X-Git-Url: http://git.salome-platform.org/gitweb/?p=modules%2Fsmesh.git;a=blobdiff_plain;f=src%2FControls%2FSMESH_Controls.cxx;h=f86b5638719dfb201d6e15ab0a6e4487a1b0f174;hp=bc79e1fc70abe3bc8d254029b6c9ab20bdf0201e;hb=b54f78cc796b6ae41d77cc43b55c01b16a4c0445;hpb=920fe932b10ce5e9da132f0fce3be2bbef95fa3a diff --git a/src/Controls/SMESH_Controls.cxx b/src/Controls/SMESH_Controls.cxx index bc79e1fc7..f86b56387 100644 --- a/src/Controls/SMESH_Controls.cxx +++ b/src/Controls/SMESH_Controls.cxx @@ -1,4 +1,4 @@ -// Copyright (C) 2007-2015 CEA/DEN, EDF R&D, OPEN CASCADE +// Copyright (C) 2007-2016 CEA/DEN, EDF R&D, OPEN CASCADE // // Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN, // CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS @@ -23,6 +23,7 @@ #include "SMESH_ControlsDef.hxx" #include "SMDS_BallElement.hxx" +#include "SMDS_FacePosition.hxx" #include "SMDS_Iterator.hxx" #include "SMDS_Mesh.hxx" #include "SMDS_MeshElement.hxx" @@ -39,13 +40,18 @@ #include #include +#include +#include +#include #include #include +#include #include #include #include #include #include +#include #include #include #include @@ -93,6 +99,15 @@ namespace { v2.Magnitude() < gp::Resolution() ? 0 : v1.Angle( v2 ); } + inline double getCos2( const gp_XYZ& P1, const gp_XYZ& P2, const gp_XYZ& P3 ) + { + gp_Vec v1( P1 - P2 ), v2( P3 - P2 ); + double dot = v1 * v2, len1 = v1.SquareMagnitude(), len2 = v2.SquareMagnitude(); + + return ( dot < 0 || len1 < gp::Resolution() || len2 < gp::Resolution() ? -1 : + dot * dot / len1 / len2 ); + } + inline double getArea( const gp_XYZ& P1, const gp_XYZ& P2, const gp_XYZ& P3 ) { gp_Vec aVec1( P2 - P1 ); @@ -132,7 +147,7 @@ namespace { // +-----+------+ +-----+------+ // | | | | // | | | | - // result sould be 2 in both cases + // result should be 2 in both cases // int aResult0 = 0, aResult1 = 0; // last node, it is a medium one in a quadratic edge @@ -259,13 +274,10 @@ bool NumericalFunctor::GetPoints(const SMDS_MeshElement* anElem, } if ( anIter ) { - double xyz[3]; + SMESH_NodeXYZ p; while( anIter->more() ) { - if ( const SMDS_MeshNode* aNode = static_cast( anIter->next() )) - { - aNode->GetXYZ( xyz ); - theRes.push_back( gp_XYZ( xyz[0], xyz[1], xyz[2] )); - } + if ( p.Set( anIter->next() )) + theRes.push_back( p ); } } @@ -614,7 +626,8 @@ double MaxElementLength3D::GetValue( long theElementId ) aVal = Max(aVal,Max(L7,L8)); break; } - case SMDSEntity_Quad_Penta: { // quadratic pentas + case SMDSEntity_Quad_Penta: + case SMDSEntity_BiQuad_Penta: { // quadratic pentas double L1 = getDistance(P( 1 ),P( 7 )) + getDistance(P( 7 ),P( 2 )); double L2 = getDistance(P( 2 ),P( 8 )) + getDistance(P( 8 ),P( 3 )); double L3 = getDistance(P( 3 ),P( 9 )) + getDistance(P( 9 ),P( 1 )); @@ -710,21 +723,25 @@ SMDSAbs_ElementType MaxElementLength3D::GetType() const double MinimumAngle::GetValue( const TSequenceOfXYZ& P ) { - double aMin; - - if (P.size() <3) + if ( P.size() < 3 ) return 0.; - aMin = getAngle(P( P.size() ), P( 1 ), P( 2 )); - aMin = Min(aMin,getAngle(P( P.size()-1 ), P( P.size() ), P( 1 ))); + double aMaxCos2; + + aMaxCos2 = getCos2( P( P.size() ), P( 1 ), P( 2 )); + aMaxCos2 = Max( aMaxCos2, getCos2( P( P.size()-1 ), P( P.size() ), P( 1 ))); for ( size_t i = 2; i < P.size(); i++ ) { - double A0 = getAngle( P( i-1 ), P( i ), P( i+1 ) ); - aMin = Min(aMin,A0); + double A0 = getCos2( P( i-1 ), P( i ), P( i+1 ) ); + aMaxCos2 = Max( aMaxCos2, A0 ); } + if ( aMaxCos2 < 0 ) + return 0; // all nodes coincide - return aMin * 180.0 / M_PI; + double cos = sqrt( aMaxCos2 ); + if ( cos >= 1 ) return 0; + return acos( cos ) * 180.0 / M_PI; } double MinimumAngle::GetBadRate( double Value, int nbNodes ) const @@ -783,58 +800,51 @@ double AspectRatio::GetValue( const TSequenceOfXYZ& P ) if ( nbNodes == 3 ) { // Compute lengths of the sides - std::vector< double > aLen (nbNodes); - for ( int i = 0; i < nbNodes - 1; i++ ) - aLen[ i ] = getDistance( P( i + 1 ), P( i + 2 ) ); - aLen[ nbNodes - 1 ] = getDistance( P( 1 ), P( nbNodes ) ); + double aLen1 = getDistance( P( 1 ), P( 2 )); + double aLen2 = getDistance( P( 2 ), P( 3 )); + double aLen3 = getDistance( P( 3 ), P( 1 )); // Q = alfa * h * p / S, where // // alfa = sqrt( 3 ) / 6 // h - length of the longest edge // p - half perimeter // S - triangle surface - const double alfa = sqrt( 3. ) / 6.; - double maxLen = Max( aLen[ 0 ], Max( aLen[ 1 ], aLen[ 2 ] ) ); - double half_perimeter = ( aLen[0] + aLen[1] + aLen[2] ) / 2.; - double anArea = getArea( P( 1 ), P( 2 ), P( 3 ) ); + const double alfa = sqrt( 3. ) / 6.; + double maxLen = Max( aLen1, Max( aLen2, aLen3 )); + double half_perimeter = ( aLen1 + aLen2 + aLen3 ) / 2.; + double anArea = getArea( P( 1 ), P( 2 ), P( 3 )); if ( anArea <= theEps ) return theInf; return alfa * maxLen * half_perimeter / anArea; } else if ( nbNodes == 6 ) { // quadratic triangles // Compute lengths of the sides - std::vector< double > aLen (3); - aLen[0] = getDistance( P(1), P(3) ); - aLen[1] = getDistance( P(3), P(5) ); - aLen[2] = getDistance( P(5), P(1) ); - // Q = alfa * h * p / S, where - // - // alfa = sqrt( 3 ) / 6 - // h - length of the longest edge - // p - half perimeter - // S - triangle surface - const double alfa = sqrt( 3. ) / 6.; - double maxLen = Max( aLen[ 0 ], Max( aLen[ 1 ], aLen[ 2 ] ) ); - double half_perimeter = ( aLen[0] + aLen[1] + aLen[2] ) / 2.; - double anArea = getArea( P(1), P(3), P(5) ); + double aLen1 = getDistance( P( 1 ), P( 3 )); + double aLen2 = getDistance( P( 3 ), P( 5 )); + double aLen3 = getDistance( P( 5 ), P( 1 )); + // algo same as for the linear triangle + const double alfa = sqrt( 3. ) / 6.; + double maxLen = Max( aLen1, Max( aLen2, aLen3 )); + double half_perimeter = ( aLen1 + aLen2 + aLen3 ) / 2.; + double anArea = getArea( P( 1 ), P( 3 ), P( 5 )); if ( anArea <= theEps ) return theInf; return alfa * maxLen * half_perimeter / anArea; } else if( nbNodes == 4 ) { // quadrangle // Compute lengths of the sides - std::vector< double > aLen (4); + double aLen[4]; aLen[0] = getDistance( P(1), P(2) ); aLen[1] = getDistance( P(2), P(3) ); aLen[2] = getDistance( P(3), P(4) ); aLen[3] = getDistance( P(4), P(1) ); // Compute lengths of the diagonals - std::vector< double > aDia (2); + double aDia[2]; aDia[0] = getDistance( P(1), P(3) ); aDia[1] = getDistance( P(2), P(4) ); // Compute areas of all triangles which can be built // taking three nodes of the quadrangle - std::vector< double > anArea (4); + double anArea[4]; anArea[0] = getArea( P(1), P(2), P(3) ); anArea[1] = getArea( P(1), P(2), P(4) ); anArea[2] = getArea( P(1), P(3), P(4) ); @@ -850,35 +860,35 @@ double AspectRatio::GetValue( const TSequenceOfXYZ& P ) // Si - areas of the triangles const double alpha = sqrt( 1 / 32. ); double L = Max( aLen[ 0 ], - Max( aLen[ 1 ], - Max( aLen[ 2 ], - Max( aLen[ 3 ], - Max( aDia[ 0 ], aDia[ 1 ] ) ) ) ) ); + Max( aLen[ 1 ], + Max( aLen[ 2 ], + Max( aLen[ 3 ], + Max( aDia[ 0 ], aDia[ 1 ] ) ) ) ) ); double C1 = sqrt( ( aLen[0] * aLen[0] + aLen[1] * aLen[1] + aLen[2] * aLen[2] + aLen[3] * aLen[3] ) / 4. ); double C2 = Min( anArea[ 0 ], - Min( anArea[ 1 ], - Min( anArea[ 2 ], anArea[ 3 ] ) ) ); + Min( anArea[ 1 ], + Min( anArea[ 2 ], anArea[ 3 ] ) ) ); if ( C2 <= theEps ) return theInf; return alpha * L * C1 / C2; } else if( nbNodes == 8 || nbNodes == 9 ) { // nbNodes==8 - quadratic quadrangle // Compute lengths of the sides - std::vector< double > aLen (4); + double aLen[4]; aLen[0] = getDistance( P(1), P(3) ); aLen[1] = getDistance( P(3), P(5) ); aLen[2] = getDistance( P(5), P(7) ); aLen[3] = getDistance( P(7), P(1) ); // Compute lengths of the diagonals - std::vector< double > aDia (2); + double aDia[2]; aDia[0] = getDistance( P(1), P(5) ); aDia[1] = getDistance( P(3), P(7) ); // Compute areas of all triangles which can be built // taking three nodes of the quadrangle - std::vector< double > anArea (4); + double anArea[4]; anArea[0] = getArea( P(1), P(3), P(5) ); anArea[1] = getArea( P(1), P(3), P(7) ); anArea[2] = getArea( P(1), P(5), P(7) ); @@ -1550,246 +1560,240 @@ SMDSAbs_ElementType Length::GetType() const */ //================================================================================ -double Length2D::GetValue( long theElementId ) +double Length2D::GetValue( const TSequenceOfXYZ& P ) { - TSequenceOfXYZ P; - - if ( GetPoints( theElementId, P )) - { - double aVal = 0; - int len = P.size(); - SMDSAbs_EntityType aType = P.getElementEntity(); + double aVal = 0; + int len = P.size(); + SMDSAbs_EntityType aType = P.getElementEntity(); - switch (aType) { - case SMDSEntity_Edge: - if (len == 2) - aVal = getDistance( P( 1 ), P( 2 ) ); - break; - case SMDSEntity_Quad_Edge: - if (len == 3) // quadratic edge - aVal = getDistance(P( 1 ),P( 3 )) + getDistance(P( 3 ),P( 2 )); - break; - case SMDSEntity_Triangle: - if (len == 3){ // triangles - double L1 = getDistance(P( 1 ),P( 2 )); - double L2 = getDistance(P( 2 ),P( 3 )); - double L3 = getDistance(P( 3 ),P( 1 )); - aVal = Min(L1,Min(L2,L3)); - } - break; - case SMDSEntity_Quadrangle: - if (len == 4){ // quadrangles - double L1 = getDistance(P( 1 ),P( 2 )); - double L2 = getDistance(P( 2 ),P( 3 )); - double L3 = getDistance(P( 3 ),P( 4 )); - double L4 = getDistance(P( 4 ),P( 1 )); - aVal = Min(Min(L1,L2),Min(L3,L4)); - } - break; - case SMDSEntity_Quad_Triangle: - case SMDSEntity_BiQuad_Triangle: - if (len >= 6){ // quadratic triangles - double L1 = getDistance(P( 1 ),P( 2 )) + getDistance(P( 2 ),P( 3 )); - double L2 = getDistance(P( 3 ),P( 4 )) + getDistance(P( 4 ),P( 5 )); - double L3 = getDistance(P( 5 ),P( 6 )) + getDistance(P( 6 ),P( 1 )); - aVal = Min(L1,Min(L2,L3)); - } - break; - case SMDSEntity_Quad_Quadrangle: - case SMDSEntity_BiQuad_Quadrangle: - if (len >= 8){ // quadratic quadrangles - double L1 = getDistance(P( 1 ),P( 2 )) + getDistance(P( 2 ),P( 3 )); - double L2 = getDistance(P( 3 ),P( 4 )) + getDistance(P( 4 ),P( 5 )); - double L3 = getDistance(P( 5 ),P( 6 )) + getDistance(P( 6 ),P( 7 )); - double L4 = getDistance(P( 7 ),P( 8 )) + getDistance(P( 8 ),P( 1 )); - aVal = Min(Min(L1,L2),Min(L3,L4)); - } - break; - case SMDSEntity_Tetra: - if (len == 4){ // tetrahedra - double L1 = getDistance(P( 1 ),P( 2 )); - double L2 = getDistance(P( 2 ),P( 3 )); - double L3 = getDistance(P( 3 ),P( 1 )); - double L4 = getDistance(P( 1 ),P( 4 )); - double L5 = getDistance(P( 2 ),P( 4 )); - double L6 = getDistance(P( 3 ),P( 4 )); - aVal = Min(Min(Min(L1,L2),Min(L3,L4)),Min(L5,L6)); - } - break; - case SMDSEntity_Pyramid: - if (len == 5){ // piramids - double L1 = getDistance(P( 1 ),P( 2 )); - double L2 = getDistance(P( 2 ),P( 3 )); - double L3 = getDistance(P( 3 ),P( 4 )); - double L4 = getDistance(P( 4 ),P( 1 )); - double L5 = getDistance(P( 1 ),P( 5 )); - double L6 = getDistance(P( 2 ),P( 5 )); - double L7 = getDistance(P( 3 ),P( 5 )); - double L8 = getDistance(P( 4 ),P( 5 )); - - aVal = Min(Min(Min(L1,L2),Min(L3,L4)),Min(L5,L6)); - aVal = Min(aVal,Min(L7,L8)); - } - break; - case SMDSEntity_Penta: - if (len == 6) { // pentaidres - double L1 = getDistance(P( 1 ),P( 2 )); - double L2 = getDistance(P( 2 ),P( 3 )); - double L3 = getDistance(P( 3 ),P( 1 )); - double L4 = getDistance(P( 4 ),P( 5 )); - double L5 = getDistance(P( 5 ),P( 6 )); - double L6 = getDistance(P( 6 ),P( 4 )); - double L7 = getDistance(P( 1 ),P( 4 )); - double L8 = getDistance(P( 2 ),P( 5 )); - double L9 = getDistance(P( 3 ),P( 6 )); - - aVal = Min(Min(Min(L1,L2),Min(L3,L4)),Min(L5,L6)); - aVal = Min(aVal,Min(Min(L7,L8),L9)); - } - break; - case SMDSEntity_Hexa: - if (len == 8){ // hexahedron - double L1 = getDistance(P( 1 ),P( 2 )); - double L2 = getDistance(P( 2 ),P( 3 )); - double L3 = getDistance(P( 3 ),P( 4 )); - double L4 = getDistance(P( 4 ),P( 1 )); - double L5 = getDistance(P( 5 ),P( 6 )); - double L6 = getDistance(P( 6 ),P( 7 )); - double L7 = getDistance(P( 7 ),P( 8 )); - double L8 = getDistance(P( 8 ),P( 5 )); - double L9 = getDistance(P( 1 ),P( 5 )); - double L10= getDistance(P( 2 ),P( 6 )); - double L11= getDistance(P( 3 ),P( 7 )); - double L12= getDistance(P( 4 ),P( 8 )); - - aVal = Min(Min(Min(L1,L2),Min(L3,L4)),Min(L5,L6)); - aVal = Min(aVal,Min(Min(L7,L8),Min(L9,L10))); - aVal = Min(aVal,Min(L11,L12)); - } - break; - case SMDSEntity_Quad_Tetra: - if (len == 10){ // quadratic tetraidrs - double L1 = getDistance(P( 1 ),P( 5 )) + getDistance(P( 5 ),P( 2 )); - double L2 = getDistance(P( 2 ),P( 6 )) + getDistance(P( 6 ),P( 3 )); - double L3 = getDistance(P( 3 ),P( 7 )) + getDistance(P( 7 ),P( 1 )); - double L4 = getDistance(P( 1 ),P( 8 )) + getDistance(P( 8 ),P( 4 )); - double L5 = getDistance(P( 2 ),P( 9 )) + getDistance(P( 9 ),P( 4 )); - double L6 = getDistance(P( 3 ),P( 10 )) + getDistance(P( 10 ),P( 4 )); - aVal = Min(Min(Min(L1,L2),Min(L3,L4)),Min(L5,L6)); - } - break; - case SMDSEntity_Quad_Pyramid: - if (len == 13){ // quadratic piramids - double L1 = getDistance(P( 1 ),P( 6 )) + getDistance(P( 6 ),P( 2 )); - double L2 = getDistance(P( 2 ),P( 7 )) + getDistance(P( 7 ),P( 3 )); - double L3 = getDistance(P( 3 ),P( 8 )) + getDistance(P( 8 ),P( 4 )); - double L4 = getDistance(P( 4 ),P( 9 )) + getDistance(P( 9 ),P( 1 )); - double L5 = getDistance(P( 1 ),P( 10 )) + getDistance(P( 10 ),P( 5 )); - double L6 = getDistance(P( 2 ),P( 11 )) + getDistance(P( 11 ),P( 5 )); - double L7 = getDistance(P( 3 ),P( 12 )) + getDistance(P( 12 ),P( 5 )); - double L8 = getDistance(P( 4 ),P( 13 )) + getDistance(P( 13 ),P( 5 )); - aVal = Min(Min(Min(L1,L2),Min(L3,L4)),Min(L5,L6)); - aVal = Min(aVal,Min(L7,L8)); - } - break; - case SMDSEntity_Quad_Penta: - if (len == 15){ // quadratic pentaidres - double L1 = getDistance(P( 1 ),P( 7 )) + getDistance(P( 7 ),P( 2 )); - double L2 = getDistance(P( 2 ),P( 8 )) + getDistance(P( 8 ),P( 3 )); - double L3 = getDistance(P( 3 ),P( 9 )) + getDistance(P( 9 ),P( 1 )); - double L4 = getDistance(P( 4 ),P( 10 )) + getDistance(P( 10 ),P( 5 )); - double L5 = getDistance(P( 5 ),P( 11 )) + getDistance(P( 11 ),P( 6 )); - double L6 = getDistance(P( 6 ),P( 12 )) + getDistance(P( 12 ),P( 4 )); - double L7 = getDistance(P( 1 ),P( 13 )) + getDistance(P( 13 ),P( 4 )); - double L8 = getDistance(P( 2 ),P( 14 )) + getDistance(P( 14 ),P( 5 )); - double L9 = getDistance(P( 3 ),P( 15 )) + getDistance(P( 15 ),P( 6 )); - aVal = Min(Min(Min(L1,L2),Min(L3,L4)),Min(L5,L6)); - aVal = Min(aVal,Min(Min(L7,L8),L9)); - } - break; - case SMDSEntity_Quad_Hexa: - case SMDSEntity_TriQuad_Hexa: - if (len >= 20) { // quadratic hexaider - double L1 = getDistance(P( 1 ),P( 9 )) + getDistance(P( 9 ),P( 2 )); - double L2 = getDistance(P( 2 ),P( 10 )) + getDistance(P( 10 ),P( 3 )); - double L3 = getDistance(P( 3 ),P( 11 )) + getDistance(P( 11 ),P( 4 )); - double L4 = getDistance(P( 4 ),P( 12 )) + getDistance(P( 12 ),P( 1 )); - double L5 = getDistance(P( 5 ),P( 13 )) + getDistance(P( 13 ),P( 6 )); - double L6 = getDistance(P( 6 ),P( 14 )) + getDistance(P( 14 ),P( 7 )); - double L7 = getDistance(P( 7 ),P( 15 )) + getDistance(P( 15 ),P( 8 )); - double L8 = getDistance(P( 8 ),P( 16 )) + getDistance(P( 16 ),P( 5 )); - double L9 = getDistance(P( 1 ),P( 17 )) + getDistance(P( 17 ),P( 5 )); - double L10= getDistance(P( 2 ),P( 18 )) + getDistance(P( 18 ),P( 6 )); - double L11= getDistance(P( 3 ),P( 19 )) + getDistance(P( 19 ),P( 7 )); - double L12= getDistance(P( 4 ),P( 20 )) + getDistance(P( 20 ),P( 8 )); - aVal = Min(Min(Min(L1,L2),Min(L3,L4)),Min(L5,L6)); - aVal = Min(aVal,Min(Min(L7,L8),Min(L9,L10))); - aVal = Min(aVal,Min(L11,L12)); - } - break; - case SMDSEntity_Polygon: - if ( len > 1 ) { - aVal = getDistance( P(1), P( P.size() )); - for ( size_t i = 1; i < P.size(); ++i ) - aVal = Min( aVal, getDistance( P( i ), P( i+1 ))); - } - break; - case SMDSEntity_Quad_Polygon: - if ( len > 2 ) { - aVal = getDistance( P(1), P( P.size() )) + getDistance( P(P.size()), P( P.size()-1 )); - for ( size_t i = 1; i < P.size()-1; i += 2 ) - aVal = Min( aVal, getDistance( P( i ), P( i+1 )) + getDistance( P( i+1 ), P( i+2 ))); - } - break; - case SMDSEntity_Hexagonal_Prism: - if (len == 12) { // hexagonal prism - double L1 = getDistance(P( 1 ),P( 2 )); - double L2 = getDistance(P( 2 ),P( 3 )); - double L3 = getDistance(P( 3 ),P( 4 )); - double L4 = getDistance(P( 4 ),P( 5 )); - double L5 = getDistance(P( 5 ),P( 6 )); - double L6 = getDistance(P( 6 ),P( 1 )); - - double L7 = getDistance(P( 7 ), P( 8 )); - double L8 = getDistance(P( 8 ), P( 9 )); - double L9 = getDistance(P( 9 ), P( 10 )); - double L10= getDistance(P( 10 ),P( 11 )); - double L11= getDistance(P( 11 ),P( 12 )); - double L12= getDistance(P( 12 ),P( 7 )); - - double L13 = getDistance(P( 1 ),P( 7 )); - double L14 = getDistance(P( 2 ),P( 8 )); - double L15 = getDistance(P( 3 ),P( 9 )); - double L16 = getDistance(P( 4 ),P( 10 )); - double L17 = getDistance(P( 5 ),P( 11 )); - double L18 = getDistance(P( 6 ),P( 12 )); - aVal = Min(Min(Min(L1,L2),Min(L3,L4)),Min(L5,L6)); - aVal = Min(aVal, Min(Min(Min(L7,L8),Min(L9,L10)),Min(L11,L12))); - aVal = Min(aVal, Min(Min(Min(L13,L14),Min(L15,L16)),Min(L17,L18))); - } - break; - case SMDSEntity_Polyhedra: - { + switch (aType) { + case SMDSEntity_Edge: + if (len == 2) + aVal = getDistance( P( 1 ), P( 2 ) ); + break; + case SMDSEntity_Quad_Edge: + if (len == 3) // quadratic edge + aVal = getDistance(P( 1 ),P( 3 )) + getDistance(P( 3 ),P( 2 )); + break; + case SMDSEntity_Triangle: + if (len == 3){ // triangles + double L1 = getDistance(P( 1 ),P( 2 )); + double L2 = getDistance(P( 2 ),P( 3 )); + double L3 = getDistance(P( 3 ),P( 1 )); + aVal = Min(L1,Min(L2,L3)); } break; - default: - return 0; + case SMDSEntity_Quadrangle: + if (len == 4){ // quadrangles + double L1 = getDistance(P( 1 ),P( 2 )); + double L2 = getDistance(P( 2 ),P( 3 )); + double L3 = getDistance(P( 3 ),P( 4 )); + double L4 = getDistance(P( 4 ),P( 1 )); + aVal = Min(Min(L1,L2),Min(L3,L4)); + } + break; + case SMDSEntity_Quad_Triangle: + case SMDSEntity_BiQuad_Triangle: + if (len >= 6){ // quadratic triangles + double L1 = getDistance(P( 1 ),P( 2 )) + getDistance(P( 2 ),P( 3 )); + double L2 = getDistance(P( 3 ),P( 4 )) + getDistance(P( 4 ),P( 5 )); + double L3 = getDistance(P( 5 ),P( 6 )) + getDistance(P( 6 ),P( 1 )); + aVal = Min(L1,Min(L2,L3)); } + break; + case SMDSEntity_Quad_Quadrangle: + case SMDSEntity_BiQuad_Quadrangle: + if (len >= 8){ // quadratic quadrangles + double L1 = getDistance(P( 1 ),P( 2 )) + getDistance(P( 2 ),P( 3 )); + double L2 = getDistance(P( 3 ),P( 4 )) + getDistance(P( 4 ),P( 5 )); + double L3 = getDistance(P( 5 ),P( 6 )) + getDistance(P( 6 ),P( 7 )); + double L4 = getDistance(P( 7 ),P( 8 )) + getDistance(P( 8 ),P( 1 )); + aVal = Min(Min(L1,L2),Min(L3,L4)); + } + break; + case SMDSEntity_Tetra: + if (len == 4){ // tetrahedra + double L1 = getDistance(P( 1 ),P( 2 )); + double L2 = getDistance(P( 2 ),P( 3 )); + double L3 = getDistance(P( 3 ),P( 1 )); + double L4 = getDistance(P( 1 ),P( 4 )); + double L5 = getDistance(P( 2 ),P( 4 )); + double L6 = getDistance(P( 3 ),P( 4 )); + aVal = Min(Min(Min(L1,L2),Min(L3,L4)),Min(L5,L6)); + } + break; + case SMDSEntity_Pyramid: + if (len == 5){ // pyramid + double L1 = getDistance(P( 1 ),P( 2 )); + double L2 = getDistance(P( 2 ),P( 3 )); + double L3 = getDistance(P( 3 ),P( 4 )); + double L4 = getDistance(P( 4 ),P( 1 )); + double L5 = getDistance(P( 1 ),P( 5 )); + double L6 = getDistance(P( 2 ),P( 5 )); + double L7 = getDistance(P( 3 ),P( 5 )); + double L8 = getDistance(P( 4 ),P( 5 )); + + aVal = Min(Min(Min(L1,L2),Min(L3,L4)),Min(L5,L6)); + aVal = Min(aVal,Min(L7,L8)); + } + break; + case SMDSEntity_Penta: + if (len == 6) { // pentahedron + double L1 = getDistance(P( 1 ),P( 2 )); + double L2 = getDistance(P( 2 ),P( 3 )); + double L3 = getDistance(P( 3 ),P( 1 )); + double L4 = getDistance(P( 4 ),P( 5 )); + double L5 = getDistance(P( 5 ),P( 6 )); + double L6 = getDistance(P( 6 ),P( 4 )); + double L7 = getDistance(P( 1 ),P( 4 )); + double L8 = getDistance(P( 2 ),P( 5 )); + double L9 = getDistance(P( 3 ),P( 6 )); - if (aVal < 0 ) { - return 0.; + aVal = Min(Min(Min(L1,L2),Min(L3,L4)),Min(L5,L6)); + aVal = Min(aVal,Min(Min(L7,L8),L9)); } + break; + case SMDSEntity_Hexa: + if (len == 8){ // hexahedron + double L1 = getDistance(P( 1 ),P( 2 )); + double L2 = getDistance(P( 2 ),P( 3 )); + double L3 = getDistance(P( 3 ),P( 4 )); + double L4 = getDistance(P( 4 ),P( 1 )); + double L5 = getDistance(P( 5 ),P( 6 )); + double L6 = getDistance(P( 6 ),P( 7 )); + double L7 = getDistance(P( 7 ),P( 8 )); + double L8 = getDistance(P( 8 ),P( 5 )); + double L9 = getDistance(P( 1 ),P( 5 )); + double L10= getDistance(P( 2 ),P( 6 )); + double L11= getDistance(P( 3 ),P( 7 )); + double L12= getDistance(P( 4 ),P( 8 )); - if ( myPrecision >= 0 ) - { - double prec = pow( 10., (double)( myPrecision ) ); - aVal = floor( aVal * prec + 0.5 ) / prec; + aVal = Min(Min(Min(L1,L2),Min(L3,L4)),Min(L5,L6)); + aVal = Min(aVal,Min(Min(L7,L8),Min(L9,L10))); + aVal = Min(aVal,Min(L11,L12)); + } + break; + case SMDSEntity_Quad_Tetra: + if (len == 10){ // quadratic tetrahedron + double L1 = getDistance(P( 1 ),P( 5 )) + getDistance(P( 5 ),P( 2 )); + double L2 = getDistance(P( 2 ),P( 6 )) + getDistance(P( 6 ),P( 3 )); + double L3 = getDistance(P( 3 ),P( 7 )) + getDistance(P( 7 ),P( 1 )); + double L4 = getDistance(P( 1 ),P( 8 )) + getDistance(P( 8 ),P( 4 )); + double L5 = getDistance(P( 2 ),P( 9 )) + getDistance(P( 9 ),P( 4 )); + double L6 = getDistance(P( 3 ),P( 10 )) + getDistance(P( 10 ),P( 4 )); + aVal = Min(Min(Min(L1,L2),Min(L3,L4)),Min(L5,L6)); + } + break; + case SMDSEntity_Quad_Pyramid: + if (len == 13){ // quadratic pyramid + double L1 = getDistance(P( 1 ),P( 6 )) + getDistance(P( 6 ),P( 2 )); + double L2 = getDistance(P( 2 ),P( 7 )) + getDistance(P( 7 ),P( 3 )); + double L3 = getDistance(P( 3 ),P( 8 )) + getDistance(P( 8 ),P( 4 )); + double L4 = getDistance(P( 4 ),P( 9 )) + getDistance(P( 9 ),P( 1 )); + double L5 = getDistance(P( 1 ),P( 10 )) + getDistance(P( 10 ),P( 5 )); + double L6 = getDistance(P( 2 ),P( 11 )) + getDistance(P( 11 ),P( 5 )); + double L7 = getDistance(P( 3 ),P( 12 )) + getDistance(P( 12 ),P( 5 )); + double L8 = getDistance(P( 4 ),P( 13 )) + getDistance(P( 13 ),P( 5 )); + aVal = Min(Min(Min(L1,L2),Min(L3,L4)),Min(L5,L6)); + aVal = Min(aVal,Min(L7,L8)); + } + break; + case SMDSEntity_Quad_Penta: + case SMDSEntity_BiQuad_Penta: + if (len >= 15){ // quadratic pentahedron + double L1 = getDistance(P( 1 ),P( 7 )) + getDistance(P( 7 ),P( 2 )); + double L2 = getDistance(P( 2 ),P( 8 )) + getDistance(P( 8 ),P( 3 )); + double L3 = getDistance(P( 3 ),P( 9 )) + getDistance(P( 9 ),P( 1 )); + double L4 = getDistance(P( 4 ),P( 10 )) + getDistance(P( 10 ),P( 5 )); + double L5 = getDistance(P( 5 ),P( 11 )) + getDistance(P( 11 ),P( 6 )); + double L6 = getDistance(P( 6 ),P( 12 )) + getDistance(P( 12 ),P( 4 )); + double L7 = getDistance(P( 1 ),P( 13 )) + getDistance(P( 13 ),P( 4 )); + double L8 = getDistance(P( 2 ),P( 14 )) + getDistance(P( 14 ),P( 5 )); + double L9 = getDistance(P( 3 ),P( 15 )) + getDistance(P( 15 ),P( 6 )); + aVal = Min(Min(Min(L1,L2),Min(L3,L4)),Min(L5,L6)); + aVal = Min(aVal,Min(Min(L7,L8),L9)); + } + break; + case SMDSEntity_Quad_Hexa: + case SMDSEntity_TriQuad_Hexa: + if (len >= 20) { // quadratic hexahedron + double L1 = getDistance(P( 1 ),P( 9 )) + getDistance(P( 9 ),P( 2 )); + double L2 = getDistance(P( 2 ),P( 10 )) + getDistance(P( 10 ),P( 3 )); + double L3 = getDistance(P( 3 ),P( 11 )) + getDistance(P( 11 ),P( 4 )); + double L4 = getDistance(P( 4 ),P( 12 )) + getDistance(P( 12 ),P( 1 )); + double L5 = getDistance(P( 5 ),P( 13 )) + getDistance(P( 13 ),P( 6 )); + double L6 = getDistance(P( 6 ),P( 14 )) + getDistance(P( 14 ),P( 7 )); + double L7 = getDistance(P( 7 ),P( 15 )) + getDistance(P( 15 ),P( 8 )); + double L8 = getDistance(P( 8 ),P( 16 )) + getDistance(P( 16 ),P( 5 )); + double L9 = getDistance(P( 1 ),P( 17 )) + getDistance(P( 17 ),P( 5 )); + double L10= getDistance(P( 2 ),P( 18 )) + getDistance(P( 18 ),P( 6 )); + double L11= getDistance(P( 3 ),P( 19 )) + getDistance(P( 19 ),P( 7 )); + double L12= getDistance(P( 4 ),P( 20 )) + getDistance(P( 20 ),P( 8 )); + aVal = Min(Min(Min(L1,L2),Min(L3,L4)),Min(L5,L6)); + aVal = Min(aVal,Min(Min(L7,L8),Min(L9,L10))); + aVal = Min(aVal,Min(L11,L12)); } + break; + case SMDSEntity_Polygon: + if ( len > 1 ) { + aVal = getDistance( P(1), P( P.size() )); + for ( size_t i = 1; i < P.size(); ++i ) + aVal = Min( aVal, getDistance( P( i ), P( i+1 ))); + } + break; + case SMDSEntity_Quad_Polygon: + if ( len > 2 ) { + aVal = getDistance( P(1), P( P.size() )) + getDistance( P(P.size()), P( P.size()-1 )); + for ( size_t i = 1; i < P.size()-1; i += 2 ) + aVal = Min( aVal, getDistance( P( i ), P( i+1 )) + getDistance( P( i+1 ), P( i+2 ))); + } + break; + case SMDSEntity_Hexagonal_Prism: + if (len == 12) { // hexagonal prism + double L1 = getDistance(P( 1 ),P( 2 )); + double L2 = getDistance(P( 2 ),P( 3 )); + double L3 = getDistance(P( 3 ),P( 4 )); + double L4 = getDistance(P( 4 ),P( 5 )); + double L5 = getDistance(P( 5 ),P( 6 )); + double L6 = getDistance(P( 6 ),P( 1 )); + + double L7 = getDistance(P( 7 ), P( 8 )); + double L8 = getDistance(P( 8 ), P( 9 )); + double L9 = getDistance(P( 9 ), P( 10 )); + double L10= getDistance(P( 10 ),P( 11 )); + double L11= getDistance(P( 11 ),P( 12 )); + double L12= getDistance(P( 12 ),P( 7 )); + + double L13 = getDistance(P( 1 ),P( 7 )); + double L14 = getDistance(P( 2 ),P( 8 )); + double L15 = getDistance(P( 3 ),P( 9 )); + double L16 = getDistance(P( 4 ),P( 10 )); + double L17 = getDistance(P( 5 ),P( 11 )); + double L18 = getDistance(P( 6 ),P( 12 )); + aVal = Min(Min(Min(L1,L2),Min(L3,L4)),Min(L5,L6)); + aVal = Min(aVal, Min(Min(Min(L7,L8),Min(L9,L10)),Min(L11,L12))); + aVal = Min(aVal, Min(Min(Min(L13,L14),Min(L15,L16)),Min(L17,L18))); + } + break; + case SMDSEntity_Polyhedra: + { + } + break; + default: + return 0; + } - return aVal; + if (aVal < 0 ) { + return 0.; + } + if ( myPrecision >= 0 ) + { + double prec = pow( 10., (double)( myPrecision ) ); + aVal = floor( aVal * prec + 0.5 ) / prec; } - return 0.; + + return aVal; } double Length2D::GetBadRate( double Value, int /*nbNodes*/ ) const @@ -1832,10 +1836,10 @@ void Length2D::GetValues(TValues& theValues) dynamic_cast(anElem); // use special nodes iterator SMDS_ElemIteratorPtr anIter = F->interlacedNodesElemIterator(); - long aNodeId[4]; + long aNodeId[4] = { 0,0,0,0 }; gp_Pnt P[4]; - double aLength; + double aLength = 0; const SMDS_MeshElement* aNode; if(anIter->more()){ aNode = anIter->next(); @@ -1869,7 +1873,7 @@ void Length2D::GetValues(TValues& theValues) } else { SMDS_ElemIteratorPtr aNodesIter = anElem->nodesIterator(); - long aNodeId[2]; + long aNodeId[2] = {0,0}; gp_Pnt P[3]; double aLength; @@ -1904,6 +1908,97 @@ void Length2D::GetValues(TValues& theValues) } } +//================================================================================ +/* + Class : Deflection2D + Description : Functor for calculating number of faces conneted to the edge +*/ +//================================================================================ + +double Deflection2D::GetValue( const TSequenceOfXYZ& P ) +{ + if ( myMesh && P.getElement() ) + { + // get underlying surface + if ( myShapeIndex != P.getElement()->getshapeId() ) + { + mySurface.Nullify(); + myShapeIndex = P.getElement()->getshapeId(); + const TopoDS_Shape& S = + static_cast< const SMESHDS_Mesh* >( myMesh )->IndexToShape( myShapeIndex ); + if ( !S.IsNull() && S.ShapeType() == TopAbs_FACE ) + { + mySurface = new ShapeAnalysis_Surface( BRep_Tool::Surface( TopoDS::Face( S ))); + + GeomLib_IsPlanarSurface isPlaneCheck( mySurface->Surface() ); + if ( isPlaneCheck.IsPlanar() ) + myPlane.reset( new gp_Pln( isPlaneCheck.Plan() )); + else + myPlane.reset(); + } + } + // project gravity center to the surface + if ( !mySurface.IsNull() ) + { + gp_XYZ gc(0,0,0); + gp_XY uv(0,0); + int nbUV = 0; + for ( size_t i = 0; i < P.size(); ++i ) + { + gc += P(i+1); + + if ( const SMDS_FacePosition* fPos = dynamic_cast + ( P.getElement()->GetNode( i )->GetPosition() )) + { + uv.ChangeCoord(1) += fPos->GetUParameter(); + uv.ChangeCoord(2) += fPos->GetVParameter(); + ++nbUV; + } + } + gc /= P.size(); + if ( nbUV ) uv /= nbUV; + + double maxLen = MaxElementLength2D().GetValue( P ); + double tol = 1e-3 * maxLen; + double dist; + if ( myPlane ) + { + dist = myPlane->Distance( gc ); + if ( dist < tol ) + dist = 0; + } + else + { + if ( uv.X() != 0 && uv.Y() != 0 ) // faster way + mySurface->NextValueOfUV( uv, gc, tol, 0.5 * maxLen ); + else + mySurface->ValueOfUV( gc, tol ); + dist = mySurface->Gap(); + } + return Round( dist ); + } + } + return 0; +} + +void Deflection2D::SetMesh( const SMDS_Mesh* theMesh ) +{ + NumericalFunctor::SetMesh( dynamic_cast( theMesh )); + myShapeIndex = -100; + myPlane.reset(); +} + +SMDSAbs_ElementType Deflection2D::GetType() const +{ + return SMDSAbs_Face; +} + +double Deflection2D::GetBadRate( double Value, int /*nbNodes*/ ) const +{ + // meaningless as it is not quality control functor + return Value; +} + //================================================================================ /* Class : MultiConnection @@ -1957,7 +2052,7 @@ double MultiConnection2D::GetValue( long theElementId ) SMDS_ElemIteratorPtr anIter = aFaceElem->nodesIterator(); if (!anIter) break; - const SMDS_MeshNode *aNode, *aNode0; + const SMDS_MeshNode *aNode, *aNode0 = 0; TColStd_MapOfInteger aMap, aMapPrev; for (i = 0; i <= len; i++) { @@ -2038,7 +2133,7 @@ void MultiConnection2D::GetValues(MValues& theValues) (anElem)->interlacedNodesElemIterator(); else aNodesIter = anElem->nodesIterator(); - long aNodeId[3]; + long aNodeId[3] = {0,0,0}; //int aNbConnects=0; const SMDS_MeshNode* aNode0; @@ -2114,6 +2209,42 @@ SMDSAbs_ElementType BallDiameter::GetType() const return SMDSAbs_Ball; } +//================================================================================ +/* + Class : NodeConnectivityNumber + Description : Functor returning number of elements connected to a node +*/ +//================================================================================ + +double NodeConnectivityNumber::GetValue( long theId ) +{ + double nb = 0; + + if ( const SMDS_MeshNode* node = myMesh->FindNode( theId )) + { + SMDSAbs_ElementType type; + if ( myMesh->NbVolumes() > 0 ) + type = SMDSAbs_Volume; + else if ( myMesh->NbFaces() > 0 ) + type = SMDSAbs_Face; + else if ( myMesh->NbEdges() > 0 ) + type = SMDSAbs_Edge; + else + return 0; + nb = node->NbInverseElements( type ); + } + return nb; +} + +double NodeConnectivityNumber::GetBadRate( double Value, int /*nbNodes*/ ) const +{ + return Value; +} + +SMDSAbs_ElementType NodeConnectivityNumber::GetType() const +{ + return SMDSAbs_Node; +} /* PREDICATES @@ -2511,7 +2642,7 @@ void FreeEdges::GetBoreders(TBorders& theBorders) interlacedNodesElemIterator(); else aNodesIter = anElem->nodesIterator(); - long aNodeId[2]; + long aNodeId[2] = {0,0}; const SMDS_MeshElement* aNode; if(aNodesIter->more()){ aNode = aNodesIter->next(); @@ -2612,7 +2743,7 @@ bool FreeFaces::IsSatisfy( long theId ) for ( ; volItr != volEnd; ++volItr ) if ( (*volItr).second >= nbNode ) nbVol++; - // face is not free if number of volumes constructed on thier nodes more than one + // face is not free if number of volumes constructed on their nodes more than one return (nbVol < 2); } @@ -2660,7 +2791,7 @@ SMDSAbs_ElementType LinearOrQuadratic::GetType() const //================================================================================ /* Class : GroupColor - Description : Functor for check color of group to whic mesh element belongs to + Description : Functor for check color of group to which mesh element belongs to */ //================================================================================ @@ -3218,7 +3349,7 @@ bool RangeOfIds::SetRangeStr( const TCollection_AsciiString& theStr ) { char c = aStr.Value( i ); if ( !isdigit( c ) && c != ',' && c != '-' ) - aStr.SetValue( i, ' '); + aStr.SetValue( i, ','); } aStr.RemoveAll( ' ' ); @@ -3949,9 +4080,9 @@ SMDSAbs_ElementType BelongToMeshGroup::GetType() const return myGroup ? myGroup->GetType() : SMDSAbs_All; } -/* - ElementsOnSurface -*/ +//================================================================================ +// ElementsOnSurface +//================================================================================ ElementsOnSurface::ElementsOnSurface() { @@ -4085,15 +4216,71 @@ bool ElementsOnSurface::isOnSurface( const SMDS_MeshNode* theNode ) } -/* - ElementsOnShape -*/ +//================================================================================ +// ElementsOnShape +//================================================================================ -ElementsOnShape::ElementsOnShape() - : //myMesh(0), - myType(SMDSAbs_All), - myToler(Precision::Confusion()), - myAllNodesFlag(false) +namespace { + const int theIsCheckedFlag = 0x0000100; +} + +struct ElementsOnShape::Classifier +{ + Classifier() { mySolidClfr = 0; myFlags = 0; } + ~Classifier(); + void Init(const TopoDS_Shape& s, double tol, const Bnd_B3d* box = 0 ); + bool IsOut(const gp_Pnt& p) { return SetChecked( true ), (this->*myIsOutFun)( p ); } + TopAbs_ShapeEnum ShapeType() const { return myShape.ShapeType(); } + const TopoDS_Shape& Shape() const { return myShape; } + const Bnd_B3d* GetBndBox() const { return & myBox; } + bool IsChecked() { return myFlags & theIsCheckedFlag; } + bool IsSetFlag( int flag ) const { return myFlags & flag; } + void SetChecked( bool is ) { is ? SetFlag( theIsCheckedFlag ) : UnsetFlag( theIsCheckedFlag ); } + void SetFlag ( int flag ) { myFlags |= flag; } + void UnsetFlag( int flag ) { myFlags &= ~flag; } + +private: + bool isOutOfSolid (const gp_Pnt& p); + bool isOutOfBox (const gp_Pnt& p); + bool isOutOfFace (const gp_Pnt& p); + bool isOutOfEdge (const gp_Pnt& p); + bool isOutOfVertex(const gp_Pnt& p); + bool isBox (const TopoDS_Shape& s); + + bool (Classifier::* myIsOutFun)(const gp_Pnt& p); + BRepClass3d_SolidClassifier* mySolidClfr; // ptr because of a run-time forbidden copy-constructor + Bnd_B3d myBox; + GeomAPI_ProjectPointOnSurf myProjFace; + GeomAPI_ProjectPointOnCurve myProjEdge; + gp_Pnt myVertexXYZ; + TopoDS_Shape myShape; + double myTol; + int myFlags; +}; + +struct ElementsOnShape::OctreeClassifier : public SMESH_Octree +{ + OctreeClassifier( const std::vector< ElementsOnShape::Classifier* >& classifiers ); + OctreeClassifier( const OctreeClassifier* otherTree, + const std::vector< ElementsOnShape::Classifier >& clsOther, + std::vector< ElementsOnShape::Classifier >& cls ); + void GetClassifiersAtPoint( const gp_XYZ& p, + std::vector< ElementsOnShape::Classifier* >& classifiers ); +protected: + OctreeClassifier() {} + SMESH_Octree* newChild() const { return new OctreeClassifier; } + void buildChildrenData(); + Bnd_B3d* buildRootBox(); + + std::vector< ElementsOnShape::Classifier* > myClassifiers; +}; + + +ElementsOnShape::ElementsOnShape(): + myOctree(0), + myType(SMDSAbs_All), + myToler(Precision::Confusion()), + myAllNodesFlag(false) { } @@ -4102,6 +4289,25 @@ ElementsOnShape::~ElementsOnShape() clearClassifiers(); } +Predicate* ElementsOnShape::clone() const +{ + ElementsOnShape* cln = new ElementsOnShape(); + cln->SetAllNodes ( myAllNodesFlag ); + cln->SetTolerance( myToler ); + cln->SetMesh ( myMeshModifTracer.GetMesh() ); + cln->myShape = myShape; // avoid creation of myClassifiers + cln->SetShape ( myShape, myType ); + cln->myClassifiers.resize( myClassifiers.size() ); + for ( size_t i = 0; i < myClassifiers.size(); ++i ) + cln->myClassifiers[ i ].Init( BRepBuilderAPI_Copy( myClassifiers[ i ].Shape()), + myToler, myClassifiers[ i ].GetBndBox() ); + if ( myOctree ) // copy myOctree + { + cln->myOctree = new OctreeClassifier( myOctree, myClassifiers, cln->myClassifiers ); + } + return cln; +} + SMDSAbs_ElementType ElementsOnShape::GetType() const { return myType; @@ -4167,27 +4373,32 @@ void ElementsOnShape::setNodeIsOut( const SMDS_MeshNode* n, bool isOut ) void ElementsOnShape::SetShape (const TopoDS_Shape& theShape, const SMDSAbs_ElementType theType) { + bool shapeChanges = ( myShape != theShape ); myType = theType; myShape = theShape; if ( myShape.IsNull() ) return; - TopTools_IndexedMapOfShape shapesMap; - TopAbs_ShapeEnum shapeTypes[4] = { TopAbs_SOLID, TopAbs_FACE, TopAbs_EDGE, TopAbs_VERTEX }; - TopExp_Explorer sub; - for ( int i = 0; i < 4; ++i ) + if ( shapeChanges ) { - if ( shapesMap.IsEmpty() ) - for ( sub.Init( myShape, shapeTypes[i] ); sub.More(); sub.Next() ) - shapesMap.Add( sub.Current() ); - if ( i > 0 ) - for ( sub.Init( myShape, shapeTypes[i], shapeTypes[i-1] ); sub.More(); sub.Next() ) - shapesMap.Add( sub.Current() ); - } + // find most complex shapes + TopTools_IndexedMapOfShape shapesMap; + TopAbs_ShapeEnum shapeTypes[4] = { TopAbs_SOLID, TopAbs_FACE, TopAbs_EDGE, TopAbs_VERTEX }; + TopExp_Explorer sub; + for ( int i = 0; i < 4; ++i ) + { + if ( shapesMap.IsEmpty() ) + for ( sub.Init( myShape, shapeTypes[i] ); sub.More(); sub.Next() ) + shapesMap.Add( sub.Current() ); + if ( i > 0 ) + for ( sub.Init( myShape, shapeTypes[i], shapeTypes[i-1] ); sub.More(); sub.Next() ) + shapesMap.Add( sub.Current() ); + } - clearClassifiers(); - myClassifiers.resize( shapesMap.Extent() ); - for ( int i = 0; i < shapesMap.Extent(); ++i ) - myClassifiers[ i ] = new TClassifier( shapesMap( i+1 ), myToler ); + clearClassifiers(); + myClassifiers.resize( shapesMap.Extent() ); + for ( int i = 0; i < shapesMap.Extent(); ++i ) + myClassifiers[ i ].Init( shapesMap( i+1 ), myToler ); + } if ( theType == SMDSAbs_Node ) { @@ -4202,23 +4413,42 @@ void ElementsOnShape::SetShape (const TopoDS_Shape& theShape, void ElementsOnShape::clearClassifiers() { - for ( size_t i = 0; i < myClassifiers.size(); ++i ) - delete myClassifiers[ i ]; + // for ( size_t i = 0; i < myClassifiers.size(); ++i ) + // delete myClassifiers[ i ]; myClassifiers.clear(); + + delete myOctree; + myOctree = 0; } -bool ElementsOnShape::IsSatisfy (long elemId) +bool ElementsOnShape::IsSatisfy( long elemId ) { - const SMDS_Mesh* mesh = myMeshModifTracer.GetMesh(); - const SMDS_MeshElement* elem = - ( myType == SMDSAbs_Node ? mesh->FindNode( elemId ) : mesh->FindElement( elemId )); - if ( !elem || myClassifiers.empty() ) + if ( myClassifiers.empty() ) + return false; + + const SMDS_Mesh* mesh = myMeshModifTracer.GetMesh(); + if ( myType == SMDSAbs_Node ) + return IsSatisfy( mesh->FindNode( elemId )); + return IsSatisfy( mesh->FindElement( elemId )); +} + +bool ElementsOnShape::IsSatisfy (const SMDS_MeshElement* elem) +{ + if ( !elem ) return false; bool isSatisfy = myAllNodesFlag, isNodeOut; gp_XYZ centerXYZ (0, 0, 0); + if ( !myOctree && myClassifiers.size() > 5 ) + { + myWorkClassifiers.resize( myClassifiers.size() ); + for ( size_t i = 0; i < myClassifiers.size(); ++i ) + myWorkClassifiers[ i ] = & myClassifiers[ i ]; + myOctree = new OctreeClassifier( myWorkClassifiers ); + } + SMDS_ElemIteratorPtr aNodeItr = elem->nodesIterator(); while (aNodeItr->more() && (isSatisfy == myAllNodesFlag)) { @@ -4228,99 +4458,198 @@ bool ElementsOnShape::IsSatisfy (long elemId) isNodeOut = true; if ( !getNodeIsOut( aPnt._node, isNodeOut )) { - for ( size_t i = 0; i < myClassifiers.size() && isNodeOut; ++i ) - isNodeOut = myClassifiers[i]->IsOut( aPnt ); + if ( myOctree ) + { + myWorkClassifiers.clear(); + myOctree->GetClassifiersAtPoint( aPnt, myWorkClassifiers ); + for ( size_t i = 0; i < myWorkClassifiers.size(); ++i ) + myWorkClassifiers[i]->SetChecked( false ); + + for ( size_t i = 0; i < myWorkClassifiers.size() && isNodeOut; ++i ) + if ( !myWorkClassifiers[i]->IsChecked() ) + isNodeOut = myWorkClassifiers[i]->IsOut( aPnt ); + } + else + { + for ( size_t i = 0; i < myClassifiers.size() && isNodeOut; ++i ) + isNodeOut = myClassifiers[i].IsOut( aPnt ); + } setNodeIsOut( aPnt._node, isNodeOut ); } isSatisfy = !isNodeOut; } // Check the center point for volumes MantisBug 0020168 - if (isSatisfy && - myAllNodesFlag && - myClassifiers[0]->ShapeType() == TopAbs_SOLID) + if ( isSatisfy && + myAllNodesFlag && + myClassifiers[0].ShapeType() == TopAbs_SOLID ) { centerXYZ /= elem->NbNodes(); isSatisfy = false; - for ( size_t i = 0; i < myClassifiers.size() && !isSatisfy; ++i ) - isSatisfy = ! myClassifiers[i]->IsOut( centerXYZ ); + if ( myOctree ) + for ( size_t i = 0; i < myWorkClassifiers.size() && !isSatisfy; ++i ) + isSatisfy = ! myWorkClassifiers[i]->IsOut( centerXYZ ); + else + for ( size_t i = 0; i < myClassifiers.size() && !isSatisfy; ++i ) + isSatisfy = ! myClassifiers[i].IsOut( centerXYZ ); } return isSatisfy; } -TopAbs_ShapeEnum ElementsOnShape::TClassifier::ShapeType() const +bool ElementsOnShape::IsSatisfy (const SMDS_MeshNode* node, + TopoDS_Shape* okShape) { - return myShape.ShapeType(); -} + if ( !node ) + return false; -bool ElementsOnShape::TClassifier::IsOut(const gp_Pnt& p) -{ - return (this->*myIsOutFun)( p ); + if ( !myOctree && myClassifiers.size() > 5 ) + { + myWorkClassifiers.resize( myClassifiers.size() ); + for ( size_t i = 0; i < myClassifiers.size(); ++i ) + myWorkClassifiers[ i ] = & myClassifiers[ i ]; + myOctree = new OctreeClassifier( myWorkClassifiers ); + } + + bool isNodeOut = true; + + if ( okShape || !getNodeIsOut( node, isNodeOut )) + { + SMESH_NodeXYZ aPnt = node; + if ( myOctree ) + { + myWorkClassifiers.clear(); + myOctree->GetClassifiersAtPoint( aPnt, myWorkClassifiers ); + + for ( size_t i = 0; i < myWorkClassifiers.size(); ++i ) + myWorkClassifiers[i]->SetChecked( false ); + + for ( size_t i = 0; i < myWorkClassifiers.size(); ++i ) + if ( !myWorkClassifiers[i]->IsChecked() && + !myWorkClassifiers[i]->IsOut( aPnt )) + { + isNodeOut = false; + if ( okShape ) + *okShape = myWorkClassifiers[i]->Shape(); + break; + } + } + else + { + for ( size_t i = 0; i < myClassifiers.size(); ++i ) + if ( !myClassifiers[i].IsOut( aPnt )) + { + isNodeOut = false; + if ( okShape ) + *okShape = myWorkClassifiers[i]->Shape(); + break; + } + } + setNodeIsOut( node, isNodeOut ); + } + + return !isNodeOut; } -void ElementsOnShape::TClassifier::Init (const TopoDS_Shape& theShape, double theTol) +void ElementsOnShape::Classifier::Init( const TopoDS_Shape& theShape, + double theTol, + const Bnd_B3d* theBox ) { myShape = theShape; myTol = theTol; + myFlags = 0; + + bool isShapeBox = false; switch ( myShape.ShapeType() ) { - case TopAbs_SOLID: { - if ( isBox( theShape )) + case TopAbs_SOLID: + { + if (( isShapeBox = isBox( theShape ))) { - myIsOutFun = & ElementsOnShape::TClassifier::isOutOfBox; + myIsOutFun = & ElementsOnShape::Classifier::isOutOfBox; } else { - mySolidClfr.Load(theShape); - myIsOutFun = & ElementsOnShape::TClassifier::isOutOfSolid; + mySolidClfr = new BRepClass3d_SolidClassifier(theShape); + myIsOutFun = & ElementsOnShape::Classifier::isOutOfSolid; } break; } - case TopAbs_FACE: { + case TopAbs_FACE: + { Standard_Real u1,u2,v1,v2; Handle(Geom_Surface) surf = BRep_Tool::Surface( TopoDS::Face( theShape )); surf->Bounds( u1,u2,v1,v2 ); myProjFace.Init(surf, u1,u2, v1,v2, myTol ); - myIsOutFun = & ElementsOnShape::TClassifier::isOutOfFace; + myIsOutFun = & ElementsOnShape::Classifier::isOutOfFace; break; } - case TopAbs_EDGE: { + case TopAbs_EDGE: + { Standard_Real u1, u2; - Handle(Geom_Curve) curve = BRep_Tool::Curve( TopoDS::Edge(theShape), u1, u2); + Handle(Geom_Curve) curve = BRep_Tool::Curve( TopoDS::Edge( theShape ), u1, u2); myProjEdge.Init(curve, u1, u2); - myIsOutFun = & ElementsOnShape::TClassifier::isOutOfEdge; + myIsOutFun = & ElementsOnShape::Classifier::isOutOfEdge; break; } - case TopAbs_VERTEX:{ + case TopAbs_VERTEX: + { myVertexXYZ = BRep_Tool::Pnt( TopoDS::Vertex( theShape ) ); - myIsOutFun = & ElementsOnShape::TClassifier::isOutOfVertex; + myIsOutFun = & ElementsOnShape::Classifier::isOutOfVertex; break; } default: - throw SALOME_Exception("Programmer error in usage of ElementsOnShape::TClassifier"); + throw SALOME_Exception("Programmer error in usage of ElementsOnShape::Classifier"); } + + if ( !isShapeBox ) + { + if ( theBox ) + { + myBox = *theBox; + } + else + { + Bnd_Box box; + BRepBndLib::Add( myShape, box ); + myBox.Clear(); + myBox.Add( box.CornerMin() ); + myBox.Add( box.CornerMax() ); + gp_XYZ halfSize = 0.5 * ( box.CornerMax().XYZ() - box.CornerMin().XYZ() ); + for ( int iDim = 1; iDim <= 3; ++iDim ) + { + double x = halfSize.Coord( iDim ); + halfSize.SetCoord( iDim, x + Max( myTol, 1e-2 * x )); + } + myBox.SetHSize( halfSize ); + } + } +} + +ElementsOnShape::Classifier::~Classifier() +{ + delete mySolidClfr; mySolidClfr = 0; } -bool ElementsOnShape::TClassifier::isOutOfSolid (const gp_Pnt& p) +bool ElementsOnShape::Classifier::isOutOfSolid (const gp_Pnt& p) { - mySolidClfr.Perform( p, myTol ); - return ( mySolidClfr.State() != TopAbs_IN && mySolidClfr.State() != TopAbs_ON ); + mySolidClfr->Perform( p, myTol ); + return ( mySolidClfr->State() != TopAbs_IN && mySolidClfr->State() != TopAbs_ON ); } -bool ElementsOnShape::TClassifier::isOutOfBox (const gp_Pnt& p) +bool ElementsOnShape::Classifier::isOutOfBox (const gp_Pnt& p) { return myBox.IsOut( p.XYZ() ); } -bool ElementsOnShape::TClassifier::isOutOfFace (const gp_Pnt& p) +bool ElementsOnShape::Classifier::isOutOfFace (const gp_Pnt& p) { myProjFace.Perform( p ); if ( myProjFace.IsDone() && myProjFace.LowerDistance() <= myTol ) { // check relatively to the face - Quantity_Parameter u, v; + Standard_Real u, v; myProjFace.LowerDistanceParameters(u, v); gp_Pnt2d aProjPnt (u, v); BRepClass_FaceClassifier aClsf ( TopoDS::Face( myShape ), aProjPnt, myTol ); @@ -4330,18 +4659,18 @@ bool ElementsOnShape::TClassifier::isOutOfFace (const gp_Pnt& p) return true; } -bool ElementsOnShape::TClassifier::isOutOfEdge (const gp_Pnt& p) +bool ElementsOnShape::Classifier::isOutOfEdge (const gp_Pnt& p) { myProjEdge.Perform( p ); return ! ( myProjEdge.NbPoints() > 0 && myProjEdge.LowerDistance() <= myTol ); } -bool ElementsOnShape::TClassifier::isOutOfVertex(const gp_Pnt& p) +bool ElementsOnShape::Classifier::isOutOfVertex(const gp_Pnt& p) { return ( myVertexXYZ.Distance( p ) > myTol ); } -bool ElementsOnShape::TClassifier::isBox (const TopoDS_Shape& theShape) +bool ElementsOnShape::Classifier::isBox (const TopoDS_Shape& theShape) { TopTools_IndexedMapOfShape vMap; TopExp::MapShapes( theShape, TopAbs_VERTEX, vMap ); @@ -4368,6 +4697,118 @@ bool ElementsOnShape::TClassifier::isBox (const TopoDS_Shape& theShape) return true; } +ElementsOnShape:: +OctreeClassifier::OctreeClassifier( const std::vector< ElementsOnShape::Classifier* >& classifiers ) + :SMESH_Octree( new SMESH_TreeLimit ) +{ + myClassifiers = classifiers; + compute(); +} + +ElementsOnShape:: +OctreeClassifier::OctreeClassifier( const OctreeClassifier* otherTree, + const std::vector< ElementsOnShape::Classifier >& clsOther, + std::vector< ElementsOnShape::Classifier >& cls ) + :SMESH_Octree( new SMESH_TreeLimit ) +{ + myBox = new Bnd_B3d( *otherTree->getBox() ); + + if (( myIsLeaf = otherTree->isLeaf() )) + { + myClassifiers.resize( otherTree->myClassifiers.size() ); + for ( size_t i = 0; i < otherTree->myClassifiers.size(); ++i ) + { + int ind = otherTree->myClassifiers[i] - & clsOther[0]; + myClassifiers[ i ] = & cls[ ind ]; + } + } + else if ( otherTree->myChildren ) + { + myChildren = new SMESH_Tree< Bnd_B3d, 8 > * [ 8 ]; + for ( int i = 0; i < nbChildren(); i++ ) + myChildren[i] = + new OctreeClassifier( static_cast( otherTree->myChildren[i]), + clsOther, cls ); + } +} + +void ElementsOnShape:: +OctreeClassifier::GetClassifiersAtPoint( const gp_XYZ& point, + std::vector< ElementsOnShape::Classifier* >& result ) +{ + if ( getBox()->IsOut( point )) + return; + + if ( isLeaf() ) + { + for ( size_t i = 0; i < myClassifiers.size(); ++i ) + if ( !myClassifiers[i]->GetBndBox()->IsOut( point )) + result.push_back( myClassifiers[i] ); + } + else + { + for (int i = 0; i < nbChildren(); i++) + ((OctreeClassifier*) myChildren[i])->GetClassifiersAtPoint( point, result ); + } +} + +void ElementsOnShape::OctreeClassifier::buildChildrenData() +{ + // distribute myClassifiers among myChildren + + const int childFlag[8] = { 0x0000001, + 0x0000002, + 0x0000004, + 0x0000008, + 0x0000010, + 0x0000020, + 0x0000040, + 0x0000080 }; + int nbInChild[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; + + for ( size_t i = 0; i < myClassifiers.size(); ++i ) + { + for ( int j = 0; j < nbChildren(); j++ ) + { + if ( !myClassifiers[i]->GetBndBox()->IsOut( *myChildren[j]->getBox() )) + { + myClassifiers[i]->SetFlag( childFlag[ j ]); + ++nbInChild[ j ]; + } + } + } + + for ( int j = 0; j < nbChildren(); j++ ) + { + OctreeClassifier* child = static_cast( myChildren[ j ]); + child->myClassifiers.resize( nbInChild[ j ]); + for ( size_t i = 0; nbInChild[ j ] && i < myClassifiers.size(); ++i ) + { + if ( myClassifiers[ i ]->IsSetFlag( childFlag[ j ])) + { + --nbInChild[ j ]; + child->myClassifiers[ nbInChild[ j ]] = myClassifiers[ i ]; + myClassifiers[ i ]->UnsetFlag( childFlag[ j ]); + } + } + } + SMESHUtils::FreeVector( myClassifiers ); + + // define if a child isLeaf() + for ( int i = 0; i < nbChildren(); i++ ) + { + OctreeClassifier* child = static_cast( myChildren[ i ]); + child->myIsLeaf = ( child->myClassifiers.size() <= 5 ); + } +} + +Bnd_B3d* ElementsOnShape::OctreeClassifier::buildRootBox() +{ + Bnd_B3d* box = new Bnd_B3d; + for ( size_t i = 0; i < myClassifiers.size(); ++i ) + box->Add( *myClassifiers[i]->GetBndBox() ); + return box; +} /* Class : BelongToGeom @@ -4377,25 +4818,38 @@ bool ElementsOnShape::TClassifier::isBox (const TopoDS_Shape& theShape) BelongToGeom::BelongToGeom() : myMeshDS(NULL), - myType(SMDSAbs_All), + myType(SMDSAbs_NbElementTypes), myIsSubshape(false), myTolerance(Precision::Confusion()) {} +Predicate* BelongToGeom::clone() const +{ + BelongToGeom* cln = new BelongToGeom( *this ); + cln->myElementsOnShapePtr.reset( static_cast( myElementsOnShapePtr->clone() )); + return cln; +} + void BelongToGeom::SetMesh( const SMDS_Mesh* theMesh ) { - myMeshDS = dynamic_cast(theMesh); - init(); + if ( myMeshDS != theMesh ) + { + myMeshDS = dynamic_cast(theMesh); + init(); + } } void BelongToGeom::SetGeom( const TopoDS_Shape& theShape ) { - myShape = theShape; - init(); + if ( myShape != theShape ) + { + myShape = theShape; + init(); + } } static bool IsSubShape (const TopTools_IndexedMapOfShape& theMap, - const TopoDS_Shape& theShape) + const TopoDS_Shape& theShape) { if (theMap.Contains(theShape)) return true; @@ -4417,7 +4871,7 @@ static bool IsSubShape (const TopTools_IndexedMapOfShape& theMap, void BelongToGeom::init() { - if (!myMeshDS || myShape.IsNull()) return; + if ( !myMeshDS || myShape.IsNull() ) return; // is sub-shape of main shape? TopoDS_Shape aMainShape = myMeshDS->ShapeToMesh(); @@ -4426,40 +4880,33 @@ void BelongToGeom::init() } else { TopTools_IndexedMapOfShape aMap; - TopExp::MapShapes(aMainShape, aMap); - myIsSubshape = IsSubShape(aMap, myShape); + TopExp::MapShapes( aMainShape, aMap ); + myIsSubshape = IsSubShape( aMap, myShape ); + if ( myIsSubshape ) + { + aMap.Clear(); + TopExp::MapShapes( myShape, aMap ); + mySubShapesIDs.Clear(); + for ( int i = 1; i <= aMap.Extent(); ++i ) + { + int subID = myMeshDS->ShapeToIndex( aMap( i )); + if ( subID > 0 ) + mySubShapesIDs.Add( subID ); + } + } } //if (!myIsSubshape) // to be always ready to check an element not bound to geometry { - myElementsOnShapePtr.reset(new ElementsOnShape()); - myElementsOnShapePtr->SetTolerance(myTolerance); - myElementsOnShapePtr->SetAllNodes(true); // "belong", while false means "lays on" - myElementsOnShapePtr->SetMesh(myMeshDS); - myElementsOnShapePtr->SetShape(myShape, myType); + if ( !myElementsOnShapePtr ) + myElementsOnShapePtr.reset( new ElementsOnShape() ); + myElementsOnShapePtr->SetTolerance( myTolerance ); + myElementsOnShapePtr->SetAllNodes( true ); // "belong", while false means "lays on" + myElementsOnShapePtr->SetMesh( myMeshDS ); + myElementsOnShapePtr->SetShape( myShape, myType ); } } -static bool IsContains( const SMESHDS_Mesh* theMeshDS, - const TopoDS_Shape& theShape, - const SMDS_MeshElement* theElem, - TopAbs_ShapeEnum theFindShapeEnum, - TopAbs_ShapeEnum theAvoidShapeEnum = TopAbs_SHAPE ) -{ - TopExp_Explorer anExp( theShape,theFindShapeEnum,theAvoidShapeEnum ); - - while( anExp.More() ) - { - const TopoDS_Shape& aShape = anExp.Current(); - if( SMESHDS_SubMesh* aSubMesh = theMeshDS->MeshElements( aShape ) ){ - if( aSubMesh->Contains( theElem ) ) - return true; - } - anExp.Next(); - } - return false; -} - bool BelongToGeom::IsSatisfy (long theId) { if (myMeshDS == 0 || myShape.IsNull()) @@ -4470,51 +4917,28 @@ bool BelongToGeom::IsSatisfy (long theId) return myElementsOnShapePtr->IsSatisfy(theId); } - // Case of submesh + // Case of sub-mesh + if (myType == SMDSAbs_Node) { - if( const SMDS_MeshNode* aNode = myMeshDS->FindNode( theId ) ) + if ( const SMDS_MeshNode* aNode = myMeshDS->FindNode( theId )) { if ( aNode->getshapeId() < 1 ) return myElementsOnShapePtr->IsSatisfy(theId); - - const SMDS_PositionPtr& aPosition = aNode->GetPosition(); - SMDS_TypeOfPosition aTypeOfPosition = aPosition->GetTypeOfPosition(); - switch( aTypeOfPosition ) - { - case SMDS_TOP_VERTEX : return ( IsContains( myMeshDS,myShape,aNode,TopAbs_VERTEX )); - case SMDS_TOP_EDGE : return ( IsContains( myMeshDS,myShape,aNode,TopAbs_EDGE )); - case SMDS_TOP_FACE : return ( IsContains( myMeshDS,myShape,aNode,TopAbs_FACE )); - case SMDS_TOP_3DSPACE: return ( IsContains( myMeshDS,myShape,aNode,TopAbs_SOLID ) || - IsContains( myMeshDS,myShape,aNode,TopAbs_SHELL )); - default:; - } + else + return mySubShapesIDs.Contains( aNode->getshapeId() ); } } else { if ( const SMDS_MeshElement* anElem = myMeshDS->FindElement( theId )) { - if ( anElem->getshapeId() < 1 ) - return myElementsOnShapePtr->IsSatisfy(theId); - - if( myType == SMDSAbs_All ) + if ( anElem->GetType() == myType ) { - return ( IsContains( myMeshDS,myShape,anElem,TopAbs_EDGE ) || - IsContains( myMeshDS,myShape,anElem,TopAbs_FACE ) || - IsContains( myMeshDS,myShape,anElem,TopAbs_SOLID )|| - IsContains( myMeshDS,myShape,anElem,TopAbs_SHELL )); - } - else if( myType == anElem->GetType() ) - { - switch( myType ) - { - case SMDSAbs_Edge : return ( IsContains( myMeshDS,myShape,anElem,TopAbs_EDGE )); - case SMDSAbs_Face : return ( IsContains( myMeshDS,myShape,anElem,TopAbs_FACE )); - case SMDSAbs_Volume: return ( IsContains( myMeshDS,myShape,anElem,TopAbs_SOLID )|| - IsContains( myMeshDS,myShape,anElem,TopAbs_SHELL )); - default:; - } + if ( anElem->getshapeId() < 1 ) + return myElementsOnShapePtr->IsSatisfy(theId); + else + return mySubShapesIDs.Contains( anElem->getshapeId() ); } } } @@ -4524,8 +4948,11 @@ bool BelongToGeom::IsSatisfy (long theId) void BelongToGeom::SetType (SMDSAbs_ElementType theType) { - myType = theType; - init(); + if ( myType != theType ) + { + myType = theType; + init(); + } } SMDSAbs_ElementType BelongToGeom::GetType() const @@ -4546,8 +4973,7 @@ const SMESHDS_Mesh* BelongToGeom::GetMeshDS() const void BelongToGeom::SetTolerance (double theTolerance) { myTolerance = theTolerance; - if (!myIsSubshape) - init(); + init(); } double BelongToGeom::GetTolerance() @@ -4558,26 +4984,39 @@ double BelongToGeom::GetTolerance() /* Class : LyingOnGeom Description : Predicate for verifying whether entiy lying or partially lying on - specified geometrical support + specified geometrical support */ LyingOnGeom::LyingOnGeom() : myMeshDS(NULL), - myType(SMDSAbs_All), + myType(SMDSAbs_NbElementTypes), myIsSubshape(false), myTolerance(Precision::Confusion()) {} +Predicate* LyingOnGeom::clone() const +{ + LyingOnGeom* cln = new LyingOnGeom( *this ); + cln->myElementsOnShapePtr.reset( static_cast( myElementsOnShapePtr->clone() )); + return cln; +} + void LyingOnGeom::SetMesh( const SMDS_Mesh* theMesh ) { - myMeshDS = dynamic_cast(theMesh); - init(); + if ( myMeshDS != theMesh ) + { + myMeshDS = dynamic_cast(theMesh); + init(); + } } void LyingOnGeom::SetGeom( const TopoDS_Shape& theShape ) { - myShape = theShape; - init(); + if ( myShape != theShape ) + { + myShape = theShape; + init(); + } } void LyingOnGeom::init() @@ -4605,13 +5044,14 @@ void LyingOnGeom::init() mySubShapesIDs.Add( subID ); } } - else + // else // to be always ready to check an element not bound to geometry { - myElementsOnShapePtr.reset(new ElementsOnShape()); - myElementsOnShapePtr->SetTolerance(myTolerance); - myElementsOnShapePtr->SetAllNodes(false); // lays on, while true means "belong" - myElementsOnShapePtr->SetMesh(myMeshDS); - myElementsOnShapePtr->SetShape(myShape, myType); + if ( !myElementsOnShapePtr ) + myElementsOnShapePtr.reset( new ElementsOnShape() ); + myElementsOnShapePtr->SetTolerance( myTolerance ); + myElementsOnShapePtr->SetAllNodes( false ); // lays on, while true means "belong" + myElementsOnShapePtr->SetMesh( myMeshDS ); + myElementsOnShapePtr->SetShape( myShape, myType ); } } @@ -4633,7 +5073,7 @@ bool LyingOnGeom::IsSatisfy( long theId ) if ( mySubShapesIDs.Contains( elem->getshapeId() )) return true; - if ( elem->GetType() != SMDSAbs_Node ) + if ( elem->GetType() != SMDSAbs_Node && elem->GetType() == myType ) { SMDS_ElemIteratorPtr nodeItr = elem->nodesIterator(); while ( nodeItr->more() ) @@ -4649,8 +5089,11 @@ bool LyingOnGeom::IsSatisfy( long theId ) void LyingOnGeom::SetType( SMDSAbs_ElementType theType ) { - myType = theType; - init(); + if ( myType != theType ) + { + myType = theType; + init(); + } } SMDSAbs_ElementType LyingOnGeom::GetType() const @@ -4671,8 +5114,7 @@ const SMESHDS_Mesh* LyingOnGeom::GetMeshDS() const void LyingOnGeom::SetTolerance (double theTolerance) { myTolerance = theTolerance; - if (!myIsSubshape) - init(); + init(); } double LyingOnGeom::GetTolerance() @@ -4680,39 +5122,6 @@ double LyingOnGeom::GetTolerance() return myTolerance; } -bool LyingOnGeom::Contains( const SMESHDS_Mesh* theMeshDS, - const TopoDS_Shape& theShape, - const SMDS_MeshElement* theElem, - TopAbs_ShapeEnum theFindShapeEnum, - TopAbs_ShapeEnum theAvoidShapeEnum ) -{ - // if (IsContains(theMeshDS, theShape, theElem, theFindShapeEnum, theAvoidShapeEnum)) - // return true; - - // TopTools_MapOfShape aSubShapes; - // TopExp_Explorer exp( theShape, theFindShapeEnum, theAvoidShapeEnum ); - // for ( ; exp.More(); exp.Next() ) - // { - // const TopoDS_Shape& aShape = exp.Current(); - // if ( !aSubShapes.Add( aShape )) continue; - - // if ( SMESHDS_SubMesh* aSubMesh = theMeshDS->MeshElements( aShape )) - // { - // if ( aSubMesh->Contains( theElem )) - // return true; - - // SMDS_ElemIteratorPtr nodeItr = theElem->nodesIterator(); - // while ( nodeItr->more() ) - // { - // const SMDS_MeshElement* aNode = nodeItr->next(); - // if ( aSubMesh->Contains( aNode )) - // return true; - // } - // } - // } - return false; -} - TSequenceOfXYZ::TSequenceOfXYZ(): myElem(0) {}