X-Git-Url: http://git.salome-platform.org/gitweb/?p=modules%2Fsmesh.git;a=blobdiff_plain;f=src%2FControls%2FSMESH_Controls.cxx;h=f9540e0046d526846c6e05291de07438572c5509;hp=1aef723e89b63098ee06af41b623a08ef660286e;hb=bd4e115a78b52e3fbc016e5e30bb0e19b2a9e7d6;hpb=42c7eb97f9ec27537b638c98ef69dc55f19fa1cd diff --git a/src/Controls/SMESH_Controls.cxx b/src/Controls/SMESH_Controls.cxx index 1aef723e8..f9540e004 100644 --- a/src/Controls/SMESH_Controls.cxx +++ b/src/Controls/SMESH_Controls.cxx @@ -1,51 +1,69 @@ -// Copyright (C) 2003 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN, -// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS +// Copyright (C) 2007-2012 CEA/DEN, EDF R&D, OPEN CASCADE // -// This library is free software; you can redistribute it and/or -// modify it under the terms of the GNU Lesser General Public -// License as published by the Free Software Foundation; either -// version 2.1 of the License. +// Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN, +// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS // -// This library is distributed in the hope that it will be useful, -// but WITHOUT ANY WARRANTY; without even the implied warranty of -// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU -// Lesser General Public License for more details. +// This library is free software; you can redistribute it and/or +// modify it under the terms of the GNU Lesser General Public +// License as published by the Free Software Foundation; either +// version 2.1 of the License. // -// You should have received a copy of the GNU Lesser General Public -// License along with this library; if not, write to the Free Software -// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA +// This library is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +// Lesser General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public +// License along with this library; if not, write to the Free Software +// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA +// +// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com // -// See http://www.opencascade.org/SALOME/ or email : webmaster.salome@opencascade.org #include "SMESH_ControlsDef.hxx" -#include +#include "SMDS_BallElement.hxx" +#include "SMDS_Iterator.hxx" +#include "SMDS_Mesh.hxx" +#include "SMDS_MeshElement.hxx" +#include "SMDS_MeshNode.hxx" +#include "SMDS_QuadraticEdge.hxx" +#include "SMDS_QuadraticFaceOfNodes.hxx" +#include "SMDS_VolumeTool.hxx" +#include "SMESHDS_GroupBase.hxx" +#include "SMESHDS_Mesh.hxx" +#include "SMESH_OctreeNode.hxx" +#include +#include #include -#include -#include -#include -#include -#include -#include -#include -#include #include +#include +#include #include -#include +#include #include #include -#include +#include #include #include +#include #include +#include #include +#include +#include +#include +#include +#include +#include +#include +#include -#include "SMDS_Mesh.hxx" -#include "SMDS_Iterator.hxx" -#include "SMDS_MeshElement.hxx" -#include "SMDS_MeshNode.hxx" -#include "SMDS_VolumeTool.hxx" +#include + +#include +#include /* @@ -53,6 +71,12 @@ */ namespace{ + + inline gp_XYZ gpXYZ(const SMDS_MeshNode* aNode ) + { + return gp_XYZ(aNode->X(), aNode->Y(), aNode->Z() ); + } + inline double getAngle( const gp_XYZ& P1, const gp_XYZ& P2, const gp_XYZ& P3 ) { gp_Vec v1( P1 - P2 ), v2( P3 - P2 ); @@ -87,36 +111,93 @@ namespace{ return 0; const SMDS_MeshElement* anEdge = theMesh->FindElement( theId ); - if ( anEdge == 0 || anEdge->GetType() != SMDSAbs_Edge || anEdge->NbNodes() != 2 ) + if ( anEdge == 0 || anEdge->GetType() != SMDSAbs_Edge/* || anEdge->NbNodes() != 2 */) return 0; - TColStd_MapOfInteger aMap; - - int aResult = 0; - SMDS_ElemIteratorPtr anIter = anEdge->nodesIterator(); - if ( anIter != 0 ) { - while( anIter->more() ) { - const SMDS_MeshNode* aNode = (SMDS_MeshNode*)anIter->next(); - if ( aNode == 0 ) - return 0; - SMDS_ElemIteratorPtr anElemIter = aNode->GetInverseElementIterator(); - while( anElemIter->more() ) { - const SMDS_MeshElement* anElem = anElemIter->next(); - if ( anElem != 0 && anElem->GetType() != SMDSAbs_Edge ) { - int anId = anElem->GetID(); - - if ( anIter->more() ) // i.e. first node - aMap.Add( anId ); - else if ( aMap.Contains( anId ) ) - aResult++; - } - } + // for each pair of nodes in anEdge (there are 2 pairs in a quadratic edge) + // count elements containing both nodes of the pair. + // Note that there may be such cases for a quadratic edge (a horizontal line): + // + // Case 1 Case 2 + // | | | | | + // | | | | | + // +-----+------+ +-----+------+ + // | | | | + // | | | | + // result sould be 2 in both cases + // + int aResult0 = 0, aResult1 = 0; + // last node, it is a medium one in a quadratic edge + const SMDS_MeshNode* aLastNode = anEdge->GetNode( anEdge->NbNodes() - 1 ); + const SMDS_MeshNode* aNode0 = anEdge->GetNode( 0 ); + const SMDS_MeshNode* aNode1 = anEdge->GetNode( 1 ); + if ( aNode1 == aLastNode ) aNode1 = 0; + + SMDS_ElemIteratorPtr anElemIter = aLastNode->GetInverseElementIterator(); + while( anElemIter->more() ) { + const SMDS_MeshElement* anElem = anElemIter->next(); + if ( anElem != 0 && anElem->GetType() != SMDSAbs_Edge ) { + SMDS_ElemIteratorPtr anIter = anElem->nodesIterator(); + while ( anIter->more() ) { + if ( const SMDS_MeshElement* anElemNode = anIter->next() ) { + if ( anElemNode == aNode0 ) { + aResult0++; + if ( !aNode1 ) break; // not a quadratic edge + } + else if ( anElemNode == aNode1 ) + aResult1++; + } + } } } + int aResult = std::max ( aResult0, aResult1 ); + +// TColStd_MapOfInteger aMap; + +// SMDS_ElemIteratorPtr anIter = anEdge->nodesIterator(); +// if ( anIter != 0 ) { +// while( anIter->more() ) { +// const SMDS_MeshNode* aNode = (SMDS_MeshNode*)anIter->next(); +// if ( aNode == 0 ) +// return 0; +// SMDS_ElemIteratorPtr anElemIter = aNode->GetInverseElementIterator(); +// while( anElemIter->more() ) { +// const SMDS_MeshElement* anElem = anElemIter->next(); +// if ( anElem != 0 && anElem->GetType() != SMDSAbs_Edge ) { +// int anId = anElem->GetID(); + +// if ( anIter->more() ) // i.e. first node +// aMap.Add( anId ); +// else if ( aMap.Contains( anId ) ) +// aResult++; +// } +// } +// } +// } return aResult; } + gp_XYZ getNormale( const SMDS_MeshFace* theFace, bool* ok=0 ) + { + int aNbNode = theFace->NbNodes(); + + gp_XYZ q1 = gpXYZ( theFace->GetNode(1)) - gpXYZ( theFace->GetNode(0)); + gp_XYZ q2 = gpXYZ( theFace->GetNode(2)) - gpXYZ( theFace->GetNode(0)); + gp_XYZ n = q1 ^ q2; + if ( aNbNode > 3 ) { + gp_XYZ q3 = gpXYZ( theFace->GetNode(3)) - gpXYZ( theFace->GetNode(0)); + n += q2 ^ q3; + } + double len = n.Modulus(); + bool zeroLen = ( len <= numeric_limits::min()); + if ( !zeroLen ) + n /= len; + + if (ok) *ok = !zeroLen; + + return n; + } } @@ -124,8 +205,8 @@ namespace{ using namespace SMESH::Controls; /* - FUNCTORS -*/ + * FUNCTORS + */ /* Class : NumericalFunctor @@ -154,23 +235,41 @@ bool NumericalFunctor::GetPoints(const int theId, } bool NumericalFunctor::GetPoints(const SMDS_MeshElement* anElem, - TSequenceOfXYZ& theRes ) + TSequenceOfXYZ& theRes ) { theRes.clear(); if ( anElem == 0) return false; + theRes.reserve( anElem->NbNodes() ); + // Get nodes of the element - SMDS_ElemIteratorPtr anIter = anElem->nodesIterator(); - if ( anIter != 0 ) - { - while( anIter->more() ) - { - const SMDS_MeshNode* aNode = (SMDS_MeshNode*)anIter->next(); - if ( aNode != 0 ){ + SMDS_ElemIteratorPtr anIter; + + if ( anElem->IsQuadratic() ) { + switch ( anElem->GetType() ) { + case SMDSAbs_Edge: + anIter = dynamic_cast + (anElem)->interlacedNodesElemIterator(); + break; + case SMDSAbs_Face: + anIter = dynamic_cast + (anElem)->interlacedNodesElemIterator(); + break; + default: + anIter = anElem->nodesIterator(); + //return false; + } + } + else { + anIter = anElem->nodesIterator(); + } + + if ( anIter ) { + while( anIter->more() ) { + if ( const SMDS_MeshNode* aNode = static_cast( anIter->next() )) theRes.push_back( gp_XYZ( aNode->X(), aNode->Y(), aNode->Z() ) ); - } } } @@ -185,25 +284,393 @@ long NumericalFunctor::GetPrecision() const void NumericalFunctor::SetPrecision( const long thePrecision ) { myPrecision = thePrecision; + myPrecisionValue = pow( 10., (double)( myPrecision ) ); } double NumericalFunctor::GetValue( long theId ) { + double aVal = 0; + + myCurrElement = myMesh->FindElement( theId ); + TSequenceOfXYZ P; if ( GetPoints( theId, P )) + aVal = Round( GetValue( P )); + + return aVal; +} + +double NumericalFunctor::Round( const double & aVal ) +{ + return ( myPrecision >= 0 ) ? floor( aVal * myPrecisionValue + 0.5 ) / myPrecisionValue : aVal; +} + +//================================================================================ +/*! + * \brief Return histogram of functor values + * \param nbIntervals - number of intervals + * \param nbEvents - number of mesh elements having values within i-th interval + * \param funValues - boundaries of intervals + * \param elements - elements to check vulue of; empty list means "of all" + * \param minmax - boundaries of diapason of values to divide into intervals + */ +//================================================================================ + +void NumericalFunctor::GetHistogram(int nbIntervals, + std::vector& nbEvents, + std::vector& funValues, + const vector& elements, + const double* minmax) +{ + if ( nbIntervals < 1 || + !myMesh || + !myMesh->GetMeshInfo().NbElements( GetType() )) + return; + nbEvents.resize( nbIntervals, 0 ); + funValues.resize( nbIntervals+1 ); + + // get all values sorted + std::multiset< double > values; + if ( elements.empty() ) { - double aVal = GetValue( P ); - if ( myPrecision >= 0 ) + SMDS_ElemIteratorPtr elemIt = myMesh->elementsIterator(GetType()); + while ( elemIt->more() ) + values.insert( GetValue( elemIt->next()->GetID() )); + } + else + { + vector::const_iterator id = elements.begin(); + for ( ; id != elements.end(); ++id ) + values.insert( GetValue( *id )); + } + + if ( minmax ) + { + funValues[0] = minmax[0]; + funValues[nbIntervals] = minmax[1]; + } + else + { + funValues[0] = *values.begin(); + funValues[nbIntervals] = *values.rbegin(); + } + // case nbIntervals == 1 + if ( nbIntervals == 1 ) + { + nbEvents[0] = values.size(); + return; + } + // case of 1 value + if (funValues.front() == funValues.back()) + { + nbEvents.resize( 1 ); + nbEvents[0] = values.size(); + funValues[1] = funValues.back(); + funValues.resize( 2 ); + } + // generic case + std::multiset< double >::iterator min = values.begin(), max; + for ( int i = 0; i < nbIntervals; ++i ) + { + // find end value of i-th interval + double r = (i+1) / double( nbIntervals ); + funValues[i+1] = funValues.front() * (1-r) + funValues.back() * r; + + // count values in the i-th interval if there are any + if ( min != values.end() && *min <= funValues[i+1] ) { - double prec = pow( 10., (double)( myPrecision ) ); + // find the first value out of the interval + max = values.upper_bound( funValues[i+1] ); // max is greater than funValues[i+1], or end() + nbEvents[i] = std::distance( min, max ); + min = max; + } + } + // add values larger than minmax[1] + nbEvents.back() += std::distance( min, values.end() ); +} + +//======================================================================= +//function : GetValue +//purpose : +//======================================================================= + +double Volume::GetValue( long theElementId ) +{ + if ( theElementId && myMesh ) { + SMDS_VolumeTool aVolumeTool; + if ( aVolumeTool.Set( myMesh->FindElement( theElementId ))) + return aVolumeTool.GetSize(); + } + return 0; +} + +//======================================================================= +//function : GetBadRate +//purpose : meaningless as it is not quality control functor +//======================================================================= + +double Volume::GetBadRate( double Value, int /*nbNodes*/ ) const +{ + return Value; +} + +//======================================================================= +//function : GetType +//purpose : +//======================================================================= + +SMDSAbs_ElementType Volume::GetType() const +{ + return SMDSAbs_Volume; +} + + +/* + Class : MaxElementLength2D + Description : Functor calculating maximum length of 2D element +*/ + +double MaxElementLength2D::GetValue( long theElementId ) +{ + TSequenceOfXYZ P; + if( GetPoints( theElementId, P ) ) { + double aVal = 0; + const SMDS_MeshElement* aElem = myMesh->FindElement( theElementId ); + SMDSAbs_ElementType aType = aElem->GetType(); + int len = P.size(); + switch( aType ) { + case SMDSAbs_Face: + if( len == 3 ) { // triangles + double L1 = getDistance(P( 1 ),P( 2 )); + double L2 = getDistance(P( 2 ),P( 3 )); + double L3 = getDistance(P( 3 ),P( 1 )); + aVal = Max(L1,Max(L2,L3)); + break; + } + else if( len == 4 ) { // quadrangles + double L1 = getDistance(P( 1 ),P( 2 )); + double L2 = getDistance(P( 2 ),P( 3 )); + double L3 = getDistance(P( 3 ),P( 4 )); + double L4 = getDistance(P( 4 ),P( 1 )); + double D1 = getDistance(P( 1 ),P( 3 )); + double D2 = getDistance(P( 2 ),P( 4 )); + aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(D1,D2)); + break; + } + else if( len == 6 ) { // quadratic triangles + double L1 = getDistance(P( 1 ),P( 2 )) + getDistance(P( 2 ),P( 3 )); + double L2 = getDistance(P( 3 ),P( 4 )) + getDistance(P( 4 ),P( 5 )); + double L3 = getDistance(P( 5 ),P( 6 )) + getDistance(P( 6 ),P( 1 )); + aVal = Max(L1,Max(L2,L3)); + break; + } + else if( len == 8 || len == 9 ) { // quadratic quadrangles + double L1 = getDistance(P( 1 ),P( 2 )) + getDistance(P( 2 ),P( 3 )); + double L2 = getDistance(P( 3 ),P( 4 )) + getDistance(P( 4 ),P( 5 )); + double L3 = getDistance(P( 5 ),P( 6 )) + getDistance(P( 6 ),P( 7 )); + double L4 = getDistance(P( 7 ),P( 8 )) + getDistance(P( 8 ),P( 1 )); + double D1 = getDistance(P( 1 ),P( 5 )); + double D2 = getDistance(P( 3 ),P( 7 )); + aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(D1,D2)); + break; + } + } + + if( myPrecision >= 0 ) + { + double prec = pow( 10., (double)myPrecision ); aVal = floor( aVal * prec + 0.5 ) / prec; } return aVal; } + return 0.; +} + +double MaxElementLength2D::GetBadRate( double Value, int /*nbNodes*/ ) const +{ + return Value; +} + +SMDSAbs_ElementType MaxElementLength2D::GetType() const +{ + return SMDSAbs_Face; +} + +/* + Class : MaxElementLength3D + Description : Functor calculating maximum length of 3D element +*/ + +double MaxElementLength3D::GetValue( long theElementId ) +{ + TSequenceOfXYZ P; + if( GetPoints( theElementId, P ) ) { + double aVal = 0; + const SMDS_MeshElement* aElem = myMesh->FindElement( theElementId ); + SMDSAbs_ElementType aType = aElem->GetType(); + int len = P.size(); + switch( aType ) { + case SMDSAbs_Volume: + if( len == 4 ) { // tetras + double L1 = getDistance(P( 1 ),P( 2 )); + double L2 = getDistance(P( 2 ),P( 3 )); + double L3 = getDistance(P( 3 ),P( 1 )); + double L4 = getDistance(P( 1 ),P( 4 )); + double L5 = getDistance(P( 2 ),P( 4 )); + double L6 = getDistance(P( 3 ),P( 4 )); + aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6)); + break; + } + else if( len == 5 ) { // pyramids + double L1 = getDistance(P( 1 ),P( 2 )); + double L2 = getDistance(P( 2 ),P( 3 )); + double L3 = getDistance(P( 3 ),P( 4 )); + double L4 = getDistance(P( 4 ),P( 1 )); + double L5 = getDistance(P( 1 ),P( 5 )); + double L6 = getDistance(P( 2 ),P( 5 )); + double L7 = getDistance(P( 3 ),P( 5 )); + double L8 = getDistance(P( 4 ),P( 5 )); + aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6)); + aVal = Max(aVal,Max(L7,L8)); + break; + } + else if( len == 6 ) { // pentas + double L1 = getDistance(P( 1 ),P( 2 )); + double L2 = getDistance(P( 2 ),P( 3 )); + double L3 = getDistance(P( 3 ),P( 1 )); + double L4 = getDistance(P( 4 ),P( 5 )); + double L5 = getDistance(P( 5 ),P( 6 )); + double L6 = getDistance(P( 6 ),P( 4 )); + double L7 = getDistance(P( 1 ),P( 4 )); + double L8 = getDistance(P( 2 ),P( 5 )); + double L9 = getDistance(P( 3 ),P( 6 )); + aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6)); + aVal = Max(aVal,Max(Max(L7,L8),L9)); + break; + } + else if( len == 8 ) { // hexas + double L1 = getDistance(P( 1 ),P( 2 )); + double L2 = getDistance(P( 2 ),P( 3 )); + double L3 = getDistance(P( 3 ),P( 4 )); + double L4 = getDistance(P( 4 ),P( 1 )); + double L5 = getDistance(P( 5 ),P( 6 )); + double L6 = getDistance(P( 6 ),P( 7 )); + double L7 = getDistance(P( 7 ),P( 8 )); + double L8 = getDistance(P( 8 ),P( 5 )); + double L9 = getDistance(P( 1 ),P( 5 )); + double L10= getDistance(P( 2 ),P( 6 )); + double L11= getDistance(P( 3 ),P( 7 )); + double L12= getDistance(P( 4 ),P( 8 )); + double D1 = getDistance(P( 1 ),P( 7 )); + double D2 = getDistance(P( 2 ),P( 8 )); + double D3 = getDistance(P( 3 ),P( 5 )); + double D4 = getDistance(P( 4 ),P( 6 )); + aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6)); + aVal = Max(aVal,Max(Max(L7,L8),Max(L9,L10))); + aVal = Max(aVal,Max(L11,L12)); + aVal = Max(aVal,Max(Max(D1,D2),Max(D3,D4))); + break; + } + else if( len == 12 ) { // hexagonal prism + for ( int i1 = 1; i1 < 12; ++i1 ) + for ( int i2 = i1+1; i1 <= 12; ++i1 ) + aVal = Max( aVal, getDistance(P( i1 ),P( i2 ))); + break; + } + else if( len == 10 ) { // quadratic tetras + double L1 = getDistance(P( 1 ),P( 5 )) + getDistance(P( 5 ),P( 2 )); + double L2 = getDistance(P( 2 ),P( 6 )) + getDistance(P( 6 ),P( 3 )); + double L3 = getDistance(P( 3 ),P( 7 )) + getDistance(P( 7 ),P( 1 )); + double L4 = getDistance(P( 1 ),P( 8 )) + getDistance(P( 8 ),P( 4 )); + double L5 = getDistance(P( 2 ),P( 9 )) + getDistance(P( 9 ),P( 4 )); + double L6 = getDistance(P( 3 ),P( 10 )) + getDistance(P( 10 ),P( 4 )); + aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6)); + break; + } + else if( len == 13 ) { // quadratic pyramids + double L1 = getDistance(P( 1 ),P( 6 )) + getDistance(P( 6 ),P( 2 )); + double L2 = getDistance(P( 2 ),P( 7 )) + getDistance(P( 7 ),P( 3 )); + double L3 = getDistance(P( 3 ),P( 8 )) + getDistance(P( 8 ),P( 4 )); + double L4 = getDistance(P( 4 ),P( 9 )) + getDistance(P( 9 ),P( 1 )); + double L5 = getDistance(P( 1 ),P( 10 )) + getDistance(P( 10 ),P( 5 )); + double L6 = getDistance(P( 2 ),P( 11 )) + getDistance(P( 11 ),P( 5 )); + double L7 = getDistance(P( 3 ),P( 12 )) + getDistance(P( 12 ),P( 5 )); + double L8 = getDistance(P( 4 ),P( 13 )) + getDistance(P( 13 ),P( 5 )); + aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6)); + aVal = Max(aVal,Max(L7,L8)); + break; + } + else if( len == 15 ) { // quadratic pentas + double L1 = getDistance(P( 1 ),P( 7 )) + getDistance(P( 7 ),P( 2 )); + double L2 = getDistance(P( 2 ),P( 8 )) + getDistance(P( 8 ),P( 3 )); + double L3 = getDistance(P( 3 ),P( 9 )) + getDistance(P( 9 ),P( 1 )); + double L4 = getDistance(P( 4 ),P( 10 )) + getDistance(P( 10 ),P( 5 )); + double L5 = getDistance(P( 5 ),P( 11 )) + getDistance(P( 11 ),P( 6 )); + double L6 = getDistance(P( 6 ),P( 12 )) + getDistance(P( 12 ),P( 4 )); + double L7 = getDistance(P( 1 ),P( 13 )) + getDistance(P( 13 ),P( 4 )); + double L8 = getDistance(P( 2 ),P( 14 )) + getDistance(P( 14 ),P( 5 )); + double L9 = getDistance(P( 3 ),P( 15 )) + getDistance(P( 15 ),P( 6 )); + aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6)); + aVal = Max(aVal,Max(Max(L7,L8),L9)); + break; + } + else if( len == 20 || len == 27 ) { // quadratic hexas + double L1 = getDistance(P( 1 ),P( 9 )) + getDistance(P( 9 ),P( 2 )); + double L2 = getDistance(P( 2 ),P( 10 )) + getDistance(P( 10 ),P( 3 )); + double L3 = getDistance(P( 3 ),P( 11 )) + getDistance(P( 11 ),P( 4 )); + double L4 = getDistance(P( 4 ),P( 12 )) + getDistance(P( 12 ),P( 1 )); + double L5 = getDistance(P( 5 ),P( 13 )) + getDistance(P( 13 ),P( 6 )); + double L6 = getDistance(P( 6 ),P( 14 )) + getDistance(P( 14 ),P( 7 )); + double L7 = getDistance(P( 7 ),P( 15 )) + getDistance(P( 15 ),P( 8 )); + double L8 = getDistance(P( 8 ),P( 16 )) + getDistance(P( 16 ),P( 5 )); + double L9 = getDistance(P( 1 ),P( 17 )) + getDistance(P( 17 ),P( 5 )); + double L10= getDistance(P( 2 ),P( 18 )) + getDistance(P( 18 ),P( 6 )); + double L11= getDistance(P( 3 ),P( 19 )) + getDistance(P( 19 ),P( 7 )); + double L12= getDistance(P( 4 ),P( 20 )) + getDistance(P( 20 ),P( 8 )); + double D1 = getDistance(P( 1 ),P( 7 )); + double D2 = getDistance(P( 2 ),P( 8 )); + double D3 = getDistance(P( 3 ),P( 5 )); + double D4 = getDistance(P( 4 ),P( 6 )); + aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6)); + aVal = Max(aVal,Max(Max(L7,L8),Max(L9,L10))); + aVal = Max(aVal,Max(L11,L12)); + aVal = Max(aVal,Max(Max(D1,D2),Max(D3,D4))); + break; + } + else if( len > 1 && aElem->IsPoly() ) { // polys + // get the maximum distance between all pairs of nodes + for( int i = 1; i <= len; i++ ) { + for( int j = 1; j <= len; j++ ) { + if( j > i ) { // optimization of the loop + double D = getDistance( P(i), P(j) ); + aVal = Max( aVal, D ); + } + } + } + } + } + if( myPrecision >= 0 ) + { + double prec = pow( 10., (double)myPrecision ); + aVal = floor( aVal * prec + 0.5 ) / prec; + } + return aVal; + } return 0.; } +double MaxElementLength3D::GetBadRate( double Value, int /*nbNodes*/ ) const +{ + return Value; +} + +SMDSAbs_ElementType MaxElementLength3D::GetType() const +{ + return SMDSAbs_Volume; +} + + /* Class : MinimumAngle Description : Functor for calculation of minimum angle @@ -224,7 +691,7 @@ double MinimumAngle::GetValue( const TSequenceOfXYZ& P ) aMin = Min(aMin,A0); } - return aMin * 180.0 / PI; + return aMin * 180.0 / M_PI; } double MinimumAngle::GetBadRate( double Value, int nbNodes ) const @@ -244,63 +711,178 @@ SMDSAbs_ElementType MinimumAngle::GetType() const Class : AspectRatio Description : Functor for calculating aspect ratio */ +double AspectRatio::GetValue( long theId ) +{ + double aVal = 0; + myCurrElement = myMesh->FindElement( theId ); + if ( myCurrElement && myCurrElement->GetVtkType() == VTK_QUAD ) + { + // issue 21723 + vtkUnstructuredGrid* grid = SMDS_Mesh::_meshList[myCurrElement->getMeshId()]->getGrid(); + if ( vtkCell* avtkCell = grid->GetCell( myCurrElement->getVtkId() )) + aVal = Round( vtkMeshQuality::QuadAspectRatio( avtkCell )); + } + else + { + TSequenceOfXYZ P; + if ( GetPoints( myCurrElement, P )) + aVal = Round( GetValue( P )); + } + return aVal; +} + double AspectRatio::GetValue( const TSequenceOfXYZ& P ) { + // According to "Mesh quality control" by Nadir Bouhamau referring to + // Pascal Jean Frey and Paul-Louis George. Maillages, applications aux elements finis. + // Hermes Science publications, Paris 1999 ISBN 2-7462-0024-4 + // PAL10872 + int nbNodes = P.size(); if ( nbNodes < 3 ) return 0; - // Compute lengths of the sides - - //double aLen[ nbNodes ]; -#ifndef WNT - double aLen [nbNodes]; -#else - double* aLen = (double *)new double[nbNodes]; -#endif - - for ( int i = 0; i < nbNodes - 1; i++ ) - aLen[ i ] = getDistance( P( i + 1 ), P( i + 2 ) ); - aLen[ nbNodes - 1 ] = getDistance( P( 1 ), P( nbNodes ) ); - // Compute aspect ratio - if ( nbNodes == 3 ) - { + if ( nbNodes == 3 ) { + // Compute lengths of the sides + std::vector< double > aLen (nbNodes); + for ( int i = 0; i < nbNodes - 1; i++ ) + aLen[ i ] = getDistance( P( i + 1 ), P( i + 2 ) ); + aLen[ nbNodes - 1 ] = getDistance( P( 1 ), P( nbNodes ) ); + // Q = alfa * h * p / S, where + // + // alfa = sqrt( 3 ) / 6 + // h - length of the longest edge + // p - half perimeter + // S - triangle surface + const double alfa = sqrt( 3. ) / 6.; + double maxLen = Max( aLen[ 0 ], Max( aLen[ 1 ], aLen[ 2 ] ) ); + double half_perimeter = ( aLen[0] + aLen[1] + aLen[2] ) / 2.; double anArea = getArea( P( 1 ), P( 2 ), P( 3 ) ); if ( anArea <= Precision::Confusion() ) return 0.; - double aMaxLen = Max( aLen[ 0 ], Max( aLen[ 1 ], aLen[ 2 ] ) ); - static double aCoef = sqrt( 3. ) / 4; - - return aCoef * aMaxLen * aMaxLen / anArea; + return alfa * maxLen * half_perimeter / anArea; } - else - { - double aMinLen = aLen[ 0 ]; - double aMaxLen = aLen[ 0 ]; - - for(int i = 1; i < nbNodes ; i++ ){ - aMinLen = Min( aMinLen, aLen[ i ] ); - aMaxLen = Max( aMaxLen, aLen[ i ] ); - } -#ifdef WNT - delete [] aLen; -#endif - if ( aMinLen <= Precision::Confusion() ) + else if ( nbNodes == 6 ) { // quadratic triangles + // Compute lengths of the sides + std::vector< double > aLen (3); + aLen[0] = getDistance( P(1), P(3) ); + aLen[1] = getDistance( P(3), P(5) ); + aLen[2] = getDistance( P(5), P(1) ); + // Q = alfa * h * p / S, where + // + // alfa = sqrt( 3 ) / 6 + // h - length of the longest edge + // p - half perimeter + // S - triangle surface + const double alfa = sqrt( 3. ) / 6.; + double maxLen = Max( aLen[ 0 ], Max( aLen[ 1 ], aLen[ 2 ] ) ); + double half_perimeter = ( aLen[0] + aLen[1] + aLen[2] ) / 2.; + double anArea = getArea( P(1), P(3), P(5) ); + if ( anArea <= Precision::Confusion() ) return 0.; - - return aMaxLen / aMinLen; + return alfa * maxLen * half_perimeter / anArea; + } + else if( nbNodes == 4 ) { // quadrangle + // Compute lengths of the sides + std::vector< double > aLen (4); + aLen[0] = getDistance( P(1), P(2) ); + aLen[1] = getDistance( P(2), P(3) ); + aLen[2] = getDistance( P(3), P(4) ); + aLen[3] = getDistance( P(4), P(1) ); + // Compute lengths of the diagonals + std::vector< double > aDia (2); + aDia[0] = getDistance( P(1), P(3) ); + aDia[1] = getDistance( P(2), P(4) ); + // Compute areas of all triangles which can be built + // taking three nodes of the quadrangle + std::vector< double > anArea (4); + anArea[0] = getArea( P(1), P(2), P(3) ); + anArea[1] = getArea( P(1), P(2), P(4) ); + anArea[2] = getArea( P(1), P(3), P(4) ); + anArea[3] = getArea( P(2), P(3), P(4) ); + // Q = alpha * L * C1 / C2, where + // + // alpha = sqrt( 1/32 ) + // L = max( L1, L2, L3, L4, D1, D2 ) + // C1 = sqrt( ( L1^2 + L1^2 + L1^2 + L1^2 ) / 4 ) + // C2 = min( S1, S2, S3, S4 ) + // Li - lengths of the edges + // Di - lengths of the diagonals + // Si - areas of the triangles + const double alpha = sqrt( 1 / 32. ); + double L = Max( aLen[ 0 ], + Max( aLen[ 1 ], + Max( aLen[ 2 ], + Max( aLen[ 3 ], + Max( aDia[ 0 ], aDia[ 1 ] ) ) ) ) ); + double C1 = sqrt( ( aLen[0] * aLen[0] + + aLen[1] * aLen[1] + + aLen[2] * aLen[2] + + aLen[3] * aLen[3] ) / 4. ); + double C2 = Min( anArea[ 0 ], + Min( anArea[ 1 ], + Min( anArea[ 2 ], anArea[ 3 ] ) ) ); + if ( C2 <= Precision::Confusion() ) + return 0.; + return alpha * L * C1 / C2; + } + else if( nbNodes == 8 || nbNodes == 9 ) { // nbNodes==8 - quadratic quadrangle + // Compute lengths of the sides + std::vector< double > aLen (4); + aLen[0] = getDistance( P(1), P(3) ); + aLen[1] = getDistance( P(3), P(5) ); + aLen[2] = getDistance( P(5), P(7) ); + aLen[3] = getDistance( P(7), P(1) ); + // Compute lengths of the diagonals + std::vector< double > aDia (2); + aDia[0] = getDistance( P(1), P(5) ); + aDia[1] = getDistance( P(3), P(7) ); + // Compute areas of all triangles which can be built + // taking three nodes of the quadrangle + std::vector< double > anArea (4); + anArea[0] = getArea( P(1), P(3), P(5) ); + anArea[1] = getArea( P(1), P(3), P(7) ); + anArea[2] = getArea( P(1), P(5), P(7) ); + anArea[3] = getArea( P(3), P(5), P(7) ); + // Q = alpha * L * C1 / C2, where + // + // alpha = sqrt( 1/32 ) + // L = max( L1, L2, L3, L4, D1, D2 ) + // C1 = sqrt( ( L1^2 + L1^2 + L1^2 + L1^2 ) / 4 ) + // C2 = min( S1, S2, S3, S4 ) + // Li - lengths of the edges + // Di - lengths of the diagonals + // Si - areas of the triangles + const double alpha = sqrt( 1 / 32. ); + double L = Max( aLen[ 0 ], + Max( aLen[ 1 ], + Max( aLen[ 2 ], + Max( aLen[ 3 ], + Max( aDia[ 0 ], aDia[ 1 ] ) ) ) ) ); + double C1 = sqrt( ( aLen[0] * aLen[0] + + aLen[1] * aLen[1] + + aLen[2] * aLen[2] + + aLen[3] * aLen[3] ) / 4. ); + double C2 = Min( anArea[ 0 ], + Min( anArea[ 1 ], + Min( anArea[ 2 ], anArea[ 3 ] ) ) ); + if ( C2 <= Precision::Confusion() ) + return 0.; + return alpha * L * C1 / C2; } + return 0; } double AspectRatio::GetBadRate( double Value, int /*nbNodes*/ ) const { // the aspect ratio is in the range [1.0,infinity] + // < 1.0 = very bad, zero area // 1.0 = good // infinity = bad - return Value / 1000.; + return ( Value < 0.9 ) ? 1000 : Value / 1000.; } SMDSAbs_ElementType AspectRatio::GetType() const @@ -321,9 +903,9 @@ namespace{ inline double getArea(double theHalfPerim, double theTria[3]){ return sqrt(theHalfPerim* - (theHalfPerim-theTria[0])* - (theHalfPerim-theTria[1])* - (theHalfPerim-theTria[2])); + (theHalfPerim-theTria[0])* + (theHalfPerim-theTria[1])* + (theHalfPerim-theTria[2])); } inline double getVolume(double theLen[6]){ @@ -365,21 +947,55 @@ namespace{ inline double getMaxHeight(double theLen[6]) { - double aHeight = max(theLen[0],theLen[1]); - aHeight = max(aHeight,theLen[2]); - aHeight = max(aHeight,theLen[3]); - aHeight = max(aHeight,theLen[4]); - aHeight = max(aHeight,theLen[5]); + double aHeight = std::max(theLen[0],theLen[1]); + aHeight = std::max(aHeight,theLen[2]); + aHeight = std::max(aHeight,theLen[3]); + aHeight = std::max(aHeight,theLen[4]); + aHeight = std::max(aHeight,theLen[5]); return aHeight; } } +double AspectRatio3D::GetValue( long theId ) +{ + double aVal = 0; + myCurrElement = myMesh->FindElement( theId ); + if ( myCurrElement && myCurrElement->GetVtkType() == VTK_TETRA ) + { + // Action from CoTech | ACTION 31.3: + // EURIWARE BO: Homogenize the formulas used to calculate the Controls in SMESH to fit with + // those of ParaView. The library used by ParaView for those calculations can be reused in SMESH. + vtkUnstructuredGrid* grid = SMDS_Mesh::_meshList[myCurrElement->getMeshId()]->getGrid(); + if ( vtkCell* avtkCell = grid->GetCell( myCurrElement->getVtkId() )) + aVal = Round( vtkMeshQuality::TetAspectRatio( avtkCell )); + } + else + { + TSequenceOfXYZ P; + if ( GetPoints( myCurrElement, P )) + aVal = Round( GetValue( P )); + } + return aVal; +} + double AspectRatio3D::GetValue( const TSequenceOfXYZ& P ) { double aQuality = 0.0; + if(myCurrElement->IsPoly()) return aQuality; + int nbNodes = P.size(); - switch(nbNodes){ + + if(myCurrElement->IsQuadratic()) { + if(nbNodes==10) nbNodes=4; // quadratic tetrahedron + else if(nbNodes==13) nbNodes=5; // quadratic pyramid + else if(nbNodes==15) nbNodes=6; // quadratic pentahedron + else if(nbNodes==20) nbNodes=8; // quadratic hexahedron + else if(nbNodes==27) nbNodes=8; // quadratic hexahedron + else return aQuality; + } + + switch(nbNodes) { case 4:{ double aLen[6] = { getDistance(P( 1 ),P( 2 )), // a @@ -411,191 +1027,222 @@ double AspectRatio3D::GetValue( const TSequenceOfXYZ& P ) double aVolume = getVolume(P); //double aVolume = getVolume(aLen); double aHeight = getMaxHeight(aLen); - static double aCoeff = sqrt(6.0)/36.0; - aQuality = aCoeff*aHeight*aSumArea/aVolume; + static double aCoeff = sqrt(2.0)/12.0; + if ( aVolume > DBL_MIN ) + aQuality = aCoeff*aHeight*aSumArea/aVolume; break; } case 5:{ { gp_XYZ aXYZ[4] = {P( 1 ),P( 2 ),P( 3 ),P( 5 )}; - aQuality = max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); + aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 1 ),P( 3 ),P( 4 ),P( 5 )}; - aQuality = max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); + aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 1 ),P( 2 ),P( 4 ),P( 5 )}; - aQuality = max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); + aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 2 ),P( 3 ),P( 4 ),P( 5 )}; - aQuality = max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); + aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } break; } case 6:{ { gp_XYZ aXYZ[4] = {P( 1 ),P( 2 ),P( 4 ),P( 6 )}; - aQuality = max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); + aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 1 ),P( 2 ),P( 4 ),P( 3 )}; - aQuality = max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); + aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 1 ),P( 2 ),P( 5 ),P( 6 )}; - aQuality = max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); + aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 1 ),P( 2 ),P( 5 ),P( 3 )}; - aQuality = max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); + aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 2 ),P( 5 ),P( 4 ),P( 6 )}; - aQuality = max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); + aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 2 ),P( 5 ),P( 4 ),P( 3 )}; - aQuality = max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); + aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } break; } case 8:{ { gp_XYZ aXYZ[4] = {P( 1 ),P( 2 ),P( 5 ),P( 3 )}; - aQuality = max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); + aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 1 ),P( 2 ),P( 5 ),P( 4 )}; - aQuality = max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); + aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 1 ),P( 2 ),P( 5 ),P( 7 )}; - aQuality = max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); + aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 1 ),P( 2 ),P( 5 ),P( 8 )}; - aQuality = max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); + aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 1 ),P( 2 ),P( 6 ),P( 3 )}; - aQuality = max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); + aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 1 ),P( 2 ),P( 6 ),P( 4 )}; - aQuality = max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); + aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 1 ),P( 2 ),P( 6 ),P( 7 )}; - aQuality = max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); + aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 1 ),P( 2 ),P( 6 ),P( 8 )}; - aQuality = max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); + aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 2 ),P( 6 ),P( 5 ),P( 3 )}; - aQuality = max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); + aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 2 ),P( 6 ),P( 5 ),P( 4 )}; - aQuality = max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); + aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 2 ),P( 6 ),P( 5 ),P( 7 )}; - aQuality = max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); + aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 2 ),P( 6 ),P( 5 ),P( 8 )}; - aQuality = max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); + aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 3 ),P( 4 ),P( 8 ),P( 1 )}; - aQuality = max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); + aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 3 ),P( 4 ),P( 8 ),P( 2 )}; - aQuality = max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); + aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 3 ),P( 4 ),P( 8 ),P( 5 )}; - aQuality = max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); + aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 3 ),P( 4 ),P( 8 ),P( 6 )}; - aQuality = max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); + aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 3 ),P( 4 ),P( 7 ),P( 1 )}; - aQuality = max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); + aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 3 ),P( 4 ),P( 7 ),P( 2 )}; - aQuality = max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); + aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 3 ),P( 4 ),P( 7 ),P( 5 )}; - aQuality = max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); + aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 3 ),P( 4 ),P( 7 ),P( 6 )}; - aQuality = max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); + aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 4 ),P( 8 ),P( 7 ),P( 1 )}; - aQuality = max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); + aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 4 ),P( 8 ),P( 7 ),P( 2 )}; - aQuality = max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); + aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 4 ),P( 8 ),P( 7 ),P( 5 )}; - aQuality = max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); + aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 4 ),P( 8 ),P( 7 ),P( 6 )}; - aQuality = max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); + aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 4 ),P( 8 ),P( 7 ),P( 2 )}; - aQuality = max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); + aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 4 ),P( 5 ),P( 8 ),P( 2 )}; - aQuality = max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); + aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 1 ),P( 4 ),P( 5 ),P( 3 )}; - aQuality = max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); + aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 3 ),P( 6 ),P( 7 ),P( 1 )}; - aQuality = max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); + aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 2 ),P( 3 ),P( 6 ),P( 4 )}; - aQuality = max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); + aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 5 ),P( 6 ),P( 8 ),P( 3 )}; - aQuality = max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); + aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 7 ),P( 8 ),P( 6 ),P( 1 )}; - aQuality = max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); + aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 1 ),P( 2 ),P( 4 ),P( 7 )}; - aQuality = max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); + aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 3 ),P( 4 ),P( 2 ),P( 5 )}; - aQuality = max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); + aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } break; } + case 12: + { + gp_XYZ aXYZ[8] = {P( 1 ),P( 2 ),P( 4 ),P( 5 ),P( 7 ),P( 8 ),P( 10 ),P( 11 )}; + aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[8])),aQuality); + } + { + gp_XYZ aXYZ[8] = {P( 2 ),P( 3 ),P( 5 ),P( 6 ),P( 8 ),P( 9 ),P( 11 ),P( 12 )}; + aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[8])),aQuality); + } + { + gp_XYZ aXYZ[8] = {P( 3 ),P( 4 ),P( 6 ),P( 1 ),P( 9 ),P( 10 ),P( 12 ),P( 7 )}; + aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[8])),aQuality); + } + break; + } // switch(nbNodes) + + if ( nbNodes > 4 ) { + // avaluate aspect ratio of quadranle faces + AspectRatio aspect2D; + SMDS_VolumeTool::VolumeType type = SMDS_VolumeTool::GetType( nbNodes ); + int nbFaces = SMDS_VolumeTool::NbFaces( type ); + TSequenceOfXYZ points(4); + for ( int i = 0; i < nbFaces; ++i ) { // loop on faces of a volume + if ( SMDS_VolumeTool::NbFaceNodes( type, i ) != 4 ) + continue; + const int* pInd = SMDS_VolumeTool::GetFaceNodesIndices( type, i, true ); + for ( int p = 0; p < 4; ++p ) // loop on nodes of a quadranle face + points( p + 1 ) = P( pInd[ p ] + 1 ); + aQuality = std::max( aQuality, aspect2D.GetValue( points )); + } } return aQuality; } @@ -623,7 +1270,7 @@ double Warping::GetValue( const TSequenceOfXYZ& P ) if ( P.size() != 4 ) return 0; - gp_XYZ G = ( P( 1 ) + P( 2 ) + P( 3 ) + P( 4 ) ) / 4; + gp_XYZ G = ( P( 1 ) + P( 2 ) + P( 3 ) + P( 4 ) ) / 4.; double A1 = ComputeA( P( 1 ), P( 2 ), P( 3 ), G ); double A2 = ComputeA( P( 2 ), P( 3 ), P( 4 ), G ); @@ -649,12 +1296,12 @@ double Warping::ComputeA( const gp_XYZ& thePnt1, gp_XYZ N = GI.Crossed( GJ ); if ( N.Modulus() < gp::Resolution() ) - return PI / 2; + return M_PI / 2; N.Normalize(); double H = ( thePnt2 - theG ).Dot( N ); - return asin( fabs( H / L ) ) * 180 / PI; + return asin( fabs( H / L ) ) * 180. / M_PI; } double Warping::GetBadRate( double Value, int /*nbNodes*/ ) const @@ -678,13 +1325,13 @@ SMDSAbs_ElementType Warping::GetType() const double Taper::GetValue( const TSequenceOfXYZ& P ) { if ( P.size() != 4 ) - return 0; + return 0.; // Compute taper - double J1 = getArea( P( 4 ), P( 1 ), P( 2 ) ) / 2; - double J2 = getArea( P( 3 ), P( 1 ), P( 2 ) ) / 2; - double J3 = getArea( P( 2 ), P( 3 ), P( 4 ) ) / 2; - double J4 = getArea( P( 3 ), P( 4 ), P( 1 ) ) / 2; + double J1 = getArea( P( 4 ), P( 1 ), P( 2 ) ) / 2.; + double J2 = getArea( P( 3 ), P( 1 ), P( 2 ) ) / 2.; + double J3 = getArea( P( 2 ), P( 3 ), P( 4 ) ) / 2.; + double J4 = getArea( P( 3 ), P( 4 ), P( 1 ) ) / 2.; double JA = 0.25 * ( J1 + J2 + J3 + J4 ); if ( JA <= Precision::Confusion() ) @@ -718,42 +1365,46 @@ SMDSAbs_ElementType Taper::GetType() const */ static inline double skewAngle( const gp_XYZ& p1, const gp_XYZ& p2, const gp_XYZ& p3 ) { - gp_XYZ p12 = ( p2 + p1 ) / 2; - gp_XYZ p23 = ( p3 + p2 ) / 2; - gp_XYZ p31 = ( p3 + p1 ) / 2; + gp_XYZ p12 = ( p2 + p1 ) / 2.; + gp_XYZ p23 = ( p3 + p2 ) / 2.; + gp_XYZ p31 = ( p3 + p1 ) / 2.; gp_Vec v1( p31 - p2 ), v2( p12 - p23 ); - return v1.Magnitude() < gp::Resolution() || v2.Magnitude() < gp::Resolution() ? 0 : v1.Angle( v2 ); + return v1.Magnitude() < gp::Resolution() || v2.Magnitude() < gp::Resolution() ? 0. : v1.Angle( v2 ); } double Skew::GetValue( const TSequenceOfXYZ& P ) { if ( P.size() != 3 && P.size() != 4 ) - return 0; + return 0.; // Compute skew - static double PI2 = PI / 2; + static double PI2 = M_PI / 2.; if ( P.size() == 3 ) { double A0 = fabs( PI2 - skewAngle( P( 3 ), P( 1 ), P( 2 ) ) ); double A1 = fabs( PI2 - skewAngle( P( 1 ), P( 2 ), P( 3 ) ) ); double A2 = fabs( PI2 - skewAngle( P( 2 ), P( 3 ), P( 1 ) ) ); - return Max( A0, Max( A1, A2 ) ) * 180 / PI; + return Max( A0, Max( A1, A2 ) ) * 180. / M_PI; } else { - gp_XYZ p12 = ( P( 1 ) + P( 2 ) ) / 2; - gp_XYZ p23 = ( P( 2 ) + P( 3 ) ) / 2; - gp_XYZ p34 = ( P( 3 ) + P( 4 ) ) / 2; - gp_XYZ p41 = ( P( 4 ) + P( 1 ) ) / 2; + gp_XYZ p12 = ( P( 1 ) + P( 2 ) ) / 2.; + gp_XYZ p23 = ( P( 2 ) + P( 3 ) ) / 2.; + gp_XYZ p34 = ( P( 3 ) + P( 4 ) ) / 2.; + gp_XYZ p41 = ( P( 4 ) + P( 1 ) ) / 2.; gp_Vec v1( p34 - p12 ), v2( p23 - p41 ); double A = v1.Magnitude() <= gp::Resolution() || v2.Magnitude() <= gp::Resolution() - ? 0 : fabs( PI2 - v1.Angle( v2 ) ); + ? 0. : fabs( PI2 - v1.Angle( v2 ) ); + + //BUG SWP12743 + if ( A < Precision::Angular() ) + return 0.; - return A * 180 / PI; + return A * 180. / M_PI; } } @@ -777,21 +1428,25 @@ SMDSAbs_ElementType Skew::GetType() const */ double Area::GetValue( const TSequenceOfXYZ& P ) { - double aArea = 0; - if ( P.size() == 3 ) - return getArea( P( 1 ), P( 2 ), P( 3 ) ); - else if (P.size() > 3) - aArea = getArea( P( 1 ), P( 2 ), P( 3 ) ); - else - return 0; - - for (int i=4; i<=P.size(); i++) - aArea += getArea(P(1),P(i-1),P(i)); - return aArea; + double val = 0.0; + if ( P.size() > 2 ) { + gp_Vec aVec1( P(2) - P(1) ); + gp_Vec aVec2( P(3) - P(1) ); + gp_Vec SumVec = aVec1 ^ aVec2; + for (int i=4; i<=P.size(); i++) { + gp_Vec aVec1( P(i-1) - P(1) ); + gp_Vec aVec2( P(i) - P(1) ); + gp_Vec tmp = aVec1 ^ aVec2; + SumVec.Add(tmp); + } + val = SumVec.Magnitude() * 0.5; + } + return val; } double Area::GetBadRate( double Value, int /*nbNodes*/ ) const { + // meaningless as it is not a quality control functor return Value; } @@ -803,15 +1458,20 @@ SMDSAbs_ElementType Area::GetType() const /* Class : Length - Description : Functor for calculating length off edge + Description : Functor for calculating length of edge */ double Length::GetValue( const TSequenceOfXYZ& P ) { - return ( P.size() == 2 ? getDistance( P( 1 ), P( 2 ) ) : 0 ); + switch ( P.size() ) { + case 2: return getDistance( P( 1 ), P( 2 ) ); + case 3: return getDistance( P( 1 ), P( 2 ) ) + getDistance( P( 2 ), P( 3 ) ); + default: return 0.; + } } double Length::GetBadRate( double Value, int /*nbNodes*/ ) const { + // meaningless as it is not quality control functor return Value; } @@ -829,7 +1489,10 @@ double Length2D::GetValue( long theElementId) { TSequenceOfXYZ P; + //cout<<"Length2D::GetValue"<FindElement( theElementId ); @@ -842,83 +1505,160 @@ double Length2D::GetValue( long theElementId) case SMDSAbs_Node: case SMDSAbs_Edge: if (len == 2){ - aVal = getDistance( P( 1 ), P( 2 ) ); - break; + aVal = getDistance( P( 1 ), P( 2 ) ); + break; + } + else if (len == 3){ // quadratic edge + aVal = getDistance(P( 1 ),P( 3 )) + getDistance(P( 3 ),P( 2 )); + break; } case SMDSAbs_Face: if (len == 3){ // triangles - double L1 = getDistance(P( 1 ),P( 2 )); - double L2 = getDistance(P( 2 ),P( 3 )); - double L3 = getDistance(P( 3 ),P( 1 )); - aVal = Max(L1,Max(L2,L3)); - break; + double L1 = getDistance(P( 1 ),P( 2 )); + double L2 = getDistance(P( 2 ),P( 3 )); + double L3 = getDistance(P( 3 ),P( 1 )); + aVal = Max(L1,Max(L2,L3)); + break; } else if (len == 4){ // quadrangles - double L1 = getDistance(P( 1 ),P( 2 )); - double L2 = getDistance(P( 2 ),P( 3 )); - double L3 = getDistance(P( 3 ),P( 4 )); - double L4 = getDistance(P( 4 ),P( 1 )); - aVal = Max(Max(L1,L2),Max(L3,L4)); - break; + double L1 = getDistance(P( 1 ),P( 2 )); + double L2 = getDistance(P( 2 ),P( 3 )); + double L3 = getDistance(P( 3 ),P( 4 )); + double L4 = getDistance(P( 4 ),P( 1 )); + aVal = Max(Max(L1,L2),Max(L3,L4)); + break; + } + if (len == 6){ // quadratic triangles + double L1 = getDistance(P( 1 ),P( 2 )) + getDistance(P( 2 ),P( 3 )); + double L2 = getDistance(P( 3 ),P( 4 )) + getDistance(P( 4 ),P( 5 )); + double L3 = getDistance(P( 5 ),P( 6 )) + getDistance(P( 6 ),P( 1 )); + aVal = Max(L1,Max(L2,L3)); + //cout<<"L1="<FindElement( theId ); + if ( !anElem ) + return false; + const SMDSAbs_ElementType anElemType = anElem->GetType(); + if ( myType != SMDSAbs_All && anElemType != myType ) + return false; + const int aNbNode = anElem->NbNodes(); + bool isOk = false; + switch( anElemType ) + { + case SMDSAbs_Node: + isOk = (myGeomType == SMDSGeom_POINT); + break; + + case SMDSAbs_Edge: + isOk = (myGeomType == SMDSGeom_EDGE); + break; + + case SMDSAbs_Face: + if ( myGeomType == SMDSGeom_TRIANGLE ) + isOk = (!anElem->IsPoly() && (anElem->IsQuadratic() ? aNbNode == 6 : aNbNode == 3)); + else if ( myGeomType == SMDSGeom_QUADRANGLE ) + isOk = (!anElem->IsPoly() && (anElem->IsQuadratic() ? ( aNbNode == 8 || aNbNode == 9 ) : aNbNode == 4)); + else if ( myGeomType == SMDSGeom_POLYGON ) + isOk = anElem->IsPoly(); + break; + + case SMDSAbs_Volume: + if ( myGeomType == SMDSGeom_TETRA ) + isOk = (!anElem->IsPoly() && (anElem->IsQuadratic() ? aNbNode == 10 : aNbNode == 4)); + else if ( myGeomType == SMDSGeom_PYRAMID ) + isOk = (!anElem->IsPoly() && (anElem->IsQuadratic() ? aNbNode == 13 : aNbNode == 5)); + else if ( myGeomType == SMDSGeom_PENTA ) + isOk = (!anElem->IsPoly() && (anElem->IsQuadratic() ? aNbNode == 15 : aNbNode == 6)); + else if ( myGeomType == SMDSGeom_HEXA ) + isOk = (!anElem->IsPoly() && (anElem->IsQuadratic() ? ( aNbNode == 20 || aNbNode == 27 ): aNbNode == 8)); + else if ( myGeomType == SMDSGeom_HEXAGONAL_PRISM ) + isOk = (anElem->GetEntityType() == SMDSEntity_Hexagonal_Prism ); + else if ( myGeomType == SMDSGeom_POLYHEDRA ) + isOk = anElem->IsPoly(); + break; + default: break; + } + return isOk; +} + +void ElemGeomType::SetType( SMDSAbs_ElementType theType ) +{ + myType = theType; +} + +SMDSAbs_ElementType ElemGeomType::GetType() const +{ + return myType; +} + +void ElemGeomType::SetGeomType( SMDSAbs_GeometryType theType ) +{ + myGeomType = theType; } -inline void UpdateBorders(const FreeEdges::Border& theBorder, - FreeEdges::TBorders& theRegistry, - FreeEdges::TBorders& theContainer) +SMDSAbs_GeometryType ElemGeomType::GetGeomType() const { - if(theRegistry.find(theBorder) == theRegistry.end()){ - theRegistry.insert(theBorder); - theContainer.insert(theBorder); - }else{ - theContainer.erase(theBorder); - } + return myGeomType; } -void FreeEdges::GetBoreders(TBorders& theBorders) +//================================================================================ +/*! + * \brief Class CoplanarFaces + */ +//================================================================================ + +CoplanarFaces::CoplanarFaces() + : myFaceID(0), myToler(0) { - TBorders aRegistry; - SMDS_FaceIteratorPtr anIter = myMesh->facesIterator(); - for(; anIter->more(); ){ - const SMDS_MeshFace* anElem = anIter->next(); - long anElemId = anElem->GetID(); - SMDS_ElemIteratorPtr aNodesIter = anElem->nodesIterator(); - long aNodeId[2]; - const SMDS_MeshElement* aNode; - if(aNodesIter->more()){ - aNode = aNodesIter->next(); - aNodeId[0] = aNodeId[1] = aNode->GetID(); - } - for(; aNodesIter->more(); ){ - aNode = aNodesIter->next(); - long anId = aNode->GetID(); - Border aBorder(anElemId,aNodeId[1],anId); - aNodeId[1] = anId; - //std::cout<FindElement( myFaceID ); + if ( !face || face->GetType() != SMDSAbs_Face ) + return; + + bool normOK; + gp_Vec myNorm = getNormale( static_cast(face), &normOK ); + if (!normOK) + return; + + const double radianTol = myToler * M_PI / 180.; + typedef SMDS_StdIterator< const SMDS_MeshElement*, SMDS_ElemIteratorPtr > TFaceIt; + std::set checkedFaces, checkedNodes; + std::list faceQueue( 1, face ); + while ( !faceQueue.empty() ) + { + face = faceQueue.front(); + if ( checkedFaces.insert( face ).second ) + { + gp_Vec norm = getNormale( static_cast(face), &normOK ); + if (!normOK || myNorm.Angle( norm ) <= radianTol) + { + myCoplanarIDs.insert( face->GetID() ); + std::set neighborFaces; + for ( int i = 0; i < face->NbCornerNodes(); ++i ) + { + const SMDS_MeshNode* n = face->GetNode( i ); + if ( checkedNodes.insert( n ).second ) + neighborFaces.insert( TFaceIt( n->GetInverseElementIterator(SMDSAbs_Face)), + TFaceIt()); + } + faceQueue.insert( faceQueue.end(), neighborFaces.begin(), neighborFaces.end() ); + } + } + faceQueue.pop_front(); } - Border aBorder(anElemId,aNodeId[0],aNodeId[1]); - //std::cout<FindElement( theId ); - if ( anElem == 0 || myType != anElem->GetType() && myType != SMDSAbs_All ) + if ( anElem == 0 || (myType != anElem->GetType() && myType != SMDSAbs_All )) return false; } @@ -1768,8 +3160,8 @@ bool LogicalOR::IsSatisfy( long theId ) return myPredicate1 && myPredicate2 && - myPredicate1->IsSatisfy( theId ) || - myPredicate2->IsSatisfy( theId ); + (myPredicate1->IsSatisfy( theId ) || + myPredicate2->IsSatisfy( theId )); } @@ -1788,26 +3180,9 @@ void Filter::SetPredicate( PredicatePtr thePredicate ) myPredicate = thePredicate; } -template -inline void FillSequence(const TIterator& theIterator, - TPredicate& thePredicate, - Filter::TIdSequence& theSequence) -{ - if ( theIterator ) { - while( theIterator->more() ) { - TElement anElem = theIterator->next(); - long anId = anElem->GetID(); - if ( thePredicate->IsSatisfy( anId ) ) - theSequence.push_back( anId ); - } - } -} - -void -Filter:: -GetElementsId( const SMDS_Mesh* theMesh, - PredicatePtr thePredicate, - TIdSequence& theSequence ) +void Filter::GetElementsId( const SMDS_Mesh* theMesh, + PredicatePtr thePredicate, + TIdSequence& theSequence ) { theSequence.clear(); @@ -1816,31 +3191,19 @@ GetElementsId( const SMDS_Mesh* theMesh, thePredicate->SetMesh( theMesh ); - SMDSAbs_ElementType aType = thePredicate->GetType(); - switch(aType){ - case SMDSAbs_Node: - FillSequence(theMesh->nodesIterator(),thePredicate,theSequence); - break; - case SMDSAbs_Edge: - FillSequence(theMesh->edgesIterator(),thePredicate,theSequence); - break; - case SMDSAbs_Face: - FillSequence(theMesh->facesIterator(),thePredicate,theSequence); - break; - case SMDSAbs_Volume: - FillSequence(theMesh->volumesIterator(),thePredicate,theSequence); - break; - case SMDSAbs_All: - FillSequence(theMesh->edgesIterator(),thePredicate,theSequence); - FillSequence(theMesh->facesIterator(),thePredicate,theSequence); - FillSequence(theMesh->volumesIterator(),thePredicate,theSequence); - break; + SMDS_ElemIteratorPtr elemIt = theMesh->elementsIterator( thePredicate->GetType() ); + if ( elemIt ) { + while ( elemIt->more() ) { + const SMDS_MeshElement* anElem = elemIt->next(); + long anId = anElem->GetID(); + if ( thePredicate->IsSatisfy( anId ) ) + theSequence.push_back( anId ); + } } } -void -Filter::GetElementsId( const SMDS_Mesh* theMesh, - Filter::TIdSequence& theSequence ) +void Filter::GetElementsId( const SMDS_Mesh* theMesh, + Filter::TIdSequence& theSequence ) { GetElementsId(theMesh,myPredicate,theSequence); } @@ -2013,34 +3376,6 @@ static void getLinks( const SMDS_MeshFace* theFace, } } -static gp_XYZ getNormale( const SMDS_MeshFace* theFace ) -{ - gp_XYZ n; - int aNbNode = theFace->NbNodes(); - TColgp_Array1OfXYZ anArrOfXYZ(1,4); - SMDS_ElemIteratorPtr aNodeItr = theFace->nodesIterator(); - int i = 1; - for ( ; aNodeItr->more() && i <= 4; i++ ) - { - SMDS_MeshNode* aNode = (SMDS_MeshNode*)aNodeItr->next(); - anArrOfXYZ.SetValue(i, gp_XYZ( aNode->X(), aNode->Y(), aNode->Z() ) ); - } - - gp_XYZ q1 = anArrOfXYZ.Value(2) - anArrOfXYZ.Value(1); - gp_XYZ q2 = anArrOfXYZ.Value(3) - anArrOfXYZ.Value(1); - n = q1 ^ q2; - if ( aNbNode > 3 ) - { - gp_XYZ q3 = anArrOfXYZ.Value(4) - anArrOfXYZ.Value(1); - n += q2 ^ q3; - } - double len = n.Modulus(); - if ( len > 0 ) - n /= len; - - return n; -} - bool ManifoldPart::findConnected ( const ManifoldPart::TDataMapFacePtrInt& theAllFacePtrInt, SMDS_MeshFace* theStartFace, @@ -2195,7 +3530,7 @@ void ManifoldPart::expandBoundary void ManifoldPart::getFacesByLink( const ManifoldPart::Link& theLink, ManifoldPart::TVectorOfFacePtr& theFaces ) const { - SMDS_Mesh::SetOfFaces aSetOfFaces; + std::set aSetOfFaces; // take all faces that shared first node SMDS_ElemIteratorPtr anItr = theLink.myNode1->facesIterator(); for ( ; anItr->more(); ) @@ -2203,7 +3538,7 @@ void ManifoldPart::getFacesByLink( const ManifoldPart::Link& theLink, SMDS_MeshFace* aFace = (SMDS_MeshFace*)anItr->next(); if ( !aFace ) continue; - aSetOfFaces.Add( aFace ); + aSetOfFaces.insert( aFace ); } // take all faces that shared second node anItr = theLink.myNode2->facesIterator(); @@ -2211,7 +3546,7 @@ void ManifoldPart::getFacesByLink( const ManifoldPart::Link& theLink, for ( ; anItr->more(); ) { SMDS_MeshFace* aFace = (SMDS_MeshFace*)anItr->next(); - if ( aSetOfFaces.Contains( aFace ) ) + if ( aSetOfFaces.count( aFace ) ) theFaces.push_back( aFace ); } } @@ -2228,6 +3563,7 @@ ElementsOnSurface::ElementsOnSurface() myType = SMDSAbs_All; mySurf.Nullify(); myToler = Precision::Confusion(); + myUseBoundaries = false; } ElementsOnSurface::~ElementsOnSurface() @@ -2240,7 +3576,6 @@ void ElementsOnSurface::SetMesh( const SMDS_Mesh* theMesh ) if ( myMesh == theMesh ) return; myMesh = theMesh; - myIds.Clear(); process(); } @@ -2253,25 +3588,41 @@ SMDSAbs_ElementType ElementsOnSurface::GetType() const { return myType; } void ElementsOnSurface::SetTolerance( const double theToler ) -{ myToler = theToler; } +{ + if ( myToler != theToler ) + myIds.Clear(); + myToler = theToler; +} double ElementsOnSurface::GetTolerance() const +{ return myToler; } + +void ElementsOnSurface::SetUseBoundaries( bool theUse ) { - return myToler; + if ( myUseBoundaries != theUse ) { + myUseBoundaries = theUse; + SetSurface( mySurf, myType ); + } } void ElementsOnSurface::SetSurface( const TopoDS_Shape& theShape, const SMDSAbs_ElementType theType ) { + myIds.Clear(); myType = theType; mySurf.Nullify(); if ( theShape.IsNull() || theShape.ShapeType() != TopAbs_FACE ) - { - mySurf.Nullify(); return; - } - TopoDS_Face aFace = TopoDS::Face( theShape ); - mySurf = BRep_Tool::Surface( aFace ); + mySurf = TopoDS::Face( theShape ); + BRepAdaptor_Surface SA( mySurf, myUseBoundaries ); + Standard_Real + u1 = SA.FirstUParameter(), + u2 = SA.LastUParameter(), + v1 = SA.FirstVParameter(), + v2 = SA.LastVParameter(); + Handle(Geom_Surface) surf = BRep_Tool::Surface( mySurf ); + myProjector.Init( surf, u1,u2, v1,v2 ); + process(); } void ElementsOnSurface::process() @@ -2285,6 +3636,7 @@ void ElementsOnSurface::process() if ( myType == SMDSAbs_Face || myType == SMDSAbs_All ) { + myIds.ReSize( myMesh->NbFaces() ); SMDS_FaceIteratorPtr anIter = myMesh->facesIterator(); for(; anIter->more(); ) process( anIter->next() ); @@ -2292,6 +3644,7 @@ void ElementsOnSurface::process() if ( myType == SMDSAbs_Edge || myType == SMDSAbs_All ) { + myIds.ReSize( myIds.Extent() + myMesh->NbEdges() ); SMDS_EdgeIteratorPtr anIter = myMesh->edgesIterator(); for(; anIter->more(); ) process( anIter->next() ); @@ -2299,6 +3652,7 @@ void ElementsOnSurface::process() if ( myType == SMDSAbs_Node ) { + myIds.ReSize( myMesh->NbNodes() ); SMDS_NodeIteratorPtr anIter = myMesh->nodesIterator(); for(; anIter->more(); ) process( anIter->next() ); @@ -2322,32 +3676,342 @@ void ElementsOnSurface::process( const SMDS_MeshElement* theElemPtr ) myIds.Add( theElemPtr->GetID() ); } -bool ElementsOnSurface::isOnSurface( const SMDS_MeshNode* theNode ) const +bool ElementsOnSurface::isOnSurface( const SMDS_MeshNode* theNode ) { if ( mySurf.IsNull() ) return false; gp_Pnt aPnt( theNode->X(), theNode->Y(), theNode->Z() ); - double aToler2 = myToler * myToler; - if ( mySurf->IsKind(STANDARD_TYPE(Geom_Plane))) + // double aToler2 = myToler * myToler; +// if ( mySurf->IsKind(STANDARD_TYPE(Geom_Plane))) +// { +// gp_Pln aPln = Handle(Geom_Plane)::DownCast(mySurf)->Pln(); +// if ( aPln.SquareDistance( aPnt ) > aToler2 ) +// return false; +// } +// else if ( mySurf->IsKind(STANDARD_TYPE(Geom_CylindricalSurface))) +// { +// gp_Cylinder aCyl = Handle(Geom_CylindricalSurface)::DownCast(mySurf)->Cylinder(); +// double aRad = aCyl.Radius(); +// gp_Ax3 anAxis = aCyl.Position(); +// gp_XYZ aLoc = aCyl.Location().XYZ(); +// double aXDist = anAxis.XDirection().XYZ() * ( aPnt.XYZ() - aLoc ); +// double aYDist = anAxis.YDirection().XYZ() * ( aPnt.XYZ() - aLoc ); +// if ( fabs(aXDist*aXDist + aYDist*aYDist - aRad*aRad) > aToler2 ) +// return false; +// } +// else +// return false; + myProjector.Perform( aPnt ); + bool isOn = ( myProjector.IsDone() && myProjector.LowerDistance() <= myToler ); + + return isOn; +} + + +/* + ElementsOnShape +*/ + +ElementsOnShape::ElementsOnShape() + : //myMesh(0), + myType(SMDSAbs_All), + myToler(Precision::Confusion()), + myAllNodesFlag(false) +{ + myCurShapeType = TopAbs_SHAPE; +} + +ElementsOnShape::~ElementsOnShape() +{ +} + +void ElementsOnShape::SetMesh (const SMDS_Mesh* theMesh) +{ + myMeshModifTracer.SetMesh( theMesh ); + if ( myMeshModifTracer.IsMeshModified()) + SetShape(myShape, myType); +} + +bool ElementsOnShape::IsSatisfy (long theElementId) +{ + return myIds.Contains(theElementId); +} + +SMDSAbs_ElementType ElementsOnShape::GetType() const +{ + return myType; +} + +void ElementsOnShape::SetTolerance (const double theToler) +{ + if (myToler != theToler) { + myToler = theToler; + SetShape(myShape, myType); + } +} + +double ElementsOnShape::GetTolerance() const +{ + return myToler; +} + +void ElementsOnShape::SetAllNodes (bool theAllNodes) +{ + if (myAllNodesFlag != theAllNodes) { + myAllNodesFlag = theAllNodes; + SetShape(myShape, myType); + } +} + +void ElementsOnShape::SetShape (const TopoDS_Shape& theShape, + const SMDSAbs_ElementType theType) +{ + myType = theType; + myShape = theShape; + myIds.Clear(); + + const SMDS_Mesh* myMesh = myMeshModifTracer.GetMesh(); + + if ( !myMesh ) return; + + switch (myType) { - gp_Pln aPln = Handle(Geom_Plane)::DownCast(mySurf)->Pln(); - if ( aPln.SquareDistance( aPnt ) > aToler2 ) - return false; + case SMDSAbs_All: + myIds.ReSize(myMesh->NbEdges() + myMesh->NbFaces() + myMesh->NbVolumes()); + break; + case SMDSAbs_Node: + myIds.ReSize(myMesh->NbNodes()); + break; + case SMDSAbs_Edge: + myIds.ReSize(myMesh->NbEdges()); + break; + case SMDSAbs_Face: + myIds.ReSize(myMesh->NbFaces()); + break; + case SMDSAbs_Volume: + myIds.ReSize(myMesh->NbVolumes()); + break; + default: + break; } - else if ( mySurf->IsKind(STANDARD_TYPE(Geom_CylindricalSurface))) + + myShapesMap.Clear(); + addShape(myShape); +} + +void ElementsOnShape::addShape (const TopoDS_Shape& theShape) +{ + if (theShape.IsNull() || myMeshModifTracer.GetMesh() == 0) + return; + + if (!myShapesMap.Add(theShape)) return; + + myCurShapeType = theShape.ShapeType(); + switch (myCurShapeType) { - gp_Cylinder aCyl = Handle(Geom_CylindricalSurface)::DownCast(mySurf)->Cylinder(); - double aRad = aCyl.Radius(); - gp_Ax3 anAxis = aCyl.Position(); - gp_XYZ aLoc = aCyl.Location().XYZ(); - double aXDist = anAxis.XDirection().XYZ() * ( aPnt.XYZ() - aLoc ); - double aYDist = anAxis.YDirection().XYZ() * ( aPnt.XYZ() - aLoc ); - if ( fabs(aXDist*aXDist + aYDist*aYDist - aRad*aRad) > aToler2 ) - return false; + case TopAbs_COMPOUND: + case TopAbs_COMPSOLID: + case TopAbs_SHELL: + case TopAbs_WIRE: + { + TopoDS_Iterator anIt (theShape, Standard_True, Standard_True); + for (; anIt.More(); anIt.Next()) addShape(anIt.Value()); + } + break; + case TopAbs_SOLID: + { + myCurSC.Load(theShape); + process(); + } + break; + case TopAbs_FACE: + { + TopoDS_Face aFace = TopoDS::Face(theShape); + BRepAdaptor_Surface SA (aFace, true); + Standard_Real + u1 = SA.FirstUParameter(), + u2 = SA.LastUParameter(), + v1 = SA.FirstVParameter(), + v2 = SA.LastVParameter(); + Handle(Geom_Surface) surf = BRep_Tool::Surface(aFace); + myCurProjFace.Init(surf, u1,u2, v1,v2); + myCurFace = aFace; + process(); + } + break; + case TopAbs_EDGE: + { + TopoDS_Edge anEdge = TopoDS::Edge(theShape); + Standard_Real u1, u2; + Handle(Geom_Curve) curve = BRep_Tool::Curve(anEdge, u1, u2); + myCurProjEdge.Init(curve, u1, u2); + process(); + } + break; + case TopAbs_VERTEX: + { + TopoDS_Vertex aV = TopoDS::Vertex(theShape); + myCurPnt = BRep_Tool::Pnt(aV); + process(); + } + break; + default: + break; } - else - return false; +} - return true; +void ElementsOnShape::process() +{ + const SMDS_Mesh* myMesh = myMeshModifTracer.GetMesh(); + if (myShape.IsNull() || myMesh == 0) + return; + + SMDS_ElemIteratorPtr anIter = myMesh->elementsIterator(myType); + while (anIter->more()) + process(anIter->next()); +} + +void ElementsOnShape::process (const SMDS_MeshElement* theElemPtr) +{ + if (myShape.IsNull()) + return; + + SMDS_ElemIteratorPtr aNodeItr = theElemPtr->nodesIterator(); + bool isSatisfy = myAllNodesFlag; + + gp_XYZ centerXYZ (0, 0, 0); + + while (aNodeItr->more() && (isSatisfy == myAllNodesFlag)) + { + SMESH_TNodeXYZ aPnt ( aNodeItr->next() ); + centerXYZ += aPnt; + + switch (myCurShapeType) + { + case TopAbs_SOLID: + { + myCurSC.Perform(aPnt, myToler); + isSatisfy = (myCurSC.State() == TopAbs_IN || myCurSC.State() == TopAbs_ON); + } + break; + case TopAbs_FACE: + { + myCurProjFace.Perform(aPnt); + isSatisfy = (myCurProjFace.IsDone() && myCurProjFace.LowerDistance() <= myToler); + if (isSatisfy) + { + // check relatively the face + Quantity_Parameter u, v; + myCurProjFace.LowerDistanceParameters(u, v); + gp_Pnt2d aProjPnt (u, v); + BRepClass_FaceClassifier aClsf (myCurFace, aProjPnt, myToler); + isSatisfy = (aClsf.State() == TopAbs_IN || aClsf.State() == TopAbs_ON); + } + } + break; + case TopAbs_EDGE: + { + myCurProjEdge.Perform(aPnt); + isSatisfy = (myCurProjEdge.NbPoints() > 0 && myCurProjEdge.LowerDistance() <= myToler); + } + break; + case TopAbs_VERTEX: + { + isSatisfy = (myCurPnt.Distance(aPnt) <= myToler); + } + break; + default: + { + isSatisfy = false; + } + } + } + + if (isSatisfy && myCurShapeType == TopAbs_SOLID) { // Check the center point for volumes MantisBug 0020168 + centerXYZ /= theElemPtr->NbNodes(); + gp_Pnt aCenterPnt (centerXYZ); + myCurSC.Perform(aCenterPnt, myToler); + if ( !(myCurSC.State() == TopAbs_IN || myCurSC.State() == TopAbs_ON)) + isSatisfy = false; + } + + if (isSatisfy) + myIds.Add(theElemPtr->GetID()); +} + +TSequenceOfXYZ::TSequenceOfXYZ() +{} + +TSequenceOfXYZ::TSequenceOfXYZ(size_type n) : myArray(n) +{} + +TSequenceOfXYZ::TSequenceOfXYZ(size_type n, const gp_XYZ& t) : myArray(n,t) +{} + +TSequenceOfXYZ::TSequenceOfXYZ(const TSequenceOfXYZ& theSequenceOfXYZ) : myArray(theSequenceOfXYZ.myArray) +{} + +template +TSequenceOfXYZ::TSequenceOfXYZ(InputIterator theBegin, InputIterator theEnd): myArray(theBegin,theEnd) +{} + +TSequenceOfXYZ::~TSequenceOfXYZ() +{} + +TSequenceOfXYZ& TSequenceOfXYZ::operator=(const TSequenceOfXYZ& theSequenceOfXYZ) +{ + myArray = theSequenceOfXYZ.myArray; + return *this; +} + +gp_XYZ& TSequenceOfXYZ::operator()(size_type n) +{ + return myArray[n-1]; +} + +const gp_XYZ& TSequenceOfXYZ::operator()(size_type n) const +{ + return myArray[n-1]; +} + +void TSequenceOfXYZ::clear() +{ + myArray.clear(); +} + +void TSequenceOfXYZ::reserve(size_type n) +{ + myArray.reserve(n); +} + +void TSequenceOfXYZ::push_back(const gp_XYZ& v) +{ + myArray.push_back(v); +} + +TSequenceOfXYZ::size_type TSequenceOfXYZ::size() const +{ + return myArray.size(); +} + +TMeshModifTracer::TMeshModifTracer(): + myMeshModifTime(0), myMesh(0) +{ +} +void TMeshModifTracer::SetMesh( const SMDS_Mesh* theMesh ) +{ + if ( theMesh != myMesh ) + myMeshModifTime = 0; + myMesh = theMesh; +} +bool TMeshModifTracer::IsMeshModified() +{ + bool modified = false; + if ( myMesh ) + { + modified = ( myMeshModifTime != myMesh->GetMTime() ); + myMeshModifTime = myMesh->GetMTime(); + } + return modified; }