodes.push_back( node ); + else + return 0; + } + return AddElement( nodes, type, isPoly, ID ); } //======================================================================= @@ -70,16 +338,18 @@ myMesh( theMesh ) // Modify a compute state of sub-meshes which become empty //======================================================================= -bool SMESH_MeshEditor::Remove (const list< int >& theIDs, - const bool isNodes ) +int SMESH_MeshEditor::Remove (const list< int >& theIDs, + const bool isNodes ) { + myLastCreatedElems.Clear(); + myLastCreatedNodes.Clear(); SMESHDS_Mesh* aMesh = GetMeshDS(); set< SMESH_subMesh *> smmap; - + + int removed = 0; list::const_iterator it = theIDs.begin(); - for ( ; it != theIDs.end(); it++ ) - { + for ( ; it != theIDs.end(); it++ ) { const SMDS_MeshElement * elem; if ( isNodes ) elem = aMesh->FindNode( *it ); @@ -88,28 +358,33 @@ bool SMESH_MeshEditor::Remove (const list< int >& theIDs, if ( !elem ) continue; - // Find sub-meshes to notify about modification - SMDS_ElemIteratorPtr nodeIt = elem->nodesIterator(); - while ( nodeIt->more() ) - { - const SMDS_MeshNode* node = static_cast( nodeIt->next() ); - const SMDS_PositionPtr& aPosition = node->GetPosition(); - if ( aPosition.get() ) { - int aShapeID = aPosition->GetShapeId(); - if ( aShapeID ) { - TopoDS_Shape aShape = aMesh->IndexToShape( aShapeID ); - SMESH_subMesh * sm = GetMesh()->GetSubMeshContaining( aShape ); - if ( sm ) + // Notify VERTEX sub-meshes about modification + if ( isNodes ) { + const SMDS_MeshNode* node = cast2Node( elem ); + if ( node->GetPosition()->GetTypeOfPosition() == SMDS_TOP_VERTEX ) + if ( int aShapeID = node->getshapeId() ) + if ( SMESH_subMesh * sm = GetMesh()->GetSubMeshContaining( aShapeID ) ) smmap.insert( sm ); - } - } } + // Find sub-meshes to notify about modification + // SMDS_ElemIteratorPtr nodeIt = elem->nodesIterator(); + // while ( nodeIt->more() ) { + // const SMDS_MeshNode* node = static_cast( nodeIt->next() ); + // const SMDS_PositionPtr& aPosition = node->GetPosition(); + // if ( aPosition.get() ) { + // if ( int aShapeID = aPosition->GetShapeId() ) { + // if ( SMESH_subMesh * sm = GetMesh()->GetSubMeshContaining( aShapeID ) ) + // smmap.insert( sm ); + // } + // } + // } // Do remove if ( isNodes ) aMesh->RemoveNode( static_cast< const SMDS_MeshNode* >( elem )); else aMesh->RemoveElement( elem ); + removed++; } // Notify sub-meshes about modification @@ -118,7 +393,50 @@ bool SMESH_MeshEditor::Remove (const list< int >& theIDs, for ( smIt = smmap.begin(); smIt != smmap.end(); smIt++ ) (*smIt)->ComputeStateEngine( SMESH_subMesh::MESH_ENTITY_REMOVED ); } - return true; + + // // Check if the whole mesh becomes empty + // if ( SMESH_subMesh * sm = GetMesh()->GetSubMeshContaining( 1 ) ) + // sm->ComputeStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE ); + + return removed; +} + +//================================================================================ +/*! + * \brief Create 0D elements on all nodes of the given object except those + * nodes on which a 0D element already exists. + * \param elements - Elements on whose nodes to create 0D elements; if empty, + * the all mesh is treated + * \param all0DElems - returns all 0D elements found or created on nodes of \a elements + */ +//================================================================================ + +void SMESH_MeshEditor::Create0DElementsOnAllNodes( const TIDSortedElemSet& elements, + TIDSortedElemSet& all0DElems ) +{ + typedef SMDS_SetIterator TSetIterator; + SMDS_ElemIteratorPtr elemIt; + if ( elements.empty() ) + elemIt = GetMeshDS()->elementsIterator( SMDSAbs_Node ); + else + elemIt = SMDS_ElemIteratorPtr( new TSetIterator( elements.begin(), elements.end() )); + + while ( elemIt->more() ) + { + const SMDS_MeshElement* e = elemIt->next(); + SMDS_ElemIteratorPtr nodeIt = e->nodesIterator(); + while ( nodeIt->more() ) + { + const SMDS_MeshNode* n = cast2Node( nodeIt->next() ); + SMDS_ElemIteratorPtr it0D = n->GetInverseElementIterator( SMDSAbs_0DElement ); + if ( it0D->more() ) + all0DElems.insert( it0D->next() ); + else { + myLastCreatedElems.Append( GetMeshDS()->Add0DElement( n )); + all0DElems.insert( myLastCreatedElems.Last() ); + } + } + } } //======================================================================= @@ -129,61 +447,177 @@ bool SMESH_MeshEditor::Remove (const list< int >& theIDs, int SMESH_MeshEditor::FindShape (const SMDS_MeshElement * theElem) { + myLastCreatedElems.Clear(); + myLastCreatedNodes.Clear(); + SMESHDS_Mesh * aMesh = GetMeshDS(); if ( aMesh->ShapeToMesh().IsNull() ) return 0; - if ( theElem->GetType() == SMDSAbs_Node ) - { - const SMDS_PositionPtr& aPosition = - static_cast( theElem )->GetPosition(); - if ( aPosition.get() ) - return aPosition->GetShapeId(); - else - return 0; + int aShapeID = theElem->getshapeId(); + if ( aShapeID < 1 ) + return 0; + + if ( SMESHDS_SubMesh * sm = aMesh->MeshElements( aShapeID )) + if ( sm->Contains( theElem )) + return aShapeID; + + if ( theElem->GetType() == SMDSAbs_Node ) { + MESSAGE( ":( Error: invalid myShapeId of node " << theElem->GetID() ); + } + else { + MESSAGE( ":( Error: invalid myShapeId of element " << theElem->GetID() ); } - TopoDS_Shape aShape; // the shape a node is on - SMDS_ElemIteratorPtr nodeIt = theElem->nodesIterator(); - while ( nodeIt->more() ) + TopoDS_Shape aShape; // the shape a node of theElem is on + if ( theElem->GetType() != SMDSAbs_Node ) { - const SMDS_MeshNode* node = static_cast( nodeIt->next() ); - const SMDS_PositionPtr& aPosition = node->GetPosition(); - if ( aPosition.get() ) { - int aShapeID = aPosition->GetShapeId(); - SMESHDS_SubMesh * sm = aMesh->MeshElements( aShapeID ); - if ( sm ) - { + SMDS_ElemIteratorPtr nodeIt = theElem->nodesIterator(); + while ( nodeIt->more() ) { + const SMDS_MeshNode* node = static_cast( nodeIt->next() ); + if ((aShapeID = node->getshapeId()) > 0) { + if ( SMESHDS_SubMesh * sm = aMesh->MeshElements( aShapeID ) ) { if ( sm->Contains( theElem )) return aShapeID; if ( aShape.IsNull() ) aShape = aMesh->IndexToShape( aShapeID ); } - else - { - //MESSAGE ( "::FindShape() No SubShape for aShapeID " << aShapeID ); - } } + } } // None of nodes is on a proper shape, // find the shape among ancestors of aShape on which a node is - if ( aShape.IsNull() ) { - //MESSAGE ("::FindShape() - NONE node is on shape") - return 0; - } - TopTools_ListIteratorOfListOfShape ancIt( GetMesh()->GetAncestors( aShape )); - for ( ; ancIt.More(); ancIt.Next() ) - { + if ( !aShape.IsNull() ) { + TopTools_ListIteratorOfListOfShape ancIt( GetMesh()->GetAncestors( aShape )); + for ( ; ancIt.More(); ancIt.Next() ) { SMESHDS_SubMesh * sm = aMesh->MeshElements( ancIt.Value() ); if ( sm && sm->Contains( theElem )) return aMesh->ShapeToIndex( ancIt.Value() ); + } + } + else + { + const map& id2sm = GetMeshDS()->SubMeshes(); + map::const_iterator id_sm = id2sm.begin(); + for ( ; id_sm != id2sm.end(); ++id_sm ) + if ( id_sm->second->Contains( theElem )) + return id_sm->first; } //MESSAGE ("::FindShape() - SHAPE NOT FOUND") return 0; } +//======================================================================= +//function : IsMedium +//purpose : +//======================================================================= + +bool SMESH_MeshEditor::IsMedium(const SMDS_MeshNode* node, + const SMDSAbs_ElementType typeToCheck) +{ + bool isMedium = false; + SMDS_ElemIteratorPtr it = node->GetInverseElementIterator(typeToCheck); + while (it->more() && !isMedium ) { + const SMDS_MeshElement* elem = it->next(); + isMedium = elem->IsMediumNode(node); + } + return isMedium; +} + +//======================================================================= +//function : ShiftNodesQuadTria +//purpose : auxilary +// Shift nodes in the array corresponded to quadratic triangle +// example: (0,1,2,3,4,5) -> (1,2,0,4,5,3) +//======================================================================= +static void ShiftNodesQuadTria(const SMDS_MeshNode* aNodes[]) +{ + const SMDS_MeshNode* nd1 = aNodes[0]; + aNodes[0] = aNodes[1]; + aNodes[1] = aNodes[2]; + aNodes[2] = nd1; + const SMDS_MeshNode* nd2 = aNodes[3]; + aNodes[3] = aNodes[4]; + aNodes[4] = aNodes[5]; + aNodes[5] = nd2; +} + +//======================================================================= +//function : edgeConnectivity +//purpose : auxilary +// return number of the edges connected with the theNode. +// if theEdges has connections with the other type of the +// elements, return -1 +//======================================================================= +static int nbEdgeConnectivity(const SMDS_MeshNode* theNode) +{ + SMDS_ElemIteratorPtr elemIt = theNode->GetInverseElementIterator(); + int nb=0; + while(elemIt->more()) { + elemIt->next(); + nb++; + } + return nb; +} + + +//======================================================================= +//function : GetNodesFromTwoTria +//purpose : auxilary +// Shift nodes in the array corresponded to quadratic triangle +// example: (0,1,2,3,4,5) -> (1,2,0,4,5,3) +//======================================================================= +static bool GetNodesFromTwoTria(const SMDS_MeshElement * theTria1, + const SMDS_MeshElement * theTria2, + const SMDS_MeshNode* N1[], + const SMDS_MeshNode* N2[]) +{ + SMDS_ElemIteratorPtr it = theTria1->nodesIterator(); + int i=0; + while(i<6) { + N1[i] = static_cast( it->next() ); + i++; + } + if(it->more()) return false; + it = theTria2->nodesIterator(); + i=0; + while(i<6) { + N2[i] = static_cast( it->next() ); + i++; + } + if(it->more()) return false; + + int sames[3] = {-1,-1,-1}; + int nbsames = 0; + int j; + for(i=0; i<3; i++) { + for(j=0; j<3; j++) { + if(N1[i]==N2[j]) { + sames[i] = j; + nbsames++; + break; + } + } + } + if(nbsames!=2) return false; + if(sames[0]>-1) { + ShiftNodesQuadTria(N1); + if(sames[1]>-1) { + ShiftNodesQuadTria(N1); + } + } + i = sames[0] + sames[1] + sames[2]; + for(; i<2; i++) { + ShiftNodesQuadTria(N2); + } + // now we receive following N1 and N2 (using numeration as above image) + // tria1 : (1 2 4 5 9 7) and tria2 : (3 4 2 8 9 6) + // i.e. first nodes from both arrays determ new diagonal + return true; +} + //======================================================================= //function : InverseDiag //purpose : Replace two neighbour triangles with ones built on the same 4 nodes @@ -194,73 +628,121 @@ int SMESH_MeshEditor::FindShape (const SMDS_MeshElement * theElem) bool SMESH_MeshEditor::InverseDiag (const SMDS_MeshElement * theTria1, const SMDS_MeshElement * theTria2 ) { + MESSAGE("InverseDiag"); + myLastCreatedElems.Clear(); + myLastCreatedNodes.Clear(); + if (!theTria1 || !theTria2) return false; - const SMDS_FaceOfNodes* F1 = dynamic_cast( theTria1 ); + + const SMDS_VtkFace* F1 = dynamic_cast( theTria1 ); if (!F1) return false; - const SMDS_FaceOfNodes* F2 = dynamic_cast( theTria2 ); + const SMDS_VtkFace* F2 = dynamic_cast( theTria2 ); if (!F2) return false; + if ((theTria1->GetEntityType() == SMDSEntity_Triangle) && + (theTria2->GetEntityType() == SMDSEntity_Triangle)) { - // 1 +--+ A theTria1: ( 1 A B ) A->2 ( 1 2 B ) 1 +--+ A - // | /| theTria2: ( B A 2 ) B->1 ( 1 A 2 ) |\ | - // |/ | | \| - // B +--+ 2 B +--+ 2 + // 1 +--+ A theTria1: ( 1 A B ) A->2 ( 1 2 B ) 1 +--+ A + // | /| theTria2: ( B A 2 ) B->1 ( 1 A 2 ) |\ | + // |/ | | \| + // B +--+ 2 B +--+ 2 - // put nodes in array and find out indices of the same ones - const SMDS_MeshNode* aNodes [6]; - int sameInd [] = { 0, 0, 0, 0, 0, 0 }; - int i = 0; - SMDS_ElemIteratorPtr it = theTria1->nodesIterator(); - while ( it->more() ) - { - aNodes[ i ] = static_cast( it->next() ); + // put nodes in array and find out indices of the same ones + const SMDS_MeshNode* aNodes [6]; + int sameInd [] = { 0, 0, 0, 0, 0, 0 }; + int i = 0; + SMDS_ElemIteratorPtr it = theTria1->nodesIterator(); + while ( it->more() ) { + aNodes[ i ] = static_cast( it->next() ); + + if ( i > 2 ) // theTria2 + // find same node of theTria1 + for ( int j = 0; j < 3; j++ ) + if ( aNodes[ i ] == aNodes[ j ]) { + sameInd[ j ] = i; + sameInd[ i ] = j; + break; + } + // next + i++; + if ( i == 3 ) { + if ( it->more() ) + return false; // theTria1 is not a triangle + it = theTria2->nodesIterator(); + } + if ( i == 6 && it->more() ) + return false; // theTria2 is not a triangle + } - if ( i > 2 ) // theTria2 - // find same node of theTria1 - for ( int j = 0; j < 3; j++ ) - if ( aNodes[ i ] == aNodes[ j ]) { - sameInd[ j ] = i; - sameInd[ i ] = j; - break; - } - // next - i++; - if ( i == 3 ) { - if ( it->more() ) - return false; // theTria1 is not a triangle - it = theTria2->nodesIterator(); + // find indices of 1,2 and of A,B in theTria1 + int iA = 0, iB = 0, i1 = 0, i2 = 0; + for ( i = 0; i < 6; i++ ) { + if ( sameInd [ i ] == 0 ) { + if ( i < 3 ) i1 = i; + else i2 = i; + } + else if (i < 3) { + if ( iA ) iB = i; + else iA = i; + } } - if ( i == 6 && it->more() ) - return false; // theTria2 is not a triangle - } + // nodes 1 and 2 should not be the same + if ( aNodes[ i1 ] == aNodes[ i2 ] ) + return false; - // find indices of 1,2 and of A,B in theTria1 - int iA = 0, iB = 0, i1 = 0, i2 = 0; - for ( i = 0; i < 6; i++ ) - { - if ( sameInd [ i ] == 0 ) - if ( i < 3 ) i1 = i; - else i2 = i; - else if (i < 3) - if ( iA ) iB = i; - else iA = i; - } - // nodes 1 and 2 should not be the same - if ( aNodes[ i1 ] == aNodes[ i2 ] ) - return false; + // theTria1: A->2 + aNodes[ iA ] = aNodes[ i2 ]; + // theTria2: B->1 + aNodes[ sameInd[ iB ]] = aNodes[ i1 ]; + GetMeshDS()->ChangeElementNodes( theTria1, aNodes, 3 ); + GetMeshDS()->ChangeElementNodes( theTria2, &aNodes[ 3 ], 3 ); - // theTria1: A->2 - aNodes[ iA ] = aNodes[ i2 ]; - // theTria2: B->1 - aNodes[ sameInd[ iB ]] = aNodes[ i1 ]; + return true; - //MESSAGE( theTria1 << theTria2 ); + } // end if(F1 && F2) - GetMeshDS()->ChangeElementNodes( theTria1, aNodes, 3 ); - GetMeshDS()->ChangeElementNodes( theTria2, &aNodes[ 3 ], 3 ); + // check case of quadratic faces + if (theTria1->GetEntityType() != SMDSEntity_Quad_Triangle) + return false; + if (theTria2->GetEntityType() != SMDSEntity_Quad_Triangle) + return false; - //MESSAGE( theTria1 << theTria2 ); + // 5 + // 1 +--+--+ 2 theTria1: (1 2 4 5 9 7) or (2 4 1 9 7 5) or (4 1 2 7 5 9) + // | /| theTria2: (2 3 4 6 8 9) or (3 4 2 8 9 6) or (4 2 3 9 6 8) + // | / | + // 7 + + + 6 + // | /9 | + // |/ | + // 4 +--+--+ 3 + // 8 + + const SMDS_MeshNode* N1 [6]; + const SMDS_MeshNode* N2 [6]; + if(!GetNodesFromTwoTria(theTria1,theTria2,N1,N2)) + return false; + // now we receive following N1 and N2 (using numeration as above image) + // tria1 : (1 2 4 5 9 7) and tria2 : (3 4 2 8 9 6) + // i.e. first nodes from both arrays determ new diagonal + + const SMDS_MeshNode* N1new [6]; + const SMDS_MeshNode* N2new [6]; + N1new[0] = N1[0]; + N1new[1] = N2[0]; + N1new[2] = N2[1]; + N1new[3] = N1[4]; + N1new[4] = N2[3]; + N1new[5] = N1[5]; + N2new[0] = N1[0]; + N2new[1] = N1[1]; + N2new[2] = N2[0]; + N2new[3] = N1[3]; + N2new[4] = N2[5]; + N2new[5] = N1[4]; + // replaces nodes in faces + GetMeshDS()->ChangeElementNodes( theTria1, N1new, 6 ); + GetMeshDS()->ChangeElementNodes( theTria2, N2new, 6 ); return true; } @@ -280,23 +762,31 @@ static bool findTriangles(const SMDS_MeshNode * theNode1, theTria1 = theTria2 = 0; set< const SMDS_MeshElement* > emap; - SMDS_ElemIteratorPtr it = theNode1->GetInverseElementIterator(); + SMDS_ElemIteratorPtr it = theNode1->GetInverseElementIterator(SMDSAbs_Face); while (it->more()) { const SMDS_MeshElement* elem = it->next(); - if ( elem->GetType() == SMDSAbs_Face && elem->NbNodes() == 3 ) + if ( elem->NbNodes() == 3 ) emap.insert( elem ); } - it = theNode2->GetInverseElementIterator(); + it = theNode2->GetInverseElementIterator(SMDSAbs_Face); while (it->more()) { const SMDS_MeshElement* elem = it->next(); - if ( elem->GetType() == SMDSAbs_Face && - emap.find( elem ) != emap.end() ) + if ( emap.find( elem ) != emap.end() ) { if ( theTria1 ) { - theTria2 = elem; + // theTria1 must be element with minimum ID + if( theTria1->GetID() < elem->GetID() ) { + theTria2 = elem; + } + else { + theTria2 = theTria1; + theTria1 = elem; + } break; - } else { + } + else { theTria1 = elem; } + } } return ( theTria1 && theTria2 ); } @@ -311,62 +801,66 @@ static bool findTriangles(const SMDS_MeshNode * theNode1, bool SMESH_MeshEditor::InverseDiag (const SMDS_MeshNode * theNode1, const SMDS_MeshNode * theNode2) { + myLastCreatedElems.Clear(); + myLastCreatedNodes.Clear(); + MESSAGE( "::InverseDiag()" ); const SMDS_MeshElement *tr1, *tr2; if ( !findTriangles( theNode1, theNode2, tr1, tr2 )) return false; - const SMDS_FaceOfNodes* F1 = dynamic_cast( tr1 ); + const SMDS_VtkFace* F1 = dynamic_cast( tr1 ); if (!F1) return false; - const SMDS_FaceOfNodes* F2 = dynamic_cast( tr2 ); + const SMDS_VtkFace* F2 = dynamic_cast( tr2 ); if (!F2) return false; + if ((tr1->GetEntityType() == SMDSEntity_Triangle) && + (tr2->GetEntityType() == SMDSEntity_Triangle)) { + + // 1 +--+ A tr1: ( 1 A B ) A->2 ( 1 2 B ) 1 +--+ A + // | /| tr2: ( B A 2 ) B->1 ( 1 A 2 ) |\ | + // |/ | | \| + // B +--+ 2 B +--+ 2 + + // put nodes in array + // and find indices of 1,2 and of A in tr1 and of B in tr2 + int i, iA1 = 0, i1 = 0; + const SMDS_MeshNode* aNodes1 [3]; + SMDS_ElemIteratorPtr it; + for (i = 0, it = tr1->nodesIterator(); it->more(); i++ ) { + aNodes1[ i ] = static_cast( it->next() ); + if ( aNodes1[ i ] == theNode1 ) + iA1 = i; // node A in tr1 + else if ( aNodes1[ i ] != theNode2 ) + i1 = i; // node 1 + } + int iB2 = 0, i2 = 0; + const SMDS_MeshNode* aNodes2 [3]; + for (i = 0, it = tr2->nodesIterator(); it->more(); i++ ) { + aNodes2[ i ] = static_cast( it->next() ); + if ( aNodes2[ i ] == theNode2 ) + iB2 = i; // node B in tr2 + else if ( aNodes2[ i ] != theNode1 ) + i2 = i; // node 2 + } - // 1 +--+ A tr1: ( 1 A B ) A->2 ( 1 2 B ) 1 +--+ A - // | /| tr2: ( B A 2 ) B->1 ( 1 A 2 ) |\ | - // |/ | | \| - // B +--+ 2 B +--+ 2 - - // put nodes in array - // and find indices of 1,2 and of A in tr1 and of B in tr2 - int i, iA1 = 0, i1 = 0; - const SMDS_MeshNode* aNodes1 [3]; - SMDS_ElemIteratorPtr it; - for (i = 0, it = tr1->nodesIterator(); it->more(); i++ ) { - aNodes1[ i ] = static_cast( it->next() ); - if ( aNodes1[ i ] == theNode1 ) - iA1 = i; // node A in tr1 - else if ( aNodes1[ i ] != theNode2 ) - i1 = i; // node 1 - } - int iB2 = 0, i2 = 0; - const SMDS_MeshNode* aNodes2 [3]; - for (i = 0, it = tr2->nodesIterator(); it->more(); i++ ) { - aNodes2[ i ] = static_cast( it->next() ); - if ( aNodes2[ i ] == theNode2 ) - iB2 = i; // node B in tr2 - else if ( aNodes2[ i ] != theNode1 ) - i2 = i; // node 2 - } - - // nodes 1 and 2 should not be the same - if ( aNodes1[ i1 ] == aNodes2[ i2 ] ) - return false; - - // tr1: A->2 - aNodes1[ iA1 ] = aNodes2[ i2 ]; - // tr2: B->1 - aNodes2[ iB2 ] = aNodes1[ i1 ]; + // nodes 1 and 2 should not be the same + if ( aNodes1[ i1 ] == aNodes2[ i2 ] ) + return false; - //MESSAGE( tr1 << tr2 ); + // tr1: A->2 + aNodes1[ iA1 ] = aNodes2[ i2 ]; + // tr2: B->1 + aNodes2[ iB2 ] = aNodes1[ i1 ]; - GetMeshDS()->ChangeElementNodes( tr1, aNodes1, 3 ); - GetMeshDS()->ChangeElementNodes( tr2, aNodes2, 3 ); + GetMeshDS()->ChangeElementNodes( tr1, aNodes1, 3 ); + GetMeshDS()->ChangeElementNodes( tr2, aNodes2, 3 ); - //MESSAGE( tr1 << tr2 ); + return true; + } - return true; - + // check case of quadratic faces + return InverseDiag(tr1,tr2); } //======================================================================= @@ -382,12 +876,15 @@ bool getQuadrangleNodes(const SMDS_MeshNode * theQuadNodes [], const SMDS_MeshElement * tr1, const SMDS_MeshElement * tr2 ) { + if( tr1->NbNodes() != tr2->NbNodes() ) + return false; // find the 4-th node to insert into tr1 const SMDS_MeshNode* n4 = 0; SMDS_ElemIteratorPtr it = tr2->nodesIterator(); - while ( !n4 && it->more() ) - { - const SMDS_MeshNode * n = static_cast( it->next() ); + int i=0; + while ( !n4 && i<3 ) { + const SMDS_MeshNode * n = cast2Node( it->next() ); + i++; bool isDiag = ( n == theNode1 || n == theNode2 ); if ( !isDiag ) n4 = n; @@ -395,19 +892,18 @@ bool getQuadrangleNodes(const SMDS_MeshNode * theQuadNodes [], // Make an array of nodes to be in a quadrangle int iNode = 0, iFirstDiag = -1; it = tr1->nodesIterator(); - while ( it->more() ) - { - const SMDS_MeshNode * n = static_cast( it->next() ); + i=0; + while ( i<3 ) { + const SMDS_MeshNode * n = cast2Node( it->next() ); + i++; bool isDiag = ( n == theNode1 || n == theNode2 ); - if ( isDiag ) - { + if ( isDiag ) { if ( iFirstDiag < 0 ) iFirstDiag = iNode; else if ( iNode - iFirstDiag == 1 ) theQuadNodes[ iNode++ ] = n4; // insert the 4-th node between diagonal nodes } - else if ( n == n4 ) - { + else if ( n == n4 ) { return false; // tr1 and tr2 should not have all the same nodes } theQuadNodes[ iNode++ ] = n; @@ -428,86 +924,348 @@ bool getQuadrangleNodes(const SMDS_MeshNode * theQuadNodes [], bool SMESH_MeshEditor::DeleteDiag (const SMDS_MeshNode * theNode1, const SMDS_MeshNode * theNode2) { + myLastCreatedElems.Clear(); + myLastCreatedNodes.Clear(); + MESSAGE( "::DeleteDiag()" ); const SMDS_MeshElement *tr1, *tr2; if ( !findTriangles( theNode1, theNode2, tr1, tr2 )) return false; - const SMDS_FaceOfNodes* F1 = dynamic_cast( tr1 ); + const SMDS_VtkFace* F1 = dynamic_cast( tr1 ); if (!F1) return false; - const SMDS_FaceOfNodes* F2 = dynamic_cast( tr2 ); + const SMDS_VtkFace* F2 = dynamic_cast( tr2 ); if (!F2) return false; + SMESHDS_Mesh * aMesh = GetMeshDS(); - const SMDS_MeshNode* aNodes [ 4 ]; - if ( ! getQuadrangleNodes( aNodes, theNode1, theNode2, tr1, tr2 )) - return false; + if ((tr1->GetEntityType() == SMDSEntity_Triangle) && + (tr2->GetEntityType() == SMDSEntity_Triangle)) { + + const SMDS_MeshNode* aNodes [ 4 ]; + if ( ! getQuadrangleNodes( aNodes, theNode1, theNode2, tr1, tr2 )) + return false; + + const SMDS_MeshElement* newElem = 0; + newElem = aMesh->AddFace( aNodes[0], aNodes[1], aNodes[2], aNodes[3] ); + myLastCreatedElems.Append(newElem); + AddToSameGroups( newElem, tr1, aMesh ); + int aShapeId = tr1->getshapeId(); + if ( aShapeId ) + { + aMesh->SetMeshElementOnShape( newElem, aShapeId ); + } + aMesh->RemoveElement( tr1 ); + aMesh->RemoveElement( tr2 ); + + return true; + } - //MESSAGE( endl << tr1 << tr2 ); + // check case of quadratic faces + if (tr1->GetEntityType() != SMDSEntity_Quad_Triangle) + return false; + if (tr2->GetEntityType() != SMDSEntity_Quad_Triangle) + return false; - GetMeshDS()->ChangeElementNodes( tr1, aNodes, 4 ); - GetMeshDS()->RemoveElement( tr2 ); + // 5 + // 1 +--+--+ 2 tr1: (1 2 4 5 9 7) or (2 4 1 9 7 5) or (4 1 2 7 5 9) + // | /| tr2: (2 3 4 6 8 9) or (3 4 2 8 9 6) or (4 2 3 9 6 8) + // | / | + // 7 + + + 6 + // | /9 | + // |/ | + // 4 +--+--+ 3 + // 8 + + const SMDS_MeshNode* N1 [6]; + const SMDS_MeshNode* N2 [6]; + if(!GetNodesFromTwoTria(tr1,tr2,N1,N2)) + return false; + // now we receive following N1 and N2 (using numeration as above image) + // tria1 : (1 2 4 5 9 7) and tria2 : (3 4 2 8 9 6) + // i.e. first nodes from both arrays determ new diagonal + + const SMDS_MeshNode* aNodes[8]; + aNodes[0] = N1[0]; + aNodes[1] = N1[1]; + aNodes[2] = N2[0]; + aNodes[3] = N2[1]; + aNodes[4] = N1[3]; + aNodes[5] = N2[5]; + aNodes[6] = N2[3]; + aNodes[7] = N1[5]; + + const SMDS_MeshElement* newElem = 0; + newElem = aMesh->AddFace( aNodes[0], aNodes[1], aNodes[2], aNodes[3], + aNodes[4], aNodes[5], aNodes[6], aNodes[7]); + myLastCreatedElems.Append(newElem); + AddToSameGroups( newElem, tr1, aMesh ); + int aShapeId = tr1->getshapeId(); + if ( aShapeId ) + { + aMesh->SetMeshElementOnShape( newElem, aShapeId ); + } + aMesh->RemoveElement( tr1 ); + aMesh->RemoveElement( tr2 ); - //MESSAGE( endl << tr1 ); + // remove middle node (9) + GetMeshDS()->RemoveNode( N1[4] ); return true; } //======================================================================= //function : Reorient -//purpose : Reverse the normal of theFace -// Return false if theFace is null +//purpose : Reverse theElement orientation //======================================================================= -bool SMESH_MeshEditor::Reorient (const SMDS_MeshElement * theFace) +bool SMESH_MeshEditor::Reorient (const SMDS_MeshElement * theElem) { - if (!theFace) return false; - const SMDS_FaceOfNodes* F = dynamic_cast( theFace ); - if (!F) return false; + MESSAGE("Reorient"); + myLastCreatedElems.Clear(); + myLastCreatedNodes.Clear(); - const SMDS_MeshNode* aNodes [4], *tmpNode; - int i = 0; - SMDS_ElemIteratorPtr it = theFace->nodesIterator(); - while ( it->more() ) - aNodes[ i++ ] = static_cast( it->next() ); + if (!theElem) + return false; + SMDS_ElemIteratorPtr it = theElem->nodesIterator(); + if ( !it || !it->more() ) + return false; - // exchange nodes with indeces 0 and 2 - tmpNode = aNodes[ 0 ]; - aNodes[ 0 ] = aNodes[ 2 ]; - aNodes[ 2 ] = tmpNode; + switch ( theElem->GetType() ) { - //MESSAGE( theFace ); + case SMDSAbs_Edge: + case SMDSAbs_Face: { + if(!theElem->IsQuadratic()) { + int i = theElem->NbNodes(); + vector aNodes( i ); + while ( it->more() ) + aNodes[ --i ]= static_cast( it->next() ); + return GetMeshDS()->ChangeElementNodes( theElem, &aNodes[0], theElem->NbNodes() ); + } + else { + // quadratic elements + if(theElem->GetType()==SMDSAbs_Edge) { + vector aNodes(3); + aNodes[1]= static_cast( it->next() ); + aNodes[0]= static_cast( it->next() ); + aNodes[2]= static_cast( it->next() ); + return GetMeshDS()->ChangeElementNodes( theElem, &aNodes[0], 3 ); + } + else { + int nbn = theElem->NbNodes(); + vector aNodes(nbn); + aNodes[0]= static_cast( it->next() ); + int i=1; + for(; i( it->next() ); + } + for(i=0; i( it->next() ); + } + return GetMeshDS()->ChangeElementNodes( theElem, &aNodes[0], nbn ); + } + } + } + case SMDSAbs_Volume: { + if (theElem->IsPoly()) { + // TODO reorient vtk polyhedron + MESSAGE("reorient vtk polyhedron ?"); + const SMDS_VtkVolume* aPolyedre = + dynamic_cast( theElem ); + if (!aPolyedre) { + MESSAGE("Warning: bad volumic element"); + return false; + } - GetMeshDS()->ChangeElementNodes( theFace, aNodes, theFace->NbNodes() ); + int nbFaces = aPolyedre->NbFaces(); + vector poly_nodes; + vector quantities (nbFaces); - //MESSAGE( theFace ); + // reverse each face of the polyedre + for (int iface = 1; iface <= nbFaces; iface++) { + int inode, nbFaceNodes = aPolyedre->NbFaceNodes(iface); + quantities[iface - 1] = nbFaceNodes; - return true; -} + for (inode = nbFaceNodes; inode >= 1; inode--) { + const SMDS_MeshNode* curNode = aPolyedre->GetFaceNode(iface, inode); + poly_nodes.push_back(curNode); + } + } -//======================================================================= -//function : getBadRate -//purpose : -//======================================================================= + return GetMeshDS()->ChangePolyhedronNodes( theElem, poly_nodes, quantities ); -static double getBadRate (const SMDS_MeshElement* theElem, - SMESH::Controls::NumericalFunctorPtr& theCrit) -{ - TColgp_SequenceOfXYZ P; - if ( !theElem || !theCrit->GetPoints( theElem, P )) - return 1e100; - return theCrit->GetBadRate( theCrit->GetValue( P ), theElem->NbNodes() ); -} - -//======================================================================= -//function : QuadToTri + } + else { + SMDS_VolumeTool vTool; + if ( !vTool.Set( theElem )) + return false; + vTool.Inverse(); + MESSAGE("ChangeElementNodes reorient: check vTool.Inverse"); + return GetMeshDS()->ChangeElementNodes( theElem, vTool.GetNodes(), vTool.NbNodes() ); + } + } + default:; + } + + return false; +} + +//================================================================================ +/*! + * \brief Reorient faces. + * \param theFaces - the faces to reorient. If empty the whole mesh is meant + * \param theDirection - desired direction of normal of \a theFace + * \param theFace - one of \a theFaces that sould be oriented according to + * \a theDirection and whose orientation defines orientation of other faces + * \return number of reoriented faces. + */ +//================================================================================ + +int SMESH_MeshEditor::Reorient2D (TIDSortedElemSet & theFaces, + const gp_Dir& theDirection, + const SMDS_MeshElement * theFace) +{ + int nbReori = 0; + if ( !theFace || theFace->GetType() != SMDSAbs_Face ) return nbReori; + + if ( theFaces.empty() ) + { + SMDS_FaceIteratorPtr fIt = GetMeshDS()->facesIterator(/*idInceasingOrder=*/true); + while ( fIt->more() ) + theFaces.insert( theFaces.end(), fIt->next() ); + } + + // orient theFace according to theDirection + gp_XYZ normal; + SMESH_Algo::FaceNormal( theFace, normal, /*normalized=*/false ); + if ( normal * theDirection.XYZ() < 0 ) + nbReori += Reorient( theFace ); + + // Orient other faces + + set< const SMDS_MeshElement* > startFaces, visitedFaces; + TIDSortedElemSet avoidSet; + set< SMESH_TLink > checkedLinks; + pair< set< SMESH_TLink >::iterator, bool > linkIt_isNew; + + if ( theFaces.size() > 1 )// leave 1 face to prevent finding not selected faces + theFaces.erase( theFace ); + startFaces.insert( theFace ); + + int nodeInd1, nodeInd2; + const SMDS_MeshElement* otherFace; + vector< const SMDS_MeshElement* > facesNearLink; + vector< std::pair< int, int > > nodeIndsOfFace; + + set< const SMDS_MeshElement* >::iterator startFace = startFaces.begin(); + while ( !startFaces.empty() ) + { + startFace = startFaces.begin(); + theFace = *startFace; + startFaces.erase( startFace ); + if ( !visitedFaces.insert( theFace ).second ) + continue; + + avoidSet.clear(); + avoidSet.insert(theFace); + + NLink link( theFace->GetNode( 0 ), 0 ); + + const int nbNodes = theFace->NbCornerNodes(); + for ( int i = 0; i < nbNodes; ++i ) // loop on links of theFace + { + link.second = theFace->GetNode(( i+1 ) % nbNodes ); + linkIt_isNew = checkedLinks.insert( link ); + if ( !linkIt_isNew.second ) + { + // link has already been checked and won't be encountered more + // if the group (theFaces) is manifold + //checkedLinks.erase( linkIt_isNew.first ); + } + else + { + facesNearLink.clear(); + nodeIndsOfFace.clear(); + while (( otherFace = FindFaceInSet( link.first, link.second, + theFaces, avoidSet, &nodeInd1, &nodeInd2 ))) + if ( otherFace != theFace) + { + facesNearLink.push_back( otherFace ); + nodeIndsOfFace.push_back( make_pair( nodeInd1, nodeInd2 )); + avoidSet.insert( otherFace ); + } + if ( facesNearLink.size() > 1 ) + { + // NON-MANIFOLD mesh shell ! + // select a face most co-directed with theFace, + // other faces won't be visited this time + gp_XYZ NF, NOF; + SMESH_Algo::FaceNormal( theFace, NF, /*normalized=*/false ); + double proj, maxProj = -1; + for ( size_t i = 0; i < facesNearLink.size(); ++i ) { + SMESH_Algo::FaceNormal( facesNearLink[i], NOF, /*normalized=*/false ); + if (( proj = Abs( NF * NOF )) > maxProj ) { + maxProj = proj; + otherFace = facesNearLink[i]; + nodeInd1 = nodeIndsOfFace[i].first; + nodeInd2 = nodeIndsOfFace[i].second; + } + } + // not to visit rejected faces + for ( size_t i = 0; i < facesNearLink.size(); ++i ) + if ( facesNearLink[i] != otherFace && theFaces.size() > 1 ) + visitedFaces.insert( facesNearLink[i] ); + } + else if ( facesNearLink.size() == 1 ) + { + otherFace = facesNearLink[0]; + nodeInd1 = nodeIndsOfFace.back().first; + nodeInd2 = nodeIndsOfFace.back().second; + } + if ( otherFace && otherFace != theFace) + { + // link must be reverse in otherFace if orientation ot otherFace + // is same as that of theFace + if ( abs(nodeInd2-nodeInd1) == 1 ? nodeInd2 > nodeInd1 : nodeInd1 > nodeInd2 ) + { + nbReori += Reorient( otherFace ); + } + startFaces.insert( otherFace ); + } + } + std::swap( link.first, link.second ); // reverse the link + } + } + return nbReori; +} + +//======================================================================= +//function : getBadRate +//purpose : +//======================================================================= + +static double getBadRate (const SMDS_MeshElement* theElem, + SMESH::Controls::NumericalFunctorPtr& theCrit) +{ + SMESH::Controls::TSequenceOfXYZ P; + if ( !theElem || !theCrit->GetPoints( theElem, P )) + return 1e100; + return theCrit->GetBadRate( theCrit->GetValue( P ), theElem->NbNodes() ); + //return theCrit->GetBadRate( theCrit->GetValue( theElem->GetID() ), theElem->NbNodes() ); +} + +//======================================================================= +//function : QuadToTri //purpose : Cut quadrangles into triangles. // theCrit is used to select a diagonal to cut //======================================================================= -bool SMESH_MeshEditor::QuadToTri (set & theElems, +bool SMESH_MeshEditor::QuadToTri (TIDSortedElemSet & theElems, SMESH::Controls::NumericalFunctorPtr theCrit) { + myLastCreatedElems.Clear(); + myLastCreatedNodes.Clear(); + MESSAGE( "::QuadToTri()" ); if ( !theCrit.get() ) @@ -515,3042 +1273,11598 @@ bool SMESH_MeshEditor::QuadToTri (set & theElems, SMESHDS_Mesh * aMesh = GetMeshDS(); - set< const SMDS_MeshElement * >::iterator itElem; - for ( itElem = theElems.begin(); itElem != theElems.end(); itElem++ ) - { - const SMDS_MeshElement* elem = (*itElem); - if ( !elem || elem->GetType() != SMDSAbs_Face || elem->NbNodes() != 4 ) + Handle(Geom_Surface) surface; + SMESH_MesherHelper helper( *GetMesh() ); + + TIDSortedElemSet::iterator itElem; + for ( itElem = theElems.begin(); itElem != theElems.end(); itElem++ ) { + const SMDS_MeshElement* elem = *itElem; + if ( !elem || elem->GetType() != SMDSAbs_Face ) + continue; + if ( elem->NbCornerNodes() != 4 ) continue; // retrieve element nodes - const SMDS_MeshNode* aNodes [4]; - SMDS_ElemIteratorPtr itN = elem->nodesIterator(); - int i = 0; - while ( itN->more() ) - aNodes[ i++ ] = static_cast( itN->next() ); + vector< const SMDS_MeshNode* > aNodes( elem->begin_nodes(), elem->end_nodes() ); // compare two sets of possible triangles double aBadRate1, aBadRate2; // to what extent a set is bad SMDS_FaceOfNodes tr1 ( aNodes[0], aNodes[1], aNodes[2] ); SMDS_FaceOfNodes tr2 ( aNodes[2], aNodes[3], aNodes[0] ); aBadRate1 = getBadRate( &tr1, theCrit ) + getBadRate( &tr2, theCrit ); - + SMDS_FaceOfNodes tr3 ( aNodes[1], aNodes[2], aNodes[3] ); SMDS_FaceOfNodes tr4 ( aNodes[3], aNodes[0], aNodes[1] ); aBadRate2 = getBadRate( &tr3, theCrit ) + getBadRate( &tr4, theCrit ); int aShapeId = FindShape( elem ); - //MESSAGE( "aBadRate1 = " << aBadRate1 << "; aBadRate2 = " << aBadRate2 - // << " ShapeID = " << aShapeId << endl << elem ); - - if ( aBadRate1 <= aBadRate2 ) { - // tr1 + tr2 is better - aMesh->ChangeElementNodes( elem, aNodes, 3 ); - //MESSAGE( endl << elem ); - - elem = aMesh->AddFace( aNodes[2], aNodes[3], aNodes[0] ); + const SMDS_MeshElement* newElem1 = 0; + const SMDS_MeshElement* newElem2 = 0; + + if( !elem->IsQuadratic() ) { + + // split liner quadrangle + // for MaxElementLength2D functor we return minimum diagonal for splitting, + // because aBadRate1=2*len(diagonal 1-3); aBadRate2=2*len(diagonal 2-4) + if ( aBadRate1 <= aBadRate2 ) { + // tr1 + tr2 is better + newElem1 = aMesh->AddFace( aNodes[2], aNodes[3], aNodes[0] ); + newElem2 = aMesh->AddFace( aNodes[2], aNodes[0], aNodes[1] ); + } + else { + // tr3 + tr4 is better + newElem1 = aMesh->AddFace( aNodes[3], aNodes[0], aNodes[1] ); + newElem2 = aMesh->AddFace( aNodes[3], aNodes[1], aNodes[2] ); + } } else { - // tr3 + tr4 is better - aMesh->ChangeElementNodes( elem, &aNodes[1], 3 ); - //MESSAGE( endl << elem ); - elem = aMesh->AddFace( aNodes[3], aNodes[0], aNodes[1] ); - } - //MESSAGE( endl << elem ); + // split quadratic quadrangle + + // get surface elem is on + if ( aShapeId != helper.GetSubShapeID() ) { + surface.Nullify(); + TopoDS_Shape shape; + if ( aShapeId > 0 ) + shape = aMesh->IndexToShape( aShapeId ); + if ( !shape.IsNull() && shape.ShapeType() == TopAbs_FACE ) { + TopoDS_Face face = TopoDS::Face( shape ); + surface = BRep_Tool::Surface( face ); + if ( !surface.IsNull() ) + helper.SetSubShape( shape ); + } + } + // find middle point for (0,1,2,3) + // and create a node in this point; + const SMDS_MeshNode* newN = 0; + if ( aNodes.size() == 9 ) + { + // SMDSEntity_BiQuad_Quadrangle + newN = aNodes.back(); + } + else + { + gp_XYZ p( 0,0,0 ); + if ( surface.IsNull() ) + { + for ( int i = 0; i < 4; i++ ) + p += gp_XYZ(aNodes[i]->X(), aNodes[i]->Y(), aNodes[i]->Z() ); + p /= 4; + } + else + { + const SMDS_MeshNode* inFaceNode = 0; + if ( helper.GetNodeUVneedInFaceNode() ) + for ( size_t i = 0; i < aNodes.size() && !inFaceNode; ++i ) + if ( aNodes[ i ]->GetPosition()->GetTypeOfPosition() == SMDS_TOP_FACE ) + inFaceNode = aNodes[ i ]; + + TopoDS_Face face = TopoDS::Face( helper.GetSubShape() ); + gp_XY uv( 0,0 ); + for ( int i = 0; i < 4; i++ ) + uv += helper.GetNodeUV( face, aNodes[i], inFaceNode ); + uv /= 4.; + p = surface->Value( uv.X(), uv.Y() ).XYZ(); + } + newN = aMesh->AddNode( p.X(), p.Y(), p.Z() ); + myLastCreatedNodes.Append(newN); + } + // create a new element + if ( aBadRate1 <= aBadRate2 ) { + newElem1 = aMesh->AddFace(aNodes[2], aNodes[3], aNodes[0], + aNodes[6], aNodes[7], newN ); + newElem2 = aMesh->AddFace(aNodes[2], aNodes[0], aNodes[1], + newN, aNodes[4], aNodes[5] ); + } + else { + newElem1 = aMesh->AddFace(aNodes[3], aNodes[0], aNodes[1], + aNodes[7], aNodes[4], newN ); + newElem2 = aMesh->AddFace(aNodes[3], aNodes[1], aNodes[2], + newN, aNodes[5], aNodes[6] ); + } + } // quadratic case + + // care of a new element + + myLastCreatedElems.Append(newElem1); + myLastCreatedElems.Append(newElem2); + AddToSameGroups( newElem1, elem, aMesh ); + AddToSameGroups( newElem2, elem, aMesh ); // put a new triangle on the same shape if ( aShapeId ) - aMesh->SetMeshElementOnShape( elem, aShapeId ); + { + aMesh->SetMeshElementOnShape( newElem1, aShapeId ); + aMesh->SetMeshElementOnShape( newElem2, aShapeId ); + } + aMesh->RemoveElement( elem ); } - return true; } //======================================================================= -//function : addToSameGroups -//purpose : add elemToAdd to the groups the elemInGroups belongs to +//function : BestSplit +//purpose : Find better diagonal for cutting. //======================================================================= -static void addToSameGroups (const SMDS_MeshElement* elemToAdd, - const SMDS_MeshElement* elemInGroups, - SMESHDS_Mesh * aMesh) +int SMESH_MeshEditor::BestSplit (const SMDS_MeshElement* theQuad, + SMESH::Controls::NumericalFunctorPtr theCrit) { - const set& groups = aMesh->GetGroups(); - set::const_iterator grIt = groups.begin(); - for ( ; grIt != groups.end(); grIt++ ) { - SMESHDS_Group* group = dynamic_cast( *grIt ); - if ( group && group->SMDSGroup().Contains( elemInGroups )) - group->SMDSGroup().Add( elemToAdd ); - } -} - -//======================================================================= -//function : QuadToTri -//purpose : Cut quadrangles into triangles. -// theCrit is used to select a diagonal to cut -//======================================================================= + myLastCreatedElems.Clear(); + myLastCreatedNodes.Clear(); -bool SMESH_MeshEditor::QuadToTri (std::set & theElems, - const bool the13Diag) -{ - MESSAGE( "::QuadToTri()" ); + if (!theCrit.get()) + return -1; - SMESHDS_Mesh * aMesh = GetMeshDS(); + if (!theQuad || theQuad->GetType() != SMDSAbs_Face ) + return -1; - set< const SMDS_MeshElement * >::iterator itElem; - for ( itElem = theElems.begin(); itElem != theElems.end(); itElem++ ) - { - const SMDS_MeshElement* elem = (*itElem); - if ( !elem || elem->GetType() != SMDSAbs_Face || elem->NbNodes() != 4 ) - continue; + if( theQuad->NbNodes()==4 || + (theQuad->NbNodes()==8 && theQuad->IsQuadratic()) ) { // retrieve element nodes const SMDS_MeshNode* aNodes [4]; - SMDS_ElemIteratorPtr itN = elem->nodesIterator(); + SMDS_ElemIteratorPtr itN = theQuad->nodesIterator(); int i = 0; - while ( itN->more() ) + //while (itN->more()) + while (i<4) { aNodes[ i++ ] = static_cast( itN->next() ); - - int aShapeId = FindShape( elem ); - const SMDS_MeshElement* newElem = 0; - if ( the13Diag ) - { - aMesh->ChangeElementNodes( elem, aNodes, 3 ); - newElem = aMesh->AddFace( aNodes[2], aNodes[3], aNodes[0] ); } - else - { - aMesh->ChangeElementNodes( elem, &aNodes[1], 3 ); - newElem = aMesh->AddFace( aNodes[3], aNodes[0], aNodes[1] ); - } - - // put a new triangle on the same shape and add to the same groups + // compare two sets of possible triangles + double aBadRate1, aBadRate2; // to what extent a set is bad + SMDS_FaceOfNodes tr1 ( aNodes[0], aNodes[1], aNodes[2] ); + SMDS_FaceOfNodes tr2 ( aNodes[2], aNodes[3], aNodes[0] ); + aBadRate1 = getBadRate( &tr1, theCrit ) + getBadRate( &tr2, theCrit ); - if ( aShapeId ) - aMesh->SetMeshElementOnShape( newElem, aShapeId ); + SMDS_FaceOfNodes tr3 ( aNodes[1], aNodes[2], aNodes[3] ); + SMDS_FaceOfNodes tr4 ( aNodes[3], aNodes[0], aNodes[1] ); + aBadRate2 = getBadRate( &tr3, theCrit ) + getBadRate( &tr4, theCrit ); + // for MaxElementLength2D functor we return minimum diagonal for splitting, + // because aBadRate1=2*len(diagonal 1-3); aBadRate2=2*len(diagonal 2-4) + if (aBadRate1 <= aBadRate2) // tr1 + tr2 is better + return 1; // diagonal 1-3 - addToSameGroups( newElem, elem, aMesh ); + return 2; // diagonal 2-4 } - - return true; + return -1; } -//======================================================================= -//function : getAngle -//purpose : -//======================================================================= - -double getAngle(const SMDS_MeshElement * tr1, - const SMDS_MeshElement * tr2, - const SMDS_MeshNode * n1, - const SMDS_MeshNode * n2) +namespace { - double angle = 2*PI; // bad angle - - // get normals - TColgp_SequenceOfXYZ P1, P2; - if ( !SMESH::Controls::NumericalFunctor::GetPoints( tr1, P1 ) || - !SMESH::Controls::NumericalFunctor::GetPoints( tr2, P2 )) - return angle; - gp_Vec N1 = gp_Vec( P1(2) - P1(1) ) ^ gp_Vec( P1(3) - P1(1) ); - if ( N1.SquareMagnitude() <= gp::Resolution() ) - return angle; - gp_Vec N2 = gp_Vec( P2(2) - P2(1) ) ^ gp_Vec( P2(3) - P2(1) ); - if ( N2.SquareMagnitude() <= gp::Resolution() ) - return angle; - - // find the first diagonal node n1 in the triangles: - // take in account a diagonal link orientation - const SMDS_MeshElement *nFirst[2], *tr[] = { tr1, tr2 }; - for ( int t = 0; t < 2; t++ ) - { - SMDS_ElemIteratorPtr it = tr[ t ]->nodesIterator(); - int i = 0, iDiag = -1; - while ( it->more()) { - const SMDS_MeshElement *n = it->next(); - if ( n == n1 || n == n2 ) - if ( iDiag < 0) - iDiag = i; - else { - if ( i - iDiag == 1 ) - nFirst[ t ] = ( n == n1 ? n2 : n1 ); - else - nFirst[ t ] = n; - break; - } - i++; - } - } - if ( nFirst[ 0 ] == nFirst[ 1 ] ) - N2.Reverse(); + // Methods of splitting volumes into tetra - angle = N1.Angle( N2 ); - //SCRUTE( angle ); - return angle; -} + const int theHexTo5_1[5*4+1] = + { + 0, 1, 2, 5, 0, 4, 5, 7, 0, 2, 3, 7, 2, 5, 6, 7, 0, 5, 2, 7, -1 + }; + const int theHexTo5_2[5*4+1] = + { + 1, 2, 3, 6, 1, 4, 5, 6, 0, 1, 3, 4, 3, 4, 6, 7, 1, 3, 4, 6, -1 + }; + const int* theHexTo5[2] = { theHexTo5_1, theHexTo5_2 }; -// ================================================= -// class generating a unique ID for a pair of nodes -// and able to return nodes by that ID -// ================================================= + const int theHexTo6_1[6*4+1] = + { + 1, 5, 6, 0, 0, 1, 2, 6, 0, 4, 5, 6, 0, 4, 6, 7, 0, 2, 3, 6, 0, 3, 7, 6, -1 + }; + const int theHexTo6_2[6*4+1] = + { + 2, 6, 7, 1, 1, 2, 3, 7, 1, 5, 6, 7, 1, 5, 7, 4, 1, 3, 0, 7, 1, 0, 4, 7, -1 + }; + const int theHexTo6_3[6*4+1] = + { + 3, 7, 4, 2, 2, 3, 0, 4, 2, 6, 7, 4, 2, 6, 4, 5, 2, 0, 1, 4, 2, 1, 5, 4, -1 + }; + const int theHexTo6_4[6*4+1] = + { + 0, 4, 5, 3, 3, 0, 1, 5, 3, 7, 4, 5, 3, 7, 5, 6, 3, 1, 2, 5, 3, 2, 6, 5, -1 + }; + const int* theHexTo6[4] = { theHexTo6_1, theHexTo6_2, theHexTo6_3, theHexTo6_4 }; -class LinkID_Gen { - public: + const int thePyraTo2_1[2*4+1] = + { + 0, 1, 2, 4, 0, 2, 3, 4, -1 + }; + const int thePyraTo2_2[2*4+1] = + { + 1, 2, 3, 4, 1, 3, 0, 4, -1 + }; + const int* thePyraTo2[2] = { thePyraTo2_1, thePyraTo2_2 }; - LinkID_Gen( const SMESHDS_Mesh* theMesh ) - :myMesh( theMesh ), myMaxID( theMesh->MaxNodeID() + 1) - {} + const int thePentaTo3_1[3*4+1] = + { + 0, 1, 2, 3, 1, 3, 4, 2, 2, 3, 4, 5, -1 + }; + const int thePentaTo3_2[3*4+1] = + { + 1, 2, 0, 4, 2, 4, 5, 0, 0, 4, 5, 3, -1 + }; + const int thePentaTo3_3[3*4+1] = + { + 2, 0, 1, 5, 0, 5, 3, 1, 1, 5, 3, 4, -1 + }; + const int thePentaTo3_4[3*4+1] = + { + 0, 1, 2, 3, 1, 3, 4, 5, 2, 3, 1, 5, -1 + }; + const int thePentaTo3_5[3*4+1] = + { + 1, 2, 0, 4, 2, 4, 5, 3, 0, 4, 2, 3, -1 + }; + const int thePentaTo3_6[3*4+1] = + { + 2, 0, 1, 5, 0, 5, 3, 4, 1, 5, 0, 4, -1 + }; + const int* thePentaTo3[6] = { thePentaTo3_1, thePentaTo3_2, thePentaTo3_3, + thePentaTo3_4, thePentaTo3_5, thePentaTo3_6 }; - long GetLinkID (const SMDS_MeshNode * n1, - const SMDS_MeshNode * n2) const + struct TTriangleFacet //!< stores indices of three nodes of tetra facet { - return ( Min(n1->GetID(),n2->GetID()) * myMaxID + Max(n1->GetID(),n2->GetID())); - } - - bool GetNodes (const long theLinkID, - const SMDS_MeshNode* & theNode1, - const SMDS_MeshNode* & theNode2) const + int _n1, _n2, _n3; + TTriangleFacet(int n1, int n2, int n3): _n1(n1), _n2(n2), _n3(n3) {} + bool contains(int n) const { return ( n == _n1 || n == _n2 || n == _n3 ); } + bool hasAdjacentTetra( const SMDS_MeshElement* elem ) const; + }; + struct TSplitMethod { - theNode1 = myMesh->FindNode( theLinkID / myMaxID ); - if ( !theNode1 ) return false; - theNode2 = myMesh->FindNode( theLinkID % myMaxID ); - if ( !theNode2 ) return false; - return true; - } + int _nbTetra; + const int* _connectivity; //!< foursomes of tetra connectivy finished by -1 + bool _baryNode; //!< additional node is to be created at cell barycenter + bool _ownConn; //!< to delete _connectivity in destructor + map _faceBaryNode; //!< map face index to node at BC of face + + TSplitMethod( int nbTet=0, const int* conn=0, bool addNode=false) + : _nbTetra(nbTet), _connectivity(conn), _baryNode(addNode), _ownConn(false) {} + ~TSplitMethod() { if ( _ownConn ) delete [] _connectivity; _connectivity = 0; } + bool hasFacet( const TTriangleFacet& facet ) const + { + const int* tetConn = _connectivity; + for ( ; tetConn[0] >= 0; tetConn += 4 ) + if (( facet.contains( tetConn[0] ) + + facet.contains( tetConn[1] ) + + facet.contains( tetConn[2] ) + + facet.contains( tetConn[3] )) == 3 ) + return true; + return false; + } + }; - private: - LinkID_Gen(); - const SMESHDS_Mesh* myMesh; - long myMaxID; -}; + //======================================================================= + /*! + * \brief return TSplitMethod for the given element + */ + //======================================================================= -//======================================================================= -//function : TriToQuad -//purpose : Fuse neighbour triangles into quadrangles. -// theCrit is used to select a neighbour to fuse with. -// theMaxAngle is a max angle between element normals at which -// fusion is still performed. -//======================================================================= + TSplitMethod getSplitMethod( SMDS_VolumeTool& vol, const int theMethodFlags) + { + const int iQ = vol.Element()->IsQuadratic() ? 2 : 1; -bool SMESH_MeshEditor::TriToQuad (set & theElems, - SMESH::Controls::NumericalFunctorPtr theCrit, - const double theMaxAngle) -{ - MESSAGE( "::TriToQuad()" ); + // at HEXA_TO_24 method, each face of volume is split into triangles each based on + // an edge and a face barycenter; tertaherdons are based on triangles and + // a volume barycenter + const bool is24TetMode = ( theMethodFlags == SMESH_MeshEditor::HEXA_TO_24 ); - if ( !theCrit.get() ) - return false; + // Find out how adjacent volumes are split - SMESHDS_Mesh * aMesh = GetMeshDS(); - LinkID_Gen aLinkID_Gen( aMesh ); - - - // Prepare data for algo: build - // 1. map of elements with their linkIDs - // 2. map of linkIDs with their elements - - map< long, list< const SMDS_MeshElement* > > mapLi_listEl; - map< long, list< const SMDS_MeshElement* > >::iterator itLE; - map< const SMDS_MeshElement*, set< long > > mapEl_setLi; - map< const SMDS_MeshElement*, set< long > >::iterator itEL; - - set::iterator itElem; - for ( itElem = theElems.begin(); itElem != theElems.end(); itElem++ ) - { - const SMDS_MeshElement* elem = (*itElem); - if ( !elem || elem->NbNodes() != 3 ) - continue; - - // retrieve element nodes - const SMDS_MeshNode* aNodes [4]; - SMDS_ElemIteratorPtr itN = elem->nodesIterator(); - int i = 0; - while ( itN->more() ) - aNodes[ i++ ] = static_cast( itN->next() ); - ASSERT( i == 3 ); - aNodes[ 3 ] = aNodes[ 0 ]; - - // fill maps - for ( i = 0; i < 3; i++ ) + vector < list< TTriangleFacet > > triaSplitsByFace( vol.NbFaces() ); // splits of each side + int hasAdjacentSplits = 0, maxTetConnSize = 0; + for ( int iF = 0; iF < vol.NbFaces(); ++iF ) { - long linkID = aLinkID_Gen.GetLinkID( aNodes[ i ], aNodes[ i+1 ] ); - // check if elements sharing a link can be fused - itLE = mapLi_listEl.find( linkID ); - if ( itLE != mapLi_listEl.end() ) + int nbNodes = vol.NbFaceNodes( iF ) / iQ; + maxTetConnSize += 4 * ( nbNodes - (is24TetMode ? 0 : 2)); + if ( nbNodes < 4 ) continue; + + list< TTriangleFacet >& triaSplits = triaSplitsByFace[ iF ]; + const int* nInd = vol.GetFaceNodesIndices( iF ); + if ( nbNodes == 4 ) { - if ((*itLE).second.size() > 1 ) // consider only 2 elems adjacent by a link - continue; - const SMDS_MeshElement* elem2 = (*itLE).second.front(); -// if ( FindShape( elem ) != FindShape( elem2 )) -// continue; // do not fuse triangles laying on different shapes - if ( getAngle( elem, elem2, aNodes[i], aNodes[i+1] ) > theMaxAngle ) - continue; // avoid making badly shaped quads - (*itLE).second.push_back( elem ); + TTriangleFacet t012( nInd[0*iQ], nInd[1*iQ], nInd[2*iQ] ); + TTriangleFacet t123( nInd[1*iQ], nInd[2*iQ], nInd[3*iQ] ); + if ( t012.hasAdjacentTetra( vol.Element() )) triaSplits.push_back( t012 ); + else if ( t123.hasAdjacentTetra( vol.Element() )) triaSplits.push_back( t123 ); } else - mapLi_listEl[ linkID ].push_back( elem ); - mapEl_setLi [ elem ].insert( linkID ); - } - } - // Clean the maps from the links shared by a sole element, ie - // links to which only one element is bound in mapLi_listEl - - for ( itLE = mapLi_listEl.begin(); itLE != mapLi_listEl.end(); itLE++ ) - { - int nbElems = (*itLE).second.size(); - if ( nbElems < 2 ) { - const SMDS_MeshElement* elem = (*itLE).second.front(); - long link = (*itLE).first; - mapEl_setLi[ elem ].erase( link ); - if ( mapEl_setLi[ elem ].empty() ) - mapEl_setLi.erase( elem ); + { + int iCom = 0; // common node of triangle faces to split into + for ( int iVar = 0; iVar < nbNodes; ++iVar, ++iCom ) + { + TTriangleFacet t012( nInd[ iQ * ( iCom )], + nInd[ iQ * ( (iCom+1)%nbNodes )], + nInd[ iQ * ( (iCom+2)%nbNodes )]); + TTriangleFacet t023( nInd[ iQ * ( iCom )], + nInd[ iQ * ( (iCom+2)%nbNodes )], + nInd[ iQ * ( (iCom+3)%nbNodes )]); + if ( t012.hasAdjacentTetra( vol.Element() ) && t023.hasAdjacentTetra( vol.Element() )) + { + triaSplits.push_back( t012 ); + triaSplits.push_back( t023 ); + break; + } + } + } + if ( !triaSplits.empty() ) + hasAdjacentSplits = true; } - } - // Algo: fuse triangles into quadrangles - - while ( ! mapEl_setLi.empty() ) - { - // Look for the start element: - // the element having the least nb of shared links + // Among variants of split method select one compliant with adjacent volumes - const SMDS_MeshElement* startElem = 0; - int minNbLinks = 4; - for ( itEL = mapEl_setLi.begin(); itEL != mapEl_setLi.end(); itEL++ ) + TSplitMethod method; + if ( !vol.Element()->IsPoly() && !is24TetMode ) { - int nbLinks = (*itEL).second.size(); - if ( nbLinks < minNbLinks ) + int nbVariants = 2, nbTet = 0; + const int** connVariants = 0; + switch ( vol.Element()->GetEntityType() ) { - startElem = (*itEL).first; - minNbLinks = nbLinks; - if ( minNbLinks == 1 ) - break; + case SMDSEntity_Hexa: + case SMDSEntity_Quad_Hexa: + case SMDSEntity_TriQuad_Hexa: + if ( theMethodFlags == SMESH_MeshEditor::HEXA_TO_5 ) + connVariants = theHexTo5, nbTet = 5; + else + connVariants = theHexTo6, nbTet = 6, nbVariants = 4; + break; + case SMDSEntity_Pyramid: + case SMDSEntity_Quad_Pyramid: + connVariants = thePyraTo2; nbTet = 2; + break; + case SMDSEntity_Penta: + case SMDSEntity_Quad_Penta: + connVariants = thePentaTo3; nbTet = 3; nbVariants = 6; + break; + default: + nbVariants = 0; } - } - - // search elements to fuse starting from startElem or links of elements - // fused earlyer - startLinks - list< long > startLinks; - while ( startElem || !startLinks.empty() ) - { - while ( !startElem && !startLinks.empty() ) + for ( int variant = 0; variant < nbVariants && method._nbTetra == 0; ++variant ) { - // Get an element to start, by a link - long linkId = startLinks.front(); - startLinks.pop_front(); - itLE = mapLi_listEl.find( linkId ); - if ( itLE != mapLi_listEl.end() ) + // check method compliancy with adjacent tetras, + // all found splits must be among facets of tetras described by this method + method = TSplitMethod( nbTet, connVariants[variant] ); + if ( hasAdjacentSplits && method._nbTetra > 0 ) { - list< const SMDS_MeshElement* > & listElem = (*itLE).second; - list< const SMDS_MeshElement* >::iterator itE = listElem.begin(); - for ( ; itE != listElem.end() ; itE++ ) - if ( mapEl_setLi.find( (*itE) ) != mapEl_setLi.end() ) - startElem = (*itE); - mapLi_listEl.erase( itLE ); + bool facetCreated = true; + for ( int iF = 0; facetCreated && iF < triaSplitsByFace.size(); ++iF ) + { + list< TTriangleFacet >::const_iterator facet = triaSplitsByFace[iF].begin(); + for ( ; facetCreated && facet != triaSplitsByFace[iF].end(); ++facet ) + facetCreated = method.hasFacet( *facet ); + } + if ( !facetCreated ) + method = TSplitMethod(0); // incompatible method } } + } + if ( method._nbTetra < 1 ) + { + // No standard method is applicable, use a generic solution: + // each facet of a volume is split into triangles and + // each of triangles and a volume barycenter form a tetrahedron. + + const bool isHex27 = ( vol.Element()->GetEntityType() == SMDSEntity_TriQuad_Hexa ); - if ( startElem ) + int* connectivity = new int[ maxTetConnSize + 1 ]; + method._connectivity = connectivity; + method._ownConn = true; + method._baryNode = !isHex27; // to create central node or not + + int connSize = 0; + int baryCenInd = vol.NbNodes() - int( isHex27 ); + for ( int iF = 0; iF < vol.NbFaces(); ++iF ) { - // Get candidates to be fused + const int nbNodes = vol.NbFaceNodes( iF ) / iQ; + const int* nInd = vol.GetFaceNodesIndices( iF ); + // find common node of triangle facets of tetra to create + int iCommon = 0; // index in linear numeration + const list< TTriangleFacet >& triaSplits = triaSplitsByFace[ iF ]; + if ( !triaSplits.empty() ) + { + // by found facets + const TTriangleFacet* facet = &triaSplits.front(); + for ( ; iCommon < nbNodes-1 ; ++iCommon ) + if ( facet->contains( nInd[ iQ * iCommon ]) && + facet->contains( nInd[ iQ * ((iCommon+2)%nbNodes) ])) + break; + } + else if ( nbNodes > 3 && !is24TetMode ) + { + // find the best method of splitting into triangles by aspect ratio + SMESH::Controls::NumericalFunctorPtr aspectRatio( new SMESH::Controls::AspectRatio); + map< double, int > badness2iCommon; + const SMDS_MeshNode** nodes = vol.GetFaceNodes( iF ); + int nbVariants = ( nbNodes == 4 ? 2 : nbNodes ); + for ( int iVar = 0; iVar < nbVariants; ++iVar, ++iCommon ) + { + double badness = 0; + for ( int iLast = iCommon+2; iLast < iCommon+nbNodes; ++iLast ) + { + SMDS_FaceOfNodes tria ( nodes[ iQ*( iCommon )], + nodes[ iQ*((iLast-1)%nbNodes)], + nodes[ iQ*((iLast )%nbNodes)]); + badness += getBadRate( &tria, aspectRatio ); + } + badness2iCommon.insert( make_pair( badness, iCommon )); + } + // use iCommon with lowest badness + iCommon = badness2iCommon.begin()->second; + } + if ( iCommon >= nbNodes ) + iCommon = 0; // something wrong - const SMDS_MeshElement *tr1 = startElem, *tr2 = 0, *tr3 = 0; - long link12, link13; - startElem = 0; - ASSERT( mapEl_setLi.find( tr1 ) != mapEl_setLi.end() ); - set< long >& setLi = mapEl_setLi[ tr1 ]; - ASSERT( !setLi.empty() ); - set< long >::iterator itLi; - for ( itLi = setLi.begin(); itLi != setLi.end(); itLi++ ) + // fill connectivity of tetrahedra based on a current face + int nbTet = nbNodes - 2; + if ( is24TetMode && nbNodes > 3 && triaSplits.empty()) { - long linkID = (*itLi); - itLE = mapLi_listEl.find( linkID ); - if ( itLE == mapLi_listEl.end() ) - continue; - const SMDS_MeshElement* elem = (*itLE).second.front(); - if ( elem == tr1 ) - elem = (*itLE).second.back(); - mapLi_listEl.erase( itLE ); - if ( mapEl_setLi.find( elem ) == mapEl_setLi.end()) - continue; - if ( tr2 ) + int faceBaryCenInd; + if ( isHex27 ) { - tr3 = elem; - link13 = linkID; + faceBaryCenInd = vol.GetCenterNodeIndex( iF ); + method._faceBaryNode[ iF ] = vol.GetNodes()[ faceBaryCenInd ]; } else { - tr2 = elem; - link12 = linkID; + method._faceBaryNode[ iF ] = 0; + faceBaryCenInd = baryCenInd + method._faceBaryNode.size(); } - - // add other links of elem to list of links to re-start from - set< long >& links = mapEl_setLi[ elem ]; - set< long >::iterator it; - for ( it = links.begin(); it != links.end(); it++ ) + nbTet = nbNodes; + for ( int i = 0; i < nbTet; ++i ) + { + int i1 = i, i2 = (i+1) % nbNodes; + if ( !vol.IsFaceExternal( iF )) swap( i1, i2 ); + connectivity[ connSize++ ] = nInd[ iQ * i1 ]; + connectivity[ connSize++ ] = nInd[ iQ * i2 ]; + connectivity[ connSize++ ] = faceBaryCenInd; + connectivity[ connSize++ ] = baryCenInd; + } + } + else + { + for ( int i = 0; i < nbTet; ++i ) { - long linkID2 = (*it); - if ( linkID2 != linkID ) - startLinks.push_back( linkID2 ); + int i1 = (iCommon+1+i) % nbNodes, i2 = (iCommon+2+i) % nbNodes; + if ( !vol.IsFaceExternal( iF )) swap( i1, i2 ); + connectivity[ connSize++ ] = nInd[ iQ * iCommon ]; + connectivity[ connSize++ ] = nInd[ iQ * i1 ]; + connectivity[ connSize++ ] = nInd[ iQ * i2 ]; + connectivity[ connSize++ ] = baryCenInd; } } + method._nbTetra += nbTet; - // Get nodes of possible quadrangles + } // loop on volume faces - const SMDS_MeshNode *n12 [4], *n13 [4]; - bool Ok12 = false, Ok13 = false; - const SMDS_MeshNode *linkNode1, *linkNode2; - if ( tr2 && - aLinkID_Gen.GetNodes( link12, linkNode1, linkNode2 ) && - getQuadrangleNodes( n12, linkNode1, linkNode2, tr1, tr2 )) - Ok12 = true; - if ( tr3 && - aLinkID_Gen.GetNodes( link13, linkNode1, linkNode2 ) && - getQuadrangleNodes( n13, linkNode1, linkNode2, tr1, tr3 )) - Ok13 = true; + connectivity[ connSize++ ] = -1; - // Choose a pair to fuse + } // end of generic solution + + return method; + } + //================================================================================ + /*! + * \brief Check if there is a tetraherdon adjacent to the given element via this facet + */ + //================================================================================ + + bool TTriangleFacet::hasAdjacentTetra( const SMDS_MeshElement* elem ) const + { + // find the tetrahedron including the three nodes of facet + const SMDS_MeshNode* n1 = elem->GetNode(_n1); + const SMDS_MeshNode* n2 = elem->GetNode(_n2); + const SMDS_MeshNode* n3 = elem->GetNode(_n3); + SMDS_ElemIteratorPtr volIt1 = n1->GetInverseElementIterator(SMDSAbs_Volume); + while ( volIt1->more() ) + { + const SMDS_MeshElement* v = volIt1->next(); + SMDSAbs_EntityType type = v->GetEntityType(); + if ( type != SMDSEntity_Tetra && type != SMDSEntity_Quad_Tetra ) + continue; + if ( type == SMDSEntity_Quad_Tetra && v->GetNodeIndex( n1 ) > 3 ) + continue; // medium node not allowed + const int ind2 = v->GetNodeIndex( n2 ); + if ( ind2 < 0 || 3 < ind2 ) + continue; + const int ind3 = v->GetNodeIndex( n3 ); + if ( ind3 < 0 || 3 < ind3 ) + continue; + return true; + } + return false; + } + + //======================================================================= + /*! + * \brief A key of a face of volume + */ + //======================================================================= + + struct TVolumeFaceKey: pair< pair< int, int>, pair< int, int> > + { + TVolumeFaceKey( SMDS_VolumeTool& vol, int iF ) + { + TIDSortedNodeSet sortedNodes; + const int iQ = vol.Element()->IsQuadratic() ? 2 : 1; + int nbNodes = vol.NbFaceNodes( iF ); + const SMDS_MeshNode** fNodes = vol.GetFaceNodes( iF ); + for ( int i = 0; i < nbNodes; i += iQ ) + sortedNodes.insert( fNodes[i] ); + TIDSortedNodeSet::iterator n = sortedNodes.begin(); + first.first = (*(n++))->GetID(); + first.second = (*(n++))->GetID(); + second.first = (*(n++))->GetID(); + second.second = ( sortedNodes.size() > 3 ) ? (*(n++))->GetID() : 0; + } + }; +} // namespace + +//======================================================================= +//function : SplitVolumesIntoTetra +//purpose : Split volume elements into tetrahedra. +//======================================================================= + +void SMESH_MeshEditor::SplitVolumesIntoTetra (const TIDSortedElemSet & theElems, + const int theMethodFlags) +{ + // std-like iterator on coordinates of nodes of mesh element + typedef SMDS_StdIterator< SMESH_TNodeXYZ, SMDS_ElemIteratorPtr > NXyzIterator; + NXyzIterator xyzEnd; + + SMDS_VolumeTool volTool; + SMESH_MesherHelper helper( *GetMesh()); + + SMESHDS_SubMesh* subMesh = 0;//GetMeshDS()->MeshElements(1); + SMESHDS_SubMesh* fSubMesh = 0;//subMesh; - if ( Ok12 && Ok13 ) + SMESH_SequenceOfElemPtr newNodes, newElems; + + // map face of volume to it's baricenrtic node + map< TVolumeFaceKey, const SMDS_MeshNode* > volFace2BaryNode; + double bc[3]; + + TIDSortedElemSet::const_iterator elem = theElems.begin(); + for ( ; elem != theElems.end(); ++elem ) + { + if ( (*elem)->GetType() != SMDSAbs_Volume ) + continue; + SMDSAbs_EntityType geomType = (*elem)->GetEntityType(); + if ( geomType == SMDSEntity_Tetra || geomType == SMDSEntity_Quad_Tetra ) + continue; + + if ( !volTool.Set( *elem, /*ignoreCentralNodes=*/false )) continue; // strange... + + TSplitMethod splitMethod = getSplitMethod( volTool, theMethodFlags ); + if ( splitMethod._nbTetra < 1 ) continue; + + // find submesh to add new tetras to + if ( !subMesh || !subMesh->Contains( *elem )) + { + int shapeID = FindShape( *elem ); + helper.SetSubShape( shapeID ); // helper will add tetras to the found submesh + subMesh = GetMeshDS()->MeshElements( shapeID ); + } + int iQ; + if ( (*elem)->IsQuadratic() ) + { + iQ = 2; + // add quadratic links to the helper + for ( int iF = 0; iF < volTool.NbFaces(); ++iF ) + { + const SMDS_MeshNode** fNodes = volTool.GetFaceNodes( iF ); + int nbN = volTool.NbFaceNodes( iF ) - bool( volTool.GetCenterNodeIndex(iF) > 0 ); + for ( int iN = 0; iN < nbN; iN += iQ ) + helper.AddTLinkNode( fNodes[iN], fNodes[iN+2], fNodes[iN+1] ); + } + helper.SetIsQuadratic( true ); + } + else + { + iQ = 1; + helper.SetIsQuadratic( false ); + } + vector nodes( (*elem)->begin_nodes(), (*elem)->end_nodes() ); + helper.SetElementsOnShape( true ); + if ( splitMethod._baryNode ) + { + // make a node at barycenter + volTool.GetBaryCenter( bc[0], bc[1], bc[2] ); + SMDS_MeshNode* gcNode = helper.AddNode( bc[0], bc[1], bc[2] ); + nodes.push_back( gcNode ); + newNodes.Append( gcNode ); + } + if ( !splitMethod._faceBaryNode.empty() ) + { + // make or find baricentric nodes of faces + map::iterator iF_n = splitMethod._faceBaryNode.begin(); + for ( ; iF_n != splitMethod._faceBaryNode.end(); ++iF_n ) + { + map< TVolumeFaceKey, const SMDS_MeshNode* >::iterator f_n = + volFace2BaryNode.insert + ( make_pair( TVolumeFaceKey( volTool,iF_n->first ), iF_n->second )).first; + if ( !f_n->second ) { - SMDS_FaceOfNodes quad12 ( n12[ 0 ], n12[ 1 ], n12[ 2 ], n12[ 3 ] ); - SMDS_FaceOfNodes quad13 ( n13[ 0 ], n13[ 1 ], n13[ 2 ], n13[ 3 ] ); - double aBadRate12 = getBadRate( &quad12, theCrit ); - double aBadRate13 = getBadRate( &quad13, theCrit ); - if ( aBadRate13 < aBadRate12 ) - Ok12 = false; - else - Ok13 = false; + volTool.GetFaceBaryCenter( iF_n->first, bc[0], bc[1], bc[2] ); + newNodes.Append( f_n->second = helper.AddNode( bc[0], bc[1], bc[2] )); } + nodes.push_back( iF_n->second = f_n->second ); + } + } + // make tetras + vector tetras( splitMethod._nbTetra ); // splits of a volume + const int* tetConn = splitMethod._connectivity; + for ( int i = 0; i < splitMethod._nbTetra; ++i, tetConn += 4 ) + newElems.Append( tetras[ i ] = helper.AddVolume( nodes[ tetConn[0] ], + nodes[ tetConn[1] ], + nodes[ tetConn[2] ], + nodes[ tetConn[3] ])); - // Make quadrangles - // and remove fused elems and removed links from the maps + ReplaceElemInGroups( *elem, tetras, GetMeshDS() ); - mapEl_setLi.erase( tr1 ); - if ( Ok12 ) + // Split faces on sides of the split volume + + const SMDS_MeshNode** volNodes = volTool.GetNodes(); + for ( int iF = 0; iF < volTool.NbFaces(); ++iF ) + { + const int nbNodes = volTool.NbFaceNodes( iF ) / iQ; + if ( nbNodes < 4 ) continue; + + // find an existing face + vector fNodes( volTool.GetFaceNodes( iF ), + volTool.GetFaceNodes( iF ) + volTool.NbFaceNodes( iF )); + while ( const SMDS_MeshElement* face = GetMeshDS()->FindElement( fNodes, SMDSAbs_Face, + /*noMedium=*/false)) + { + // make triangles + helper.SetElementsOnShape( false ); + vector< const SMDS_MeshElement* > triangles; + + // find submesh to add new triangles in + if ( !fSubMesh || !fSubMesh->Contains( face )) { - mapEl_setLi.erase( tr2 ); - mapLi_listEl.erase( link12 ); - aMesh->ChangeElementNodes( tr1, n12, 4 ); - aMesh->RemoveElement( tr2 ); + int shapeID = FindShape( face ); + fSubMesh = GetMeshDS()->MeshElements( shapeID ); } - else if ( Ok13 ) + map::iterator iF_n = splitMethod._faceBaryNode.find(iF); + if ( iF_n != splitMethod._faceBaryNode.end() ) { - mapEl_setLi.erase( tr3 ); - mapLi_listEl.erase( link13 ); - aMesh->ChangeElementNodes( tr1, n13, 4 ); - aMesh->RemoveElement( tr3 ); + for ( int iN = 0; iN < nbNodes*iQ; iN += iQ ) + { + const SMDS_MeshNode* n1 = fNodes[iN]; + const SMDS_MeshNode *n2 = fNodes[(iN+iQ)%(nbNodes*iQ)]; + const SMDS_MeshNode *n3 = iF_n->second; + if ( !volTool.IsFaceExternal( iF )) + swap( n2, n3 ); + triangles.push_back( helper.AddFace( n1,n2,n3 )); + + if ( fSubMesh && n3->getshapeId() < 1 ) + fSubMesh->AddNode( n3 ); + } + } + else + { + // among possible triangles create ones discribed by split method + const int* nInd = volTool.GetFaceNodesIndices( iF ); + int nbVariants = ( nbNodes == 4 ? 2 : nbNodes ); + int iCom = 0; // common node of triangle faces to split into + list< TTriangleFacet > facets; + for ( int iVar = 0; iVar < nbVariants; ++iVar, ++iCom ) + { + TTriangleFacet t012( nInd[ iQ * ( iCom )], + nInd[ iQ * ( (iCom+1)%nbNodes )], + nInd[ iQ * ( (iCom+2)%nbNodes )]); + TTriangleFacet t023( nInd[ iQ * ( iCom )], + nInd[ iQ * ( (iCom+2)%nbNodes )], + nInd[ iQ * ( (iCom+3)%nbNodes )]); + if ( splitMethod.hasFacet( t012 ) && splitMethod.hasFacet( t023 )) + { + facets.push_back( t012 ); + facets.push_back( t023 ); + for ( int iLast = iCom+4; iLast < iCom+nbNodes; ++iLast ) + facets.push_back( TTriangleFacet( nInd[ iQ * ( iCom )], + nInd[ iQ * ((iLast-1)%nbNodes )], + nInd[ iQ * ((iLast )%nbNodes )])); + break; + } + } + list< TTriangleFacet >::iterator facet = facets.begin(); + for ( ; facet != facets.end(); ++facet ) + { + if ( !volTool.IsFaceExternal( iF )) + swap( facet->_n2, facet->_n3 ); + triangles.push_back( helper.AddFace( volNodes[ facet->_n1 ], + volNodes[ facet->_n2 ], + volNodes[ facet->_n3 ])); + } + } + for ( int i = 0; i < triangles.size(); ++i ) + { + if ( !triangles[i] ) continue; + if ( fSubMesh ) + fSubMesh->AddElement( triangles[i]); + newElems.Append( triangles[i] ); } + ReplaceElemInGroups( face, triangles, GetMeshDS() ); + GetMeshDS()->RemoveFreeElement( face, fSubMesh, /*fromGroups=*/false ); + } - // Next element to fuse: the rejected one - if ( tr3 ) - startElem = Ok12 ? tr3 : tr2; + } // loop on volume faces to split them into triangles - } // if ( startElem ) - } // while ( startElem || !startLinks.empty() ) - } // while ( ! mapEl_setLi.empty() ) - - return true; -} + GetMeshDS()->RemoveFreeElement( *elem, subMesh, /*fromGroups=*/false ); + if ( geomType == SMDSEntity_TriQuad_Hexa ) + { + // remove medium nodes that could become free + for ( int i = 20; i < volTool.NbNodes(); ++i ) + if ( volNodes[i]->NbInverseElements() == 0 ) + GetMeshDS()->RemoveNode( volNodes[i] ); + } + } // loop on volumes to split -#define DUMPSO(txt) \ -// cout << txt << endl; -//============================================================================= -/*! - * - */ -//============================================================================= -static void swap( int i1, int i2, int idNodes[], gp_Pnt P[] ) -{ - if ( i1 == i2 ) - return; - int tmp = idNodes[ i1 ]; - idNodes[ i1 ] = idNodes[ i2 ]; - idNodes[ i2 ] = tmp; - gp_Pnt Ptmp = P[ i1 ]; - P[ i1 ] = P[ i2 ]; - P[ i2 ] = Ptmp; - DUMPSO( i1 << "(" << idNodes[ i2 ] << ") <-> " << i2 << "(" << idNodes[ i1 ] << ")"); + myLastCreatedNodes = newNodes; + myLastCreatedElems = newElems; } //======================================================================= -//function : SortQuadNodes -//purpose : Set 4 nodes of a quadrangle face in a good order. -// Swap 1<->2 or 2<->3 nodes and correspondingly return -// 1 or 2 else 0. +//function : AddToSameGroups +//purpose : add elemToAdd to the groups the elemInGroups belongs to //======================================================================= -int SMESH_MeshEditor::SortQuadNodes (const SMDS_Mesh * theMesh, - int idNodes[] ) +void SMESH_MeshEditor::AddToSameGroups (const SMDS_MeshElement* elemToAdd, + const SMDS_MeshElement* elemInGroups, + SMESHDS_Mesh * aMesh) { - gp_Pnt P[4]; - int i; - for ( i = 0; i < 4; i++ ) { - const SMDS_MeshNode *n = theMesh->FindNode( idNodes[i] ); - if ( !n ) return 0; - P[ i ].SetCoord( n->X(), n->Y(), n->Z() ); + const set& groups = aMesh->GetGroups(); + if (!groups.empty()) { + set::const_iterator grIt = groups.begin(); + for ( ; grIt != groups.end(); grIt++ ) { + SMESHDS_Group* group = dynamic_cast( *grIt ); + if ( group && group->Contains( elemInGroups )) + group->SMDSGroup().Add( elemToAdd ); + } } +} - gp_Vec V1(P[0], P[1]); - gp_Vec V2(P[0], P[2]); - gp_Vec V3(P[0], P[3]); - - gp_Vec Cross1 = V1 ^ V2; - gp_Vec Cross2 = V2 ^ V3; - i = 0; - if (Cross1.Dot(Cross2) < 0) +//======================================================================= +//function : RemoveElemFromGroups +//purpose : Remove removeelem to the groups the elemInGroups belongs to +//======================================================================= +void SMESH_MeshEditor::RemoveElemFromGroups (const SMDS_MeshElement* removeelem, + SMESHDS_Mesh * aMesh) +{ + const set& groups = aMesh->GetGroups(); + if (!groups.empty()) { - Cross1 = V2 ^ V1; - Cross2 = V1 ^ V3; - - if (Cross1.Dot(Cross2) < 0) - i = 2; - else - i = 1; - swap ( i, i + 1, idNodes, P ); - -// for ( int ii = 0; ii < 4; ii++ ) { -// const SMDS_MeshNode *n = theMesh->FindNode( idNodes[ii] ); -// DUMPSO( ii << "(" << idNodes[ii] <<") : "<X()<<" "<Y()<<" "<Z()); -// } + set::const_iterator GrIt = groups.begin(); + for (; GrIt != groups.end(); GrIt++) + { + SMESHDS_Group* grp = dynamic_cast(*GrIt); + if (!grp || grp->IsEmpty()) continue; + grp->SMDSGroup().Remove(removeelem); + } } - return i; } -//======================================================================= -//function : SortHexaNodes -//purpose : Set 8 nodes of a hexahedron in a good order. -// Return success status -//======================================================================= +//================================================================================ +/*! + * \brief Replace elemToRm by elemToAdd in the all groups + */ +//================================================================================ -bool SMESH_MeshEditor::SortHexaNodes (const SMDS_Mesh * theMesh, - int idNodes[] ) +void SMESH_MeshEditor::ReplaceElemInGroups (const SMDS_MeshElement* elemToRm, + const SMDS_MeshElement* elemToAdd, + SMESHDS_Mesh * aMesh) { - gp_Pnt P[8]; - int i; - DUMPSO( "INPUT: ========================================"); - for ( i = 0; i < 8; i++ ) { - const SMDS_MeshNode *n = theMesh->FindNode( idNodes[i] ); - if ( !n ) return false; - P[ i ].SetCoord( n->X(), n->Y(), n->Z() ); - DUMPSO( i << "(" << idNodes[i] <<") : "<X()<<" "<Y()<<" "<Z()); + const set& groups = aMesh->GetGroups(); + if (!groups.empty()) { + set::const_iterator grIt = groups.begin(); + for ( ; grIt != groups.end(); grIt++ ) { + SMESHDS_Group* group = dynamic_cast( *grIt ); + if ( group && group->SMDSGroup().Remove( elemToRm ) && elemToAdd ) + group->SMDSGroup().Add( elemToAdd ); + } } - DUMPSO( "========================================"); - - - set faceNodes; // ids of bottom face nodes, to be found - set checkedId1; // ids of tried 2-nd nodes - Standard_Real leastDist = DBL_MAX; // dist of the 4-th node from 123 plane - const Standard_Real tol = 1.e-6; // tolerance to find nodes in plane - int iMin, iLoop1 = 0; +} - // Loop to try the 2-nd nodes +//================================================================================ +/*! + * \brief Replace elemToRm by elemToAdd in the all groups + */ +//================================================================================ - while ( leastDist > DBL_MIN && ++iLoop1 < 8 ) +void SMESH_MeshEditor::ReplaceElemInGroups (const SMDS_MeshElement* elemToRm, + const vector& elemToAdd, + SMESHDS_Mesh * aMesh) +{ + const set& groups = aMesh->GetGroups(); + if (!groups.empty()) { - // Find not checked 2-nd node - for ( i = 1; i < 8; i++ ) - if ( checkedId1.find( idNodes[i] ) == checkedId1.end() ) { - int id1 = idNodes[i]; - swap ( 1, i, idNodes, P ); - checkedId1.insert ( id1 ); - break; - } - - // Find the 3-d node so that 1-2-3 triangle to be on a hexa face, - // ie that all but meybe one (id3 which is on the same face) nodes - // lay on the same side from the triangle plane. + set::const_iterator grIt = groups.begin(); + for ( ; grIt != groups.end(); grIt++ ) { + SMESHDS_Group* group = dynamic_cast( *grIt ); + if ( group && group->SMDSGroup().Remove( elemToRm ) ) + for ( int i = 0; i < elemToAdd.size(); ++i ) + group->SMDSGroup().Add( elemToAdd[ i ] ); + } + } +} - bool manyInPlane = false; // more than 4 nodes lay in plane - int iLoop2 = 0; - while ( ++iLoop2 < 6 ) { +//======================================================================= +//function : QuadToTri +//purpose : Cut quadrangles into triangles. +// theCrit is used to select a diagonal to cut +//======================================================================= - // get 1-2-3 plane coeffs - Standard_Real A, B, C, D; - gp_Vec N = gp_Vec (P[0], P[1]).Crossed( gp_Vec (P[0], P[2]) ); - if ( N.SquareMagnitude() > gp::Resolution() ) - { - gp_Pln pln ( P[0], N ); - pln.Coefficients( A, B, C, D ); +bool SMESH_MeshEditor::QuadToTri (TIDSortedElemSet & theElems, + const bool the13Diag) +{ + myLastCreatedElems.Clear(); + myLastCreatedNodes.Clear(); - // find the node (iMin) closest to pln - Standard_Real dist[ 8 ], minDist = DBL_MAX; - set idInPln; - for ( i = 3; i < 8; i++ ) { - dist[i] = A * P[i].X() + B * P[i].Y() + C * P[i].Z() + D; - if ( fabs( dist[i] ) < minDist ) { - minDist = fabs( dist[i] ); - iMin = i; - } - if ( fabs( dist[i] ) <= tol ) - idInPln.insert( idNodes[i] ); - } + MESSAGE( "::QuadToTri()" ); - // there should not be more than 4 nodes in bottom plane - if ( idInPln.size() > 1 ) - { - DUMPSO( "### idInPln.size() = " << idInPln.size()); - // idInPlane does not contain the first 3 nodes - if ( manyInPlane || idInPln.size() == 5) - return false; // all nodes in one plane - manyInPlane = true; + SMESHDS_Mesh * aMesh = GetMeshDS(); - // set the 1-st node to be not in plane - for ( i = 3; i < 8; i++ ) { - if ( idInPln.find( idNodes[ i ] ) == idInPln.end() ) { - DUMPSO( "### Reset 0-th node"); - swap( 0, i, idNodes, P ); - break; - } - } + Handle(Geom_Surface) surface; + SMESH_MesherHelper helper( *GetMesh() ); - // reset to re-check second nodes - leastDist = DBL_MAX; - faceNodes.clear(); - checkedId1.clear(); - iLoop1 = 0; - break; // from iLoop2; + TIDSortedElemSet::iterator itElem; + for ( itElem = theElems.begin(); itElem != theElems.end(); itElem++ ) { + const SMDS_MeshElement* elem = *itElem; + if ( !elem || elem->GetType() != SMDSAbs_Face ) + continue; + bool isquad = elem->NbNodes()==4 || elem->NbNodes()==8; + if(!isquad) continue; + + if(elem->NbNodes()==4) { + // retrieve element nodes + const SMDS_MeshNode* aNodes [4]; + SMDS_ElemIteratorPtr itN = elem->nodesIterator(); + int i = 0; + while ( itN->more() ) + aNodes[ i++ ] = static_cast( itN->next() ); + + int aShapeId = FindShape( elem ); + const SMDS_MeshElement* newElem1 = 0; + const SMDS_MeshElement* newElem2 = 0; + if ( the13Diag ) { + newElem1 = aMesh->AddFace( aNodes[2], aNodes[0], aNodes[1] ); + newElem2 = aMesh->AddFace( aNodes[2], aNodes[3], aNodes[0] ); + } + else { + newElem1 = aMesh->AddFace( aNodes[3], aNodes[0], aNodes[1] ); + newElem2 = aMesh->AddFace( aNodes[3], aNodes[1], aNodes[2] ); + } + myLastCreatedElems.Append(newElem1); + myLastCreatedElems.Append(newElem2); + // put a new triangle on the same shape and add to the same groups + if ( aShapeId ) + { + aMesh->SetMeshElementOnShape( newElem1, aShapeId ); + aMesh->SetMeshElementOnShape( newElem2, aShapeId ); } + AddToSameGroups( newElem1, elem, aMesh ); + AddToSameGroups( newElem2, elem, aMesh ); + //aMesh->RemoveFreeElement(elem, aMesh->MeshElements(aShapeId), true); + aMesh->RemoveElement( elem ); + } - // check that the other 4 nodes are on the same side - bool sameSide = true; - bool isNeg = dist[ iMin == 3 ? 4 : 3 ] <= 0.; - for ( i = 3; sameSide && i < 8; i++ ) { - if ( i != iMin ) - sameSide = ( isNeg == dist[i] <= 0.); + // Quadratic quadrangle + + if( elem->NbNodes()==8 && elem->IsQuadratic() ) { + + // get surface elem is on + int aShapeId = FindShape( elem ); + if ( aShapeId != helper.GetSubShapeID() ) { + surface.Nullify(); + TopoDS_Shape shape; + if ( aShapeId > 0 ) + shape = aMesh->IndexToShape( aShapeId ); + if ( !shape.IsNull() && shape.ShapeType() == TopAbs_FACE ) { + TopoDS_Face face = TopoDS::Face( shape ); + surface = BRep_Tool::Surface( face ); + if ( !surface.IsNull() ) + helper.SetSubShape( shape ); } + } - // keep best solution - if ( sameSide && minDist < leastDist ) { - leastDist = minDist; - faceNodes.clear(); - faceNodes.insert( idNodes[ 1 ] ); - faceNodes.insert( idNodes[ 2 ] ); - faceNodes.insert( idNodes[ iMin ] ); - DUMPSO( "loop " << iLoop2 << " id2 " << idNodes[ 1 ] << " id3 " << idNodes[ 2 ] - << " leastDist = " << leastDist); - if ( leastDist <= DBL_MIN ) - break; + const SMDS_MeshNode* aNodes [8]; + const SMDS_MeshNode* inFaceNode = 0; + SMDS_ElemIteratorPtr itN = elem->nodesIterator(); + int i = 0; + while ( itN->more() ) { + aNodes[ i++ ] = static_cast( itN->next() ); + if ( !inFaceNode && helper.GetNodeUVneedInFaceNode() && + aNodes[ i-1 ]->GetPosition()->GetTypeOfPosition() == SMDS_TOP_FACE ) + { + inFaceNode = aNodes[ i-1 ]; } } - // set next 3-d node to check - int iNext = 2 + iLoop2; - if ( iNext < 8 ) { - DUMPSO( "Try 2-nd"); - swap ( 2, iNext, idNodes, P ); + // find middle point for (0,1,2,3) + // and create a node in this point; + gp_XYZ p( 0,0,0 ); + if ( surface.IsNull() ) { + for(i=0; i<4; i++) + p += gp_XYZ(aNodes[i]->X(), aNodes[i]->Y(), aNodes[i]->Z() ); + p /= 4; } - } // while ( iLoop2 < 6 ) - } // iLoop1 - - if ( faceNodes.empty() ) return false; - - // Put the faceNodes in proper places - for ( i = 4; i < 8; i++ ) { - if ( faceNodes.find( idNodes[ i ] ) != faceNodes.end() ) { - // find a place to put - int iTo = 1; - while ( faceNodes.find( idNodes[ iTo ] ) != faceNodes.end() ) - iTo++; - DUMPSO( "Set faceNodes"); - swap ( iTo, i, idNodes, P ); - } - } - - - // Set nodes of the found bottom face in good order - DUMPSO( " Found bottom face: "); - i = SortQuadNodes( theMesh, idNodes ); - if ( i ) { - gp_Pnt Ptmp = P[ i ]; - P[ i ] = P[ i+1 ]; - P[ i+1 ] = Ptmp; - } -// else -// for ( int ii = 0; ii < 4; ii++ ) { -// const SMDS_MeshNode *n = theMesh->FindNode( idNodes[ii] ); -// DUMPSO( ii << "(" << idNodes[ii] <<") : "<X()<<" "<Y()<<" "<Z()); -// } - - // Gravity center of the top and bottom faces - gp_Pnt aGCb = ( P[0].XYZ() + P[1].XYZ() + P[2].XYZ() + P[3].XYZ() ) / 4.; - gp_Pnt aGCt = ( P[4].XYZ() + P[5].XYZ() + P[6].XYZ() + P[7].XYZ() ) / 4.; - - // Get direction from the bottom to the top face - gp_Vec upDir ( aGCb, aGCt ); - Standard_Real upDirSize = upDir.Magnitude(); - if ( upDirSize <= gp::Resolution() ) return false; - upDir / upDirSize; - - // Assure that the bottom face normal points up - gp_Vec Nb = gp_Vec (P[0], P[1]).Crossed( gp_Vec (P[0], P[2]) ); - Nb += gp_Vec (P[0], P[2]).Crossed( gp_Vec (P[0], P[3]) ); - if ( Nb.Dot( upDir ) < 0 ) { - DUMPSO( "Reverse bottom face"); - swap( 1, 3, idNodes, P ); - } - - // Find 5-th node - the one closest to the 1-st among the last 4 nodes. - Standard_Real minDist = DBL_MAX; - for ( i = 4; i < 8; i++ ) { - // projection of P[i] to the plane defined by P[0] and upDir - gp_Pnt Pp = P[i].Translated( upDir * ( upDir.Dot( gp_Vec( P[i], P[0] )))); - Standard_Real sqDist = P[0].SquareDistance( Pp ); - if ( sqDist < minDist ) { - minDist = sqDist; - iMin = i; + else { + TopoDS_Face geomFace = TopoDS::Face( helper.GetSubShape() ); + gp_XY uv( 0,0 ); + for(i=0; i<4; i++) + uv += helper.GetNodeUV( geomFace, aNodes[i], inFaceNode ); + uv /= 4.; + p = surface->Value( uv.X(), uv.Y() ).XYZ(); + } + const SMDS_MeshNode* newN = aMesh->AddNode( p.X(), p.Y(), p.Z() ); + myLastCreatedNodes.Append(newN); + + // create a new element + const SMDS_MeshElement* newElem1 = 0; + const SMDS_MeshElement* newElem2 = 0; + if ( the13Diag ) { + newElem1 = aMesh->AddFace(aNodes[2], aNodes[3], aNodes[0], + aNodes[6], aNodes[7], newN ); + newElem2 = aMesh->AddFace(aNodes[2], aNodes[0], aNodes[1], + newN, aNodes[4], aNodes[5] ); + } + else { + newElem1 = aMesh->AddFace(aNodes[3], aNodes[0], aNodes[1], + aNodes[7], aNodes[4], newN ); + newElem2 = aMesh->AddFace(aNodes[3], aNodes[1], aNodes[2], + newN, aNodes[5], aNodes[6] ); + } + myLastCreatedElems.Append(newElem1); + myLastCreatedElems.Append(newElem2); + // put a new triangle on the same shape and add to the same groups + if ( aShapeId ) + { + aMesh->SetMeshElementOnShape( newElem1, aShapeId ); + aMesh->SetMeshElementOnShape( newElem2, aShapeId ); + } + AddToSameGroups( newElem1, elem, aMesh ); + AddToSameGroups( newElem2, elem, aMesh ); + aMesh->RemoveElement( elem ); } } - DUMPSO( "Set 4-th"); - swap ( 4, iMin, idNodes, P ); - - // Set nodes of the top face in good order - DUMPSO( "Sort top face"); - i = SortQuadNodes( theMesh, &idNodes[4] ); - if ( i ) { - i += 4; - gp_Pnt Ptmp = P[ i ]; - P[ i ] = P[ i+1 ]; - P[ i+1 ] = Ptmp; - } - - // Assure that direction of the top face normal is from the bottom face - gp_Vec Nt = gp_Vec (P[4], P[5]).Crossed( gp_Vec (P[4], P[6]) ); - Nt += gp_Vec (P[4], P[6]).Crossed( gp_Vec (P[4], P[7]) ); - if ( Nt.Dot( upDir ) < 0 ) { - DUMPSO( "Reverse top face"); - swap( 5, 7, idNodes, P ); - } - -// DUMPSO( "OUTPUT: ========================================"); -// for ( i = 0; i < 8; i++ ) { -// float *p = ugrid->GetPoint(idNodes[i]); -// DUMPSO( i << "(" << idNodes[i] << ") : " << p[0] << " " << p[1] << " " << p[2]); -// } return true; } //======================================================================= -//function : laplacianSmooth -//purpose : pulls theNode toward the center of surrounding nodes directly -// connected to that node along an element edge +//function : getAngle +//purpose : //======================================================================= -void laplacianSmooth(SMESHDS_Mesh * theMesh, - const SMDS_MeshNode* theNode, - const set & theElems, - const set & theFixedNodes) +double getAngle(const SMDS_MeshElement * tr1, + const SMDS_MeshElement * tr2, + const SMDS_MeshNode * n1, + const SMDS_MeshNode * n2) { - // find surrounding nodes - set< const SMDS_MeshNode* > nodeSet; - SMDS_ElemIteratorPtr elemIt = theNode->GetInverseElementIterator(); - while ( elemIt->more() ) - { - const SMDS_MeshElement* elem = elemIt->next(); - if ( theElems.find( elem ) == theElems.end() ) - continue; + double angle = 2. * M_PI; // bad angle - int i = 0, iNode = 0; - const SMDS_MeshNode* aNodes [4]; - SMDS_ElemIteratorPtr itN = elem->nodesIterator(); - while ( itN->more() ) - { - aNodes[ i ] = static_cast( itN->next() ); - if ( aNodes[ i ] == theNode ) - iNode = i; - else - nodeSet.insert( aNodes[ i ] ); + // get normals + SMESH::Controls::TSequenceOfXYZ P1, P2; + if ( !SMESH::Controls::NumericalFunctor::GetPoints( tr1, P1 ) || + !SMESH::Controls::NumericalFunctor::GetPoints( tr2, P2 )) + return angle; + gp_Vec N1,N2; + if(!tr1->IsQuadratic()) + N1 = gp_Vec( P1(2) - P1(1) ) ^ gp_Vec( P1(3) - P1(1) ); + else + N1 = gp_Vec( P1(3) - P1(1) ) ^ gp_Vec( P1(5) - P1(1) ); + if ( N1.SquareMagnitude() <= gp::Resolution() ) + return angle; + if(!tr2->IsQuadratic()) + N2 = gp_Vec( P2(2) - P2(1) ) ^ gp_Vec( P2(3) - P2(1) ); + else + N2 = gp_Vec( P2(3) - P2(1) ) ^ gp_Vec( P2(5) - P2(1) ); + if ( N2.SquareMagnitude() <= gp::Resolution() ) + return angle; + + // find the first diagonal node n1 in the triangles: + // take in account a diagonal link orientation + const SMDS_MeshElement *nFirst[2], *tr[] = { tr1, tr2 }; + for ( int t = 0; t < 2; t++ ) { + SMDS_ElemIteratorPtr it = tr[ t ]->nodesIterator(); + int i = 0, iDiag = -1; + while ( it->more()) { + const SMDS_MeshElement *n = it->next(); + if ( n == n1 || n == n2 ) { + if ( iDiag < 0) + iDiag = i; + else { + if ( i - iDiag == 1 ) + nFirst[ t ] = ( n == n1 ? n2 : n1 ); + else + nFirst[ t ] = n; + break; + } + } i++; } - if ( elem->NbNodes() == 4 ) { // remove an opposite node - iNode += ( iNode < 2 ) ? 2 : -2; - nodeSet.erase( aNodes[ iNode ]); - } } + if ( nFirst[ 0 ] == nFirst[ 1 ] ) + N2.Reverse(); - // compute new coodrs - double coord[] = { 0., 0., 0. }; - set< const SMDS_MeshNode* >::iterator nodeSetIt = nodeSet.begin(); - for ( ; nodeSetIt != nodeSet.end(); nodeSetIt++ ) { - const SMDS_MeshNode* node = (*nodeSetIt); - coord[0] += node->X(); - coord[1] += node->Y(); - coord[2] += node->Z(); - } - double nbNodes = nodeSet.size(); - theMesh->MoveNode (theNode, - coord[0]/nbNodes, - coord[1]/nbNodes, - coord[2]/nbNodes); + angle = N1.Angle( N2 ); + //SCRUTE( angle ); + return angle; } -//======================================================================= -//function : centroidalSmooth -//purpose : pulls theNode toward the element-area-weighted centroid of the -// surrounding elements -//======================================================================= +// ================================================= +// class generating a unique ID for a pair of nodes +// and able to return nodes by that ID +// ================================================= +class LinkID_Gen { +public: -void centroidalSmooth(SMESHDS_Mesh * theMesh, - const SMDS_MeshNode* theNode, - const set & theElems, - const set & theFixedNodes) -{ - gp_XYZ aNewXYZ(0.,0.,0.); - SMESH::Controls::Area anAreaFunc; - double totalArea = 0.; - int nbElems = 0; + LinkID_Gen( const SMESHDS_Mesh* theMesh ) + :myMesh( theMesh ), myMaxID( theMesh->MaxNodeID() + 1) + {} - SMDS_ElemIteratorPtr elemIt = theNode->GetInverseElementIterator(); - while ( elemIt->more() ) + long GetLinkID (const SMDS_MeshNode * n1, + const SMDS_MeshNode * n2) const { - const SMDS_MeshElement* elem = elemIt->next(); - if ( theElems.find( elem ) == theElems.end() ) - continue; - - nbElems++; + return ( Min(n1->GetID(),n2->GetID()) * myMaxID + Max(n1->GetID(),n2->GetID())); + } - gp_XYZ elemCenter(0.,0.,0.); - TColgp_SequenceOfXYZ aNodePoints; - SMDS_ElemIteratorPtr itN = elem->nodesIterator(); - while ( itN->more() ) - { - const SMDS_MeshNode* aNode = static_cast( itN->next() ); - gp_XYZ aP( aNode->X(), aNode->Y(), aNode->Z() ); - aNodePoints.Append( aP ); - elemCenter += aP; - } - double elemArea = anAreaFunc.GetValue( aNodePoints ); - totalArea += elemArea; - elemCenter /= elem->NbNodes(); - aNewXYZ += elemCenter * elemArea; + bool GetNodes (const long theLinkID, + const SMDS_MeshNode* & theNode1, + const SMDS_MeshNode* & theNode2) const + { + theNode1 = myMesh->FindNode( theLinkID / myMaxID ); + if ( !theNode1 ) return false; + theNode2 = myMesh->FindNode( theLinkID % myMaxID ); + if ( !theNode2 ) return false; + return true; } - aNewXYZ /= totalArea; - theMesh->MoveNode (theNode, - aNewXYZ.X(), - aNewXYZ.Y(), - aNewXYZ.Z()); -} + +private: + LinkID_Gen(); + const SMESHDS_Mesh* myMesh; + long myMaxID; +}; + //======================================================================= -//function : Smooth -//purpose : Smooth theElements during theNbIterations or until a worst -// element has aspect ratio <= theTgtAspectRatio. -// Aspect Ratio varies in range [1.0, inf]. -// If theElements is empty, the whole mesh is smoothed. -// theFixedNodes contains additionally fixed nodes. Nodes built -// on edges and boundary nodes are always fixed. +//function : TriToQuad +//purpose : Fuse neighbour triangles into quadrangles. +// theCrit is used to select a neighbour to fuse with. +// theMaxAngle is a max angle between element normals at which +// fusion is still performed. //======================================================================= -void SMESH_MeshEditor::Smooth (set & theElems, - set & theFixedNodes, - const SmoothMethod theSmoothMethod, - const int theNbIterations, - double theTgtAspectRatio) +bool SMESH_MeshEditor::TriToQuad (TIDSortedElemSet & theElems, + SMESH::Controls::NumericalFunctorPtr theCrit, + const double theMaxAngle) { - MESSAGE((theSmoothMethod==LAPLACIAN ? "LAPLACIAN" : "CENTROIDAL") << "--::Smooth()"); + myLastCreatedElems.Clear(); + myLastCreatedNodes.Clear(); - SMESHDS_Mesh* aMesh = GetMeshDS(); - if ( theElems.empty() ) { - // add all faces - SMDS_FaceIteratorPtr fIt = aMesh->facesIterator(); - while ( fIt->more() ) - theElems.insert( fIt->next() ); - } + MESSAGE( "::TriToQuad()" ); - set setMovableNodes; + if ( !theCrit.get() ) + return false; - // Fill setMovableNodes + SMESHDS_Mesh * aMesh = GetMeshDS(); - map< const SMDS_MeshNode*, int > mapNodeNbFaces; - set< const SMDS_MeshElement* >::iterator itElem; - for ( itElem = theElems.begin(); itElem != theElems.end(); itElem++ ) - { - const SMDS_MeshElement* elem = (*itElem); - if ( !elem || elem->GetType() != SMDSAbs_Face ) - continue; + // Prepare data for algo: build + // 1. map of elements with their linkIDs + // 2. map of linkIDs with their elements - SMDS_ElemIteratorPtr itN = elem->nodesIterator(); - while ( itN->more() ) { - const SMDS_MeshNode* node = - static_cast( itN->next() ); + map< SMESH_TLink, list< const SMDS_MeshElement* > > mapLi_listEl; + map< SMESH_TLink, list< const SMDS_MeshElement* > >::iterator itLE; + map< const SMDS_MeshElement*, set< SMESH_TLink > > mapEl_setLi; + map< const SMDS_MeshElement*, set< SMESH_TLink > >::iterator itEL; - if ( theFixedNodes.find( node ) != theFixedNodes.end() ) - continue; + TIDSortedElemSet::iterator itElem; + for ( itElem = theElems.begin(); itElem != theElems.end(); itElem++ ) { + const SMDS_MeshElement* elem = *itElem; + if(!elem || elem->GetType() != SMDSAbs_Face ) continue; + bool IsTria = elem->NbNodes()==3 || (elem->NbNodes()==6 && elem->IsQuadratic()); + if(!IsTria) continue; - // if node is on edge => it is fixed - SMDS_PositionPtr aPositionPtr = node->GetPosition(); - if ( aPositionPtr.get() && - (aPositionPtr->GetTypeOfPosition() == SMDS_TOP_EDGE || - aPositionPtr->GetTypeOfPosition() == SMDS_TOP_VERTEX)) { - theFixedNodes.insert( node ); - continue; + // retrieve element nodes + const SMDS_MeshNode* aNodes [4]; + SMDS_ElemIteratorPtr itN = elem->nodesIterator(); + int i = 0; + while ( i<3 ) + aNodes[ i++ ] = cast2Node( itN->next() ); + aNodes[ 3 ] = aNodes[ 0 ]; + + // fill maps + for ( i = 0; i < 3; i++ ) { + SMESH_TLink link( aNodes[i], aNodes[i+1] ); + // check if elements sharing a link can be fused + itLE = mapLi_listEl.find( link ); + if ( itLE != mapLi_listEl.end() ) { + if ((*itLE).second.size() > 1 ) // consider only 2 elems adjacent by a link + continue; + const SMDS_MeshElement* elem2 = (*itLE).second.front(); + //if ( FindShape( elem ) != FindShape( elem2 )) + // continue; // do not fuse triangles laying on different shapes + if ( getAngle( elem, elem2, aNodes[i], aNodes[i+1] ) > theMaxAngle ) + continue; // avoid making badly shaped quads + (*itLE).second.push_back( elem ); } - // fill mapNodeNbFaces in order to detect fixed boundary nodes - map::iterator nodeNbFacesIt = - mapNodeNbFaces.find ( node ); - if ( nodeNbFacesIt == mapNodeNbFaces.end() ) - mapNodeNbFaces.insert( map::value_type( node, 1 )); - else - (*nodeNbFacesIt).second++; + else { + mapLi_listEl[ link ].push_back( elem ); + } + mapEl_setLi [ elem ].insert( link ); } } - // put not fixed nodes in setMovableNodes - map::iterator nodeNbFacesIt = - mapNodeNbFaces.begin(); - for ( ; nodeNbFacesIt != mapNodeNbFaces.end(); nodeNbFacesIt++ ) { - const SMDS_MeshNode* node = (*nodeNbFacesIt).first; - // a node is on free boundary if it is shared by 1-2 faces - if ( (*nodeNbFacesIt).second > 2 ) - setMovableNodes.insert( node ); - else - theFixedNodes.insert( node ); + // Clean the maps from the links shared by a sole element, ie + // links to which only one element is bound in mapLi_listEl + + for ( itLE = mapLi_listEl.begin(); itLE != mapLi_listEl.end(); itLE++ ) { + int nbElems = (*itLE).second.size(); + if ( nbElems < 2 ) { + const SMDS_MeshElement* elem = (*itLE).second.front(); + SMESH_TLink link = (*itLE).first; + mapEl_setLi[ elem ].erase( link ); + if ( mapEl_setLi[ elem ].empty() ) + mapEl_setLi.erase( elem ); + } } - // SMOOTHING // + // Algo: fuse triangles into quadrangles - if ( theTgtAspectRatio < 1.0 ) - theTgtAspectRatio = 1.0; + while ( ! mapEl_setLi.empty() ) { + // Look for the start element: + // the element having the least nb of shared links + const SMDS_MeshElement* startElem = 0; + int minNbLinks = 4; + for ( itEL = mapEl_setLi.begin(); itEL != mapEl_setLi.end(); itEL++ ) { + int nbLinks = (*itEL).second.size(); + if ( nbLinks < minNbLinks ) { + startElem = (*itEL).first; + minNbLinks = nbLinks; + if ( minNbLinks == 1 ) + break; + } + } - SMESH::Controls::AspectRatio aQualityFunc; + // search elements to fuse starting from startElem or links of elements + // fused earlyer - startLinks + list< SMESH_TLink > startLinks; + while ( startElem || !startLinks.empty() ) { + while ( !startElem && !startLinks.empty() ) { + // Get an element to start, by a link + SMESH_TLink linkId = startLinks.front(); + startLinks.pop_front(); + itLE = mapLi_listEl.find( linkId ); + if ( itLE != mapLi_listEl.end() ) { + list< const SMDS_MeshElement* > & listElem = (*itLE).second; + list< const SMDS_MeshElement* >::iterator itE = listElem.begin(); + for ( ; itE != listElem.end() ; itE++ ) + if ( mapEl_setLi.find( (*itE) ) != mapEl_setLi.end() ) + startElem = (*itE); + mapLi_listEl.erase( itLE ); + } + } - for ( int it = 0; it < theNbIterations; it++ ) - { - Standard_Real maxDisplacement = 0.; - set::iterator movableNodesIt - = setMovableNodes.begin(); - for ( ; movableNodesIt != setMovableNodes.end(); movableNodesIt++ ) - { - const SMDS_MeshNode* node = (*movableNodesIt); - gp_XYZ aPrevPos ( node->X(), node->Y(), node->Z() ); + if ( startElem ) { + // Get candidates to be fused + const SMDS_MeshElement *tr1 = startElem, *tr2 = 0, *tr3 = 0; + const SMESH_TLink *link12, *link13; + startElem = 0; + ASSERT( mapEl_setLi.find( tr1 ) != mapEl_setLi.end() ); + set< SMESH_TLink >& setLi = mapEl_setLi[ tr1 ]; + ASSERT( !setLi.empty() ); + set< SMESH_TLink >::iterator itLi; + for ( itLi = setLi.begin(); itLi != setLi.end(); itLi++ ) + { + const SMESH_TLink & link = (*itLi); + itLE = mapLi_listEl.find( link ); + if ( itLE == mapLi_listEl.end() ) + continue; - // smooth - if ( theSmoothMethod == LAPLACIAN ) - laplacianSmooth( aMesh, node, theElems, theFixedNodes ); - else - centroidalSmooth( aMesh, node, theElems, theFixedNodes ); + const SMDS_MeshElement* elem = (*itLE).second.front(); + if ( elem == tr1 ) + elem = (*itLE).second.back(); + mapLi_listEl.erase( itLE ); + if ( mapEl_setLi.find( elem ) == mapEl_setLi.end()) + continue; + if ( tr2 ) { + tr3 = elem; + link13 = &link; + } + else { + tr2 = elem; + link12 = &link; + } - // displacement - gp_XYZ aNewPos ( node->X(), node->Y(), node->Z() ); - Standard_Real aDispl = (aPrevPos - aNewPos).SquareModulus(); - if ( aDispl > maxDisplacement ) - maxDisplacement = aDispl; - } - // no node movement => exit - if ( maxDisplacement < 1.e-16 ) { - MESSAGE("-- no node movement -- maxDisplacement: " << maxDisplacement << " it "<< it); - break; - } + // add other links of elem to list of links to re-start from + set< SMESH_TLink >& links = mapEl_setLi[ elem ]; + set< SMESH_TLink >::iterator it; + for ( it = links.begin(); it != links.end(); it++ ) { + const SMESH_TLink& link2 = (*it); + if ( link2 != link ) + startLinks.push_back( link2 ); + } + } - // check elements quality - double maxRatio = 0; - for ( itElem = theElems.begin(); itElem != theElems.end(); itElem++ ) - { - const SMDS_MeshElement* elem = (*itElem); - if ( !elem || elem->GetType() != SMDSAbs_Face ) - continue; - TColgp_SequenceOfXYZ aPoints; - if ( aQualityFunc.GetPoints( elem, aPoints )) { - double aValue = aQualityFunc.GetValue( aPoints ); - if ( aValue > maxRatio ) - maxRatio = aValue; - } - } - if ( maxRatio <= theTgtAspectRatio ) { - MESSAGE("-- quality achived -- maxRatio " << maxRatio << " it "<< it); - break; - } - if (it+1 == theNbIterations) { - MESSAGE("-- Iteration limit exceeded --"); - } - } -} + // Get nodes of possible quadrangles + const SMDS_MeshNode *n12 [4], *n13 [4]; + bool Ok12 = false, Ok13 = false; + const SMDS_MeshNode *linkNode1, *linkNode2; + if(tr2) { + linkNode1 = link12->first; + linkNode2 = link12->second; + if ( tr2 && getQuadrangleNodes( n12, linkNode1, linkNode2, tr1, tr2 )) + Ok12 = true; + } + if(tr3) { + linkNode1 = link13->first; + linkNode2 = link13->second; + if ( tr3 && getQuadrangleNodes( n13, linkNode1, linkNode2, tr1, tr3 )) + Ok13 = true; + } -//======================================================================= -//function : isReverse -//purpose : -//======================================================================= + // Choose a pair to fuse + if ( Ok12 && Ok13 ) { + SMDS_FaceOfNodes quad12 ( n12[ 0 ], n12[ 1 ], n12[ 2 ], n12[ 3 ] ); + SMDS_FaceOfNodes quad13 ( n13[ 0 ], n13[ 1 ], n13[ 2 ], n13[ 3 ] ); + double aBadRate12 = getBadRate( &quad12, theCrit ); + double aBadRate13 = getBadRate( &quad13, theCrit ); + if ( aBadRate13 < aBadRate12 ) + Ok12 = false; + else + Ok13 = false; + } -static bool isReverse(const SMDS_MeshNode* prevNodes[], - const SMDS_MeshNode* nextNodes[], - const int nbNodes, - const int iNotSame) -{ - int iBeforeNotSame = ( iNotSame == 0 ? nbNodes - 1 : iNotSame - 1 ); - int iAfterNotSame = ( iNotSame + 1 == nbNodes ? 0 : iNotSame + 1 ); + // Make quadrangles + // and remove fused elems and removed links from the maps + mapEl_setLi.erase( tr1 ); + if ( Ok12 ) { + mapEl_setLi.erase( tr2 ); + mapLi_listEl.erase( *link12 ); + if(tr1->NbNodes()==3) { + const SMDS_MeshElement* newElem = 0; + newElem = aMesh->AddFace(n12[0], n12[1], n12[2], n12[3] ); + myLastCreatedElems.Append(newElem); + AddToSameGroups( newElem, tr1, aMesh ); + int aShapeId = tr1->getshapeId(); + if ( aShapeId ) + { + aMesh->SetMeshElementOnShape( newElem, aShapeId ); + } + aMesh->RemoveElement( tr1 ); + aMesh->RemoveElement( tr2 ); + } + else { + const SMDS_MeshNode* N1 [6]; + const SMDS_MeshNode* N2 [6]; + GetNodesFromTwoTria(tr1,tr2,N1,N2); + // now we receive following N1 and N2 (using numeration as above image) + // tria1 : (1 2 4 5 9 7) and tria2 : (3 4 2 8 9 6) + // i.e. first nodes from both arrays determ new diagonal + const SMDS_MeshNode* aNodes[8]; + aNodes[0] = N1[0]; + aNodes[1] = N1[1]; + aNodes[2] = N2[0]; + aNodes[3] = N2[1]; + aNodes[4] = N1[3]; + aNodes[5] = N2[5]; + aNodes[6] = N2[3]; + aNodes[7] = N1[5]; + const SMDS_MeshElement* newElem = 0; + newElem = aMesh->AddFace(aNodes[0], aNodes[1], aNodes[2], aNodes[3], + aNodes[4], aNodes[5], aNodes[6], aNodes[7]); + myLastCreatedElems.Append(newElem); + AddToSameGroups( newElem, tr1, aMesh ); + int aShapeId = tr1->getshapeId(); + if ( aShapeId ) + { + aMesh->SetMeshElementOnShape( newElem, aShapeId ); + } + aMesh->RemoveElement( tr1 ); + aMesh->RemoveElement( tr2 ); + // remove middle node (9) + GetMeshDS()->RemoveNode( N1[4] ); + } + } + else if ( Ok13 ) { + mapEl_setLi.erase( tr3 ); + mapLi_listEl.erase( *link13 ); + if(tr1->NbNodes()==3) { + const SMDS_MeshElement* newElem = 0; + newElem = aMesh->AddFace(n13[0], n13[1], n13[2], n13[3] ); + myLastCreatedElems.Append(newElem); + AddToSameGroups( newElem, tr1, aMesh ); + int aShapeId = tr1->getshapeId(); + if ( aShapeId ) + { + aMesh->SetMeshElementOnShape( newElem, aShapeId ); + } + aMesh->RemoveElement( tr1 ); + aMesh->RemoveElement( tr3 ); + } + else { + const SMDS_MeshNode* N1 [6]; + const SMDS_MeshNode* N2 [6]; + GetNodesFromTwoTria(tr1,tr3,N1,N2); + // now we receive following N1 and N2 (using numeration as above image) + // tria1 : (1 2 4 5 9 7) and tria2 : (3 4 2 8 9 6) + // i.e. first nodes from both arrays determ new diagonal + const SMDS_MeshNode* aNodes[8]; + aNodes[0] = N1[0]; + aNodes[1] = N1[1]; + aNodes[2] = N2[0]; + aNodes[3] = N2[1]; + aNodes[4] = N1[3]; + aNodes[5] = N2[5]; + aNodes[6] = N2[3]; + aNodes[7] = N1[5]; + const SMDS_MeshElement* newElem = 0; + newElem = aMesh->AddFace(aNodes[0], aNodes[1], aNodes[2], aNodes[3], + aNodes[4], aNodes[5], aNodes[6], aNodes[7]); + myLastCreatedElems.Append(newElem); + AddToSameGroups( newElem, tr1, aMesh ); + int aShapeId = tr1->getshapeId(); + if ( aShapeId ) + { + aMesh->SetMeshElementOnShape( newElem, aShapeId ); + } + aMesh->RemoveElement( tr1 ); + aMesh->RemoveElement( tr3 ); + // remove middle node (9) + GetMeshDS()->RemoveNode( N1[4] ); + } + } + + // Next element to fuse: the rejected one + if ( tr3 ) + startElem = Ok12 ? tr3 : tr2; - const SMDS_MeshNode* nB = prevNodes[ iBeforeNotSame ]; - const SMDS_MeshNode* nA = prevNodes[ iAfterNotSame ]; - const SMDS_MeshNode* nP = prevNodes[ iNotSame ]; - const SMDS_MeshNode* nN = nextNodes[ iNotSame ]; + } // if ( startElem ) + } // while ( startElem || !startLinks.empty() ) + } // while ( ! mapEl_setLi.empty() ) - gp_Pnt pB ( nB->X(), nB->Y(), nB->Z() ); - gp_Pnt pA ( nA->X(), nA->Y(), nA->Z() ); - gp_Pnt pP ( nP->X(), nP->Y(), nP->Z() ); - gp_Pnt pN ( nN->X(), nN->Y(), nN->Z() ); + return true; +} - gp_Vec vB ( pP, pB ), vA ( pP, pA ), vN ( pP, pN ); - return (vA ^ vB) * vN < 0.0; +/*#define DUMPSO(txt) \ +// cout << txt << endl; +//============================================================================= +// +// +// +//============================================================================= +static void swap( int i1, int i2, int idNodes[], gp_Pnt P[] ) +{ +if ( i1 == i2 ) +return; +int tmp = idNodes[ i1 ]; +idNodes[ i1 ] = idNodes[ i2 ]; +idNodes[ i2 ] = tmp; +gp_Pnt Ptmp = P[ i1 ]; +P[ i1 ] = P[ i2 ]; +P[ i2 ] = Ptmp; +DUMPSO( i1 << "(" << idNodes[ i2 ] << ") <-> " << i2 << "(" << idNodes[ i1 ] << ")"); } //======================================================================= -//function : sweepElement -//purpose : +//function : SortQuadNodes +//purpose : Set 4 nodes of a quadrangle face in a good order. +// Swap 1<->2 or 2<->3 nodes and correspondingly return +// 1 or 2 else 0. //======================================================================= -static void sweepElement(SMESHDS_Mesh* aMesh, - const SMDS_MeshElement* elem, - const TNodeOfNodeListMap& mapNewNodes ) +int SMESH_MeshEditor::SortQuadNodes (const SMDS_Mesh * theMesh, +int idNodes[] ) { - // Loop on elem nodes: - // find new nodes and detect same nodes indices - list::const_iterator itNN[ 4 ]; - const SMDS_MeshNode* prevNod[ 4 ], *nextNod[ 4 ]; - int nbSame = 0, iNotSameNode = 0, iSameNode = 0; - - TNodeOfNodeListMap::const_iterator mapIt; - int iNode = 0; - SMDS_ElemIteratorPtr itN = elem->nodesIterator(); - while ( itN->more() ) - { - const SMDS_MeshNode* node = - static_cast( itN->next() ); - mapIt = mapNewNodes.find( node ); - if ( mapIt == mapNewNodes.end() ) - return; // not duplicated node - - itNN[ iNode ] = (*mapIt).second.begin(); - prevNod[ iNode ] = node; - nextNod[ iNode ] = (*mapIt).second.front(); - if ( prevNod[ iNode ] != nextNod [ iNode ]) - iNotSameNode = iNode; - else { - iSameNode = iNode; - nbSame++; - } - iNode++; - } - int nbNodes = iNode; - if ( nbSame == nbNodes || nbSame > 2) { - MESSAGE( " Too many same nodes of element " << elem->GetID() ); - return; + gp_Pnt P[4]; + int i; + for ( i = 0; i < 4; i++ ) { + const SMDS_MeshNode *n = theMesh->FindNode( idNodes[i] ); + if ( !n ) return 0; + P[ i ].SetCoord( n->X(), n->Y(), n->Z() ); } - int iBeforeSame = 0, iAfterSame = 0, iOpposSame = 0; - if ( nbSame > 0 ) { - iBeforeSame = ( iSameNode == 0 ? nbNodes - 1 : iSameNode - 1 ); - iAfterSame = ( iSameNode + 1 == nbNodes ? 0 : iSameNode + 1 ); - iOpposSame = ( iSameNode - 2 < 0 ? iSameNode + 2 : iSameNode - 2 ); - } + gp_Vec V1(P[0], P[1]); + gp_Vec V2(P[0], P[2]); + gp_Vec V3(P[0], P[3]); - // check element orientation - int i0 = 0, i2 = 2; - if ( nbNodes > 2 && isReverse( prevNod, nextNod, nbNodes, iNotSameNode )) { -// MESSAGE("Reversed elem " << elem->GetID() ); - i0 = 2; - i2 = 0; - if ( nbSame > 0 ) { - int iAB = iAfterSame + iBeforeSame; - iBeforeSame = iAB - iBeforeSame; - iAfterSame = iAB - iAfterSame; - } - } + gp_Vec Cross1 = V1 ^ V2; + gp_Vec Cross2 = V2 ^ V3; - // make new elements - int iStep, nbSteps = (*mapIt).second.size(); - for (iStep = 0; iStep < nbSteps; iStep++ ) + i = 0; + if (Cross1.Dot(Cross2) < 0) { - // get next nodes - for ( iNode = 0; iNode < nbNodes; iNode++ ) { - nextNod[ iNode ] = *itNN[ iNode ]; - itNN[ iNode ]++; - } - switch ( nbNodes ) - { - case 2: { // EDGE - - if ( nbSame == 0 ) - aMesh->AddFace( prevNod[ 0 ], prevNod[ 1 ], nextNod[ 1 ], nextNod[ 0 ] ); - else - aMesh->AddFace( prevNod[ 0 ], prevNod[ 1 ], nextNod[ iNotSameNode ] ); - break; - } - case 3: { // TRIANGLE - - if ( nbSame == 0 ) // --- 1 pentahedron - { - aMesh->AddVolume (prevNod[ i2 ], prevNod[ 1 ], prevNod[ i0 ], - nextNod[ i2 ], nextNod[ 1 ], nextNod[ i0 ] ); - } - else if ( nbSame == 1 ) // --- 2 tetrahedrons - { - aMesh->AddVolume (prevNod[ i0 ], prevNod[ 1 ], prevNod[ i2 ], - nextNod[ iBeforeSame ]); - aMesh->AddVolume (nextNod[ i2 ], nextNod[ 1 ], nextNod[ i0 ], - prevNod[ iAfterSame ]); - } - else // 2 same nodes: --- 1 tetrahedron - { - aMesh->AddVolume (prevNod[ i0 ], prevNod[ 1 ], prevNod[ i2 ], - nextNod[ iNotSameNode ]); - } - break; - } - case 4: { // QUADRANGLE - - if ( nbSame == 0 ) // --- 1 hexahedron - { - aMesh->AddVolume (prevNod[ i0 ], prevNod[ 1 ], prevNod[ i2 ], prevNod[ 3 ], - nextNod[ i0 ], nextNod[ 1 ], nextNod[ i2 ], nextNod[ 3 ]); - } - else if ( nbSame == 1 ) // --- 2 tetrahedrons + 1 pentahedron - { - aMesh->AddVolume (prevNod[ iBeforeSame ], prevNod[ iSameNode ], - prevNod[ iAfterSame ], nextNod[ iBeforeSame ]); - aMesh->AddVolume (nextNod[ iAfterSame ], nextNod[ iSameNode ], - nextNod[ iBeforeSame ], prevNod[ iAfterSame ]); - aMesh->AddVolume (prevNod[ iBeforeSame ], prevNod[ iOpposSame ], prevNod[ iAfterSame ], - nextNod[ iBeforeSame ], nextNod[ iOpposSame ], nextNod[ iAfterSame ] ); - } - else if ( nbSame == 2 ) // 1 pentahedron - { - if ( prevNod[ iBeforeSame ] == nextNod[ iBeforeSame ] ) - // iBeforeSame is same too - aMesh->AddVolume (prevNod[ iOpposSame ], prevNod[ iBeforeSame ], nextNod[ iOpposSame ], - prevNod[ iAfterSame ], prevNod[ iSameNode ], nextNod[ iAfterSame ]); - else - // iAfterSame is same too - aMesh->AddVolume (prevNod[ iBeforeSame ], prevNod[ iSameNode ], nextNod[ iBeforeSame ], - prevNod[ iOpposSame ], prevNod[ iAfterSame ], nextNod[ iOpposSame ]); - } - break; - } - default: - return; - } + Cross1 = V2 ^ V1; + Cross2 = V1 ^ V3; - // set new prev nodes - for ( iNode = 0; iNode < nbNodes; iNode++ ) - prevNod[ iNode ] = nextNod[ iNode ]; + if (Cross1.Dot(Cross2) < 0) + i = 2; + else + i = 1; + swap ( i, i + 1, idNodes, P ); - } // for steps + // for ( int ii = 0; ii < 4; ii++ ) { + // const SMDS_MeshNode *n = theMesh->FindNode( idNodes[ii] ); + // DUMPSO( ii << "(" << idNodes[ii] <<") : "<X()<<" "<Y()<<" "<Z()); + // } + } + return i; } //======================================================================= -//function : RotationSweep -//purpose : +//function : SortHexaNodes +//purpose : Set 8 nodes of a hexahedron in a good order. +// Return success status //======================================================================= -void SMESH_MeshEditor::RotationSweep(set & theElems, - const gp_Ax1& theAxis, - const double theAngle, - const int theNbSteps, - const double theTol) +bool SMESH_MeshEditor::SortHexaNodes (const SMDS_Mesh * theMesh, + int idNodes[] ) { - gp_Trsf aTrsf; - aTrsf.SetRotation( theAxis, theAngle ); + gp_Pnt P[8]; + int i; + DUMPSO( "INPUT: ========================================"); + for ( i = 0; i < 8; i++ ) { + const SMDS_MeshNode *n = theMesh->FindNode( idNodes[i] ); + if ( !n ) return false; + P[ i ].SetCoord( n->X(), n->Y(), n->Z() ); + DUMPSO( i << "(" << idNodes[i] <<") : "<X()<<" "<Y()<<" "<Z()); + } + DUMPSO( "========================================"); - gp_Lin aLine( theAxis ); - double aSqTol = theTol * theTol; - SMESHDS_Mesh* aMesh = GetMeshDS(); + set faceNodes; // ids of bottom face nodes, to be found + set checkedId1; // ids of tried 2-nd nodes + Standard_Real leastDist = DBL_MAX; // dist of the 4-th node from 123 plane + const Standard_Real tol = 1.e-6; // tolerance to find nodes in plane + int iMin, iLoop1 = 0; - TNodeOfNodeListMap mapNewNodes; + // Loop to try the 2-nd nodes - // loop on theElems - set< const SMDS_MeshElement* >::iterator itElem; - for ( itElem = theElems.begin(); itElem != theElems.end(); itElem++ ) + while ( leastDist > DBL_MIN && ++iLoop1 < 8 ) { - // check element type - const SMDS_MeshElement* elem = (*itElem); - if ( !elem || - (elem->GetType() != SMDSAbs_Face && - elem->GetType() != SMDSAbs_Edge )) - continue; + // Find not checked 2-nd node + for ( i = 1; i < 8; i++ ) + if ( checkedId1.find( idNodes[i] ) == checkedId1.end() ) { + int id1 = idNodes[i]; + swap ( 1, i, idNodes, P ); + checkedId1.insert ( id1 ); + break; + } - // loop on elem nodes - SMDS_ElemIteratorPtr itN = elem->nodesIterator(); - while ( itN->more() ) { + // Find the 3-d node so that 1-2-3 triangle to be on a hexa face, + // ie that all but meybe one (id3 which is on the same face) nodes + // lay on the same side from the triangle plane. - // check if a node has been already sweeped - const SMDS_MeshNode* node = - static_cast( itN->next() ); - if (mapNewNodes.find( node ) != mapNewNodes.end() ) - continue; + bool manyInPlane = false; // more than 4 nodes lay in plane + int iLoop2 = 0; + while ( ++iLoop2 < 6 ) { - list& listNewNodes = mapNewNodes[ node ]; + // get 1-2-3 plane coeffs + Standard_Real A, B, C, D; + gp_Vec N = gp_Vec (P[0], P[1]).Crossed( gp_Vec (P[0], P[2]) ); + if ( N.SquareMagnitude() > gp::Resolution() ) + { + gp_Pln pln ( P[0], N ); + pln.Coefficients( A, B, C, D ); - // make new nodes - gp_XYZ aXYZ( node->X(), node->Y(), node->Z() ); - double coord[3]; - aXYZ.Coord( coord[0], coord[1], coord[2] ); - bool isOnAxis = ( aLine.SquareDistance( aXYZ ) <= aSqTol ); - const SMDS_MeshNode * newNode = node; - for ( int i = 0; i < theNbSteps; i++ ) { - if ( !isOnAxis ) { - aTrsf.Transforms( coord[0], coord[1], coord[2] ); - newNode = aMesh->AddNode( coord[0], coord[1], coord[2] ); + // find the node (iMin) closest to pln + Standard_Real dist[ 8 ], minDist = DBL_MAX; + set idInPln; + for ( i = 3; i < 8; i++ ) { + dist[i] = A * P[i].X() + B * P[i].Y() + C * P[i].Z() + D; + if ( fabs( dist[i] ) < minDist ) { + minDist = fabs( dist[i] ); + iMin = i; + } + if ( fabs( dist[i] ) <= tol ) + idInPln.insert( idNodes[i] ); } - listNewNodes.push_back( newNode ); - } - } - // make new elements - sweepElement( aMesh, elem, mapNewNodes ); - } -} -//======================================================================= -//function : ExtrusionSweep -//purpose : -//======================================================================= -void SMESH_MeshEditor::ExtrusionSweep(set & theElems, - const gp_Vec& theStep, - const int theNbSteps) -{ - gp_Trsf aTrsf; - aTrsf.SetTranslation( theStep ); + // there should not be more than 4 nodes in bottom plane + if ( idInPln.size() > 1 ) + { + DUMPSO( "### idInPln.size() = " << idInPln.size()); + // idInPlane does not contain the first 3 nodes + if ( manyInPlane || idInPln.size() == 5) + return false; // all nodes in one plane + manyInPlane = true; - SMESHDS_Mesh* aMesh = GetMeshDS(); + // set the 1-st node to be not in plane + for ( i = 3; i < 8; i++ ) { + if ( idInPln.find( idNodes[ i ] ) == idInPln.end() ) { + DUMPSO( "### Reset 0-th node"); + swap( 0, i, idNodes, P ); + break; + } + } - TNodeOfNodeListMap mapNewNodes; + // reset to re-check second nodes + leastDist = DBL_MAX; + faceNodes.clear(); + checkedId1.clear(); + iLoop1 = 0; + break; // from iLoop2; + } - // loop on theElems - set< const SMDS_MeshElement* >::iterator itElem; - for ( itElem = theElems.begin(); itElem != theElems.end(); itElem++ ) - { - // check element type - const SMDS_MeshElement* elem = (*itElem); - if ( !elem || - (elem->GetType() != SMDSAbs_Face && - elem->GetType() != SMDSAbs_Edge)) - continue; + // check that the other 4 nodes are on the same side + bool sameSide = true; + bool isNeg = dist[ iMin == 3 ? 4 : 3 ] <= 0.; + for ( i = 3; sameSide && i < 8; i++ ) { + if ( i != iMin ) + sameSide = ( isNeg == dist[i] <= 0.); + } - // loop on elem nodes - SMDS_ElemIteratorPtr itN = elem->nodesIterator(); - while ( itN->more() ) { + // keep best solution + if ( sameSide && minDist < leastDist ) { + leastDist = minDist; + faceNodes.clear(); + faceNodes.insert( idNodes[ 1 ] ); + faceNodes.insert( idNodes[ 2 ] ); + faceNodes.insert( idNodes[ iMin ] ); + DUMPSO( "loop " << iLoop2 << " id2 " << idNodes[ 1 ] << " id3 " << idNodes[ 2 ] + << " leastDist = " << leastDist); + if ( leastDist <= DBL_MIN ) + break; + } + } - // check if a node has been already sweeped - const SMDS_MeshNode* node = - static_cast( itN->next() ); - if (mapNewNodes.find( node ) != mapNewNodes.end() ) - continue; + // set next 3-d node to check + int iNext = 2 + iLoop2; + if ( iNext < 8 ) { + DUMPSO( "Try 2-nd"); + swap ( 2, iNext, idNodes, P ); + } + } // while ( iLoop2 < 6 ) + } // iLoop1 - list& listNewNodes = mapNewNodes[ node ]; + if ( faceNodes.empty() ) return false; - // make new nodes - double coord[3]; - coord[0] = node->X(); - coord[1] = node->Y(); - coord[2] = node->Z(); - for ( int i = 0; i < theNbSteps; i++ ) { - aTrsf.Transforms( coord[0], coord[1], coord[2] ); - const SMDS_MeshNode * newNode = aMesh->AddNode( coord[0], coord[1], coord[2] ); - listNewNodes.push_back( newNode ); - } + // Put the faceNodes in proper places + for ( i = 4; i < 8; i++ ) { + if ( faceNodes.find( idNodes[ i ] ) != faceNodes.end() ) { + // find a place to put + int iTo = 1; + while ( faceNodes.find( idNodes[ iTo ] ) != faceNodes.end() ) + iTo++; + DUMPSO( "Set faceNodes"); + swap ( iTo, i, idNodes, P ); } - // make new elements - sweepElement( aMesh, elem, mapNewNodes ); } -} -//======================================================================= -//function : Transform -//purpose : -//======================================================================= -void SMESH_MeshEditor::Transform (set & theElems, - const gp_Trsf& theTrsf, - const bool theCopy) -{ - bool needReverse; - switch ( theTrsf.Form() ) { - case gp_PntMirror: - case gp_Ax2Mirror: - needReverse = true; - break; - default: - needReverse = false; + // Set nodes of the found bottom face in good order + DUMPSO( " Found bottom face: "); + i = SortQuadNodes( theMesh, idNodes ); + if ( i ) { + gp_Pnt Ptmp = P[ i ]; + P[ i ] = P[ i+1 ]; + P[ i+1 ] = Ptmp; } + // else + // for ( int ii = 0; ii < 4; ii++ ) { + // const SMDS_MeshNode *n = theMesh->FindNode( idNodes[ii] ); + // DUMPSO( ii << "(" << idNodes[ii] <<") : "<X()<<" "<Y()<<" "<Z()); + // } - SMESHDS_Mesh* aMesh = GetMeshDS(); - - // map old node to new one - TNodeNodeMap nodeMap; - - // elements sharing moved nodes; those of them which have all - // nodes mirrored but are not in theElems are to be reversed - set inverseElemSet; - - // loop on theElems - set< const SMDS_MeshElement* >::iterator itElem; - for ( itElem = theElems.begin(); itElem != theElems.end(); itElem++ ) - { - const SMDS_MeshElement* elem = (*itElem); - if ( !elem ) - continue; - - // loop on elem nodes - SMDS_ElemIteratorPtr itN = elem->nodesIterator(); - while ( itN->more() ) { + // Gravity center of the top and bottom faces + gp_Pnt aGCb = ( P[0].XYZ() + P[1].XYZ() + P[2].XYZ() + P[3].XYZ() ) / 4.; + gp_Pnt aGCt = ( P[4].XYZ() + P[5].XYZ() + P[6].XYZ() + P[7].XYZ() ) / 4.; - // check if a node has been already transormed - const SMDS_MeshNode* node = - static_cast( itN->next() ); - if (nodeMap.find( node ) != nodeMap.end() ) - continue; + // Get direction from the bottom to the top face + gp_Vec upDir ( aGCb, aGCt ); + Standard_Real upDirSize = upDir.Magnitude(); + if ( upDirSize <= gp::Resolution() ) return false; + upDir / upDirSize; - double coord[3]; - coord[0] = node->X(); - coord[1] = node->Y(); - coord[2] = node->Z(); - theTrsf.Transforms( coord[0], coord[1], coord[2] ); - const SMDS_MeshNode * newNode = node; - if ( theCopy ) - newNode = aMesh->AddNode( coord[0], coord[1], coord[2] ); - else - aMesh->MoveNode( node, coord[0], coord[1], coord[2] ); - nodeMap.insert( TNodeNodeMap::value_type( node, newNode )); + // Assure that the bottom face normal points up + gp_Vec Nb = gp_Vec (P[0], P[1]).Crossed( gp_Vec (P[0], P[2]) ); + Nb += gp_Vec (P[0], P[2]).Crossed( gp_Vec (P[0], P[3]) ); + if ( Nb.Dot( upDir ) < 0 ) { + DUMPSO( "Reverse bottom face"); + swap( 1, 3, idNodes, P ); + } - // keep inverse elements - if ( !theCopy && needReverse ) { - SMDS_ElemIteratorPtr invElemIt = node->GetInverseElementIterator(); - while ( invElemIt->more() ) - inverseElemSet.insert( invElemIt->next() ); - } + // Find 5-th node - the one closest to the 1-st among the last 4 nodes. + Standard_Real minDist = DBL_MAX; + for ( i = 4; i < 8; i++ ) { + // projection of P[i] to the plane defined by P[0] and upDir + gp_Pnt Pp = P[i].Translated( upDir * ( upDir.Dot( gp_Vec( P[i], P[0] )))); + Standard_Real sqDist = P[0].SquareDistance( Pp ); + if ( sqDist < minDist ) { + minDist = sqDist; + iMin = i; } } + DUMPSO( "Set 4-th"); + swap ( 4, iMin, idNodes, P ); - // either new elements are to be created - // or a mirrored element are to be reversed - if ( !theCopy && !needReverse) - return; + // Set nodes of the top face in good order + DUMPSO( "Sort top face"); + i = SortQuadNodes( theMesh, &idNodes[4] ); + if ( i ) { + i += 4; + gp_Pnt Ptmp = P[ i ]; + P[ i ] = P[ i+1 ]; + P[ i+1 ] = Ptmp; + } - if ( !inverseElemSet.empty()) { - set::iterator invElemIt = inverseElemSet.begin(); - for ( ; invElemIt != inverseElemSet.end(); invElemIt++ ) - theElems.insert( *invElemIt ); + // Assure that direction of the top face normal is from the bottom face + gp_Vec Nt = gp_Vec (P[4], P[5]).Crossed( gp_Vec (P[4], P[6]) ); + Nt += gp_Vec (P[4], P[6]).Crossed( gp_Vec (P[4], P[7]) ); + if ( Nt.Dot( upDir ) < 0 ) { + DUMPSO( "Reverse top face"); + swap( 5, 7, idNodes, P ); } - // replicate or reverse elements + // DUMPSO( "OUTPUT: ========================================"); + // for ( i = 0; i < 8; i++ ) { + // float *p = ugrid->GetPoint(idNodes[i]); + // DUMPSO( i << "(" << idNodes[i] << ") : " << p[0] << " " << p[1] << " " << p[2]); + // } - enum { - REV_TETRA = 0, // = nbNodes - 4 - REV_PYRAMID = 1, // = nbNodes - 4 - REV_PENTA = 2, // = nbNodes - 4 - REV_FACE = 3, - REV_HEXA = 4, // = nbNodes - 4 - FORWARD = 5 - }; - int index[][8] = { - { 2, 1, 0, 3, 4, 0, 0, 0 }, // REV_TETRA - { 2, 1, 0, 3, 4, 0, 0, 0 }, // REV_PYRAMID - { 2, 1, 0, 5, 4, 3, 0, 0 }, // REV_PENTA - { 2, 1, 0, 3, 0, 0, 0, 0 }, // REV_FACE - { 2, 1, 0, 3, 6, 5, 4, 7 }, // REV_HEXA - { 0, 1, 2, 3, 4, 5, 6, 7 } // FORWARD - }; + return true; +}*/ - for ( itElem = theElems.begin(); itElem != theElems.end(); itElem++ ) +//================================================================================ +/*! + * \brief Return nodes linked to the given one + * \param theNode - the node + * \param linkedNodes - the found nodes + * \param type - the type of elements to check + * + * Medium nodes are ignored + */ +//================================================================================ + +void SMESH_MeshEditor::GetLinkedNodes( const SMDS_MeshNode* theNode, + TIDSortedElemSet & linkedNodes, + SMDSAbs_ElementType type ) +{ + SMDS_ElemIteratorPtr elemIt = theNode->GetInverseElementIterator(type); + while ( elemIt->more() ) { - const SMDS_MeshElement* elem = (*itElem); - if ( !elem || elem->GetType() == SMDSAbs_Node ) + const SMDS_MeshElement* elem = elemIt->next(); + if(elem->GetType() == SMDSAbs_0DElement) continue; - int nbNodes = elem->NbNodes(); - int elemType = elem->GetType(); - - int* i = index[ FORWARD ]; - if ( needReverse && nbNodes > 2) // reverse mirrored faces and volumes - if ( elemType == SMDSAbs_Face ) - i = index[ REV_FACE ]; - else - i = index[ nbNodes - 4 ]; - - // find transformed nodes - const SMDS_MeshNode* nodes[8]; - int iNode = 0; - SMDS_ElemIteratorPtr itN = elem->nodesIterator(); - while ( itN->more() ) - { - const SMDS_MeshNode* node = - static_cast( itN->next() ); - TNodeNodeMap::iterator nodeMapIt = nodeMap.find( node ); - if ( nodeMapIt == nodeMap.end() ) - break; // not all nodes transformed - nodes[ i [ iNode++ ]] = (*nodeMapIt).second; - } - if ( iNode != nbNodes ) - continue; // not all nodes transformed - - if ( theCopy ) + SMDS_ElemIteratorPtr nodeIt = elem->nodesIterator(); + if ( elem->GetType() == SMDSAbs_Volume ) { - // add a new element - switch ( elemType ) { - case SMDSAbs_Edge: - aMesh->AddEdge( nodes[ 0 ], nodes[ 1 ] ); - break; - case SMDSAbs_Face: - if ( nbNodes == 3 ) - aMesh->AddFace( nodes[ 0 ], nodes[ 1 ], nodes[ 2 ] ); - else - aMesh->AddFace( nodes[ 0 ], nodes[ 1 ], nodes[ 2 ] , nodes[ 3 ]); - break; - case SMDSAbs_Volume: - if ( nbNodes == 4 ) - aMesh->AddVolume( nodes[ 0 ], nodes[ 1 ], nodes[ 2 ] , nodes[ 3 ] ); - else if ( nbNodes == 8 ) - aMesh->AddVolume( nodes[ 0 ], nodes[ 1 ], nodes[ 2 ] , nodes[ 3 ], - nodes[ 4 ], nodes[ 5 ], nodes[ 6 ] , nodes[ 7 ]); - else if ( nbNodes == 6 ) - aMesh->AddVolume( nodes[ 0 ], nodes[ 1 ], nodes[ 2 ] , nodes[ 3 ], - nodes[ 4 ], nodes[ 5 ]); - else if ( nbNodes == 5 ) - aMesh->AddVolume( nodes[ 0 ], nodes[ 1 ], nodes[ 2 ] , nodes[ 3 ], - nodes[ 4 ]); - break; - default:; + SMDS_VolumeTool vol( elem ); + while ( nodeIt->more() ) { + const SMDS_MeshNode* n = cast2Node( nodeIt->next() ); + if ( theNode != n && vol.IsLinked( theNode, n )) + linkedNodes.insert( n ); } } else { - // reverse element as it was reversed by transformation - if ( nbNodes > 2 ) - aMesh->ChangeElementNodes( elem, nodes, nbNodes ); + for ( int i = 0; nodeIt->more(); ++i ) { + const SMDS_MeshNode* n = cast2Node( nodeIt->next() ); + if ( n == theNode ) { + int iBefore = i - 1; + int iAfter = i + 1; + if ( elem->IsQuadratic() ) { + int nb = elem->NbNodes() / 2; + iAfter = SMESH_MesherHelper::WrapIndex( iAfter, nb ); + iBefore = SMESH_MesherHelper::WrapIndex( iBefore, nb ); + } + linkedNodes.insert( elem->GetNodeWrap( iAfter )); + linkedNodes.insert( elem->GetNodeWrap( iBefore )); + } + } } } } //======================================================================= -//function : FindCoincidentNodes -//purpose : Return list of group of nodes close to each other within theTolerance +//function : laplacianSmooth +//purpose : pulls theNode toward the center of surrounding nodes directly +// connected to that node along an element edge //======================================================================= -void SMESH_MeshEditor::FindCoincidentNodes (const double theTolerance, - TListOfListOfNodes & theGroupsOfNodes) +void laplacianSmooth(const SMDS_MeshNode* theNode, + const Handle(Geom_Surface)& theSurface, + map< const SMDS_MeshNode*, gp_XY* >& theUVMap) { - double tol2 = theTolerance * theTolerance; + // find surrounding nodes - list nodes; - SMDS_NodeIteratorPtr nIt = GetMeshDS()->nodesIterator(); - while ( nIt->more() ) - nodes.push_back( nIt->next() ); + TIDSortedElemSet nodeSet; + SMESH_MeshEditor::GetLinkedNodes( theNode, nodeSet, SMDSAbs_Face ); - list::iterator it2, it1 = nodes.begin(); - for ( ; it1 != nodes.end(); it1++ ) - { - const SMDS_MeshNode* n1 = *it1; - gp_Pnt p1( n1->X(), n1->Y(), n1->Z() ); + // compute new coodrs - list * groupPtr = 0; - it2 = it1; - for ( it2++; it2 != nodes.end(); it2++ ) - { - const SMDS_MeshNode* n2 = *it2; - gp_Pnt p2( n2->X(), n2->Y(), n2->Z() ); - if ( p1.SquareDistance( p2 ) <= tol2 ) - { - if ( !groupPtr ) { - theGroupsOfNodes.push_back( list() ); - groupPtr = & theGroupsOfNodes.back(); - groupPtr->push_back( n1 ); - } - groupPtr->push_back( n2 ); - it2 = nodes.erase( it2 ); - it2--; - } + double coord[] = { 0., 0., 0. }; + TIDSortedElemSet::iterator nodeSetIt = nodeSet.begin(); + for ( ; nodeSetIt != nodeSet.end(); nodeSetIt++ ) { + const SMDS_MeshNode* node = cast2Node(*nodeSetIt); + if ( theSurface.IsNull() ) { // smooth in 3D + coord[0] += node->X(); + coord[1] += node->Y(); + coord[2] += node->Z(); } + else { // smooth in 2D + ASSERT( theUVMap.find( node ) != theUVMap.end() ); + gp_XY* uv = theUVMap[ node ]; + coord[0] += uv->X(); + coord[1] += uv->Y(); + } + } + int nbNodes = nodeSet.size(); + if ( !nbNodes ) + return; + coord[0] /= nbNodes; + coord[1] /= nbNodes; + + if ( !theSurface.IsNull() ) { + ASSERT( theUVMap.find( theNode ) != theUVMap.end() ); + theUVMap[ theNode ]->SetCoord( coord[0], coord[1] ); + gp_Pnt p3d = theSurface->Value( coord[0], coord[1] ); + coord[0] = p3d.X(); + coord[1] = p3d.Y(); + coord[2] = p3d.Z(); } + else + coord[2] /= nbNodes; + + // move node + + const_cast< SMDS_MeshNode* >( theNode )->setXYZ(coord[0],coord[1],coord[2]); } //======================================================================= -//function : MergeNodes -//purpose : In each group, the cdr of nodes are substituted by the first one -// in all elements. +//function : centroidalSmooth +//purpose : pulls theNode toward the element-area-weighted centroid of the +// surrounding elements //======================================================================= -void SMESH_MeshEditor::MergeNodes (TListOfListOfNodes & theGroupsOfNodes) +void centroidalSmooth(const SMDS_MeshNode* theNode, + const Handle(Geom_Surface)& theSurface, + map< const SMDS_MeshNode*, gp_XY* >& theUVMap) { - SMESHDS_Mesh* aMesh = GetMeshDS(); - - TNodeNodeMap nodeNodeMap; // node to replace - new node - set elems; // all elements with changed nodes - list< int > rmElemIds, rmNodeIds; + gp_XYZ aNewXYZ(0.,0.,0.); + SMESH::Controls::Area anAreaFunc; + double totalArea = 0.; + int nbElems = 0; - // Fill nodeNodeMap and elems + // compute new XYZ - TListOfListOfNodes::iterator grIt = theGroupsOfNodes.begin(); - for ( ; grIt != theGroupsOfNodes.end(); grIt++ ) + SMDS_ElemIteratorPtr elemIt = theNode->GetInverseElementIterator(SMDSAbs_Face); + while ( elemIt->more() ) { - list& nodes = *grIt; - list::iterator nIt = nodes.begin(); - const SMDS_MeshNode* nToKeep = *nIt; - for ( ; nIt != nodes.end(); nIt++ ) - { - const SMDS_MeshNode* nToRemove = *nIt; - nodeNodeMap.insert( TNodeNodeMap::value_type( nToRemove, nToKeep )); - if ( nToRemove != nToKeep ) { - rmNodeIds.push_back( nToRemove->GetID() ); - addToSameGroups( nToKeep, nToRemove, aMesh ); - } + const SMDS_MeshElement* elem = elemIt->next(); + nbElems++; - SMDS_ElemIteratorPtr invElemIt = nToRemove->GetInverseElementIterator(); - while ( invElemIt->more() ) - elems.insert( invElemIt->next() ); + gp_XYZ elemCenter(0.,0.,0.); + SMESH::Controls::TSequenceOfXYZ aNodePoints; + SMDS_ElemIteratorPtr itN = elem->nodesIterator(); + int nn = elem->NbNodes(); + if(elem->IsQuadratic()) nn = nn/2; + int i=0; + //while ( itN->more() ) { + while ( i( itN->next() ); + i++; + gp_XYZ aP( aNode->X(), aNode->Y(), aNode->Z() ); + aNodePoints.push_back( aP ); + if ( !theSurface.IsNull() ) { // smooth in 2D + ASSERT( theUVMap.find( aNode ) != theUVMap.end() ); + gp_XY* uv = theUVMap[ aNode ]; + aP.SetCoord( uv->X(), uv->Y(), 0. ); + } + elemCenter += aP; } + double elemArea = anAreaFunc.GetValue( aNodePoints ); + totalArea += elemArea; + elemCenter /= nn; + aNewXYZ += elemCenter * elemArea; + } + aNewXYZ /= totalArea; + if ( !theSurface.IsNull() ) { + theUVMap[ theNode ]->SetCoord( aNewXYZ.X(), aNewXYZ.Y() ); + aNewXYZ = theSurface->Value( aNewXYZ.X(), aNewXYZ.Y() ).XYZ(); } - // Change element nodes or remove an element - set::iterator eIt = elems.begin(); - for ( ; eIt != elems.end(); eIt++ ) - { - const SMDS_MeshElement* elem = *eIt; - int nbNodes = elem->NbNodes(); - int aShapeId = FindShape( elem ); + // move node - set nodeSet; - const SMDS_MeshNode* curNodes[ nbNodes ], *uniqueNodes[ nbNodes ]; - int iUnique = 0, iCur = 0, nbRepl = 0, iRepl [ nbNodes ]; + const_cast< SMDS_MeshNode* >( theNode )->setXYZ(aNewXYZ.X(),aNewXYZ.Y(),aNewXYZ.Z()); +} - // get new seq of nodes - SMDS_ElemIteratorPtr itN = elem->nodesIterator(); - while ( itN->more() ) - { - const SMDS_MeshNode* n = - static_cast( itN->next() ); +//======================================================================= +//function : getClosestUV +//purpose : return UV of closest projection +//======================================================================= - TNodeNodeMap::iterator nnIt = nodeNodeMap.find( n ); - if ( nnIt != nodeNodeMap.end() ) { // n sticks - n = (*nnIt).second; - iRepl[ nbRepl++ ] = iCur; +static bool getClosestUV (Extrema_GenExtPS& projector, + const gp_Pnt& point, + gp_XY & result) +{ + projector.Perform( point ); + if ( projector.IsDone() ) { + double u, v, minVal = DBL_MAX; + for ( int i = projector.NbExt(); i > 0; i-- ) +#if OCC_VERSION_LARGE > 0x06040000 // Porting to OCCT6.5.1 + if ( projector.SquareDistance( i ) < minVal ) { + minVal = projector.SquareDistance( i ); +#else + if ( projector.Value( i ) < minVal ) { + minVal = projector.Value( i ); +#endif + projector.Point( i ).Parameter( u, v ); } - curNodes[ iCur ] = n; - bool isUnique = nodeSet.insert( n ).second; - if ( isUnique ) - uniqueNodes[ iUnique++ ] = n; - iCur++; + result.SetCoord( u, v ); + return true; + } + return false; +} + +//======================================================================= +//function : Smooth +//purpose : Smooth theElements during theNbIterations or until a worst +// element has aspect ratio <= theTgtAspectRatio. +// Aspect Ratio varies in range [1.0, inf]. +// If theElements is empty, the whole mesh is smoothed. +// theFixedNodes contains additionally fixed nodes. Nodes built +// on edges and boundary nodes are always fixed. +//======================================================================= + +void SMESH_MeshEditor::Smooth (TIDSortedElemSet & theElems, + set & theFixedNodes, + const SmoothMethod theSmoothMethod, + const int theNbIterations, + double theTgtAspectRatio, + const bool the2D) +{ + myLastCreatedElems.Clear(); + myLastCreatedNodes.Clear(); + + MESSAGE((theSmoothMethod==LAPLACIAN ? "LAPLACIAN" : "CENTROIDAL") << "--::Smooth()"); + + if ( theTgtAspectRatio < 1.0 ) + theTgtAspectRatio = 1.0; + + const double disttol = 1.e-16; + + SMESH::Controls::AspectRatio aQualityFunc; + + SMESHDS_Mesh* aMesh = GetMeshDS(); + + if ( theElems.empty() ) { + // add all faces to theElems + SMDS_FaceIteratorPtr fIt = aMesh->facesIterator(); + while ( fIt->more() ) { + const SMDS_MeshElement* face = fIt->next(); + theElems.insert( theElems.end(), face ); } + } + // get all face ids theElems are on + set< int > faceIdSet; + TIDSortedElemSet::iterator itElem; + if ( the2D ) + for ( itElem = theElems.begin(); itElem != theElems.end(); itElem++ ) { + int fId = FindShape( *itElem ); + // check that corresponding submesh exists and a shape is face + if (fId && + faceIdSet.find( fId ) == faceIdSet.end() && + aMesh->MeshElements( fId )) { + TopoDS_Shape F = aMesh->IndexToShape( fId ); + if ( !F.IsNull() && F.ShapeType() == TopAbs_FACE ) + faceIdSet.insert( fId ); + } + } + faceIdSet.insert( 0 ); // to smooth elements that are not on any TopoDS_Face + + // =============================================== + // smooth elements on each TopoDS_Face separately + // =============================================== + + set< int >::reverse_iterator fId = faceIdSet.rbegin(); // treate 0 fId at the end + for ( ; fId != faceIdSet.rend(); ++fId ) { + // get face surface and submesh + Handle(Geom_Surface) surface; + SMESHDS_SubMesh* faceSubMesh = 0; + TopoDS_Face face; + double fToler2 = 0, f,l; + double u1 = 0, u2 = 0, v1 = 0, v2 = 0; + bool isUPeriodic = false, isVPeriodic = false; + if ( *fId ) { + face = TopoDS::Face( aMesh->IndexToShape( *fId )); + surface = BRep_Tool::Surface( face ); + faceSubMesh = aMesh->MeshElements( *fId ); + fToler2 = BRep_Tool::Tolerance( face ); + fToler2 *= fToler2 * 10.; + isUPeriodic = surface->IsUPeriodic(); + if ( isUPeriodic ) + surface->UPeriod(); + isVPeriodic = surface->IsVPeriodic(); + if ( isVPeriodic ) + surface->VPeriod(); + surface->Bounds( u1, u2, v1, v2 ); + } + // --------------------------------------------------------- + // for elements on a face, find movable and fixed nodes and + // compute UV for them + // --------------------------------------------------------- + bool checkBoundaryNodes = false; + bool isQuadratic = false; + set setMovableNodes; + map< const SMDS_MeshNode*, gp_XY* > uvMap, uvMap2; + list< gp_XY > listUV; // uvs the 2 uvMaps refer to + list< const SMDS_MeshElement* > elemsOnFace; + + Extrema_GenExtPS projector; + GeomAdaptor_Surface surfAdaptor; + if ( !surface.IsNull() ) { + surfAdaptor.Load( surface ); + projector.Initialize( surfAdaptor, 20,20, 1e-5,1e-5 ); + } + int nbElemOnFace = 0; + itElem = theElems.begin(); + // loop on not yet smoothed elements: look for elems on a face + while ( itElem != theElems.end() ) { + if ( faceSubMesh && nbElemOnFace == faceSubMesh->NbElements() ) + break; // all elements found + + const SMDS_MeshElement* elem = *itElem; + if ( !elem || elem->GetType() != SMDSAbs_Face || elem->NbNodes() < 3 || + ( faceSubMesh && !faceSubMesh->Contains( elem ))) { + ++itElem; + continue; + } + elemsOnFace.push_back( elem ); + theElems.erase( itElem++ ); + nbElemOnFace++; + + if ( !isQuadratic ) + isQuadratic = elem->IsQuadratic(); + + // get movable nodes of elem + const SMDS_MeshNode* node; + SMDS_TypeOfPosition posType; + SMDS_ElemIteratorPtr itN = elem->nodesIterator(); + int nn = 0, nbn = elem->NbNodes(); + if(elem->IsQuadratic()) + nbn = nbn/2; + while ( nn++ < nbn ) { + node = static_cast( itN->next() ); + const SMDS_PositionPtr& pos = node->GetPosition(); + posType = pos ? pos->GetTypeOfPosition() : SMDS_TOP_3DSPACE; + if (posType != SMDS_TOP_EDGE && + posType != SMDS_TOP_VERTEX && + theFixedNodes.find( node ) == theFixedNodes.end()) + { + // check if all faces around the node are on faceSubMesh + // because a node on edge may be bound to face + SMDS_ElemIteratorPtr eIt = node->GetInverseElementIterator(SMDSAbs_Face); + bool all = true; + if ( faceSubMesh ) { + while ( eIt->more() && all ) { + const SMDS_MeshElement* e = eIt->next(); + all = faceSubMesh->Contains( e ); + } + } + if ( all ) + setMovableNodes.insert( node ); + else + checkBoundaryNodes = true; + } + if ( posType == SMDS_TOP_3DSPACE ) + checkBoundaryNodes = true; + } - // Analyse element topology after replacement + if ( surface.IsNull() ) + continue; - bool isOk = true; - int nbUniqueNodes = nodeSet.size(); - if ( nbNodes != nbUniqueNodes ) // some nodes stick - { - switch ( nbNodes ) { - case 2: ///////////////////////////////////// EDGE - isOk = false; break; - case 3: ///////////////////////////////////// TRIANGLE - isOk = false; break; - case 4: - if ( elem->GetType() == SMDSAbs_Volume ) // TETRAHEDRON - isOk = false; - else { //////////////////////////////////// QUADRANGLE - if ( nbUniqueNodes < 3 ) - isOk = false; - else if ( nbRepl == 2 && iRepl[ 1 ] - iRepl[ 0 ] == 2 ) - isOk = false; // opposite nodes stick + // get nodes to check UV + list< const SMDS_MeshNode* > uvCheckNodes; + itN = elem->nodesIterator(); + nn = 0; nbn = elem->NbNodes(); + if(elem->IsQuadratic()) + nbn = nbn/2; + while ( nn++ < nbn ) { + node = static_cast( itN->next() ); + if ( uvMap.find( node ) == uvMap.end() ) + uvCheckNodes.push_back( node ); + // add nodes of elems sharing node + // SMDS_ElemIteratorPtr eIt = node->GetInverseElementIterator(SMDSAbs_Face); + // while ( eIt->more() ) { + // const SMDS_MeshElement* e = eIt->next(); + // if ( e != elem ) { + // SMDS_ElemIteratorPtr nIt = e->nodesIterator(); + // while ( nIt->more() ) { + // const SMDS_MeshNode* n = + // static_cast( nIt->next() ); + // if ( uvMap.find( n ) == uvMap.end() ) + // uvCheckNodes.push_back( n ); + // } + // } + // } + } + // check UV on face + list< const SMDS_MeshNode* >::iterator n = uvCheckNodes.begin(); + for ( ; n != uvCheckNodes.end(); ++n ) { + node = *n; + gp_XY uv( 0, 0 ); + const SMDS_PositionPtr& pos = node->GetPosition(); + posType = pos ? pos->GetTypeOfPosition() : SMDS_TOP_3DSPACE; + // get existing UV + switch ( posType ) { + case SMDS_TOP_FACE: { + SMDS_FacePosition* fPos = ( SMDS_FacePosition* ) pos; + uv.SetCoord( fPos->GetUParameter(), fPos->GetVParameter() ); + break; } - break; - case 6: ///////////////////////////////////// PENTAHEDRON - if ( nbUniqueNodes == 4 ) { - // ---------------------------------> tetrahedron - if (nbRepl == 3 && - iRepl[ 0 ] > 2 && iRepl[ 1 ] > 2 && iRepl[ 2 ] > 2 ) { - // all top nodes stick: reverse a bottom - uniqueNodes[ 0 ] = curNodes [ 1 ]; - uniqueNodes[ 1 ] = curNodes [ 0 ]; + case SMDS_TOP_EDGE: { + TopoDS_Shape S = aMesh->IndexToShape( node->getshapeId() ); + Handle(Geom2d_Curve) pcurve; + if ( !S.IsNull() && S.ShapeType() == TopAbs_EDGE ) + pcurve = BRep_Tool::CurveOnSurface( TopoDS::Edge( S ), face, f,l ); + if ( !pcurve.IsNull() ) { + double u = (( SMDS_EdgePosition* ) pos )->GetUParameter(); + uv = pcurve->Value( u ).XY(); } - else if (nbRepl == 3 && - iRepl[ 0 ] < 3 && iRepl[ 1 ] < 3 && iRepl[ 2 ] < 3 ) { - // all bottom nodes stick: set a top before - uniqueNodes[ 3 ] = uniqueNodes [ 0 ]; - uniqueNodes[ 0 ] = curNodes [ 3 ]; - uniqueNodes[ 1 ] = curNodes [ 4 ]; - uniqueNodes[ 2 ] = curNodes [ 5 ]; + break; + } + case SMDS_TOP_VERTEX: { + TopoDS_Shape S = aMesh->IndexToShape( node->getshapeId() ); + if ( !S.IsNull() && S.ShapeType() == TopAbs_VERTEX ) + uv = BRep_Tool::Parameters( TopoDS::Vertex( S ), face ).XY(); + break; + } + default:; + } + // check existing UV + bool project = true; + gp_Pnt pNode ( node->X(), node->Y(), node->Z() ); + double dist1 = DBL_MAX, dist2 = 0; + if ( posType != SMDS_TOP_3DSPACE ) { + dist1 = pNode.SquareDistance( surface->Value( uv.X(), uv.Y() )); + project = dist1 > fToler2; + } + if ( project ) { // compute new UV + gp_XY newUV; + if ( !getClosestUV( projector, pNode, newUV )) { + MESSAGE("Node Projection Failed " << node); } - else if (nbRepl == 4 && - iRepl[ 2 ] - iRepl [ 0 ] == 3 && iRepl[ 3 ] - iRepl [ 1 ] == 3 ) { - // a lateral face turns into a line: reverse a bottom - uniqueNodes[ 0 ] = curNodes [ 1 ]; - uniqueNodes[ 1 ] = curNodes [ 0 ]; + else { + if ( isUPeriodic ) + newUV.SetX( ElCLib::InPeriod( newUV.X(), u1, u2 )); + if ( isVPeriodic ) + newUV.SetY( ElCLib::InPeriod( newUV.Y(), v1, v2 )); + // check new UV + if ( posType != SMDS_TOP_3DSPACE ) + dist2 = pNode.SquareDistance( surface->Value( newUV.X(), newUV.Y() )); + if ( dist2 < dist1 ) + uv = newUV; } - else - isOk = false; } - else if ( nbUniqueNodes == 5 ) { - // PENTAHEDRON --------------------> 2 tetrahedrons - if ( nbRepl == 2 && iRepl[ 1 ] - iRepl [ 0 ] == 3 ) { - // a bottom node sticks with a linked top one - // 1. - SMDS_MeshElement* newElem = - aMesh->AddVolume(curNodes[ 3 ], - curNodes[ 4 ], - curNodes[ 5 ], - curNodes[ iRepl[ 0 ] == 2 ? 1 : 2 ]); - if ( aShapeId ) - aMesh->SetMeshElementOnShape( newElem, aShapeId ); - // 2. : reverse a bottom - uniqueNodes[ 0 ] = curNodes [ 1 ]; - uniqueNodes[ 1 ] = curNodes [ 0 ]; - nbUniqueNodes = 4; - } - else - isOk = false; + // store UV in the map + listUV.push_back( uv ); + uvMap.insert( make_pair( node, &listUV.back() )); + } + } // loop on not yet smoothed elements + + if ( !faceSubMesh || nbElemOnFace != faceSubMesh->NbElements() ) + checkBoundaryNodes = true; + + // fix nodes on mesh boundary + + if ( checkBoundaryNodes ) { + map< SMESH_TLink, int > linkNbMap; // how many times a link encounters in elemsOnFace + map< SMESH_TLink, int >::iterator link_nb; + // put all elements links to linkNbMap + list< const SMDS_MeshElement* >::iterator elemIt = elemsOnFace.begin(); + for ( ; elemIt != elemsOnFace.end(); ++elemIt ) { + const SMDS_MeshElement* elem = (*elemIt); + int nbn = elem->NbCornerNodes(); + // loop on elem links: insert them in linkNbMap + for ( int iN = 0; iN < nbn; ++iN ) { + const SMDS_MeshNode* n1 = elem->GetNode( iN ); + const SMDS_MeshNode* n2 = elem->GetNode(( iN+1 ) % nbn); + SMESH_TLink link( n1, n2 ); + link_nb = linkNbMap.insert( make_pair( link, 0 )).first; + link_nb->second++; } - else - isOk = false; - break; - case 8: { //////////////////////////////////// HEXAHEDRON - isOk = false; - SMDS_VolumeTool hexa (elem); - hexa.SetExternalNormal(); - if ( nbUniqueNodes == 4 && nbRepl == 6 ) { - //////////////////////// ---> tetrahedron - for ( int iFace = 0; iFace < 6; iFace++ ) { - const int *ind = hexa.GetFaceNodesIndices( iFace ); // indices of face nodes - if (curNodes[ind[ 0 ]] == curNodes[ind[ 1 ]] && - curNodes[ind[ 0 ]] == curNodes[ind[ 2 ]] && - curNodes[ind[ 0 ]] == curNodes[ind[ 3 ]] ) { - // one face turns into a point ... - int iOppFace = hexa.GetOppFaceIndex( iFace ); - ind = hexa.GetFaceNodesIndices( iOppFace ); - int nbStick = 0; - iUnique = 2; // reverse a tetrahedron bottom - for ( iCur = 0; iCur < 4 && nbStick < 2; iCur++ ) { - if ( curNodes[ind[ iCur ]] == curNodes[ind[ iCur + 1 ]] ) - nbStick++; - else if ( iUnique >= 0 ) - uniqueNodes[ iUnique-- ] = curNodes[ind[ iCur ]]; - } - if ( nbStick == 1 ) { - // ... and the opposite one - into a triangle. - // set a top node - ind = hexa.GetFaceNodesIndices( iFace ); - uniqueNodes[ 3 ] = curNodes[ind[ 0 ]]; - isOk = true; - } - break; - } + } + // remove nodes that are in links encountered only once from setMovableNodes + for ( link_nb = linkNbMap.begin(); link_nb != linkNbMap.end(); ++link_nb ) { + if ( link_nb->second == 1 ) { + setMovableNodes.erase( link_nb->first.node1() ); + setMovableNodes.erase( link_nb->first.node2() ); + } + } + } + + // ----------------------------------------------------- + // for nodes on seam edge, compute one more UV ( uvMap2 ); + // find movable nodes linked to nodes on seam and which + // are to be smoothed using the second UV ( uvMap2 ) + // ----------------------------------------------------- + + set nodesNearSeam; // to smooth using uvMap2 + if ( !surface.IsNull() ) { + TopExp_Explorer eExp( face, TopAbs_EDGE ); + for ( ; eExp.More(); eExp.Next() ) { + TopoDS_Edge edge = TopoDS::Edge( eExp.Current() ); + if ( !BRep_Tool::IsClosed( edge, face )) + continue; + SMESHDS_SubMesh* sm = aMesh->MeshElements( edge ); + if ( !sm ) continue; + // find out which parameter varies for a node on seam + double f,l; + gp_Pnt2d uv1, uv2; + Handle(Geom2d_Curve) pcurve = BRep_Tool::CurveOnSurface( edge, face, f, l ); + if ( pcurve.IsNull() ) continue; + uv1 = pcurve->Value( f ); + edge.Reverse(); + pcurve = BRep_Tool::CurveOnSurface( edge, face, f, l ); + if ( pcurve.IsNull() ) continue; + uv2 = pcurve->Value( f ); + int iPar = Abs( uv1.X() - uv2.X() ) > Abs( uv1.Y() - uv2.Y() ) ? 1 : 2; + // assure uv1 < uv2 + if ( uv1.Coord( iPar ) > uv2.Coord( iPar )) { + gp_Pnt2d tmp = uv1; uv1 = uv2; uv2 = tmp; + } + // get nodes on seam and its vertices + list< const SMDS_MeshNode* > seamNodes; + SMDS_NodeIteratorPtr nSeamIt = sm->GetNodes(); + while ( nSeamIt->more() ) { + const SMDS_MeshNode* node = nSeamIt->next(); + if ( !isQuadratic || !IsMedium( node )) + seamNodes.push_back( node ); + } + TopExp_Explorer vExp( edge, TopAbs_VERTEX ); + for ( ; vExp.More(); vExp.Next() ) { + sm = aMesh->MeshElements( vExp.Current() ); + if ( sm ) { + nSeamIt = sm->GetNodes(); + while ( nSeamIt->more() ) + seamNodes.push_back( nSeamIt->next() ); } } - else if (nbUniqueNodes == 5 && nbRepl == 4 ) { - //////////////////// HEXAHEDRON ---> 2 tetrahedrons - for ( int iFace = 0; iFace < 6; iFace++ ) { - const int *ind = hexa.GetFaceNodesIndices( iFace ); // indices of face nodes - if (curNodes[ind[ 0 ]] == curNodes[ind[ 1 ]] && - curNodes[ind[ 0 ]] == curNodes[ind[ 2 ]] && - curNodes[ind[ 0 ]] == curNodes[ind[ 3 ]] ) { - // one face turns into a point ... - int iOppFace = hexa.GetOppFaceIndex( iFace ); - ind = hexa.GetFaceNodesIndices( iOppFace ); - int nbStick = 0; - iUnique = 2; // reverse a tetrahedron 1 bottom - for ( iCur = 0; iCur < 4 && nbStick == 0; iCur++ ) { - if ( curNodes[ind[ iCur ]] == curNodes[ind[ iCur + 1 ]] ) - nbStick++; - else if ( iUnique >= 0 ) - uniqueNodes[ iUnique-- ] = curNodes[ind[ iCur ]]; + // loop on nodes on seam + list< const SMDS_MeshNode* >::iterator noSeIt = seamNodes.begin(); + for ( ; noSeIt != seamNodes.end(); ++noSeIt ) { + const SMDS_MeshNode* nSeam = *noSeIt; + map< const SMDS_MeshNode*, gp_XY* >::iterator n_uv = uvMap.find( nSeam ); + if ( n_uv == uvMap.end() ) + continue; + // set the first UV + n_uv->second->SetCoord( iPar, uv1.Coord( iPar )); + // set the second UV + listUV.push_back( *n_uv->second ); + listUV.back().SetCoord( iPar, uv2.Coord( iPar )); + if ( uvMap2.empty() ) + uvMap2 = uvMap; // copy the uvMap contents + uvMap2[ nSeam ] = &listUV.back(); + + // collect movable nodes linked to ones on seam in nodesNearSeam + SMDS_ElemIteratorPtr eIt = nSeam->GetInverseElementIterator(SMDSAbs_Face); + while ( eIt->more() ) { + const SMDS_MeshElement* e = eIt->next(); + int nbUseMap1 = 0, nbUseMap2 = 0; + SMDS_ElemIteratorPtr nIt = e->nodesIterator(); + int nn = 0, nbn = e->NbNodes(); + if(e->IsQuadratic()) nbn = nbn/2; + while ( nn++ < nbn ) + { + const SMDS_MeshNode* n = + static_cast( nIt->next() ); + if (n == nSeam || + setMovableNodes.find( n ) == setMovableNodes.end() ) + continue; + // add only nodes being closer to uv2 than to uv1 + gp_Pnt pMid (0.5 * ( n->X() + nSeam->X() ), + 0.5 * ( n->Y() + nSeam->Y() ), + 0.5 * ( n->Z() + nSeam->Z() )); + gp_XY uv; + getClosestUV( projector, pMid, uv ); + if ( uv.Coord( iPar ) > uvMap[ n ]->Coord( iPar ) ) { + nodesNearSeam.insert( n ); + nbUseMap2++; } - if ( nbStick == 0 ) { - // ... and the opposite one is a quadrangle - // set a top node - const int* indTop = hexa.GetFaceNodesIndices( iFace ); - uniqueNodes[ 3 ] = curNodes[indTop[ 0 ]]; - nbUniqueNodes = 4; - // tetrahedron 2 - SMDS_MeshElement* newElem = - aMesh->AddVolume(curNodes[ind[ 0 ]], - curNodes[ind[ 3 ]], - curNodes[ind[ 2 ]], - curNodes[indTop[ 0 ]]); - if ( aShapeId ) - aMesh->SetMeshElementOnShape( newElem, aShapeId ); - isOk = true; + else + nbUseMap1++; + } + // for centroidalSmooth all element nodes must + // be on one side of a seam + if ( theSmoothMethod == CENTROIDAL && nbUseMap1 && nbUseMap2 ) { + SMDS_ElemIteratorPtr nIt = e->nodesIterator(); + nn = 0; + while ( nn++ < nbn ) { + const SMDS_MeshNode* n = + static_cast( nIt->next() ); + setMovableNodes.erase( n ); } - break; } } + } // loop on nodes on seam + } // loop on edge of a face + } // if ( !face.IsNull() ) + + if ( setMovableNodes.empty() ) { + MESSAGE( "Face id : " << *fId << " - NO SMOOTHING: no nodes to move!!!"); + continue; // goto next face + } + + // ------------- + // SMOOTHING // + // ------------- + + int it = -1; + double maxRatio = -1., maxDisplacement = -1.; + set::iterator nodeToMove; + for ( it = 0; it < theNbIterations; it++ ) { + maxDisplacement = 0.; + nodeToMove = setMovableNodes.begin(); + for ( ; nodeToMove != setMovableNodes.end(); nodeToMove++ ) { + const SMDS_MeshNode* node = (*nodeToMove); + gp_XYZ aPrevPos ( node->X(), node->Y(), node->Z() ); + + // smooth + bool map2 = ( nodesNearSeam.find( node ) != nodesNearSeam.end() ); + if ( theSmoothMethod == LAPLACIAN ) + laplacianSmooth( node, surface, map2 ? uvMap2 : uvMap ); + else + centroidalSmooth( node, surface, map2 ? uvMap2 : uvMap ); + + // node displacement + gp_XYZ aNewPos ( node->X(), node->Y(), node->Z() ); + Standard_Real aDispl = (aPrevPos - aNewPos).SquareModulus(); + if ( aDispl > maxDisplacement ) + maxDisplacement = aDispl; + } + // no node movement => exit + //if ( maxDisplacement < 1.e-16 ) { + if ( maxDisplacement < disttol ) { + MESSAGE("-- no node movement --"); + break; + } + + // check elements quality + maxRatio = 0; + list< const SMDS_MeshElement* >::iterator elemIt = elemsOnFace.begin(); + for ( ; elemIt != elemsOnFace.end(); ++elemIt ) { + const SMDS_MeshElement* elem = (*elemIt); + if ( !elem || elem->GetType() != SMDSAbs_Face ) + continue; + SMESH::Controls::TSequenceOfXYZ aPoints; + if ( aQualityFunc.GetPoints( elem, aPoints )) { + double aValue = aQualityFunc.GetValue( aPoints ); + if ( aValue > maxRatio ) + maxRatio = aValue; } - else if ( nbUniqueNodes == 6 && nbRepl == 4 ) { - ////////////////// HEXAHEDRON ---> 2 tetrahedrons or 1 prism - // find indices of quad and tri faces - int iQuadFace[ 6 ], iTriFace[ 6 ], nbQuad = 0, nbTri = 0, iFace; - for ( iFace = 0; iFace < 6; iFace++ ) { - const int *ind = hexa.GetFaceNodesIndices( iFace ); // indices of face nodes - nodeSet.clear(); - for ( iCur = 0; iCur < 4; iCur++ ) - nodeSet.insert( curNodes[ind[ iCur ]] ); - nbUniqueNodes = nodeSet.size(); - if ( nbUniqueNodes == 3 ) - iTriFace[ nbTri++ ] = iFace; - else if ( nbUniqueNodes == 4 ) - iQuadFace[ nbQuad++ ] = iFace; - } - if (nbQuad == 2 && nbTri == 4 && - hexa.GetOppFaceIndex( iQuadFace[ 0 ] ) == iQuadFace[ 1 ]) { - // 2 opposite quadrangles stuck with a diagonal; - // sample groups of merged indices: (0-4)(2-6) - // --------------------------------------------> 2 tetrahedrons - const int *ind1 = hexa.GetFaceNodesIndices( iQuadFace[ 0 ]); // indices of quad1 nodes - const int *ind2 = hexa.GetFaceNodesIndices( iQuadFace[ 1 ]); - int i0, i1d, i2, i3d, i0t, i2t; // d-daigonal, t-top - if (curNodes[ind1[ 0 ]] == curNodes[ind2[ 0 ]] && - curNodes[ind1[ 2 ]] == curNodes[ind2[ 2 ]]) { - // stuck with 0-2 diagonal - i0 = ind1[ 3 ]; - i1d = ind1[ 0 ]; - i2 = ind1[ 1 ]; - i3d = ind1[ 2 ]; - i0t = ind2[ 1 ]; - i2t = ind2[ 3 ]; - } - else if (curNodes[ind1[ 1 ]] == curNodes[ind2[ 3 ]] && - curNodes[ind1[ 3 ]] == curNodes[ind2[ 1 ]]) { - // stuck with 1-3 diagonal - i0 = ind1[ 0 ]; - i1d = ind1[ 1 ]; - i2 = ind1[ 2 ]; - i3d = ind1[ 3 ]; - i0t = ind2[ 0 ]; - i2t = ind2[ 1 ]; + } + if ( maxRatio <= theTgtAspectRatio ) { + MESSAGE("-- quality achived --"); + break; + } + if (it+1 == theNbIterations) { + MESSAGE("-- Iteration limit exceeded --"); + } + } // smoothing iterations + + MESSAGE(" Face id: " << *fId << + " Nb iterstions: " << it << + " Displacement: " << maxDisplacement << + " Aspect Ratio " << maxRatio); + + // --------------------------------------- + // new nodes positions are computed, + // record movement in DS and set new UV + // --------------------------------------- + nodeToMove = setMovableNodes.begin(); + for ( ; nodeToMove != setMovableNodes.end(); nodeToMove++ ) { + SMDS_MeshNode* node = const_cast< SMDS_MeshNode* > (*nodeToMove); + aMesh->MoveNode( node, node->X(), node->Y(), node->Z() ); + map< const SMDS_MeshNode*, gp_XY* >::iterator node_uv = uvMap.find( node ); + if ( node_uv != uvMap.end() ) { + gp_XY* uv = node_uv->second; + node->SetPosition + ( SMDS_PositionPtr( new SMDS_FacePosition( uv->X(), uv->Y() ))); + } + } + + // move medium nodes of quadratic elements + if ( isQuadratic ) + { + SMESH_MesherHelper helper( *GetMesh() ); + if ( !face.IsNull() ) + helper.SetSubShape( face ); + list< const SMDS_MeshElement* >::iterator elemIt = elemsOnFace.begin(); + for ( ; elemIt != elemsOnFace.end(); ++elemIt ) { + const SMDS_VtkFace* QF = + dynamic_cast (*elemIt); + if(QF && QF->IsQuadratic()) { + vector Ns; + Ns.reserve(QF->NbNodes()+1); + SMDS_ElemIteratorPtr anIter = QF->interlacedNodesElemIterator(); + while ( anIter->more() ) + Ns.push_back( cast2Node(anIter->next()) ); + Ns.push_back( Ns[0] ); + double x, y, z; + for(int i=0; iNbNodes(); i=i+2) { + if ( !surface.IsNull() ) { + gp_XY uv1 = helper.GetNodeUV( face, Ns[i], Ns[i+2] ); + gp_XY uv2 = helper.GetNodeUV( face, Ns[i+2], Ns[i] ); + gp_XY uv = ( uv1 + uv2 ) / 2.; + gp_Pnt xyz = surface->Value( uv.X(), uv.Y() ); + x = xyz.X(); y = xyz.Y(); z = xyz.Z(); } else { - ASSERT(0); + x = (Ns[i]->X() + Ns[i+2]->X())/2; + y = (Ns[i]->Y() + Ns[i+2]->Y())/2; + z = (Ns[i]->Z() + Ns[i+2]->Z())/2; } - // tetrahedron 1 - uniqueNodes[ 0 ] = curNodes [ i0 ]; - uniqueNodes[ 1 ] = curNodes [ i1d ]; - uniqueNodes[ 2 ] = curNodes [ i3d ]; - uniqueNodes[ 3 ] = curNodes [ i0t ]; - nbUniqueNodes = 4; - // tetrahedron 2 - SMDS_MeshElement* newElem = aMesh->AddVolume(curNodes[ i1d ], - curNodes[ i2 ], - curNodes[ i3d ], - curNodes[ i2t ]); - if ( aShapeId ) - aMesh->SetMeshElementOnShape( newElem, aShapeId ); - isOk = true; - } - else if (( nbTri == 2 && nbQuad == 3 ) || // merged (0-4)(1-5) - ( nbTri == 4 && nbQuad == 2 )) { // merged (7-4)(1-5) - // --------------------------------------------> prism - // find 2 opposite triangles - nbUniqueNodes = 6; - for ( iFace = 0; iFace + 1 < nbTri; iFace++ ) { - if ( hexa.GetOppFaceIndex( iTriFace[ iFace ] ) == iTriFace[ iFace + 1 ]) { - // find indices of kept and replaced nodes - // and fill unique nodes of 2 opposite triangles - const int *ind1 = hexa.GetFaceNodesIndices( iTriFace[ iFace ]); - const int *ind2 = hexa.GetFaceNodesIndices( iTriFace[ iFace + 1 ]); - const SMDS_MeshNode** hexanodes = hexa.GetNodes(); - // fill unique nodes - iUnique = 0; - isOk = true; - for ( iCur = 0; iCur < 4 && isOk; iCur++ ) { - const SMDS_MeshNode* n = curNodes[ind1[ iCur ]]; - const SMDS_MeshNode* nInit = hexanodes[ind1[ iCur ]]; - if ( n == nInit ) { - // iCur of a linked node of the opposite face (make normals co-directed): - int iCurOpp = ( iCur == 1 || iCur == 3 ) ? 4 - iCur : iCur; - // check that correspondent corners of triangles are linked - if ( !hexa.IsLinked( ind1[ iCur ], ind2[ iCurOpp ] )) - isOk = false; - else { - uniqueNodes[ iUnique ] = n; - uniqueNodes[ iUnique + 3 ] = curNodes[ind2[ iCurOpp ]]; - iUnique++; - } - } - } - break; - } + if( fabs( Ns[i+1]->X() - x ) > disttol || + fabs( Ns[i+1]->Y() - y ) > disttol || + fabs( Ns[i+1]->Z() - z ) > disttol ) { + // we have to move i+1 node + aMesh->MoveNode( Ns[i+1], x, y, z ); } } - } // if ( nbUniqueNodes == 6 && nbRepl == 4 ) - break; - } // HEXAHEDRON + } + } + } - default: - isOk = false; - } // switch ( nbNodes ) + } // loop on face ids - } // if ( nbNodes != nbUniqueNodes ) // some nodes stick - - if ( isOk ) - aMesh->ChangeElementNodes( elem, uniqueNodes, nbUniqueNodes ); - else - rmElemIds.push_back( elem->GetID() ); +} - } // loop on elements +//======================================================================= +//function : isReverse +//purpose : Return true if normal of prevNodes is not co-directied with +// gp_Vec(prevNodes[iNotSame],nextNodes[iNotSame]). +// iNotSame is where prevNodes and nextNodes are different. +// If result is true then future volume orientation is OK +//======================================================================= - // Remove equal nodes and bad elements +static bool isReverse(const SMDS_MeshElement* face, + const vector& prevNodes, + const vector& nextNodes, + const int iNotSame) +{ - Remove( rmNodeIds, true ); - Remove( rmElemIds, false ); + SMESH_TNodeXYZ pP = prevNodes[ iNotSame ]; + SMESH_TNodeXYZ pN = nextNodes[ iNotSame ]; + gp_XYZ extrDir( pN - pP ), faceNorm; + SMESH_Algo::FaceNormal( face, faceNorm, /*normalized=*/false ); + return faceNorm * extrDir < 0.0; } //======================================================================= -//function : MergeEqualElements -//purpose : Remove all but one of elements built on the same nodes. +/*! + * \brief Create elements by sweeping an element + * \param elem - element to sweep + * \param newNodesItVec - nodes generated from each node of the element + * \param newElems - generated elements + * \param nbSteps - number of sweeping steps + * \param srcElements - to append elem for each generated element + */ //======================================================================= -void SMESH_MeshEditor::MergeEqualElements() +void SMESH_MeshEditor::sweepElement(const SMDS_MeshElement* elem, + const vector & newNodesItVec, + list& newElems, + const int nbSteps, + SMESH_SequenceOfElemPtr& srcElements) { + //MESSAGE("sweepElement " << nbSteps); SMESHDS_Mesh* aMesh = GetMeshDS(); - SMDS_EdgeIteratorPtr eIt = aMesh->edgesIterator(); - SMDS_FaceIteratorPtr fIt = aMesh->facesIterator(); - SMDS_VolumeIteratorPtr vIt = aMesh->volumesIterator(); + const int nbNodes = elem->NbNodes(); + const int nbCorners = elem->NbCornerNodes(); + SMDSAbs_EntityType baseType = elem->GetEntityType(); /* it can change in case of + polyhedron creation !!! */ + // Loop on elem nodes: + // find new nodes and detect same nodes indices + vector < list< const SMDS_MeshNode* >::const_iterator > itNN( nbNodes ); + vector prevNod( nbNodes ); + vector nextNod( nbNodes ); + vector midlNod( nbNodes ); + + int iNode, nbSame = 0, nbDouble = 0, iNotSameNode = 0; + vector sames(nbNodes); + vector isSingleNode(nbNodes); + + for ( iNode = 0; iNode < nbNodes; iNode++ ) { + TNodeOfNodeListMapItr nnIt = newNodesItVec[ iNode ]; + const SMDS_MeshNode* node = nnIt->first; + const list< const SMDS_MeshNode* > & listNewNodes = nnIt->second; + if ( listNewNodes.empty() ) + return; - list< int > rmElemIds; // IDs of elems to remove + itNN [ iNode ] = listNewNodes.begin(); + prevNod[ iNode ] = node; + nextNod[ iNode ] = listNewNodes.front(); - for ( int iDim = 1; iDim <= 3; iDim++ ) { - - set< set > setOfNodeSet; - - while ( 1 ) { - // get next element - const SMDS_MeshElement* elem = 0; - if ( iDim == 1 ) { - if ( eIt->more() ) elem = eIt->next(); - } else if ( iDim == 2 ) { - if ( fIt->more() ) elem = fIt->next(); - } else { - if ( vIt->more() ) elem = vIt->next(); - } - if ( !elem ) break; - - // get elem nodes - set nodeSet; - SMDS_ElemIteratorPtr nodeIt = elem->nodesIterator(); - while ( nodeIt->more() ) - nodeSet.insert( nodeIt->next() ); + isSingleNode[iNode] = (listNewNodes.size()==nbSteps); /* medium node of quadratic or + corner node of linear */ + if ( prevNod[ iNode ] != nextNod [ iNode ]) + nbDouble += !isSingleNode[iNode]; - // check uniqueness - bool isUnique = setOfNodeSet.insert( nodeSet ).second; - if ( !isUnique ) - rmElemIds.push_back( elem->GetID() ); + if( iNode < nbCorners ) { // check corners only + if ( prevNod[ iNode ] == nextNod [ iNode ]) + sames[nbSame++] = iNode; + else + iNotSameNode = iNode; } } - Remove( rmElemIds, false ); -} - -//======================================================================= -//function : findAdjacentFace -//purpose : -//======================================================================= -#define CHECKIND(max,val) {if ( (val) >= (max) ) \ + if ( nbSame == nbNodes || nbSame > 2) { + MESSAGE( " Too many same nodes of element " << elem->GetID() ); + return; + } -static const SMDS_MeshElement* findAdjacentFace(const SMDS_MeshNode* n1, - const SMDS_MeshNode* n2, - const SMDS_MeshElement* elem) -{ - SMDS_ElemIteratorPtr invElemIt = n1->facesIterator(); - while ( invElemIt->more() ) { // loop on inverse elements of n1 - const SMDS_MeshElement* adjElem = invElemIt->next(); - if ( elem != adjElem ) { - // get face nodes and find index of n1 - int i1, nbN = adjElem->NbNodes(), iNode = 0; - const SMDS_MeshNode* faceNodes[ nbN ], *n; - SMDS_ElemIteratorPtr nIt = adjElem->nodesIterator(); - while ( nIt->more() ) { - faceNodes[ iNode ] = static_cast( nIt->next() ); - if ( faceNodes[ iNode++ ] == n1 ) - i1 = iNode - 1; - } - // find a n2 linked to n1 - for ( iNode = 0; iNode < 2; iNode++ ) { - if ( iNode ) // node before n1 - n = faceNodes[ i1 == 0 ? nbN - 1 : i1 - 1 ]; - else // node after n1 - n = faceNodes[ i1 + 1 == nbN ? 0 : i1 + 1 ]; - if ( n == n2 ) - return adjElem; + if ( elem->GetType() == SMDSAbs_Face && !isReverse( elem, prevNod, nextNod, iNotSameNode )) + { + // fix nodes order to have bottom normal external + if ( baseType == SMDSEntity_Polygon ) + { + std::reverse( itNN.begin(), itNN.end() ); + std::reverse( prevNod.begin(), prevNod.end() ); + std::reverse( midlNod.begin(), midlNod.end() ); + std::reverse( nextNod.begin(), nextNod.end() ); + std::reverse( isSingleNode.begin(), isSingleNode.end() ); + } + else + { + const vector& ind = SMDS_MeshCell::reverseSmdsOrder( baseType ); + SMDS_MeshCell::applyInterlace( ind, itNN ); + SMDS_MeshCell::applyInterlace( ind, prevNod ); + SMDS_MeshCell::applyInterlace( ind, nextNod ); + SMDS_MeshCell::applyInterlace( ind, midlNod ); + SMDS_MeshCell::applyInterlace( ind, isSingleNode ); + if ( nbSame > 0 ) + { + sames[nbSame] = iNotSameNode; + for ( int j = 0; j <= nbSame; ++j ) + for ( size_t i = 0; i < ind.size(); ++i ) + if ( ind[i] == sames[j] ) + { + sames[j] = i; + break; + } + iNotSameNode = sames[nbSame]; } } } - return 0; -} - -//======================================================================= -//function : findFreeBorder -//purpose : -//======================================================================= -#define ControlFreeBorder SMESH::Controls::FreeEdges::IsFreeEdge - -static bool findFreeBorder (const SMDS_MeshNode* theFirstNode, - const SMDS_MeshNode* theSecondNode, - const SMDS_MeshNode* theLastNode, - list< const SMDS_MeshNode* > & theNodes, - list< const SMDS_MeshElement* > & theFaces) -{ - if ( !theFirstNode || !theSecondNode ) - return false; - // find border face between theFirstNode and theSecondNode - const SMDS_MeshElement* curElem = findAdjacentFace( theFirstNode, theSecondNode, 0 ); - if ( !curElem ) - return false; - - theFaces.push_back( curElem ); - theNodes.push_back( theFirstNode ); - theNodes.push_back( theSecondNode ); - - const SMDS_MeshNode* nodes [5], *nIgnore = theFirstNode, * nStart = theSecondNode; - set < const SMDS_MeshElement* > foundElems; - bool needTheLast = ( theLastNode != 0 ); + int iSameNode = 0, iBeforeSame = 0, iAfterSame = 0, iOpposSame = 0; + if ( nbSame > 0 ) { + iSameNode = sames[ nbSame-1 ]; + iBeforeSame = ( iSameNode + nbCorners - 1 ) % nbCorners; + iAfterSame = ( iSameNode + 1 ) % nbCorners; + iOpposSame = ( iSameNode - 2 < 0 ? iSameNode + 2 : iSameNode - 2 ); + } - while ( nStart != theLastNode ) + // make new elements + for (int iStep = 0; iStep < nbSteps; iStep++ ) { - if ( nStart == theFirstNode ) - return !needTheLast; - - // find all free border faces sharing form nStart + // get next nodes + for ( iNode = 0; iNode < nbNodes; iNode++ ) + { + midlNod[ iNode ] = isSingleNode[iNode] ? 0 : *itNN[ iNode ]++; + nextNod[ iNode ] = *itNN[ iNode ]++; + } - list< const SMDS_MeshElement* > curElemList; - list< const SMDS_MeshNode* > nStartList; - SMDS_ElemIteratorPtr invElemIt = nStart->facesIterator(); - while ( invElemIt->more() ) { - const SMDS_MeshElement* e = invElemIt->next(); - if ( e == curElem || foundElems.insert( e ).second ) - { - // get nodes - SMDS_ElemIteratorPtr nIt = e->nodesIterator(); - int iNode = 0, nbNodes = e->NbNodes(); - while ( nIt->more() ) - nodes[ iNode++ ] = static_cast( nIt->next() ); - nodes[ iNode ] = nodes[ 0 ]; - // check 2 links - for ( iNode = 0; iNode < nbNodes; iNode++ ) - if (((nodes[ iNode ] == nStart && nodes[ iNode + 1] != nIgnore ) || - (nodes[ iNode + 1] == nStart && nodes[ iNode ] != nIgnore )) && - ControlFreeBorder( &nodes[ iNode ], e->GetID() )) + SMDS_MeshElement* aNewElem = 0; + /*if(!elem->IsPoly())*/ { + switch ( baseType ) { + case SMDSEntity_0D: + case SMDSEntity_Node: { // sweep NODE + if ( nbSame == 0 ) { + if ( isSingleNode[0] ) + aNewElem = aMesh->AddEdge( prevNod[ 0 ], nextNod[ 0 ] ); + else + aNewElem = aMesh->AddEdge( prevNod[ 0 ], nextNod[ 0 ], midlNod[ 0 ] ); + } + else + return; + break; + } + case SMDSEntity_Edge: { // sweep EDGE + if ( nbDouble == 0 ) + { + if ( nbSame == 0 ) // ---> quadrangle + aNewElem = aMesh->AddFace(prevNod[ 0 ], prevNod[ 1 ], + nextNod[ 1 ], nextNod[ 0 ] ); + else // ---> triangle + aNewElem = aMesh->AddFace(prevNod[ 0 ], prevNod[ 1 ], + nextNod[ iNotSameNode ] ); + } + else // ---> polygon + { + vector poly_nodes; + poly_nodes.push_back( prevNod[0] ); + poly_nodes.push_back( prevNod[1] ); + if ( prevNod[1] != nextNod[1] ) { - nStartList.push_back( nodes[ iNode + ( nodes[ iNode ] == nStart ? 1 : 0 )]); - curElemList.push_back( e ); + if ( midlNod[1]) poly_nodes.push_back( midlNod[1]); + poly_nodes.push_back( nextNod[1] ); + } + if ( prevNod[0] != nextNod[0] ) + { + poly_nodes.push_back( nextNod[0] ); + if ( midlNod[0]) poly_nodes.push_back( midlNod[0]); } + switch ( poly_nodes.size() ) { + case 3: + aNewElem = aMesh->AddFace( poly_nodes[ 0 ], poly_nodes[ 1 ], poly_nodes[ 2 ]); + break; + case 4: + aNewElem = aMesh->AddFace( poly_nodes[ 0 ], poly_nodes[ 1 ], + poly_nodes[ 2 ], poly_nodes[ 3 ]); + break; + default: + aNewElem = aMesh->AddPolygonalFace (poly_nodes); + } + } + break; } - } - // analyse the found - - int nbNewBorders = curElemList.size(); - if ( nbNewBorders == 0 ) { - // no free border furthermore - return !needTheLast; - } - else if ( nbNewBorders == 1 ) { - // one more element found - nIgnore = nStart; - nStart = nStartList.front(); - curElem = curElemList.front(); - theFaces.push_back( curElem ); - theNodes.push_back( nStart ); - } - else { - // several continuations found - list< const SMDS_MeshElement* >::iterator curElemIt; - list< const SMDS_MeshNode* >::iterator nStartIt; - // check if one of them reached the last node - if ( needTheLast ) { - for (curElemIt = curElemList.begin(), nStartIt = nStartList.begin(); - curElemIt!= curElemList.end(); - curElemIt++, nStartIt++ ) - if ( *nStartIt == theLastNode ) { - theFaces.push_back( *curElemIt ); - theNodes.push_back( *nStartIt ); - return true; + case SMDSEntity_Triangle: // TRIANGLE ---> + { + if ( nbDouble > 0 ) break; + if ( nbSame == 0 ) // ---> pentahedron + aNewElem = aMesh->AddVolume (prevNod[ 0 ], prevNod[ 1 ], prevNod[ 2 ], + nextNod[ 0 ], nextNod[ 1 ], nextNod[ 2 ] ); + + else if ( nbSame == 1 ) // ---> pyramid + aNewElem = aMesh->AddVolume (prevNod[ iBeforeSame ], prevNod[ iAfterSame ], + nextNod[ iAfterSame ], nextNod[ iBeforeSame ], + nextNod[ iSameNode ]); + + else // 2 same nodes: ---> tetrahedron + aNewElem = aMesh->AddVolume (prevNod[ 0 ], prevNod[ 1 ], prevNod[ 2 ], + nextNod[ iNotSameNode ]); + break; + } + case SMDSEntity_Quad_Edge: // sweep quadratic EDGE ---> + { + if ( nbSame == 2 ) + return; + if ( nbDouble+nbSame == 2 ) + { + if(nbSame==0) { // ---> quadratic quadrangle + aNewElem = aMesh->AddFace(prevNod[0], prevNod[1], nextNod[1], nextNod[0], + prevNod[2], midlNod[1], nextNod[2], midlNod[0]); + } + else { //(nbSame==1) // ---> quadratic triangle + if(sames[0]==2) { + return; // medium node on axis + } + else if(sames[0]==0) + aNewElem = aMesh->AddFace(prevNod[0], nextNod[1], prevNod[1], + nextNod[2], midlNod[1], prevNod[2]); + else // sames[0]==1 + aNewElem = aMesh->AddFace(prevNod[0], nextNod[0], prevNod[1], + midlNod[0], nextNod[2], prevNod[2]); + } + } + else if ( nbDouble == 3 ) + { + if ( nbSame == 0 ) { // ---> bi-quadratic quadrangle + aNewElem = aMesh->AddFace(prevNod[0], prevNod[1], nextNod[1], nextNod[0], + prevNod[2], midlNod[1], nextNod[2], midlNod[0], midlNod[2]); + } } + else + return; + break; + } + case SMDSEntity_Quadrangle: { // sweep QUADRANGLE ---> + if ( nbDouble > 0 ) break; + + if ( nbSame == 0 ) // ---> hexahedron + aNewElem = aMesh->AddVolume (prevNod[ 0 ], prevNod[ 1 ], prevNod[ 2 ], prevNod[ 3 ], + nextNod[ 0 ], nextNod[ 1 ], nextNod[ 2 ], nextNod[ 3 ]); + + else if ( nbSame == 1 ) { // ---> pyramid + pentahedron + aNewElem = aMesh->AddVolume (prevNod[ iBeforeSame ], prevNod[ iAfterSame ], + nextNod[ iAfterSame ], nextNod[ iBeforeSame ], + nextNod[ iSameNode ]); + newElems.push_back( aNewElem ); + aNewElem = aMesh->AddVolume (prevNod[ iAfterSame ], prevNod[ iOpposSame ], + prevNod[ iBeforeSame ], nextNod[ iAfterSame ], + nextNod[ iOpposSame ], nextNod[ iBeforeSame ] ); + } + else if ( nbSame == 2 ) { // ---> pentahedron + if ( prevNod[ iBeforeSame ] == nextNod[ iBeforeSame ] ) + // iBeforeSame is same too + aNewElem = aMesh->AddVolume (prevNod[ iBeforeSame ], prevNod[ iOpposSame ], + nextNod[ iOpposSame ], prevNod[ iSameNode ], + prevNod[ iAfterSame ], nextNod[ iAfterSame ]); + else + // iAfterSame is same too + aNewElem = aMesh->AddVolume (prevNod[ iSameNode ], prevNod[ iBeforeSame ], + nextNod[ iBeforeSame ], prevNod[ iAfterSame ], + prevNod[ iOpposSame ], nextNod[ iOpposSame ]); + } + break; } - // find the best free border by the continuations - list contNodes[ 2 ], *cNL; - list contFaces[ 2 ], *cFL; - for (curElemIt = curElemList.begin(), nStartIt = nStartList.begin(); - curElemIt!= curElemList.end(); - curElemIt++, nStartIt++ ) - { - cNL = & contNodes[ contNodes[0].empty() ? 0 : 1 ]; - cFL = & contFaces[ contFaces[0].empty() ? 0 : 1 ]; - // find one more free border - if ( ! findFreeBorder( nIgnore, nStart, theLastNode, *cNL, *cFL )) { - cNL->clear(); - cFL->clear(); + case SMDSEntity_Quad_Triangle: { // sweep Quadratic TRIANGLE ---> + if ( nbDouble+nbSame != 3 ) break; + if(nbSame==0) { + // ---> pentahedron with 15 nodes + aNewElem = aMesh->AddVolume (prevNod[0], prevNod[1], prevNod[2], + nextNod[0], nextNod[1], nextNod[2], + prevNod[3], prevNod[4], prevNod[5], + nextNod[3], nextNod[4], nextNod[5], + midlNod[0], midlNod[1], midlNod[2]); } - else if ( !contNodes[0].empty() && !contNodes[1].empty() ) { - // choice: clear a worse one - int iLongest = ( contNodes[0].size() < contNodes[1].size() ? 1 : 0 ); - int iWorse = ( needTheLast ? 1 - iLongest : iLongest ); - contNodes[ iWorse ].clear(); - contFaces[ iWorse ].clear(); + else if(nbSame==1) { + // ---> 2d order pyramid of 13 nodes + int apex = iSameNode; + int i0 = ( apex + 1 ) % nbCorners; + int i1 = ( apex - 1 + nbCorners ) % nbCorners; + int i0a = apex + 3; + int i1a = i1 + 3; + int i01 = i0 + 3; + aNewElem = aMesh->AddVolume(prevNod[i1], prevNod[i0], + nextNod[i0], nextNod[i1], prevNod[apex], + prevNod[i01], midlNod[i0], + nextNod[i01], midlNod[i1], + prevNod[i1a], prevNod[i0a], + nextNod[i0a], nextNod[i1a]); } + else if(nbSame==2) { + // ---> 2d order tetrahedron of 10 nodes + int n1 = iNotSameNode; + int n2 = ( n1 + 1 ) % nbCorners; + int n3 = ( n1 + nbCorners - 1 ) % nbCorners; + int n12 = n1 + 3; + int n23 = n2 + 3; + int n31 = n3 + 3; + aNewElem = aMesh->AddVolume (prevNod[n1], prevNod[n2], prevNod[n3], nextNod[n1], + prevNod[n12], prevNod[n23], prevNod[n31], + midlNod[n1], nextNod[n12], nextNod[n31]); + } + break; } - if ( contNodes[0].empty() && contNodes[1].empty() ) - return false; + case SMDSEntity_Quad_Quadrangle: { // sweep Quadratic QUADRANGLE ---> + if( nbSame == 0 ) { + if ( nbDouble != 4 ) break; + // ---> hexahedron with 20 nodes + aNewElem = aMesh->AddVolume (prevNod[0], prevNod[1], prevNod[2], prevNod[3], + nextNod[0], nextNod[1], nextNod[2], nextNod[3], + prevNod[4], prevNod[5], prevNod[6], prevNod[7], + nextNod[4], nextNod[5], nextNod[6], nextNod[7], + midlNod[0], midlNod[1], midlNod[2], midlNod[3]); + } + else if(nbSame==1) { + // ---> pyramid + pentahedron - can not be created since it is needed + // additional middle node at the center of face + INFOS( " Sweep for face " << elem->GetID() << " can not be created" ); + return; + } + else if( nbSame == 2 ) { + if ( nbDouble != 2 ) break; + // ---> 2d order Pentahedron with 15 nodes + int n1,n2,n4,n5; + if ( prevNod[ iBeforeSame ] == nextNod[ iBeforeSame ] ) { + // iBeforeSame is same too + n1 = iBeforeSame; + n2 = iOpposSame; + n4 = iSameNode; + n5 = iAfterSame; + } + else { + // iAfterSame is same too + n1 = iSameNode; + n2 = iBeforeSame; + n4 = iAfterSame; + n5 = iOpposSame; + } + int n12 = n2 + 4; + int n45 = n4 + 4; + int n14 = n1 + 4; + int n25 = n5 + 4; + aNewElem = aMesh->AddVolume (prevNod[n1], prevNod[n2], nextNod[n2], + prevNod[n4], prevNod[n5], nextNod[n5], + prevNod[n12], midlNod[n2], nextNod[n12], + prevNod[n45], midlNod[n5], nextNod[n45], + prevNod[n14], prevNod[n25], nextNod[n25]); + } + break; + } + case SMDSEntity_BiQuad_Quadrangle: { // sweep BiQuadratic QUADRANGLE ---> + + if( nbSame == 0 && nbDouble == 9 ) { + // ---> tri-quadratic hexahedron with 27 nodes + aNewElem = aMesh->AddVolume (prevNod[0], prevNod[1], prevNod[2], prevNod[3], + nextNod[0], nextNod[1], nextNod[2], nextNod[3], + prevNod[4], prevNod[5], prevNod[6], prevNod[7], + nextNod[4], nextNod[5], nextNod[6], nextNod[7], + midlNod[0], midlNod[1], midlNod[2], midlNod[3], + prevNod[8], // bottom center + midlNod[4], midlNod[5], midlNod[6], midlNod[7], + nextNod[8], // top center + midlNod[8]);// elem center + } + else + { + return; + } + break; + } + case SMDSEntity_Polygon: { // sweep POLYGON + + if ( nbNodes == 6 && nbSame == 0 && nbDouble == 0 ) { + // ---> hexagonal prism + aNewElem = aMesh->AddVolume (prevNod[0], prevNod[1], prevNod[2], + prevNod[3], prevNod[4], prevNod[5], + nextNod[0], nextNod[1], nextNod[2], + nextNod[3], nextNod[4], nextNod[5]); + } + break; + } + case SMDSEntity_Ball: + return; - // append the best free border - cNL = & contNodes[ contNodes[0].empty() ? 1 : 0 ]; - cFL = & contFaces[ contFaces[0].empty() ? 1 : 0 ]; - theNodes.pop_back(); // remove nIgnore - theNodes.pop_back(); // remove nStart - theFaces.pop_back(); // remove curElem - list< const SMDS_MeshNode* >::iterator nIt = cNL->begin(); - list< const SMDS_MeshElement* >::iterator fIt = cFL->begin(); - for ( ; nIt != cNL->end(); nIt++ ) theNodes.push_back( *nIt ); - for ( ; fIt != cFL->end(); fIt++ ) theFaces.push_back( *fIt ); - return true; + default: + break; + } + } - } // several continuations found - } // while ( nStart != theLastNode ) + if ( !aNewElem && elem->GetType() == SMDSAbs_Face ) // try to create a polyherdal prism + { + if ( baseType != SMDSEntity_Polygon ) + { + const std::vector& ind = SMDS_MeshCell::interlacedSmdsOrder(baseType); + SMDS_MeshCell::applyInterlace( ind, prevNod ); + SMDS_MeshCell::applyInterlace( ind, nextNod ); + SMDS_MeshCell::applyInterlace( ind, midlNod ); + SMDS_MeshCell::applyInterlace( ind, itNN ); + SMDS_MeshCell::applyInterlace( ind, isSingleNode ); + baseType = SMDSEntity_Polygon; // WARNING: change baseType !!!! + } + vector polyedre_nodes (nbNodes*2 + 4*nbNodes); + vector quantities (nbNodes + 2); + polyedre_nodes.clear(); + quantities.clear(); + + // bottom of prism + for (int inode = 0; inode < nbNodes; inode++) + polyedre_nodes.push_back( prevNod[inode] ); + quantities.push_back( nbNodes ); + + // top of prism + polyedre_nodes.push_back( nextNod[0] ); + for (int inode = nbNodes; inode-1; --inode ) + polyedre_nodes.push_back( nextNod[inode-1] ); + quantities.push_back( nbNodes ); + + // side faces + for (int iface = 0; iface < nbNodes; iface++) + { + const int prevNbNodes = polyedre_nodes.size(); + int inextface = (iface+1) % nbNodes; + polyedre_nodes.push_back( prevNod[inextface] ); + polyedre_nodes.push_back( prevNod[iface] ); + if ( prevNod[iface] != nextNod[iface] ) + { + if ( midlNod[ iface ]) polyedre_nodes.push_back( midlNod[ iface ]); + polyedre_nodes.push_back( nextNod[iface] ); + } + if ( prevNod[inextface] != nextNod[inextface] ) + { + polyedre_nodes.push_back( nextNod[inextface] ); + if ( midlNod[ inextface ]) polyedre_nodes.push_back( midlNod[ inextface ]); + } + const int nbFaceNodes = polyedre_nodes.size() - prevNbNodes; + if ( nbFaceNodes > 2 ) + quantities.push_back( nbFaceNodes ); + else // degenerated face + polyedre_nodes.resize( prevNbNodes ); + } + aNewElem = aMesh->AddPolyhedralVolume (polyedre_nodes, quantities); + } - return true; -} + if ( aNewElem ) { + newElems.push_back( aNewElem ); + myLastCreatedElems.Append(aNewElem); + srcElements.Append( elem ); + } -//======================================================================= -//function : CheckFreeBorderNodes -//purpose : Return true if the tree nodes are on a free border -//======================================================================= + // set new prev nodes + for ( iNode = 0; iNode < nbNodes; iNode++ ) + prevNod[ iNode ] = nextNod[ iNode ]; -bool SMESH_MeshEditor::CheckFreeBorderNodes(const SMDS_MeshNode* theNode1, - const SMDS_MeshNode* theNode2, - const SMDS_MeshNode* theNode3) -{ - list< const SMDS_MeshNode* > nodes; - list< const SMDS_MeshElement* > faces; - return findFreeBorder( theNode1, theNode2, theNode3, nodes, faces); + } // for steps } //======================================================================= -//function : SewFreeBorder -//purpose : +/*! + * \brief Create 1D and 2D elements around swept elements + * \param mapNewNodes - source nodes and ones generated from them + * \param newElemsMap - source elements and ones generated from them + * \param elemNewNodesMap - nodes generated from each node of each element + * \param elemSet - all swept elements + * \param nbSteps - number of sweeping steps + * \param srcElements - to append elem for each generated element + */ //======================================================================= -SMESH_MeshEditor::Sew_Error - SMESH_MeshEditor::SewFreeBorder (const SMDS_MeshNode* theBordFirstNode, - const SMDS_MeshNode* theBordSecondNode, - const SMDS_MeshNode* theBordLastNode, - const SMDS_MeshNode* theSideFirstNode, - const SMDS_MeshNode* theSideSecondNode, - const SMDS_MeshNode* theSideThirdNode, - bool theSideIsFreeBorder) +void SMESH_MeshEditor::makeWalls (TNodeOfNodeListMap & mapNewNodes, + TElemOfElemListMap & newElemsMap, + TElemOfVecOfNnlmiMap & elemNewNodesMap, + TIDSortedElemSet& elemSet, + const int nbSteps, + SMESH_SequenceOfElemPtr& srcElements) { - MESSAGE("::SewFreeBorder()"); - Sew_Error aResult = SEW_OK; - - // ==================================== - // find side nodes and elements - // ==================================== + ASSERT( newElemsMap.size() == elemNewNodesMap.size() ); + SMESHDS_Mesh* aMesh = GetMeshDS(); - list< const SMDS_MeshNode* > nSide[ 2 ]; - list< const SMDS_MeshElement* > eSide[ 2 ]; - list< const SMDS_MeshNode* >::iterator nIt[ 2 ]; - list< const SMDS_MeshElement* >::iterator eIt[ 2 ]; + // Find nodes belonging to only one initial element - sweep them to get edges. - // Free border 1 - // -------------- - if (!findFreeBorder(theBordFirstNode,theBordSecondNode,theBordLastNode, - nSide[0], eSide[0])) { - MESSAGE(" Free Border 1 not found " ); - aResult = SEW_BORDER1_NOT_FOUND; - } - if (theSideIsFreeBorder) - { - // Free border 2 - // -------------- - if (!findFreeBorder(theSideFirstNode, theSideSecondNode, theSideThirdNode, - nSide[1], eSide[1])) { - MESSAGE(" Free Border 2 not found " ); - aResult = ( aResult != SEW_OK ? SEW_BOTH_BORDERS_NOT_FOUND : SEW_BORDER2_NOT_FOUND ); + TNodeOfNodeListMapItr nList = mapNewNodes.begin(); + for ( ; nList != mapNewNodes.end(); nList++ ) + { + const SMDS_MeshNode* node = + static_cast( nList->first ); + if ( newElemsMap.count( node )) + continue; // node was extruded into edge + SMDS_ElemIteratorPtr eIt = node->GetInverseElementIterator(); + int nbInitElems = 0; + const SMDS_MeshElement* el = 0; + SMDSAbs_ElementType highType = SMDSAbs_Edge; // count most complex elements only + while ( eIt->more() && nbInitElems < 2 ) { + el = eIt->next(); + SMDSAbs_ElementType type = el->GetType(); + if ( type == SMDSAbs_Volume || type < highType ) continue; + if ( type > highType ) { + nbInitElems = 0; + highType = type; + } + nbInitElems += elemSet.count(el); + } + if ( nbInitElems < 2 ) { + bool NotCreateEdge = el && el->IsMediumNode(node); + if(!NotCreateEdge) { + vector newNodesItVec( 1, nList ); + list newEdges; + sweepElement( node, newNodesItVec, newEdges, nbSteps, srcElements ); + } } } - if ( aResult != SEW_OK ) - return aResult; - if (!theSideIsFreeBorder) + // Make a ceiling for each element ie an equal element of last new nodes. + // Find free links of faces - make edges and sweep them into faces. + + TElemOfElemListMap::iterator itElem = newElemsMap.begin(); + TElemOfVecOfNnlmiMap::iterator itElemNodes = elemNewNodesMap.begin(); + for ( ; itElem != newElemsMap.end(); itElem++, itElemNodes++ ) { - // Side 2 - // -------------- + const SMDS_MeshElement* elem = itElem->first; + vector& vecNewNodes = itElemNodes->second; - // ------------------------------------------------------------------------- - // Algo: - // 1. If nodes to merge are not coincident, move nodes of the free border - // from the coord sys defined by the direction from the first to last - // nodes of the border to the correspondent sys of the side 2 - // 2. On the side 2, find the links most co-directed with the correspondent - // links of the free border - // ------------------------------------------------------------------------- - - // 1. Since sewing may brake if there are volumes to split on the side 2, - // we wont move nodes but just compute new coordinates for them - typedef map TNodeXYZMap; - TNodeXYZMap nBordXYZ; - list< const SMDS_MeshNode* >& bordNodes = nSide[ 0 ]; - list< const SMDS_MeshNode* >::iterator nBordIt; + if(itElem->second.size()==0) continue; - gp_XYZ Pb1( theBordFirstNode->X(), theBordFirstNode->Y(), theBordFirstNode->Z() ); - gp_XYZ Pb2( theBordLastNode->X(), theBordLastNode->Y(), theBordLastNode->Z() ); - gp_XYZ Ps1( theSideFirstNode->X(), theSideFirstNode->Y(), theSideFirstNode->Z() ); - gp_XYZ Ps2( theSideSecondNode->X(), theSideSecondNode->Y(), theSideSecondNode->Z() ); - double tol2 = 1.e-8; - gp_Vec Vbs1( Pb1 - Ps1 ),Vbs2( Pb2 - Ps2 ); - if ( Vbs1.SquareMagnitude() > tol2 || Vbs2.SquareMagnitude() > tol2 ) - { - // Need node movement. + const bool isQuadratic = elem->IsQuadratic(); - // find X and Z axes to create trsf - gp_Vec Zb( Pb1 - Pb2 ), Zs( Ps1 - Ps2 ); - gp_Vec X = Zs ^ Zb; - if ( X.SquareMagnitude() <= gp::Resolution() * gp::Resolution() ) - // Zb || Zs - X = gp_Ax2( gp::Origin(), Zb ).XDirection(); + if ( elem->GetType() == SMDSAbs_Edge ) { + // create a ceiling edge + if ( !isQuadratic ) { + if ( !aMesh->FindEdge( vecNewNodes[ 0 ]->second.back(), + vecNewNodes[ 1 ]->second.back())) { + myLastCreatedElems.Append(aMesh->AddEdge(vecNewNodes[ 0 ]->second.back(), + vecNewNodes[ 1 ]->second.back())); + srcElements.Append( elem ); + } + } + else { + if ( !aMesh->FindEdge( vecNewNodes[ 0 ]->second.back(), + vecNewNodes[ 1 ]->second.back(), + vecNewNodes[ 2 ]->second.back())) { + myLastCreatedElems.Append(aMesh->AddEdge(vecNewNodes[ 0 ]->second.back(), + vecNewNodes[ 1 ]->second.back(), + vecNewNodes[ 2 ]->second.back())); + srcElements.Append( elem ); + } + } + } + if ( elem->GetType() != SMDSAbs_Face ) + continue; - // coord systems - gp_Ax3 toBordAx( Pb1, Zb, X ); - gp_Ax3 fromSideAx( Ps1, Zs, X ); - gp_Ax3 toGlobalAx( gp::Origin(), gp::DZ(), gp::DX() ); - // set trsf - gp_Trsf toBordSys, fromSide2Sys; - toBordSys.SetTransformation( toBordAx ); - fromSide2Sys.SetTransformation( fromSideAx, toGlobalAx ); - fromSide2Sys.SetScaleFactor( Zs.Magnitude() / Zb.Magnitude() ); - - // move - for ( nBordIt = bordNodes.begin(); nBordIt != bordNodes.end(); nBordIt++ ) { - const SMDS_MeshNode* n = *nBordIt; - gp_XYZ xyz( n->X(),n->Y(),n->Z() ); - toBordSys.Transforms( xyz ); - fromSide2Sys.Transforms( xyz ); - nBordXYZ.insert( TNodeXYZMap::value_type( n, xyz )); + bool hasFreeLinks = false; + + TIDSortedElemSet avoidSet; + avoidSet.insert( elem ); + + set aFaceLastNodes; + int iNode, nbNodes = vecNewNodes.size(); + if ( !isQuadratic ) { + // loop on the face nodes + for ( iNode = 0; iNode < nbNodes; iNode++ ) { + aFaceLastNodes.insert( vecNewNodes[ iNode ]->second.back() ); + // look for free links of the face + int iNext = ( iNode + 1 == nbNodes ) ? 0 : iNode + 1; + const SMDS_MeshNode* n1 = vecNewNodes[ iNode ]->first; + const SMDS_MeshNode* n2 = vecNewNodes[ iNext ]->first; + // check if a link n1-n2 is free + if ( ! SMESH_MeshEditor::FindFaceInSet ( n1, n2, elemSet, avoidSet )) { + hasFreeLinks = true; + // make a new edge and a ceiling for a new edge + const SMDS_MeshElement* edge; + if ( ! ( edge = aMesh->FindEdge( n1, n2 ))) { + myLastCreatedElems.Append( edge = aMesh->AddEdge( n1, n2 )); // free link edge + srcElements.Append( myLastCreatedElems.Last() ); + } + n1 = vecNewNodes[ iNode ]->second.back(); + n2 = vecNewNodes[ iNext ]->second.back(); + if ( !aMesh->FindEdge( n1, n2 )) { + myLastCreatedElems.Append(aMesh->AddEdge( n1, n2 )); // new edge ceiling + srcElements.Append( edge ); + } + } } } - else - { - // just insert nodes XYZ in the nBordXYZ map - for ( nBordIt = bordNodes.begin(); nBordIt != bordNodes.end(); nBordIt++ ) { - const SMDS_MeshNode* n = *nBordIt; - nBordXYZ.insert( TNodeXYZMap::value_type( n, gp_XYZ( n->X(),n->Y(),n->Z() ))); + else { // elem is quadratic face + int nbn = nbNodes/2; + for ( iNode = 0; iNode < nbn; iNode++ ) { + aFaceLastNodes.insert( vecNewNodes[ iNode ]->second.back() ); + int iNext = ( iNode + 1 == nbn ) ? 0 : iNode + 1; + const SMDS_MeshNode* n1 = vecNewNodes[ iNode ]->first; + const SMDS_MeshNode* n2 = vecNewNodes[ iNext ]->first; + const SMDS_MeshNode* n3 = vecNewNodes[ iNode+nbn ]->first; + // check if a link is free + if ( ! SMESH_MeshEditor::FindFaceInSet ( n1, n2, elemSet, avoidSet ) && + ! SMESH_MeshEditor::FindFaceInSet ( n1, n3, elemSet, avoidSet ) && + ! SMESH_MeshEditor::FindFaceInSet ( n3, n2, elemSet, avoidSet ) ) { + hasFreeLinks = true; + // make an edge and a ceiling for a new edge + // find medium node + if ( !aMesh->FindEdge( n1, n2, n3 )) { + myLastCreatedElems.Append(aMesh->AddEdge( n1, n2, n3 )); // free link edge + srcElements.Append( elem ); + } + n1 = vecNewNodes[ iNode ]->second.back(); + n2 = vecNewNodes[ iNext ]->second.back(); + n3 = vecNewNodes[ iNode+nbn ]->second.back(); + if ( !aMesh->FindEdge( n1, n2, n3 )) { + myLastCreatedElems.Append(aMesh->AddEdge( n1, n2, n3 )); // ceiling edge + srcElements.Append( elem ); + } + } + } + for ( iNode = nbn; iNode < nbNodes; iNode++ ) { + aFaceLastNodes.insert( vecNewNodes[ iNode ]->second.back() ); } } - // 2. On the side 2, find the links most co-directed with the correspondent - // links of the free border - - list< const SMDS_MeshElement* >& sideElems = eSide[ 1 ]; - list< const SMDS_MeshNode* >& sideNodes = nSide[ 1 ]; - sideNodes.push_back( theSideFirstNode ); - - bool hasVolumes = false; - LinkID_Gen aLinkID_Gen( GetMeshDS() ); - set foundSideLinkIDs, checkedLinkIDs; - SMDS_VolumeTool volume; - const SMDS_MeshNode* faceNodes[ 4 ]; + // sweep free links into faces - const SMDS_MeshNode* sideNode; - const SMDS_MeshElement* sideElem; - const SMDS_MeshNode* prevSideNode = theSideFirstNode; - const SMDS_MeshNode* prevBordNode = theBordFirstNode; - nBordIt = bordNodes.begin(); - nBordIt++; - // border node position and border link direction to compare with - gp_XYZ bordPos = nBordXYZ[ *nBordIt ]; - gp_XYZ bordDir = bordPos - nBordXYZ[ prevBordNode ]; - // choose next side node by link direction or by closeness to - // the current border node: - bool searchByDir = ( *nBordIt != theBordLastNode ); - do { - // find the next node on the Side 2 - sideNode = 0; - double maxDot = -DBL_MAX, minDist = DBL_MAX; - long linkID; - checkedLinkIDs.clear(); - gp_XYZ prevXYZ( prevSideNode->X(), prevSideNode->Y(), prevSideNode->Z() ); + if ( hasFreeLinks ) { + list & newVolumes = itElem->second; + int iVol, volNb, nbVolumesByStep = newVolumes.size() / nbSteps; - SMDS_ElemIteratorPtr invElemIt - = prevSideNode->GetInverseElementIterator(); - while ( invElemIt->more() ) { // loop on inverse elements on the Side 2 - const SMDS_MeshElement* elem = invElemIt->next(); - // prepare data for a loop on links, of a face or a volume - int iPrevNode, iNode = 0, nbNodes = elem->NbNodes(); - bool isVolume = volume.Set( elem ); - const SMDS_MeshNode** nodes = isVolume ? volume.GetNodes() : faceNodes; - if ( isVolume ) // --volume - hasVolumes = true; - else if ( nbNodes > 2 ) { // --face - // retrieve all face nodes and find iPrevNode - an index of the prevSideNode - SMDS_ElemIteratorPtr nIt = elem->nodesIterator(); - while ( nIt->more() ) { - nodes[ iNode ] = static_cast( nIt->next() ); - if ( nodes[ iNode++ ] == prevSideNode ) - iPrevNode = iNode - 1; + set initNodeSet, topNodeSet, faceNodeSet; + for ( iNode = 0; iNode < nbNodes; iNode++ ) { + initNodeSet.insert( vecNewNodes[ iNode ]->first ); + topNodeSet .insert( vecNewNodes[ iNode ]->second.back() ); + } + for ( volNb = 0; volNb < nbVolumesByStep; volNb++ ) { + list::iterator v = newVolumes.begin(); + std::advance( v, volNb ); + // find indices of free faces of a volume and their source edges + list< int > freeInd; + list< const SMDS_MeshElement* > srcEdges; // source edges of free faces + SMDS_VolumeTool vTool( *v, /*ignoreCentralNodes=*/false ); + int iF, nbF = vTool.NbFaces(); + for ( iF = 0; iF < nbF; iF ++ ) { + if (vTool.IsFreeFace( iF ) && + vTool.GetFaceNodes( iF, faceNodeSet ) && + initNodeSet != faceNodeSet) // except an initial face + { + if ( nbSteps == 1 && faceNodeSet == topNodeSet ) + continue; + freeInd.push_back( iF ); + // find source edge of a free face iF + vector commonNodes; // shared by the initial and free faces + commonNodes.resize( initNodeSet.size(), NULL ); // avoid spoiling memory + std::set_intersection( faceNodeSet.begin(), faceNodeSet.end(), + initNodeSet.begin(), initNodeSet.end(), + commonNodes.begin()); + if ( (*v)->IsQuadratic() ) + srcEdges.push_back(aMesh->FindEdge (commonNodes[0],commonNodes[1],commonNodes[2])); + else + srcEdges.push_back(aMesh->FindEdge (commonNodes[0],commonNodes[1])); +#ifdef _DEBUG_ + if ( !srcEdges.back() ) + { + cout << "SMESH_MeshEditor::makeWalls(), no source edge found for a free face #" + << iF << " of volume #" << vTool.ID() << endl; + } +#endif } - // there are 2 links to check - nbNodes = 2; } - else // --edge + if ( freeInd.empty() ) continue; - // loop on links, to be precise, on the second node of links - for ( iNode = 0; iNode < nbNodes; iNode++ ) { - const SMDS_MeshNode* n = nodes[ iNode ]; - if ( isVolume ) { - if ( !volume.IsLinked( n, prevSideNode )) - continue; - } else { - if ( iNode ) // a node before prevSideNode - n = nodes[ iPrevNode == 0 ? elem->NbNodes() - 1 : iPrevNode - 1 ]; - else // a node after prevSideNode - n = nodes[ iPrevNode + 1 == elem->NbNodes() ? 0 : iPrevNode + 1 ]; - } - // check if this link was already used - long iLink = aLinkID_Gen.GetLinkID( prevSideNode, n ); - bool isJustChecked = !checkedLinkIDs.insert( iLink ).second; - if (!isJustChecked && - foundSideLinkIDs.find( iLink ) == foundSideLinkIDs.end() ) { - // test a link geometrically - gp_XYZ nextXYZ ( n->X(), n->Y(), n->Z() ); - bool linkIsBetter = false; - double dot, dist; - if ( searchByDir ) { // choose most co-directed link - dot = bordDir * ( nextXYZ - prevXYZ ).Normalized(); - linkIsBetter = ( dot > maxDot ); + + // create faces for all steps; + // if such a face has been already created by sweep of edge, + // assure that its orientation is OK + for ( int iStep = 0; iStep < nbSteps; iStep++ ) { + vTool.Set( *v, /*ignoreCentralNodes=*/false ); + vTool.SetExternalNormal(); + const int nextShift = vTool.IsForward() ? +1 : -1; + list< int >::iterator ind = freeInd.begin(); + list< const SMDS_MeshElement* >::iterator srcEdge = srcEdges.begin(); + for ( ; ind != freeInd.end(); ++ind, ++srcEdge ) // loop on free faces + { + const SMDS_MeshNode** nodes = vTool.GetFaceNodes( *ind ); + int nbn = vTool.NbFaceNodes( *ind ); + const SMDS_MeshElement * f = 0; + if ( nbn == 3 ) ///// triangle + { + f = aMesh->FindFace( nodes[ 0 ], nodes[ 1 ], nodes[ 2 ]); + if ( !f || + nodes[ 1 ] != f->GetNodeWrap( f->GetNodeIndex( nodes[ 0 ]) + nextShift )) + { + const SMDS_MeshNode* newOrder[3] = { nodes[ 1 - nextShift ], + nodes[ 1 ], + nodes[ 1 + nextShift ] }; + if ( f ) + aMesh->ChangeElementNodes( f, &newOrder[0], nbn ); + else + myLastCreatedElems.Append(aMesh->AddFace( newOrder[ 0 ], newOrder[ 1 ], + newOrder[ 2 ] )); + } } - else { // choose link with the node closest to bordPos - dist = ( nextXYZ - bordPos ).SquareModulus(); - linkIsBetter = ( dist < minDist ); + else if ( nbn == 4 ) ///// quadrangle + { + f = aMesh->FindFace( nodes[ 0 ], nodes[ 1 ], nodes[ 2 ], nodes[ 3 ]); + if ( !f || + nodes[ 1 ] != f->GetNodeWrap( f->GetNodeIndex( nodes[ 0 ]) + nextShift )) + { + const SMDS_MeshNode* newOrder[4] = { nodes[ 0 ], nodes[ 2-nextShift ], + nodes[ 2 ], nodes[ 2+nextShift ] }; + if ( f ) + aMesh->ChangeElementNodes( f, &newOrder[0], nbn ); + else + myLastCreatedElems.Append(aMesh->AddFace( newOrder[ 0 ], newOrder[ 1 ], + newOrder[ 2 ], newOrder[ 3 ])); + } } - if ( linkIsBetter ) { - maxDot = dot; - minDist = dist; - linkID = iLink; - sideNode = n; - sideElem = elem; + else if ( nbn == 6 && isQuadratic ) /////// quadratic triangle + { + f = aMesh->FindFace( nodes[0], nodes[2], nodes[4], nodes[1], nodes[3], nodes[5] ); + if ( !f || + nodes[2] != f->GetNodeWrap( f->GetNodeIndex( nodes[0] ) + 2*nextShift )) + { + const SMDS_MeshNode* newOrder[6] = { nodes[2 - 2*nextShift], + nodes[2], + nodes[2 + 2*nextShift], + nodes[3 - 2*nextShift], + nodes[3], + nodes[3 + 2*nextShift]}; + if ( f ) + aMesh->ChangeElementNodes( f, &newOrder[0], nbn ); + else + myLastCreatedElems.Append(aMesh->AddFace( newOrder[ 0 ], + newOrder[ 1 ], + newOrder[ 2 ], + newOrder[ 3 ], + newOrder[ 4 ], + newOrder[ 5 ] )); + } + } + else if ( nbn == 8 && isQuadratic ) /////// quadratic quadrangle + { + f = aMesh->FindFace( nodes[0], nodes[2], nodes[4], nodes[6], + nodes[1], nodes[3], nodes[5], nodes[7] ); + if ( !f || + nodes[ 2 ] != f->GetNodeWrap( f->GetNodeIndex( nodes[ 0 ] ) + 2*nextShift )) + { + const SMDS_MeshNode* newOrder[8] = { nodes[0], + nodes[4 - 2*nextShift], + nodes[4], + nodes[4 + 2*nextShift], + nodes[1], + nodes[5 - 2*nextShift], + nodes[5], + nodes[5 + 2*nextShift] }; + if ( f ) + aMesh->ChangeElementNodes( f, &newOrder[0], nbn ); + else + myLastCreatedElems.Append(aMesh->AddFace(newOrder[ 0 ], newOrder[ 1 ], + newOrder[ 2 ], newOrder[ 3 ], + newOrder[ 4 ], newOrder[ 5 ], + newOrder[ 6 ], newOrder[ 7 ])); + } + } + else if ( nbn == 9 && isQuadratic ) /////// bi-quadratic quadrangle + { + f = aMesh->FindElement( vector( nodes, nodes+nbn ), + SMDSAbs_Face, /*noMedium=*/false); + if ( !f || + nodes[ 2 ] != f->GetNodeWrap( f->GetNodeIndex( nodes[ 0 ] ) + 2*nextShift )) + { + const SMDS_MeshNode* newOrder[9] = { nodes[0], + nodes[4 - 2*nextShift], + nodes[4], + nodes[4 + 2*nextShift], + nodes[1], + nodes[5 - 2*nextShift], + nodes[5], + nodes[5 + 2*nextShift], + nodes[8] }; + if ( f ) + aMesh->ChangeElementNodes( f, &newOrder[0], nbn ); + else + myLastCreatedElems.Append(aMesh->AddFace(newOrder[ 0 ], newOrder[ 1 ], + newOrder[ 2 ], newOrder[ 3 ], + newOrder[ 4 ], newOrder[ 5 ], + newOrder[ 6 ], newOrder[ 7 ], + newOrder[ 8 ])); + } + } + else //////// polygon + { + vector polygon_nodes ( nodes, nodes+nbn ); + const SMDS_MeshFace * f = aMesh->FindFace( polygon_nodes ); + if ( !f || + nodes[ 1 ] != f->GetNodeWrap( f->GetNodeIndex( nodes[ 0 ] ) + nextShift )) + { + if ( !vTool.IsForward() ) + std::reverse( polygon_nodes.begin(), polygon_nodes.end()); + if ( f ) + aMesh->ChangeElementNodes( f, &polygon_nodes[0], nbn ); + else + AddElement(polygon_nodes, SMDSAbs_Face, polygon_nodes.size()>4); + } } - } - } - } // loop on inverse elements of prevSideNode - if ( !sideNode ) { - MESSAGE(" Cant find path by links of the Side 2 "); - return SEW_BAD_SIDE_NODES; - } - sideNodes.push_back( sideNode ); - sideElems.push_back( sideElem ); - foundSideLinkIDs.insert ( linkID ); - prevSideNode = sideNode; + while ( srcElements.Length() < myLastCreatedElems.Length() ) + srcElements.Append( *srcEdge ); - if ( *nBordIt == theBordLastNode ) - searchByDir = false; + } // loop on free faces + + // go to the next volume + iVol = 0; + while ( iVol++ < nbVolumesByStep ) v++; + + } // loop on steps + } // loop on volumes of one step + } // sweep free links into faces + + // Make a ceiling face with a normal external to a volume + + SMDS_VolumeTool lastVol( itElem->second.back(), /*ignoreCentralNodes=*/false ); + + int iF = lastVol.GetFaceIndex( aFaceLastNodes ); + if ( iF >= 0 ) { + lastVol.SetExternalNormal(); + const SMDS_MeshNode** nodes = lastVol.GetFaceNodes( iF ); + int nbn = lastVol.NbFaceNodes( iF ); + if ( nbn == 3 ) { + if (!hasFreeLinks || + !aMesh->FindFace( nodes[ 0 ], nodes[ 1 ], nodes[ 2 ])) + myLastCreatedElems.Append(aMesh->AddFace( nodes[ 0 ], nodes[ 1 ], nodes[ 2 ] )); + } + else if ( nbn == 4 ) + { + if (!hasFreeLinks || + !aMesh->FindFace( nodes[ 0 ], nodes[ 1 ], nodes[ 2 ], nodes[ 3 ])) + myLastCreatedElems.Append(aMesh->AddFace( nodes[ 0 ], nodes[ 1 ], nodes[ 2 ], nodes[ 3 ])); + } + else if ( nbn == 6 && isQuadratic ) + { + if (!hasFreeLinks || + !aMesh->FindFace(nodes[0], nodes[2], nodes[4], nodes[1], nodes[3], nodes[5]) ) + myLastCreatedElems.Append(aMesh->AddFace(nodes[0], nodes[2], nodes[4], + nodes[1], nodes[3], nodes[5])); + } + else if ( nbn == 8 && isQuadratic ) + { + if (!hasFreeLinks || + !aMesh->FindFace(nodes[0], nodes[2], nodes[4], nodes[6], + nodes[1], nodes[3], nodes[5], nodes[7]) ) + myLastCreatedElems.Append(aMesh->AddFace(nodes[0], nodes[2], nodes[4], nodes[6], + nodes[1], nodes[3], nodes[5], nodes[7])); + } + else if ( nbn == 9 && isQuadratic ) + { + if (!hasFreeLinks || + !aMesh->FindElement(vector( nodes, nodes+nbn ), + SMDSAbs_Face, /*noMedium=*/false) ) + myLastCreatedElems.Append(aMesh->AddFace(nodes[0], nodes[2], nodes[4], nodes[6], + nodes[1], nodes[3], nodes[5], nodes[7], + nodes[8])); + } else { - // find the next border link to compare with - gp_XYZ sidePos( sideNode->X(), sideNode->Y(), sideNode->Z() ); - searchByDir = ( bordDir * ( sidePos - bordPos ) <= 0 ); - while ( *nBordIt != theBordLastNode && !searchByDir ) { - prevBordNode = *nBordIt; - nBordIt++; - bordPos = nBordXYZ[ *nBordIt ]; - bordDir = bordPos - nBordXYZ[ prevBordNode ]; - searchByDir = ( bordDir * ( sidePos - bordPos ) <= 0 ); - } + vector polygon_nodes ( nodes, nodes + nbn ); + if (!hasFreeLinks || !aMesh->FindFace(polygon_nodes)) + myLastCreatedElems.Append(aMesh->AddPolygonalFace(polygon_nodes)); } - } - while ( sideNode != theSideSecondNode ); - if ( hasVolumes && sideNodes.size () != bordNodes.size() ) { - MESSAGE("VOLUME SPLITTING IS FORBIDDEN"); - return SEW_VOLUMES_TO_SPLIT; // volume splitting is forbidden + while ( srcElements.Length() < myLastCreatedElems.Length() ) + srcElements.Append( elem ); } - } // end nodes search on the side 2 + } // loop on swept elements +} - // ============================ - // sew the border to the side 2 - // ============================ +//======================================================================= +//function : RotationSweep +//purpose : +//======================================================================= - int nbNodes[] = { nSide[0].size(), nSide[1].size() }; - int maxNbNodes = Max( nbNodes[0], nbNodes[1] ); +SMESH_MeshEditor::PGroupIDs +SMESH_MeshEditor::RotationSweep(TIDSortedElemSet & theElems, + const gp_Ax1& theAxis, + const double theAngle, + const int theNbSteps, + const double theTol, + const bool theMakeGroups, + const bool theMakeWalls) +{ + myLastCreatedElems.Clear(); + myLastCreatedNodes.Clear(); - TListOfListOfNodes nodeGroupsToMerge; - if ( nbNodes[0] == nbNodes[1] || - ( theSideIsFreeBorder && !theSideThirdNode)) { + // source elements for each generated one + SMESH_SequenceOfElemPtr srcElems, srcNodes; - // all nodes are to be merged + MESSAGE( "RotationSweep()"); + gp_Trsf aTrsf; + aTrsf.SetRotation( theAxis, theAngle ); + gp_Trsf aTrsf2; + aTrsf2.SetRotation( theAxis, theAngle/2. ); - for (nIt[0] = nSide[0].begin(), nIt[1] = nSide[1].begin(); - nIt[0] != nSide[0].end() && nIt[1] != nSide[1].end(); - nIt[0]++, nIt[1]++ ) + gp_Lin aLine( theAxis ); + double aSqTol = theTol * theTol; + + SMESHDS_Mesh* aMesh = GetMeshDS(); + + TNodeOfNodeListMap mapNewNodes; + TElemOfVecOfNnlmiMap mapElemNewNodes; + TElemOfElemListMap newElemsMap; + + const bool isQuadraticMesh = bool( myMesh->NbEdges(ORDER_QUADRATIC) + + myMesh->NbFaces(ORDER_QUADRATIC) + + myMesh->NbVolumes(ORDER_QUADRATIC) ); + // loop on theElems + TIDSortedElemSet::iterator itElem; + for ( itElem = theElems.begin(); itElem != theElems.end(); itElem++ ) { + const SMDS_MeshElement* elem = *itElem; + if ( !elem || elem->GetType() == SMDSAbs_Volume ) + continue; + vector & newNodesItVec = mapElemNewNodes[ elem ]; + newNodesItVec.reserve( elem->NbNodes() ); + + // loop on elem nodes + SMDS_ElemIteratorPtr itN = elem->nodesIterator(); + while ( itN->more() ) { - nodeGroupsToMerge.push_back( list() ); - nodeGroupsToMerge.back().push_back( *nIt[1] ); // to keep - nodeGroupsToMerge.back().push_back( *nIt[0] ); // tp remove + // check if a node has been already sweeped + const SMDS_MeshNode* node = cast2Node( itN->next() ); + + gp_XYZ aXYZ( node->X(), node->Y(), node->Z() ); + double coord[3]; + aXYZ.Coord( coord[0], coord[1], coord[2] ); + bool isOnAxis = ( aLine.SquareDistance( aXYZ ) <= aSqTol ); + + TNodeOfNodeListMapItr nIt = + mapNewNodes.insert( make_pair( node, list() )).first; + list& listNewNodes = nIt->second; + if ( listNewNodes.empty() ) + { + // check if we are to create medium nodes between corner ones + bool needMediumNodes = false; + if ( isQuadraticMesh ) + { + SMDS_ElemIteratorPtr it = node->GetInverseElementIterator(); + while (it->more() && !needMediumNodes ) + { + const SMDS_MeshElement* invElem = it->next(); + if ( invElem != elem && !theElems.count( invElem )) continue; + needMediumNodes = ( invElem->IsQuadratic() && !invElem->IsMediumNode(node) ); + if ( !needMediumNodes && invElem->GetEntityType() == SMDSEntity_BiQuad_Quadrangle ) + needMediumNodes = true; + } + } + + // make new nodes + const SMDS_MeshNode * newNode = node; + for ( int i = 0; i < theNbSteps; i++ ) { + if ( !isOnAxis ) { + if ( needMediumNodes ) // create a medium node + { + aTrsf2.Transforms( coord[0], coord[1], coord[2] ); + newNode = aMesh->AddNode( coord[0], coord[1], coord[2] ); + myLastCreatedNodes.Append(newNode); + srcNodes.Append( node ); + listNewNodes.push_back( newNode ); + aTrsf2.Transforms( coord[0], coord[1], coord[2] ); + } + else { + aTrsf.Transforms( coord[0], coord[1], coord[2] ); + } + // create a corner node + newNode = aMesh->AddNode( coord[0], coord[1], coord[2] ); + myLastCreatedNodes.Append(newNode); + srcNodes.Append( node ); + listNewNodes.push_back( newNode ); + } + else { + listNewNodes.push_back( newNode ); + // if ( needMediumNodes ) + // listNewNodes.push_back( newNode ); + } + } + } + newNodesItVec.push_back( nIt ); } + // make new elements + sweepElement( elem, newNodesItVec, newElemsMap[elem], theNbSteps, srcElems ); } - else { - // insert new nodes into the border and the side to get equal nb of segments + if ( theMakeWalls ) + makeWalls( mapNewNodes, newElemsMap, mapElemNewNodes, theElems, theNbSteps, srcElems ); - // get normalized parameters of nodes on the borders - double param[ 2 ][ maxNbNodes ]; - int iNode, iBord; - for ( iBord = 0; iBord < 2; iBord++ ) { // loop on 2 borders - list< const SMDS_MeshNode* >& nodes = nSide[ iBord ]; - list< const SMDS_MeshNode* >::iterator nIt = nodes.begin(); - const SMDS_MeshNode* nPrev = *nIt; - double bordLength = 0; - for ( iNode = 0; nIt != nodes.end(); nIt++, iNode++ ) { // loop on border nodes - const SMDS_MeshNode* nCur = *nIt; - gp_XYZ segment (nCur->X() - nPrev->X(), - nCur->Y() - nPrev->Y(), - nCur->Z() - nPrev->Z()); - double segmentLen = segment.Modulus(); - bordLength += segmentLen; - param[ iBord ][ iNode ] = bordLength; - nPrev = nCur; - } - // normalize within [0,1] - for ( iNode = 0; iNode < nbNodes[ iBord ]; iNode++ ) { - param[ iBord ][ iNode ] /= bordLength; - } + PGroupIDs newGroupIDs; + if ( theMakeGroups ) + newGroupIDs = generateGroups( srcNodes, srcElems, "rotated"); + + return newGroupIDs; +} + + +//======================================================================= +//function : CreateNode +//purpose : +//======================================================================= +const SMDS_MeshNode* SMESH_MeshEditor::CreateNode(const double x, + const double y, + const double z, + const double tolnode, + SMESH_SequenceOfNode& aNodes) +{ + // myLastCreatedElems.Clear(); + // myLastCreatedNodes.Clear(); + + gp_Pnt P1(x,y,z); + SMESHDS_Mesh * aMesh = myMesh->GetMeshDS(); + + // try to search in sequence of existing nodes + // if aNodes.Length()>0 we 'nave to use given sequence + // else - use all nodes of mesh + if(aNodes.Length()>0) { + int i; + for(i=1; i<=aNodes.Length(); i++) { + gp_Pnt P2(aNodes.Value(i)->X(),aNodes.Value(i)->Y(),aNodes.Value(i)->Z()); + if(P1.Distance(P2)nodesIterator(); + while(itn->more()) { + const SMDS_MeshNode* aN = static_cast (itn->next()); + gp_Pnt P2(aN->X(),aN->Y(),aN->Z()); + if(P1.Distance(P2)AddNode(x,y,z); + //myLastCreatedNodes.Append(NewNode); + return NewNode; +} - TElemOfNodeListMap insertMap; - TElemOfNodeListMap::iterator insertMapIt; - // insertMap is - // key: elem to insert nodes into - // value: 2 nodes to insert between + nodes to be inserted - do { - bool next[ 2 ] = { false, false }; - // find min adjacent segment length after sewing - double nextParam = 10., prevParam = 0; - for ( iBord = 0; iBord < 2; iBord++ ) { // loop on 2 borders - if ( i[ iBord ] + 1 < nbNodes[ iBord ]) - nextParam = Min( nextParam, param[iBord][ i[iBord] + 1 ]); - if ( i[ iBord ] > 0 ) - prevParam = Max( prevParam, param[iBord][ i[iBord] - 1 ]); - } - double minParam = Min( param[ 0 ][ i[0] ], param[ 1 ][ i[1] ]); - double maxParam = Max( param[ 0 ][ i[0] ], param[ 1 ][ i[1] ]); - double minSegLen = Min( nextParam - minParam, maxParam - prevParam ); - - // choose to insert or to merge nodes - double du = param[ 1 ][ i[1] ] - param[ 0 ][ i[0] ]; - if ( Abs( du ) <= minSegLen * 0.2 ) { - // merge - // ------ - nodeGroupsToMerge.push_back( list() ); - const SMDS_MeshNode* n0 = *nIt[0]; - const SMDS_MeshNode* n1 = *nIt[1]; - nodeGroupsToMerge.back().push_back( n1 ); - nodeGroupsToMerge.back().push_back( n0 ); - // position of node of the border changes due to merge - param[ 0 ][ i[0] ] += du; - // move n1 for the sake of elem shape evaluation during insertion. - // n1 will be removed by MergeNodes() anyway - const_cast( n0 )->setXYZ( n1->X(), n1->Y(), n1->Z() ); - next[0] = next[1] = true; - } - else { - // insert - // ------ - int intoBord = ( du < 0 ) ? 0 : 1; - const SMDS_MeshElement* elem = *eIt[ intoBord ]; - const SMDS_MeshNode* n1 = nPrev[ intoBord ]; - const SMDS_MeshNode* n2 = *nIt[ intoBord ]; - const SMDS_MeshNode* nIns = *nIt[ 1 - intoBord ]; - if ( intoBord == 1 ) { - // move node of the border to be on a link of elem of the side - gp_XYZ p1 (n1->X(), n1->Y(), n1->Z()); - gp_XYZ p2 (n2->X(), n2->Y(), n2->Z()); - double ratio = du / ( param[ 1 ][ i[1] ] - param[ 1 ][ i[1]-1 ]); - gp_XYZ p = p2 * ( 1 - ratio ) + p1 * ratio; - GetMeshDS()->MoveNode( nIns, p.X(), p.Y(), p.Z() ); - } - insertMapIt = insertMap.find( elem ); - bool notFound = ( insertMapIt == insertMap.end() ); - bool otherLink = ( !notFound && (*insertMapIt).second.front() != n1 ); - if ( otherLink ) { - // insert into another link of the same element: - // 1. perform insertion into the other link of the elem - list & nodeList = (*insertMapIt).second; - const SMDS_MeshNode* n12 = nodeList.front(); nodeList.pop_front(); - const SMDS_MeshNode* n22 = nodeList.front(); nodeList.pop_front(); - InsertNodesIntoLink( elem, n12, n22, nodeList ); - // 2. perform insertion into the link of adjacent faces - while (true) { - const SMDS_MeshElement* adjElem = findAdjacentFace( n12, n22, elem ); - if ( adjElem ) - InsertNodesIntoLink( adjElem, n12, n22, nodeList ); - else - break; - } - // 3. find an element appeared on n1 and n2 after the insertion - insertMap.erase( elem ); - elem = findAdjacentFace( n1, n2, 0 ); - } - if ( notFound || otherLink ) { - // add element and nodes of the side into the insertMap - insertMapIt = insertMap.insert - ( TElemOfNodeListMap::value_type( elem, list() )).first; - (*insertMapIt).second.push_back( n1 ); - (*insertMapIt).second.push_back( n2 ); - } - // add node to be inserted into elem - (*insertMapIt).second.push_back( nIns ); - next[ 1 - intoBord ] = true; - } +//======================================================================= +//function : ExtrusionSweep +//purpose : +//======================================================================= - // go to the next segment - for ( iBord = 0; iBord < 2; iBord++ ) { // loop on 2 borders - if ( next[ iBord ] ) { - if ( i[ iBord ] != 0 && eIt[ iBord ] != eSide[ iBord ].end()) - eIt[ iBord ]++; - nPrev[ iBord ] = *nIt[ iBord ]; - nIt[ iBord ]++; i[ iBord ]++; - } - } - } - while ( nIt[0] != nSide[0].end() && nIt[1] != nSide[1].end()); +SMESH_MeshEditor::PGroupIDs +SMESH_MeshEditor::ExtrusionSweep (TIDSortedElemSet & theElems, + const gp_Vec& theStep, + const int theNbSteps, + TElemOfElemListMap& newElemsMap, + const bool theMakeGroups, + const int theFlags, + const double theTolerance) +{ + ExtrusParam aParams; + aParams.myDir = gp_Dir(theStep); + aParams.myNodes.Clear(); + aParams.mySteps = new TColStd_HSequenceOfReal; + int i; + for(i=1; i<=theNbSteps; i++) + aParams.mySteps->Append(theStep.Magnitude()); - // perform insertion of nodes into elements + return + ExtrusionSweep(theElems,aParams,newElemsMap,theMakeGroups,theFlags,theTolerance); +} - for (insertMapIt = insertMap.begin(); - insertMapIt != insertMap.end(); - insertMapIt++ ) + +//======================================================================= +//function : ExtrusionSweep +//purpose : +//======================================================================= + +SMESH_MeshEditor::PGroupIDs +SMESH_MeshEditor::ExtrusionSweep (TIDSortedElemSet & theElems, + ExtrusParam& theParams, + TElemOfElemListMap& newElemsMap, + const bool theMakeGroups, + const int theFlags, + const double theTolerance) +{ + myLastCreatedElems.Clear(); + myLastCreatedNodes.Clear(); + + // source elements for each generated one + SMESH_SequenceOfElemPtr srcElems, srcNodes; + + SMESHDS_Mesh* aMesh = GetMeshDS(); + + int nbsteps = theParams.mySteps->Length(); + + TNodeOfNodeListMap mapNewNodes; + //TNodeOfNodeVecMap mapNewNodes; + TElemOfVecOfNnlmiMap mapElemNewNodes; + //TElemOfVecOfMapNodesMap mapElemNewNodes; + + const bool isQuadraticMesh = bool( myMesh->NbEdges(ORDER_QUADRATIC) + + myMesh->NbFaces(ORDER_QUADRATIC) + + myMesh->NbVolumes(ORDER_QUADRATIC) ); + // loop on theElems + TIDSortedElemSet::iterator itElem; + for ( itElem = theElems.begin(); itElem != theElems.end(); itElem++ ) { + // check element type + const SMDS_MeshElement* elem = *itElem; + if ( !elem || elem->GetType() == SMDSAbs_Volume ) + continue; + + vector & newNodesItVec = mapElemNewNodes[ elem ]; + newNodesItVec.reserve( elem->NbNodes() ); + + // loop on elem nodes + SMDS_ElemIteratorPtr itN = elem->nodesIterator(); + while ( itN->more() ) { - const SMDS_MeshElement* elem = (*insertMapIt).first; - list & nodeList = (*insertMapIt).second; - const SMDS_MeshNode* n1 = nodeList.front(); nodeList.pop_front(); - const SMDS_MeshNode* n2 = nodeList.front(); nodeList.pop_front(); + // check if a node has been already sweeped + const SMDS_MeshNode* node = cast2Node( itN->next() ); + TNodeOfNodeListMap::iterator nIt = + mapNewNodes.insert( make_pair( node, list() )).first; + list& listNewNodes = nIt->second; + if ( listNewNodes.empty() ) + { + // make new nodes - InsertNodesIntoLink( elem, n1, n2, nodeList ); + // check if we are to create medium nodes between corner ones + bool needMediumNodes = false; + if ( isQuadraticMesh ) + { + SMDS_ElemIteratorPtr it = node->GetInverseElementIterator(); + while (it->more() && !needMediumNodes ) + { + const SMDS_MeshElement* invElem = it->next(); + if ( invElem != elem && !theElems.count( invElem )) continue; + needMediumNodes = ( invElem->IsQuadratic() && !invElem->IsMediumNode(node) ); + if ( !needMediumNodes && invElem->GetEntityType() == SMDSEntity_BiQuad_Quadrangle ) + needMediumNodes = true; + } + } - if ( !theSideIsFreeBorder ) { - // look for and insert nodes into the faces adjacent to elem - while (true) { - const SMDS_MeshElement* adjElem = findAdjacentFace( n1, n2, elem ); - if ( adjElem ) - InsertNodesIntoLink( adjElem, n1, n2, nodeList ); - else - break; + double coord[] = { node->X(), node->Y(), node->Z() }; + for ( int i = 0; i < nbsteps; i++ ) + { + if ( needMediumNodes ) // create a medium node + { + double x = coord[0] + theParams.myDir.X()*theParams.mySteps->Value(i+1)/2.; + double y = coord[1] + theParams.myDir.Y()*theParams.mySteps->Value(i+1)/2.; + double z = coord[2] + theParams.myDir.Z()*theParams.mySteps->Value(i+1)/2.; + if( theFlags & EXTRUSION_FLAG_SEW ) { + const SMDS_MeshNode * newNode = CreateNode(x, y, z, + theTolerance, theParams.myNodes); + listNewNodes.push_back( newNode ); + } + else { + const SMDS_MeshNode * newNode = aMesh->AddNode(x, y, z); + myLastCreatedNodes.Append(newNode); + srcNodes.Append( node ); + listNewNodes.push_back( newNode ); + } + } + // create a corner node + coord[0] = coord[0] + theParams.myDir.X()*theParams.mySteps->Value(i+1); + coord[1] = coord[1] + theParams.myDir.Y()*theParams.mySteps->Value(i+1); + coord[2] = coord[2] + theParams.myDir.Z()*theParams.mySteps->Value(i+1); + if( theFlags & EXTRUSION_FLAG_SEW ) { + const SMDS_MeshNode * newNode = CreateNode(coord[0], coord[1], coord[2], + theTolerance, theParams.myNodes); + listNewNodes.push_back( newNode ); + } + else { + const SMDS_MeshNode * newNode = aMesh->AddNode( coord[0], coord[1], coord[2] ); + myLastCreatedNodes.Append(newNode); + srcNodes.Append( node ); + listNewNodes.push_back( newNode ); + } } } + newNodesItVec.push_back( nIt ); } + // make new elements + sweepElement( elem, newNodesItVec, newElemsMap[elem], nbsteps, srcElems ); + } - } // end: insert new nodes - - MergeNodes ( nodeGroupsToMerge ); + if( theFlags & EXTRUSION_FLAG_BOUNDARY ) { + makeWalls( mapNewNodes, newElemsMap, mapElemNewNodes, theElems, nbsteps, srcElems ); + } + PGroupIDs newGroupIDs; + if ( theMakeGroups ) + newGroupIDs = generateGroups( srcNodes, srcElems, "extruded"); - return aResult; + return newGroupIDs; } //======================================================================= -//function : InsertNodesIntoLink -//purpose : insert theNodesToInsert into theFace between theBetweenNode1 -// and theBetweenNode2 and split theElement +//function : ExtrusionAlongTrack +//purpose : //======================================================================= - -void SMESH_MeshEditor::InsertNodesIntoLink(const SMDS_MeshElement* theFace, - const SMDS_MeshNode* theBetweenNode1, - const SMDS_MeshNode* theBetweenNode2, - list& theNodesToInsert) +SMESH_MeshEditor::Extrusion_Error +SMESH_MeshEditor::ExtrusionAlongTrack (TIDSortedElemSet & theElements, + SMESH_subMesh* theTrack, + const SMDS_MeshNode* theN1, + const bool theHasAngles, + list& theAngles, + const bool theLinearVariation, + const bool theHasRefPoint, + const gp_Pnt& theRefPoint, + const bool theMakeGroups) { - if ( theFace->GetType() != SMDSAbs_Face ) return; + MESSAGE("ExtrusionAlongTrack"); + myLastCreatedElems.Clear(); + myLastCreatedNodes.Clear(); - // find indices of 2 link nodes and of the rest nodes - int iNode = 0, il1, il2, i3, i4; - il1 = il2 = i3 = i4 = -1; - const SMDS_MeshNode* nodes[ 8 ]; - SMDS_ElemIteratorPtr nodeIt = theFace->nodesIterator(); - while ( nodeIt->more() ) { - const SMDS_MeshNode* n = static_cast( nodeIt->next() ); - if ( n == theBetweenNode1 ) - il1 = iNode; - else if ( n == theBetweenNode2 ) - il2 = iNode; - else if ( i3 < 0 ) - i3 = iNode; - else - i4 = iNode; - nodes[ iNode++ ] = n; - } - if ( il1 < 0 || il2 < 0 || i3 < 0 ) - return ; + int aNbE; + std::list aPrms; + TIDSortedElemSet::iterator itElem; - // arrange link nodes to go one after another regarding the face orientation - bool reverse = ( Abs( il2 - il1 ) == 1 ? il2 < il1 : il1 < il2 ); - if ( reverse ) { - iNode = il1; - il1 = il2; - il2 = iNode; - theNodesToInsert.reverse(); + gp_XYZ aGC; + TopoDS_Edge aTrackEdge; + TopoDS_Vertex aV1, aV2; + + SMDS_ElemIteratorPtr aItE; + SMDS_NodeIteratorPtr aItN; + SMDSAbs_ElementType aTypeE; + + TNodeOfNodeListMap mapNewNodes; + + // 1. Check data + aNbE = theElements.size(); + // nothing to do + if ( !aNbE ) + return EXTR_NO_ELEMENTS; + + // 1.1 Track Pattern + ASSERT( theTrack ); + + SMESHDS_SubMesh* pSubMeshDS = theTrack->GetSubMeshDS(); + + aItE = pSubMeshDS->GetElements(); + while ( aItE->more() ) { + const SMDS_MeshElement* pE = aItE->next(); + aTypeE = pE->GetType(); + // Pattern must contain links only + if ( aTypeE != SMDSAbs_Edge ) + return EXTR_PATH_NOT_EDGE; } - // check that not link nodes of a quadrangles are in good order - int nbFaceNodes = theFace->NbNodes(); - if ( nbFaceNodes == 4 && i4 - i3 != 1 ) { - iNode = i3; - i3 = i4; - i4 = iNode; - } - - // put theNodesToInsert between theBetweenNode1 and theBetweenNode2 - int nbLinkNodes = 2 + theNodesToInsert.size(); - const SMDS_MeshNode* linkNodes[ nbLinkNodes ]; - linkNodes[ 0 ] = nodes[ il1 ]; - linkNodes[ nbLinkNodes - 1 ] = nodes[ il2 ]; - list::iterator nIt = theNodesToInsert.begin(); - for ( iNode = 1; nIt != theNodesToInsert.end(); nIt++ ) { - linkNodes[ iNode++ ] = *nIt; - } - // decide how to split a quadrangle: compare possible variants - // and choose which of splits to be a quadrangle - int i1, i2, iSplit, nbSplits = nbLinkNodes - 1, iBestQuad; - if ( nbFaceNodes == 3 ) - { - iBestQuad = nbSplits; - i4 = i3; - } - else if ( nbFaceNodes == 4 ) - { - SMESH::Controls::NumericalFunctorPtr aCrit( new SMESH::Controls::AspectRatio); - double aBestRate = DBL_MAX; - for ( int iQuad = 0; iQuad < nbSplits; iQuad++ ) { - i1 = 0; i2 = 1; - double aBadRate = 0; - // evaluate elements quality - for ( iSplit = 0; iSplit < nbSplits; iSplit++ ) { - if ( iSplit == iQuad ) { - SMDS_FaceOfNodes quad (linkNodes[ i1++ ], - linkNodes[ i2++ ], - nodes[ i3 ], - nodes[ i4 ]); - aBadRate += getBadRate( &quad, aCrit ); - } - else { - SMDS_FaceOfNodes tria (linkNodes[ i1++ ], - linkNodes[ i2++ ], - nodes[ iSplit < iQuad ? i4 : i3 ]); - aBadRate += getBadRate( &tria, aCrit ); + + list fullList; + + const TopoDS_Shape& aS = theTrack->GetSubShape(); + // Sub-shape for the Pattern must be an Edge or Wire + if( aS.ShapeType() == TopAbs_EDGE ) { + aTrackEdge = TopoDS::Edge( aS ); + // the Edge must not be degenerated + if ( BRep_Tool::Degenerated( aTrackEdge ) ) + return EXTR_BAD_PATH_SHAPE; + TopExp::Vertices( aTrackEdge, aV1, aV2 ); + aItN = theTrack->GetFather()->GetSubMesh( aV1 )->GetSubMeshDS()->GetNodes(); + const SMDS_MeshNode* aN1 = aItN->next(); + aItN = theTrack->GetFather()->GetSubMesh( aV2 )->GetSubMeshDS()->GetNodes(); + const SMDS_MeshNode* aN2 = aItN->next(); + // starting node must be aN1 or aN2 + if ( !( aN1 == theN1 || aN2 == theN1 ) ) + return EXTR_BAD_STARTING_NODE; + aItN = pSubMeshDS->GetNodes(); + while ( aItN->more() ) { + const SMDS_MeshNode* pNode = aItN->next(); + const SMDS_EdgePosition* pEPos = + static_cast( pNode->GetPosition() ); + double aT = pEPos->GetUParameter(); + aPrms.push_back( aT ); + } + //Extrusion_Error err = + MakeEdgePathPoints(aPrms, aTrackEdge, (aN1==theN1), fullList); + } else if( aS.ShapeType() == TopAbs_WIRE ) { + list< SMESH_subMesh* > LSM; + TopTools_SequenceOfShape Edges; + SMESH_subMeshIteratorPtr itSM = theTrack->getDependsOnIterator(false,true); + while(itSM->more()) { + SMESH_subMesh* SM = itSM->next(); + LSM.push_back(SM); + const TopoDS_Shape& aS = SM->GetSubShape(); + Edges.Append(aS); + } + list< list > LLPPs; + int startNid = theN1->GetID(); + TColStd_MapOfInteger UsedNums; + + int NbEdges = Edges.Length(); + int i = 1; + for(; i<=NbEdges; i++) { + int k = 0; + list< SMESH_subMesh* >::iterator itLSM = LSM.begin(); + for(; itLSM!=LSM.end(); itLSM++) { + k++; + if(UsedNums.Contains(k)) continue; + aTrackEdge = TopoDS::Edge( Edges.Value(k) ); + SMESH_subMesh* locTrack = *itLSM; + SMESHDS_SubMesh* locMeshDS = locTrack->GetSubMeshDS(); + TopExp::Vertices( aTrackEdge, aV1, aV2 ); + aItN = locTrack->GetFather()->GetSubMesh(aV1)->GetSubMeshDS()->GetNodes(); + const SMDS_MeshNode* aN1 = aItN->next(); + aItN = locTrack->GetFather()->GetSubMesh(aV2)->GetSubMeshDS()->GetNodes(); + const SMDS_MeshNode* aN2 = aItN->next(); + // starting node must be aN1 or aN2 + if ( !( aN1->GetID() == startNid || aN2->GetID() == startNid ) ) continue; + // 2. Collect parameters on the track edge + aPrms.clear(); + aItN = locMeshDS->GetNodes(); + while ( aItN->more() ) { + const SMDS_MeshNode* pNode = aItN->next(); + const SMDS_EdgePosition* pEPos = + static_cast( pNode->GetPosition() ); + double aT = pEPos->GetUParameter(); + aPrms.push_back( aT ); } + list LPP; + //Extrusion_Error err = + MakeEdgePathPoints(aPrms, aTrackEdge,(aN1->GetID()==startNid), LPP); + LLPPs.push_back(LPP); + UsedNums.Add(k); + // update startN for search following egde + if( aN1->GetID() == startNid ) startNid = aN2->GetID(); + else startNid = aN1->GetID(); + break; } - // choice - if ( aBadRate < aBestRate ) { - iBestQuad = iQuad; - aBestRate = aBadRate; + } + list< list >::iterator itLLPP = LLPPs.begin(); + list firstList = *itLLPP; + list::iterator itPP = firstList.begin(); + for(; itPP!=firstList.end(); itPP++) { + fullList.push_back( *itPP ); + } + SMESH_MeshEditor_PathPoint PP1 = fullList.back(); + fullList.pop_back(); + itLLPP++; + for(; itLLPP!=LLPPs.end(); itLLPP++) { + list currList = *itLLPP; + itPP = currList.begin(); + SMESH_MeshEditor_PathPoint PP2 = currList.front(); + gp_Dir D1 = PP1.Tangent(); + gp_Dir D2 = PP2.Tangent(); + gp_Dir Dnew( gp_Vec( (D1.X()+D2.X())/2, (D1.Y()+D2.Y())/2, + (D1.Z()+D2.Z())/2 ) ); + PP1.SetTangent(Dnew); + fullList.push_back(PP1); + itPP++; + for(; itPP!=firstList.end(); itPP++) { + fullList.push_back( *itPP ); } + PP1 = fullList.back(); + fullList.pop_back(); } + // if wire not closed + fullList.push_back(PP1); + // else ??? } - - // create new elements - SMESHDS_Mesh *aMesh = GetMeshDS(); - int aShapeId = FindShape( theFace ); - - i1 = 0; i2 = 1; - for ( iSplit = 0; iSplit < nbSplits - 1; iSplit++ ) { - SMDS_MeshElement* newElem = 0; - if ( iSplit == iBestQuad ) - newElem = aMesh->AddFace (linkNodes[ i1++ ], - linkNodes[ i2++ ], - nodes[ i3 ], - nodes[ i4 ]); - else - newElem = aMesh->AddFace (linkNodes[ i1++ ], - linkNodes[ i2++ ], - nodes[ iSplit < iBestQuad ? i4 : i3 ]); - if ( aShapeId && newElem ) - aMesh->SetMeshElementOnShape( newElem, aShapeId ); + else { + return EXTR_BAD_PATH_SHAPE; } - // change nodes of theFace - const SMDS_MeshNode* newNodes[ 4 ]; - newNodes[ 0 ] = linkNodes[ i1 ]; - newNodes[ 1 ] = linkNodes[ i2 ]; - newNodes[ 2 ] = nodes[ iSplit >= iBestQuad ? i3 : i4 ]; - newNodes[ 3 ] = nodes[ i4 ]; - aMesh->ChangeElementNodes( theFace, newNodes, iSplit == iBestQuad ? 4 : 3 ); + return MakeExtrElements(theElements, fullList, theHasAngles, theAngles, theLinearVariation, + theHasRefPoint, theRefPoint, theMakeGroups); } + //======================================================================= -//function : SewSideElements -//purpose : +//function : ExtrusionAlongTrack +//purpose : //======================================================================= - -SMESH_MeshEditor::Sew_Error - SMESH_MeshEditor::SewSideElements (set& theSide1, - set& theSide2, - const SMDS_MeshNode* theFirstNode1, - const SMDS_MeshNode* theFirstNode2, - const SMDS_MeshNode* theSecondNode1, - const SMDS_MeshNode* theSecondNode2) +SMESH_MeshEditor::Extrusion_Error +SMESH_MeshEditor::ExtrusionAlongTrack (TIDSortedElemSet & theElements, + SMESH_Mesh* theTrack, + const SMDS_MeshNode* theN1, + const bool theHasAngles, + list& theAngles, + const bool theLinearVariation, + const bool theHasRefPoint, + const gp_Pnt& theRefPoint, + const bool theMakeGroups) { - MESSAGE ("::::SewSideElements()"); - if ( theSide1.size() != theSide2.size() ) - return SEW_DIFF_NB_OF_ELEMENTS; + myLastCreatedElems.Clear(); + myLastCreatedNodes.Clear(); - Sew_Error aResult = SEW_OK; - // Algo: - // 1. Build set of faces representing each side - // 2. Find which nodes of the side 1 to merge with ones on the side 2 - // 3. Replace nodes in elements of the side 1 and remove replaced nodes + int aNbE; + std::list aPrms; + TIDSortedElemSet::iterator itElem; - // ======================================================================= - // 1. Build set of faces representing each side: - // ======================================================================= - // a. build set of nodes belonging to faces - // b. complete set of faces: find missing fices whose nodes are in set of nodes - // c. create temporary faces representing side of volumes if correspondent - // face does not exist + gp_XYZ aGC; + TopoDS_Edge aTrackEdge; + TopoDS_Vertex aV1, aV2; - SMESHDS_Mesh* aMesh = GetMeshDS(); - SMDS_Mesh aTmpFacesMesh; - set faceSet1, faceSet2; - set volSet1, volSet2; - set nodeSet1, nodeSet2; - set * faceSetPtr[] = { &faceSet1, &faceSet2 }; - set * volSetPtr[] = { &volSet1, &volSet2 }; - set * nodeSetPtr[] = { &nodeSet1, &nodeSet2 }; - set * elemSetPtr[] = { &theSide1, &theSide2 }; - int iSide, iFace, iNode; + SMDS_ElemIteratorPtr aItE; + SMDS_NodeIteratorPtr aItN; + SMDSAbs_ElementType aTypeE; - for ( iSide = 0; iSide < 2; iSide++ ) { - set * nodeSet = nodeSetPtr[ iSide ]; - set * elemSet = elemSetPtr[ iSide ]; - set * faceSet = faceSetPtr[ iSide ]; - set * volSet = volSetPtr [ iSide ]; - set::iterator vIt, eIt; - set::iterator nIt; + TNodeOfNodeListMap mapNewNodes; - // ----------------------------------------------------------- - // 1a. Collect nodes of existing faces - // and build set of face nodes in order to detect missing - // faces corresponing to sides of volumes - // ----------------------------------------------------------- + // 1. Check data + aNbE = theElements.size(); + // nothing to do + if ( !aNbE ) + return EXTR_NO_ELEMENTS; - set< set > setOfFaceNodeSet; + // 1.1 Track Pattern + ASSERT( theTrack ); - // loop on the given element of a side - for (eIt = elemSet->begin(); eIt != elemSet->end(); eIt++ ) { - const SMDS_MeshElement* elem = *eIt; - if ( elem->GetType() == SMDSAbs_Face ) { - faceSet->insert( elem ); - set faceNodeSet; - SMDS_ElemIteratorPtr nodeIt = elem->nodesIterator(); - while ( nodeIt->more() ) { - const SMDS_MeshNode* n = static_cast( nodeIt->next() ); - nodeSet->insert( n ); - faceNodeSet.insert( n ); + SMESHDS_Mesh* pMeshDS = theTrack->GetMeshDS(); + + aItE = pMeshDS->elementsIterator(); + while ( aItE->more() ) { + const SMDS_MeshElement* pE = aItE->next(); + aTypeE = pE->GetType(); + // Pattern must contain links only + if ( aTypeE != SMDSAbs_Edge ) + return EXTR_PATH_NOT_EDGE; + } + + list fullList; + + const TopoDS_Shape& aS = theTrack->GetShapeToMesh(); + + if( aS == SMESH_Mesh::PseudoShape() ) { + //Mesh without shape + const SMDS_MeshNode* currentNode = NULL; + const SMDS_MeshNode* prevNode = theN1; + std::vector aNodesList; + aNodesList.push_back(theN1); + int nbEdges = 0, conn=0; + const SMDS_MeshElement* prevElem = NULL; + const SMDS_MeshElement* currentElem = NULL; + int totalNbEdges = theTrack->NbEdges(); + SMDS_ElemIteratorPtr nIt; + + //check start node + if( !theTrack->GetMeshDS()->Contains(theN1) ) { + return EXTR_BAD_STARTING_NODE; + } + + conn = nbEdgeConnectivity(theN1); + if(conn > 2) + return EXTR_PATH_NOT_EDGE; + + aItE = theN1->GetInverseElementIterator(); + prevElem = aItE->next(); + currentElem = prevElem; + //Get all nodes + if(totalNbEdges == 1 ) { + nIt = currentElem->nodesIterator(); + currentNode = static_cast(nIt->next()); + if(currentNode == prevNode) + currentNode = static_cast(nIt->next()); + aNodesList.push_back(currentNode); + } else { + nIt = currentElem->nodesIterator(); + while( nIt->more() ) { + currentNode = static_cast(nIt->next()); + if(currentNode == prevNode) + currentNode = static_cast(nIt->next()); + aNodesList.push_back(currentNode); + + //case of the closed mesh + if(currentNode == theN1) { + nbEdges++; + break; + } + + conn = nbEdgeConnectivity(currentNode); + if(conn > 2) { + return EXTR_PATH_NOT_EDGE; + }else if( conn == 1 && nbEdges > 0 ) { + //End of the path + nbEdges++; + break; + }else { + prevNode = currentNode; + aItE = currentNode->GetInverseElementIterator(); + currentElem = aItE->next(); + if( currentElem == prevElem) + currentElem = aItE->next(); + nIt = currentElem->nodesIterator(); + prevElem = currentElem; + nbEdges++; } - setOfFaceNodeSet.insert( faceNodeSet ); } - else if ( elem->GetType() == SMDSAbs_Volume ) - volSet->insert( elem ); } - // ------------------------------------------------------------------------------ - // 1b. Complete set of faces: find missing fices whose nodes are in set of nodes - // ------------------------------------------------------------------------------ - for ( nIt = nodeSet->begin(); nIt != nodeSet->end(); nIt++ ) { // loop on nodes of iSide - SMDS_ElemIteratorPtr fIt = (*nIt)->facesIterator(); - while ( fIt->more() ) { // loop on faces sharing a node - const SMDS_MeshElement* f = fIt->next(); - if ( faceSet->find( f ) == faceSet->end() ) { - // check if all nodes are in nodeSet and - // complete setOfFaceNodeSet if they are - set faceNodeSet; - SMDS_ElemIteratorPtr nodeIt = f->nodesIterator(); - bool allInSet = true; - while ( nodeIt->more() && allInSet ) { // loop on nodes of a face - const SMDS_MeshNode* n = static_cast( nodeIt->next() ); - if ( nodeSet->find( n ) == nodeSet->end() ) - allInSet = false; - else - faceNodeSet.insert( n ); + if(nbEdges != totalNbEdges) + return EXTR_PATH_NOT_EDGE; + + TopTools_SequenceOfShape Edges; + double x1,x2,y1,y2,z1,z2; + list< list > LLPPs; + int startNid = theN1->GetID(); + for(int i = 1; i < aNodesList.size(); i++) { + x1 = aNodesList[i-1]->X();x2 = aNodesList[i]->X(); + y1 = aNodesList[i-1]->Y();y2 = aNodesList[i]->Y(); + z1 = aNodesList[i-1]->Z();z2 = aNodesList[i]->Z(); + TopoDS_Edge e = BRepBuilderAPI_MakeEdge(gp_Pnt(x1,y1,z1),gp_Pnt(x2,y2,z2)); + list LPP; + aPrms.clear(); + MakeEdgePathPoints(aPrms, e, (aNodesList[i-1]->GetID()==startNid), LPP); + LLPPs.push_back(LPP); + if( aNodesList[i-1]->GetID() == startNid ) startNid = aNodesList[i]->GetID(); + else startNid = aNodesList[i-1]->GetID(); + + } + + list< list >::iterator itLLPP = LLPPs.begin(); + list firstList = *itLLPP; + list::iterator itPP = firstList.begin(); + for(; itPP!=firstList.end(); itPP++) { + fullList.push_back( *itPP ); + } + + SMESH_MeshEditor_PathPoint PP1 = fullList.back(); + SMESH_MeshEditor_PathPoint PP2; + fullList.pop_back(); + itLLPP++; + for(; itLLPP!=LLPPs.end(); itLLPP++) { + list currList = *itLLPP; + itPP = currList.begin(); + PP2 = currList.front(); + gp_Dir D1 = PP1.Tangent(); + gp_Dir D2 = PP2.Tangent(); + gp_Dir Dnew( gp_Vec( (D1.X()+D2.X())/2, (D1.Y()+D2.Y())/2, + (D1.Z()+D2.Z())/2 ) ); + PP1.SetTangent(Dnew); + fullList.push_back(PP1); + itPP++; + for(; itPP!=currList.end(); itPP++) { + fullList.push_back( *itPP ); + } + PP1 = fullList.back(); + fullList.pop_back(); + } + fullList.push_back(PP1); + + } // Sub-shape for the Pattern must be an Edge or Wire + else if( aS.ShapeType() == TopAbs_EDGE ) { + aTrackEdge = TopoDS::Edge( aS ); + // the Edge must not be degenerated + if ( BRep_Tool::Degenerated( aTrackEdge ) ) + return EXTR_BAD_PATH_SHAPE; + TopExp::Vertices( aTrackEdge, aV1, aV2 ); + const SMDS_MeshNode* aN1 = 0; + const SMDS_MeshNode* aN2 = 0; + if ( theTrack->GetSubMesh( aV1 ) && theTrack->GetSubMesh( aV1 )->GetSubMeshDS() ) { + aItN = theTrack->GetSubMesh( aV1 )->GetSubMeshDS()->GetNodes(); + aN1 = aItN->next(); + } + if ( theTrack->GetSubMesh( aV2 ) && theTrack->GetSubMesh( aV2 )->GetSubMeshDS() ) { + aItN = theTrack->GetSubMesh( aV2 )->GetSubMeshDS()->GetNodes(); + aN2 = aItN->next(); + } + // starting node must be aN1 or aN2 + if ( !( aN1 == theN1 || aN2 == theN1 ) ) + return EXTR_BAD_STARTING_NODE; + aItN = pMeshDS->nodesIterator(); + while ( aItN->more() ) { + const SMDS_MeshNode* pNode = aItN->next(); + if( pNode==aN1 || pNode==aN2 ) continue; + const SMDS_EdgePosition* pEPos = + static_cast( pNode->GetPosition() ); + double aT = pEPos->GetUParameter(); + aPrms.push_back( aT ); + } + //Extrusion_Error err = + MakeEdgePathPoints(aPrms, aTrackEdge, (aN1==theN1), fullList); + } + else if( aS.ShapeType() == TopAbs_WIRE ) { + list< SMESH_subMesh* > LSM; + TopTools_SequenceOfShape Edges; + TopExp_Explorer eExp(aS, TopAbs_EDGE); + for(; eExp.More(); eExp.Next()) { + TopoDS_Edge E = TopoDS::Edge( eExp.Current() ); + if( BRep_Tool::Degenerated(E) ) continue; + SMESH_subMesh* SM = theTrack->GetSubMesh(E); + if(SM) { + LSM.push_back(SM); + Edges.Append(E); + } + } + list< list > LLPPs; + TopoDS_Vertex aVprev; + TColStd_MapOfInteger UsedNums; + int NbEdges = Edges.Length(); + int i = 1; + for(; i<=NbEdges; i++) { + int k = 0; + list< SMESH_subMesh* >::iterator itLSM = LSM.begin(); + for(; itLSM!=LSM.end(); itLSM++) { + k++; + if(UsedNums.Contains(k)) continue; + aTrackEdge = TopoDS::Edge( Edges.Value(k) ); + SMESH_subMesh* locTrack = *itLSM; + SMESHDS_SubMesh* locMeshDS = locTrack->GetSubMeshDS(); + TopExp::Vertices( aTrackEdge, aV1, aV2 ); + bool aN1isOK = false, aN2isOK = false; + if ( aVprev.IsNull() ) { + // if previous vertex is not yet defined, it means that we in the beginning of wire + // and we have to find initial vertex corresponding to starting node theN1 + const SMDS_MeshNode* aN1 = 0; + const SMDS_MeshNode* aN2 = 0; + + if ( locTrack->GetFather()->GetSubMesh(aV1) && locTrack->GetFather()->GetSubMesh(aV1)->GetSubMeshDS() ) { + aItN = locTrack->GetFather()->GetSubMesh(aV1)->GetSubMeshDS()->GetNodes(); + aN1 = aItN->next(); } - if ( allInSet ) { - faceSet->insert( f ); - setOfFaceNodeSet.insert( faceNodeSet ); + if ( locTrack->GetFather()->GetSubMesh(aV2) && locTrack->GetFather()->GetSubMesh(aV2)->GetSubMeshDS() ) { + aItN = locTrack->GetFather()->GetSubMesh(aV2)->GetSubMeshDS()->GetNodes(); + aN2 = aItN->next(); } + // starting node must be aN1 or aN2 + aN1isOK = ( aN1 && aN1 == theN1 ); + aN2isOK = ( aN2 && aN2 == theN1 ); + } + else { + // we have specified ending vertex of the previous edge on the previous iteration + // and we have just to check that it corresponds to any vertex in current segment + aN1isOK = aVprev.IsSame( aV1 ); + aN2isOK = aVprev.IsSame( aV2 ); + } + if ( !aN1isOK && !aN2isOK ) continue; + // 2. Collect parameters on the track edge + aPrms.clear(); + aItN = locMeshDS->GetNodes(); + while ( aItN->more() ) { + const SMDS_MeshNode* pNode = aItN->next(); + const SMDS_EdgePosition* pEPos = + static_cast( pNode->GetPosition() ); + double aT = pEPos->GetUParameter(); + aPrms.push_back( aT ); } + list LPP; + //Extrusion_Error err = + MakeEdgePathPoints(aPrms, aTrackEdge, aN1isOK, LPP); + LLPPs.push_back(LPP); + UsedNums.Add(k); + // update startN for search following egde + if ( aN1isOK ) aVprev = aV2; + else aVprev = aV1; + break; + } + } + list< list >::iterator itLLPP = LLPPs.begin(); + list firstList = *itLLPP; + list::iterator itPP = firstList.begin(); + for(; itPP!=firstList.end(); itPP++) { + fullList.push_back( *itPP ); + } + SMESH_MeshEditor_PathPoint PP1 = fullList.back(); + fullList.pop_back(); + itLLPP++; + for(; itLLPP!=LLPPs.end(); itLLPP++) { + list currList = *itLLPP; + itPP = currList.begin(); + SMESH_MeshEditor_PathPoint PP2 = currList.front(); + gp_Dir D1 = PP1.Tangent(); + gp_Dir D2 = PP2.Tangent(); + gp_Dir Dnew( ( D1.XYZ() + D2.XYZ() ) / 2 ); + PP1.SetTangent(Dnew); + fullList.push_back(PP1); + itPP++; + for(; itPP!=currList.end(); itPP++) { + fullList.push_back( *itPP ); } + PP1 = fullList.back(); + fullList.pop_back(); } + // if wire not closed + fullList.push_back(PP1); + // else ??? + } + else { + return EXTR_BAD_PATH_SHAPE; + } - // ------------------------------------------------------------------------- - // 1c. Create temporary faces representing sides of volumes if correspondent - // face does not exist - // ------------------------------------------------------------------------- + return MakeExtrElements(theElements, fullList, theHasAngles, theAngles, theLinearVariation, + theHasRefPoint, theRefPoint, theMakeGroups); +} + + +//======================================================================= +//function : MakeEdgePathPoints +//purpose : auxilary for ExtrusionAlongTrack +//======================================================================= +SMESH_MeshEditor::Extrusion_Error +SMESH_MeshEditor::MakeEdgePathPoints(std::list& aPrms, + const TopoDS_Edge& aTrackEdge, + bool FirstIsStart, + list& LPP) +{ + Standard_Real aTx1, aTx2, aL2, aTolVec, aTolVec2; + aTolVec=1.e-7; + aTolVec2=aTolVec*aTolVec; + double aT1, aT2; + TopoDS_Vertex aV1, aV2; + TopExp::Vertices( aTrackEdge, aV1, aV2 ); + aT1=BRep_Tool::Parameter( aV1, aTrackEdge ); + aT2=BRep_Tool::Parameter( aV2, aTrackEdge ); + // 2. Collect parameters on the track edge + aPrms.push_front( aT1 ); + aPrms.push_back( aT2 ); + // sort parameters + aPrms.sort(); + if( FirstIsStart ) { + if ( aT1 > aT2 ) { + aPrms.reverse(); + } + } + else { + if ( aT2 > aT1 ) { + aPrms.reverse(); + } + } + // 3. Path Points + SMESH_MeshEditor_PathPoint aPP; + Handle(Geom_Curve) aC3D = BRep_Tool::Curve( aTrackEdge, aTx1, aTx2 ); + std::list::iterator aItD = aPrms.begin(); + for(; aItD != aPrms.end(); ++aItD) { + double aT = *aItD; + gp_Pnt aP3D; + gp_Vec aVec; + aC3D->D1( aT, aP3D, aVec ); + aL2 = aVec.SquareMagnitude(); + if ( aL2 < aTolVec2 ) + return EXTR_CANT_GET_TANGENT; + gp_Dir aTgt( aVec ); + aPP.SetPnt( aP3D ); + aPP.SetTangent( aTgt ); + aPP.SetParameter( aT ); + LPP.push_back(aPP); + } + return EXTR_OK; +} + + +//======================================================================= +//function : MakeExtrElements +//purpose : auxilary for ExtrusionAlongTrack +//======================================================================= +SMESH_MeshEditor::Extrusion_Error +SMESH_MeshEditor::MakeExtrElements(TIDSortedElemSet& theElements, + list& fullList, + const bool theHasAngles, + list& theAngles, + const bool theLinearVariation, + const bool theHasRefPoint, + const gp_Pnt& theRefPoint, + const bool theMakeGroups) +{ + MESSAGE("MakeExtrElements"); + //cout<<"MakeExtrElements fullList.size() = "< aPPs(aNbTP); + // Angles + if( theHasAngles && theAngles.size()>0 && theLinearVariation ) { + LinearAngleVariation(aNbTP-1, theAngles); + } + vector aAngles( aNbTP ); + int j = 0; + for(; j::iterator aItD = theAngles.begin(); + for ( j=1; (aItD != theAngles.end()) && (j::iterator itPP = fullList.begin(); + for(; itPP!=fullList.end(); itPP++) { + j++; + SMESH_MeshEditor_PathPoint PP = *itPP; + PP.SetAngle(aAngles[j]); + aPPs[j] = PP; + } + + TNodeOfNodeListMap mapNewNodes; + TElemOfVecOfNnlmiMap mapElemNewNodes; + TElemOfElemListMap newElemsMap; + TIDSortedElemSet::iterator itElem; + double aX, aY, aZ; + int aNb; + SMDSAbs_ElementType aTypeE; + // source elements for each generated one + SMESH_SequenceOfElemPtr srcElems, srcNodes; + + // 3. Center of rotation aV0 + gp_Pnt aV0 = theRefPoint; + gp_XYZ aGC; + if ( !theHasRefPoint ) { + aNb = 0; + aGC.SetCoord( 0.,0.,0. ); + + itElem = theElements.begin(); + for ( ; itElem != theElements.end(); itElem++ ) { + const SMDS_MeshElement* elem = *itElem; + + SMDS_ElemIteratorPtr itN = elem->nodesIterator(); + while ( itN->more() ) { + const SMDS_MeshNode* node = static_cast( itN->next() ); + aX = node->X(); + aY = node->Y(); + aZ = node->Z(); + + if ( mapNewNodes.find( node ) == mapNewNodes.end() ) { + list aLNx; + mapNewNodes[node] = aLNx; + // + gp_XYZ aXYZ( aX, aY, aZ ); + aGC += aXYZ; + ++aNb; + } + } + } + aGC /= aNb; + aV0.SetXYZ( aGC ); + } // if (!theHasRefPoint) { + mapNewNodes.clear(); + + // 4. Processing the elements + SMESHDS_Mesh* aMesh = GetMeshDS(); + + for ( itElem = theElements.begin(); itElem != theElements.end(); itElem++ ) { + // check element type + const SMDS_MeshElement* elem = *itElem; + aTypeE = elem->GetType(); + if ( !elem || ( aTypeE != SMDSAbs_Face && aTypeE != SMDSAbs_Edge ) ) + continue; - if ( !volSet->empty() ) + vector & newNodesItVec = mapElemNewNodes[ elem ]; + newNodesItVec.reserve( elem->NbNodes() ); + + // loop on elem nodes + int nodeIndex = -1; + SMDS_ElemIteratorPtr itN = elem->nodesIterator(); + while ( itN->more() ) { - //int nodeSetSize = nodeSet->size(); - - // loop on given volumes - for ( vIt = volSet->begin(); vIt != volSet->end(); vIt++ ) { - SMDS_VolumeTool vol (*vIt); - // loop on volume faces: find free faces - // -------------------------------------- - list freeFaceList; - for ( iFace = 0; iFace < vol.NbFaces(); iFace++ ) { - if ( !vol.IsFreeFace( iFace )) - continue; - // check if there is already a face with same nodes in a face set - const SMDS_MeshElement* aFreeFace = 0; - const SMDS_MeshNode** fNodes = vol.GetFaceNodes( iFace ); - int nbNodes = vol.NbFaceNodes( iFace ); - set faceNodeSet; - vol.GetFaceNodes( iFace, faceNodeSet ); - bool isNewFace = setOfFaceNodeSet.insert( faceNodeSet ).second; - if ( isNewFace ) { - // no such a face is given but it still can exist, check it - if ( nbNodes == 3 ) - aFreeFace = aMesh->FindFace( fNodes[0],fNodes[1],fNodes[2] ); - else - aFreeFace = aMesh->FindFace( fNodes[0],fNodes[1],fNodes[2],fNodes[3] ); - } - if ( !aFreeFace ) { - // create a temporary face - if ( nbNodes == 3 ) - aFreeFace = aTmpFacesMesh.AddFace( fNodes[0],fNodes[1],fNodes[2] ); - else - aFreeFace = aTmpFacesMesh.AddFace( fNodes[0],fNodes[1],fNodes[2],fNodes[3] ); + ++nodeIndex; + // check if a node has been already processed + const SMDS_MeshNode* node = + static_cast( itN->next() ); + TNodeOfNodeListMap::iterator nIt = mapNewNodes.find( node ); + if ( nIt == mapNewNodes.end() ) { + nIt = mapNewNodes.insert( make_pair( node, list() )).first; + list& listNewNodes = nIt->second; + + // make new nodes + aX = node->X(); aY = node->Y(); aZ = node->Z(); + + Standard_Real aAngle1x, aAngleT1T0, aTolAng; + gp_Pnt aP0x, aP1x, aPN0, aPN1, aV0x, aV1x; + gp_Ax1 anAx1, anAxT1T0; + gp_Dir aDT1x, aDT0x, aDT1T0; + + aTolAng=1.e-4; + + aV0x = aV0; + aPN0.SetCoord(aX, aY, aZ); + + const SMESH_MeshEditor_PathPoint& aPP0 = aPPs[0]; + aP0x = aPP0.Pnt(); + aDT0x= aPP0.Tangent(); + //cout<<"j = 0 PP: Pnt("< aTolAng) { + aDT1T0=aDT1x^aDT0x; + anAxT1T0.SetLocation( aV1x ); + anAxT1T0.SetDirection( aDT1T0 ); + aTrsfRotT1T0.SetRotation( anAxT1T0, aAngleT1T0 ); + + aPN1 = aPN1.Transformed( aTrsfRotT1T0 ); } - if ( aFreeFace ) - freeFaceList.push_back( aFreeFace ); - } // loop on faces of a volume + // rotation 2 + if ( theHasAngles ) { + anAx1.SetLocation( aV1x ); + anAx1.SetDirection( aDT1x ); + aTrsfRot.SetRotation( anAx1, aAngle1x ); - // choose one of several free faces - // -------------------------------------- - if ( freeFaceList.size() > 1 ) { - // choose a face having max nb of nodes shared by other elems of a side - int maxNbNodes = -1/*, nbExcludedFaces = 0*/; - list::iterator fIt = freeFaceList.begin(); - while ( fIt != freeFaceList.end() ) { // loop on free faces - int nbSharedNodes = 0; - SMDS_ElemIteratorPtr nodeIt = (*fIt)->nodesIterator(); - while ( nodeIt->more() ) { // loop on free face nodes - const SMDS_MeshNode* n = - static_cast( nodeIt->next() ); - SMDS_ElemIteratorPtr invElemIt = n->GetInverseElementIterator(); - while ( invElemIt->more() ) { - const SMDS_MeshElement* e = invElemIt->next(); - if ( faceSet->find( e ) != faceSet->end() ) - nbSharedNodes++; - if ( elemSet->find( e ) != elemSet->end() ) - nbSharedNodes++; - } - } - if ( nbSharedNodes >= maxNbNodes ) { - maxNbNodes = nbSharedNodes; - fIt++; - } - else - freeFaceList.erase( fIt++ ); // here fIt++ occures before erase + aPN1 = aPN1.Transformed( aTrsfRot ); } - if ( freeFaceList.size() > 1 ) - { - // could not choose one face, use another way - // choose a face most close to the bary center of the opposite side - gp_XYZ aBC( 0., 0., 0. ); - set addedNodes; - set * elemSet2 = elemSetPtr[ 1 - iSide ]; - eIt = elemSet2->begin(); - for ( eIt = elemSet2->begin(); eIt != elemSet2->end(); eIt++ ) { - SMDS_ElemIteratorPtr nodeIt = (*eIt)->nodesIterator(); - while ( nodeIt->more() ) { // loop on free face nodes - const SMDS_MeshNode* n = - static_cast( nodeIt->next() ); - if ( addedNodes.insert( n ).second ) - aBC += gp_XYZ( n->X(),n->Y(),n->Z() ); - } + + // make new node + //MESSAGE("elem->IsQuadratic " << elem->IsQuadratic() << " " << elem->IsMediumNode(node)); + if( elem->IsQuadratic() && !elem->IsMediumNode(node) ) { + // create additional node + double x = ( aPN1.X() + aPN0.X() )/2.; + double y = ( aPN1.Y() + aPN0.Y() )/2.; + double z = ( aPN1.Z() + aPN0.Z() )/2.; + const SMDS_MeshNode* newNode = aMesh->AddNode(x,y,z); + myLastCreatedNodes.Append(newNode); + srcNodes.Append( node ); + listNewNodes.push_back( newNode ); + } + aX = aPN1.X(); + aY = aPN1.Y(); + aZ = aPN1.Z(); + const SMDS_MeshNode* newNode = aMesh->AddNode( aX, aY, aZ ); + myLastCreatedNodes.Append(newNode); + srcNodes.Append( node ); + listNewNodes.push_back( newNode ); + + aPN0 = aPN1; + aP0x = aP1x; + aV0x = aV1x; + aDT0x = aDT1x; + } + } + + else { + // if current elem is quadratic and current node is not medium + // we have to check - may be it is needed to insert additional nodes + if( elem->IsQuadratic() && !elem->IsMediumNode(node) ) { + list< const SMDS_MeshNode* > & listNewNodes = nIt->second; + if(listNewNodes.size()==aNbTP-1) { + vector aNodes(2*(aNbTP-1)); + gp_XYZ P(node->X(), node->Y(), node->Z()); + list< const SMDS_MeshNode* >::iterator it = listNewNodes.begin(); + int i; + for(i=0; iX() + P.X() )/2.; + double y = ( N->Y() + P.Y() )/2.; + double z = ( N->Z() + P.Z() )/2.; + const SMDS_MeshNode* newN = aMesh->AddNode(x,y,z); + srcNodes.Append( node ); + myLastCreatedNodes.Append(newN); + aNodes[2*i] = newN; + aNodes[2*i+1] = N; + P = gp_XYZ(N->X(),N->Y(),N->Z()); } - aBC /= addedNodes.size(); - double minDist = DBL_MAX; - fIt = freeFaceList.begin(); - while ( fIt != freeFaceList.end() ) { // loop on free faces - double dist = 0; - SMDS_ElemIteratorPtr nodeIt = (*fIt)->nodesIterator(); - while ( nodeIt->more() ) { // loop on free face nodes - const SMDS_MeshNode* n = - static_cast( nodeIt->next() ); - gp_XYZ p( n->X(),n->Y(),n->Z() ); - dist += ( aBC - p ).SquareModulus(); - } - if ( dist < minDist ) { - minDist = dist; - freeFaceList.erase( freeFaceList.begin(), fIt++ ); - } - else - fIt = freeFaceList.erase( fIt++ ); + listNewNodes.clear(); + for(i=0; i<2*(aNbTP-1); i++) { + listNewNodes.push_back(aNodes[i]); } } - } // choose one of several free faces of a volume + } + } + + newNodesItVec.push_back( nIt ); + } + // make new elements + //sweepElement( aMesh, elem, newNodesItVec, newElemsMap[elem], + // newNodesItVec[0]->second.size(), myLastCreatedElems ); + sweepElement( elem, newNodesItVec, newElemsMap[elem], aNbTP-1, srcElems ); + } + + makeWalls( mapNewNodes, newElemsMap, mapElemNewNodes, theElements, aNbTP-1, srcElems ); + + if ( theMakeGroups ) + generateGroups( srcNodes, srcElems, "extruded"); + + return EXTR_OK; +} + + +//======================================================================= +//function : LinearAngleVariation +//purpose : auxilary for ExtrusionAlongTrack +//======================================================================= +void SMESH_MeshEditor::LinearAngleVariation(const int nbSteps, + list& Angles) +{ + int nbAngles = Angles.size(); + if( nbSteps > nbAngles ) { + vector theAngles(nbAngles); + list::iterator it = Angles.begin(); + int i = -1; + for(; it!=Angles.end(); it++) { + i++; + theAngles[i] = (*it); + } + list res; + double rAn2St = double( nbAngles ) / double( nbSteps ); + double angPrev = 0, angle; + for ( int iSt = 0; iSt < nbSteps; ++iSt ) { + double angCur = rAn2St * ( iSt+1 ); + double angCurFloor = floor( angCur ); + double angPrevFloor = floor( angPrev ); + if ( angPrevFloor == angCurFloor ) + angle = rAn2St * theAngles[ int( angCurFloor ) ]; + else { + int iP = int( angPrevFloor ); + double angPrevCeil = ceil(angPrev); + angle = ( angPrevCeil - angPrev ) * theAngles[ iP ]; + + int iC = int( angCurFloor ); + if ( iC < nbAngles ) + angle += ( angCur - angCurFloor ) * theAngles[ iC ]; + + iP = int( angPrevCeil ); + while ( iC-- > iP ) + angle += theAngles[ iC ]; + } + res.push_back(angle); + angPrev = angCur; + } + Angles.clear(); + it = res.begin(); + for(; it!=res.end(); it++) + Angles.push_back( *it ); + } +} + + +//================================================================================ +/*! + * \brief Move or copy theElements applying theTrsf to their nodes + * \param theElems - elements to transform, if theElems is empty then apply to all mesh nodes + * \param theTrsf - transformation to apply + * \param theCopy - if true, create translated copies of theElems + * \param theMakeGroups - if true and theCopy, create translated groups + * \param theTargetMesh - mesh to copy translated elements into + * \return SMESH_MeshEditor::PGroupIDs - list of ids of created groups + */ +//================================================================================ + +SMESH_MeshEditor::PGroupIDs +SMESH_MeshEditor::Transform (TIDSortedElemSet & theElems, + const gp_Trsf& theTrsf, + const bool theCopy, + const bool theMakeGroups, + SMESH_Mesh* theTargetMesh) +{ + myLastCreatedElems.Clear(); + myLastCreatedNodes.Clear(); + + bool needReverse = false; + string groupPostfix; + switch ( theTrsf.Form() ) { + case gp_PntMirror: + MESSAGE("gp_PntMirror"); + needReverse = true; + groupPostfix = "mirrored"; + break; + case gp_Ax1Mirror: + MESSAGE("gp_Ax1Mirror"); + groupPostfix = "mirrored"; + break; + case gp_Ax2Mirror: + MESSAGE("gp_Ax2Mirror"); + needReverse = true; + groupPostfix = "mirrored"; + break; + case gp_Rotation: + MESSAGE("gp_Rotation"); + groupPostfix = "rotated"; + break; + case gp_Translation: + MESSAGE("gp_Translation"); + groupPostfix = "translated"; + break; + case gp_Scale: + MESSAGE("gp_Scale"); + groupPostfix = "scaled"; + break; + case gp_CompoundTrsf: // different scale by axis + MESSAGE("gp_CompoundTrsf"); + groupPostfix = "scaled"; + break; + default: + MESSAGE("default"); + needReverse = false; + groupPostfix = "transformed"; + } + + SMESH_MeshEditor targetMeshEditor( theTargetMesh ); + SMESHDS_Mesh* aTgtMesh = theTargetMesh ? theTargetMesh->GetMeshDS() : 0; + SMESHDS_Mesh* aMesh = GetMeshDS(); + + + // map old node to new one + TNodeNodeMap nodeMap; + + // elements sharing moved nodes; those of them which have all + // nodes mirrored but are not in theElems are to be reversed + TIDSortedElemSet inverseElemSet; + + // source elements for each generated one + SMESH_SequenceOfElemPtr srcElems, srcNodes; + + // issue 021015: EDF 1578 SMESH: Free nodes are removed when translating a mesh + TIDSortedElemSet orphanNode; + + if ( theElems.empty() ) // transform the whole mesh + { + // add all elements + SMDS_ElemIteratorPtr eIt = aMesh->elementsIterator(); + while ( eIt->more() ) theElems.insert( eIt->next() ); + // add orphan nodes + SMDS_NodeIteratorPtr nIt = aMesh->nodesIterator(); + while ( nIt->more() ) + { + const SMDS_MeshNode* node = nIt->next(); + if ( node->NbInverseElements() == 0) + orphanNode.insert( node ); + } + } + + // loop on elements to transform nodes : first orphan nodes then elems + TIDSortedElemSet::iterator itElem; + TIDSortedElemSet *elements[] = {&orphanNode, &theElems }; + for (int i=0; i<2; i++) + for ( itElem = elements[i]->begin(); itElem != elements[i]->end(); itElem++ ) { + const SMDS_MeshElement* elem = *itElem; + if ( !elem ) + continue; + + // loop on elem nodes + SMDS_ElemIteratorPtr itN = elem->nodesIterator(); + while ( itN->more() ) { + + const SMDS_MeshNode* node = cast2Node( itN->next() ); + // check if a node has been already transformed + pair n2n_isnew = + nodeMap.insert( make_pair ( node, node )); + if ( !n2n_isnew.second ) + continue; + + double coord[3]; + coord[0] = node->X(); + coord[1] = node->Y(); + coord[2] = node->Z(); + theTrsf.Transforms( coord[0], coord[1], coord[2] ); + if ( theTargetMesh ) { + const SMDS_MeshNode * newNode = aTgtMesh->AddNode( coord[0], coord[1], coord[2] ); + n2n_isnew.first->second = newNode; + myLastCreatedNodes.Append(newNode); + srcNodes.Append( node ); + } + else if ( theCopy ) { + const SMDS_MeshNode * newNode = aMesh->AddNode( coord[0], coord[1], coord[2] ); + n2n_isnew.first->second = newNode; + myLastCreatedNodes.Append(newNode); + srcNodes.Append( node ); + } + else { + aMesh->MoveNode( node, coord[0], coord[1], coord[2] ); + // node position on shape becomes invalid + const_cast< SMDS_MeshNode* > ( node )->SetPosition + ( SMDS_SpacePosition::originSpacePosition() ); + } + + // keep inverse elements + if ( !theCopy && !theTargetMesh && needReverse ) { + SMDS_ElemIteratorPtr invElemIt = node->GetInverseElementIterator(); + while ( invElemIt->more() ) { + const SMDS_MeshElement* iel = invElemIt->next(); + inverseElemSet.insert( iel ); + } + } + } + } + + // either create new elements or reverse mirrored ones + if ( !theCopy && !needReverse && !theTargetMesh ) + return PGroupIDs(); + + TIDSortedElemSet::iterator invElemIt = inverseElemSet.begin(); + for ( ; invElemIt != inverseElemSet.end(); invElemIt++ ) + theElems.insert( *invElemIt ); + + // Replicate or reverse elements + + std::vector iForw; + for ( itElem = theElems.begin(); itElem != theElems.end(); itElem++ ) + { + const SMDS_MeshElement* elem = *itElem; + if ( !elem ) continue; + + SMDSAbs_GeometryType geomType = elem->GetGeomType(); + int nbNodes = elem->NbNodes(); + if ( geomType == SMDSGeom_NONE ) continue; // node + + switch ( geomType ) { + + case SMDSGeom_POLYGON: // ---------------------- polygon + { + vector poly_nodes (nbNodes); + int iNode = 0; + SMDS_ElemIteratorPtr itN = elem->nodesIterator(); + while (itN->more()) { + const SMDS_MeshNode* node = + static_cast(itN->next()); + TNodeNodeMap::iterator nodeMapIt = nodeMap.find(node); + if (nodeMapIt == nodeMap.end()) + break; // not all nodes transformed + if (needReverse) { + // reverse mirrored faces and volumes + poly_nodes[nbNodes - iNode - 1] = (*nodeMapIt).second; + } else { + poly_nodes[iNode] = (*nodeMapIt).second; + } + iNode++; + } + if ( iNode != nbNodes ) + continue; // not all nodes transformed + + if ( theTargetMesh ) { + myLastCreatedElems.Append(aTgtMesh->AddPolygonalFace(poly_nodes)); + srcElems.Append( elem ); + } + else if ( theCopy ) { + myLastCreatedElems.Append(aMesh->AddPolygonalFace(poly_nodes)); + srcElems.Append( elem ); + } + else { + aMesh->ChangePolygonNodes(elem, poly_nodes); + } + } + break; + + case SMDSGeom_POLYHEDRA: // ------------------ polyhedral volume + { + const SMDS_VtkVolume* aPolyedre = + dynamic_cast( elem ); + if (!aPolyedre) { + MESSAGE("Warning: bad volumic element"); + continue; + } + + vector poly_nodes; poly_nodes.reserve( nbNodes ); + vector quantities; quantities.reserve( nbNodes ); + + bool allTransformed = true; + int nbFaces = aPolyedre->NbFaces(); + for (int iface = 1; iface <= nbFaces && allTransformed; iface++) { + int nbFaceNodes = aPolyedre->NbFaceNodes(iface); + for (int inode = 1; inode <= nbFaceNodes && allTransformed; inode++) { + const SMDS_MeshNode* node = aPolyedre->GetFaceNode(iface, inode); + TNodeNodeMap::iterator nodeMapIt = nodeMap.find(node); + if (nodeMapIt == nodeMap.end()) { + allTransformed = false; // not all nodes transformed + } else { + poly_nodes.push_back((*nodeMapIt).second); + } + if ( needReverse && allTransformed ) + std::reverse( poly_nodes.end() - nbFaceNodes, poly_nodes.end() ); + } + quantities.push_back(nbFaceNodes); + } + if ( !allTransformed ) + continue; // not all nodes transformed + + if ( theTargetMesh ) { + myLastCreatedElems.Append(aTgtMesh->AddPolyhedralVolume(poly_nodes, quantities)); + srcElems.Append( elem ); + } + else if ( theCopy ) { + myLastCreatedElems.Append(aMesh->AddPolyhedralVolume(poly_nodes, quantities)); + srcElems.Append( elem ); + } + else { + aMesh->ChangePolyhedronNodes(elem, poly_nodes, quantities); + } + } + break; + + case SMDSGeom_BALL: // -------------------- Ball + { + if ( !theCopy && !theTargetMesh ) continue; + + TNodeNodeMap::iterator nodeMapIt = nodeMap.find( elem->GetNode(0) ); + if (nodeMapIt == nodeMap.end()) + continue; // not all nodes transformed + + double diameter = static_cast(elem)->GetDiameter(); + if ( theTargetMesh ) { + myLastCreatedElems.Append(aTgtMesh->AddBall( nodeMapIt->second, diameter )); + srcElems.Append( elem ); + } + else { + myLastCreatedElems.Append(aMesh->AddBall( nodeMapIt->second, diameter )); + srcElems.Append( elem ); + } + } + break; + + default: // ----------------------- Regular elements + + while ( iForw.size() < nbNodes ) iForw.push_back( iForw.size() ); + const std::vector& iRev = SMDS_MeshCell::reverseSmdsOrder( elem->GetEntityType() ); + const std::vector& i = needReverse ? iRev : iForw; + + // find transformed nodes + vector nodes(nbNodes); + int iNode = 0; + SMDS_ElemIteratorPtr itN = elem->nodesIterator(); + while ( itN->more() ) { + const SMDS_MeshNode* node = + static_cast( itN->next() ); + TNodeNodeMap::iterator nodeMapIt = nodeMap.find( node ); + if ( nodeMapIt == nodeMap.end() ) + break; // not all nodes transformed + nodes[ i [ iNode++ ]] = (*nodeMapIt).second; + } + if ( iNode != nbNodes ) + continue; // not all nodes transformed + + if ( theTargetMesh ) { + if ( SMDS_MeshElement* copy = + targetMeshEditor.AddElement( nodes, elem->GetType(), elem->IsPoly() )) { + myLastCreatedElems.Append( copy ); + srcElems.Append( elem ); + } + } + else if ( theCopy ) { + if ( AddElement( nodes, elem->GetType(), elem->IsPoly() )) + srcElems.Append( elem ); + } + else { + // reverse element as it was reversed by transformation + if ( nbNodes > 2 ) + aMesh->ChangeElementNodes( elem, &nodes[0], nbNodes ); + } + } // switch ( geomType ) + + } // loop on elements + + PGroupIDs newGroupIDs; + + if ( ( theMakeGroups && theCopy ) || + ( theMakeGroups && theTargetMesh ) ) + newGroupIDs = generateGroups( srcNodes, srcElems, groupPostfix, theTargetMesh ); + + return newGroupIDs; +} + +//======================================================================= +/*! + * \brief Create groups of elements made during transformation + * \param nodeGens - nodes making corresponding myLastCreatedNodes + * \param elemGens - elements making corresponding myLastCreatedElems + * \param postfix - to append to names of new groups + */ +//======================================================================= + +SMESH_MeshEditor::PGroupIDs +SMESH_MeshEditor::generateGroups(const SMESH_SequenceOfElemPtr& nodeGens, + const SMESH_SequenceOfElemPtr& elemGens, + const std::string& postfix, + SMESH_Mesh* targetMesh) +{ + PGroupIDs newGroupIDs( new list ); + SMESH_Mesh* mesh = targetMesh ? targetMesh : GetMesh(); + + // Sort existing groups by types and collect their names + + // to store an old group and a generated new ones + using boost::tuple; + using boost::make_tuple; + typedef tuple< SMESHDS_GroupBase*, SMESHDS_Group*, SMESHDS_Group* > TOldNewGroup; + vector< list< TOldNewGroup > > groupsByType( SMDSAbs_NbElementTypes ); + vector< TOldNewGroup* > orderedOldNewGroups; // in order of old groups + // group names + set< string > groupNames; + + SMESH_Mesh::GroupIteratorPtr groupIt = GetMesh()->GetGroups(); + if ( !groupIt->more() ) return newGroupIDs; + + int newGroupID = mesh->GetGroupIds().back()+1; + while ( groupIt->more() ) + { + SMESH_Group * group = groupIt->next(); + if ( !group ) continue; + SMESHDS_GroupBase* groupDS = group->GetGroupDS(); + if ( !groupDS || groupDS->IsEmpty() ) continue; + groupNames.insert ( group->GetName() ); + groupDS->SetStoreName( group->GetName() ); + const SMDSAbs_ElementType type = groupDS->GetType(); + SMESHDS_Group* newGroup = new SMESHDS_Group( newGroupID++, mesh->GetMeshDS(), type ); + SMESHDS_Group* newTopGroup = new SMESHDS_Group( newGroupID++, mesh->GetMeshDS(), type ); + groupsByType[ type ].push_back( make_tuple( groupDS, newGroup, newTopGroup )); + orderedOldNewGroups.push_back( & groupsByType[ type ].back() ); + } + + // Loop on nodes and elements to add them in new groups + + for ( int isNodes = 0; isNodes < 2; ++isNodes ) + { + const SMESH_SequenceOfElemPtr& gens = isNodes ? nodeGens : elemGens; + const SMESH_SequenceOfElemPtr& elems = isNodes ? myLastCreatedNodes : myLastCreatedElems; + if ( gens.Length() != elems.Length() ) + throw SALOME_Exception("SMESH_MeshEditor::generateGroups(): invalid args"); + + // loop on created elements + for (int iElem = 1; iElem <= elems.Length(); ++iElem ) + { + const SMDS_MeshElement* sourceElem = gens( iElem ); + if ( !sourceElem ) { + MESSAGE("generateGroups(): NULL source element"); + continue; + } + list< TOldNewGroup > & groupsOldNew = groupsByType[ sourceElem->GetType() ]; + if ( groupsOldNew.empty() ) { // no groups of this type at all + while ( iElem < gens.Length() && gens( iElem+1 ) == sourceElem ) + ++iElem; // skip all elements made by sourceElem + continue; + } + // collect all elements made by the iElem-th sourceElem + list< const SMDS_MeshElement* > resultElems; + if ( const SMDS_MeshElement* resElem = elems( iElem )) + if ( resElem != sourceElem ) + resultElems.push_back( resElem ); + while ( iElem < gens.Length() && gens( iElem+1 ) == sourceElem ) + if ( const SMDS_MeshElement* resElem = elems( ++iElem )) + if ( resElem != sourceElem ) + resultElems.push_back( resElem ); + + // there must be a top element + const SMDS_MeshElement* topElem = 0; + if ( isNodes ) + { + topElem = resultElems.back(); + resultElems.pop_back(); + } + else + { + list< const SMDS_MeshElement* >::reverse_iterator resElemIt = resultElems.rbegin(); + for ( ; resElemIt != resultElems.rend() ; ++resElemIt ) + if ( (*resElemIt)->GetType() == sourceElem->GetType() ) + { + topElem = *resElemIt; + resultElems.erase( --(resElemIt.base()) ); // erase *resElemIt + break; + } + } + + // add resultElems to groups originted from ones the sourceElem belongs to + list< TOldNewGroup >::iterator gOldNew, gLast = groupsOldNew.end(); + for ( gOldNew = groupsOldNew.begin(); gOldNew != gLast; ++gOldNew ) + { + SMESHDS_GroupBase* oldGroup = gOldNew->get<0>(); + if ( oldGroup->Contains( sourceElem )) // sourceElem is in oldGroup + { + // fill in a new group + SMDS_MeshGroup & newGroup = gOldNew->get<1>()->SMDSGroup(); + list< const SMDS_MeshElement* >::iterator resLast = resultElems.end(), resElemIt; + for ( resElemIt = resultElems.begin(); resElemIt != resLast; ++resElemIt ) + newGroup.Add( *resElemIt ); + + // fill a "top" group + if ( topElem ) + { + SMDS_MeshGroup & newTopGroup = gOldNew->get<2>()->SMDSGroup(); + newTopGroup.Add( topElem ); + } + } + } + } // loop on created elements + }// loop on nodes and elements + + // Create new SMESH_Groups from SMESHDS_Groups and remove empty SMESHDS_Groups + + list topGrouIds; + for ( size_t i = 0; i < orderedOldNewGroups.size(); ++i ) + { + SMESHDS_GroupBase* oldGroupDS = orderedOldNewGroups[i]->get<0>(); + SMESHDS_Group* newGroups[2] = { orderedOldNewGroups[i]->get<1>(), + orderedOldNewGroups[i]->get<2>() }; + const int nbNewGroups = !newGroups[0]->IsEmpty() + !newGroups[1]->IsEmpty(); + for ( int is2nd = 0; is2nd < 2; ++is2nd ) + { + SMESHDS_Group* newGroupDS = newGroups[ is2nd ]; + if ( newGroupDS->IsEmpty() ) + { + mesh->GetMeshDS()->RemoveGroup( newGroupDS ); + } + else + { + // set group type + newGroupDS->SetType( newGroupDS->GetElements()->next()->GetType() ); + + // make a name + const bool isTop = ( nbNewGroups == 2 && + newGroupDS->GetType() == oldGroupDS->GetType() && + is2nd ); + + string name = oldGroupDS->GetStoreName(); + if ( !targetMesh ) { + string suffix = ( isTop ? "top": postfix.c_str() ); + name += "_"; + name += suffix; + int nb = 1; + while ( !groupNames.insert( name ).second ) // name exists + name = SMESH_Comment( oldGroupDS->GetStoreName() ) << "_" << suffix << "_" << nb++; + } + else if ( isTop ) { + name += "_top"; + } + newGroupDS->SetStoreName( name.c_str() ); + + // make a SMESH_Groups + mesh->AddGroup( newGroupDS ); + if ( isTop ) + topGrouIds.push_back( newGroupDS->GetID() ); + else + newGroupIDs->push_back( newGroupDS->GetID() ); + } + } + } + newGroupIDs->splice( newGroupIDs->end(), topGrouIds ); + + return newGroupIDs; +} + +//================================================================================ +/*! + * \brief Return list of group of nodes close to each other within theTolerance + * Search among theNodes or in the whole mesh if theNodes is empty using + * an Octree algorithm + */ +//================================================================================ + +void SMESH_MeshEditor::FindCoincidentNodes (TIDSortedNodeSet & theNodes, + const double theTolerance, + TListOfListOfNodes & theGroupsOfNodes) +{ + myLastCreatedElems.Clear(); + myLastCreatedNodes.Clear(); + + if ( theNodes.empty() ) + { // get all nodes in the mesh + SMDS_NodeIteratorPtr nIt = GetMeshDS()->nodesIterator(/*idInceasingOrder=*/true); + while ( nIt->more() ) + theNodes.insert( theNodes.end(),nIt->next()); + } + + SMESH_OctreeNode::FindCoincidentNodes ( theNodes, &theGroupsOfNodes, theTolerance); +} + + +//======================================================================= +/*! + * \brief Implementation of search for the node closest to point + */ +//======================================================================= + +struct SMESH_NodeSearcherImpl: public SMESH_NodeSearcher +{ + //--------------------------------------------------------------------- + /*! + * \brief Constructor + */ + SMESH_NodeSearcherImpl( const SMESHDS_Mesh* theMesh ) + { + myMesh = ( SMESHDS_Mesh* ) theMesh; + + TIDSortedNodeSet nodes; + if ( theMesh ) { + SMDS_NodeIteratorPtr nIt = theMesh->nodesIterator(/*idInceasingOrder=*/true); + while ( nIt->more() ) + nodes.insert( nodes.end(), nIt->next() ); + } + myOctreeNode = new SMESH_OctreeNode(nodes) ; + + // get max size of a leaf box + SMESH_OctreeNode* tree = myOctreeNode; + while ( !tree->isLeaf() ) + { + SMESH_OctreeNodeIteratorPtr cIt = tree->GetChildrenIterator(); + if ( cIt->more() ) + tree = cIt->next(); + } + myHalfLeafSize = tree->maxSize() / 2.; + } + + //--------------------------------------------------------------------- + /*! + * \brief Move node and update myOctreeNode accordingly + */ + void MoveNode( const SMDS_MeshNode* node, const gp_Pnt& toPnt ) + { + myOctreeNode->UpdateByMoveNode( node, toPnt ); + myMesh->MoveNode( node, toPnt.X(), toPnt.Y(), toPnt.Z() ); + } + + //--------------------------------------------------------------------- + /*! + * \brief Do it's job + */ + const SMDS_MeshNode* FindClosestTo( const gp_Pnt& thePnt ) + { + map dist2Nodes; + myOctreeNode->NodesAround( thePnt.Coord(), dist2Nodes, myHalfLeafSize ); + if ( !dist2Nodes.empty() ) + return dist2Nodes.begin()->second; + list nodes; + //myOctreeNode->NodesAround( &tgtNode, &nodes, myHalfLeafSize ); + + double minSqDist = DBL_MAX; + if ( nodes.empty() ) // get all nodes of OctreeNode's closest to thePnt + { + // sort leafs by their distance from thePnt + typedef map< double, SMESH_OctreeNode* > TDistTreeMap; + TDistTreeMap treeMap; + list< SMESH_OctreeNode* > treeList; + list< SMESH_OctreeNode* >::iterator trIt; + treeList.push_back( myOctreeNode ); + + gp_XYZ pointNode( thePnt.X(), thePnt.Y(), thePnt.Z() ); + bool pointInside = myOctreeNode->isInside( pointNode, myHalfLeafSize ); + for ( trIt = treeList.begin(); trIt != treeList.end(); ++trIt) + { + SMESH_OctreeNode* tree = *trIt; + if ( !tree->isLeaf() ) // put children to the queue + { + if ( pointInside && !tree->isInside( pointNode, myHalfLeafSize )) continue; + SMESH_OctreeNodeIteratorPtr cIt = tree->GetChildrenIterator(); + while ( cIt->more() ) + treeList.push_back( cIt->next() ); + } + else if ( tree->NbNodes() ) // put a tree to the treeMap + { + const Bnd_B3d& box = *tree->getBox(); + double sqDist = thePnt.SquareDistance( 0.5 * ( box.CornerMin() + box.CornerMax() )); + pair it_in = treeMap.insert( make_pair( sqDist, tree )); + if ( !it_in.second ) // not unique distance to box center + treeMap.insert( it_in.first, make_pair( sqDist + 1e-13*treeMap.size(), tree )); + } + } + // find distance after which there is no sense to check tree's + double sqLimit = DBL_MAX; + TDistTreeMap::iterator sqDist_tree = treeMap.begin(); + if ( treeMap.size() > 5 ) { + SMESH_OctreeNode* closestTree = sqDist_tree->second; + const Bnd_B3d& box = *closestTree->getBox(); + double limit = sqrt( sqDist_tree->first ) + sqrt ( box.SquareExtent() ); + sqLimit = limit * limit; + } + // get all nodes from trees + for ( ; sqDist_tree != treeMap.end(); ++sqDist_tree) { + if ( sqDist_tree->first > sqLimit ) + break; + SMESH_OctreeNode* tree = sqDist_tree->second; + tree->NodesAround( tree->GetNodeIterator()->next(), &nodes ); + } + } + // find closest among nodes + minSqDist = DBL_MAX; + const SMDS_MeshNode* closestNode = 0; + list::iterator nIt = nodes.begin(); + for ( ; nIt != nodes.end(); ++nIt ) { + double sqDist = thePnt.SquareDistance( SMESH_TNodeXYZ( *nIt ) ); + if ( minSqDist > sqDist ) { + closestNode = *nIt; + minSqDist = sqDist; + } + } + return closestNode; + } + + //--------------------------------------------------------------------- + /*! + * \brief Destructor + */ + ~SMESH_NodeSearcherImpl() { delete myOctreeNode; } + + //--------------------------------------------------------------------- + /*! + * \brief Return the node tree + */ + const SMESH_OctreeNode* getTree() const { return myOctreeNode; } + +private: + SMESH_OctreeNode* myOctreeNode; + SMESHDS_Mesh* myMesh; + double myHalfLeafSize; // max size of a leaf box +}; + +//======================================================================= +/*! + * \brief Return SMESH_NodeSearcher + */ +//======================================================================= + +SMESH_NodeSearcher* SMESH_MeshEditor::GetNodeSearcher() +{ + return new SMESH_NodeSearcherImpl( GetMeshDS() ); +} + +// ======================================================================== +namespace // Utils used in SMESH_ElementSearcherImpl::FindElementsByPoint() +{ + const int MaxNbElemsInLeaf = 10; // maximal number of elements in a leaf of tree + const int MaxLevel = 7; // maximal tree height -> nb terminal boxes: 8^7 = 2097152 + const double NodeRadius = 1e-9; // to enlarge bnd box of element + + //======================================================================= + /*! + * \brief Octal tree of bounding boxes of elements + */ + //======================================================================= + + class ElementBndBoxTree : public SMESH_Octree + { + public: + + ElementBndBoxTree(const SMDS_Mesh& mesh, + SMDSAbs_ElementType elemType, + SMDS_ElemIteratorPtr theElemIt = SMDS_ElemIteratorPtr(), + double tolerance = NodeRadius ); + void getElementsNearPoint( const gp_Pnt& point, TIDSortedElemSet& foundElems ); + void getElementsNearLine ( const gp_Ax1& line, TIDSortedElemSet& foundElems); + void getElementsInSphere ( const gp_XYZ& center, + const double radius, TIDSortedElemSet& foundElems); + size_t getSize() { return std::max( _size, _elements.size() ); } + ~ElementBndBoxTree(); + + protected: + ElementBndBoxTree():_size(0) {} + SMESH_Octree* newChild() const { return new ElementBndBoxTree; } + void buildChildrenData(); + Bnd_B3d* buildRootBox(); + private: + //!< Bounding box of element + struct ElementBox : public Bnd_B3d + { + const SMDS_MeshElement* _element; + int _refCount; // an ElementBox can be included in several tree branches + ElementBox(const SMDS_MeshElement* elem, double tolerance); + }; + vector< ElementBox* > _elements; + size_t _size; + }; + + //================================================================================ + /*! + * \brief ElementBndBoxTree creation + */ + //================================================================================ + + ElementBndBoxTree::ElementBndBoxTree(const SMDS_Mesh& mesh, SMDSAbs_ElementType elemType, SMDS_ElemIteratorPtr theElemIt, double tolerance) + :SMESH_Octree( new SMESH_TreeLimit( MaxLevel, /*minSize=*/0. )) + { + int nbElems = mesh.GetMeshInfo().NbElements( elemType ); + _elements.reserve( nbElems ); + + SMDS_ElemIteratorPtr elemIt = theElemIt ? theElemIt : mesh.elementsIterator( elemType ); + while ( elemIt->more() ) + _elements.push_back( new ElementBox( elemIt->next(),tolerance )); + + compute(); + } + + //================================================================================ + /*! + * \brief Destructor + */ + //================================================================================ + + ElementBndBoxTree::~ElementBndBoxTree() + { + for ( int i = 0; i < _elements.size(); ++i ) + if ( --_elements[i]->_refCount <= 0 ) + delete _elements[i]; + } + + //================================================================================ + /*! + * \brief Return the maximal box + */ + //================================================================================ + + Bnd_B3d* ElementBndBoxTree::buildRootBox() + { + Bnd_B3d* box = new Bnd_B3d; + for ( int i = 0; i < _elements.size(); ++i ) + box->Add( *_elements[i] ); + return box; + } + + //================================================================================ + /*! + * \brief Redistrubute element boxes among children + */ + //================================================================================ + + void ElementBndBoxTree::buildChildrenData() + { + for ( int i = 0; i < _elements.size(); ++i ) + { + for (int j = 0; j < 8; j++) + { + if ( !_elements[i]->IsOut( *myChildren[j]->getBox() )) + { + _elements[i]->_refCount++; + ((ElementBndBoxTree*)myChildren[j])->_elements.push_back( _elements[i]); + } + } + _elements[i]->_refCount--; + } + _size = _elements.size(); + SMESHUtils::FreeVector( _elements ); // = _elements.clear() + free memory + + for (int j = 0; j < 8; j++) + { + ElementBndBoxTree* child = static_cast( myChildren[j]); + if ( child->_elements.size() <= MaxNbElemsInLeaf ) + child->myIsLeaf = true; + + if ( child->_elements.capacity() - child->_elements.size() > 1000 ) + SMESHUtils::CompactVector( child->_elements ); + } + } + + //================================================================================ + /*! + * \brief Return elements which can include the point + */ + //================================================================================ + + void ElementBndBoxTree::getElementsNearPoint( const gp_Pnt& point, + TIDSortedElemSet& foundElems) + { + if ( getBox()->IsOut( point.XYZ() )) + return; + + if ( isLeaf() ) + { + for ( int i = 0; i < _elements.size(); ++i ) + if ( !_elements[i]->IsOut( point.XYZ() )) + foundElems.insert( _elements[i]->_element ); + } + else + { + for (int i = 0; i < 8; i++) + ((ElementBndBoxTree*) myChildren[i])->getElementsNearPoint( point, foundElems ); + } + } + + //================================================================================ + /*! + * \brief Return elements which can be intersected by the line + */ + //================================================================================ + + void ElementBndBoxTree::getElementsNearLine( const gp_Ax1& line, + TIDSortedElemSet& foundElems) + { + if ( getBox()->IsOut( line )) + return; + + if ( isLeaf() ) + { + for ( int i = 0; i < _elements.size(); ++i ) + if ( !_elements[i]->IsOut( line )) + foundElems.insert( _elements[i]->_element ); + } + else + { + for (int i = 0; i < 8; i++) + ((ElementBndBoxTree*) myChildren[i])->getElementsNearLine( line, foundElems ); + } + } + + //================================================================================ + /*! + * \brief Return elements from leaves intersecting the sphere + */ + //================================================================================ + + void ElementBndBoxTree::getElementsInSphere ( const gp_XYZ& center, + const double radius, + TIDSortedElemSet& foundElems) + { + if ( getBox()->IsOut( center, radius )) + return; + + if ( isLeaf() ) + { + for ( int i = 0; i < _elements.size(); ++i ) + if ( !_elements[i]->IsOut( center, radius )) + foundElems.insert( _elements[i]->_element ); + } + else + { + for (int i = 0; i < 8; i++) + ((ElementBndBoxTree*) myChildren[i])->getElementsInSphere( center, radius, foundElems ); + } + } + + //================================================================================ + /*! + * \brief Construct the element box + */ + //================================================================================ + + ElementBndBoxTree::ElementBox::ElementBox(const SMDS_MeshElement* elem, double tolerance) + { + _element = elem; + _refCount = 1; + SMDS_ElemIteratorPtr nIt = elem->nodesIterator(); + while ( nIt->more() ) + Add( SMESH_TNodeXYZ( nIt->next() )); + Enlarge( tolerance ); + } + +} // namespace + +//======================================================================= +/*! + * \brief Implementation of search for the elements by point and + * of classification of point in 2D mesh + */ +//======================================================================= + +struct SMESH_ElementSearcherImpl: public SMESH_ElementSearcher +{ + SMESHDS_Mesh* _mesh; + SMDS_ElemIteratorPtr _meshPartIt; + ElementBndBoxTree* _ebbTree; + SMESH_NodeSearcherImpl* _nodeSearcher; + SMDSAbs_ElementType _elementType; + double _tolerance; + bool _outerFacesFound; + set _outerFaces; // empty means "no internal faces at all" + + SMESH_ElementSearcherImpl( SMESHDS_Mesh& mesh, SMDS_ElemIteratorPtr elemIt=SMDS_ElemIteratorPtr()) + : _mesh(&mesh),_meshPartIt(elemIt),_ebbTree(0),_nodeSearcher(0),_tolerance(-1),_outerFacesFound(false) {} + ~SMESH_ElementSearcherImpl() + { + if ( _ebbTree ) delete _ebbTree; _ebbTree = 0; + if ( _nodeSearcher ) delete _nodeSearcher; _nodeSearcher = 0; + } + virtual int FindElementsByPoint(const gp_Pnt& point, + SMDSAbs_ElementType type, + vector< const SMDS_MeshElement* >& foundElements); + virtual TopAbs_State GetPointState(const gp_Pnt& point); + virtual const SMDS_MeshElement* FindClosestTo( const gp_Pnt& point, + SMDSAbs_ElementType type ); + + void GetElementsNearLine( const gp_Ax1& line, + SMDSAbs_ElementType type, + vector< const SMDS_MeshElement* >& foundElems); + double getTolerance(); + bool getIntersParamOnLine(const gp_Lin& line, const SMDS_MeshElement* face, + const double tolerance, double & param); + void findOuterBoundary(const SMDS_MeshElement* anyOuterFace); + bool isOuterBoundary(const SMDS_MeshElement* face) const + { + return _outerFaces.empty() || _outerFaces.count(face); + } + struct TInters //!< data of intersection of the line and the mesh face (used in GetPointState()) + { + const SMDS_MeshElement* _face; + gp_Vec _faceNorm; + bool _coincides; //!< the line lays in face plane + TInters(const SMDS_MeshElement* face, const gp_Vec& faceNorm, bool coinc=false) + : _face(face), _faceNorm( faceNorm ), _coincides( coinc ) {} + }; + struct TFaceLink //!< link and faces sharing it (used in findOuterBoundary()) + { + SMESH_TLink _link; + TIDSortedElemSet _faces; + TFaceLink( const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, const SMDS_MeshElement* face) + : _link( n1, n2 ), _faces( &face, &face + 1) {} + }; +}; + +ostream& operator<< (ostream& out, const SMESH_ElementSearcherImpl::TInters& i) +{ + return out << "TInters(face=" << ( i._face ? i._face->GetID() : 0) + << ", _coincides="<GetMeshInfo(); + + _tolerance = 0; + if ( _nodeSearcher && meshInfo.NbNodes() > 1 ) + { + double boxSize = _nodeSearcher->getTree()->maxSize(); + _tolerance = 1e-8 * boxSize/* / meshInfo.NbNodes()*/; + } + else if ( _ebbTree && meshInfo.NbElements() > 0 ) + { + double boxSize = _ebbTree->maxSize(); + _tolerance = 1e-8 * boxSize/* / meshInfo.NbElements()*/; + } + if ( _tolerance == 0 ) + { + // define tolerance by size of a most complex element + int complexType = SMDSAbs_Volume; + while ( complexType > SMDSAbs_All && + meshInfo.NbElements( SMDSAbs_ElementType( complexType )) < 1 ) + --complexType; + if ( complexType == SMDSAbs_All ) return 0; // empty mesh + double elemSize; + if ( complexType == int( SMDSAbs_Node )) + { + SMDS_NodeIteratorPtr nodeIt = _mesh->nodesIterator(); + elemSize = 1; + if ( meshInfo.NbNodes() > 2 ) + elemSize = SMESH_TNodeXYZ( nodeIt->next() ).Distance( nodeIt->next() ); + } + else + { + SMDS_ElemIteratorPtr elemIt = + _mesh->elementsIterator( SMDSAbs_ElementType( complexType )); + const SMDS_MeshElement* elem = elemIt->next(); + SMDS_ElemIteratorPtr nodeIt = elem->nodesIterator(); + SMESH_TNodeXYZ n1( cast2Node( nodeIt->next() )); + elemSize = 0; + while ( nodeIt->more() ) + { + double dist = n1.Distance( cast2Node( nodeIt->next() )); + elemSize = max( dist, elemSize ); + } + } + _tolerance = 1e-4 * elemSize; + } + } + return _tolerance; +} + +//================================================================================ +/*! + * \brief Find intersection of the line and an edge of face and return parameter on line + */ +//================================================================================ + +bool SMESH_ElementSearcherImpl::getIntersParamOnLine(const gp_Lin& line, + const SMDS_MeshElement* face, + const double tol, + double & param) +{ + int nbInts = 0; + param = 0; + + GeomAPI_ExtremaCurveCurve anExtCC; + Handle(Geom_Curve) lineCurve = new Geom_Line( line ); + + int nbNodes = face->IsQuadratic() ? face->NbNodes()/2 : face->NbNodes(); + for ( int i = 0; i < nbNodes && nbInts < 2; ++i ) + { + GC_MakeSegment edge( SMESH_TNodeXYZ( face->GetNode( i )), + SMESH_TNodeXYZ( face->GetNode( (i+1)%nbNodes) )); + anExtCC.Init( lineCurve, edge); + if ( anExtCC.NbExtrema() > 0 && anExtCC.LowerDistance() <= tol) + { + Quantity_Parameter pl, pe; + anExtCC.LowerDistanceParameters( pl, pe ); + param += pl; + if ( ++nbInts == 2 ) + break; + } + } + if ( nbInts > 0 ) param /= nbInts; + return nbInts > 0; +} +//================================================================================ +/*! + * \brief Find all faces belonging to the outer boundary of mesh + */ +//================================================================================ + +void SMESH_ElementSearcherImpl::findOuterBoundary(const SMDS_MeshElement* outerFace) +{ + if ( _outerFacesFound ) return; + + // Collect all outer faces by passing from one outer face to another via their links + // and BTW find out if there are internal faces at all. + + // checked links and links where outer boundary meets internal one + set< SMESH_TLink > visitedLinks, seamLinks; + + // links to treat with already visited faces sharing them + list < TFaceLink > startLinks; + + // load startLinks with the first outerFace + startLinks.push_back( TFaceLink( outerFace->GetNode(0), outerFace->GetNode(1), outerFace)); + _outerFaces.insert( outerFace ); + + TIDSortedElemSet emptySet; + while ( !startLinks.empty() ) + { + const SMESH_TLink& link = startLinks.front()._link; + TIDSortedElemSet& faces = startLinks.front()._faces; + + outerFace = *faces.begin(); + // find other faces sharing the link + const SMDS_MeshElement* f; + while (( f = SMESH_MeshEditor::FindFaceInSet(link.node1(), link.node2(), emptySet, faces ))) + faces.insert( f ); + + // select another outer face among the found + const SMDS_MeshElement* outerFace2 = 0; + if ( faces.size() == 2 ) + { + outerFace2 = (outerFace == *faces.begin() ? *faces.rbegin() : *faces.begin()); + } + else if ( faces.size() > 2 ) + { + seamLinks.insert( link ); + + // link direction within the outerFace + gp_Vec n1n2( SMESH_TNodeXYZ( link.node1()), + SMESH_TNodeXYZ( link.node2())); + int i1 = outerFace->GetNodeIndex( link.node1() ); + int i2 = outerFace->GetNodeIndex( link.node2() ); + bool rev = ( abs(i2-i1) == 1 ? i1 > i2 : i2 > i1 ); + if ( rev ) n1n2.Reverse(); + // outerFace normal + gp_XYZ ofNorm, fNorm; + if ( SMESH_Algo::FaceNormal( outerFace, ofNorm, /*normalized=*/false )) + { + // direction from the link inside outerFace + gp_Vec dirInOF = gp_Vec( ofNorm ) ^ n1n2; + // sort all other faces by angle with the dirInOF + map< double, const SMDS_MeshElement* > angle2Face; + set< const SMDS_MeshElement*, TIDCompare >::const_iterator face = faces.begin(); + for ( ; face != faces.end(); ++face ) + { + if ( !SMESH_Algo::FaceNormal( *face, fNorm, /*normalized=*/false )) + continue; + gp_Vec dirInF = gp_Vec( fNorm ) ^ n1n2; + double angle = dirInOF.AngleWithRef( dirInF, n1n2 ); + if ( angle < 0 ) angle += 2. * M_PI; + angle2Face.insert( make_pair( angle, *face )); + } + if ( !angle2Face.empty() ) + outerFace2 = angle2Face.begin()->second; + } + } + // store the found outer face and add its links to continue seaching from + if ( outerFace2 ) + { + _outerFaces.insert( outerFace ); + int nbNodes = outerFace2->NbNodes()/( outerFace2->IsQuadratic() ? 2 : 1 ); + for ( int i = 0; i < nbNodes; ++i ) + { + SMESH_TLink link2( outerFace2->GetNode(i), outerFace2->GetNode((i+1)%nbNodes)); + if ( visitedLinks.insert( link2 ).second ) + startLinks.push_back( TFaceLink( link2.node1(), link2.node2(), outerFace2 )); + } + } + startLinks.pop_front(); + } + _outerFacesFound = true; + + if ( !seamLinks.empty() ) + { + // There are internal boundaries touching the outher one, + // find all faces of internal boundaries in order to find + // faces of boundaries of holes, if any. + + } + else + { + _outerFaces.clear(); + } +} + +//======================================================================= +/*! + * \brief Find elements of given type where the given point is IN or ON. + * Returns nb of found elements and elements them-selves. + * + * 'ALL' type means elements of any type excluding nodes, balls and 0D elements + */ +//======================================================================= + +int SMESH_ElementSearcherImpl:: +FindElementsByPoint(const gp_Pnt& point, + SMDSAbs_ElementType type, + vector< const SMDS_MeshElement* >& foundElements) +{ + foundElements.clear(); + + double tolerance = getTolerance(); + + // ================================================================================= + if ( type == SMDSAbs_Node || type == SMDSAbs_0DElement || type == SMDSAbs_Ball) + { + if ( !_nodeSearcher ) + _nodeSearcher = new SMESH_NodeSearcherImpl( _mesh ); + + const SMDS_MeshNode* closeNode = _nodeSearcher->FindClosestTo( point ); + if ( !closeNode ) return foundElements.size(); + + if ( point.Distance( SMESH_TNodeXYZ( closeNode )) > tolerance ) + return foundElements.size(); // to far from any node + + if ( type == SMDSAbs_Node ) + { + foundElements.push_back( closeNode ); + } + else + { + SMDS_ElemIteratorPtr elemIt = closeNode->GetInverseElementIterator( type ); + while ( elemIt->more() ) + foundElements.push_back( elemIt->next() ); + } + } + // ================================================================================= + else // elements more complex than 0D + { + if ( !_ebbTree || _elementType != type ) + { + if ( _ebbTree ) delete _ebbTree; + _ebbTree = new ElementBndBoxTree( *_mesh, _elementType = type, _meshPartIt, tolerance ); + } + TIDSortedElemSet suspectElems; + _ebbTree->getElementsNearPoint( point, suspectElems ); + TIDSortedElemSet::iterator elem = suspectElems.begin(); + for ( ; elem != suspectElems.end(); ++elem ) + if ( !SMESH_MeshEditor::IsOut( *elem, point, tolerance )) + foundElements.push_back( *elem ); + } + return foundElements.size(); +} + +//======================================================================= +/*! + * \brief Find an element of given type most close to the given point + * + * WARNING: Only face search is implemeneted so far + */ +//======================================================================= + +const SMDS_MeshElement* +SMESH_ElementSearcherImpl::FindClosestTo( const gp_Pnt& point, + SMDSAbs_ElementType type ) +{ + const SMDS_MeshElement* closestElem = 0; + + if ( type == SMDSAbs_Face ) + { + if ( !_ebbTree || _elementType != type ) + { + if ( _ebbTree ) delete _ebbTree; + _ebbTree = new ElementBndBoxTree( *_mesh, _elementType = type, _meshPartIt ); + } + TIDSortedElemSet suspectElems; + _ebbTree->getElementsNearPoint( point, suspectElems ); + + if ( suspectElems.empty() && _ebbTree->maxSize() > 0 ) + { + gp_Pnt boxCenter = 0.5 * ( _ebbTree->getBox()->CornerMin() + + _ebbTree->getBox()->CornerMax() ); + double radius; + if ( _ebbTree->getBox()->IsOut( point.XYZ() )) + radius = point.Distance( boxCenter ) - 0.5 * _ebbTree->maxSize(); + else + radius = _ebbTree->maxSize() / pow( 2., _ebbTree->getHeight()) / 2; + while ( suspectElems.empty() ) + { + _ebbTree->getElementsInSphere( point.XYZ(), radius, suspectElems ); + radius *= 1.1; + } + } + double minDist = std::numeric_limits::max(); + multimap< double, const SMDS_MeshElement* > dist2face; + TIDSortedElemSet::iterator elem = suspectElems.begin(); + for ( ; elem != suspectElems.end(); ++elem ) + { + double dist = SMESH_MeshEditor::GetDistance( dynamic_cast(*elem), + point ); + if ( dist < minDist + 1e-10) + { + minDist = dist; + dist2face.insert( dist2face.begin(), make_pair( dist, *elem )); + } + } + if ( !dist2face.empty() ) + { + multimap< double, const SMDS_MeshElement* >::iterator d2f = dist2face.begin(); + closestElem = d2f->second; + // if there are several elements at the same distance, select one + // with GC closest to the point + typedef SMDS_StdIterator< SMESH_TNodeXYZ, SMDS_ElemIteratorPtr > TXyzIterator; + double minDistToGC = 0; + for ( ++d2f; d2f != dist2face.end() && fabs( d2f->first - minDist ) < 1e-10; ++d2f ) + { + if ( minDistToGC == 0 ) + { + gp_XYZ gc(0,0,0); + gc = accumulate( TXyzIterator(closestElem->nodesIterator()), + TXyzIterator(), gc ) / closestElem->NbNodes(); + minDistToGC = point.SquareDistance( gc ); + } + gp_XYZ gc(0,0,0); + gc = accumulate( TXyzIterator( d2f->second->nodesIterator()), + TXyzIterator(), gc ) / d2f->second->NbNodes(); + double d = point.SquareDistance( gc ); + if ( d < minDistToGC ) + { + minDistToGC = d; + closestElem = d2f->second; + } + } + // cout << "FindClosestTo( " <GetID() << " DIST " << minDist << endl; + } + } + else + { + // NOT IMPLEMENTED SO FAR + } + return closestElem; +} + + +//================================================================================ +/*! + * \brief Classify the given point in the closed 2D mesh + */ +//================================================================================ + +TopAbs_State SMESH_ElementSearcherImpl::GetPointState(const gp_Pnt& point) +{ + double tolerance = getTolerance(); + if ( !_ebbTree || _elementType != SMDSAbs_Face ) + { + if ( _ebbTree ) delete _ebbTree; + _ebbTree = new ElementBndBoxTree( *_mesh, _elementType = SMDSAbs_Face, _meshPartIt ); + } + // Algo: analyse transition of a line starting at the point through mesh boundary; + // try three lines parallel to axis of the coordinate system and perform rough + // analysis. If solution is not clear perform thorough analysis. + + const int nbAxes = 3; + gp_Dir axisDir[ nbAxes ] = { gp::DX(), gp::DY(), gp::DZ() }; + map< double, TInters > paramOnLine2TInters[ nbAxes ]; + list< TInters > tangentInters[ nbAxes ]; // of faces whose plane includes the line + multimap< int, int > nbInt2Axis; // to find the simplest case + for ( int axis = 0; axis < nbAxes; ++axis ) + { + gp_Ax1 lineAxis( point, axisDir[axis]); + gp_Lin line ( lineAxis ); + + TIDSortedElemSet suspectFaces; // faces possibly intersecting the line + _ebbTree->getElementsNearLine( lineAxis, suspectFaces ); + + // Intersect faces with the line + + map< double, TInters > & u2inters = paramOnLine2TInters[ axis ]; + TIDSortedElemSet::iterator face = suspectFaces.begin(); + for ( ; face != suspectFaces.end(); ++face ) + { + // get face plane + gp_XYZ fNorm; + if ( !SMESH_Algo::FaceNormal( *face, fNorm, /*normalized=*/false)) continue; + gp_Pln facePlane( SMESH_TNodeXYZ( (*face)->GetNode(0)), fNorm ); + + // perform intersection + IntAna_IntConicQuad intersection( line, IntAna_Quadric( facePlane )); + if ( !intersection.IsDone() ) + continue; + if ( intersection.IsInQuadric() ) + { + tangentInters[ axis ].push_back( TInters( *face, fNorm, true )); + } + else if ( ! intersection.IsParallel() && intersection.NbPoints() > 0 ) + { + gp_Pnt intersectionPoint = intersection.Point(1); + if ( !SMESH_MeshEditor::IsOut( *face, intersectionPoint, tolerance )) + u2inters.insert(make_pair( intersection.ParamOnConic(1), TInters( *face, fNorm ))); + } + } + // Analyse intersections roughly + + int nbInter = u2inters.size(); + if ( nbInter == 0 ) + return TopAbs_OUT; + + double f = u2inters.begin()->first, l = u2inters.rbegin()->first; + if ( nbInter == 1 ) // not closed mesh + return fabs( f ) < tolerance ? TopAbs_ON : TopAbs_UNKNOWN; + + if ( fabs( f ) < tolerance || fabs( l ) < tolerance ) + return TopAbs_ON; + + if ( (f<0) == (l<0) ) + return TopAbs_OUT; + + int nbIntBeforePoint = std::distance( u2inters.begin(), u2inters.lower_bound(0)); + int nbIntAfterPoint = nbInter - nbIntBeforePoint; + if ( nbIntBeforePoint == 1 || nbIntAfterPoint == 1 ) + return TopAbs_IN; + + nbInt2Axis.insert( make_pair( min( nbIntBeforePoint, nbIntAfterPoint ), axis )); + + if ( _outerFacesFound ) break; // pass to thorough analysis + + } // three attempts - loop on CS axes + + // Analyse intersections thoroughly. + // We make two loops maximum, on the first one we only exclude touching intersections, + // on the second, if situation is still unclear, we gather and use information on + // position of faces (internal or outer). If faces position is already gathered, + // we make the second loop right away. + + for ( int hasPositionInfo = _outerFacesFound; hasPositionInfo < 2; ++hasPositionInfo ) + { + multimap< int, int >::const_iterator nb_axis = nbInt2Axis.begin(); + for ( ; nb_axis != nbInt2Axis.end(); ++nb_axis ) + { + int axis = nb_axis->second; + map< double, TInters > & u2inters = paramOnLine2TInters[ axis ]; + + gp_Ax1 lineAxis( point, axisDir[axis]); + gp_Lin line ( lineAxis ); + + // add tangent intersections to u2inters + double param; + list< TInters >::const_iterator tgtInt = tangentInters[ axis ].begin(); + for ( ; tgtInt != tangentInters[ axis ].end(); ++tgtInt ) + if ( getIntersParamOnLine( line, tgtInt->_face, tolerance, param )) + u2inters.insert(make_pair( param, *tgtInt )); + tangentInters[ axis ].clear(); + + // Count intersections before and after the point excluding touching ones. + // If hasPositionInfo we count intersections of outer boundary only + + int nbIntBeforePoint = 0, nbIntAfterPoint = 0; + double f = numeric_limits::max(), l = -numeric_limits::max(); + map< double, TInters >::iterator u_int1 = u2inters.begin(), u_int2 = u_int1; + bool ok = ! u_int1->second._coincides; + while ( ok && u_int1 != u2inters.end() ) + { + double u = u_int1->first; + bool touchingInt = false; + if ( ++u_int2 != u2inters.end() ) + { + // skip intersections at the same point (if the line passes through edge or node) + int nbSamePnt = 0; + while ( u_int2 != u2inters.end() && fabs( u_int2->first - u ) < tolerance ) + { + ++nbSamePnt; + ++u_int2; + } + + // skip tangent intersections + int nbTgt = 0; + const SMDS_MeshElement* prevFace = u_int1->second._face; + while ( ok && u_int2->second._coincides ) + { + if ( SMESH_Algo::GetCommonNodes(prevFace , u_int2->second._face).empty() ) + ok = false; + else + { + nbTgt++; + u_int2++; + ok = ( u_int2 != u2inters.end() ); + } + } + if ( !ok ) break; + + // skip intersections at the same point after tangent intersections + if ( nbTgt > 0 ) + { + double u2 = u_int2->first; + ++u_int2; + while ( u_int2 != u2inters.end() && fabs( u_int2->first - u2 ) < tolerance ) + { + ++nbSamePnt; + ++u_int2; + } + } + // decide if we skipped a touching intersection + if ( nbSamePnt + nbTgt > 0 ) + { + double minDot = numeric_limits::max(), maxDot = -numeric_limits::max(); + map< double, TInters >::iterator u_int = u_int1; + for ( ; u_int != u_int2; ++u_int ) + { + if ( u_int->second._coincides ) continue; + double dot = u_int->second._faceNorm * line.Direction(); + if ( dot > maxDot ) maxDot = dot; + if ( dot < minDot ) minDot = dot; + } + touchingInt = ( minDot*maxDot < 0 ); + } + } + if ( !touchingInt ) + { + if ( !hasPositionInfo || isOuterBoundary( u_int1->second._face )) + { + if ( u < 0 ) + ++nbIntBeforePoint; + else + ++nbIntAfterPoint; + } + if ( u < f ) f = u; + if ( u > l ) l = u; + } + + u_int1 = u_int2; // to next intersection + + } // loop on intersections with one line + + if ( ok ) + { + if ( fabs( f ) < tolerance || fabs( l ) < tolerance ) + return TopAbs_ON; + + if ( nbIntBeforePoint == 0 || nbIntAfterPoint == 0) + return TopAbs_OUT; + + if ( nbIntBeforePoint + nbIntAfterPoint == 1 ) // not closed mesh + return fabs( f ) < tolerance ? TopAbs_ON : TopAbs_UNKNOWN; + + if ( nbIntBeforePoint == 1 || nbIntAfterPoint == 1 ) + return TopAbs_IN; + + if ( (f<0) == (l<0) ) + return TopAbs_OUT; + + if ( hasPositionInfo ) + return nbIntBeforePoint % 2 ? TopAbs_IN : TopAbs_OUT; + } + } // loop on intersections of the tree lines - thorough analysis + + if ( !hasPositionInfo ) + { + // gather info on faces position - is face in the outer boundary or not + map< double, TInters > & u2inters = paramOnLine2TInters[ 0 ]; + findOuterBoundary( u2inters.begin()->second._face ); + } + + } // two attempts - with and w/o faces position info in the mesh + + return TopAbs_UNKNOWN; +} + +//======================================================================= +/*! + * \brief Return elements possibly intersecting the line + */ +//======================================================================= + +void SMESH_ElementSearcherImpl::GetElementsNearLine( const gp_Ax1& line, + SMDSAbs_ElementType type, + vector< const SMDS_MeshElement* >& foundElems) +{ + if ( !_ebbTree || _elementType != type ) + { + if ( _ebbTree ) delete _ebbTree; + _ebbTree = new ElementBndBoxTree( *_mesh, _elementType = type, _meshPartIt ); + } + TIDSortedElemSet suspectFaces; // elements possibly intersecting the line + _ebbTree->getElementsNearLine( line, suspectFaces ); + foundElems.assign( suspectFaces.begin(), suspectFaces.end()); +} + +//======================================================================= +/*! + * \brief Return SMESH_ElementSearcher + */ +//======================================================================= + +SMESH_ElementSearcher* SMESH_MeshEditor::GetElementSearcher() +{ + return new SMESH_ElementSearcherImpl( *GetMeshDS() ); +} + +//======================================================================= +/*! + * \brief Return SMESH_ElementSearcher acting on a sub-set of elements + */ +//======================================================================= + +SMESH_ElementSearcher* SMESH_MeshEditor::GetElementSearcher(SMDS_ElemIteratorPtr elemIt) +{ + return new SMESH_ElementSearcherImpl( *GetMeshDS(), elemIt ); +} + +//======================================================================= +/*! + * \brief Return true if the point is IN or ON of the element + */ +//======================================================================= + +bool SMESH_MeshEditor::IsOut( const SMDS_MeshElement* element, const gp_Pnt& point, double tol ) +{ + if ( element->GetType() == SMDSAbs_Volume) + { + return SMDS_VolumeTool( element ).IsOut( point.X(), point.Y(), point.Z(), tol ); + } + + // get ordered nodes + + vector< gp_XYZ > xyz; + vector nodeList; + + SMDS_ElemIteratorPtr nodeIt = element->nodesIterator(); + if ( element->IsQuadratic() ) { + if (const SMDS_VtkFace* f=dynamic_cast(element)) + nodeIt = f->interlacedNodesElemIterator(); + else if (const SMDS_VtkEdge* e =dynamic_cast(element)) + nodeIt = e->interlacedNodesElemIterator(); + } + while ( nodeIt->more() ) + { + const SMDS_MeshNode* node = cast2Node( nodeIt->next() ); + xyz.push_back( SMESH_TNodeXYZ(node) ); + nodeList.push_back(node); + } + + int i, nbNodes = element->NbNodes(); + + if ( element->GetType() == SMDSAbs_Face ) // -------------------------------------------------- + { + // compute face normal + gp_Vec faceNorm(0,0,0); + xyz.push_back( xyz.front() ); + nodeList.push_back( nodeList.front() ); + for ( i = 0; i < nbNodes; ++i ) + { + gp_Vec edge1( xyz[i+1], xyz[i]); + gp_Vec edge2( xyz[i+1], xyz[(i+2)%nbNodes] ); + faceNorm += edge1 ^ edge2; + } + double normSize = faceNorm.Magnitude(); + if ( normSize <= tol ) + { + // degenerated face: point is out if it is out of all face edges + for ( i = 0; i < nbNodes; ++i ) + { + SMDS_LinearEdge edge( nodeList[i], nodeList[i+1] ); + if ( !IsOut( &edge, point, tol )) + return false; + } + return true; + } + faceNorm /= normSize; + + // check if the point lays on face plane + gp_Vec n2p( xyz[0], point ); + if ( fabs( n2p * faceNorm ) > tol ) + return true; // not on face plane + + // check if point is out of face boundary: + // define it by closest transition of a ray point->infinity through face boundary + // on the face plane. + // First, find normal of a plane perpendicular to face plane, to be used as a cutting tool + // to find intersections of the ray with the boundary. + gp_Vec ray = n2p; + gp_Vec plnNorm = ray ^ faceNorm; + normSize = plnNorm.Magnitude(); + if ( normSize <= tol ) return false; // point coincides with the first node + plnNorm /= normSize; + // for each node of the face, compute its signed distance to the plane + vector dist( nbNodes + 1); + for ( i = 0; i < nbNodes; ++i ) + { + gp_Vec n2p( xyz[i], point ); + dist[i] = n2p * plnNorm; + } + dist.back() = dist.front(); + // find the closest intersection + int iClosest = -1; + double rClosest, distClosest = 1e100;; + gp_Pnt pClosest; + for ( i = 0; i < nbNodes; ++i ) + { + double r; + if ( fabs( dist[i]) < tol ) + r = 0.; + else if ( fabs( dist[i+1]) < tol ) + r = 1.; + else if ( dist[i] * dist[i+1] < 0 ) + r = dist[i] / ( dist[i] - dist[i+1] ); + else + continue; // no intersection + gp_Pnt pInt = xyz[i] * (1.-r) + xyz[i+1] * r; + gp_Vec p2int ( point, pInt); + if ( p2int * ray > -tol ) // right half-space + { + double intDist = p2int.SquareMagnitude(); + if ( intDist < distClosest ) + { + iClosest = i; + rClosest = r; + pClosest = pInt; + distClosest = intDist; + } + } + } + if ( iClosest < 0 ) + return true; // no intesections - out + + // analyse transition + gp_Vec edge( xyz[iClosest], xyz[iClosest+1] ); + gp_Vec edgeNorm = -( edge ^ faceNorm ); // normal to intersected edge pointing out of face + gp_Vec p2int ( point, pClosest ); + bool out = (edgeNorm * p2int) < -tol; + if ( rClosest > 0. && rClosest < 1. ) // not node intersection + return out; + + // ray pass through a face node; analyze transition through an adjacent edge + gp_Pnt p1 = xyz[ (rClosest == 0.) ? ((iClosest+nbNodes-1) % nbNodes) : (iClosest+1) ]; + gp_Pnt p2 = xyz[ (rClosest == 0.) ? iClosest : ((iClosest+2) % nbNodes) ]; + gp_Vec edgeAdjacent( p1, p2 ); + gp_Vec edgeNorm2 = -( edgeAdjacent ^ faceNorm ); + bool out2 = (edgeNorm2 * p2int) < -tol; + + bool covexCorner = ( edgeNorm * edgeAdjacent * (rClosest==1. ? 1. : -1.)) < 0; + return covexCorner ? (out || out2) : (out && out2); + } + if ( element->GetType() == SMDSAbs_Edge ) // -------------------------------------------------- + { + // point is out of edge if it is NOT ON any straight part of edge + // (we consider quadratic edge as being composed of two straight parts) + for ( i = 1; i < nbNodes; ++i ) + { + gp_Vec edge( xyz[i-1], xyz[i]); + gp_Vec n1p ( xyz[i-1], point); + double dist = ( edge ^ n1p ).Magnitude() / edge.Magnitude(); + if ( dist > tol ) + continue; + gp_Vec n2p( xyz[i], point ); + if ( fabs( edge.Magnitude() - n1p.Magnitude() - n2p.Magnitude()) > tol ) + continue; + return false; // point is ON this part + } + return true; + } + // Node or 0D element ------------------------------------------------------------------------- + { + gp_Vec n2p ( xyz[0], point ); + return n2p.Magnitude() <= tol; + } + return true; +} + +//======================================================================= + +namespace +{ + // Position of a point relative to a segment + // . . + // . LEFT . + // . . + // VERTEX 1 o----ON-----> VERTEX 2 + // . . + // . RIGHT . + // . . + enum PositionName { POS_LEFT = 1, POS_VERTEX = 2, POS_RIGHT = 4, //POS_ON = 8, + POS_ALL = POS_LEFT | POS_RIGHT | POS_VERTEX }; + struct PointPos + { + PositionName _name; + int _index; // index of vertex or segment + + PointPos( PositionName n, int i=-1 ): _name(n), _index(i) {} + bool operator < (const PointPos& other ) const + { + if ( _name == other._name ) + return ( _index < 0 || other._index < 0 ) ? false : _index < other._index; + return _name < other._name; + } + }; + + //================================================================================ + /*! + * \brief Return of a point relative to a segment + * \param point2D - the point to analyze position of + * \param xyVec - end points of segments + * \param index0 - 0-based index of the first point of segment + * \param posToFindOut - flags of positions to detect + * \retval PointPos - point position + */ + //================================================================================ + + PointPos getPointPosition( const gp_XY& point2D, + const gp_XY* segEnds, + const int index0 = 0, + const int posToFindOut = POS_ALL) + { + const gp_XY& p1 = segEnds[ index0 ]; + const gp_XY& p2 = segEnds[ index0+1 ]; + const gp_XY grad = p2 - p1; + + if ( posToFindOut & POS_VERTEX ) + { + // check if the point2D is at "vertex 1" zone + gp_XY pp1[2] = { p1, gp_XY( p1.X() - grad.Y(), + p1.Y() + grad.X() ) }; + if ( getPointPosition( point2D, pp1, 0, POS_LEFT|POS_RIGHT )._name == POS_LEFT ) + return PointPos( POS_VERTEX, index0 ); + + // check if the point2D is at "vertex 2" zone + gp_XY pp2[2] = { p2, gp_XY( p2.X() - grad.Y(), + p2.Y() + grad.X() ) }; + if ( getPointPosition( point2D, pp2, 0, POS_LEFT|POS_RIGHT )._name == POS_RIGHT ) + return PointPos( POS_VERTEX, index0 + 1); + } + double edgeEquation = + ( point2D.X() - p1.X() ) * grad.Y() - ( point2D.Y() - p1.Y() ) * grad.X(); + return PointPos( edgeEquation < 0 ? POS_LEFT : POS_RIGHT, index0 ); + } +} + +//======================================================================= +/*! + * \brief Return minimal distance from a point to a face + * + * Currently we ignore non-planarity and 2nd order of face + */ +//======================================================================= + +double SMESH_MeshEditor::GetDistance( const SMDS_MeshFace* face, + const gp_Pnt& point ) +{ + double badDistance = -1; + if ( !face ) return badDistance; + + // coordinates of nodes (medium nodes, if any, ignored) + typedef SMDS_StdIterator< SMESH_TNodeXYZ, SMDS_ElemIteratorPtr > TXyzIterator; + vector xyz( TXyzIterator( face->nodesIterator()), TXyzIterator() ); + xyz.resize( face->NbCornerNodes()+1 ); + + // transformation to get xyz[0] lies on the origin, xyz[1] lies on the Z axis, + // and xyz[2] lies in the XZ plane. This is to pass to 2D space on XZ plane. + gp_Trsf trsf; + gp_Vec OZ ( xyz[0], xyz[1] ); + gp_Vec OX ( xyz[0], xyz[2] ); + if ( OZ.Magnitude() < std::numeric_limits::min() ) + { + if ( xyz.size() < 4 ) return badDistance; + OZ = gp_Vec ( xyz[0], xyz[2] ); + OX = gp_Vec ( xyz[0], xyz[3] ); + } + gp_Ax3 tgtCS; + try { + tgtCS = gp_Ax3( xyz[0], OZ, OX ); + } + catch ( Standard_Failure ) { + return badDistance; + } + trsf.SetTransformation( tgtCS ); + + // move all the nodes to 2D + vector xy( xyz.size() ); + for ( size_t i = 0;i < xyz.size()-1; ++i ) + { + gp_XYZ p3d = xyz[i]; + trsf.Transforms( p3d ); + xy[i].SetCoord( p3d.X(), p3d.Z() ); + } + xyz.back() = xyz.front(); + xy.back() = xy.front(); + + // // move the point in 2D + gp_XYZ tmpPnt = point.XYZ(); + trsf.Transforms( tmpPnt ); + gp_XY point2D( tmpPnt.X(), tmpPnt.Z() ); + + // loop on segments of the face to analyze point position ralative to the face + set< PointPos > pntPosSet; + for ( size_t i = 1; i < xy.size(); ++i ) + { + PointPos pos = getPointPosition( point2D, &xy[0], i-1 ); + pntPosSet.insert( pos ); + } + + // compute distance + PointPos pos = *pntPosSet.begin(); + // cout << "Face " << face->GetID() << " DIST: "; + switch ( pos._name ) + { + case POS_LEFT: { + // point is most close to a segment + gp_Vec p0p1( point, xyz[ pos._index ] ); + gp_Vec p1p2( xyz[ pos._index ], xyz[ pos._index+1 ]); // segment vector + p1p2.Normalize(); + double projDist = p0p1 * p1p2; // distance projected to the segment + gp_Vec projVec = p1p2 * projDist; + gp_Vec distVec = p0p1 - projVec; + // cout << distVec.Magnitude() << ", SEG " << face->GetNode(pos._index)->GetID() + // << " - " << face->GetNodeWrap(pos._index+1)->GetID() << endl; + return distVec.Magnitude(); + } + case POS_RIGHT: { + // point is inside the face + double distToFacePlane = tmpPnt.Y(); + // cout << distToFacePlane << ", INSIDE " << endl; + return Abs( distToFacePlane ); + } + case POS_VERTEX: { + // point is most close to a node + gp_Vec distVec( point, xyz[ pos._index ]); + // cout << distVec.Magnitude() << " VERTEX " << face->GetNode(pos._index)->GetID() << endl; + return distVec.Magnitude(); + } + } + return badDistance; +} + +//======================================================================= +//function : SimplifyFace +//purpose : +//======================================================================= +int SMESH_MeshEditor::SimplifyFace (const vector faceNodes, + vector& poly_nodes, + vector& quantities) const +{ + int nbNodes = faceNodes.size(); + + if (nbNodes < 3) + return 0; + + set nodeSet; + + // get simple seq of nodes + //const SMDS_MeshNode* simpleNodes[ nbNodes ]; + vector simpleNodes( nbNodes ); + int iSimple = 0, nbUnique = 0; + + simpleNodes[iSimple++] = faceNodes[0]; + nbUnique++; + for (int iCur = 1; iCur < nbNodes; iCur++) { + if (faceNodes[iCur] != simpleNodes[iSimple - 1]) { + simpleNodes[iSimple++] = faceNodes[iCur]; + if (nodeSet.insert( faceNodes[iCur] ).second) + nbUnique++; + } + } + int nbSimple = iSimple; + if (simpleNodes[nbSimple - 1] == simpleNodes[0]) { + nbSimple--; + iSimple--; + } + + if (nbUnique < 3) + return 0; + + // separate loops + int nbNew = 0; + bool foundLoop = (nbSimple > nbUnique); + while (foundLoop) { + foundLoop = false; + set loopSet; + for (iSimple = 0; iSimple < nbSimple && !foundLoop; iSimple++) { + const SMDS_MeshNode* n = simpleNodes[iSimple]; + if (!loopSet.insert( n ).second) { + foundLoop = true; + + // separate loop + int iC = 0, curLast = iSimple; + for (; iC < curLast; iC++) { + if (simpleNodes[iC] == n) break; + } + int loopLen = curLast - iC; + if (loopLen > 2) { + // create sub-element + nbNew++; + quantities.push_back(loopLen); + for (; iC < curLast; iC++) { + poly_nodes.push_back(simpleNodes[iC]); + } + } + // shift the rest nodes (place from the first loop position) + for (iC = curLast + 1; iC < nbSimple; iC++) { + simpleNodes[iC - loopLen] = simpleNodes[iC]; + } + nbSimple -= loopLen; + iSimple -= loopLen; + } + } // for (iSimple = 0; iSimple < nbSimple; iSimple++) + } // while (foundLoop) + + if (iSimple > 2) { + nbNew++; + quantities.push_back(iSimple); + for (int i = 0; i < iSimple; i++) + poly_nodes.push_back(simpleNodes[i]); + } + + return nbNew; +} + +//======================================================================= +//function : MergeNodes +//purpose : In each group, the cdr of nodes are substituted by the first one +// in all elements. +//======================================================================= + +void SMESH_MeshEditor::MergeNodes (TListOfListOfNodes & theGroupsOfNodes) +{ + MESSAGE("MergeNodes"); + myLastCreatedElems.Clear(); + myLastCreatedNodes.Clear(); + + SMESHDS_Mesh* aMesh = GetMeshDS(); + + TNodeNodeMap nodeNodeMap; // node to replace - new node + set elems; // all elements with changed nodes + list< int > rmElemIds, rmNodeIds; + + // Fill nodeNodeMap and elems + + TListOfListOfNodes::iterator grIt = theGroupsOfNodes.begin(); + for ( ; grIt != theGroupsOfNodes.end(); grIt++ ) { + list& nodes = *grIt; + list::iterator nIt = nodes.begin(); + const SMDS_MeshNode* nToKeep = *nIt; + //MESSAGE("node to keep " << nToKeep->GetID()); + for ( ++nIt; nIt != nodes.end(); nIt++ ) { + const SMDS_MeshNode* nToRemove = *nIt; + nodeNodeMap.insert( TNodeNodeMap::value_type( nToRemove, nToKeep )); + if ( nToRemove != nToKeep ) { + //MESSAGE(" node to remove " << nToRemove->GetID()); + rmNodeIds.push_back( nToRemove->GetID() ); + AddToSameGroups( nToKeep, nToRemove, aMesh ); + // set _alwaysComputed to a sub-mesh of VERTEX to enable mesh computing + // after MergeNodes() w/o creating node in place of merged ones. + const SMDS_PositionPtr& pos = nToRemove->GetPosition(); + if ( pos && pos->GetTypeOfPosition() == SMDS_TOP_VERTEX ) + if ( SMESH_subMesh* sm = myMesh->GetSubMeshContaining( nToRemove->getshapeId() )) + sm->SetIsAlwaysComputed( true ); + } + + SMDS_ElemIteratorPtr invElemIt = nToRemove->GetInverseElementIterator(); + while ( invElemIt->more() ) { + const SMDS_MeshElement* elem = invElemIt->next(); + elems.insert(elem); + } + } + } + // Change element nodes or remove an element + + set::iterator eIt = elems.begin(); + for ( ; eIt != elems.end(); eIt++ ) { + const SMDS_MeshElement* elem = *eIt; + //MESSAGE(" ---- inverse elem on node to remove " << elem->GetID()); + int nbNodes = elem->NbNodes(); + int aShapeId = FindShape( elem ); + + set nodeSet; + vector< const SMDS_MeshNode*> curNodes( nbNodes ), uniqueNodes( nbNodes ); + int iUnique = 0, iCur = 0, nbRepl = 0; + vector iRepl( nbNodes ); + + // get new seq of nodes + SMDS_ElemIteratorPtr itN = elem->nodesIterator(); + while ( itN->more() ) { + const SMDS_MeshNode* n = + static_cast( itN->next() ); + + TNodeNodeMap::iterator nnIt = nodeNodeMap.find( n ); + if ( nnIt != nodeNodeMap.end() ) { // n sticks + n = (*nnIt).second; + // BUG 0020185: begin + { + bool stopRecur = false; + set nodesRecur; + nodesRecur.insert(n); + while (!stopRecur) { + TNodeNodeMap::iterator nnIt_i = nodeNodeMap.find( n ); + if ( nnIt_i != nodeNodeMap.end() ) { // n sticks + n = (*nnIt_i).second; + if (!nodesRecur.insert(n).second) { + // error: recursive dependancy + stopRecur = true; + } + } + else + stopRecur = true; + } + } + // BUG 0020185: end + } + curNodes[ iCur ] = n; + bool isUnique = nodeSet.insert( n ).second; + if ( isUnique ) + uniqueNodes[ iUnique++ ] = n; + else + iRepl[ nbRepl++ ] = iCur; + iCur++; + } + + // Analyse element topology after replacement + + bool isOk = true; + int nbUniqueNodes = nodeSet.size(); + //MESSAGE("nbNodes nbUniqueNodes " << nbNodes << " " << nbUniqueNodes); + if ( nbNodes != nbUniqueNodes ) { // some nodes stick + // Polygons and Polyhedral volumes + if (elem->IsPoly()) { + + if (elem->GetType() == SMDSAbs_Face) { + // Polygon + vector face_nodes (nbNodes); + int inode = 0; + for (; inode < nbNodes; inode++) { + face_nodes[inode] = curNodes[inode]; + } + + vector polygons_nodes; + vector quantities; + int nbNew = SimplifyFace(face_nodes, polygons_nodes, quantities); + if (nbNew > 0) { + inode = 0; + for (int iface = 0; iface < nbNew; iface++) { + int nbNodes = quantities[iface]; + vector poly_nodes (nbNodes); + for (int ii = 0; ii < nbNodes; ii++, inode++) { + poly_nodes[ii] = polygons_nodes[inode]; + } + SMDS_MeshElement* newElem = aMesh->AddPolygonalFace(poly_nodes); + myLastCreatedElems.Append(newElem); + if (aShapeId) + aMesh->SetMeshElementOnShape(newElem, aShapeId); + } + + MESSAGE("ChangeElementNodes MergeNodes Polygon"); + //aMesh->ChangeElementNodes(elem, &polygons_nodes[inode], quantities[nbNew - 1]); + vector polynodes(polygons_nodes.begin()+inode,polygons_nodes.end()); + int quid =0; + if (nbNew > 0) quid = nbNew - 1; + vector newquant(quantities.begin()+quid, quantities.end()); + const SMDS_MeshElement* newElem = 0; + newElem = aMesh->AddPolyhedralVolume(polynodes, newquant); + myLastCreatedElems.Append(newElem); + if ( aShapeId && newElem ) + aMesh->SetMeshElementOnShape( newElem, aShapeId ); + rmElemIds.push_back(elem->GetID()); + } + else { + rmElemIds.push_back(elem->GetID()); + } + + } + else if (elem->GetType() == SMDSAbs_Volume) { + // Polyhedral volume + if (nbUniqueNodes < 4) { + rmElemIds.push_back(elem->GetID()); + } + else { + // each face has to be analyzed in order to check volume validity + const SMDS_VtkVolume* aPolyedre = + dynamic_cast( elem ); + if (aPolyedre) { + int nbFaces = aPolyedre->NbFaces(); + + vector poly_nodes; + vector quantities; + + for (int iface = 1; iface <= nbFaces; iface++) { + int nbFaceNodes = aPolyedre->NbFaceNodes(iface); + vector faceNodes (nbFaceNodes); + + for (int inode = 1; inode <= nbFaceNodes; inode++) { + const SMDS_MeshNode * faceNode = aPolyedre->GetFaceNode(iface, inode); + TNodeNodeMap::iterator nnIt = nodeNodeMap.find(faceNode); + if (nnIt != nodeNodeMap.end()) { // faceNode sticks + faceNode = (*nnIt).second; + } + faceNodes[inode - 1] = faceNode; + } + + SimplifyFace(faceNodes, poly_nodes, quantities); + } + + if (quantities.size() > 3) { + // to be done: remove coincident faces + } + + if (quantities.size() > 3) + { + MESSAGE("ChangeElementNodes MergeNodes Polyhedron"); + //aMesh->ChangePolyhedronNodes(elem, poly_nodes, quantities); + const SMDS_MeshElement* newElem = 0; + newElem = aMesh->AddPolyhedralVolume(poly_nodes, quantities); + myLastCreatedElems.Append(newElem); + if ( aShapeId && newElem ) + aMesh->SetMeshElementOnShape( newElem, aShapeId ); + rmElemIds.push_back(elem->GetID()); + } + } + else { + rmElemIds.push_back(elem->GetID()); + } + } + } + else { + } + + continue; + } // poly element + + // Regular elements + // TODO not all the possible cases are solved. Find something more generic? + switch ( nbNodes ) { + case 2: ///////////////////////////////////// EDGE + isOk = false; break; + case 3: ///////////////////////////////////// TRIANGLE + isOk = false; break; + case 4: + if ( elem->GetType() == SMDSAbs_Volume ) // TETRAHEDRON + isOk = false; + else { //////////////////////////////////// QUADRANGLE + if ( nbUniqueNodes < 3 ) + isOk = false; + else if ( nbRepl == 2 && iRepl[ 1 ] - iRepl[ 0 ] == 2 ) + isOk = false; // opposite nodes stick + //MESSAGE("isOk " << isOk); + } + break; + case 6: ///////////////////////////////////// PENTAHEDRON + if ( nbUniqueNodes == 4 ) { + // ---------------------------------> tetrahedron + if (nbRepl == 3 && + iRepl[ 0 ] > 2 && iRepl[ 1 ] > 2 && iRepl[ 2 ] > 2 ) { + // all top nodes stick: reverse a bottom + uniqueNodes[ 0 ] = curNodes [ 1 ]; + uniqueNodes[ 1 ] = curNodes [ 0 ]; + } + else if (nbRepl == 3 && + iRepl[ 0 ] < 3 && iRepl[ 1 ] < 3 && iRepl[ 2 ] < 3 ) { + // all bottom nodes stick: set a top before + uniqueNodes[ 3 ] = uniqueNodes [ 0 ]; + uniqueNodes[ 0 ] = curNodes [ 3 ]; + uniqueNodes[ 1 ] = curNodes [ 4 ]; + uniqueNodes[ 2 ] = curNodes [ 5 ]; + } + else if (nbRepl == 4 && + iRepl[ 2 ] - iRepl [ 0 ] == 3 && iRepl[ 3 ] - iRepl [ 1 ] == 3 ) { + // a lateral face turns into a line: reverse a bottom + uniqueNodes[ 0 ] = curNodes [ 1 ]; + uniqueNodes[ 1 ] = curNodes [ 0 ]; + } + else + isOk = false; + } + else if ( nbUniqueNodes == 5 ) { + // PENTAHEDRON --------------------> 2 tetrahedrons + if ( nbRepl == 2 && iRepl[ 1 ] - iRepl [ 0 ] == 3 ) { + // a bottom node sticks with a linked top one + // 1. + SMDS_MeshElement* newElem = + aMesh->AddVolume(curNodes[ 3 ], + curNodes[ 4 ], + curNodes[ 5 ], + curNodes[ iRepl[ 0 ] == 2 ? 1 : 2 ]); + myLastCreatedElems.Append(newElem); + if ( aShapeId ) + aMesh->SetMeshElementOnShape( newElem, aShapeId ); + // 2. : reverse a bottom + uniqueNodes[ 0 ] = curNodes [ 1 ]; + uniqueNodes[ 1 ] = curNodes [ 0 ]; + nbUniqueNodes = 4; + } + else + isOk = false; + } + else + isOk = false; + break; + case 8: { + if(elem->IsQuadratic()) { // Quadratic quadrangle + // 1 5 2 + // +---+---+ + // | | + // | | + // 4+ +6 + // | | + // | | + // +---+---+ + // 0 7 3 + isOk = false; + if(nbRepl==2) { + MESSAGE("nbRepl=2: " << iRepl[0] << " " << iRepl[1]); + } + if(nbRepl==3) { + MESSAGE("nbRepl=3: " << iRepl[0] << " " << iRepl[1] << " " << iRepl[2]); + nbUniqueNodes = 6; + if( iRepl[0]==0 && iRepl[1]==1 && iRepl[2]==4 ) { + uniqueNodes[0] = curNodes[0]; + uniqueNodes[1] = curNodes[2]; + uniqueNodes[2] = curNodes[3]; + uniqueNodes[3] = curNodes[5]; + uniqueNodes[4] = curNodes[6]; + uniqueNodes[5] = curNodes[7]; + isOk = true; + } + if( iRepl[0]==0 && iRepl[1]==3 && iRepl[2]==7 ) { + uniqueNodes[0] = curNodes[0]; + uniqueNodes[1] = curNodes[1]; + uniqueNodes[2] = curNodes[2]; + uniqueNodes[3] = curNodes[4]; + uniqueNodes[4] = curNodes[5]; + uniqueNodes[5] = curNodes[6]; + isOk = true; + } + if( iRepl[0]==0 && iRepl[1]==4 && iRepl[2]==7 ) { + uniqueNodes[0] = curNodes[1]; + uniqueNodes[1] = curNodes[2]; + uniqueNodes[2] = curNodes[3]; + uniqueNodes[3] = curNodes[5]; + uniqueNodes[4] = curNodes[6]; + uniqueNodes[5] = curNodes[0]; + isOk = true; + } + if( iRepl[0]==1 && iRepl[1]==2 && iRepl[2]==5 ) { + uniqueNodes[0] = curNodes[0]; + uniqueNodes[1] = curNodes[1]; + uniqueNodes[2] = curNodes[3]; + uniqueNodes[3] = curNodes[4]; + uniqueNodes[4] = curNodes[6]; + uniqueNodes[5] = curNodes[7]; + isOk = true; + } + if( iRepl[0]==1 && iRepl[1]==4 && iRepl[2]==5 ) { + uniqueNodes[0] = curNodes[0]; + uniqueNodes[1] = curNodes[2]; + uniqueNodes[2] = curNodes[3]; + uniqueNodes[3] = curNodes[1]; + uniqueNodes[4] = curNodes[6]; + uniqueNodes[5] = curNodes[7]; + isOk = true; + } + if( iRepl[0]==2 && iRepl[1]==3 && iRepl[2]==6 ) { + uniqueNodes[0] = curNodes[0]; + uniqueNodes[1] = curNodes[1]; + uniqueNodes[2] = curNodes[2]; + uniqueNodes[3] = curNodes[4]; + uniqueNodes[4] = curNodes[5]; + uniqueNodes[5] = curNodes[7]; + isOk = true; + } + if( iRepl[0]==2 && iRepl[1]==5 && iRepl[2]==6 ) { + uniqueNodes[0] = curNodes[0]; + uniqueNodes[1] = curNodes[1]; + uniqueNodes[2] = curNodes[3]; + uniqueNodes[3] = curNodes[4]; + uniqueNodes[4] = curNodes[2]; + uniqueNodes[5] = curNodes[7]; + isOk = true; + } + if( iRepl[0]==3 && iRepl[1]==6 && iRepl[2]==7 ) { + uniqueNodes[0] = curNodes[0]; + uniqueNodes[1] = curNodes[1]; + uniqueNodes[2] = curNodes[2]; + uniqueNodes[3] = curNodes[4]; + uniqueNodes[4] = curNodes[5]; + uniqueNodes[5] = curNodes[3]; + isOk = true; + } + } + if(nbRepl==4) { + MESSAGE("nbRepl=4: " << iRepl[0] << " " << iRepl[1] << " " << iRepl[2] << " " << iRepl[3]); + } + if(nbRepl==5) { + MESSAGE("nbRepl=5: " << iRepl[0] << " " << iRepl[1] << " " << iRepl[2] << " " << iRepl[3] << " " << iRepl[4]); + } + break; + } + //////////////////////////////////// HEXAHEDRON + isOk = false; + SMDS_VolumeTool hexa (elem); + hexa.SetExternalNormal(); + if ( nbUniqueNodes == 4 && nbRepl == 4 ) { + //////////////////////// HEX ---> 1 tetrahedron + for ( int iFace = 0; iFace < 6; iFace++ ) { + const int *ind = hexa.GetFaceNodesIndices( iFace ); // indices of face nodes + if (curNodes[ind[ 0 ]] == curNodes[ind[ 1 ]] && + curNodes[ind[ 0 ]] == curNodes[ind[ 2 ]] && + curNodes[ind[ 0 ]] == curNodes[ind[ 3 ]] ) { + // one face turns into a point ... + int iOppFace = hexa.GetOppFaceIndex( iFace ); + ind = hexa.GetFaceNodesIndices( iOppFace ); + int nbStick = 0; + for ( iCur = 0; iCur < 4 && nbStick < 2; iCur++ ) { + if ( curNodes[ind[ iCur ]] == curNodes[ind[ iCur + 1 ]] ) + nbStick++; + } + if ( nbStick == 1 ) { + // ... and the opposite one - into a triangle. + // set a top node + ind = hexa.GetFaceNodesIndices( iFace ); + uniqueNodes[ 3 ] = curNodes[ind[ 0 ]]; + isOk = true; + } + break; + } + } + } + else if ( nbUniqueNodes == 6 && nbRepl == 2 ) { + //////////////////////// HEX ---> 1 prism + int nbTria = 0, iTria[3]; + const int *ind; // indices of face nodes + // look for triangular faces + for ( int iFace = 0; iFace < 6 && nbTria < 3; iFace++ ) { + ind = hexa.GetFaceNodesIndices( iFace ); + TIDSortedNodeSet faceNodes; + for ( iCur = 0; iCur < 4; iCur++ ) + faceNodes.insert( curNodes[ind[iCur]] ); + if ( faceNodes.size() == 3 ) + iTria[ nbTria++ ] = iFace; + } + // check if triangles are opposite + if ( nbTria == 2 && iTria[0] == hexa.GetOppFaceIndex( iTria[1] )) + { + isOk = true; + // set nodes of the bottom triangle + ind = hexa.GetFaceNodesIndices( iTria[ 0 ]); + vector indB; + for ( iCur = 0; iCur < 4; iCur++ ) + if ( ind[iCur] != iRepl[0] && ind[iCur] != iRepl[1]) + indB.push_back( ind[iCur] ); + if ( !hexa.IsForward() ) + std::swap( indB[0], indB[2] ); + for ( iCur = 0; iCur < 3; iCur++ ) + uniqueNodes[ iCur ] = curNodes[indB[iCur]]; + // set nodes of the top triangle + const int *indT = hexa.GetFaceNodesIndices( iTria[ 1 ]); + for ( iCur = 0; iCur < 3; ++iCur ) + for ( int j = 0; j < 4; ++j ) + if ( hexa.IsLinked( indB[ iCur ], indT[ j ] )) + { + uniqueNodes[ iCur + 3 ] = curNodes[ indT[ j ]]; + break; + } + } + break; + } + else if (nbUniqueNodes == 5 && nbRepl == 4 ) { + //////////////////// HEXAHEDRON ---> 2 tetrahedrons + for ( int iFace = 0; iFace < 6; iFace++ ) { + const int *ind = hexa.GetFaceNodesIndices( iFace ); // indices of face nodes + if (curNodes[ind[ 0 ]] == curNodes[ind[ 1 ]] && + curNodes[ind[ 0 ]] == curNodes[ind[ 2 ]] && + curNodes[ind[ 0 ]] == curNodes[ind[ 3 ]] ) { + // one face turns into a point ... + int iOppFace = hexa.GetOppFaceIndex( iFace ); + ind = hexa.GetFaceNodesIndices( iOppFace ); + int nbStick = 0; + iUnique = 2; // reverse a tetrahedron 1 bottom + for ( iCur = 0; iCur < 4 && nbStick == 0; iCur++ ) { + if ( curNodes[ind[ iCur ]] == curNodes[ind[ iCur + 1 ]] ) + nbStick++; + else if ( iUnique >= 0 ) + uniqueNodes[ iUnique-- ] = curNodes[ind[ iCur ]]; + } + if ( nbStick == 0 ) { + // ... and the opposite one is a quadrangle + // set a top node + const int* indTop = hexa.GetFaceNodesIndices( iFace ); + uniqueNodes[ 3 ] = curNodes[indTop[ 0 ]]; + nbUniqueNodes = 4; + // tetrahedron 2 + SMDS_MeshElement* newElem = + aMesh->AddVolume(curNodes[ind[ 0 ]], + curNodes[ind[ 3 ]], + curNodes[ind[ 2 ]], + curNodes[indTop[ 0 ]]); + myLastCreatedElems.Append(newElem); + if ( aShapeId ) + aMesh->SetMeshElementOnShape( newElem, aShapeId ); + isOk = true; + } + break; + } + } + } + else if ( nbUniqueNodes == 6 && nbRepl == 4 ) { + ////////////////// HEXAHEDRON ---> 2 tetrahedrons or 1 prism + // find indices of quad and tri faces + int iQuadFace[ 6 ], iTriFace[ 6 ], nbQuad = 0, nbTri = 0, iFace; + for ( iFace = 0; iFace < 6; iFace++ ) { + const int *ind = hexa.GetFaceNodesIndices( iFace ); // indices of face nodes + nodeSet.clear(); + for ( iCur = 0; iCur < 4; iCur++ ) + nodeSet.insert( curNodes[ind[ iCur ]] ); + nbUniqueNodes = nodeSet.size(); + if ( nbUniqueNodes == 3 ) + iTriFace[ nbTri++ ] = iFace; + else if ( nbUniqueNodes == 4 ) + iQuadFace[ nbQuad++ ] = iFace; + } + if (nbQuad == 2 && nbTri == 4 && + hexa.GetOppFaceIndex( iQuadFace[ 0 ] ) == iQuadFace[ 1 ]) { + // 2 opposite quadrangles stuck with a diagonal; + // sample groups of merged indices: (0-4)(2-6) + // --------------------------------------------> 2 tetrahedrons + const int *ind1 = hexa.GetFaceNodesIndices( iQuadFace[ 0 ]); // indices of quad1 nodes + const int *ind2 = hexa.GetFaceNodesIndices( iQuadFace[ 1 ]); + int i0, i1d, i2, i3d, i0t, i2t; // d-daigonal, t-top + if (curNodes[ind1[ 0 ]] == curNodes[ind2[ 0 ]] && + curNodes[ind1[ 2 ]] == curNodes[ind2[ 2 ]]) { + // stuck with 0-2 diagonal + i0 = ind1[ 3 ]; + i1d = ind1[ 0 ]; + i2 = ind1[ 1 ]; + i3d = ind1[ 2 ]; + i0t = ind2[ 1 ]; + i2t = ind2[ 3 ]; + } + else if (curNodes[ind1[ 1 ]] == curNodes[ind2[ 3 ]] && + curNodes[ind1[ 3 ]] == curNodes[ind2[ 1 ]]) { + // stuck with 1-3 diagonal + i0 = ind1[ 0 ]; + i1d = ind1[ 1 ]; + i2 = ind1[ 2 ]; + i3d = ind1[ 3 ]; + i0t = ind2[ 0 ]; + i2t = ind2[ 1 ]; + } + else { + ASSERT(0); + } + // tetrahedron 1 + uniqueNodes[ 0 ] = curNodes [ i0 ]; + uniqueNodes[ 1 ] = curNodes [ i1d ]; + uniqueNodes[ 2 ] = curNodes [ i3d ]; + uniqueNodes[ 3 ] = curNodes [ i0t ]; + nbUniqueNodes = 4; + // tetrahedron 2 + SMDS_MeshElement* newElem = aMesh->AddVolume(curNodes[ i1d ], + curNodes[ i2 ], + curNodes[ i3d ], + curNodes[ i2t ]); + myLastCreatedElems.Append(newElem); + if ( aShapeId ) + aMesh->SetMeshElementOnShape( newElem, aShapeId ); + isOk = true; + } + else if (( nbTri == 2 && nbQuad == 3 ) || // merged (0-4)(1-5) + ( nbTri == 4 && nbQuad == 2 )) { // merged (7-4)(1-5) + // --------------------------------------------> prism + // find 2 opposite triangles + nbUniqueNodes = 6; + for ( iFace = 0; iFace + 1 < nbTri; iFace++ ) { + if ( hexa.GetOppFaceIndex( iTriFace[ iFace ] ) == iTriFace[ iFace + 1 ]) { + // find indices of kept and replaced nodes + // and fill unique nodes of 2 opposite triangles + const int *ind1 = hexa.GetFaceNodesIndices( iTriFace[ iFace ]); + const int *ind2 = hexa.GetFaceNodesIndices( iTriFace[ iFace + 1 ]); + const SMDS_MeshNode** hexanodes = hexa.GetNodes(); + // fill unique nodes + iUnique = 0; + isOk = true; + for ( iCur = 0; iCur < 4 && isOk; iCur++ ) { + const SMDS_MeshNode* n = curNodes[ind1[ iCur ]]; + const SMDS_MeshNode* nInit = hexanodes[ind1[ iCur ]]; + if ( n == nInit ) { + // iCur of a linked node of the opposite face (make normals co-directed): + int iCurOpp = ( iCur == 1 || iCur == 3 ) ? 4 - iCur : iCur; + // check that correspondent corners of triangles are linked + if ( !hexa.IsLinked( ind1[ iCur ], ind2[ iCurOpp ] )) + isOk = false; + else { + uniqueNodes[ iUnique ] = n; + uniqueNodes[ iUnique + 3 ] = curNodes[ind2[ iCurOpp ]]; + iUnique++; + } + } + } + break; + } + } + } + } // if ( nbUniqueNodes == 6 && nbRepl == 4 ) + else + { + MESSAGE("MergeNodes() removes hexahedron "<< elem); + } + break; + } // HEXAHEDRON + + default: + isOk = false; + } // switch ( nbNodes ) + + } // if ( nbNodes != nbUniqueNodes ) // some nodes stick + + if ( isOk ) { // the elem remains valid after sticking nodes + if (elem->IsPoly() && elem->GetType() == SMDSAbs_Volume) + { + // Change nodes of polyedre + const SMDS_VtkVolume* aPolyedre = + dynamic_cast( elem ); + if (aPolyedre) { + int nbFaces = aPolyedre->NbFaces(); + + vector poly_nodes; + vector quantities (nbFaces); + + for (int iface = 1; iface <= nbFaces; iface++) { + int inode, nbFaceNodes = aPolyedre->NbFaceNodes(iface); + quantities[iface - 1] = nbFaceNodes; + + for (inode = 1; inode <= nbFaceNodes; inode++) { + const SMDS_MeshNode* curNode = aPolyedre->GetFaceNode(iface, inode); + + TNodeNodeMap::iterator nnIt = nodeNodeMap.find( curNode ); + if (nnIt != nodeNodeMap.end()) { // curNode sticks + curNode = (*nnIt).second; + } + poly_nodes.push_back(curNode); + } + } + aMesh->ChangePolyhedronNodes( elem, poly_nodes, quantities ); + } + } + else // replace non-polyhedron elements + { + const SMDSAbs_ElementType etyp = elem->GetType(); + const int elemId = elem->GetID(); + const bool isPoly = (elem->GetEntityType() == SMDSEntity_Polygon); + uniqueNodes.resize(nbUniqueNodes); + + SMESHDS_SubMesh * sm = aShapeId > 0 ? aMesh->MeshElements(aShapeId) : 0; + + aMesh->RemoveFreeElement(elem, sm, /*fromGroups=*/false); + SMDS_MeshElement* newElem = this->AddElement(uniqueNodes, etyp, isPoly, elemId); + if ( sm && newElem ) + sm->AddElement( newElem ); + if ( elem != newElem ) + ReplaceElemInGroups( elem, newElem, aMesh ); + } + } + else { + // Remove invalid regular element or invalid polygon + rmElemIds.push_back( elem->GetID() ); + } + + } // loop on elements + + // Remove bad elements, then equal nodes (order important) + + Remove( rmElemIds, false ); + Remove( rmNodeIds, true ); + +} + + +// ======================================================== +// class : SortableElement +// purpose : allow sorting elements basing on their nodes +// ======================================================== +class SortableElement : public set +{ +public: + + SortableElement( const SMDS_MeshElement* theElem ) + { + myElem = theElem; + SMDS_ElemIteratorPtr nodeIt = theElem->nodesIterator(); + while ( nodeIt->more() ) + this->insert( nodeIt->next() ); + } + + const SMDS_MeshElement* Get() const + { return myElem; } + + void Set(const SMDS_MeshElement* e) const + { myElem = e; } + + +private: + mutable const SMDS_MeshElement* myElem; +}; + +//======================================================================= +//function : FindEqualElements +//purpose : Return list of group of elements built on the same nodes. +// Search among theElements or in the whole mesh if theElements is empty +//======================================================================= + +void SMESH_MeshEditor::FindEqualElements(TIDSortedElemSet & theElements, + TListOfListOfElementsID & theGroupsOfElementsID) +{ + myLastCreatedElems.Clear(); + myLastCreatedNodes.Clear(); + + typedef map< SortableElement, int > TMapOfNodeSet; + typedef list TGroupOfElems; + + if ( theElements.empty() ) + { // get all elements in the mesh + SMDS_ElemIteratorPtr eIt = GetMeshDS()->elementsIterator(); + while ( eIt->more() ) + theElements.insert( theElements.end(), eIt->next()); + } + + vector< TGroupOfElems > arrayOfGroups; + TGroupOfElems groupOfElems; + TMapOfNodeSet mapOfNodeSet; + + TIDSortedElemSet::iterator elemIt = theElements.begin(); + for ( int i = 0, j=0; elemIt != theElements.end(); ++elemIt, ++j ) { + const SMDS_MeshElement* curElem = *elemIt; + SortableElement SE(curElem); + int ind = -1; + // check uniqueness + pair< TMapOfNodeSet::iterator, bool> pp = mapOfNodeSet.insert(make_pair(SE, i)); + if( !(pp.second) ) { + TMapOfNodeSet::iterator& itSE = pp.first; + ind = (*itSE).second; + arrayOfGroups[ind].push_back(curElem->GetID()); + } + else { + groupOfElems.clear(); + groupOfElems.push_back(curElem->GetID()); + arrayOfGroups.push_back(groupOfElems); + i++; + } + } + + vector< TGroupOfElems >::iterator groupIt = arrayOfGroups.begin(); + for ( ; groupIt != arrayOfGroups.end(); ++groupIt ) { + groupOfElems = *groupIt; + if ( groupOfElems.size() > 1 ) { + groupOfElems.sort(); + theGroupsOfElementsID.push_back(groupOfElems); + } + } +} + +//======================================================================= +//function : MergeElements +//purpose : In each given group, substitute all elements by the first one. +//======================================================================= + +void SMESH_MeshEditor::MergeElements(TListOfListOfElementsID & theGroupsOfElementsID) +{ + myLastCreatedElems.Clear(); + myLastCreatedNodes.Clear(); + + typedef list TListOfIDs; + TListOfIDs rmElemIds; // IDs of elems to remove + + SMESHDS_Mesh* aMesh = GetMeshDS(); + + TListOfListOfElementsID::iterator groupsIt = theGroupsOfElementsID.begin(); + while ( groupsIt != theGroupsOfElementsID.end() ) { + TListOfIDs& aGroupOfElemID = *groupsIt; + aGroupOfElemID.sort(); + int elemIDToKeep = aGroupOfElemID.front(); + const SMDS_MeshElement* elemToKeep = aMesh->FindElement(elemIDToKeep); + aGroupOfElemID.pop_front(); + TListOfIDs::iterator idIt = aGroupOfElemID.begin(); + while ( idIt != aGroupOfElemID.end() ) { + int elemIDToRemove = *idIt; + const SMDS_MeshElement* elemToRemove = aMesh->FindElement(elemIDToRemove); + // add the kept element in groups of removed one (PAL15188) + AddToSameGroups( elemToKeep, elemToRemove, aMesh ); + rmElemIds.push_back( elemIDToRemove ); + ++idIt; + } + ++groupsIt; + } + + Remove( rmElemIds, false ); +} + +//======================================================================= +//function : MergeEqualElements +//purpose : Remove all but one of elements built on the same nodes. +//======================================================================= + +void SMESH_MeshEditor::MergeEqualElements() +{ + TIDSortedElemSet aMeshElements; /* empty input == + to merge equal elements in the whole mesh */ + TListOfListOfElementsID aGroupsOfElementsID; + FindEqualElements(aMeshElements, aGroupsOfElementsID); + MergeElements(aGroupsOfElementsID); +} + +//======================================================================= +//function : FindFaceInSet +//purpose : Return a face having linked nodes n1 and n2 and which is +// - not in avoidSet, +// - in elemSet provided that !elemSet.empty() +// i1 and i2 optionally returns indices of n1 and n2 +//======================================================================= + +const SMDS_MeshElement* +SMESH_MeshEditor::FindFaceInSet(const SMDS_MeshNode* n1, + const SMDS_MeshNode* n2, + const TIDSortedElemSet& elemSet, + const TIDSortedElemSet& avoidSet, + int* n1ind, + int* n2ind) + +{ + int i1, i2; + const SMDS_MeshElement* face = 0; + + SMDS_ElemIteratorPtr invElemIt = n1->GetInverseElementIterator(SMDSAbs_Face); + //MESSAGE("n1->GetInverseElementIterator(SMDSAbs_Face) " << invElemIt); + while ( invElemIt->more() && !face ) // loop on inverse faces of n1 + { + //MESSAGE("in while ( invElemIt->more() && !face )"); + const SMDS_MeshElement* elem = invElemIt->next(); + if (avoidSet.count( elem )) + continue; + if ( !elemSet.empty() && !elemSet.count( elem )) + continue; + // index of n1 + i1 = elem->GetNodeIndex( n1 ); + // find a n2 linked to n1 + int nbN = elem->IsQuadratic() ? elem->NbNodes()/2 : elem->NbNodes(); + for ( int di = -1; di < 2 && !face; di += 2 ) + { + i2 = (i1+di+nbN) % nbN; + if ( elem->GetNode( i2 ) == n2 ) + face = elem; + } + if ( !face && elem->IsQuadratic()) + { + // analysis for quadratic elements using all nodes + const SMDS_VtkFace* F = + dynamic_cast(elem); + if (!F) throw SALOME_Exception(LOCALIZED("not an SMDS_VtkFace")); + // use special nodes iterator + SMDS_ElemIteratorPtr anIter = F->interlacedNodesElemIterator(); + const SMDS_MeshNode* prevN = cast2Node( anIter->next() ); + for ( i1 = -1, i2 = 0; anIter->more() && !face; i1++, i2++ ) + { + const SMDS_MeshNode* n = cast2Node( anIter->next() ); + if ( n1 == prevN && n2 == n ) + { + face = elem; + } + else if ( n2 == prevN && n1 == n ) + { + face = elem; swap( i1, i2 ); + } + prevN = n; + } + } + } + if ( n1ind ) *n1ind = i1; + if ( n2ind ) *n2ind = i2; + return face; +} + +//======================================================================= +//function : findAdjacentFace +//purpose : +//======================================================================= + +static const SMDS_MeshElement* findAdjacentFace(const SMDS_MeshNode* n1, + const SMDS_MeshNode* n2, + const SMDS_MeshElement* elem) +{ + TIDSortedElemSet elemSet, avoidSet; + if ( elem ) + avoidSet.insert ( elem ); + return SMESH_MeshEditor::FindFaceInSet( n1, n2, elemSet, avoidSet ); +} + +//======================================================================= +//function : FindFreeBorder +//purpose : +//======================================================================= + +#define ControlFreeBorder SMESH::Controls::FreeEdges::IsFreeEdge + +bool SMESH_MeshEditor::FindFreeBorder (const SMDS_MeshNode* theFirstNode, + const SMDS_MeshNode* theSecondNode, + const SMDS_MeshNode* theLastNode, + list< const SMDS_MeshNode* > & theNodes, + list< const SMDS_MeshElement* >& theFaces) +{ + if ( !theFirstNode || !theSecondNode ) + return false; + // find border face between theFirstNode and theSecondNode + const SMDS_MeshElement* curElem = findAdjacentFace( theFirstNode, theSecondNode, 0 ); + if ( !curElem ) + return false; + + theFaces.push_back( curElem ); + theNodes.push_back( theFirstNode ); + theNodes.push_back( theSecondNode ); + + //vector nodes; + const SMDS_MeshNode *nIgnore = theFirstNode, *nStart = theSecondNode; + TIDSortedElemSet foundElems; + bool needTheLast = ( theLastNode != 0 ); + + while ( nStart != theLastNode ) { + if ( nStart == theFirstNode ) + return !needTheLast; + + // find all free border faces sharing form nStart + + list< const SMDS_MeshElement* > curElemList; + list< const SMDS_MeshNode* > nStartList; + SMDS_ElemIteratorPtr invElemIt = nStart->GetInverseElementIterator(SMDSAbs_Face); + while ( invElemIt->more() ) { + const SMDS_MeshElement* e = invElemIt->next(); + if ( e == curElem || foundElems.insert( e ).second ) { + // get nodes + int iNode = 0, nbNodes = e->NbNodes(); + //const SMDS_MeshNode* nodes[nbNodes+1]; + vector nodes(nbNodes+1); + + if(e->IsQuadratic()) { + const SMDS_VtkFace* F = + dynamic_cast(e); + if (!F) throw SALOME_Exception(LOCALIZED("not an SMDS_VtkFace")); + // use special nodes iterator + SMDS_ElemIteratorPtr anIter = F->interlacedNodesElemIterator(); + while( anIter->more() ) { + nodes[ iNode++ ] = cast2Node(anIter->next()); + } + } + else { + SMDS_ElemIteratorPtr nIt = e->nodesIterator(); + while ( nIt->more() ) + nodes[ iNode++ ] = static_cast( nIt->next() ); + } + nodes[ iNode ] = nodes[ 0 ]; + // check 2 links + for ( iNode = 0; iNode < nbNodes; iNode++ ) + if (((nodes[ iNode ] == nStart && nodes[ iNode + 1] != nIgnore ) || + (nodes[ iNode + 1] == nStart && nodes[ iNode ] != nIgnore )) && + ControlFreeBorder( &nodes[ iNode ], e->GetID() )) + { + nStartList.push_back( nodes[ iNode + ( nodes[ iNode ] == nStart ? 1 : 0 )]); + curElemList.push_back( e ); + } + } + } + // analyse the found + + int nbNewBorders = curElemList.size(); + if ( nbNewBorders == 0 ) { + // no free border furthermore + return !needTheLast; + } + else if ( nbNewBorders == 1 ) { + // one more element found + nIgnore = nStart; + nStart = nStartList.front(); + curElem = curElemList.front(); + theFaces.push_back( curElem ); + theNodes.push_back( nStart ); + } + else { + // several continuations found + list< const SMDS_MeshElement* >::iterator curElemIt; + list< const SMDS_MeshNode* >::iterator nStartIt; + // check if one of them reached the last node + if ( needTheLast ) { + for (curElemIt = curElemList.begin(), nStartIt = nStartList.begin(); + curElemIt!= curElemList.end(); + curElemIt++, nStartIt++ ) + if ( *nStartIt == theLastNode ) { + theFaces.push_back( *curElemIt ); + theNodes.push_back( *nStartIt ); + return true; + } + } + // find the best free border by the continuations + list contNodes[ 2 ], *cNL; + list contFaces[ 2 ], *cFL; + for (curElemIt = curElemList.begin(), nStartIt = nStartList.begin(); + curElemIt!= curElemList.end(); + curElemIt++, nStartIt++ ) + { + cNL = & contNodes[ contNodes[0].empty() ? 0 : 1 ]; + cFL = & contFaces[ contFaces[0].empty() ? 0 : 1 ]; + // find one more free border + if ( ! FindFreeBorder( nStart, *nStartIt, theLastNode, *cNL, *cFL )) { + cNL->clear(); + cFL->clear(); + } + else if ( !contNodes[0].empty() && !contNodes[1].empty() ) { + // choice: clear a worse one + int iLongest = ( contNodes[0].size() < contNodes[1].size() ? 1 : 0 ); + int iWorse = ( needTheLast ? 1 - iLongest : iLongest ); + contNodes[ iWorse ].clear(); + contFaces[ iWorse ].clear(); + } + } + if ( contNodes[0].empty() && contNodes[1].empty() ) + return false; + + // append the best free border + cNL = & contNodes[ contNodes[0].empty() ? 1 : 0 ]; + cFL = & contFaces[ contFaces[0].empty() ? 1 : 0 ]; + theNodes.pop_back(); // remove nIgnore + theNodes.pop_back(); // remove nStart + theFaces.pop_back(); // remove curElem + list< const SMDS_MeshNode* >::iterator nIt = cNL->begin(); + list< const SMDS_MeshElement* >::iterator fIt = cFL->begin(); + for ( ; nIt != cNL->end(); nIt++ ) theNodes.push_back( *nIt ); + for ( ; fIt != cFL->end(); fIt++ ) theFaces.push_back( *fIt ); + return true; + + } // several continuations found + } // while ( nStart != theLastNode ) + + return true; +} + +//======================================================================= +//function : CheckFreeBorderNodes +//purpose : Return true if the tree nodes are on a free border +//======================================================================= + +bool SMESH_MeshEditor::CheckFreeBorderNodes(const SMDS_MeshNode* theNode1, + const SMDS_MeshNode* theNode2, + const SMDS_MeshNode* theNode3) +{ + list< const SMDS_MeshNode* > nodes; + list< const SMDS_MeshElement* > faces; + return FindFreeBorder( theNode1, theNode2, theNode3, nodes, faces); +} + +//======================================================================= +//function : SewFreeBorder +//purpose : +//======================================================================= + +SMESH_MeshEditor::Sew_Error +SMESH_MeshEditor::SewFreeBorder (const SMDS_MeshNode* theBordFirstNode, + const SMDS_MeshNode* theBordSecondNode, + const SMDS_MeshNode* theBordLastNode, + const SMDS_MeshNode* theSideFirstNode, + const SMDS_MeshNode* theSideSecondNode, + const SMDS_MeshNode* theSideThirdNode, + const bool theSideIsFreeBorder, + const bool toCreatePolygons, + const bool toCreatePolyedrs) +{ + myLastCreatedElems.Clear(); + myLastCreatedNodes.Clear(); + + MESSAGE("::SewFreeBorder()"); + Sew_Error aResult = SEW_OK; + + // ==================================== + // find side nodes and elements + // ==================================== + + list< const SMDS_MeshNode* > nSide[ 2 ]; + list< const SMDS_MeshElement* > eSide[ 2 ]; + list< const SMDS_MeshNode* >::iterator nIt[ 2 ]; + list< const SMDS_MeshElement* >::iterator eIt[ 2 ]; + + // Free border 1 + // -------------- + if (!FindFreeBorder(theBordFirstNode,theBordSecondNode,theBordLastNode, + nSide[0], eSide[0])) { + MESSAGE(" Free Border 1 not found " ); + aResult = SEW_BORDER1_NOT_FOUND; + } + if (theSideIsFreeBorder) { + // Free border 2 + // -------------- + if (!FindFreeBorder(theSideFirstNode, theSideSecondNode, theSideThirdNode, + nSide[1], eSide[1])) { + MESSAGE(" Free Border 2 not found " ); + aResult = ( aResult != SEW_OK ? SEW_BOTH_BORDERS_NOT_FOUND : SEW_BORDER2_NOT_FOUND ); + } + } + if ( aResult != SEW_OK ) + return aResult; + + if (!theSideIsFreeBorder) { + // Side 2 + // -------------- + + // ------------------------------------------------------------------------- + // Algo: + // 1. If nodes to merge are not coincident, move nodes of the free border + // from the coord sys defined by the direction from the first to last + // nodes of the border to the correspondent sys of the side 2 + // 2. On the side 2, find the links most co-directed with the correspondent + // links of the free border + // ------------------------------------------------------------------------- + + // 1. Since sewing may break if there are volumes to split on the side 2, + // we wont move nodes but just compute new coordinates for them + typedef map TNodeXYZMap; + TNodeXYZMap nBordXYZ; + list< const SMDS_MeshNode* >& bordNodes = nSide[ 0 ]; + list< const SMDS_MeshNode* >::iterator nBordIt; + + gp_XYZ Pb1( theBordFirstNode->X(), theBordFirstNode->Y(), theBordFirstNode->Z() ); + gp_XYZ Pb2( theBordLastNode->X(), theBordLastNode->Y(), theBordLastNode->Z() ); + gp_XYZ Ps1( theSideFirstNode->X(), theSideFirstNode->Y(), theSideFirstNode->Z() ); + gp_XYZ Ps2( theSideSecondNode->X(), theSideSecondNode->Y(), theSideSecondNode->Z() ); + double tol2 = 1.e-8; + gp_Vec Vbs1( Pb1 - Ps1 ),Vbs2( Pb2 - Ps2 ); + if ( Vbs1.SquareMagnitude() > tol2 || Vbs2.SquareMagnitude() > tol2 ) { + // Need node movement. + + // find X and Z axes to create trsf + gp_Vec Zb( Pb1 - Pb2 ), Zs( Ps1 - Ps2 ); + gp_Vec X = Zs ^ Zb; + if ( X.SquareMagnitude() <= gp::Resolution() * gp::Resolution() ) + // Zb || Zs + X = gp_Ax2( gp::Origin(), Zb ).XDirection(); + + // coord systems + gp_Ax3 toBordAx( Pb1, Zb, X ); + gp_Ax3 fromSideAx( Ps1, Zs, X ); + gp_Ax3 toGlobalAx( gp::Origin(), gp::DZ(), gp::DX() ); + // set trsf + gp_Trsf toBordSys, fromSide2Sys; + toBordSys.SetTransformation( toBordAx ); + fromSide2Sys.SetTransformation( fromSideAx, toGlobalAx ); + fromSide2Sys.SetScaleFactor( Zs.Magnitude() / Zb.Magnitude() ); + + // move + for ( nBordIt = bordNodes.begin(); nBordIt != bordNodes.end(); nBordIt++ ) { + const SMDS_MeshNode* n = *nBordIt; + gp_XYZ xyz( n->X(),n->Y(),n->Z() ); + toBordSys.Transforms( xyz ); + fromSide2Sys.Transforms( xyz ); + nBordXYZ.insert( TNodeXYZMap::value_type( n, xyz )); + } + } + else { + // just insert nodes XYZ in the nBordXYZ map + for ( nBordIt = bordNodes.begin(); nBordIt != bordNodes.end(); nBordIt++ ) { + const SMDS_MeshNode* n = *nBordIt; + nBordXYZ.insert( TNodeXYZMap::value_type( n, gp_XYZ( n->X(),n->Y(),n->Z() ))); + } + } + + // 2. On the side 2, find the links most co-directed with the correspondent + // links of the free border + + list< const SMDS_MeshElement* >& sideElems = eSide[ 1 ]; + list< const SMDS_MeshNode* >& sideNodes = nSide[ 1 ]; + sideNodes.push_back( theSideFirstNode ); + + bool hasVolumes = false; + LinkID_Gen aLinkID_Gen( GetMeshDS() ); + set foundSideLinkIDs, checkedLinkIDs; + SMDS_VolumeTool volume; + //const SMDS_MeshNode* faceNodes[ 4 ]; + + const SMDS_MeshNode* sideNode; + const SMDS_MeshElement* sideElem; + const SMDS_MeshNode* prevSideNode = theSideFirstNode; + const SMDS_MeshNode* prevBordNode = theBordFirstNode; + nBordIt = bordNodes.begin(); + nBordIt++; + // border node position and border link direction to compare with + gp_XYZ bordPos = nBordXYZ[ *nBordIt ]; + gp_XYZ bordDir = bordPos - nBordXYZ[ prevBordNode ]; + // choose next side node by link direction or by closeness to + // the current border node: + bool searchByDir = ( *nBordIt != theBordLastNode ); + do { + // find the next node on the Side 2 + sideNode = 0; + double maxDot = -DBL_MAX, minDist = DBL_MAX; + long linkID; + checkedLinkIDs.clear(); + gp_XYZ prevXYZ( prevSideNode->X(), prevSideNode->Y(), prevSideNode->Z() ); + + // loop on inverse elements of current node (prevSideNode) on the Side 2 + SMDS_ElemIteratorPtr invElemIt = prevSideNode->GetInverseElementIterator(); + while ( invElemIt->more() ) + { + const SMDS_MeshElement* elem = invElemIt->next(); + // prepare data for a loop on links coming to prevSideNode, of a face or a volume + int iPrevNode, iNode = 0, nbNodes = elem->NbNodes(); + vector< const SMDS_MeshNode* > faceNodes( nbNodes, (const SMDS_MeshNode*)0 ); + bool isVolume = volume.Set( elem ); + const SMDS_MeshNode** nodes = isVolume ? volume.GetNodes() : & faceNodes[0]; + if ( isVolume ) // --volume + hasVolumes = true; + else if ( elem->GetType()==SMDSAbs_Face ) { // --face + // retrieve all face nodes and find iPrevNode - an index of the prevSideNode + if(elem->IsQuadratic()) { + const SMDS_VtkFace* F = + dynamic_cast(elem); + if (!F) throw SALOME_Exception(LOCALIZED("not an SMDS_VtkFace")); + // use special nodes iterator + SMDS_ElemIteratorPtr anIter = F->interlacedNodesElemIterator(); + while( anIter->more() ) { + nodes[ iNode ] = cast2Node(anIter->next()); + if ( nodes[ iNode++ ] == prevSideNode ) + iPrevNode = iNode - 1; + } + } + else { + SMDS_ElemIteratorPtr nIt = elem->nodesIterator(); + while ( nIt->more() ) { + nodes[ iNode ] = cast2Node( nIt->next() ); + if ( nodes[ iNode++ ] == prevSideNode ) + iPrevNode = iNode - 1; + } + } + // there are 2 links to check + nbNodes = 2; + } + else // --edge + continue; + // loop on links, to be precise, on the second node of links + for ( iNode = 0; iNode < nbNodes; iNode++ ) { + const SMDS_MeshNode* n = nodes[ iNode ]; + if ( isVolume ) { + if ( !volume.IsLinked( n, prevSideNode )) + continue; + } + else { + if ( iNode ) // a node before prevSideNode + n = nodes[ iPrevNode == 0 ? elem->NbNodes() - 1 : iPrevNode - 1 ]; + else // a node after prevSideNode + n = nodes[ iPrevNode + 1 == elem->NbNodes() ? 0 : iPrevNode + 1 ]; + } + // check if this link was already used + long iLink = aLinkID_Gen.GetLinkID( prevSideNode, n ); + bool isJustChecked = !checkedLinkIDs.insert( iLink ).second; + if (!isJustChecked && + foundSideLinkIDs.find( iLink ) == foundSideLinkIDs.end() ) + { + // test a link geometrically + gp_XYZ nextXYZ ( n->X(), n->Y(), n->Z() ); + bool linkIsBetter = false; + double dot = 0.0, dist = 0.0; + if ( searchByDir ) { // choose most co-directed link + dot = bordDir * ( nextXYZ - prevXYZ ).Normalized(); + linkIsBetter = ( dot > maxDot ); + } + else { // choose link with the node closest to bordPos + dist = ( nextXYZ - bordPos ).SquareModulus(); + linkIsBetter = ( dist < minDist ); + } + if ( linkIsBetter ) { + maxDot = dot; + minDist = dist; + linkID = iLink; + sideNode = n; + sideElem = elem; + } + } + } + } // loop on inverse elements of prevSideNode + + if ( !sideNode ) { + MESSAGE(" Cant find path by links of the Side 2 "); + return SEW_BAD_SIDE_NODES; + } + sideNodes.push_back( sideNode ); + sideElems.push_back( sideElem ); + foundSideLinkIDs.insert ( linkID ); + prevSideNode = sideNode; + + if ( *nBordIt == theBordLastNode ) + searchByDir = false; + else { + // find the next border link to compare with + gp_XYZ sidePos( sideNode->X(), sideNode->Y(), sideNode->Z() ); + searchByDir = ( bordDir * ( sidePos - bordPos ) <= 0 ); + // move to next border node if sideNode is before forward border node (bordPos) + while ( *nBordIt != theBordLastNode && !searchByDir ) { + prevBordNode = *nBordIt; + nBordIt++; + bordPos = nBordXYZ[ *nBordIt ]; + bordDir = bordPos - nBordXYZ[ prevBordNode ]; + searchByDir = ( bordDir * ( sidePos - bordPos ) <= 0 ); + } + } + } + while ( sideNode != theSideSecondNode ); + + if ( hasVolumes && sideNodes.size () != bordNodes.size() && !toCreatePolyedrs) { + MESSAGE("VOLUME SPLITTING IS FORBIDDEN"); + return SEW_VOLUMES_TO_SPLIT; // volume splitting is forbidden + } + } // end nodes search on the side 2 + + // ============================ + // sew the border to the side 2 + // ============================ + + int nbNodes[] = { nSide[0].size(), nSide[1].size() }; + int maxNbNodes = Max( nbNodes[0], nbNodes[1] ); + + TListOfListOfNodes nodeGroupsToMerge; + if ( nbNodes[0] == nbNodes[1] || + ( theSideIsFreeBorder && !theSideThirdNode)) { + + // all nodes are to be merged + + for (nIt[0] = nSide[0].begin(), nIt[1] = nSide[1].begin(); + nIt[0] != nSide[0].end() && nIt[1] != nSide[1].end(); + nIt[0]++, nIt[1]++ ) + { + nodeGroupsToMerge.push_back( list() ); + nodeGroupsToMerge.back().push_back( *nIt[1] ); // to keep + nodeGroupsToMerge.back().push_back( *nIt[0] ); // to remove + } + } + else { + + // insert new nodes into the border and the side to get equal nb of segments + + // get normalized parameters of nodes on the borders + //double param[ 2 ][ maxNbNodes ]; + double* param[ 2 ]; + param[0] = new double [ maxNbNodes ]; + param[1] = new double [ maxNbNodes ]; + int iNode, iBord; + for ( iBord = 0; iBord < 2; iBord++ ) { // loop on 2 borders + list< const SMDS_MeshNode* >& nodes = nSide[ iBord ]; + list< const SMDS_MeshNode* >::iterator nIt = nodes.begin(); + const SMDS_MeshNode* nPrev = *nIt; + double bordLength = 0; + for ( iNode = 0; nIt != nodes.end(); nIt++, iNode++ ) { // loop on border nodes + const SMDS_MeshNode* nCur = *nIt; + gp_XYZ segment (nCur->X() - nPrev->X(), + nCur->Y() - nPrev->Y(), + nCur->Z() - nPrev->Z()); + double segmentLen = segment.Modulus(); + bordLength += segmentLen; + param[ iBord ][ iNode ] = bordLength; + nPrev = nCur; + } + // normalize within [0,1] + for ( iNode = 0; iNode < nbNodes[ iBord ]; iNode++ ) { + param[ iBord ][ iNode ] /= bordLength; + } + } + + // loop on border segments + const SMDS_MeshNode *nPrev[ 2 ] = { 0, 0 }; + int i[ 2 ] = { 0, 0 }; + nIt[0] = nSide[0].begin(); eIt[0] = eSide[0].begin(); + nIt[1] = nSide[1].begin(); eIt[1] = eSide[1].begin(); + + TElemOfNodeListMap insertMap; + TElemOfNodeListMap::iterator insertMapIt; + // insertMap is + // key: elem to insert nodes into + // value: 2 nodes to insert between + nodes to be inserted + do { + bool next[ 2 ] = { false, false }; + + // find min adjacent segment length after sewing + double nextParam = 10., prevParam = 0; + for ( iBord = 0; iBord < 2; iBord++ ) { // loop on 2 borders + if ( i[ iBord ] + 1 < nbNodes[ iBord ]) + nextParam = Min( nextParam, param[iBord][ i[iBord] + 1 ]); + if ( i[ iBord ] > 0 ) + prevParam = Max( prevParam, param[iBord][ i[iBord] - 1 ]); + } + double minParam = Min( param[ 0 ][ i[0] ], param[ 1 ][ i[1] ]); + double maxParam = Max( param[ 0 ][ i[0] ], param[ 1 ][ i[1] ]); + double minSegLen = Min( nextParam - minParam, maxParam - prevParam ); + + // choose to insert or to merge nodes + double du = param[ 1 ][ i[1] ] - param[ 0 ][ i[0] ]; + if ( Abs( du ) <= minSegLen * 0.2 ) { + // merge + // ------ + nodeGroupsToMerge.push_back( list() ); + const SMDS_MeshNode* n0 = *nIt[0]; + const SMDS_MeshNode* n1 = *nIt[1]; + nodeGroupsToMerge.back().push_back( n1 ); + nodeGroupsToMerge.back().push_back( n0 ); + // position of node of the border changes due to merge + param[ 0 ][ i[0] ] += du; + // move n1 for the sake of elem shape evaluation during insertion. + // n1 will be removed by MergeNodes() anyway + const_cast( n0 )->setXYZ( n1->X(), n1->Y(), n1->Z() ); + next[0] = next[1] = true; + } + else { + // insert + // ------ + int intoBord = ( du < 0 ) ? 0 : 1; + const SMDS_MeshElement* elem = *eIt[ intoBord ]; + const SMDS_MeshNode* n1 = nPrev[ intoBord ]; + const SMDS_MeshNode* n2 = *nIt[ intoBord ]; + const SMDS_MeshNode* nIns = *nIt[ 1 - intoBord ]; + if ( intoBord == 1 ) { + // move node of the border to be on a link of elem of the side + gp_XYZ p1 (n1->X(), n1->Y(), n1->Z()); + gp_XYZ p2 (n2->X(), n2->Y(), n2->Z()); + double ratio = du / ( param[ 1 ][ i[1] ] - param[ 1 ][ i[1]-1 ]); + gp_XYZ p = p2 * ( 1 - ratio ) + p1 * ratio; + GetMeshDS()->MoveNode( nIns, p.X(), p.Y(), p.Z() ); + } + insertMapIt = insertMap.find( elem ); + bool notFound = ( insertMapIt == insertMap.end() ); + bool otherLink = ( !notFound && (*insertMapIt).second.front() != n1 ); + if ( otherLink ) { + // insert into another link of the same element: + // 1. perform insertion into the other link of the elem + list & nodeList = (*insertMapIt).second; + const SMDS_MeshNode* n12 = nodeList.front(); nodeList.pop_front(); + const SMDS_MeshNode* n22 = nodeList.front(); nodeList.pop_front(); + InsertNodesIntoLink( elem, n12, n22, nodeList, toCreatePolygons ); + // 2. perform insertion into the link of adjacent faces + while (true) { + const SMDS_MeshElement* adjElem = findAdjacentFace( n12, n22, elem ); + if ( adjElem ) + InsertNodesIntoLink( adjElem, n12, n22, nodeList, toCreatePolygons ); + else + break; + } + if (toCreatePolyedrs) { + // perform insertion into the links of adjacent volumes + UpdateVolumes(n12, n22, nodeList); + } + // 3. find an element appeared on n1 and n2 after the insertion + insertMap.erase( elem ); + elem = findAdjacentFace( n1, n2, 0 ); + } + if ( notFound || otherLink ) { + // add element and nodes of the side into the insertMap + insertMapIt = insertMap.insert + ( TElemOfNodeListMap::value_type( elem, list() )).first; + (*insertMapIt).second.push_back( n1 ); + (*insertMapIt).second.push_back( n2 ); + } + // add node to be inserted into elem + (*insertMapIt).second.push_back( nIns ); + next[ 1 - intoBord ] = true; + } + + // go to the next segment + for ( iBord = 0; iBord < 2; iBord++ ) { // loop on 2 borders + if ( next[ iBord ] ) { + if ( i[ iBord ] != 0 && eIt[ iBord ] != eSide[ iBord ].end()) + eIt[ iBord ]++; + nPrev[ iBord ] = *nIt[ iBord ]; + nIt[ iBord ]++; i[ iBord ]++; + } + } + } + while ( nIt[0] != nSide[0].end() && nIt[1] != nSide[1].end()); + + // perform insertion of nodes into elements + + for (insertMapIt = insertMap.begin(); + insertMapIt != insertMap.end(); + insertMapIt++ ) + { + const SMDS_MeshElement* elem = (*insertMapIt).first; + list & nodeList = (*insertMapIt).second; + const SMDS_MeshNode* n1 = nodeList.front(); nodeList.pop_front(); + const SMDS_MeshNode* n2 = nodeList.front(); nodeList.pop_front(); + + InsertNodesIntoLink( elem, n1, n2, nodeList, toCreatePolygons ); + + if ( !theSideIsFreeBorder ) { + // look for and insert nodes into the faces adjacent to elem + while (true) { + const SMDS_MeshElement* adjElem = findAdjacentFace( n1, n2, elem ); + if ( adjElem ) + InsertNodesIntoLink( adjElem, n1, n2, nodeList, toCreatePolygons ); + else + break; + } + } + if (toCreatePolyedrs) { + // perform insertion into the links of adjacent volumes + UpdateVolumes(n1, n2, nodeList); + } + } + + delete param[0]; + delete param[1]; + } // end: insert new nodes + + MergeNodes ( nodeGroupsToMerge ); + + return aResult; +} + +//======================================================================= +//function : InsertNodesIntoLink +//purpose : insert theNodesToInsert into theFace between theBetweenNode1 +// and theBetweenNode2 and split theElement +//======================================================================= + +void SMESH_MeshEditor::InsertNodesIntoLink(const SMDS_MeshElement* theFace, + const SMDS_MeshNode* theBetweenNode1, + const SMDS_MeshNode* theBetweenNode2, + list& theNodesToInsert, + const bool toCreatePoly) +{ + if ( theFace->GetType() != SMDSAbs_Face ) return; + + // find indices of 2 link nodes and of the rest nodes + int iNode = 0, il1, il2, i3, i4; + il1 = il2 = i3 = i4 = -1; + //const SMDS_MeshNode* nodes[ theFace->NbNodes() ]; + vector nodes( theFace->NbNodes() ); + + if(theFace->IsQuadratic()) { + const SMDS_VtkFace* F = + dynamic_cast(theFace); + if (!F) throw SALOME_Exception(LOCALIZED("not an SMDS_VtkFace")); + // use special nodes iterator + SMDS_ElemIteratorPtr anIter = F->interlacedNodesElemIterator(); + while( anIter->more() ) { + const SMDS_MeshNode* n = cast2Node(anIter->next()); + if ( n == theBetweenNode1 ) + il1 = iNode; + else if ( n == theBetweenNode2 ) + il2 = iNode; + else if ( i3 < 0 ) + i3 = iNode; + else + i4 = iNode; + nodes[ iNode++ ] = n; + } + } + else { + SMDS_ElemIteratorPtr nodeIt = theFace->nodesIterator(); + while ( nodeIt->more() ) { + const SMDS_MeshNode* n = static_cast( nodeIt->next() ); + if ( n == theBetweenNode1 ) + il1 = iNode; + else if ( n == theBetweenNode2 ) + il2 = iNode; + else if ( i3 < 0 ) + i3 = iNode; + else + i4 = iNode; + nodes[ iNode++ ] = n; + } + } + if ( il1 < 0 || il2 < 0 || i3 < 0 ) + return ; + + // arrange link nodes to go one after another regarding the face orientation + bool reverse = ( Abs( il2 - il1 ) == 1 ? il2 < il1 : il1 < il2 ); + list aNodesToInsert = theNodesToInsert; + if ( reverse ) { + iNode = il1; + il1 = il2; + il2 = iNode; + aNodesToInsert.reverse(); + } + // check that not link nodes of a quadrangles are in good order + int nbFaceNodes = theFace->NbNodes(); + if ( nbFaceNodes == 4 && i4 - i3 != 1 ) { + iNode = i3; + i3 = i4; + i4 = iNode; + } + + if (toCreatePoly || theFace->IsPoly()) { + + iNode = 0; + vector poly_nodes (nbFaceNodes + aNodesToInsert.size()); + + // add nodes of face up to first node of link + bool isFLN = false; + + if(theFace->IsQuadratic()) { + const SMDS_VtkFace* F = + dynamic_cast(theFace); + if (!F) throw SALOME_Exception(LOCALIZED("not an SMDS_VtkFace")); + // use special nodes iterator + SMDS_ElemIteratorPtr anIter = F->interlacedNodesElemIterator(); + while( anIter->more() && !isFLN ) { + const SMDS_MeshNode* n = cast2Node(anIter->next()); + poly_nodes[iNode++] = n; + if (n == nodes[il1]) { + isFLN = true; + } + } + // add nodes to insert + list::iterator nIt = aNodesToInsert.begin(); + for (; nIt != aNodesToInsert.end(); nIt++) { + poly_nodes[iNode++] = *nIt; + } + // add nodes of face starting from last node of link + while ( anIter->more() ) { + poly_nodes[iNode++] = cast2Node(anIter->next()); + } + } + else { + SMDS_ElemIteratorPtr nodeIt = theFace->nodesIterator(); + while ( nodeIt->more() && !isFLN ) { + const SMDS_MeshNode* n = static_cast( nodeIt->next() ); + poly_nodes[iNode++] = n; + if (n == nodes[il1]) { + isFLN = true; + } + } + // add nodes to insert + list::iterator nIt = aNodesToInsert.begin(); + for (; nIt != aNodesToInsert.end(); nIt++) { + poly_nodes[iNode++] = *nIt; + } + // add nodes of face starting from last node of link + while ( nodeIt->more() ) { + const SMDS_MeshNode* n = static_cast( nodeIt->next() ); + poly_nodes[iNode++] = n; + } + } + + // edit or replace the face + SMESHDS_Mesh *aMesh = GetMeshDS(); + + if (theFace->IsPoly()) { + aMesh->ChangePolygonNodes(theFace, poly_nodes); + } + else { + int aShapeId = FindShape( theFace ); + + SMDS_MeshElement* newElem = aMesh->AddPolygonalFace(poly_nodes); + myLastCreatedElems.Append(newElem); + if ( aShapeId && newElem ) + aMesh->SetMeshElementOnShape( newElem, aShapeId ); + + aMesh->RemoveElement(theFace); + } + return; + } + + SMESHDS_Mesh *aMesh = GetMeshDS(); + if( !theFace->IsQuadratic() ) { + + // put aNodesToInsert between theBetweenNode1 and theBetweenNode2 + int nbLinkNodes = 2 + aNodesToInsert.size(); + //const SMDS_MeshNode* linkNodes[ nbLinkNodes ]; + vector linkNodes( nbLinkNodes ); + linkNodes[ 0 ] = nodes[ il1 ]; + linkNodes[ nbLinkNodes - 1 ] = nodes[ il2 ]; + list::iterator nIt = aNodesToInsert.begin(); + for ( iNode = 1; nIt != aNodesToInsert.end(); nIt++ ) { + linkNodes[ iNode++ ] = *nIt; + } + // decide how to split a quadrangle: compare possible variants + // and choose which of splits to be a quadrangle + int i1, i2, iSplit, nbSplits = nbLinkNodes - 1, iBestQuad; + if ( nbFaceNodes == 3 ) { + iBestQuad = nbSplits; + i4 = i3; + } + else if ( nbFaceNodes == 4 ) { + SMESH::Controls::NumericalFunctorPtr aCrit( new SMESH::Controls::AspectRatio); + double aBestRate = DBL_MAX; + for ( int iQuad = 0; iQuad < nbSplits; iQuad++ ) { + i1 = 0; i2 = 1; + double aBadRate = 0; + // evaluate elements quality + for ( iSplit = 0; iSplit < nbSplits; iSplit++ ) { + if ( iSplit == iQuad ) { + SMDS_FaceOfNodes quad (linkNodes[ i1++ ], + linkNodes[ i2++ ], + nodes[ i3 ], + nodes[ i4 ]); + aBadRate += getBadRate( &quad, aCrit ); + } + else { + SMDS_FaceOfNodes tria (linkNodes[ i1++ ], + linkNodes[ i2++ ], + nodes[ iSplit < iQuad ? i4 : i3 ]); + aBadRate += getBadRate( &tria, aCrit ); + } + } + // choice + if ( aBadRate < aBestRate ) { + iBestQuad = iQuad; + aBestRate = aBadRate; + } + } + } + + // create new elements + int aShapeId = FindShape( theFace ); + + i1 = 0; i2 = 1; + for ( iSplit = 0; iSplit < nbSplits - 1; iSplit++ ) { + SMDS_MeshElement* newElem = 0; + if ( iSplit == iBestQuad ) + newElem = aMesh->AddFace (linkNodes[ i1++ ], + linkNodes[ i2++ ], + nodes[ i3 ], + nodes[ i4 ]); + else + newElem = aMesh->AddFace (linkNodes[ i1++ ], + linkNodes[ i2++ ], + nodes[ iSplit < iBestQuad ? i4 : i3 ]); + myLastCreatedElems.Append(newElem); + if ( aShapeId && newElem ) + aMesh->SetMeshElementOnShape( newElem, aShapeId ); + } + + // change nodes of theFace + const SMDS_MeshNode* newNodes[ 4 ]; + newNodes[ 0 ] = linkNodes[ i1 ]; + newNodes[ 1 ] = linkNodes[ i2 ]; + newNodes[ 2 ] = nodes[ iSplit >= iBestQuad ? i3 : i4 ]; + newNodes[ 3 ] = nodes[ i4 ]; + //aMesh->ChangeElementNodes( theFace, newNodes, iSplit == iBestQuad ? 4 : 3 ); + const SMDS_MeshElement* newElem = 0; + if (iSplit == iBestQuad) + newElem = aMesh->AddFace( newNodes[0], newNodes[1], newNodes[2], newNodes[3] ); + else + newElem = aMesh->AddFace( newNodes[0], newNodes[1], newNodes[2] ); + myLastCreatedElems.Append(newElem); + if ( aShapeId && newElem ) + aMesh->SetMeshElementOnShape( newElem, aShapeId ); +} // end if(!theFace->IsQuadratic()) + else { // theFace is quadratic + // we have to split theFace on simple triangles and one simple quadrangle + int tmp = il1/2; + int nbshift = tmp*2; + // shift nodes in nodes[] by nbshift + int i,j; + for(i=0; iAddFace(nodes[3],nodes[4],nodes[5]); + myLastCreatedElems.Append(newElem); + if ( aShapeId && newElem ) + aMesh->SetMeshElementOnShape( newElem, aShapeId ); + if(theFace->IsMediumNode(nodes[il1])) { + // create quadrangle + newElem = aMesh->AddFace(nodes[0],nodes[1],nodes[3],nodes[5]); + myLastCreatedElems.Append(newElem); + if ( aShapeId && newElem ) + aMesh->SetMeshElementOnShape( newElem, aShapeId ); + n1 = 1; + n2 = 2; + n3 = 3; + } + else { + // create quadrangle + newElem = aMesh->AddFace(nodes[1],nodes[2],nodes[3],nodes[5]); + myLastCreatedElems.Append(newElem); + if ( aShapeId && newElem ) + aMesh->SetMeshElementOnShape( newElem, aShapeId ); + n1 = 0; + n2 = 1; + n3 = 5; + } + } + else { // nbFaceNodes==8 - quadratic quadrangle + SMDS_MeshElement* newElem = + aMesh->AddFace(nodes[3],nodes[4],nodes[5]); + myLastCreatedElems.Append(newElem); + if ( aShapeId && newElem ) + aMesh->SetMeshElementOnShape( newElem, aShapeId ); + newElem = aMesh->AddFace(nodes[5],nodes[6],nodes[7]); + myLastCreatedElems.Append(newElem); + if ( aShapeId && newElem ) + aMesh->SetMeshElementOnShape( newElem, aShapeId ); + newElem = aMesh->AddFace(nodes[5],nodes[7],nodes[3]); + myLastCreatedElems.Append(newElem); + if ( aShapeId && newElem ) + aMesh->SetMeshElementOnShape( newElem, aShapeId ); + if(theFace->IsMediumNode(nodes[il1])) { + // create quadrangle + newElem = aMesh->AddFace(nodes[0],nodes[1],nodes[3],nodes[7]); + myLastCreatedElems.Append(newElem); + if ( aShapeId && newElem ) + aMesh->SetMeshElementOnShape( newElem, aShapeId ); + n1 = 1; + n2 = 2; + n3 = 3; + } + else { + // create quadrangle + newElem = aMesh->AddFace(nodes[1],nodes[2],nodes[3],nodes[7]); + myLastCreatedElems.Append(newElem); + if ( aShapeId && newElem ) + aMesh->SetMeshElementOnShape( newElem, aShapeId ); + n1 = 0; + n2 = 1; + n3 = 7; + } + } + // create needed triangles using n1,n2,n3 and inserted nodes + int nbn = 2 + aNodesToInsert.size(); + //const SMDS_MeshNode* aNodes[nbn]; + vector aNodes(nbn); + aNodes[0] = nodes[n1]; + aNodes[nbn-1] = nodes[n2]; + list::iterator nIt = aNodesToInsert.begin(); + for ( iNode = 1; nIt != aNodesToInsert.end(); nIt++ ) { + aNodes[iNode++] = *nIt; + } + for(i=1; iAddFace(aNodes[i-1],aNodes[i],nodes[n3]); + myLastCreatedElems.Append(newElem); + if ( aShapeId && newElem ) + aMesh->SetMeshElementOnShape( newElem, aShapeId ); + } + } + // remove old face + aMesh->RemoveElement(theFace); +} + +//======================================================================= +//function : UpdateVolumes +//purpose : +//======================================================================= +void SMESH_MeshEditor::UpdateVolumes (const SMDS_MeshNode* theBetweenNode1, + const SMDS_MeshNode* theBetweenNode2, + list& theNodesToInsert) +{ + myLastCreatedElems.Clear(); + myLastCreatedNodes.Clear(); + + SMDS_ElemIteratorPtr invElemIt = theBetweenNode1->GetInverseElementIterator(SMDSAbs_Volume); + while (invElemIt->more()) { // loop on inverse elements of theBetweenNode1 + const SMDS_MeshElement* elem = invElemIt->next(); + + // check, if current volume has link theBetweenNode1 - theBetweenNode2 + SMDS_VolumeTool aVolume (elem); + if (!aVolume.IsLinked(theBetweenNode1, theBetweenNode2)) + continue; + + // insert new nodes in all faces of the volume, sharing link theBetweenNode1 - theBetweenNode2 + int iface, nbFaces = aVolume.NbFaces(); + vector poly_nodes; + vector quantities (nbFaces); + + for (iface = 0; iface < nbFaces; iface++) { + int nbFaceNodes = aVolume.NbFaceNodes(iface), nbInserted = 0; + // faceNodes will contain (nbFaceNodes + 1) nodes, last = first + const SMDS_MeshNode** faceNodes = aVolume.GetFaceNodes(iface); + + for (int inode = 0; inode < nbFaceNodes; inode++) { + poly_nodes.push_back(faceNodes[inode]); + + if (nbInserted == 0) { + if (faceNodes[inode] == theBetweenNode1) { + if (faceNodes[inode + 1] == theBetweenNode2) { + nbInserted = theNodesToInsert.size(); + + // add nodes to insert + list::iterator nIt = theNodesToInsert.begin(); + for (; nIt != theNodesToInsert.end(); nIt++) { + poly_nodes.push_back(*nIt); + } + } + } + else if (faceNodes[inode] == theBetweenNode2) { + if (faceNodes[inode + 1] == theBetweenNode1) { + nbInserted = theNodesToInsert.size(); + + // add nodes to insert in reversed order + list::iterator nIt = theNodesToInsert.end(); + nIt--; + for (; nIt != theNodesToInsert.begin(); nIt--) { + poly_nodes.push_back(*nIt); + } + poly_nodes.push_back(*nIt); + } + } + else { + } + } + } + quantities[iface] = nbFaceNodes + nbInserted; + } + + // Replace or update the volume + SMESHDS_Mesh *aMesh = GetMeshDS(); + + if (elem->IsPoly()) { + aMesh->ChangePolyhedronNodes(elem, poly_nodes, quantities); + + } + else { + int aShapeId = FindShape( elem ); + + SMDS_MeshElement* newElem = + aMesh->AddPolyhedralVolume(poly_nodes, quantities); + myLastCreatedElems.Append(newElem); + if (aShapeId && newElem) + aMesh->SetMeshElementOnShape(newElem, aShapeId); + + aMesh->RemoveElement(elem); + } + } +} + +namespace +{ + //================================================================================ + /*! + * \brief Transform any volume into data of SMDSEntity_Polyhedra + */ + //================================================================================ + + void volumeToPolyhedron( const SMDS_MeshElement* elem, + vector & nodes, + vector & nbNodeInFaces ) + { + nodes.clear(); + nbNodeInFaces.clear(); + SMDS_VolumeTool vTool ( elem ); + for ( int iF = 0; iF < vTool.NbFaces(); ++iF ) + { + const SMDS_MeshNode** fNodes = vTool.GetFaceNodes( iF ); + nodes.insert( nodes.end(), fNodes, fNodes + vTool.NbFaceNodes( iF )); + nbNodeInFaces.push_back( vTool.NbFaceNodes( iF )); + } + } +} + +//======================================================================= +/*! + * \brief Convert elements contained in a submesh to quadratic + * \return int - nb of checked elements + */ +//======================================================================= + +int SMESH_MeshEditor::convertElemToQuadratic(SMESHDS_SubMesh * theSm, + SMESH_MesherHelper& theHelper, + const bool theForce3d) +{ + int nbElem = 0; + if( !theSm ) return nbElem; + + vector nbNodeInFaces; + vector nodes; + SMDS_ElemIteratorPtr ElemItr = theSm->GetElements(); + while(ElemItr->more()) + { + nbElem++; + const SMDS_MeshElement* elem = ElemItr->next(); + if( !elem ) continue; + + const SMDSAbs_EntityType aGeomType = elem->GetEntityType(); + if ( elem->IsQuadratic() ) + { + bool alreadyOK; + switch ( aGeomType ) { + case SMDSEntity_Quad_Quadrangle: + case SMDSEntity_Quad_Hexa: alreadyOK = !theHelper.GetIsBiQuadratic(); break; + case SMDSEntity_BiQuad_Quadrangle: + case SMDSEntity_TriQuad_Hexa: alreadyOK = theHelper.GetIsBiQuadratic(); break; + default: alreadyOK = true; + } + if ( alreadyOK ) continue; + } + // get elem data needed to re-create it + // + const int id = elem->GetID(); + const int nbNodes = elem->NbCornerNodes(); + const SMDSAbs_ElementType aType = elem->GetType(); + nodes.assign(elem->begin_nodes(), elem->end_nodes()); + if ( aGeomType == SMDSEntity_Polyhedra ) + nbNodeInFaces = static_cast( elem )->GetQuantities(); + else if ( aGeomType == SMDSEntity_Hexagonal_Prism ) + volumeToPolyhedron( elem, nodes, nbNodeInFaces ); + + // remove a linear element + GetMeshDS()->RemoveFreeElement(elem, theSm, /*fromGroups=*/false); + + const SMDS_MeshElement* NewElem = 0; + + switch( aType ) + { + case SMDSAbs_Edge : + { + NewElem = theHelper.AddEdge(nodes[0], nodes[1], id, theForce3d); + break; + } + case SMDSAbs_Face : + { + switch(nbNodes) + { + case 3: + NewElem = theHelper.AddFace(nodes[0], nodes[1], nodes[2], id, theForce3d); + break; + case 4: + NewElem = theHelper.AddFace(nodes[0], nodes[1], nodes[2], nodes[3], id, theForce3d); + break; + default: + NewElem = theHelper.AddPolygonalFace(nodes, id, theForce3d); + continue; + } + break; + } + case SMDSAbs_Volume : + { + switch( aGeomType ) + { + case SMDSEntity_Tetra: + NewElem = theHelper.AddVolume(nodes[0], nodes[1], nodes[2], nodes[3], id, theForce3d); + break; + case SMDSEntity_Pyramid: + NewElem = theHelper.AddVolume(nodes[0], nodes[1], nodes[2], nodes[3], nodes[4], id, theForce3d); + break; + case SMDSEntity_Penta: + NewElem = theHelper.AddVolume(nodes[0], nodes[1], nodes[2], nodes[3], nodes[4], nodes[5], id, theForce3d); + break; + case SMDSEntity_Hexa: + case SMDSEntity_Quad_Hexa: + case SMDSEntity_TriQuad_Hexa: + NewElem = theHelper.AddVolume(nodes[0], nodes[1], nodes[2], nodes[3], + nodes[4], nodes[5], nodes[6], nodes[7], id, theForce3d); + break; + case SMDSEntity_Hexagonal_Prism: + default: + NewElem = theHelper.AddPolyhedralVolume(nodes, nbNodeInFaces, id, theForce3d); + } + break; + } + default : + continue; + } + ReplaceElemInGroups( elem, NewElem, GetMeshDS()); + if( NewElem ) + theSm->AddElement( NewElem ); + } + return nbElem; +} +//======================================================================= +//function : ConvertToQuadratic +//purpose : +//======================================================================= + +void SMESH_MeshEditor::ConvertToQuadratic(const bool theForce3d, const bool theToBiQuad) +{ + SMESHDS_Mesh* meshDS = GetMeshDS(); + + SMESH_MesherHelper aHelper(*myMesh); + + aHelper.SetIsQuadratic( true ); + aHelper.SetIsBiQuadratic( theToBiQuad ); + aHelper.SetElementsOnShape(true); + + int nbCheckedElems = 0; + if ( myMesh->HasShapeToMesh() ) + { + if ( SMESH_subMesh *aSubMesh = myMesh->GetSubMeshContaining(myMesh->GetShapeToMesh())) + { + SMESH_subMeshIteratorPtr smIt = aSubMesh->getDependsOnIterator(true,false); + while ( smIt->more() ) { + SMESH_subMesh* sm = smIt->next(); + if ( SMESHDS_SubMesh *smDS = sm->GetSubMeshDS() ) { + aHelper.SetSubShape( sm->GetSubShape() ); + nbCheckedElems += convertElemToQuadratic(smDS, aHelper, theForce3d); + } + } + } + } + int totalNbElems = meshDS->NbEdges() + meshDS->NbFaces() + meshDS->NbVolumes(); + if ( nbCheckedElems < totalNbElems ) // not all elements are in submeshes + { + aHelper.SetElementsOnShape(false); + SMESHDS_SubMesh *smDS = 0; + SMDS_EdgeIteratorPtr aEdgeItr = meshDS->edgesIterator(); + while(aEdgeItr->more()) + { + const SMDS_MeshEdge* edge = aEdgeItr->next(); + if(edge && !edge->IsQuadratic()) + { + int id = edge->GetID(); + //MESSAGE("edge->GetID() " << id); + const SMDS_MeshNode* n1 = edge->GetNode(0); + const SMDS_MeshNode* n2 = edge->GetNode(1); + + meshDS->RemoveFreeElement(edge, smDS, /*fromGroups=*/false); + + const SMDS_MeshEdge* NewEdge = aHelper.AddEdge(n1, n2, id, theForce3d); + ReplaceElemInGroups( edge, NewEdge, GetMeshDS()); + } + } + SMDS_FaceIteratorPtr aFaceItr = meshDS->facesIterator(); + while(aFaceItr->more()) + { + const SMDS_MeshFace* face = aFaceItr->next(); + if ( !face ) continue; + + const SMDSAbs_EntityType type = face->GetEntityType(); + if (( theToBiQuad && type == SMDSEntity_BiQuad_Quadrangle ) || + ( !theToBiQuad && type == SMDSEntity_Quad_Quadrangle )) + continue; + + const int id = face->GetID(); + vector nodes ( face->begin_nodes(), face->end_nodes()); + + meshDS->RemoveFreeElement(face, smDS, /*fromGroups=*/false); + + SMDS_MeshFace * NewFace = 0; + switch( type ) + { + case SMDSEntity_Triangle: + NewFace = aHelper.AddFace(nodes[0], nodes[1], nodes[2], id, theForce3d); + break; + case SMDSEntity_Quadrangle: + NewFace = aHelper.AddFace(nodes[0], nodes[1], nodes[2], nodes[3], id, theForce3d); + break; + default: + NewFace = aHelper.AddPolygonalFace(nodes, id, theForce3d); + } + ReplaceElemInGroups( face, NewFace, GetMeshDS()); + } + vector nbNodeInFaces; + SMDS_VolumeIteratorPtr aVolumeItr = meshDS->volumesIterator(); + while(aVolumeItr->more()) + { + const SMDS_MeshVolume* volume = aVolumeItr->next(); + if(!volume || volume->IsQuadratic() ) continue; + + const SMDSAbs_EntityType type = volume->GetEntityType(); + if (( theToBiQuad && type == SMDSEntity_TriQuad_Hexa ) || + ( !theToBiQuad && type == SMDSEntity_Quad_Hexa )) + continue; + + const int id = volume->GetID(); + vector nodes (volume->begin_nodes(), volume->end_nodes()); + if ( type == SMDSEntity_Polyhedra ) + nbNodeInFaces = static_cast(volume)->GetQuantities(); + else if ( type == SMDSEntity_Hexagonal_Prism ) + volumeToPolyhedron( volume, nodes, nbNodeInFaces ); + + meshDS->RemoveFreeElement(volume, smDS, /*fromGroups=*/false); + + SMDS_MeshVolume * NewVolume = 0; + switch ( type ) + { + case SMDSEntity_Tetra: + NewVolume = aHelper.AddVolume(nodes[0], nodes[1], nodes[2], nodes[3], id, theForce3d ); + break; + case SMDSEntity_Hexa: + case SMDSEntity_Quad_Hexa: + case SMDSEntity_TriQuad_Hexa: + NewVolume = aHelper.AddVolume(nodes[0], nodes[1], nodes[2], nodes[3], + nodes[4], nodes[5], nodes[6], nodes[7], id, theForce3d); + break; + case SMDSEntity_Pyramid: + NewVolume = aHelper.AddVolume(nodes[0], nodes[1], nodes[2], + nodes[3], nodes[4], id, theForce3d); + break; + case SMDSEntity_Penta: + NewVolume = aHelper.AddVolume(nodes[0], nodes[1], nodes[2], + nodes[3], nodes[4], nodes[5], id, theForce3d); + break; + case SMDSEntity_Hexagonal_Prism: + default: + NewVolume = aHelper.AddPolyhedralVolume(nodes, nbNodeInFaces, id, theForce3d); + } + ReplaceElemInGroups(volume, NewVolume, meshDS); + } + } + + if ( !theForce3d ) + { // setenv NO_FixQuadraticElements to know if FixQuadraticElements() is guilty of bad conversion + aHelper.SetSubShape(0); // apply FixQuadraticElements() to the whole mesh + aHelper.FixQuadraticElements(myError); + } +} + +//================================================================================ +/*! + * \brief Makes given elements quadratic + * \param theForce3d - if true, the medium nodes will be placed in the middle of link + * \param theElements - elements to make quadratic + */ +//================================================================================ + +void SMESH_MeshEditor::ConvertToQuadratic(const bool theForce3d, + TIDSortedElemSet& theElements, + const bool theToBiQuad) +{ + if ( theElements.empty() ) return; + + // we believe that all theElements are of the same type + const SMDSAbs_ElementType elemType = (*theElements.begin())->GetType(); + + // get all nodes shared by theElements + TIDSortedNodeSet allNodes; + TIDSortedElemSet::iterator eIt = theElements.begin(); + for ( ; eIt != theElements.end(); ++eIt ) + allNodes.insert( (*eIt)->begin_nodes(), (*eIt)->end_nodes() ); + + // complete theElements with elements of lower dim whose all nodes are in allNodes + + TIDSortedElemSet quadAdjacentElems [ SMDSAbs_NbElementTypes ]; // quadratic adjacent elements + TIDSortedElemSet checkedAdjacentElems [ SMDSAbs_NbElementTypes ]; + TIDSortedNodeSet::iterator nIt = allNodes.begin(); + for ( ; nIt != allNodes.end(); ++nIt ) + { + const SMDS_MeshNode* n = *nIt; + SMDS_ElemIteratorPtr invIt = n->GetInverseElementIterator(); + while ( invIt->more() ) + { + const SMDS_MeshElement* e = invIt->next(); + if ( e->IsQuadratic() ) + { + bool alreadyOK; + switch ( e->GetEntityType() ) { + case SMDSEntity_Quad_Quadrangle: + case SMDSEntity_Quad_Hexa: alreadyOK = !theToBiQuad; break; + case SMDSEntity_BiQuad_Quadrangle: + case SMDSEntity_TriQuad_Hexa: alreadyOK = theToBiQuad; break; + default: alreadyOK = true; + } + if ( alreadyOK ) + { + quadAdjacentElems[ e->GetType() ].insert( e ); + continue; + } + } + if ( e->GetType() >= elemType ) + { + continue; // same type of more complex linear element + } + + if ( !checkedAdjacentElems[ e->GetType() ].insert( e ).second ) + continue; // e is already checked + + // check nodes + bool allIn = true; + SMDS_ElemIteratorPtr nodeIt = e->nodesIterator(); + while ( nodeIt->more() && allIn ) + allIn = allNodes.count( cast2Node( nodeIt->next() )); + if ( allIn ) + theElements.insert(e ); + } + } + + SMESH_MesherHelper helper(*myMesh); + helper.SetIsQuadratic( true ); + helper.SetIsBiQuadratic( theToBiQuad ); + + // add links of quadratic adjacent elements to the helper + + if ( !quadAdjacentElems[SMDSAbs_Edge].empty() ) + for ( eIt = quadAdjacentElems[SMDSAbs_Edge].begin(); + eIt != quadAdjacentElems[SMDSAbs_Edge].end(); ++eIt ) + { + helper.AddTLinks( static_cast< const SMDS_MeshEdge*> (*eIt) ); + } + if ( !quadAdjacentElems[SMDSAbs_Face].empty() ) + for ( eIt = quadAdjacentElems[SMDSAbs_Face].begin(); + eIt != quadAdjacentElems[SMDSAbs_Face].end(); ++eIt ) + { + helper.AddTLinks( static_cast< const SMDS_MeshFace*> (*eIt) ); + } + if ( !quadAdjacentElems[SMDSAbs_Volume].empty() ) + for ( eIt = quadAdjacentElems[SMDSAbs_Volume].begin(); + eIt != quadAdjacentElems[SMDSAbs_Volume].end(); ++eIt ) + { + helper.AddTLinks( static_cast< const SMDS_MeshVolume*> (*eIt) ); + } + + // make quadratic (or bi-tri-quadratic) elements instead of linear ones + + SMESHDS_Mesh* meshDS = GetMeshDS(); + SMESHDS_SubMesh* smDS = 0; + for ( eIt = theElements.begin(); eIt != theElements.end(); ++eIt ) + { + const SMDS_MeshElement* elem = *eIt; + if( elem->NbNodes() < 2 || elem->IsPoly() ) + continue; + + if ( elem->IsQuadratic() ) + { + bool alreadyOK; + switch ( elem->GetEntityType() ) { + case SMDSEntity_Quad_Quadrangle: + case SMDSEntity_Quad_Hexa: alreadyOK = !theToBiQuad; break; + case SMDSEntity_BiQuad_Quadrangle: + case SMDSEntity_TriQuad_Hexa: alreadyOK = theToBiQuad; break; + default: alreadyOK = true; + } + if ( alreadyOK ) continue; + } + + const SMDSAbs_ElementType type = elem->GetType(); + const int id = elem->GetID(); + const int nbNodes = elem->NbCornerNodes(); + vector nodes ( elem->begin_nodes(), elem->end_nodes()); + + if ( !smDS || !smDS->Contains( elem )) + smDS = meshDS->MeshElements( elem->getshapeId() ); + meshDS->RemoveFreeElement(elem, smDS, /*fromGroups=*/false); + + SMDS_MeshElement * newElem = 0; + switch( nbNodes ) + { + case 4: // cases for most frequently used element types go first (for optimization) + if ( type == SMDSAbs_Volume ) + newElem = helper.AddVolume(nodes[0], nodes[1], nodes[2], nodes[3], id, theForce3d); + else + newElem = helper.AddFace (nodes[0], nodes[1], nodes[2], nodes[3], id, theForce3d); + break; + case 8: + newElem = helper.AddVolume(nodes[0], nodes[1], nodes[2], nodes[3], + nodes[4], nodes[5], nodes[6], nodes[7], id, theForce3d); + break; + case 3: + newElem = helper.AddFace (nodes[0], nodes[1], nodes[2], id, theForce3d); + break; + case 2: + newElem = helper.AddEdge(nodes[0], nodes[1], id, theForce3d); + break; + case 5: + newElem = helper.AddVolume(nodes[0], nodes[1], nodes[2], nodes[3], + nodes[4], id, theForce3d); + break; + case 6: + newElem = helper.AddVolume(nodes[0], nodes[1], nodes[2], nodes[3], + nodes[4], nodes[5], id, theForce3d); + break; + default:; + } + ReplaceElemInGroups( elem, newElem, meshDS); + if( newElem && smDS ) + smDS->AddElement( newElem ); + } + + if ( !theForce3d && !getenv("NO_FixQuadraticElements")) + { // setenv NO_FixQuadraticElements to know if FixQuadraticElements() is guilty of bad conversion + helper.SetSubShape(0); // apply FixQuadraticElements() to the whole mesh + helper.FixQuadraticElements( myError ); + } +} + +//======================================================================= +/*! + * \brief Convert quadratic elements to linear ones and remove quadratic nodes + * \return int - nb of checked elements + */ +//======================================================================= + +int SMESH_MeshEditor::removeQuadElem(SMESHDS_SubMesh * theSm, + SMDS_ElemIteratorPtr theItr, + const int theShapeID) +{ + int nbElem = 0; + SMESHDS_Mesh* meshDS = GetMeshDS(); + + while( theItr->more() ) + { + const SMDS_MeshElement* elem = theItr->next(); + nbElem++; + if( elem && elem->IsQuadratic()) + { + int id = elem->GetID(); + int nbCornerNodes = elem->NbCornerNodes(); + SMDSAbs_ElementType aType = elem->GetType(); + + vector nodes( elem->begin_nodes(), elem->end_nodes() ); + + //remove a quadratic element + if ( !theSm || !theSm->Contains( elem )) + theSm = meshDS->MeshElements( elem->getshapeId() ); + meshDS->RemoveFreeElement( elem, theSm, /*fromGroups=*/false ); + + // remove medium nodes + for ( unsigned i = nbCornerNodes; i < nodes.size(); ++i ) + if ( nodes[i]->NbInverseElements() == 0 ) + meshDS->RemoveFreeNode( nodes[i], theSm ); + + // add a linear element + nodes.resize( nbCornerNodes ); + SMDS_MeshElement * newElem = AddElement( nodes, aType, false, id ); + ReplaceElemInGroups(elem, newElem, meshDS); + if( theSm && newElem ) + theSm->AddElement( newElem ); + } + } + return nbElem; +} + +//======================================================================= +//function : ConvertFromQuadratic +//purpose : +//======================================================================= + +bool SMESH_MeshEditor::ConvertFromQuadratic() +{ + int nbCheckedElems = 0; + if ( myMesh->HasShapeToMesh() ) + { + if ( SMESH_subMesh *aSubMesh = myMesh->GetSubMeshContaining(myMesh->GetShapeToMesh())) + { + SMESH_subMeshIteratorPtr smIt = aSubMesh->getDependsOnIterator(true,false); + while ( smIt->more() ) { + SMESH_subMesh* sm = smIt->next(); + if ( SMESHDS_SubMesh *smDS = sm->GetSubMeshDS() ) + nbCheckedElems += removeQuadElem( smDS, smDS->GetElements(), sm->GetId() ); + } + } + } + + int totalNbElems = + GetMeshDS()->NbEdges() + GetMeshDS()->NbFaces() + GetMeshDS()->NbVolumes(); + if ( nbCheckedElems < totalNbElems ) // not all elements are in submeshes + { + SMESHDS_SubMesh *aSM = 0; + removeQuadElem( aSM, GetMeshDS()->elementsIterator(), 0 ); + } + + return true; +} + +namespace +{ + //================================================================================ + /*! + * \brief Return true if all medium nodes of the element are in the node set + */ + //================================================================================ + + bool allMediumNodesIn(const SMDS_MeshElement* elem, TIDSortedNodeSet& nodeSet ) + { + for ( int i = elem->NbCornerNodes(); i < elem->NbNodes(); ++i ) + if ( !nodeSet.count( elem->GetNode(i) )) + return false; + return true; + } +} + +//================================================================================ +/*! + * \brief Makes given elements linear + */ +//================================================================================ + +void SMESH_MeshEditor::ConvertFromQuadratic(TIDSortedElemSet& theElements) +{ + if ( theElements.empty() ) return; + + // collect IDs of medium nodes of theElements; some of these nodes will be removed + set mediumNodeIDs; + TIDSortedElemSet::iterator eIt = theElements.begin(); + for ( ; eIt != theElements.end(); ++eIt ) + { + const SMDS_MeshElement* e = *eIt; + for ( int i = e->NbCornerNodes(); i < e->NbNodes(); ++i ) + mediumNodeIDs.insert( e->GetNode(i)->GetID() ); + } + + // replace given elements by linear ones + typedef SMDS_SetIterator TSetIterator; + SMDS_ElemIteratorPtr elemIt( new TSetIterator( theElements.begin(), theElements.end() )); + removeQuadElem( /*theSm=*/0, elemIt, /*theShapeID=*/0 ); + + // we need to convert remaining elements whose all medium nodes are in mediumNodeIDs + // except those elements sharing medium nodes of quadratic element whose medium nodes + // are not all in mediumNodeIDs + + // get remaining medium nodes + TIDSortedNodeSet mediumNodes; + set::iterator nIdsIt = mediumNodeIDs.begin(); + for ( ; nIdsIt != mediumNodeIDs.end(); ++nIdsIt ) + if ( const SMDS_MeshNode* n = GetMeshDS()->FindNode( *nIdsIt )) + mediumNodes.insert( mediumNodes.end(), n ); + + // find more quadratic elements to convert + TIDSortedElemSet moreElemsToConvert; + TIDSortedNodeSet::iterator nIt = mediumNodes.begin(); + for ( ; nIt != mediumNodes.end(); ++nIt ) + { + SMDS_ElemIteratorPtr invIt = (*nIt)->GetInverseElementIterator(); + while ( invIt->more() ) + { + const SMDS_MeshElement* e = invIt->next(); + if ( e->IsQuadratic() && allMediumNodesIn( e, mediumNodes )) + { + // find a more complex element including e and + // whose medium nodes are not in mediumNodes + bool complexFound = false; + for ( int type = e->GetType() + 1; type < SMDSAbs_0DElement; ++type ) + { + SMDS_ElemIteratorPtr invIt2 = + (*nIt)->GetInverseElementIterator( SMDSAbs_ElementType( type )); + while ( invIt2->more() ) + { + const SMDS_MeshElement* eComplex = invIt2->next(); + if ( eComplex->IsQuadratic() && !allMediumNodesIn( eComplex, mediumNodes)) + { + int nbCommonNodes = SMESH_Algo::GetCommonNodes( e, eComplex ).size(); + if ( nbCommonNodes == e->NbNodes()) + { + complexFound = true; + type = SMDSAbs_NbElementTypes; // to quit from the outer loop + break; + } + } + } + } + if ( !complexFound ) + moreElemsToConvert.insert( e ); + } + } + } + elemIt = SMDS_ElemIteratorPtr + (new TSetIterator( moreElemsToConvert.begin(), moreElemsToConvert.end() )); + removeQuadElem( /*theSm=*/0, elemIt, /*theShapeID=*/0 ); +} + +//======================================================================= +//function : SewSideElements +//purpose : +//======================================================================= + +SMESH_MeshEditor::Sew_Error +SMESH_MeshEditor::SewSideElements (TIDSortedElemSet& theSide1, + TIDSortedElemSet& theSide2, + const SMDS_MeshNode* theFirstNode1, + const SMDS_MeshNode* theFirstNode2, + const SMDS_MeshNode* theSecondNode1, + const SMDS_MeshNode* theSecondNode2) +{ + myLastCreatedElems.Clear(); + myLastCreatedNodes.Clear(); + + MESSAGE ("::::SewSideElements()"); + if ( theSide1.size() != theSide2.size() ) + return SEW_DIFF_NB_OF_ELEMENTS; + + Sew_Error aResult = SEW_OK; + // Algo: + // 1. Build set of faces representing each side + // 2. Find which nodes of the side 1 to merge with ones on the side 2 + // 3. Replace nodes in elements of the side 1 and remove replaced nodes + + // ======================================================================= + // 1. Build set of faces representing each side: + // ======================================================================= + // a. build set of nodes belonging to faces + // b. complete set of faces: find missing faces whose nodes are in set of nodes + // c. create temporary faces representing side of volumes if correspondent + // face does not exist + + SMESHDS_Mesh* aMesh = GetMeshDS(); + // TODO algoritm not OK with vtkUnstructuredGrid: 2 meshes can't share nodes + //SMDS_Mesh aTmpFacesMesh; // try to use the same mesh + TIDSortedElemSet faceSet1, faceSet2; + set volSet1, volSet2; + set nodeSet1, nodeSet2; + TIDSortedElemSet * faceSetPtr[] = { &faceSet1, &faceSet2 }; + set * volSetPtr[] = { &volSet1, &volSet2 }; + set * nodeSetPtr[] = { &nodeSet1, &nodeSet2 }; + TIDSortedElemSet * elemSetPtr[] = { &theSide1, &theSide2 }; + int iSide, iFace, iNode; + + list tempFaceList; + for ( iSide = 0; iSide < 2; iSide++ ) { + set * nodeSet = nodeSetPtr[ iSide ]; + TIDSortedElemSet * elemSet = elemSetPtr[ iSide ]; + TIDSortedElemSet * faceSet = faceSetPtr[ iSide ]; + set * volSet = volSetPtr [ iSide ]; + set::iterator vIt; + TIDSortedElemSet::iterator eIt; + set::iterator nIt; + + // check that given nodes belong to given elements + const SMDS_MeshNode* n1 = ( iSide == 0 ) ? theFirstNode1 : theFirstNode2; + const SMDS_MeshNode* n2 = ( iSide == 0 ) ? theSecondNode1 : theSecondNode2; + int firstIndex = -1, secondIndex = -1; + for (eIt = elemSet->begin(); eIt != elemSet->end(); eIt++ ) { + const SMDS_MeshElement* elem = *eIt; + if ( firstIndex < 0 ) firstIndex = elem->GetNodeIndex( n1 ); + if ( secondIndex < 0 ) secondIndex = elem->GetNodeIndex( n2 ); + if ( firstIndex > -1 && secondIndex > -1 ) break; + } + if ( firstIndex < 0 || secondIndex < 0 ) { + // we can simply return until temporary faces created + return (iSide == 0 ) ? SEW_BAD_SIDE1_NODES : SEW_BAD_SIDE2_NODES; + } + + // ----------------------------------------------------------- + // 1a. Collect nodes of existing faces + // and build set of face nodes in order to detect missing + // faces corresponding to sides of volumes + // ----------------------------------------------------------- + + set< set > setOfFaceNodeSet; + + // loop on the given element of a side + for (eIt = elemSet->begin(); eIt != elemSet->end(); eIt++ ) { + //const SMDS_MeshElement* elem = *eIt; + const SMDS_MeshElement* elem = *eIt; + if ( elem->GetType() == SMDSAbs_Face ) { + faceSet->insert( elem ); + set faceNodeSet; + SMDS_ElemIteratorPtr nodeIt = elem->nodesIterator(); + while ( nodeIt->more() ) { + const SMDS_MeshNode* n = static_cast( nodeIt->next() ); + nodeSet->insert( n ); + faceNodeSet.insert( n ); + } + setOfFaceNodeSet.insert( faceNodeSet ); + } + else if ( elem->GetType() == SMDSAbs_Volume ) + volSet->insert( elem ); + } + // ------------------------------------------------------------------------------ + // 1b. Complete set of faces: find missing faces whose nodes are in set of nodes + // ------------------------------------------------------------------------------ + + for ( nIt = nodeSet->begin(); nIt != nodeSet->end(); nIt++ ) { // loop on nodes of iSide + SMDS_ElemIteratorPtr fIt = (*nIt)->GetInverseElementIterator(SMDSAbs_Face); + while ( fIt->more() ) { // loop on faces sharing a node + const SMDS_MeshElement* f = fIt->next(); + if ( faceSet->find( f ) == faceSet->end() ) { + // check if all nodes are in nodeSet and + // complete setOfFaceNodeSet if they are + set faceNodeSet; + SMDS_ElemIteratorPtr nodeIt = f->nodesIterator(); + bool allInSet = true; + while ( nodeIt->more() && allInSet ) { // loop on nodes of a face + const SMDS_MeshNode* n = static_cast( nodeIt->next() ); + if ( nodeSet->find( n ) == nodeSet->end() ) + allInSet = false; + else + faceNodeSet.insert( n ); + } + if ( allInSet ) { + faceSet->insert( f ); + setOfFaceNodeSet.insert( faceNodeSet ); + } + } + } + } + + // ------------------------------------------------------------------------- + // 1c. Create temporary faces representing sides of volumes if correspondent + // face does not exist + // ------------------------------------------------------------------------- + + if ( !volSet->empty() ) { + //int nodeSetSize = nodeSet->size(); + + // loop on given volumes + for ( vIt = volSet->begin(); vIt != volSet->end(); vIt++ ) { + SMDS_VolumeTool vol (*vIt); + // loop on volume faces: find free faces + // -------------------------------------- + list freeFaceList; + for ( iFace = 0; iFace < vol.NbFaces(); iFace++ ) { + if ( !vol.IsFreeFace( iFace )) + continue; + // check if there is already a face with same nodes in a face set + const SMDS_MeshElement* aFreeFace = 0; + const SMDS_MeshNode** fNodes = vol.GetFaceNodes( iFace ); + int nbNodes = vol.NbFaceNodes( iFace ); + set faceNodeSet; + vol.GetFaceNodes( iFace, faceNodeSet ); + bool isNewFace = setOfFaceNodeSet.insert( faceNodeSet ).second; + if ( isNewFace ) { + // no such a face is given but it still can exist, check it + vector nodes ( fNodes, fNodes + nbNodes); + aFreeFace = aMesh->FindElement( nodes, SMDSAbs_Face, /*noMedium=*/false ); + } + if ( !aFreeFace ) { + // create a temporary face + if ( nbNodes == 3 ) { + //aFreeFace = aTmpFacesMesh.AddFace( fNodes[0],fNodes[1],fNodes[2] ); + aFreeFace = aMesh->AddFace( fNodes[0],fNodes[1],fNodes[2] ); + } + else if ( nbNodes == 4 ) { + //aFreeFace = aTmpFacesMesh.AddFace( fNodes[0],fNodes[1],fNodes[2],fNodes[3] ); + aFreeFace = aMesh->AddFace( fNodes[0],fNodes[1],fNodes[2],fNodes[3] ); + } + else { + vector poly_nodes ( fNodes, & fNodes[nbNodes]); + //aFreeFace = aTmpFacesMesh.AddPolygonalFace(poly_nodes); + aFreeFace = aMesh->AddPolygonalFace(poly_nodes); + } + if ( aFreeFace ) + tempFaceList.push_back( aFreeFace ); + } + + if ( aFreeFace ) + freeFaceList.push_back( aFreeFace ); + + } // loop on faces of a volume + + // choose one of several free faces of a volume + // -------------------------------------------- + if ( freeFaceList.size() > 1 ) { + // choose a face having max nb of nodes shared by other elems of a side + int maxNbNodes = -1; + list::iterator fIt = freeFaceList.begin(); + while ( fIt != freeFaceList.end() ) { // loop on free faces + int nbSharedNodes = 0; + SMDS_ElemIteratorPtr nodeIt = (*fIt)->nodesIterator(); + while ( nodeIt->more() ) { // loop on free face nodes + const SMDS_MeshNode* n = + static_cast( nodeIt->next() ); + SMDS_ElemIteratorPtr invElemIt = n->GetInverseElementIterator(); + while ( invElemIt->more() ) { + const SMDS_MeshElement* e = invElemIt->next(); + nbSharedNodes += faceSet->count( e ); + nbSharedNodes += elemSet->count( e ); + } + } + if ( nbSharedNodes > maxNbNodes ) { + maxNbNodes = nbSharedNodes; + freeFaceList.erase( freeFaceList.begin(), fIt++ ); + } + else if ( nbSharedNodes == maxNbNodes ) { + fIt++; + } + else { + freeFaceList.erase( fIt++ ); // here fIt++ occurs before erase + } + } + if ( freeFaceList.size() > 1 ) + { + // could not choose one face, use another way + // choose a face most close to the bary center of the opposite side + gp_XYZ aBC( 0., 0., 0. ); + set addedNodes; + TIDSortedElemSet * elemSet2 = elemSetPtr[ 1 - iSide ]; + eIt = elemSet2->begin(); + for ( eIt = elemSet2->begin(); eIt != elemSet2->end(); eIt++ ) { + SMDS_ElemIteratorPtr nodeIt = (*eIt)->nodesIterator(); + while ( nodeIt->more() ) { // loop on free face nodes + const SMDS_MeshNode* n = + static_cast( nodeIt->next() ); + if ( addedNodes.insert( n ).second ) + aBC += gp_XYZ( n->X(),n->Y(),n->Z() ); + } + } + aBC /= addedNodes.size(); + double minDist = DBL_MAX; + fIt = freeFaceList.begin(); + while ( fIt != freeFaceList.end() ) { // loop on free faces + double dist = 0; + SMDS_ElemIteratorPtr nodeIt = (*fIt)->nodesIterator(); + while ( nodeIt->more() ) { // loop on free face nodes + const SMDS_MeshNode* n = + static_cast( nodeIt->next() ); + gp_XYZ p( n->X(),n->Y(),n->Z() ); + dist += ( aBC - p ).SquareModulus(); + } + if ( dist < minDist ) { + minDist = dist; + freeFaceList.erase( freeFaceList.begin(), fIt++ ); + } + else + fIt = freeFaceList.erase( fIt++ ); + } + } + } // choose one of several free faces of a volume + + if ( freeFaceList.size() == 1 ) { + const SMDS_MeshElement* aFreeFace = freeFaceList.front(); + faceSet->insert( aFreeFace ); + // complete a node set with nodes of a found free face + // for ( iNode = 0; iNode < ; iNode++ ) + // nodeSet->insert( fNodes[ iNode ] ); + } + + } // loop on volumes of a side + + // // complete a set of faces if new nodes in a nodeSet appeared + // // ---------------------------------------------------------- + // if ( nodeSetSize != nodeSet->size() ) { + // for ( ; nIt != nodeSet->end(); nIt++ ) { // loop on nodes of iSide + // SMDS_ElemIteratorPtr fIt = (*nIt)->GetInverseElementIterator(SMDSAbs_Face); + // while ( fIt->more() ) { // loop on faces sharing a node + // const SMDS_MeshElement* f = fIt->next(); + // if ( faceSet->find( f ) == faceSet->end() ) { + // // check if all nodes are in nodeSet and + // // complete setOfFaceNodeSet if they are + // set faceNodeSet; + // SMDS_ElemIteratorPtr nodeIt = f->nodesIterator(); + // bool allInSet = true; + // while ( nodeIt->more() && allInSet ) { // loop on nodes of a face + // const SMDS_MeshNode* n = static_cast( nodeIt->next() ); + // if ( nodeSet->find( n ) == nodeSet->end() ) + // allInSet = false; + // else + // faceNodeSet.insert( n ); + // } + // if ( allInSet ) { + // faceSet->insert( f ); + // setOfFaceNodeSet.insert( faceNodeSet ); + // } + // } + // } + // } + // } + } // Create temporary faces, if there are volumes given + } // loop on sides + + if ( faceSet1.size() != faceSet2.size() ) { + // delete temporary faces: they are in reverseElements of actual nodes +// SMDS_FaceIteratorPtr tmpFaceIt = aTmpFacesMesh.facesIterator(); +// while ( tmpFaceIt->more() ) +// aTmpFacesMesh.RemoveElement( tmpFaceIt->next() ); +// list::iterator tmpFaceIt = tempFaceList.begin(); +// for (; tmpFaceIt !=tempFaceList.end(); ++tmpFaceIt) +// aMesh->RemoveElement(*tmpFaceIt); + MESSAGE("Diff nb of faces"); + return SEW_TOPO_DIFF_SETS_OF_ELEMENTS; + } + + // ============================================================ + // 2. Find nodes to merge: + // bind a node to remove to a node to put instead + // ============================================================ + + TNodeNodeMap nReplaceMap; // bind a node to remove to a node to put instead + if ( theFirstNode1 != theFirstNode2 ) + nReplaceMap.insert( make_pair( theFirstNode1, theFirstNode2 )); + if ( theSecondNode1 != theSecondNode2 ) + nReplaceMap.insert( make_pair( theSecondNode1, theSecondNode2 )); + + LinkID_Gen aLinkID_Gen( GetMeshDS() ); + set< long > linkIdSet; // links to process + linkIdSet.insert( aLinkID_Gen.GetLinkID( theFirstNode1, theSecondNode1 )); + + typedef pair< const SMDS_MeshNode*, const SMDS_MeshNode* > NLink; + list< NLink > linkList[2]; + linkList[0].push_back( NLink( theFirstNode1, theSecondNode1 )); + linkList[1].push_back( NLink( theFirstNode2, theSecondNode2 )); + // loop on links in linkList; find faces by links and append links + // of the found faces to linkList + list< NLink >::iterator linkIt[] = { linkList[0].begin(), linkList[1].begin() } ; + for ( ; linkIt[0] != linkList[0].end(); linkIt[0]++, linkIt[1]++ ) + { + NLink link[] = { *linkIt[0], *linkIt[1] }; + long linkID = aLinkID_Gen.GetLinkID( link[0].first, link[0].second ); + if ( !linkIdSet.count( linkID ) ) + continue; + + // by links, find faces in the face sets, + // and find indices of link nodes in the found faces; + // in a face set, there is only one or no face sharing a link + // --------------------------------------------------------------- + + const SMDS_MeshElement* face[] = { 0, 0 }; + vector fnodes[2]; + int iLinkNode[2][2]; + TIDSortedElemSet avoidSet; + for ( iSide = 0; iSide < 2; iSide++ ) { // loop on 2 sides + const SMDS_MeshNode* n1 = link[iSide].first; + const SMDS_MeshNode* n2 = link[iSide].second; + //cout << "Side " << iSide << " "; + //cout << "L( " << n1->GetID() << ", " << n2->GetID() << " ) " << endl; + // find a face by two link nodes + face[ iSide ] = FindFaceInSet( n1, n2, *faceSetPtr[ iSide ], avoidSet, + &iLinkNode[iSide][0], &iLinkNode[iSide][1] ); + if ( face[ iSide ]) + { + //cout << " F " << face[ iSide]->GetID() <erase( face[ iSide ]); + // put face nodes to fnodes + if ( face[ iSide ]->IsQuadratic() ) + { + // use interlaced nodes iterator + const SMDS_VtkFace* F = dynamic_cast( face[ iSide ]); + if (!F) throw SALOME_Exception(LOCALIZED("not an SMDS_VtkFace")); + SMDS_ElemIteratorPtr nIter = F->interlacedNodesElemIterator(); + while ( nIter->more() ) + fnodes[ iSide ].push_back( cast2Node( nIter->next() )); + } + else + { + fnodes[ iSide ].assign( face[ iSide ]->begin_nodes(), + face[ iSide ]->end_nodes() ); + } + fnodes[ iSide ].push_back( fnodes[ iSide ].front()); + } + } + + // check similarity of elements of the sides + if (aResult == SEW_OK && (( face[0] && !face[1] ) || ( !face[0] && face[1] ))) { + MESSAGE("Correspondent face not found on side " << ( face[0] ? 1 : 0 )); + if ( nReplaceMap.size() == 2 ) { // faces on input nodes not found + aResult = ( face[0] ? SEW_BAD_SIDE2_NODES : SEW_BAD_SIDE1_NODES ); + } + else { + aResult = SEW_TOPO_DIFF_SETS_OF_ELEMENTS; + } + break; // do not return because it's necessary to remove tmp faces + } + + // set nodes to merge + // ------------------- + + if ( face[0] && face[1] ) { + const int nbNodes = face[0]->NbNodes(); + if ( nbNodes != face[1]->NbNodes() ) { + MESSAGE("Diff nb of face nodes"); + aResult = SEW_TOPO_DIFF_SETS_OF_ELEMENTS; + break; // do not return because it s necessary to remove tmp faces + } + bool reverse[] = { false, false }; // order of nodes in the link + for ( iSide = 0; iSide < 2; iSide++ ) { // loop on 2 sides + // analyse link orientation in faces + int i1 = iLinkNode[ iSide ][ 0 ]; + int i2 = iLinkNode[ iSide ][ 1 ]; + reverse[ iSide ] = Abs( i1 - i2 ) == 1 ? i1 > i2 : i2 > i1; + } + int di1 = reverse[0] ? -1 : +1, i1 = iLinkNode[0][1] + di1; + int di2 = reverse[1] ? -1 : +1, i2 = iLinkNode[1][1] + di2; + for ( int i = nbNodes - 2; i > 0; --i, i1 += di1, i2 += di2 ) + { + nReplaceMap.insert ( make_pair ( fnodes[0][ ( i1 + nbNodes ) % nbNodes ], + fnodes[1][ ( i2 + nbNodes ) % nbNodes ])); + } + + // add other links of the faces to linkList + // ----------------------------------------- + + for ( iNode = 0; iNode < nbNodes; iNode++ ) { + linkID = aLinkID_Gen.GetLinkID( fnodes[0][iNode], fnodes[0][iNode+1] ); + pair< set::iterator, bool > iter_isnew = linkIdSet.insert( linkID ); + if ( !iter_isnew.second ) { // already in a set: no need to process + linkIdSet.erase( iter_isnew.first ); + } + else // new in set == encountered for the first time: add + { + const SMDS_MeshNode* n1 = fnodes[0][ iNode ]; + const SMDS_MeshNode* n2 = fnodes[0][ iNode + 1]; + linkList[0].push_back ( NLink( n1, n2 )); + linkList[1].push_back ( NLink( nReplaceMap[n1], nReplaceMap[n2] )); + } + } + } // 2 faces found + + if ( faceSetPtr[0]->empty() || faceSetPtr[1]->empty() ) + break; + + } // loop on link lists + + if ( aResult == SEW_OK && + ( //linkIt[0] != linkList[0].end() || + !faceSetPtr[0]->empty() || !faceSetPtr[1]->empty() )) { + MESSAGE( (linkIt[0] != linkList[0].end()) <<" "<< (faceSetPtr[0]->empty()) << + " " << (faceSetPtr[1]->empty())); + aResult = SEW_TOPO_DIFF_SETS_OF_ELEMENTS; + } + + // ==================================================================== + // 3. Replace nodes in elements of the side 1 and remove replaced nodes + // ==================================================================== + + // delete temporary faces +// SMDS_FaceIteratorPtr tmpFaceIt = aTmpFacesMesh.facesIterator(); +// while ( tmpFaceIt->more() ) +// aTmpFacesMesh.RemoveElement( tmpFaceIt->next() ); + list::iterator tmpFaceIt = tempFaceList.begin(); + for (; tmpFaceIt !=tempFaceList.end(); ++tmpFaceIt) + aMesh->RemoveElement(*tmpFaceIt); + + if ( aResult != SEW_OK) + return aResult; + + list< int > nodeIDsToRemove/*, elemIDsToRemove*/; + // loop on nodes replacement map + TNodeNodeMap::iterator nReplaceMapIt = nReplaceMap.begin(), nnIt; + for ( ; nReplaceMapIt != nReplaceMap.end(); nReplaceMapIt++ ) + if ( (*nReplaceMapIt).first != (*nReplaceMapIt).second ) { + const SMDS_MeshNode* nToRemove = (*nReplaceMapIt).first; + nodeIDsToRemove.push_back( nToRemove->GetID() ); + // loop on elements sharing nToRemove + SMDS_ElemIteratorPtr invElemIt = nToRemove->GetInverseElementIterator(); + while ( invElemIt->more() ) { + const SMDS_MeshElement* e = invElemIt->next(); + // get a new suite of nodes: make replacement + int nbReplaced = 0, i = 0, nbNodes = e->NbNodes(); + vector< const SMDS_MeshNode*> nodes( nbNodes ); + SMDS_ElemIteratorPtr nIt = e->nodesIterator(); + while ( nIt->more() ) { + const SMDS_MeshNode* n = + static_cast( nIt->next() ); + nnIt = nReplaceMap.find( n ); + if ( nnIt != nReplaceMap.end() ) { + nbReplaced++; + n = (*nnIt).second; + } + nodes[ i++ ] = n; + } + // if ( nbReplaced == nbNodes && e->GetType() == SMDSAbs_Face ) + // elemIDsToRemove.push_back( e->GetID() ); + // else + if ( nbReplaced ) + { + SMDSAbs_ElementType etyp = e->GetType(); + SMDS_MeshElement* newElem = this->AddElement(nodes, etyp, false); + if (newElem) + { + myLastCreatedElems.Append(newElem); + AddToSameGroups(newElem, e, aMesh); + int aShapeId = e->getshapeId(); + if ( aShapeId ) + { + aMesh->SetMeshElementOnShape( newElem, aShapeId ); + } + } + aMesh->RemoveElement(e); + } + } + } + + Remove( nodeIDsToRemove, true ); + + return aResult; +} + +//================================================================================ +/*! + * \brief Find corresponding nodes in two sets of faces + * \param theSide1 - first face set + * \param theSide2 - second first face + * \param theFirstNode1 - a boundary node of set 1 + * \param theFirstNode2 - a node of set 2 corresponding to theFirstNode1 + * \param theSecondNode1 - a boundary node of set 1 linked with theFirstNode1 + * \param theSecondNode2 - a node of set 2 corresponding to theSecondNode1 + * \param nReplaceMap - output map of corresponding nodes + * \return bool - is a success or not + */ +//================================================================================ + +#ifdef _DEBUG_ +//#define DEBUG_MATCHING_NODES +#endif + +SMESH_MeshEditor::Sew_Error +SMESH_MeshEditor::FindMatchingNodes(set& theSide1, + set& theSide2, + const SMDS_MeshNode* theFirstNode1, + const SMDS_MeshNode* theFirstNode2, + const SMDS_MeshNode* theSecondNode1, + const SMDS_MeshNode* theSecondNode2, + TNodeNodeMap & nReplaceMap) +{ + set * faceSetPtr[] = { &theSide1, &theSide2 }; + + nReplaceMap.clear(); + if ( theFirstNode1 != theFirstNode2 ) + nReplaceMap.insert( make_pair( theFirstNode1, theFirstNode2 )); + if ( theSecondNode1 != theSecondNode2 ) + nReplaceMap.insert( make_pair( theSecondNode1, theSecondNode2 )); + + set< SMESH_TLink > linkSet; // set of nodes where order of nodes is ignored + linkSet.insert( SMESH_TLink( theFirstNode1, theSecondNode1 )); + + list< NLink > linkList[2]; + linkList[0].push_back( NLink( theFirstNode1, theSecondNode1 )); + linkList[1].push_back( NLink( theFirstNode2, theSecondNode2 )); + + // loop on links in linkList; find faces by links and append links + // of the found faces to linkList + list< NLink >::iterator linkIt[] = { linkList[0].begin(), linkList[1].begin() } ; + for ( ; linkIt[0] != linkList[0].end(); linkIt[0]++, linkIt[1]++ ) { + NLink link[] = { *linkIt[0], *linkIt[1] }; + if ( linkSet.find( link[0] ) == linkSet.end() ) + continue; + + // by links, find faces in the face sets, + // and find indices of link nodes in the found faces; + // in a face set, there is only one or no face sharing a link + // --------------------------------------------------------------- + + const SMDS_MeshElement* face[] = { 0, 0 }; + list notLinkNodes[2]; + //bool reverse[] = { false, false }; // order of notLinkNodes + int nbNodes[2]; + for ( int iSide = 0; iSide < 2; iSide++ ) // loop on 2 sides + { + const SMDS_MeshNode* n1 = link[iSide].first; + const SMDS_MeshNode* n2 = link[iSide].second; + set * faceSet = faceSetPtr[ iSide ]; + set< const SMDS_MeshElement* > facesOfNode1; + for ( int iNode = 0; iNode < 2; iNode++ ) // loop on 2 nodes of a link + { + // during a loop of the first node, we find all faces around n1, + // during a loop of the second node, we find one face sharing both n1 and n2 + const SMDS_MeshNode* n = iNode ? n1 : n2; // a node of a link + SMDS_ElemIteratorPtr fIt = n->GetInverseElementIterator(SMDSAbs_Face); + while ( fIt->more() ) { // loop on faces sharing a node + const SMDS_MeshElement* f = fIt->next(); + if (faceSet->find( f ) != faceSet->end() && // f is in face set + ! facesOfNode1.insert( f ).second ) // f encounters twice + { + if ( face[ iSide ] ) { + MESSAGE( "2 faces per link " ); + return ( iSide ? SEW_BAD_SIDE2_NODES : SEW_BAD_SIDE1_NODES ); + } + face[ iSide ] = f; + faceSet->erase( f ); + + // get not link nodes + int nbN = f->NbNodes(); + if ( f->IsQuadratic() ) + nbN /= 2; + nbNodes[ iSide ] = nbN; + list< const SMDS_MeshNode* > & nodes = notLinkNodes[ iSide ]; + int i1 = f->GetNodeIndex( n1 ); + int i2 = f->GetNodeIndex( n2 ); + int iEnd = nbN, iBeg = -1, iDelta = 1; + bool reverse = ( Abs( i1 - i2 ) == 1 ? i1 > i2 : i2 > i1 ); + if ( reverse ) { + std::swap( iEnd, iBeg ); iDelta = -1; + } + int i = i2; + while ( true ) { + i += iDelta; + if ( i == iEnd ) i = iBeg + iDelta; + if ( i == i1 ) break; + nodes.push_back ( f->GetNode( i ) ); + } + } + } + } + } + // check similarity of elements of the sides + if (( face[0] && !face[1] ) || ( !face[0] && face[1] )) { + MESSAGE("Correspondent face not found on side " << ( face[0] ? 1 : 0 )); + if ( nReplaceMap.size() == 2 ) { // faces on input nodes not found + return ( face[0] ? SEW_BAD_SIDE2_NODES : SEW_BAD_SIDE1_NODES ); + } + else { + return SEW_TOPO_DIFF_SETS_OF_ELEMENTS; + } + } + + // set nodes to merge + // ------------------- + + if ( face[0] && face[1] ) { + if ( nbNodes[0] != nbNodes[1] ) { + MESSAGE("Diff nb of face nodes"); + return SEW_TOPO_DIFF_SETS_OF_ELEMENTS; + } +#ifdef DEBUG_MATCHING_NODES + MESSAGE ( " Link 1: " << link[0].first->GetID() <<" "<< link[0].second->GetID() + << " F 1: " << face[0] << "| Link 2: " << link[1].first->GetID() <<" " + << link[1].second->GetID() << " F 2: " << face[1] << " | Bind: " ) ; +#endif + int nbN = nbNodes[0]; + { + list::iterator n1 = notLinkNodes[0].begin(); + list::iterator n2 = notLinkNodes[1].begin(); + for ( int i = 0 ; i < nbN - 2; ++i ) { +#ifdef DEBUG_MATCHING_NODES + MESSAGE ( (*n1)->GetID() << " to " << (*n2)->GetID() ); +#endif + nReplaceMap.insert( make_pair( *(n1++), *(n2++) )); + } + } + + // add other links of the face 1 to linkList + // ----------------------------------------- + + const SMDS_MeshElement* f0 = face[0]; + const SMDS_MeshNode* n1 = f0->GetNode( nbN - 1 ); + for ( int i = 0; i < nbN; i++ ) + { + const SMDS_MeshNode* n2 = f0->GetNode( i ); + pair< set< SMESH_TLink >::iterator, bool > iter_isnew = + linkSet.insert( SMESH_TLink( n1, n2 )); + if ( !iter_isnew.second ) { // already in a set: no need to process + linkSet.erase( iter_isnew.first ); + } + else // new in set == encountered for the first time: add + { +#ifdef DEBUG_MATCHING_NODES + MESSAGE ( "Add link 1: " << n1->GetID() << " " << n2->GetID() << " " + << " | link 2: " << nReplaceMap[n1]->GetID() << " " << nReplaceMap[n2]->GetID() << " " ); +#endif + linkList[0].push_back ( NLink( n1, n2 )); + linkList[1].push_back ( NLink( nReplaceMap[n1], nReplaceMap[n2] )); + } + n1 = n2; + } + } // 2 faces found + } // loop on link lists + + return SEW_OK; +} + +//================================================================================ +/*! + \brief Creates a hole in a mesh by doubling the nodes of some particular elements + \param theElems - the list of elements (edges or faces) to be replicated + The nodes for duplication could be found from these elements + \param theNodesNot - list of nodes to NOT replicate + \param theAffectedElems - the list of elements (cells and edges) to which the + replicated nodes should be associated to. + \return TRUE if operation has been completed successfully, FALSE otherwise +*/ +//================================================================================ + +bool SMESH_MeshEditor::DoubleNodes( const TIDSortedElemSet& theElems, + const TIDSortedElemSet& theNodesNot, + const TIDSortedElemSet& theAffectedElems ) +{ + myLastCreatedElems.Clear(); + myLastCreatedNodes.Clear(); + + if ( theElems.size() == 0 ) + return false; + + SMESHDS_Mesh* aMeshDS = GetMeshDS(); + if ( !aMeshDS ) + return false; + + bool res = false; + std::map< const SMDS_MeshNode*, const SMDS_MeshNode* > anOldNodeToNewNode; + // duplicate elements and nodes + res = doubleNodes( aMeshDS, theElems, theNodesNot, anOldNodeToNewNode, true ); + // replce nodes by duplications + res = doubleNodes( aMeshDS, theAffectedElems, theNodesNot, anOldNodeToNewNode, false ); + return res; +} + +//================================================================================ +/*! + \brief Creates a hole in a mesh by doubling the nodes of some particular elements + \param theMeshDS - mesh instance + \param theElems - the elements replicated or modified (nodes should be changed) + \param theNodesNot - nodes to NOT replicate + \param theNodeNodeMap - relation of old node to new created node + \param theIsDoubleElem - flag os to replicate element or modify + \return TRUE if operation has been completed successfully, FALSE otherwise +*/ +//================================================================================ + +bool SMESH_MeshEditor::doubleNodes( SMESHDS_Mesh* theMeshDS, + const TIDSortedElemSet& theElems, + const TIDSortedElemSet& theNodesNot, + std::map< const SMDS_MeshNode*, + const SMDS_MeshNode* >& theNodeNodeMap, + const bool theIsDoubleElem ) +{ + MESSAGE("doubleNodes"); + // iterate on through element and duplicate them (by nodes duplication) + bool res = false; + TIDSortedElemSet::const_iterator elemItr = theElems.begin(); + for ( ; elemItr != theElems.end(); ++elemItr ) + { + const SMDS_MeshElement* anElem = *elemItr; + if (!anElem) + continue; + + bool isDuplicate = false; + // duplicate nodes to duplicate element + std::vector newNodes( anElem->NbNodes() ); + SMDS_ElemIteratorPtr anIter = anElem->nodesIterator(); + int ind = 0; + while ( anIter->more() ) + { + + SMDS_MeshNode* aCurrNode = (SMDS_MeshNode*)anIter->next(); + SMDS_MeshNode* aNewNode = aCurrNode; + if ( theNodeNodeMap.find( aCurrNode ) != theNodeNodeMap.end() ) + aNewNode = (SMDS_MeshNode*)theNodeNodeMap[ aCurrNode ]; + else if ( theIsDoubleElem && theNodesNot.find( aCurrNode ) == theNodesNot.end() ) + { + // duplicate node + aNewNode = theMeshDS->AddNode( aCurrNode->X(), aCurrNode->Y(), aCurrNode->Z() ); + theNodeNodeMap[ aCurrNode ] = aNewNode; + myLastCreatedNodes.Append( aNewNode ); + } + isDuplicate |= (aCurrNode != aNewNode); + newNodes[ ind++ ] = aNewNode; + } + if ( !isDuplicate ) + continue; + + if ( theIsDoubleElem ) + AddElement(newNodes, anElem->GetType(), anElem->IsPoly()); + else + { + MESSAGE("ChangeElementNodes"); + theMeshDS->ChangeElementNodes( anElem, &newNodes[ 0 ], anElem->NbNodes() ); + } + res = true; + } + return res; +} + +//================================================================================ +/*! + \brief Creates a hole in a mesh by doubling the nodes of some particular elements + \param theNodes - identifiers of nodes to be doubled + \param theModifiedElems - identifiers of elements to be updated by the new (doubled) + nodes. If list of element identifiers is empty then nodes are doubled but + they not assigned to elements + \return TRUE if operation has been completed successfully, FALSE otherwise +*/ +//================================================================================ + +bool SMESH_MeshEditor::DoubleNodes( const std::list< int >& theListOfNodes, + const std::list< int >& theListOfModifiedElems ) +{ + MESSAGE("DoubleNodes"); + myLastCreatedElems.Clear(); + myLastCreatedNodes.Clear(); + + if ( theListOfNodes.size() == 0 ) + return false; + + SMESHDS_Mesh* aMeshDS = GetMeshDS(); + if ( !aMeshDS ) + return false; + + // iterate through nodes and duplicate them + + std::map< const SMDS_MeshNode*, const SMDS_MeshNode* > anOldNodeToNewNode; + + std::list< int >::const_iterator aNodeIter; + for ( aNodeIter = theListOfNodes.begin(); aNodeIter != theListOfNodes.end(); ++aNodeIter ) + { + int aCurr = *aNodeIter; + SMDS_MeshNode* aNode = (SMDS_MeshNode*)aMeshDS->FindNode( aCurr ); + if ( !aNode ) + continue; + + // duplicate node + + const SMDS_MeshNode* aNewNode = aMeshDS->AddNode( aNode->X(), aNode->Y(), aNode->Z() ); + if ( aNewNode ) + { + anOldNodeToNewNode[ aNode ] = aNewNode; + myLastCreatedNodes.Append( aNewNode ); + } + } + + // Create map of new nodes for modified elements + + std::map< SMDS_MeshElement*, vector > anElemToNodes; + + std::list< int >::const_iterator anElemIter; + for ( anElemIter = theListOfModifiedElems.begin(); + anElemIter != theListOfModifiedElems.end(); ++anElemIter ) + { + int aCurr = *anElemIter; + SMDS_MeshElement* anElem = (SMDS_MeshElement*)aMeshDS->FindElement( aCurr ); + if ( !anElem ) + continue; + + vector aNodeArr( anElem->NbNodes() ); + + SMDS_ElemIteratorPtr anIter = anElem->nodesIterator(); + int ind = 0; + while ( anIter->more() ) + { + SMDS_MeshNode* aCurrNode = (SMDS_MeshNode*)anIter->next(); + if ( aCurr && anOldNodeToNewNode.find( aCurrNode ) != anOldNodeToNewNode.end() ) + { + const SMDS_MeshNode* aNewNode = anOldNodeToNewNode[ aCurrNode ]; + aNodeArr[ ind++ ] = aNewNode; + } + else + aNodeArr[ ind++ ] = aCurrNode; + } + anElemToNodes[ anElem ] = aNodeArr; + } + + // Change nodes of elements + + std::map< SMDS_MeshElement*, vector >::iterator + anElemToNodesIter = anElemToNodes.begin(); + for ( ; anElemToNodesIter != anElemToNodes.end(); ++anElemToNodesIter ) + { + const SMDS_MeshElement* anElem = anElemToNodesIter->first; + vector aNodeArr = anElemToNodesIter->second; + if ( anElem ) + { + MESSAGE("ChangeElementNodes"); + aMeshDS->ChangeElementNodes( anElem, &aNodeArr[ 0 ], anElem->NbNodes() ); + } + } + + return true; +} + +namespace { + + //================================================================================ + /*! + \brief Check if element located inside shape + \return TRUE if IN or ON shape, FALSE otherwise + */ + //================================================================================ + + template + bool isInside(const SMDS_MeshElement* theElem, + Classifier& theClassifier, + const double theTol) + { + gp_XYZ centerXYZ (0, 0, 0); + SMDS_ElemIteratorPtr aNodeItr = theElem->nodesIterator(); + while (aNodeItr->more()) + centerXYZ += SMESH_TNodeXYZ(cast2Node( aNodeItr->next())); + + gp_Pnt aPnt = centerXYZ / theElem->NbNodes(); + theClassifier.Perform(aPnt, theTol); + TopAbs_State aState = theClassifier.State(); + return (aState == TopAbs_IN || aState == TopAbs_ON ); + } + + //================================================================================ + /*! + * \brief Classifier of the 3D point on the TopoDS_Face + * with interaface suitable for isInside() + */ + //================================================================================ + + struct _FaceClassifier + { + Extrema_ExtPS _extremum; + BRepAdaptor_Surface _surface; + TopAbs_State _state; + + _FaceClassifier(const TopoDS_Face& face):_extremum(),_surface(face),_state(TopAbs_OUT) + { + _extremum.Initialize( _surface, + _surface.FirstUParameter(), _surface.LastUParameter(), + _surface.FirstVParameter(), _surface.LastVParameter(), + _surface.Tolerance(), _surface.Tolerance() ); + } + void Perform(const gp_Pnt& aPnt, double theTol) + { + _state = TopAbs_OUT; + _extremum.Perform(aPnt); + if ( _extremum.IsDone() ) + for ( int iSol = 1; iSol <= _extremum.NbExt() && _state == TopAbs_OUT; ++iSol) +#if OCC_VERSION_LARGE > 0x06040000 // Porting to OCCT6.5.1 + _state = ( _extremum.SquareDistance(iSol) <= theTol ? TopAbs_IN : TopAbs_OUT ); +#else + _state = ( _extremum.Value(iSol) <= theTol ? TopAbs_IN : TopAbs_OUT ); +#endif + } + TopAbs_State State() const + { + return _state; + } + }; +} + +//================================================================================ +/*! + \brief Identify the elements that will be affected by node duplication (actual duplication is not performed. + This method is the first step of DoubleNodeElemGroupsInRegion. + \param theElems - list of groups of elements (edges or faces) to be replicated + \param theNodesNot - list of groups of nodes not to replicated + \param theShape - shape to detect affected elements (element which geometric center + located on or inside shape). + The replicated nodes should be associated to affected elements. + \return groups of affected elements + \sa DoubleNodeElemGroupsInRegion() + */ +//================================================================================ + +bool SMESH_MeshEditor::AffectedElemGroupsInRegion( const TIDSortedElemSet& theElems, + const TIDSortedElemSet& theNodesNot, + const TopoDS_Shape& theShape, + TIDSortedElemSet& theAffectedElems) +{ + if ( theShape.IsNull() ) + return false; + + const double aTol = Precision::Confusion(); + auto_ptr< BRepClass3d_SolidClassifier> bsc3d; + auto_ptr<_FaceClassifier> aFaceClassifier; + if ( theShape.ShapeType() == TopAbs_SOLID ) + { + bsc3d.reset( new BRepClass3d_SolidClassifier(theShape));; + bsc3d->PerformInfinitePoint(aTol); + } + else if (theShape.ShapeType() == TopAbs_FACE ) + { + aFaceClassifier.reset( new _FaceClassifier(TopoDS::Face(theShape))); + } + + // iterates on indicated elements and get elements by back references from their nodes + TIDSortedElemSet::const_iterator elemItr = theElems.begin(); + for ( ; elemItr != theElems.end(); ++elemItr ) + { + SMDS_MeshElement* anElem = (SMDS_MeshElement*)*elemItr; + if (!anElem) + continue; + + SMDS_ElemIteratorPtr nodeItr = anElem->nodesIterator(); + while ( nodeItr->more() ) + { + const SMDS_MeshNode* aNode = cast2Node(nodeItr->next()); + if ( !aNode || theNodesNot.find(aNode) != theNodesNot.end() ) + continue; + SMDS_ElemIteratorPtr backElemItr = aNode->GetInverseElementIterator(); + while ( backElemItr->more() ) + { + const SMDS_MeshElement* curElem = backElemItr->next(); + if ( curElem && theElems.find(curElem) == theElems.end() && + ( bsc3d.get() ? + isInside( curElem, *bsc3d, aTol ) : + isInside( curElem, *aFaceClassifier, aTol ))) + theAffectedElems.insert( curElem ); + } + } + } + return true; +} + +//================================================================================ +/*! + \brief Creates a hole in a mesh by doubling the nodes of some particular elements + \param theElems - group of of elements (edges or faces) to be replicated + \param theNodesNot - group of nodes not to replicate + \param theShape - shape to detect affected elements (element which geometric center + located on or inside shape). + The replicated nodes should be associated to affected elements. + \return TRUE if operation has been completed successfully, FALSE otherwise +*/ +//================================================================================ + +bool SMESH_MeshEditor::DoubleNodesInRegion( const TIDSortedElemSet& theElems, + const TIDSortedElemSet& theNodesNot, + const TopoDS_Shape& theShape ) +{ + if ( theShape.IsNull() ) + return false; + + const double aTol = Precision::Confusion(); + auto_ptr< BRepClass3d_SolidClassifier> bsc3d; + auto_ptr<_FaceClassifier> aFaceClassifier; + if ( theShape.ShapeType() == TopAbs_SOLID ) + { + bsc3d.reset( new BRepClass3d_SolidClassifier(theShape));; + bsc3d->PerformInfinitePoint(aTol); + } + else if (theShape.ShapeType() == TopAbs_FACE ) + { + aFaceClassifier.reset( new _FaceClassifier(TopoDS::Face(theShape))); + } + + // iterates on indicated elements and get elements by back references from their nodes + TIDSortedElemSet anAffected; + TIDSortedElemSet::const_iterator elemItr = theElems.begin(); + for ( ; elemItr != theElems.end(); ++elemItr ) + { + SMDS_MeshElement* anElem = (SMDS_MeshElement*)*elemItr; + if (!anElem) + continue; + + SMDS_ElemIteratorPtr nodeItr = anElem->nodesIterator(); + while ( nodeItr->more() ) + { + const SMDS_MeshNode* aNode = cast2Node(nodeItr->next()); + if ( !aNode || theNodesNot.find(aNode) != theNodesNot.end() ) + continue; + SMDS_ElemIteratorPtr backElemItr = aNode->GetInverseElementIterator(); + while ( backElemItr->more() ) + { + const SMDS_MeshElement* curElem = backElemItr->next(); + if ( curElem && theElems.find(curElem) == theElems.end() && + ( bsc3d.get() ? + isInside( curElem, *bsc3d, aTol ) : + isInside( curElem, *aFaceClassifier, aTol ))) + anAffected.insert( curElem ); + } + } + } + return DoubleNodes( theElems, theNodesNot, anAffected ); +} + +/*! + * \brief compute an oriented angle between two planes defined by four points. + * The vector (p0,p1) defines the intersection of the 2 planes (p0,p1,g1) and (p0,p1,g2) + * @param p0 base of the rotation axe + * @param p1 extremity of the rotation axe + * @param g1 belongs to the first plane + * @param g2 belongs to the second plane + */ +double SMESH_MeshEditor::OrientedAngle(const gp_Pnt& p0, const gp_Pnt& p1, const gp_Pnt& g1, const gp_Pnt& g2) +{ +// MESSAGE(" p0: " << p0.X() << " " << p0.Y() << " " << p0.Z()); +// MESSAGE(" p1: " << p1.X() << " " << p1.Y() << " " << p1.Z()); +// MESSAGE(" g1: " << g1.X() << " " << g1.Y() << " " << g1.Z()); +// MESSAGE(" g2: " << g2.X() << " " << g2.Y() << " " << g2.Z()); + gp_Vec vref(p0, p1); + gp_Vec v1(p0, g1); + gp_Vec v2(p0, g2); + gp_Vec n1 = vref.Crossed(v1); + gp_Vec n2 = vref.Crossed(v2); + return n2.AngleWithRef(n1, vref); +} + +/*! + * \brief Double nodes on shared faces between groups of volumes and create flat elements on demand. + * The list of groups must contain at least two groups. The groups have to be disjoint: no common element into two different groups. + * The nodes of the internal faces at the boundaries of the groups are doubled. Optionally, the internal faces are replaced by flat elements. + * Triangles are transformed into prisms, and quadrangles into hexahedrons. + * The flat elements are stored in groups of volumes. These groups are named according to the position of the group in the list: + * the group j_n_p is the group of the flat elements that are built between the group #n and the group #p in the list. + * If there is no shared faces between the group #n and the group #p in the list, the group j_n_p is not created. + * All the flat elements are gathered into the group named "joints3D" (or "joints2D" in 2D situation). + * The flat element of the multiple junctions between the simple junction are stored in a group named "jointsMultiples". + * @param theElems - list of groups of volumes, where a group of volume is a set of + * SMDS_MeshElements sorted by Id. + * @param createJointElems - if TRUE, create the elements + * @return TRUE if operation has been completed successfully, FALSE otherwise + */ +bool SMESH_MeshEditor::DoubleNodesOnGroupBoundaries( const std::vector& theElems, + bool createJointElems) +{ + MESSAGE("----------------------------------------------"); + MESSAGE("SMESH_MeshEditor::doubleNodesOnGroupBoundaries"); + MESSAGE("----------------------------------------------"); + + SMESHDS_Mesh *meshDS = this->myMesh->GetMeshDS(); + meshDS->BuildDownWardConnectivity(true); + CHRONO(50); + SMDS_UnstructuredGrid *grid = meshDS->getGrid(); + + // --- build the list of faces shared by 2 domains (group of elements), with their domain and volume indexes + // build the list of cells with only a node or an edge on the border, with their domain and volume indexes + // build the list of nodes shared by 2 or more domains, with their domain indexes + + std::map, DownIdCompare> faceDomains; // face --> (id domain --> id volume) + std::mapcelldom; // cell vtkId --> domain + std::map, DownIdCompare> cellDomains; // oldNode --> (id domain --> id cell) + std::map > nodeDomains; // oldId --> (domainId --> newId) + faceDomains.clear(); + celldom.clear(); + cellDomains.clear(); + nodeDomains.clear(); + std::map emptyMap; + std::set emptySet; + emptyMap.clear(); + + MESSAGE(".. Number of domains :"< volume to modify) + // with all the faces shared by 2 domains (group of elements) + // and corresponding volume of this domain, for each shared face. + // a volume has a face shared by 2 domains if it has a neighbor which is not in his domain. + + MESSAGE("... Neighbors of domain #" << idom); + const TIDSortedElemSet& domain = theElems[idom]; + TIDSortedElemSet::const_iterator elemItr = domain.begin(); + for (; elemItr != domain.end(); ++elemItr) + { + SMDS_MeshElement* anElem = (SMDS_MeshElement*) *elemItr; + if (!anElem) + continue; + int vtkId = anElem->getVtkId(); + //MESSAGE(" vtkId " << vtkId << " smdsId " << anElem->GetID()); + int neighborsVtkIds[NBMAXNEIGHBORS]; + int downIds[NBMAXNEIGHBORS]; + unsigned char downTypes[NBMAXNEIGHBORS]; + int nbNeighbors = grid->GetNeighbors(neighborsVtkIds, downIds, downTypes, vtkId); + for (int n = 0; n < nbNeighbors; n++) + { + int smdsId = meshDS->fromVtkToSmds(neighborsVtkIds[n]); + const SMDS_MeshElement* elem = meshDS->FindElement(smdsId); + if (! domain.count(elem)) // neighbor is in another domain : face is shared + { + bool ok = false ; + for (int idombis = 0; idombis < theElems.size(); idombis++) // check if the neighbor belongs to another domain of the list + { + // MESSAGE("Domain " << idombis); + const TIDSortedElemSet& domainbis = theElems[idombis]; + if ( domainbis.count(elem)) ok = true ; // neighbor is in a correct domain : face is kept + } + if ( ok ) // the characteristics of the face is stored + { + DownIdType face(downIds[n], downTypes[n]); + if (!faceDomains.count(face)) + faceDomains[face] = emptyMap; // create an empty entry for face + if (!faceDomains[face].count(idom)) + { + faceDomains[face][idom] = vtkId; // volume associated to face in this domain + celldom[vtkId] = idom; + //MESSAGE(" cell with a border " << vtkId << " domain " << idom); + } + } + } + } + } + } + + //MESSAGE("Number of shared faces " << faceDomains.size()); + std::map, DownIdCompare>::iterator itface; + + // --- explore the shared faces domain by domain, + // explore the nodes of the face and see if they belong to a cell in the domain, + // which has only a node or an edge on the border (not a shared face) + + for (int idomain = 0; idomain < theElems.size(); idomain++) + { + //MESSAGE("Domain " << idomain); + const TIDSortedElemSet& domain = theElems[idomain]; + itface = faceDomains.begin(); + for (; itface != faceDomains.end(); ++itface) + { + std::map domvol = itface->second; + if (!domvol.count(idomain)) + continue; + DownIdType face = itface->first; + //MESSAGE(" --- face " << face.cellId); + std::set oldNodes; + oldNodes.clear(); + grid->GetNodeIds(oldNodes, face.cellId, face.cellType); + std::set::iterator itn = oldNodes.begin(); + for (; itn != oldNodes.end(); ++itn) + { + int oldId = *itn; + //MESSAGE(" node " << oldId); + vtkCellLinks::Link l = grid->GetCellLinks()->GetLink(oldId); + for (int i=0; iFindElement(GetMeshDS()->fromVtkToSmds(vtkId)); + if (!domain.count(anElem)) + continue; + int vtkType = grid->GetCellType(vtkId); + int downId = grid->CellIdToDownId(vtkId); + if (downId < 0) + { + MESSAGE("doubleNodesOnGroupBoundaries: internal algorithm problem"); + continue; // not OK at this stage of the algorithm: + //no cells created after BuildDownWardConnectivity + } + DownIdType aCell(downId, vtkType); + if (!cellDomains.count(aCell)) + cellDomains[aCell] = emptyMap; // create an empty entry for cell + cellDomains[aCell][idomain] = vtkId; + celldom[vtkId] = idomain; + //MESSAGE(" cell " << vtkId << " domain " << idomain); + } + } + } + } + + // --- explore the shared faces domain by domain, to duplicate the nodes in a coherent way + // for each shared face, get the nodes + // for each node, for each domain of the face, create a clone of the node + + // --- edges at the intersection of 3 or 4 domains, with the order of domains to build + // junction elements of type prism or hexa. the key is the pair of nodesId (lower first) + // the value is the ordered domain ids. (more than 4 domains not taken into account) + + std::map, std::vector > edgesMultiDomains; // nodes of edge --> ordered domains + std::map > mutipleNodes; // nodes multi domains with domain order + std::map > mutipleNodesToFace; // nodes multi domains with domain order to transform in Face (junction between 3 or more 2D domains) + + MESSAGE(".. Duplication of the nodes"); + for (int idomain = 0; idomain < theElems.size(); idomain++) + { + itface = faceDomains.begin(); + for (; itface != faceDomains.end(); ++itface) + { + std::map domvol = itface->second; + if (!domvol.count(idomain)) + continue; + DownIdType face = itface->first; + //MESSAGE(" --- face " << face.cellId); + std::set oldNodes; + oldNodes.clear(); + grid->GetNodeIds(oldNodes, face.cellId, face.cellType); + std::set::iterator itn = oldNodes.begin(); + for (; itn != oldNodes.end(); ++itn) + { + int oldId = *itn; + //MESSAGE("-+-+-a node " << oldId); + if (!nodeDomains.count(oldId)) + nodeDomains[oldId] = emptyMap; // create an empty entry for node + if (nodeDomains[oldId].empty()) + { + nodeDomains[oldId][idomain] = oldId; // keep the old node in the first domain + //MESSAGE("-+-+-b oldNode " << oldId << " domain " << idomain); + } + std::map::iterator itdom = domvol.begin(); + for (; itdom != domvol.end(); ++itdom) + { + int idom = itdom->first; + //MESSAGE(" domain " << idom); + if (!nodeDomains[oldId].count(idom)) // --- node to clone + { + if (nodeDomains[oldId].size() >= 2) // a multiple node + { + vector orderedDoms; + //MESSAGE("multiple node " << oldId); + if (mutipleNodes.count(oldId)) + orderedDoms = mutipleNodes[oldId]; + else + { + map::iterator it = nodeDomains[oldId].begin(); + for (; it != nodeDomains[oldId].end(); ++it) + orderedDoms.push_back(it->first); + } + orderedDoms.push_back(idom); // TODO order ==> push_front or back + //stringstream txt; + //for (int i=0; iGetPoint(oldId); + SMDS_MeshNode *newNode = meshDS->AddNode(coords[0], coords[1], coords[2]); + int newId = newNode->getVtkId(); + nodeDomains[oldId][idom] = newId; // cloned node for other domains + //MESSAGE("-+-+-c oldNode " << oldId << " domain " << idomain << " newNode " << newId << " domain " << idom << " size=" < domvol = itface->second; + if (!domvol.count(idomain)) + continue; + DownIdType face = itface->first; + //MESSAGE(" --- face " << face.cellId); + std::set oldNodes; + oldNodes.clear(); + grid->GetNodeIds(oldNodes, face.cellId, face.cellType); + int nbMultipleNodes = 0; + std::set::iterator itn = oldNodes.begin(); + for (; itn != oldNodes.end(); ++itn) + { + int oldId = *itn; + if (mutipleNodes.count(oldId)) + nbMultipleNodes++; + } + if (nbMultipleNodes > 1) // check if an edge of the face is shared between 3 or more domains + { + //MESSAGE("multiple Nodes detected on a shared face"); + int downId = itface->first.cellId; + unsigned char cellType = itface->first.cellType; + // --- shared edge or shared face ? + if ((cellType == VTK_LINE) || (cellType == VTK_QUADRATIC_EDGE)) // shared edge (between two faces) + { + int nodes[3]; + int nbNodes = grid->getDownArray(cellType)->getNodes(downId, nodes); + for (int i=0; i< nbNodes; i=i+nbNodes-1) // i=0 , i=nbNodes-1 + if (mutipleNodes.count(nodes[i])) + if (!mutipleNodesToFace.count(nodes[i])) + mutipleNodesToFace[nodes[i]] = mutipleNodes[nodes[i]]; + } + else // shared face (between two volumes) + { + int nbEdges = grid->getDownArray(cellType)->getNumberOfDownCells(downId); + const int* downEdgeIds = grid->getDownArray(cellType)->getDownCells(downId); + const unsigned char* edgeType = grid->getDownArray(cellType)->getDownTypes(downId); + for (int ie =0; ie < nbEdges; ie++) + { + int nodes[3]; + int nbNodes = grid->getDownArray(edgeType[ie])->getNodes(downEdgeIds[ie], nodes); + if (mutipleNodes.count(nodes[0]) && mutipleNodes.count(nodes[nbNodes-1])) + { + vector vn0 = mutipleNodes[nodes[0]]; + vector vn1 = mutipleNodes[nodes[nbNodes - 1]]; + vector doms; + for (int i0 = 0; i0 < vn0.size(); i0++) + for (int i1 = 0; i1 < vn1.size(); i1++) + if (vn0[i0] == vn1[i1]) + doms.push_back(vn0[i0]); + if (doms.size() >2) + { + //MESSAGE(" detect edgesMultiDomains " << nodes[0] << " " << nodes[nbNodes - 1]); + double *coords = grid->GetPoint(nodes[0]); + gp_Pnt p0(coords[0], coords[1], coords[2]); + coords = grid->GetPoint(nodes[nbNodes - 1]); + gp_Pnt p1(coords[0], coords[1], coords[2]); + gp_Pnt gref; + int vtkVolIds[1000]; // an edge can belong to a lot of volumes + map domvol; // domain --> a volume with the edge + map angleDom; // oriented angles between planes defined by edge and volume centers + int nbvol = grid->GetParentVolumes(vtkVolIds, downEdgeIds[ie], edgeType[ie]); + for (int id=0; id < doms.size(); id++) + { + int idom = doms[id]; + for (int ivol=0; ivolfromVtkToSmds(vtkVolIds[ivol]); + SMDS_MeshElement* elem = (SMDS_MeshElement*)meshDS->FindElement(smdsId); + if (theElems[idom].count(elem)) + { + SMDS_VtkVolume* svol = dynamic_cast(elem); + domvol[idom] = svol; + //MESSAGE(" domain " << idom << " volume " << elem->GetID()); + double values[3]; + vtkIdType npts = 0; + vtkIdType* pts = 0; + grid->GetCellPoints(vtkVolIds[ivol], npts, pts); + SMDS_VtkVolume::gravityCenter(grid, pts, npts, values); + if (id ==0) + { + gref.SetXYZ(gp_XYZ(values[0], values[1], values[2])); + angleDom[idom] = 0; + } + else + { + gp_Pnt g(values[0], values[1], values[2]); + angleDom[idom] = OrientedAngle(p0, p1, gref, g); // -pisecond << " angle " << ib->first); + } + for (int ino = 0; ino < nbNodes; ino++) + vnodes.push_back(nodes[ino]); + edgesMultiDomains[vnodes] = vdom; // nodes vector --> ordered domains + } + } + } + } + } + } + } + + // --- iterate on shared faces (volumes to modify, face to extrude) + // get node id's of the face (id SMDS = id VTK) + // create flat element with old and new nodes if requested + + // --- new quad nodes on flat quad elements: oldId --> ((domain1 X domain2) --> newId) + // (domain1 X domain2) = domain1 + MAXINT*domain2 + + std::map > nodeQuadDomains; + std::map mapOfJunctionGroups; + + MESSAGE(".. Creation of elements: simple junction"); + if (createJointElems) + { + int idg; + string joints2DName = "joints2D"; + mapOfJunctionGroups[joints2DName] = this->myMesh->AddGroup(SMDSAbs_Face, joints2DName.c_str(), idg); + SMESHDS_Group *joints2DGrp = dynamic_cast(mapOfJunctionGroups[joints2DName]->GetGroupDS()); + string joints3DName = "joints3D"; + mapOfJunctionGroups[joints3DName] = this->myMesh->AddGroup(SMDSAbs_Volume, joints3DName.c_str(), idg); + SMESHDS_Group *joints3DGrp = dynamic_cast(mapOfJunctionGroups[joints3DName]->GetGroupDS()); + + itface = faceDomains.begin(); + for (; itface != faceDomains.end(); ++itface) + { + DownIdType face = itface->first; + std::set oldNodes; + std::set::iterator itn; + oldNodes.clear(); + grid->GetNodeIds(oldNodes, face.cellId, face.cellType); + + std::map domvol = itface->second; + std::map::iterator itdom = domvol.begin(); + int dom1 = itdom->first; + int vtkVolId = itdom->second; + itdom++; + int dom2 = itdom->first; + SMDS_MeshCell *vol = grid->extrudeVolumeFromFace(vtkVolId, dom1, dom2, oldNodes, nodeDomains, + nodeQuadDomains); + stringstream grpname; + grpname << "j_"; + if (dom1 < dom2) + grpname << dom1 << "_" << dom2; + else + grpname << dom2 << "_" << dom1; + string namegrp = grpname.str(); + if (!mapOfJunctionGroups.count(namegrp)) + mapOfJunctionGroups[namegrp] = this->myMesh->AddGroup(vol->GetType(), namegrp.c_str(), idg); + SMESHDS_Group *sgrp = dynamic_cast(mapOfJunctionGroups[namegrp]->GetGroupDS()); + if (sgrp) + sgrp->Add(vol->GetID()); + if (vol->GetType() == SMDSAbs_Volume) + joints3DGrp->Add(vol->GetID()); + else if (vol->GetType() == SMDSAbs_Face) + joints2DGrp->Add(vol->GetID()); + } + } + + // --- create volumes on multiple domain intersection if requested + // iterate on mutipleNodesToFace + // iterate on edgesMultiDomains + + MESSAGE(".. Creation of elements: multiple junction"); + if (createJointElems) + { + // --- iterate on mutipleNodesToFace + + std::map >::iterator itn = mutipleNodesToFace.begin(); + for (; itn != mutipleNodesToFace.end(); ++itn) + { + int node = itn->first; + vector orderDom = itn->second; + vector orderedNodes; + for (int idom = 0; idom GetMeshDS()->AddFaceFromVtkIds(orderedNodes); + + stringstream grpname; + grpname << "m2j_"; + grpname << 0 << "_" << 0; + int idg; + string namegrp = grpname.str(); + if (!mapOfJunctionGroups.count(namegrp)) + mapOfJunctionGroups[namegrp] = this->myMesh->AddGroup(SMDSAbs_Face, namegrp.c_str(), idg); + SMESHDS_Group *sgrp = dynamic_cast(mapOfJunctionGroups[namegrp]->GetGroupDS()); + if (sgrp) + sgrp->Add(face->GetID()); + } + + // --- iterate on edgesMultiDomains + + std::map, std::vector >::iterator ite = edgesMultiDomains.begin(); + for (; ite != edgesMultiDomains.end(); ++ite) + { + vector nodes = ite->first; + vector orderDom = ite->second; + vector orderedNodes; + if (nodes.size() == 2) + { + //MESSAGE(" use edgesMultiDomains " << nodes[0] << " " << nodes[1]); + for (int ino=0; ino < nodes.size(); ino++) + if (orderDom.size() == 3) + for (int idom = 0; idom =0; idom--) + orderedNodes.push_back( nodeDomains[nodes[ino]][orderDom[idom]] ); + SMDS_MeshVolume* vol = this->GetMeshDS()->AddVolumeFromVtkIds(orderedNodes); + + int idg; + string namegrp = "jointsMultiples"; + if (!mapOfJunctionGroups.count(namegrp)) + mapOfJunctionGroups[namegrp] = this->myMesh->AddGroup(SMDSAbs_Volume, namegrp.c_str(), idg); + SMESHDS_Group *sgrp = dynamic_cast(mapOfJunctionGroups[namegrp]->GetGroupDS()); + if (sgrp) + sgrp->Add(vol->GetID()); + } + else + { + INFOS("Quadratic multiple joints not implemented"); + // TODO quadratic nodes + } + } + } + + // --- list the explicit faces and edges of the mesh that need to be modified, + // i.e. faces and edges built with one or more duplicated nodes. + // associate these faces or edges to their corresponding domain. + // only the first domain found is kept when a face or edge is shared + + std::map, DownIdCompare> faceOrEdgeDom; // cellToModify --> (id domain --> id cell) + std::map feDom; // vtk id of cell to modify --> id domain + faceOrEdgeDom.clear(); + feDom.clear(); + + MESSAGE(".. Modification of elements"); + for (int idomain = 0; idomain < theElems.size(); idomain++) + { + std::map >::const_iterator itnod = nodeDomains.begin(); + for (; itnod != nodeDomains.end(); ++itnod) + { + int oldId = itnod->first; + //MESSAGE(" node " << oldId); + vtkCellLinks::Link l = grid->GetCellLinks()->GetLink(oldId); + for (int i = 0; i < l.ncells; i++) + { + int vtkId = l.cells[i]; + int vtkType = grid->GetCellType(vtkId); + int downId = grid->CellIdToDownId(vtkId); + if (downId < 0) + continue; // new cells: not to be modified + DownIdType aCell(downId, vtkType); + int volParents[1000]; + int nbvol = grid->GetParentVolumes(volParents, vtkId); + for (int j = 0; j < nbvol; j++) + if (celldom.count(volParents[j]) && (celldom[volParents[j]] == idomain)) + if (!feDom.count(vtkId)) + { + feDom[vtkId] = idomain; + faceOrEdgeDom[aCell] = emptyMap; + faceOrEdgeDom[aCell][idomain] = vtkId; // affect face or edge to the first domain only + //MESSAGE("affect cell " << this->GetMeshDS()->fromVtkToSmds(vtkId) << " domain " << idomain + // << " type " << vtkType << " downId " << downId); + } + } + } + } + + // --- iterate on shared faces (volumes to modify, face to extrude) + // get node id's of the face + // replace old nodes by new nodes in volumes, and update inverse connectivity + + std::map, DownIdCompare>* maps[3] = {&faceDomains, &cellDomains, &faceOrEdgeDom}; + for (int m=0; m<3; m++) + { + std::map, DownIdCompare>* amap = maps[m]; + itface = (*amap).begin(); + for (; itface != (*amap).end(); ++itface) + { + DownIdType face = itface->first; + std::set oldNodes; + std::set::iterator itn; + oldNodes.clear(); + grid->GetNodeIds(oldNodes, face.cellId, face.cellType); + //MESSAGE("examine cell, downId " << face.cellId << " type " << int(face.cellType)); + std::map localClonedNodeIds; + + std::map domvol = itface->second; + std::map::iterator itdom = domvol.begin(); + for (; itdom != domvol.end(); ++itdom) + { + int idom = itdom->first; + int vtkVolId = itdom->second; + //MESSAGE("modify nodes of cell " << this->GetMeshDS()->fromVtkToSmds(vtkVolId) << " domain " << idom); + localClonedNodeIds.clear(); + for (itn = oldNodes.begin(); itn != oldNodes.end(); ++itn) + { + int oldId = *itn; + if (nodeDomains[oldId].count(idom)) + { + localClonedNodeIds[oldId] = nodeDomains[oldId][idom]; + //MESSAGE(" node " << oldId << " --> " << localClonedNodeIds[oldId]); + } + } + meshDS->ModifyCellNodes(vtkVolId, localClonedNodeIds); + } + } + } + + meshDS->CleanDownWardConnectivity(); // Mesh has been modified, downward connectivity is no more usable, free memory + grid->BuildLinks(); + + CHRONOSTOP(50); + counters::stats(); + return true; +} + +/*! + * \brief Double nodes on some external faces and create flat elements. + * Flat elements are mainly used by some types of mechanic calculations. + * + * Each group of the list must be constituted of faces. + * Triangles are transformed in prisms, and quadrangles in hexahedrons. + * @param theElems - list of groups of faces, where a group of faces is a set of + * SMDS_MeshElements sorted by Id. + * @return TRUE if operation has been completed successfully, FALSE otherwise + */ +bool SMESH_MeshEditor::CreateFlatElementsOnFacesGroups(const std::vector& theElems) +{ + MESSAGE("-------------------------------------------------"); + MESSAGE("SMESH_MeshEditor::CreateFlatElementsOnFacesGroups"); + MESSAGE("-------------------------------------------------"); + + SMESHDS_Mesh *meshDS = this->myMesh->GetMeshDS(); + + // --- For each group of faces + // duplicate the nodes, create a flat element based on the face + // replace the nodes of the faces by their clones + + std::map clonedNodes; + std::map intermediateNodes; + clonedNodes.clear(); + intermediateNodes.clear(); + std::map mapOfJunctionGroups; + mapOfJunctionGroups.clear(); + + for (int idom = 0; idom < theElems.size(); idom++) + { + const TIDSortedElemSet& domain = theElems[idom]; + TIDSortedElemSet::const_iterator elemItr = domain.begin(); + for (; elemItr != domain.end(); ++elemItr) + { + SMDS_MeshElement* anElem = (SMDS_MeshElement*) *elemItr; + SMDS_MeshFace* aFace = dynamic_cast (anElem); + if (!aFace) + continue; + // MESSAGE("aFace=" << aFace->GetID()); + bool isQuad = aFace->IsQuadratic(); + vector ln0, ln1, ln2, ln3, ln4; + + // --- clone the nodes, create intermediate nodes for non medium nodes of a quad face + + SMDS_ElemIteratorPtr nodeIt = aFace->nodesIterator(); + while (nodeIt->more()) + { + const SMDS_MeshNode* node = static_cast (nodeIt->next()); + bool isMedium = isQuad && (aFace->IsMediumNode(node)); + if (isMedium) + ln2.push_back(node); + else + ln0.push_back(node); + + const SMDS_MeshNode* clone = 0; + if (!clonedNodes.count(node)) + { + clone = meshDS->AddNode(node->X(), node->Y(), node->Z()); + clonedNodes[node] = clone; + } + else + clone = clonedNodes[node]; + + if (isMedium) + ln3.push_back(clone); + else + ln1.push_back(clone); + + const SMDS_MeshNode* inter = 0; + if (isQuad && (!isMedium)) + { + if (!intermediateNodes.count(node)) + { + inter = meshDS->AddNode(node->X(), node->Y(), node->Z()); + intermediateNodes[node] = inter; + } + else + inter = intermediateNodes[node]; + ln4.push_back(inter); + } + } + + // --- extrude the face + + vector ln; + SMDS_MeshVolume* vol = 0; + vtkIdType aType = aFace->GetVtkType(); + switch (aType) + { + case VTK_TRIANGLE: + vol = meshDS->AddVolume(ln0[2], ln0[1], ln0[0], ln1[2], ln1[1], ln1[0]); + // MESSAGE("vol prism " << vol->GetID()); + ln.push_back(ln1[0]); + ln.push_back(ln1[1]); + ln.push_back(ln1[2]); + break; + case VTK_QUAD: + vol = meshDS->AddVolume(ln0[3], ln0[2], ln0[1], ln0[0], ln1[3], ln1[2], ln1[1], ln1[0]); + // MESSAGE("vol hexa " << vol->GetID()); + ln.push_back(ln1[0]); + ln.push_back(ln1[1]); + ln.push_back(ln1[2]); + ln.push_back(ln1[3]); + break; + case VTK_QUADRATIC_TRIANGLE: + vol = meshDS->AddVolume(ln1[0], ln1[1], ln1[2], ln0[0], ln0[1], ln0[2], ln3[0], ln3[1], ln3[2], + ln2[0], ln2[1], ln2[2], ln4[0], ln4[1], ln4[2]); + // MESSAGE("vol quad prism " << vol->GetID()); + ln.push_back(ln1[0]); + ln.push_back(ln1[1]); + ln.push_back(ln1[2]); + ln.push_back(ln3[0]); + ln.push_back(ln3[1]); + ln.push_back(ln3[2]); + break; + case VTK_QUADRATIC_QUAD: +// vol = meshDS->AddVolume(ln0[0], ln0[1], ln0[2], ln0[3], ln1[0], ln1[1], ln1[2], ln1[3], +// ln2[0], ln2[1], ln2[2], ln2[3], ln3[0], ln3[1], ln3[2], ln3[3], +// ln4[0], ln4[1], ln4[2], ln4[3]); + vol = meshDS->AddVolume(ln1[0], ln1[1], ln1[2], ln1[3], ln0[0], ln0[1], ln0[2], ln0[3], + ln3[0], ln3[1], ln3[2], ln3[3], ln2[0], ln2[1], ln2[2], ln2[3], + ln4[0], ln4[1], ln4[2], ln4[3]); + // MESSAGE("vol quad hexa " << vol->GetID()); + ln.push_back(ln1[0]); + ln.push_back(ln1[1]); + ln.push_back(ln1[2]); + ln.push_back(ln1[3]); + ln.push_back(ln3[0]); + ln.push_back(ln3[1]); + ln.push_back(ln3[2]); + ln.push_back(ln3[3]); + break; + case VTK_POLYGON: + break; + default: + break; + } + + if (vol) + { + stringstream grpname; + grpname << "jf_"; + grpname << idom; + int idg; + string namegrp = grpname.str(); + if (!mapOfJunctionGroups.count(namegrp)) + mapOfJunctionGroups[namegrp] = this->myMesh->AddGroup(SMDSAbs_Volume, namegrp.c_str(), idg); + SMESHDS_Group *sgrp = dynamic_cast(mapOfJunctionGroups[namegrp]->GetGroupDS()); + if (sgrp) + sgrp->Add(vol->GetID()); + } + + // --- modify the face + + aFace->ChangeNodes(&ln[0], ln.size()); + } + } + return true; +} + +/*! + * \brief identify all the elements around a geom shape, get the faces delimiting the hole + * Build groups of volume to remove, groups of faces to replace on the skin of the object, + * groups of faces to remove inside the object, (idem edges). + * Build ordered list of nodes at the border of each group of faces to replace (to be used to build a geom subshape) + */ +void SMESH_MeshEditor::CreateHoleSkin(double radius, + const TopoDS_Shape& theShape, + SMESH_NodeSearcher* theNodeSearcher, + const char* groupName, + std::vector& nodesCoords, + std::vector >& listOfListOfNodes) +{ + MESSAGE("--------------------------------"); + MESSAGE("SMESH_MeshEditor::CreateHoleSkin"); + MESSAGE("--------------------------------"); + + // --- zone of volumes to remove is given : + // 1 either by a geom shape (one or more vertices) and a radius, + // 2 either by a group of nodes (representative of the shape)to use with the radius, + // 3 either by a group of nodes where all the elements build on one of this nodes are to remove, + // In the case 2, the group of nodes is an external group of nodes from another mesh, + // In the case 3, the group of nodes is an internal group of the mesh (obtained for instance by a filter), + // defined by it's name. + + SMESHDS_GroupBase* groupDS = 0; + SMESH_Mesh::GroupIteratorPtr groupIt = this->myMesh->GetGroups(); + while ( groupIt->more() ) + { + groupDS = 0; + SMESH_Group * group = groupIt->next(); + if ( !group ) continue; + groupDS = group->GetGroupDS(); + if ( !groupDS || groupDS->IsEmpty() ) continue; + std::string grpName = group->GetName(); + //MESSAGE("grpName=" << grpName); + if (grpName == groupName) + break; + else + groupDS = 0; + } + + bool isNodeGroup = false; + bool isNodeCoords = false; + if (groupDS) + { + if (groupDS->GetType() != SMDSAbs_Node) + return; + isNodeGroup = true; // a group of nodes exists and it is in this mesh + } + + if (nodesCoords.size() > 0) + isNodeCoords = true; // a list o nodes given by their coordinates + //MESSAGE("---" << isNodeGroup << " " << isNodeCoords); + + // --- define groups to build + + int idg; // --- group of SMDS volumes + string grpvName = groupName; + grpvName += "_vol"; + SMESH_Group *grp = this->myMesh->AddGroup(SMDSAbs_Volume, grpvName.c_str(), idg); + if (!grp) + { + MESSAGE("group not created " << grpvName); + return; + } + SMESHDS_Group *sgrp = dynamic_cast(grp->GetGroupDS()); + + int idgs; // --- group of SMDS faces on the skin + string grpsName = groupName; + grpsName += "_skin"; + SMESH_Group *grps = this->myMesh->AddGroup(SMDSAbs_Face, grpsName.c_str(), idgs); + if (!grps) + { + MESSAGE("group not created " << grpsName); + return; + } + SMESHDS_Group *sgrps = dynamic_cast(grps->GetGroupDS()); + + int idgi; // --- group of SMDS faces internal (several shapes) + string grpiName = groupName; + grpiName += "_internalFaces"; + SMESH_Group *grpi = this->myMesh->AddGroup(SMDSAbs_Face, grpiName.c_str(), idgi); + if (!grpi) + { + MESSAGE("group not created " << grpiName); + return; + } + SMESHDS_Group *sgrpi = dynamic_cast(grpi->GetGroupDS()); + + int idgei; // --- group of SMDS faces internal (several shapes) + string grpeiName = groupName; + grpeiName += "_internalEdges"; + SMESH_Group *grpei = this->myMesh->AddGroup(SMDSAbs_Edge, grpeiName.c_str(), idgei); + if (!grpei) + { + MESSAGE("group not created " << grpeiName); + return; + } + SMESHDS_Group *sgrpei = dynamic_cast(grpei->GetGroupDS()); + + // --- build downward connectivity + + SMESHDS_Mesh *meshDS = this->myMesh->GetMeshDS(); + meshDS->BuildDownWardConnectivity(true); + SMDS_UnstructuredGrid* grid = meshDS->getGrid(); + + // --- set of volumes detected inside - if ( freeFaceList.size() == 1 ) { - const SMDS_MeshElement* aFreeFace = freeFaceList.front(); - faceSet->insert( aFreeFace ); - // complete a node set with nodes of a found free face -// for ( iNode = 0; iNode < ; iNode++ ) -// nodeSet->insert( fNodes[ iNode ] ); + std::set setOfInsideVol; + std::set setOfVolToCheck; + + std::vector gpnts; + gpnts.clear(); + + if (isNodeGroup) // --- a group of nodes is provided : find all the volumes using one or more of this nodes + { + MESSAGE("group of nodes provided"); + SMDS_ElemIteratorPtr elemIt = groupDS->GetElements(); + while ( elemIt->more() ) + { + const SMDS_MeshElement* elem = elemIt->next(); + if (!elem) + continue; + const SMDS_MeshNode* node = dynamic_cast(elem); + if (!node) + continue; + SMDS_MeshElement* vol = 0; + SMDS_ElemIteratorPtr volItr = node->GetInverseElementIterator(SMDSAbs_Volume); + while (volItr->more()) + { + vol = (SMDS_MeshElement*)volItr->next(); + setOfInsideVol.insert(vol->getVtkId()); + sgrp->Add(vol->GetID()); + } + } + } + else if (isNodeCoords) + { + MESSAGE("list of nodes coordinates provided"); + int i = 0; + int k = 0; + while (i < nodesCoords.size()-2) + { + double x = nodesCoords[i++]; + double y = nodesCoords[i++]; + double z = nodesCoords[i++]; + gp_Pnt p = gp_Pnt(x, y ,z); + gpnts.push_back(p); + MESSAGE("TopoDS_Vertex " << k++ << " " << p.X() << " " << p.Y() << " " << p.Z()); + } + } + else // --- no group, no coordinates : use the vertices of the geom shape provided, and radius + { + MESSAGE("no group of nodes provided, using vertices from geom shape, and radius"); + TopTools_IndexedMapOfShape vertexMap; + TopExp::MapShapes( theShape, TopAbs_VERTEX, vertexMap ); + gp_Pnt p = gp_Pnt(0,0,0); + if (vertexMap.Extent() < 1) + return; + + for ( int i = 1; i <= vertexMap.Extent(); ++i ) + { + const TopoDS_Vertex& vertex = TopoDS::Vertex( vertexMap( i )); + p = BRep_Tool::Pnt(vertex); + gpnts.push_back(p); + MESSAGE("TopoDS_Vertex " << i << " " << p.X() << " " << p.Y() << " " << p.Z()); } + } - } // loop on volumes of a side + if (gpnts.size() > 0) + { + int nodeId = 0; + const SMDS_MeshNode* startNode = theNodeSearcher->FindClosestTo(gpnts[0]); + if (startNode) + nodeId = startNode->GetID(); + MESSAGE("nodeId " << nodeId); -// // complete a set of faces if new nodes in a nodeSet appeared -// // ---------------------------------------------------------- -// if ( nodeSetSize != nodeSet->size() ) { -// for ( ; nIt != nodeSet->end(); nIt++ ) { // loop on nodes of iSide -// SMDS_ElemIteratorPtr fIt = (*nIt)->facesIterator(); -// while ( fIt->more() ) { // loop on faces sharing a node -// const SMDS_MeshElement* f = fIt->next(); -// if ( faceSet->find( f ) == faceSet->end() ) { -// // check if all nodes are in nodeSet and -// // complete setOfFaceNodeSet if they are -// set faceNodeSet; -// SMDS_ElemIteratorPtr nodeIt = f->nodesIterator(); -// bool allInSet = true; -// while ( nodeIt->more() && allInSet ) { // loop on nodes of a face -// const SMDS_MeshNode* n = static_cast( nodeIt->next() ); -// if ( nodeSet->find( n ) == nodeSet->end() ) -// allInSet = false; -// else -// faceNodeSet.insert( n ); -// } -// if ( allInSet ) { -// faceSet->insert( f ); -// setOfFaceNodeSet.insert( faceNodeSet ); -// } -// } -// } -// } -// } - } // Create temporary faces, if there are volumes given - } // loop on sides + double radius2 = radius*radius; + MESSAGE("radius2 " << radius2); - if ( faceSet1.size() != faceSet2.size() ) { - // delete temporary faces: they are in reverseElements of actual nodes - SMDS_FaceIteratorPtr tmpFaceIt = aTmpFacesMesh.facesIterator(); - while ( tmpFaceIt->more() ) - aTmpFacesMesh.RemoveElement( tmpFaceIt->next() ); - MESSAGE("Diff nb of faces"); - return SEW_TOPO_DIFF_SETS_OF_ELEMENTS; - } + // --- volumes on start node - // ============================================================ - // 2. Find nodes to merge: - // bind a node to remove to a node to put instead - // ============================================================ + setOfVolToCheck.clear(); + SMDS_MeshElement* startVol = 0; + SMDS_ElemIteratorPtr volItr = startNode->GetInverseElementIterator(SMDSAbs_Volume); + while (volItr->more()) + { + startVol = (SMDS_MeshElement*)volItr->next(); + setOfVolToCheck.insert(startVol->getVtkId()); + } + if (setOfVolToCheck.empty()) + { + MESSAGE("No volumes found"); + return; + } - TNodeNodeMap nReplaceMap; // bind a node to remove to a node to put instead - if ( theFirstNode1 != theFirstNode2 ) - nReplaceMap.insert( TNodeNodeMap::value_type( theFirstNode1, theFirstNode2 )); - if ( theSecondNode1 != theSecondNode2 ) - nReplaceMap.insert( TNodeNodeMap::value_type( theSecondNode1, theSecondNode2 )); + // --- starting with central volumes then their neighbors, check if they are inside + // or outside the domain, until no more new neighbor volume is inside. + // Fill the group of inside volumes - LinkID_Gen aLinkID_Gen( GetMeshDS() ); - set< long > linkIdSet; // links to process - linkIdSet.insert( aLinkID_Gen.GetLinkID( theFirstNode1, theSecondNode1 )); + std::map mapOfNodeDistance2; + mapOfNodeDistance2.clear(); + std::set setOfOutsideVol; + while (!setOfVolToCheck.empty()) + { + std::set::iterator it = setOfVolToCheck.begin(); + int vtkId = *it; + MESSAGE("volume to check, vtkId " << vtkId << " smdsId " << meshDS->fromVtkToSmds(vtkId)); + bool volInside = false; + vtkIdType npts = 0; + vtkIdType* pts = 0; + grid->GetCellPoints(vtkId, npts, pts); + for (int i=0; iGetPoint(pts[i]); + gp_Pnt aPoint = gp_Pnt(coords[0], coords[1], coords[2]); + distance2 = 1.E40; + for (int j=0; jAdd(meshDS->fromVtkToSmds(vtkId)); + break; + } + } + if (volInside) + { + setOfInsideVol.insert(vtkId); + MESSAGE(" volume inside, vtkId " << vtkId << " smdsId " << meshDS->fromVtkToSmds(vtkId)); + int neighborsVtkIds[NBMAXNEIGHBORS]; + int downIds[NBMAXNEIGHBORS]; + unsigned char downTypes[NBMAXNEIGHBORS]; + int nbNeighbors = grid->GetNeighbors(neighborsVtkIds, downIds, downTypes, vtkId); + for (int n = 0; n < nbNeighbors; n++) + if (!setOfInsideVol.count(neighborsVtkIds[n]) ||setOfOutsideVol.count(neighborsVtkIds[n])) + setOfVolToCheck.insert(neighborsVtkIds[n]); + } + else + { + setOfOutsideVol.insert(vtkId); + MESSAGE(" volume outside, vtkId " << vtkId << " smdsId " << meshDS->fromVtkToSmds(vtkId)); + } + setOfVolToCheck.erase(vtkId); + } + } - typedef pair< const SMDS_MeshNode*, const SMDS_MeshNode* > TPairOfNodes; - list< TPairOfNodes > linkList[2]; - linkList[0].push_back( TPairOfNodes( theFirstNode1, theSecondNode1 )); - linkList[1].push_back( TPairOfNodes( theFirstNode2, theSecondNode2 )); - // loop on links in linkList; find faces by links and append links - // of the found faces to linkList - list< TPairOfNodes >::iterator linkIt[] = { linkList[0].begin(), linkList[1].begin() } ; - for ( ; linkIt[0] != linkList[0].end(); linkIt[0]++, linkIt[1]++ ) - { - TPairOfNodes link[] = { *linkIt[0], *linkIt[1] }; - long linkID = aLinkID_Gen.GetLinkID( link[0].first, link[0].second ); - if ( linkIdSet.find( linkID ) == linkIdSet.end() ) - continue; + // --- for outside hexahedrons, check if they have more than one neighbor volume inside + // If yes, add the volume to the inside set - // by links, find faces in the face sets, - // and find indices of link nodes in the found faces; - // in a face set, there is only one or no face sharing a link - // --------------------------------------------------------------- + bool addedInside = true; + std::set setOfVolToReCheck; + while (addedInside) + { + MESSAGE(" --------------------------- re check"); + addedInside = false; + std::set::iterator itv = setOfInsideVol.begin(); + for (; itv != setOfInsideVol.end(); ++itv) + { + int vtkId = *itv; + int neighborsVtkIds[NBMAXNEIGHBORS]; + int downIds[NBMAXNEIGHBORS]; + unsigned char downTypes[NBMAXNEIGHBORS]; + int nbNeighbors = grid->GetNeighbors(neighborsVtkIds, downIds, downTypes, vtkId); + for (int n = 0; n < nbNeighbors; n++) + if (!setOfInsideVol.count(neighborsVtkIds[n])) + setOfVolToReCheck.insert(neighborsVtkIds[n]); + } + setOfVolToCheck = setOfVolToReCheck; + setOfVolToReCheck.clear(); + while (!setOfVolToCheck.empty()) + { + std::set::iterator it = setOfVolToCheck.begin(); + int vtkId = *it; + if (grid->GetCellType(vtkId) == VTK_HEXAHEDRON) + { + MESSAGE("volume to recheck, vtkId " << vtkId << " smdsId " << meshDS->fromVtkToSmds(vtkId)); + int countInside = 0; + int neighborsVtkIds[NBMAXNEIGHBORS]; + int downIds[NBMAXNEIGHBORS]; + unsigned char downTypes[NBMAXNEIGHBORS]; + int nbNeighbors = grid->GetNeighbors(neighborsVtkIds, downIds, downTypes, vtkId); + for (int n = 0; n < nbNeighbors; n++) + if (setOfInsideVol.count(neighborsVtkIds[n])) + countInside++; + MESSAGE("countInside " << countInside); + if (countInside > 1) + { + MESSAGE(" volume inside, vtkId " << vtkId << " smdsId " << meshDS->fromVtkToSmds(vtkId)); + setOfInsideVol.insert(vtkId); + sgrp->Add(meshDS->fromVtkToSmds(vtkId)); + addedInside = true; + } + else + setOfVolToReCheck.insert(vtkId); + } + setOfVolToCheck.erase(vtkId); + } + } - const SMDS_MeshElement* face[] = { 0, 0 }; - const SMDS_MeshNode* faceNodes[ 2 ][ 5 ]; - const SMDS_MeshNode* notLinkNodes[ 2 ][ 2 ] = {{ 0, 0 },{ 0, 0 }} ; - int iLinkNode[2][2]; - for ( iSide = 0; iSide < 2; iSide++ ) { // loop on 2 sides - const SMDS_MeshNode* n1 = link[iSide].first; - const SMDS_MeshNode* n2 = link[iSide].second; - set * faceSet = faceSetPtr[ iSide ]; - set< const SMDS_MeshElement* > fMap; - for ( int i = 0; i < 2; i++ ) { // loop on 2 nodes of a link - const SMDS_MeshNode* n = i ? n1 : n2; // a node of a link - SMDS_ElemIteratorPtr fIt = n->facesIterator(); - while ( fIt->more() ) { // loop on faces sharing a node - const SMDS_MeshElement* f = fIt->next(); - if (faceSet->find( f ) != faceSet->end() && // f is in face set - ! fMap.insert( f ).second ) // f encounters twice - { - if ( face[ iSide ] ) { - MESSAGE( "2 faces per link " ); - aResult = iSide ? SEW_BAD_SIDE2_NODES : SEW_BAD_SIDE1_NODES; - break; + // --- map of Downward faces at the boundary, inside the global volume + // map of Downward faces on the skin of the global volume (equivalent to SMDS faces on the skin) + // fill group of SMDS faces inside the volume (when several volume shapes) + // fill group of SMDS faces on the skin of the global volume (if skin) + + std::map boundaryFaces; // boundary faces inside the volume --> corresponding cell + std::map skinFaces; // faces on the skin of the global volume --> corresponding cell + std::set::iterator it = setOfInsideVol.begin(); + for (; it != setOfInsideVol.end(); ++it) + { + int vtkId = *it; + //MESSAGE(" vtkId " << vtkId << " smdsId " << meshDS->fromVtkToSmds(vtkId)); + int neighborsVtkIds[NBMAXNEIGHBORS]; + int downIds[NBMAXNEIGHBORS]; + unsigned char downTypes[NBMAXNEIGHBORS]; + int nbNeighbors = grid->GetNeighbors(neighborsVtkIds, downIds, downTypes, vtkId, true); + for (int n = 0; n < nbNeighbors; n++) + { + int neighborDim = SMDS_Downward::getCellDimension(grid->GetCellType(neighborsVtkIds[n])); + if (neighborDim == 3) + { + if (! setOfInsideVol.count(neighborsVtkIds[n])) // neighbor volume is not inside : face is boundary + { + DownIdType face(downIds[n], downTypes[n]); + boundaryFaces[face] = vtkId; + } + // if the face between to volumes is in the mesh, get it (internal face between shapes) + int vtkFaceId = grid->getDownArray(downTypes[n])->getVtkCellId(downIds[n]); + if (vtkFaceId >= 0) + { + sgrpi->Add(meshDS->fromVtkToSmds(vtkFaceId)); + // find also the smds edges on this face + int nbEdges = grid->getDownArray(downTypes[n])->getNumberOfDownCells(downIds[n]); + const int* dEdges = grid->getDownArray(downTypes[n])->getDownCells(downIds[n]); + const unsigned char* dTypes = grid->getDownArray(downTypes[n])->getDownTypes(downIds[n]); + for (int i = 0; i < nbEdges; i++) + { + int vtkEdgeId = grid->getDownArray(dTypes[i])->getVtkCellId(dEdges[i]); + if (vtkEdgeId >= 0) + sgrpei->Add(meshDS->fromVtkToSmds(vtkEdgeId)); + } + } } - face[ iSide ] = f; - faceSet->erase( f ); - // get face nodes and find ones of a link - iNode = 0; - SMDS_ElemIteratorPtr nIt = f->nodesIterator(); - while ( nIt->more() ) { - const SMDS_MeshNode* n = - static_cast( nIt->next() ); - if ( n == n1 ) - iLinkNode[ iSide ][ 0 ] = iNode; - else if ( n == n2 ) - iLinkNode[ iSide ][ 1 ] = iNode; - else if ( notLinkNodes[ iSide ][ 0 ] ) - notLinkNodes[ iSide ][ 1 ] = n; - else - notLinkNodes[ iSide ][ 0 ] = n; - faceNodes[ iSide ][ iNode++ ] = n; + else if (neighborDim == 2) // skin of the volume + { + DownIdType face(downIds[n], downTypes[n]); + skinFaces[face] = vtkId; + int vtkFaceId = grid->getDownArray(downTypes[n])->getVtkCellId(downIds[n]); + if (vtkFaceId >= 0) + sgrps->Add(meshDS->fromVtkToSmds(vtkFaceId)); } - faceNodes[ iSide ][ iNode ] = faceNodes[ iSide ][ 0 ]; - } } - } } - // check similarity of elements of the sides - if (aResult == SEW_OK && ( face[0] && !face[1] ) || ( !face[0] && face[1] )) { - MESSAGE("Correspondent face not found on side " << ( face[0] ? 1 : 0 )); - if ( nReplaceMap.size() == 2 ) // faces on input nodes not found - aResult = ( face[0] ? SEW_BAD_SIDE2_NODES : SEW_BAD_SIDE1_NODES ); - else - aResult = SEW_TOPO_DIFF_SETS_OF_ELEMENTS; - break; // do not return because it s necessary to remove tmp faces + + // --- identify the edges constituting the wire of each subshape on the skin + // define polylines with the nodes of edges, equivalent to wires + // project polylines on subshapes, and partition, to get geom faces + + std::map > shapeIdToVtkIdSet; // shapeId --> set of vtkId on skin + std::set emptySet; + emptySet.clear(); + std::set shapeIds; + + SMDS_ElemIteratorPtr itelem = sgrps->GetElements(); + while (itelem->more()) + { + const SMDS_MeshElement *elem = itelem->next(); + int shapeId = elem->getshapeId(); + int vtkId = elem->getVtkId(); + if (!shapeIdToVtkIdSet.count(shapeId)) + { + shapeIdToVtkIdSet[shapeId] = emptySet; + shapeIds.insert(shapeId); + } + shapeIdToVtkIdSet[shapeId].insert(vtkId); } - // set nodes to merge - // ------------------- + std::map > shapeIdToEdges; // shapeId --> set of downward edges + std::set emptyEdges; + emptyEdges.clear(); - if ( face[0] && face[1] ) + std::map >::iterator itShape = shapeIdToVtkIdSet.begin(); + for (; itShape != shapeIdToVtkIdSet.end(); ++itShape) { - int nbNodes = face[0]->NbNodes(); - if ( nbNodes != face[1]->NbNodes() ) { - MESSAGE("Diff nb of face nodes"); - aResult = SEW_TOPO_DIFF_SETS_OF_ELEMENTS; - break; // do not return because it s necessary to remove tmp faces - } - bool reverse[] = { false, false }; // order of notLinkNodes of quadrangle - if ( nbNodes == 3 ) - nReplaceMap.insert( TNodeNodeMap::value_type - ( notLinkNodes[0][0], notLinkNodes[1][0] )); - else { - for ( iSide = 0; iSide < 2; iSide++ ) { // loop on 2 sides - // analyse link orientation in faces - int i1 = iLinkNode[ iSide ][ 0 ]; - int i2 = iLinkNode[ iSide ][ 1 ]; - reverse[ iSide ] = Abs( i1 - i2 ) == 1 ? i1 > i2 : i2 > i1; - // if notLinkNodes are the first and the last ones, then - // their order does not correspond to the link orientation - if (( i1 == 1 && i2 == 2 ) || - ( i1 == 2 && i2 == 1 )) - reverse[ iSide ] = !reverse[ iSide ]; - } - if ( reverse[0] == reverse[1] ) { - nReplaceMap.insert( TNodeNodeMap::value_type - ( notLinkNodes[0][0], notLinkNodes[1][0] )); - nReplaceMap.insert( TNodeNodeMap::value_type - ( notLinkNodes[0][1], notLinkNodes[1][1] )); + int shapeId = itShape->first; + MESSAGE(" --- Shape ID --- "<< shapeId); + shapeIdToEdges[shapeId] = emptyEdges; + + std::vector nodesEdges; + + std::set::iterator its = itShape->second.begin(); + for (; its != itShape->second.end(); ++its) + { + int vtkId = *its; + MESSAGE(" " << vtkId); + int neighborsVtkIds[NBMAXNEIGHBORS]; + int downIds[NBMAXNEIGHBORS]; + unsigned char downTypes[NBMAXNEIGHBORS]; + int nbNeighbors = grid->GetNeighbors(neighborsVtkIds, downIds, downTypes, vtkId); + for (int n = 0; n < nbNeighbors; n++) + { + if (neighborsVtkIds[n]<0) // only smds faces are considered as neighbors here + continue; + int smdsId = meshDS->fromVtkToSmds(neighborsVtkIds[n]); + const SMDS_MeshElement* elem = meshDS->FindElement(smdsId); + if ( shapeIds.count(elem->getshapeId()) && !sgrps->Contains(elem)) // edge : neighbor in the set of shape, not in the group + { + DownIdType edge(downIds[n], downTypes[n]); + if (!shapeIdToEdges[shapeId].count(edge)) + { + shapeIdToEdges[shapeId].insert(edge); + int vtkNodeId[3]; + int nbNodes = grid->getDownArray(downTypes[n])->getNodes(downIds[n],vtkNodeId); + nodesEdges.push_back(vtkNodeId[0]); + nodesEdges.push_back(vtkNodeId[nbNodes-1]); + MESSAGE(" --- nodes " << vtkNodeId[0]+1 << " " << vtkNodeId[nbNodes-1]+1); + } + } + } } - else { - nReplaceMap.insert( TNodeNodeMap::value_type - ( notLinkNodes[0][0], notLinkNodes[1][1] )); - nReplaceMap.insert( TNodeNodeMap::value_type - ( notLinkNodes[0][1], notLinkNodes[1][0] )); + + std::list order; + order.clear(); + if (nodesEdges.size() > 0) + { + order.push_back(nodesEdges[0]); MESSAGE(" --- back " << order.back()+1); // SMDS id = VTK id + 1; + nodesEdges[0] = -1; + order.push_back(nodesEdges[1]); MESSAGE(" --- back " << order.back()+1); + nodesEdges[1] = -1; // do not reuse this edge + bool found = true; + while (found) + { + int nodeTofind = order.back(); // try first to push back + int i = 0; + for (i = 0; i use the previous one + if (nodesEdges[i-1] < 0) + found = false; + else + { + order.push_back(nodesEdges[i-1]); MESSAGE(" --- back " << order.back()+1); + nodesEdges[i-1] = -1; + } + else // even ==> use the next one + if (nodesEdges[i+1] < 0) + found = false; + else + { + order.push_back(nodesEdges[i+1]); MESSAGE(" --- back " << order.back()+1); + nodesEdges[i+1] = -1; + } + } + if (found) + continue; + // try to push front + found = true; + nodeTofind = order.front(); // try to push front + for (i = 0; i use the previous one + if (nodesEdges[i-1] < 0) + found = false; + else + { + order.push_front(nodesEdges[i-1]); MESSAGE(" --- front " << order.front()+1); + nodesEdges[i-1] = -1; + } + else // even ==> use the next one + if (nodesEdges[i+1] < 0) + found = false; + else + { + order.push_front(nodesEdges[i+1]); MESSAGE(" --- front " << order.front()+1); + nodesEdges[i+1] = -1; + } + } } - } - // add other links of the faces to linkList - // ----------------------------------------- - const SMDS_MeshNode** nodes = faceNodes[ 0 ]; - for ( iNode = 0; iNode < nbNodes; iNode++ ) - { - linkID = aLinkID_Gen.GetLinkID( nodes[iNode], nodes[iNode+1] ); - pair< set::iterator, bool > iter_isnew = linkIdSet.insert( linkID ); - if ( !iter_isnew.second ) { // already in a set: no need to process - linkIdSet.erase( iter_isnew.first ); - } - else // new in set == encountered for the first time: add + std::vector nodes; + nodes.push_back(shapeId); + std::list::iterator itl = order.begin(); + for (; itl != order.end(); itl++) { - const SMDS_MeshNode* n1 = nodes[ iNode ]; - const SMDS_MeshNode* n2 = nodes[ iNode + 1]; - linkList[0].push_back ( TPairOfNodes( n1, n2 )); - linkList[1].push_back ( TPairOfNodes( nReplaceMap[n1], nReplaceMap[n2] )); + nodes.push_back((*itl) + 1); // SMDS id = VTK id + 1; + MESSAGE(" ordered node " << nodes[nodes.size()-1]); } - } - } // 2 faces found - } // loop on link lists + listOfListOfNodes.push_back(nodes); + } - if ( aResult == SEW_OK && - ( linkIt[0] != linkList[0].end() || - !faceSetPtr[0]->empty() || !faceSetPtr[1]->empty() )) { - MESSAGE( (linkIt[0] != linkList[0].end()) <<" "<< (faceSetPtr[0]->empty()) << - " " << (faceSetPtr[1]->empty())); - aResult = SEW_TOPO_DIFF_SETS_OF_ELEMENTS; - } + // partition geom faces with blocFissure + // mesh blocFissure and geom faces of the skin (external wires given, triangle algo to choose) + // mesh volume around blocFissure (skin triangles and quadrangle given, tetra algo to choose) - // ==================================================================== - // 3. Replace nodes in elements of the side 1 and remove replaced nodes - // ==================================================================== + return; +} - // delete temporary faces: they are in reverseElements of actual nodes - SMDS_FaceIteratorPtr tmpFaceIt = aTmpFacesMesh.facesIterator(); - while ( tmpFaceIt->more() ) - aTmpFacesMesh.RemoveElement( tmpFaceIt->next() ); - if ( aResult != SEW_OK) - return aResult; +//================================================================================ +/*! + * \brief Generates skin mesh (containing 2D cells) from 3D mesh + * The created 2D mesh elements based on nodes of free faces of boundary volumes + * \return TRUE if operation has been completed successfully, FALSE otherwise + */ +//================================================================================ - list< int > nodeIDsToRemove/*, elemIDsToRemove*/; - // loop on nodes replacement map - TNodeNodeMap::iterator nReplaceMapIt = nReplaceMap.begin(), nnIt; - for ( ; nReplaceMapIt != nReplaceMap.end(); nReplaceMapIt++ ) - if ( (*nReplaceMapIt).first != (*nReplaceMapIt).second ) +bool SMESH_MeshEditor::Make2DMeshFrom3D() +{ + // iterates on volume elements and detect all free faces on them + SMESHDS_Mesh* aMesh = GetMeshDS(); + if (!aMesh) + return false; + //bool res = false; + int nbFree = 0, nbExisted = 0, nbCreated = 0; + SMDS_VolumeIteratorPtr vIt = aMesh->volumesIterator(); + while(vIt->more()) + { + const SMDS_MeshVolume* volume = vIt->next(); + SMDS_VolumeTool vTool( volume, /*ignoreCentralNodes=*/false ); + vTool.SetExternalNormal(); + //const bool isPoly = volume->IsPoly(); + const int iQuad = volume->IsQuadratic(); + for ( int iface = 0, n = vTool.NbFaces(); iface < n; iface++ ) { - const SMDS_MeshNode* nToRemove = (*nReplaceMapIt).first; - nodeIDsToRemove.push_back( nToRemove->GetID() ); - // loop on elements sharing nToRemove - SMDS_ElemIteratorPtr invElemIt = nToRemove->GetInverseElementIterator(); - while ( invElemIt->more() ) { - const SMDS_MeshElement* e = invElemIt->next(); - // get a new suite of nodes: make replacement - int nbReplaced = 0, i = 0, nbNodes = e->NbNodes(); - const SMDS_MeshNode* nodes[ 8 ]; - SMDS_ElemIteratorPtr nIt = e->nodesIterator(); - while ( nIt->more() ) { - const SMDS_MeshNode* n = - static_cast( nIt->next() ); - nnIt = nReplaceMap.find( n ); - if ( nnIt != nReplaceMap.end() ) { - nbReplaced++; - n = (*nnIt).second; + if (!vTool.IsFreeFace(iface)) + continue; + nbFree++; + vector nodes; + int nbFaceNodes = vTool.NbFaceNodes(iface); + const SMDS_MeshNode** faceNodes = vTool.GetFaceNodes(iface); + int inode = 0; + for ( ; inode < nbFaceNodes; inode += iQuad+1) + nodes.push_back(faceNodes[inode]); + if (iQuad) { // add medium nodes + for ( inode = 1; inode < nbFaceNodes; inode += 2) + nodes.push_back(faceNodes[inode]); + if ( nbFaceNodes == 9 ) // bi-quadratic quad + nodes.push_back(faceNodes[8]); + } + // add new face based on volume nodes + if (aMesh->FindElement( nodes, SMDSAbs_Face, /*noMedium=*/false) ) { + nbExisted++; + continue; // face already exsist + } + AddElement(nodes, SMDSAbs_Face, ( !iQuad && nbFaceNodes/(iQuad+1) > 4 )); + nbCreated++; + } + } + return ( nbFree==(nbExisted+nbCreated) ); +} + +namespace +{ + inline const SMDS_MeshNode* getNodeWithSameID(SMESHDS_Mesh* mesh, const SMDS_MeshNode* node) + { + if ( const SMDS_MeshNode* n = mesh->FindNode( node->GetID() )) + return n; + return mesh->AddNodeWithID( node->X(),node->Y(),node->Z(), node->GetID() ); + } +} +//================================================================================ +/*! + * \brief Creates missing boundary elements + * \param elements - elements whose boundary is to be checked + * \param dimension - defines type of boundary elements to create + * \param group - a group to store created boundary elements in + * \param targetMesh - a mesh to store created boundary elements in + * \param toCopyElements - if true, the checked elements will be copied into the targetMesh + * \param toCopyExistingBoundary - if true, not only new but also pre-existing + * boundary elements will be copied into the targetMesh + * \param toAddExistingBondary - if true, not only new but also pre-existing + * boundary elements will be added into the new group + * \param aroundElements - if true, elements will be created on boundary of given + * elements else, on boundary of the whole mesh. + * \return nb of added boundary elements + */ +//================================================================================ + +int SMESH_MeshEditor::MakeBoundaryMesh(const TIDSortedElemSet& elements, + Bnd_Dimension dimension, + SMESH_Group* group/*=0*/, + SMESH_Mesh* targetMesh/*=0*/, + bool toCopyElements/*=false*/, + bool toCopyExistingBoundary/*=false*/, + bool toAddExistingBondary/*= false*/, + bool aroundElements/*= false*/) +{ + SMDSAbs_ElementType missType = (dimension == BND_2DFROM3D) ? SMDSAbs_Face : SMDSAbs_Edge; + SMDSAbs_ElementType elemType = (dimension == BND_1DFROM2D) ? SMDSAbs_Face : SMDSAbs_Volume; + // hope that all elements are of the same type, do not check them all + if ( !elements.empty() && (*elements.begin())->GetType() != elemType ) + throw SALOME_Exception(LOCALIZED("wrong element type")); + + if ( !targetMesh ) + toCopyElements = toCopyExistingBoundary = false; + + SMESH_MeshEditor tgtEditor( targetMesh ? targetMesh : myMesh ); + SMESHDS_Mesh* aMesh = GetMeshDS(), *tgtMeshDS = tgtEditor.GetMeshDS(); + int nbAddedBnd = 0; + + // editor adding present bnd elements and optionally holding elements to add to the group + SMESH_MeshEditor* presentEditor; + SMESH_MeshEditor tgtEditor2( tgtEditor.GetMesh() ); + presentEditor = toAddExistingBondary ? &tgtEditor : &tgtEditor2; + + SMESH_MesherHelper helper( *myMesh ); + const TopAbs_ShapeEnum missShapeType = ( missType==SMDSAbs_Face ? TopAbs_FACE : TopAbs_EDGE ); + SMDS_VolumeTool vTool; + TIDSortedElemSet avoidSet; + const TIDSortedElemSet emptySet, *elemSet = aroundElements ? &elements : &emptySet; + int inode; + + typedef vector TConnectivity; + + SMDS_ElemIteratorPtr eIt; + if (elements.empty()) + eIt = aMesh->elementsIterator(elemType); + else + eIt = SMDS_ElemIteratorPtr( new TSetIterator( elements.begin(), elements.end() )); + + while (eIt->more()) + { + const SMDS_MeshElement* elem = eIt->next(); + const int iQuad = elem->IsQuadratic(); + + // ------------------------------------------------------------------------------------ + // 1. For an elem, get present bnd elements and connectivities of missing bnd elements + // ------------------------------------------------------------------------------------ + vector presentBndElems; + vector missingBndElems; + TConnectivity nodes; + if ( vTool.Set(elem, /*ignoreCentralNodes=*/true) ) // elem is a volume -------------- + { + vTool.SetExternalNormal(); + const SMDS_MeshElement* otherVol = 0; + for ( int iface = 0, n = vTool.NbFaces(); iface < n; iface++ ) + { + if ( !vTool.IsFreeFace(iface, &otherVol) && + ( !aroundElements || elements.count( otherVol ))) + continue; + const int nbFaceNodes = vTool.NbFaceNodes(iface); + const SMDS_MeshNode** nn = vTool.GetFaceNodes(iface); + if ( missType == SMDSAbs_Edge ) // boundary edges + { + nodes.resize( 2+iQuad ); + for ( int i = 0; i < nbFaceNodes; i += 1+iQuad) + { + for ( int j = 0; j < nodes.size(); ++j ) + nodes[j] =nn[i+j]; + if ( const SMDS_MeshElement* edge = + aMesh->FindElement(nodes,SMDSAbs_Edge,/*noMedium=*/false)) + presentBndElems.push_back( edge ); + else + missingBndElems.push_back( nodes ); } - nodes[ i++ ] = n; } - // if ( nbReplaced == nbNodes && e->GetType() == SMDSAbs_Face ) - // elemIDsToRemove.push_back( e->GetID() ); - // else - if ( nbReplaced ) - aMesh->ChangeElementNodes( e, nodes, nbNodes ); + else // boundary face + { + nodes.clear(); + for ( inode = 0; inode < nbFaceNodes; inode += 1+iQuad) + nodes.push_back( nn[inode] ); + if (iQuad) // add medium nodes + for ( inode = 1; inode < nbFaceNodes; inode += 2) + nodes.push_back( nn[inode] ); + int iCenter = vTool.GetCenterNodeIndex(iface); // for HEX27 + if ( iCenter > 0 ) + nodes.push_back( vTool.GetNodes()[ iCenter ] ); + + if (const SMDS_MeshElement * f = aMesh->FindElement( nodes, + SMDSAbs_Face, /*noMedium=*/false )) + presentBndElems.push_back( f ); + else + missingBndElems.push_back( nodes ); + + if ( targetMesh != myMesh ) + { + // add 1D elements on face boundary to be added to a new mesh + const SMDS_MeshElement* edge; + for ( inode = 0; inode < nbFaceNodes; inode += 1+iQuad) + { + if ( iQuad ) + edge = aMesh->FindEdge( nn[inode], nn[inode+1], nn[inode+2]); + else + edge = aMesh->FindEdge( nn[inode], nn[inode+1]); + if ( edge && avoidSet.insert( edge ).second ) + presentBndElems.push_back( edge ); + } + } + } + } + } + else // elem is a face ------------------------------------------ + { + avoidSet.clear(), avoidSet.insert( elem ); + int nbNodes = elem->NbCornerNodes(); + nodes.resize( 2 /*+ iQuad*/); + for ( int i = 0; i < nbNodes; i++ ) + { + nodes[0] = elem->GetNode(i); + nodes[1] = elem->GetNode((i+1)%nbNodes); + if ( FindFaceInSet( nodes[0], nodes[1], *elemSet, avoidSet)) + continue; // not free link + + //if ( iQuad ) + //nodes[2] = elem->GetNode( i + nbNodes ); + if ( const SMDS_MeshElement* edge = + aMesh->FindElement(nodes,SMDSAbs_Edge,/*noMedium=*/true)) + presentBndElems.push_back( edge ); + else + missingBndElems.push_back( nodes ); } + } + + // --------------------------------- + // 2. Add missing boundary elements + // --------------------------------- + if ( targetMesh != myMesh ) + // instead of making a map of nodes in this mesh and targetMesh, + // we create nodes with same IDs. + for ( int i = 0; i < missingBndElems.size(); ++i ) + { + TConnectivity& srcNodes = missingBndElems[i]; + TConnectivity nodes( srcNodes.size() ); + for ( inode = 0; inode < nodes.size(); ++inode ) + nodes[inode] = getNodeWithSameID( tgtMeshDS, srcNodes[inode] ); + if ( aroundElements && tgtEditor.GetMeshDS()->FindElement( nodes, + missType, + /*noMedium=*/false)) + continue; + tgtEditor.AddElement(nodes, missType, !iQuad && nodes.size()/(iQuad+1)>4); + ++nbAddedBnd; + } + else + for ( int i = 0; i < missingBndElems.size(); ++i ) + { + TConnectivity& nodes = missingBndElems[i]; + if ( aroundElements && tgtEditor.GetMeshDS()->FindElement( nodes, + missType, + /*noMedium=*/false)) + continue; + SMDS_MeshElement* elem = + tgtEditor.AddElement(nodes, missType, !iQuad && nodes.size()/(iQuad+1)>4); + ++nbAddedBnd; + + // try to set a new element to a shape + if ( myMesh->HasShapeToMesh() ) + { + bool ok = true; + set< pair > mediumShapes; + const int nbN = nodes.size() / (iQuad+1 ); + for ( inode = 0; inode < nbN && ok; ++inode ) + { + pair i_stype = + helper.GetMediumPos( nodes[inode], nodes[(inode+1)%nbN]); + if (( ok = ( i_stype.first > 0 && i_stype.second >= TopAbs_FACE ))) + mediumShapes.insert( make_pair ( i_stype.second, i_stype.first )); + } + if ( ok && mediumShapes.size() > 1 ) + { + set< pair >::iterator stype_i = mediumShapes.begin(); + pair stype_i_0 = *stype_i; + for ( ++stype_i; stype_i != mediumShapes.end() && ok; ++stype_i ) + { + if (( ok = ( stype_i->first != stype_i_0.first ))) + ok = helper.IsSubShape( aMesh->IndexToShape( stype_i->second ), + aMesh->IndexToShape( stype_i_0.second )); + } + } + if ( ok && mediumShapes.begin()->first == missShapeType ) + aMesh->SetMeshElementOnShape( elem, mediumShapes.begin()->second ); + } + } + + // ---------------------------------- + // 3. Copy present boundary elements + // ---------------------------------- + if ( toCopyExistingBoundary ) + for ( int i = 0 ; i < presentBndElems.size(); ++i ) + { + const SMDS_MeshElement* e = presentBndElems[i]; + TConnectivity nodes( e->NbNodes() ); + for ( inode = 0; inode < nodes.size(); ++inode ) + nodes[inode] = getNodeWithSameID( tgtMeshDS, e->GetNode(inode) ); + presentEditor->AddElement(nodes, e->GetType(), e->IsPoly()); + } + else // store present elements to add them to a group + for ( int i = 0 ; i < presentBndElems.size(); ++i ) + { + presentEditor->myLastCreatedElems.Append(presentBndElems[i]); + } + + } // loop on given elements + + // --------------------------------------------- + // 4. Fill group with boundary elements + // --------------------------------------------- + if ( group ) + { + if ( SMESHDS_Group* g = dynamic_cast( group->GetGroupDS() )) + for ( int i = 0; i < tgtEditor.myLastCreatedElems.Size(); ++i ) + g->SMDSGroup().Add( tgtEditor.myLastCreatedElems( i+1 )); } + tgtEditor.myLastCreatedElems.Clear(); + tgtEditor2.myLastCreatedElems.Clear(); - Remove( nodeIDsToRemove, true ); + // ----------------------- + // 5. Copy given elements + // ----------------------- + if ( toCopyElements && targetMesh != myMesh ) + { + if (elements.empty()) + eIt = aMesh->elementsIterator(elemType); + else + eIt = SMDS_ElemIteratorPtr( new TSetIterator( elements.begin(), elements.end() )); + while (eIt->more()) + { + const SMDS_MeshElement* elem = eIt->next(); + TConnectivity nodes( elem->NbNodes() ); + for ( inode = 0; inode < nodes.size(); ++inode ) + nodes[inode] = getNodeWithSameID( tgtMeshDS, elem->GetNode(inode) ); + tgtEditor.AddElement(nodes, elemType, elem->IsPoly()); - return aResult; + tgtEditor.myLastCreatedElems.Clear(); + } + } + return nbAddedBnd; }