X-Git-Url: http://git.salome-platform.org/gitweb/?p=modules%2Fsmesh.git;a=blobdiff_plain;f=src%2FControls%2FSMESH_Controls.cxx;h=f86b5638719dfb201d6e15ab0a6e4487a1b0f174;hp=b78c2f0f7a60ae7b3949ca041b21e4bbfcec65f4;hb=b54f78cc796b6ae41d77cc43b55c01b16a4c0445;hpb=101919845f4f9504b3abad75a027b2938cb11924 diff --git a/src/Controls/SMESH_Controls.cxx b/src/Controls/SMESH_Controls.cxx index b78c2f0f7..f86b56387 100644 --- a/src/Controls/SMESH_Controls.cxx +++ b/src/Controls/SMESH_Controls.cxx @@ -1,4 +1,4 @@ -// Copyright (C) 2007-2013 CEA/DEN, EDF R&D, OPEN CASCADE +// Copyright (C) 2007-2016 CEA/DEN, EDF R&D, OPEN CASCADE // // Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN, // CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS @@ -6,7 +6,7 @@ // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either -// version 2.1 of the License. +// version 2.1 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of @@ -23,6 +23,7 @@ #include "SMESH_ControlsDef.hxx" #include "SMDS_BallElement.hxx" +#include "SMDS_FacePosition.hxx" #include "SMDS_Iterator.hxx" #include "SMDS_Mesh.hxx" #include "SMDS_MeshElement.hxx" @@ -31,22 +32,32 @@ #include "SMDS_QuadraticFaceOfNodes.hxx" #include "SMDS_VolumeTool.hxx" #include "SMESHDS_GroupBase.hxx" +#include "SMESHDS_GroupOnFilter.hxx" #include "SMESHDS_Mesh.hxx" -#include "SMESH_OctreeNode.hxx" #include "SMESH_MeshAlgos.hxx" +#include "SMESH_OctreeNode.hxx" + +#include #include +#include +#include +#include #include #include +#include #include #include #include +#include #include +#include #include #include #include #include #include +#include #include #include #include @@ -66,8 +77,6 @@ #include #include -#include - /* AUXILIARY METHODS */ @@ -90,6 +99,15 @@ namespace { v2.Magnitude() < gp::Resolution() ? 0 : v1.Angle( v2 ); } + inline double getCos2( const gp_XYZ& P1, const gp_XYZ& P2, const gp_XYZ& P3 ) + { + gp_Vec v1( P1 - P2 ), v2( P3 - P2 ); + double dot = v1 * v2, len1 = v1.SquareMagnitude(), len2 = v2.SquareMagnitude(); + + return ( dot < 0 || len1 < gp::Resolution() || len2 < gp::Resolution() ? -1 : + dot * dot / len1 / len2 ); + } + inline double getArea( const gp_XYZ& P1, const gp_XYZ& P2, const gp_XYZ& P3 ) { gp_Vec aVec1( P2 - P1 ); @@ -129,13 +147,13 @@ namespace { // +-----+------+ +-----+------+ // | | | | // | | | | - // result sould be 2 in both cases + // result should be 2 in both cases // int aResult0 = 0, aResult1 = 0; // last node, it is a medium one in a quadratic edge const SMDS_MeshNode* aLastNode = anEdge->GetNode( anEdge->NbNodes() - 1 ); - const SMDS_MeshNode* aNode0 = anEdge->GetNode( 0 ); - const SMDS_MeshNode* aNode1 = anEdge->GetNode( 1 ); + const SMDS_MeshNode* aNode0 = anEdge->GetNode( 0 ); + const SMDS_MeshNode* aNode1 = anEdge->GetNode( 1 ); if ( aNode1 == aLastNode ) aNode1 = 0; SMDS_ElemIteratorPtr anElemIter = aLastNode->GetInverseElementIterator(); @@ -157,29 +175,6 @@ namespace { } int aResult = std::max ( aResult0, aResult1 ); -// TColStd_MapOfInteger aMap; - -// SMDS_ElemIteratorPtr anIter = anEdge->nodesIterator(); -// if ( anIter != 0 ) { -// while( anIter->more() ) { -// const SMDS_MeshNode* aNode = (SMDS_MeshNode*)anIter->next(); -// if ( aNode == 0 ) -// return 0; -// SMDS_ElemIteratorPtr anElemIter = aNode->GetInverseElementIterator(); -// while( anElemIter->more() ) { -// const SMDS_MeshElement* anElem = anElemIter->next(); -// if ( anElem != 0 && anElem->GetType() != SMDSAbs_Edge ) { -// int anId = anElem->GetID(); - -// if ( anIter->more() ) // i.e. first node -// aMap.Add( anId ); -// else if ( aMap.Contains( anId ) ) -// aResult++; -// } -// } -// } -// } - return aResult; } @@ -195,7 +190,7 @@ namespace { n += q2 ^ q3; } double len = n.Modulus(); - bool zeroLen = ( len <= numeric_limits::min()); + bool zeroLen = ( len <= std::numeric_limits::min()); if ( !zeroLen ) n /= len; @@ -231,7 +226,7 @@ void NumericalFunctor::SetMesh( const SMDS_Mesh* theMesh ) myMesh = theMesh; } -bool NumericalFunctor::GetPoints(const int theId, +bool NumericalFunctor::GetPoints(const int theId, TSequenceOfXYZ& theRes ) const { theRes.clear(); @@ -255,6 +250,7 @@ bool NumericalFunctor::GetPoints(const SMDS_MeshElement* anElem, return false; theRes.reserve( anElem->NbNodes() ); + theRes.setElement( anElem ); // Get nodes of the element SMDS_ElemIteratorPtr anIter; @@ -271,7 +267,6 @@ bool NumericalFunctor::GetPoints(const SMDS_MeshElement* anElem, break; default: anIter = anElem->nodesIterator(); - //return false; } } else { @@ -279,9 +274,10 @@ bool NumericalFunctor::GetPoints(const SMDS_MeshElement* anElem, } if ( anIter ) { + SMESH_NodeXYZ p; while( anIter->more() ) { - if ( const SMDS_MeshNode* aNode = static_cast( anIter->next() )) - theRes.push_back( gp_XYZ( aNode->X(), aNode->Y(), aNode->Z() ) ); + if ( p.Set( anIter->next() )) + theRes.push_back( p ); } } @@ -306,7 +302,7 @@ double NumericalFunctor::GetValue( long theId ) myCurrElement = myMesh->FindElement( theId ); TSequenceOfXYZ P; - if ( GetPoints( theId, P )) + if ( GetPoints( theId, P )) // elem type is checked here aVal = Round( GetValue( P )); return aVal; @@ -328,12 +324,12 @@ double NumericalFunctor::Round( const double & aVal ) */ //================================================================================ -void NumericalFunctor::GetHistogram(int nbIntervals, - std::vector& nbEvents, - std::vector& funValues, - const vector& elements, - const double* minmax, - const bool isLogarithmic) +void NumericalFunctor::GetHistogram(int nbIntervals, + std::vector& nbEvents, + std::vector& funValues, + const std::vector& elements, + const double* minmax, + const bool isLogarithmic) { if ( nbIntervals < 1 || !myMesh || @@ -346,13 +342,13 @@ void NumericalFunctor::GetHistogram(int nbIntervals, std::multiset< double > values; if ( elements.empty() ) { - SMDS_ElemIteratorPtr elemIt = myMesh->elementsIterator(GetType()); + SMDS_ElemIteratorPtr elemIt = myMesh->elementsIterator( GetType() ); while ( elemIt->more() ) values.insert( GetValue( elemIt->next()->GetID() )); } else { - vector::const_iterator id = elements.begin(); + std::vector::const_iterator id = elements.begin(); for ( ; id != elements.end(); ++id ) values.insert( GetValue( *id )); } @@ -479,6 +475,27 @@ double MaxElementLength2D::GetValue( const TSequenceOfXYZ& P ) double D2 = getDistance(P( 3 ),P( 7 )); aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(D1,D2)); } + // Diagonals are undefined for concave polygons + // else if ( P.getElementEntity() == SMDSEntity_Quad_Polygon && P.size() > 2 ) // quad polygon + // { + // // sides + // aVal = getDistance( P( 1 ), P( P.size() )) + getDistance( P( P.size() ), P( P.size()-1 )); + // for ( size_t i = 1; i < P.size()-1; i += 2 ) + // { + // double L = getDistance( P( i ), P( i+1 )) + getDistance( P( i+1 ), P( i+2 )); + // aVal = Max( aVal, L ); + // } + // // diagonals + // for ( int i = P.size()-5; i > 0; i -= 2 ) + // for ( int j = i + 4; j < P.size() + i - 2; i += 2 ) + // { + // double D = getDistance( P( i ), P( j )); + // aVal = Max( aVal, D ); + // } + // } + // { // polygons + + // } if( myPrecision >= 0 ) { @@ -517,148 +534,165 @@ double MaxElementLength3D::GetValue( long theElementId ) if( GetPoints( theElementId, P ) ) { double aVal = 0; const SMDS_MeshElement* aElem = myMesh->FindElement( theElementId ); - SMDSAbs_ElementType aType = aElem->GetType(); + SMDSAbs_EntityType aType = aElem->GetEntityType(); int len = P.size(); - switch( aType ) { - case SMDSAbs_Volume: - if( len == 4 ) { // tetras - double L1 = getDistance(P( 1 ),P( 2 )); - double L2 = getDistance(P( 2 ),P( 3 )); - double L3 = getDistance(P( 3 ),P( 1 )); - double L4 = getDistance(P( 1 ),P( 4 )); - double L5 = getDistance(P( 2 ),P( 4 )); - double L6 = getDistance(P( 3 ),P( 4 )); - aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6)); - break; - } - else if( len == 5 ) { // pyramids - double L1 = getDistance(P( 1 ),P( 2 )); - double L2 = getDistance(P( 2 ),P( 3 )); - double L3 = getDistance(P( 3 ),P( 4 )); - double L4 = getDistance(P( 4 ),P( 1 )); - double L5 = getDistance(P( 1 ),P( 5 )); - double L6 = getDistance(P( 2 ),P( 5 )); - double L7 = getDistance(P( 3 ),P( 5 )); - double L8 = getDistance(P( 4 ),P( 5 )); - aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6)); - aVal = Max(aVal,Max(L7,L8)); - break; - } - else if( len == 6 ) { // pentas - double L1 = getDistance(P( 1 ),P( 2 )); - double L2 = getDistance(P( 2 ),P( 3 )); - double L3 = getDistance(P( 3 ),P( 1 )); - double L4 = getDistance(P( 4 ),P( 5 )); - double L5 = getDistance(P( 5 ),P( 6 )); - double L6 = getDistance(P( 6 ),P( 4 )); - double L7 = getDistance(P( 1 ),P( 4 )); - double L8 = getDistance(P( 2 ),P( 5 )); - double L9 = getDistance(P( 3 ),P( 6 )); - aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6)); - aVal = Max(aVal,Max(Max(L7,L8),L9)); - break; - } - else if( len == 8 ) { // hexas - double L1 = getDistance(P( 1 ),P( 2 )); - double L2 = getDistance(P( 2 ),P( 3 )); - double L3 = getDistance(P( 3 ),P( 4 )); - double L4 = getDistance(P( 4 ),P( 1 )); - double L5 = getDistance(P( 5 ),P( 6 )); - double L6 = getDistance(P( 6 ),P( 7 )); - double L7 = getDistance(P( 7 ),P( 8 )); - double L8 = getDistance(P( 8 ),P( 5 )); - double L9 = getDistance(P( 1 ),P( 5 )); - double L10= getDistance(P( 2 ),P( 6 )); - double L11= getDistance(P( 3 ),P( 7 )); - double L12= getDistance(P( 4 ),P( 8 )); - double D1 = getDistance(P( 1 ),P( 7 )); - double D2 = getDistance(P( 2 ),P( 8 )); - double D3 = getDistance(P( 3 ),P( 5 )); - double D4 = getDistance(P( 4 ),P( 6 )); - aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6)); - aVal = Max(aVal,Max(Max(L7,L8),Max(L9,L10))); - aVal = Max(aVal,Max(L11,L12)); - aVal = Max(aVal,Max(Max(D1,D2),Max(D3,D4))); - break; - } - else if( len == 12 ) { // hexagonal prism - for ( int i1 = 1; i1 < 12; ++i1 ) - for ( int i2 = i1+1; i1 <= 12; ++i1 ) - aVal = Max( aVal, getDistance(P( i1 ),P( i2 ))); - break; - } - else if( len == 10 ) { // quadratic tetras - double L1 = getDistance(P( 1 ),P( 5 )) + getDistance(P( 5 ),P( 2 )); - double L2 = getDistance(P( 2 ),P( 6 )) + getDistance(P( 6 ),P( 3 )); - double L3 = getDistance(P( 3 ),P( 7 )) + getDistance(P( 7 ),P( 1 )); - double L4 = getDistance(P( 1 ),P( 8 )) + getDistance(P( 8 ),P( 4 )); - double L5 = getDistance(P( 2 ),P( 9 )) + getDistance(P( 9 ),P( 4 )); - double L6 = getDistance(P( 3 ),P( 10 )) + getDistance(P( 10 ),P( 4 )); - aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6)); - break; - } - else if( len == 13 ) { // quadratic pyramids - double L1 = getDistance(P( 1 ),P( 6 )) + getDistance(P( 6 ),P( 2 )); - double L2 = getDistance(P( 2 ),P( 7 )) + getDistance(P( 7 ),P( 3 )); - double L3 = getDistance(P( 3 ),P( 8 )) + getDistance(P( 8 ),P( 4 )); - double L4 = getDistance(P( 4 ),P( 9 )) + getDistance(P( 9 ),P( 1 )); - double L5 = getDistance(P( 1 ),P( 10 )) + getDistance(P( 10 ),P( 5 )); - double L6 = getDistance(P( 2 ),P( 11 )) + getDistance(P( 11 ),P( 5 )); - double L7 = getDistance(P( 3 ),P( 12 )) + getDistance(P( 12 ),P( 5 )); - double L8 = getDistance(P( 4 ),P( 13 )) + getDistance(P( 13 ),P( 5 )); - aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6)); - aVal = Max(aVal,Max(L7,L8)); - break; - } - else if( len == 15 ) { // quadratic pentas - double L1 = getDistance(P( 1 ),P( 7 )) + getDistance(P( 7 ),P( 2 )); - double L2 = getDistance(P( 2 ),P( 8 )) + getDistance(P( 8 ),P( 3 )); - double L3 = getDistance(P( 3 ),P( 9 )) + getDistance(P( 9 ),P( 1 )); - double L4 = getDistance(P( 4 ),P( 10 )) + getDistance(P( 10 ),P( 5 )); - double L5 = getDistance(P( 5 ),P( 11 )) + getDistance(P( 11 ),P( 6 )); - double L6 = getDistance(P( 6 ),P( 12 )) + getDistance(P( 12 ),P( 4 )); - double L7 = getDistance(P( 1 ),P( 13 )) + getDistance(P( 13 ),P( 4 )); - double L8 = getDistance(P( 2 ),P( 14 )) + getDistance(P( 14 ),P( 5 )); - double L9 = getDistance(P( 3 ),P( 15 )) + getDistance(P( 15 ),P( 6 )); - aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6)); - aVal = Max(aVal,Max(Max(L7,L8),L9)); - break; - } - else if( len == 20 || len == 27 ) { // quadratic hexas - double L1 = getDistance(P( 1 ),P( 9 )) + getDistance(P( 9 ),P( 2 )); - double L2 = getDistance(P( 2 ),P( 10 )) + getDistance(P( 10 ),P( 3 )); - double L3 = getDistance(P( 3 ),P( 11 )) + getDistance(P( 11 ),P( 4 )); - double L4 = getDistance(P( 4 ),P( 12 )) + getDistance(P( 12 ),P( 1 )); - double L5 = getDistance(P( 5 ),P( 13 )) + getDistance(P( 13 ),P( 6 )); - double L6 = getDistance(P( 6 ),P( 14 )) + getDistance(P( 14 ),P( 7 )); - double L7 = getDistance(P( 7 ),P( 15 )) + getDistance(P( 15 ),P( 8 )); - double L8 = getDistance(P( 8 ),P( 16 )) + getDistance(P( 16 ),P( 5 )); - double L9 = getDistance(P( 1 ),P( 17 )) + getDistance(P( 17 ),P( 5 )); - double L10= getDistance(P( 2 ),P( 18 )) + getDistance(P( 18 ),P( 6 )); - double L11= getDistance(P( 3 ),P( 19 )) + getDistance(P( 19 ),P( 7 )); - double L12= getDistance(P( 4 ),P( 20 )) + getDistance(P( 20 ),P( 8 )); - double D1 = getDistance(P( 1 ),P( 7 )); - double D2 = getDistance(P( 2 ),P( 8 )); - double D3 = getDistance(P( 3 ),P( 5 )); - double D4 = getDistance(P( 4 ),P( 6 )); - aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6)); - aVal = Max(aVal,Max(Max(L7,L8),Max(L9,L10))); - aVal = Max(aVal,Max(L11,L12)); - aVal = Max(aVal,Max(Max(D1,D2),Max(D3,D4))); - break; - } - else if( len > 1 && aElem->IsPoly() ) { // polys - // get the maximum distance between all pairs of nodes - for( int i = 1; i <= len; i++ ) { - for( int j = 1; j <= len; j++ ) { - if( j > i ) { // optimization of the loop - double D = getDistance( P(i), P(j) ); - aVal = Max( aVal, D ); - } + switch ( aType ) { + case SMDSEntity_Tetra: { // tetras + double L1 = getDistance(P( 1 ),P( 2 )); + double L2 = getDistance(P( 2 ),P( 3 )); + double L3 = getDistance(P( 3 ),P( 1 )); + double L4 = getDistance(P( 1 ),P( 4 )); + double L5 = getDistance(P( 2 ),P( 4 )); + double L6 = getDistance(P( 3 ),P( 4 )); + aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6)); + break; + } + case SMDSEntity_Pyramid: { // pyramids + double L1 = getDistance(P( 1 ),P( 2 )); + double L2 = getDistance(P( 2 ),P( 3 )); + double L3 = getDistance(P( 3 ),P( 4 )); + double L4 = getDistance(P( 4 ),P( 1 )); + double L5 = getDistance(P( 1 ),P( 5 )); + double L6 = getDistance(P( 2 ),P( 5 )); + double L7 = getDistance(P( 3 ),P( 5 )); + double L8 = getDistance(P( 4 ),P( 5 )); + aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6)); + aVal = Max(aVal,Max(L7,L8)); + break; + } + case SMDSEntity_Penta: { // pentas + double L1 = getDistance(P( 1 ),P( 2 )); + double L2 = getDistance(P( 2 ),P( 3 )); + double L3 = getDistance(P( 3 ),P( 1 )); + double L4 = getDistance(P( 4 ),P( 5 )); + double L5 = getDistance(P( 5 ),P( 6 )); + double L6 = getDistance(P( 6 ),P( 4 )); + double L7 = getDistance(P( 1 ),P( 4 )); + double L8 = getDistance(P( 2 ),P( 5 )); + double L9 = getDistance(P( 3 ),P( 6 )); + aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6)); + aVal = Max(aVal,Max(Max(L7,L8),L9)); + break; + } + case SMDSEntity_Hexa: { // hexas + double L1 = getDistance(P( 1 ),P( 2 )); + double L2 = getDistance(P( 2 ),P( 3 )); + double L3 = getDistance(P( 3 ),P( 4 )); + double L4 = getDistance(P( 4 ),P( 1 )); + double L5 = getDistance(P( 5 ),P( 6 )); + double L6 = getDistance(P( 6 ),P( 7 )); + double L7 = getDistance(P( 7 ),P( 8 )); + double L8 = getDistance(P( 8 ),P( 5 )); + double L9 = getDistance(P( 1 ),P( 5 )); + double L10= getDistance(P( 2 ),P( 6 )); + double L11= getDistance(P( 3 ),P( 7 )); + double L12= getDistance(P( 4 ),P( 8 )); + double D1 = getDistance(P( 1 ),P( 7 )); + double D2 = getDistance(P( 2 ),P( 8 )); + double D3 = getDistance(P( 3 ),P( 5 )); + double D4 = getDistance(P( 4 ),P( 6 )); + aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6)); + aVal = Max(aVal,Max(Max(L7,L8),Max(L9,L10))); + aVal = Max(aVal,Max(L11,L12)); + aVal = Max(aVal,Max(Max(D1,D2),Max(D3,D4))); + break; + } + case SMDSEntity_Hexagonal_Prism: { // hexagonal prism + for ( int i1 = 1; i1 < 12; ++i1 ) + for ( int i2 = i1+1; i1 <= 12; ++i1 ) + aVal = Max( aVal, getDistance(P( i1 ),P( i2 ))); + break; + } + case SMDSEntity_Quad_Tetra: { // quadratic tetras + double L1 = getDistance(P( 1 ),P( 5 )) + getDistance(P( 5 ),P( 2 )); + double L2 = getDistance(P( 2 ),P( 6 )) + getDistance(P( 6 ),P( 3 )); + double L3 = getDistance(P( 3 ),P( 7 )) + getDistance(P( 7 ),P( 1 )); + double L4 = getDistance(P( 1 ),P( 8 )) + getDistance(P( 8 ),P( 4 )); + double L5 = getDistance(P( 2 ),P( 9 )) + getDistance(P( 9 ),P( 4 )); + double L6 = getDistance(P( 3 ),P( 10 )) + getDistance(P( 10 ),P( 4 )); + aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6)); + break; + } + case SMDSEntity_Quad_Pyramid: { // quadratic pyramids + double L1 = getDistance(P( 1 ),P( 6 )) + getDistance(P( 6 ),P( 2 )); + double L2 = getDistance(P( 2 ),P( 7 )) + getDistance(P( 7 ),P( 3 )); + double L3 = getDistance(P( 3 ),P( 8 )) + getDistance(P( 8 ),P( 4 )); + double L4 = getDistance(P( 4 ),P( 9 )) + getDistance(P( 9 ),P( 1 )); + double L5 = getDistance(P( 1 ),P( 10 )) + getDistance(P( 10 ),P( 5 )); + double L6 = getDistance(P( 2 ),P( 11 )) + getDistance(P( 11 ),P( 5 )); + double L7 = getDistance(P( 3 ),P( 12 )) + getDistance(P( 12 ),P( 5 )); + double L8 = getDistance(P( 4 ),P( 13 )) + getDistance(P( 13 ),P( 5 )); + aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6)); + aVal = Max(aVal,Max(L7,L8)); + break; + } + case SMDSEntity_Quad_Penta: + case SMDSEntity_BiQuad_Penta: { // quadratic pentas + double L1 = getDistance(P( 1 ),P( 7 )) + getDistance(P( 7 ),P( 2 )); + double L2 = getDistance(P( 2 ),P( 8 )) + getDistance(P( 8 ),P( 3 )); + double L3 = getDistance(P( 3 ),P( 9 )) + getDistance(P( 9 ),P( 1 )); + double L4 = getDistance(P( 4 ),P( 10 )) + getDistance(P( 10 ),P( 5 )); + double L5 = getDistance(P( 5 ),P( 11 )) + getDistance(P( 11 ),P( 6 )); + double L6 = getDistance(P( 6 ),P( 12 )) + getDistance(P( 12 ),P( 4 )); + double L7 = getDistance(P( 1 ),P( 13 )) + getDistance(P( 13 ),P( 4 )); + double L8 = getDistance(P( 2 ),P( 14 )) + getDistance(P( 14 ),P( 5 )); + double L9 = getDistance(P( 3 ),P( 15 )) + getDistance(P( 15 ),P( 6 )); + aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6)); + aVal = Max(aVal,Max(Max(L7,L8),L9)); + break; + } + case SMDSEntity_Quad_Hexa: + case SMDSEntity_TriQuad_Hexa: { // quadratic hexas + double L1 = getDistance(P( 1 ),P( 9 )) + getDistance(P( 9 ),P( 2 )); + double L2 = getDistance(P( 2 ),P( 10 )) + getDistance(P( 10 ),P( 3 )); + double L3 = getDistance(P( 3 ),P( 11 )) + getDistance(P( 11 ),P( 4 )); + double L4 = getDistance(P( 4 ),P( 12 )) + getDistance(P( 12 ),P( 1 )); + double L5 = getDistance(P( 5 ),P( 13 )) + getDistance(P( 13 ),P( 6 )); + double L6 = getDistance(P( 6 ),P( 14 )) + getDistance(P( 14 ),P( 7 )); + double L7 = getDistance(P( 7 ),P( 15 )) + getDistance(P( 15 ),P( 8 )); + double L8 = getDistance(P( 8 ),P( 16 )) + getDistance(P( 16 ),P( 5 )); + double L9 = getDistance(P( 1 ),P( 17 )) + getDistance(P( 17 ),P( 5 )); + double L10= getDistance(P( 2 ),P( 18 )) + getDistance(P( 18 ),P( 6 )); + double L11= getDistance(P( 3 ),P( 19 )) + getDistance(P( 19 ),P( 7 )); + double L12= getDistance(P( 4 ),P( 20 )) + getDistance(P( 20 ),P( 8 )); + double D1 = getDistance(P( 1 ),P( 7 )); + double D2 = getDistance(P( 2 ),P( 8 )); + double D3 = getDistance(P( 3 ),P( 5 )); + double D4 = getDistance(P( 4 ),P( 6 )); + aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6)); + aVal = Max(aVal,Max(Max(L7,L8),Max(L9,L10))); + aVal = Max(aVal,Max(L11,L12)); + aVal = Max(aVal,Max(Max(D1,D2),Max(D3,D4))); + break; + } + case SMDSEntity_Quad_Polyhedra: + case SMDSEntity_Polyhedra: { // polys + // get the maximum distance between all pairs of nodes + for( int i = 1; i <= len; i++ ) { + for( int j = 1; j <= len; j++ ) { + if( j > i ) { // optimization of the loop + double D = getDistance( P(i), P(j) ); + aVal = Max( aVal, D ); } } } + break; } + case SMDSEntity_Node: + case SMDSEntity_0D: + case SMDSEntity_Edge: + case SMDSEntity_Quad_Edge: + case SMDSEntity_Triangle: + case SMDSEntity_Quad_Triangle: + case SMDSEntity_BiQuad_Triangle: + case SMDSEntity_Quadrangle: + case SMDSEntity_Quad_Quadrangle: + case SMDSEntity_BiQuad_Quadrangle: + case SMDSEntity_Polygon: + case SMDSEntity_Quad_Polygon: + case SMDSEntity_Ball: + case SMDSEntity_Last: return 0; + } // switch ( aType ) if( myPrecision >= 0 ) { @@ -689,20 +723,25 @@ SMDSAbs_ElementType MaxElementLength3D::GetType() const double MinimumAngle::GetValue( const TSequenceOfXYZ& P ) { - double aMin; - - if (P.size() <3) + if ( P.size() < 3 ) return 0.; - aMin = getAngle(P( P.size() ), P( 1 ), P( 2 )); - aMin = Min(aMin,getAngle(P( P.size()-1 ), P( P.size() ), P( 1 ))); + double aMaxCos2; + + aMaxCos2 = getCos2( P( P.size() ), P( 1 ), P( 2 )); + aMaxCos2 = Max( aMaxCos2, getCos2( P( P.size()-1 ), P( P.size() ), P( 1 ))); - for (int i=2; i= 1 ) return 0; + return acos( cos ) * 180.0 / M_PI; } double MinimumAngle::GetBadRate( double Value, int nbNodes ) const @@ -761,58 +800,51 @@ double AspectRatio::GetValue( const TSequenceOfXYZ& P ) if ( nbNodes == 3 ) { // Compute lengths of the sides - std::vector< double > aLen (nbNodes); - for ( int i = 0; i < nbNodes - 1; i++ ) - aLen[ i ] = getDistance( P( i + 1 ), P( i + 2 ) ); - aLen[ nbNodes - 1 ] = getDistance( P( 1 ), P( nbNodes ) ); + double aLen1 = getDistance( P( 1 ), P( 2 )); + double aLen2 = getDistance( P( 2 ), P( 3 )); + double aLen3 = getDistance( P( 3 ), P( 1 )); // Q = alfa * h * p / S, where // // alfa = sqrt( 3 ) / 6 // h - length of the longest edge // p - half perimeter // S - triangle surface - const double alfa = sqrt( 3. ) / 6.; - double maxLen = Max( aLen[ 0 ], Max( aLen[ 1 ], aLen[ 2 ] ) ); - double half_perimeter = ( aLen[0] + aLen[1] + aLen[2] ) / 2.; - double anArea = getArea( P( 1 ), P( 2 ), P( 3 ) ); + const double alfa = sqrt( 3. ) / 6.; + double maxLen = Max( aLen1, Max( aLen2, aLen3 )); + double half_perimeter = ( aLen1 + aLen2 + aLen3 ) / 2.; + double anArea = getArea( P( 1 ), P( 2 ), P( 3 )); if ( anArea <= theEps ) return theInf; return alfa * maxLen * half_perimeter / anArea; } else if ( nbNodes == 6 ) { // quadratic triangles // Compute lengths of the sides - std::vector< double > aLen (3); - aLen[0] = getDistance( P(1), P(3) ); - aLen[1] = getDistance( P(3), P(5) ); - aLen[2] = getDistance( P(5), P(1) ); - // Q = alfa * h * p / S, where - // - // alfa = sqrt( 3 ) / 6 - // h - length of the longest edge - // p - half perimeter - // S - triangle surface - const double alfa = sqrt( 3. ) / 6.; - double maxLen = Max( aLen[ 0 ], Max( aLen[ 1 ], aLen[ 2 ] ) ); - double half_perimeter = ( aLen[0] + aLen[1] + aLen[2] ) / 2.; - double anArea = getArea( P(1), P(3), P(5) ); + double aLen1 = getDistance( P( 1 ), P( 3 )); + double aLen2 = getDistance( P( 3 ), P( 5 )); + double aLen3 = getDistance( P( 5 ), P( 1 )); + // algo same as for the linear triangle + const double alfa = sqrt( 3. ) / 6.; + double maxLen = Max( aLen1, Max( aLen2, aLen3 )); + double half_perimeter = ( aLen1 + aLen2 + aLen3 ) / 2.; + double anArea = getArea( P( 1 ), P( 3 ), P( 5 )); if ( anArea <= theEps ) return theInf; return alfa * maxLen * half_perimeter / anArea; } else if( nbNodes == 4 ) { // quadrangle // Compute lengths of the sides - std::vector< double > aLen (4); + double aLen[4]; aLen[0] = getDistance( P(1), P(2) ); aLen[1] = getDistance( P(2), P(3) ); aLen[2] = getDistance( P(3), P(4) ); aLen[3] = getDistance( P(4), P(1) ); // Compute lengths of the diagonals - std::vector< double > aDia (2); + double aDia[2]; aDia[0] = getDistance( P(1), P(3) ); aDia[1] = getDistance( P(2), P(4) ); // Compute areas of all triangles which can be built // taking three nodes of the quadrangle - std::vector< double > anArea (4); + double anArea[4]; anArea[0] = getArea( P(1), P(2), P(3) ); anArea[1] = getArea( P(1), P(2), P(4) ); anArea[2] = getArea( P(1), P(3), P(4) ); @@ -828,35 +860,35 @@ double AspectRatio::GetValue( const TSequenceOfXYZ& P ) // Si - areas of the triangles const double alpha = sqrt( 1 / 32. ); double L = Max( aLen[ 0 ], - Max( aLen[ 1 ], - Max( aLen[ 2 ], - Max( aLen[ 3 ], - Max( aDia[ 0 ], aDia[ 1 ] ) ) ) ) ); + Max( aLen[ 1 ], + Max( aLen[ 2 ], + Max( aLen[ 3 ], + Max( aDia[ 0 ], aDia[ 1 ] ) ) ) ) ); double C1 = sqrt( ( aLen[0] * aLen[0] + aLen[1] * aLen[1] + aLen[2] * aLen[2] + aLen[3] * aLen[3] ) / 4. ); double C2 = Min( anArea[ 0 ], - Min( anArea[ 1 ], - Min( anArea[ 2 ], anArea[ 3 ] ) ) ); + Min( anArea[ 1 ], + Min( anArea[ 2 ], anArea[ 3 ] ) ) ); if ( C2 <= theEps ) return theInf; return alpha * L * C1 / C2; } else if( nbNodes == 8 || nbNodes == 9 ) { // nbNodes==8 - quadratic quadrangle // Compute lengths of the sides - std::vector< double > aLen (4); + double aLen[4]; aLen[0] = getDistance( P(1), P(3) ); aLen[1] = getDistance( P(3), P(5) ); aLen[2] = getDistance( P(5), P(7) ); aLen[3] = getDistance( P(7), P(1) ); // Compute lengths of the diagonals - std::vector< double > aDia (2); + double aDia[2]; aDia[0] = getDistance( P(1), P(5) ); aDia[1] = getDistance( P(3), P(7) ); // Compute areas of all triangles which can be built // taking three nodes of the quadrangle - std::vector< double > anArea (4); + double anArea[4]; anArea[0] = getArea( P(1), P(3), P(5) ); anArea[1] = getArea( P(1), P(3), P(7) ); anArea[2] = getArea( P(1), P(5), P(7) ); @@ -1355,10 +1387,10 @@ double Taper::GetValue( const TSequenceOfXYZ& P ) return 0.; // Compute taper - double J1 = getArea( P( 4 ), P( 1 ), P( 2 ) ) / 2.; - double J2 = getArea( P( 3 ), P( 1 ), P( 2 ) ) / 2.; - double J3 = getArea( P( 2 ), P( 3 ), P( 4 ) ) / 2.; - double J4 = getArea( P( 3 ), P( 4 ), P( 1 ) ) / 2.; + double J1 = getArea( P( 4 ), P( 1 ), P( 2 ) ); + double J2 = getArea( P( 3 ), P( 1 ), P( 2 ) ); + double J3 = getArea( P( 2 ), P( 3 ), P( 4 ) ); + double J4 = getArea( P( 3 ), P( 4 ), P( 1 ) ); double JA = 0.25 * ( J1 + J2 + J3 + J4 ); if ( JA <= theEps ) @@ -1379,7 +1411,7 @@ double Taper::GetValue( const TSequenceOfXYZ& P ) double Taper::GetBadRate( double Value, int /*nbNodes*/ ) const { // the taper is in the range [0.0,1.0] - // 0.0 = good (no taper) + // 0.0 = good (no taper) // 1.0 = bad (les cotes opposes sont allignes) return Value; } @@ -1465,13 +1497,16 @@ SMDSAbs_ElementType Skew::GetType() const double Area::GetValue( const TSequenceOfXYZ& P ) { double val = 0.0; - if ( P.size() > 2 ) { + if ( P.size() > 2 ) + { gp_Vec aVec1( P(2) - P(1) ); gp_Vec aVec2( P(3) - P(1) ); gp_Vec SumVec = aVec1 ^ aVec2; - for (int i=4; i<=P.size(); i++) { + + for (size_t i=4; i<=P.size(); i++) + { gp_Vec aVec1( P(i-1) - P(1) ); - gp_Vec aVec2( P(i) - P(1) ); + gp_Vec aVec2( P(i ) - P(1) ); gp_Vec tmp = aVec1 ^ aVec2; SumVec.Add(tmp); } @@ -1521,209 +1556,249 @@ SMDSAbs_ElementType Length::GetType() const //================================================================================ /* Class : Length2D - Description : Functor for calculating length of edge + Description : Functor for calculating minimal length of edge */ //================================================================================ -double Length2D::GetValue( long theElementId) +double Length2D::GetValue( const TSequenceOfXYZ& P ) { - TSequenceOfXYZ P; - - //cout<<"Length2D::GetValue"<FindElement( theElementId ); - SMDSAbs_ElementType aType = aElem->GetType(); - - int len = P.size(); - - switch (aType){ - case SMDSAbs_All: - case SMDSAbs_Node: - case SMDSAbs_Edge: - if (len == 2){ - aVal = getDistance( P( 1 ), P( 2 ) ); - break; - } - else if (len == 3){ // quadratic edge - aVal = getDistance(P( 1 ),P( 3 )) + getDistance(P( 3 ),P( 2 )); - break; - } - case SMDSAbs_Face: - if (len == 3){ // triangles - double L1 = getDistance(P( 1 ),P( 2 )); - double L2 = getDistance(P( 2 ),P( 3 )); - double L3 = getDistance(P( 3 ),P( 1 )); - aVal = Max(L1,Max(L2,L3)); - break; - } - else if (len == 4){ // quadrangles - double L1 = getDistance(P( 1 ),P( 2 )); - double L2 = getDistance(P( 2 ),P( 3 )); - double L3 = getDistance(P( 3 ),P( 4 )); - double L4 = getDistance(P( 4 ),P( 1 )); - aVal = Max(Max(L1,L2),Max(L3,L4)); - break; - } - if (len == 6){ // quadratic triangles - double L1 = getDistance(P( 1 ),P( 2 )) + getDistance(P( 2 ),P( 3 )); - double L2 = getDistance(P( 3 ),P( 4 )) + getDistance(P( 4 ),P( 5 )); - double L3 = getDistance(P( 5 ),P( 6 )) + getDistance(P( 6 ),P( 1 )); - aVal = Max(L1,Max(L2,L3)); - //cout<<"L1="< +// #include + +// namespace Parallel +// { +// typedef tbb::enumerable_thread_specific< TIdSequence > TIdSeq; + +// struct Predicate +// { +// const SMDS_Mesh* myMesh; +// PredicatePtr myPredicate; +// TIdSeq & myOKIds; +// Predicate( const SMDS_Mesh* m, PredicatePtr p, TIdSeq & ids ): +// myMesh(m), myPredicate(p->Duplicate()), myOKIds(ids) {} +// void operator() ( const tbb::blocked_range& r ) const +// { +// for ( size_t i = r.begin(); i != r.end(); ++i ) +// if ( myPredicate->IsSatisfy( i )) +// myOKIds.local().push_back(); +// } +// } +// } +// #endif + Filter::Filter() {} @@ -3587,7 +3827,7 @@ bool ManifoldPart::process() myMapIds.Add( aFaceId ); } - if ( fi == ( myAllFacePtr.size() - 1 ) ) + if ( fi == int( myAllFacePtr.size() - 1 )) fi = 0; } // end run on vector of faces return !myMapIds.IsEmpty(); @@ -3789,10 +4029,60 @@ void ManifoldPart::getFacesByLink( const ManifoldPart::Link& theLink, } } - /* - ElementsOnSurface + Class : BelongToMeshGroup + Description : Verify whether a mesh element is included into a mesh group */ +BelongToMeshGroup::BelongToMeshGroup(): myGroup( 0 ) +{ +} + +void BelongToMeshGroup::SetGroup( SMESHDS_GroupBase* g ) +{ + myGroup = g; +} + +void BelongToMeshGroup::SetStoreName( const std::string& sn ) +{ + myStoreName = sn; +} + +void BelongToMeshGroup::SetMesh( const SMDS_Mesh* theMesh ) +{ + if ( myGroup && myGroup->GetMesh() != theMesh ) + { + myGroup = 0; + } + if ( !myGroup && !myStoreName.empty() ) + { + if ( const SMESHDS_Mesh* aMesh = dynamic_cast(theMesh)) + { + const std::set& grps = aMesh->GetGroups(); + std::set::const_iterator g = grps.begin(); + for ( ; g != grps.end() && !myGroup; ++g ) + if ( *g && myStoreName == (*g)->GetStoreName() ) + myGroup = *g; + } + } + if ( myGroup ) + { + myGroup->IsEmpty(); // make GroupOnFilter update its predicate + } +} + +bool BelongToMeshGroup::IsSatisfy( long theElementId ) +{ + return myGroup ? myGroup->Contains( theElementId ) : false; +} + +SMDSAbs_ElementType BelongToMeshGroup::GetType() const +{ + return myGroup ? myGroup->GetType() : SMDSAbs_All; +} + +//================================================================================ +// ElementsOnSurface +//================================================================================ ElementsOnSurface::ElementsOnSurface() { @@ -3926,15 +4216,71 @@ bool ElementsOnSurface::isOnSurface( const SMDS_MeshNode* theNode ) } -/* - ElementsOnShape -*/ +//================================================================================ +// ElementsOnShape +//================================================================================ -ElementsOnShape::ElementsOnShape() - : //myMesh(0), - myType(SMDSAbs_All), - myToler(Precision::Confusion()), - myAllNodesFlag(false) +namespace { + const int theIsCheckedFlag = 0x0000100; +} + +struct ElementsOnShape::Classifier +{ + Classifier() { mySolidClfr = 0; myFlags = 0; } + ~Classifier(); + void Init(const TopoDS_Shape& s, double tol, const Bnd_B3d* box = 0 ); + bool IsOut(const gp_Pnt& p) { return SetChecked( true ), (this->*myIsOutFun)( p ); } + TopAbs_ShapeEnum ShapeType() const { return myShape.ShapeType(); } + const TopoDS_Shape& Shape() const { return myShape; } + const Bnd_B3d* GetBndBox() const { return & myBox; } + bool IsChecked() { return myFlags & theIsCheckedFlag; } + bool IsSetFlag( int flag ) const { return myFlags & flag; } + void SetChecked( bool is ) { is ? SetFlag( theIsCheckedFlag ) : UnsetFlag( theIsCheckedFlag ); } + void SetFlag ( int flag ) { myFlags |= flag; } + void UnsetFlag( int flag ) { myFlags &= ~flag; } + +private: + bool isOutOfSolid (const gp_Pnt& p); + bool isOutOfBox (const gp_Pnt& p); + bool isOutOfFace (const gp_Pnt& p); + bool isOutOfEdge (const gp_Pnt& p); + bool isOutOfVertex(const gp_Pnt& p); + bool isBox (const TopoDS_Shape& s); + + bool (Classifier::* myIsOutFun)(const gp_Pnt& p); + BRepClass3d_SolidClassifier* mySolidClfr; // ptr because of a run-time forbidden copy-constructor + Bnd_B3d myBox; + GeomAPI_ProjectPointOnSurf myProjFace; + GeomAPI_ProjectPointOnCurve myProjEdge; + gp_Pnt myVertexXYZ; + TopoDS_Shape myShape; + double myTol; + int myFlags; +}; + +struct ElementsOnShape::OctreeClassifier : public SMESH_Octree +{ + OctreeClassifier( const std::vector< ElementsOnShape::Classifier* >& classifiers ); + OctreeClassifier( const OctreeClassifier* otherTree, + const std::vector< ElementsOnShape::Classifier >& clsOther, + std::vector< ElementsOnShape::Classifier >& cls ); + void GetClassifiersAtPoint( const gp_XYZ& p, + std::vector< ElementsOnShape::Classifier* >& classifiers ); +protected: + OctreeClassifier() {} + SMESH_Octree* newChild() const { return new OctreeClassifier; } + void buildChildrenData(); + Bnd_B3d* buildRootBox(); + + std::vector< ElementsOnShape::Classifier* > myClassifiers; +}; + + +ElementsOnShape::ElementsOnShape(): + myOctree(0), + myType(SMDSAbs_All), + myToler(Precision::Confusion()), + myAllNodesFlag(false) { } @@ -3943,6 +4289,25 @@ ElementsOnShape::~ElementsOnShape() clearClassifiers(); } +Predicate* ElementsOnShape::clone() const +{ + ElementsOnShape* cln = new ElementsOnShape(); + cln->SetAllNodes ( myAllNodesFlag ); + cln->SetTolerance( myToler ); + cln->SetMesh ( myMeshModifTracer.GetMesh() ); + cln->myShape = myShape; // avoid creation of myClassifiers + cln->SetShape ( myShape, myType ); + cln->myClassifiers.resize( myClassifiers.size() ); + for ( size_t i = 0; i < myClassifiers.size(); ++i ) + cln->myClassifiers[ i ].Init( BRepBuilderAPI_Copy( myClassifiers[ i ].Shape()), + myToler, myClassifiers[ i ].GetBndBox() ); + if ( myOctree ) // copy myOctree + { + cln->myOctree = new OctreeClassifier( myOctree, myClassifiers, cln->myClassifiers ); + } + return cln; +} + SMDSAbs_ElementType ElementsOnShape::GetType() const { return myType; @@ -3968,137 +4333,323 @@ void ElementsOnShape::SetAllNodes (bool theAllNodes) void ElementsOnShape::SetMesh (const SMDS_Mesh* theMesh) { - myMesh = theMesh; + myMeshModifTracer.SetMesh( theMesh ); + if ( myMeshModifTracer.IsMeshModified()) + { + size_t nbNodes = theMesh ? theMesh->NbNodes() : 0; + if ( myNodeIsChecked.size() == nbNodes ) + { + std::fill( myNodeIsChecked.begin(), myNodeIsChecked.end(), false ); + } + else + { + SMESHUtils::FreeVector( myNodeIsChecked ); + SMESHUtils::FreeVector( myNodeIsOut ); + myNodeIsChecked.resize( nbNodes, false ); + myNodeIsOut.resize( nbNodes ); + } + } +} + +bool ElementsOnShape::getNodeIsOut( const SMDS_MeshNode* n, bool& isOut ) +{ + if ( n->GetID() >= (int) myNodeIsChecked.size() || + !myNodeIsChecked[ n->GetID() ]) + return false; + + isOut = myNodeIsOut[ n->GetID() ]; + return true; +} + +void ElementsOnShape::setNodeIsOut( const SMDS_MeshNode* n, bool isOut ) +{ + if ( n->GetID() < (int) myNodeIsChecked.size() ) + { + myNodeIsChecked[ n->GetID() ] = true; + myNodeIsOut [ n->GetID() ] = isOut; + } } void ElementsOnShape::SetShape (const TopoDS_Shape& theShape, const SMDSAbs_ElementType theType) { + bool shapeChanges = ( myShape != theShape ); myType = theType; myShape = theShape; if ( myShape.IsNull() ) return; - - TopTools_IndexedMapOfShape shapesMap; - TopAbs_ShapeEnum shapeTypes[4] = { TopAbs_SOLID, TopAbs_FACE, TopAbs_EDGE, TopAbs_VERTEX }; - TopExp_Explorer sub; - for ( int i = 0; i < 4; ++i ) + + if ( shapeChanges ) { - if ( shapesMap.IsEmpty() ) - for ( sub.Init( myShape, shapeTypes[i] ); sub.More(); sub.Next() ) - shapesMap.Add( sub.Current() ); - if ( i > 0 ) - for ( sub.Init( myShape, shapeTypes[i], shapeTypes[i-1] ); sub.More(); sub.Next() ) - shapesMap.Add( sub.Current() ); + // find most complex shapes + TopTools_IndexedMapOfShape shapesMap; + TopAbs_ShapeEnum shapeTypes[4] = { TopAbs_SOLID, TopAbs_FACE, TopAbs_EDGE, TopAbs_VERTEX }; + TopExp_Explorer sub; + for ( int i = 0; i < 4; ++i ) + { + if ( shapesMap.IsEmpty() ) + for ( sub.Init( myShape, shapeTypes[i] ); sub.More(); sub.Next() ) + shapesMap.Add( sub.Current() ); + if ( i > 0 ) + for ( sub.Init( myShape, shapeTypes[i], shapeTypes[i-1] ); sub.More(); sub.Next() ) + shapesMap.Add( sub.Current() ); + } + + clearClassifiers(); + myClassifiers.resize( shapesMap.Extent() ); + for ( int i = 0; i < shapesMap.Extent(); ++i ) + myClassifiers[ i ].Init( shapesMap( i+1 ), myToler ); } - clearClassifiers(); - myClassifiers.resize( shapesMap.Extent() ); - for ( int i = 0; i < shapesMap.Extent(); ++i ) - myClassifiers[ i ] = new TClassifier( shapesMap( i+1 ), myToler ); + if ( theType == SMDSAbs_Node ) + { + SMESHUtils::FreeVector( myNodeIsChecked ); + SMESHUtils::FreeVector( myNodeIsOut ); + } + else + { + std::fill( myNodeIsChecked.begin(), myNodeIsChecked.end(), false ); + } } void ElementsOnShape::clearClassifiers() { - for ( size_t i = 0; i < myClassifiers.size(); ++i ) - delete myClassifiers[ i ]; + // for ( size_t i = 0; i < myClassifiers.size(); ++i ) + // delete myClassifiers[ i ]; myClassifiers.clear(); + + delete myOctree; + myOctree = 0; } -bool ElementsOnShape::IsSatisfy (long elemId) +bool ElementsOnShape::IsSatisfy( long elemId ) { - const SMDS_MeshElement* elem = - ( myType == SMDSAbs_Node ? myMesh->FindNode( elemId ) : myMesh->FindElement( elemId )); - if ( !elem || myClassifiers.empty() ) + if ( myClassifiers.empty() ) return false; - for ( size_t i = 0; i < myClassifiers.size(); ++i ) + const SMDS_Mesh* mesh = myMeshModifTracer.GetMesh(); + if ( myType == SMDSAbs_Node ) + return IsSatisfy( mesh->FindNode( elemId )); + return IsSatisfy( mesh->FindElement( elemId )); +} + +bool ElementsOnShape::IsSatisfy (const SMDS_MeshElement* elem) +{ + if ( !elem ) + return false; + + bool isSatisfy = myAllNodesFlag, isNodeOut; + + gp_XYZ centerXYZ (0, 0, 0); + + if ( !myOctree && myClassifiers.size() > 5 ) { - SMDS_ElemIteratorPtr aNodeItr = elem->nodesIterator(); - bool isSatisfy = myAllNodesFlag; - - gp_XYZ centerXYZ (0, 0, 0); + myWorkClassifiers.resize( myClassifiers.size() ); + for ( size_t i = 0; i < myClassifiers.size(); ++i ) + myWorkClassifiers[ i ] = & myClassifiers[ i ]; + myOctree = new OctreeClassifier( myWorkClassifiers ); + } - while (aNodeItr->more() && (isSatisfy == myAllNodesFlag)) - { - SMESH_TNodeXYZ aPnt ( aNodeItr->next() ); - centerXYZ += aPnt; - isSatisfy = ! myClassifiers[i]->IsOut( aPnt ); - } + SMDS_ElemIteratorPtr aNodeItr = elem->nodesIterator(); + while (aNodeItr->more() && (isSatisfy == myAllNodesFlag)) + { + SMESH_TNodeXYZ aPnt( aNodeItr->next() ); + centerXYZ += aPnt; - // Check the center point for volumes MantisBug 0020168 - if (isSatisfy && - myAllNodesFlag && - myClassifiers[i]->ShapeType() == TopAbs_SOLID) + isNodeOut = true; + if ( !getNodeIsOut( aPnt._node, isNodeOut )) { - centerXYZ /= elem->NbNodes(); - isSatisfy = ! myClassifiers[i]->IsOut( centerXYZ ); + if ( myOctree ) + { + myWorkClassifiers.clear(); + myOctree->GetClassifiersAtPoint( aPnt, myWorkClassifiers ); + + for ( size_t i = 0; i < myWorkClassifiers.size(); ++i ) + myWorkClassifiers[i]->SetChecked( false ); + + for ( size_t i = 0; i < myWorkClassifiers.size() && isNodeOut; ++i ) + if ( !myWorkClassifiers[i]->IsChecked() ) + isNodeOut = myWorkClassifiers[i]->IsOut( aPnt ); + } + else + { + for ( size_t i = 0; i < myClassifiers.size() && isNodeOut; ++i ) + isNodeOut = myClassifiers[i].IsOut( aPnt ); + } + setNodeIsOut( aPnt._node, isNodeOut ); } - if ( isSatisfy ) - return true; + isSatisfy = !isNodeOut; } - return false; -} + // Check the center point for volumes MantisBug 0020168 + if ( isSatisfy && + myAllNodesFlag && + myClassifiers[0].ShapeType() == TopAbs_SOLID ) + { + centerXYZ /= elem->NbNodes(); + isSatisfy = false; + if ( myOctree ) + for ( size_t i = 0; i < myWorkClassifiers.size() && !isSatisfy; ++i ) + isSatisfy = ! myWorkClassifiers[i]->IsOut( centerXYZ ); + else + for ( size_t i = 0; i < myClassifiers.size() && !isSatisfy; ++i ) + isSatisfy = ! myClassifiers[i].IsOut( centerXYZ ); + } -TopAbs_ShapeEnum ElementsOnShape::TClassifier::ShapeType() const -{ - return myShape.ShapeType(); + return isSatisfy; } -bool ElementsOnShape::TClassifier::IsOut(const gp_Pnt& p) +bool ElementsOnShape::IsSatisfy (const SMDS_MeshNode* node, + TopoDS_Shape* okShape) { - return (this->*myIsOutFun)( p ); + if ( !node ) + return false; + + if ( !myOctree && myClassifiers.size() > 5 ) + { + myWorkClassifiers.resize( myClassifiers.size() ); + for ( size_t i = 0; i < myClassifiers.size(); ++i ) + myWorkClassifiers[ i ] = & myClassifiers[ i ]; + myOctree = new OctreeClassifier( myWorkClassifiers ); + } + + bool isNodeOut = true; + + if ( okShape || !getNodeIsOut( node, isNodeOut )) + { + SMESH_NodeXYZ aPnt = node; + if ( myOctree ) + { + myWorkClassifiers.clear(); + myOctree->GetClassifiersAtPoint( aPnt, myWorkClassifiers ); + + for ( size_t i = 0; i < myWorkClassifiers.size(); ++i ) + myWorkClassifiers[i]->SetChecked( false ); + + for ( size_t i = 0; i < myWorkClassifiers.size(); ++i ) + if ( !myWorkClassifiers[i]->IsChecked() && + !myWorkClassifiers[i]->IsOut( aPnt )) + { + isNodeOut = false; + if ( okShape ) + *okShape = myWorkClassifiers[i]->Shape(); + break; + } + } + else + { + for ( size_t i = 0; i < myClassifiers.size(); ++i ) + if ( !myClassifiers[i].IsOut( aPnt )) + { + isNodeOut = false; + if ( okShape ) + *okShape = myWorkClassifiers[i]->Shape(); + break; + } + } + setNodeIsOut( node, isNodeOut ); + } + + return !isNodeOut; } -void ElementsOnShape::TClassifier::Init (const TopoDS_Shape& theShape, double theTol) +void ElementsOnShape::Classifier::Init( const TopoDS_Shape& theShape, + double theTol, + const Bnd_B3d* theBox ) { myShape = theShape; myTol = theTol; + myFlags = 0; + + bool isShapeBox = false; switch ( myShape.ShapeType() ) { - case TopAbs_SOLID: { - mySolidClfr.Load(theShape); - myIsOutFun = & ElementsOnShape::TClassifier::isOutOfSolid; + case TopAbs_SOLID: + { + if (( isShapeBox = isBox( theShape ))) + { + myIsOutFun = & ElementsOnShape::Classifier::isOutOfBox; + } + else + { + mySolidClfr = new BRepClass3d_SolidClassifier(theShape); + myIsOutFun = & ElementsOnShape::Classifier::isOutOfSolid; + } break; } - case TopAbs_FACE: { + case TopAbs_FACE: + { Standard_Real u1,u2,v1,v2; Handle(Geom_Surface) surf = BRep_Tool::Surface( TopoDS::Face( theShape )); surf->Bounds( u1,u2,v1,v2 ); myProjFace.Init(surf, u1,u2, v1,v2, myTol ); - myIsOutFun = & ElementsOnShape::TClassifier::isOutOfFace; + myIsOutFun = & ElementsOnShape::Classifier::isOutOfFace; break; } - case TopAbs_EDGE: { + case TopAbs_EDGE: + { Standard_Real u1, u2; - Handle(Geom_Curve) curve = BRep_Tool::Curve( TopoDS::Edge(theShape), u1, u2); + Handle(Geom_Curve) curve = BRep_Tool::Curve( TopoDS::Edge( theShape ), u1, u2); myProjEdge.Init(curve, u1, u2); - myIsOutFun = & ElementsOnShape::TClassifier::isOutOfEdge; + myIsOutFun = & ElementsOnShape::Classifier::isOutOfEdge; break; } - case TopAbs_VERTEX:{ + case TopAbs_VERTEX: + { myVertexXYZ = BRep_Tool::Pnt( TopoDS::Vertex( theShape ) ); - myIsOutFun = & ElementsOnShape::TClassifier::isOutOfVertex; + myIsOutFun = & ElementsOnShape::Classifier::isOutOfVertex; break; } default: - throw SALOME_Exception("Programmer error in usage of ElementsOnShape::TClassifier"); + throw SALOME_Exception("Programmer error in usage of ElementsOnShape::Classifier"); } + + if ( !isShapeBox ) + { + if ( theBox ) + { + myBox = *theBox; + } + else + { + Bnd_Box box; + BRepBndLib::Add( myShape, box ); + myBox.Clear(); + myBox.Add( box.CornerMin() ); + myBox.Add( box.CornerMax() ); + gp_XYZ halfSize = 0.5 * ( box.CornerMax().XYZ() - box.CornerMin().XYZ() ); + for ( int iDim = 1; iDim <= 3; ++iDim ) + { + double x = halfSize.Coord( iDim ); + halfSize.SetCoord( iDim, x + Max( myTol, 1e-2 * x )); + } + myBox.SetHSize( halfSize ); + } + } +} + +ElementsOnShape::Classifier::~Classifier() +{ + delete mySolidClfr; mySolidClfr = 0; +} + +bool ElementsOnShape::Classifier::isOutOfSolid (const gp_Pnt& p) +{ + mySolidClfr->Perform( p, myTol ); + return ( mySolidClfr->State() != TopAbs_IN && mySolidClfr->State() != TopAbs_ON ); } -bool ElementsOnShape::TClassifier::isOutOfSolid (const gp_Pnt& p) +bool ElementsOnShape::Classifier::isOutOfBox (const gp_Pnt& p) { - mySolidClfr.Perform( p, myTol ); - return ( mySolidClfr.State() != TopAbs_IN && mySolidClfr.State() != TopAbs_ON ); + return myBox.IsOut( p.XYZ() ); } -bool ElementsOnShape::TClassifier::isOutOfFace (const gp_Pnt& p) +bool ElementsOnShape::Classifier::isOutOfFace (const gp_Pnt& p) { myProjFace.Perform( p ); if ( myProjFace.IsDone() && myProjFace.LowerDistance() <= myTol ) { // check relatively to the face - Quantity_Parameter u, v; + Standard_Real u, v; myProjFace.LowerDistanceParameters(u, v); gp_Pnt2d aProjPnt (u, v); BRepClass_FaceClassifier aClsf ( TopoDS::Face( myShape ), aProjPnt, myTol ); @@ -4108,32 +4659,483 @@ bool ElementsOnShape::TClassifier::isOutOfFace (const gp_Pnt& p) return true; } -bool ElementsOnShape::TClassifier::isOutOfEdge (const gp_Pnt& p) +bool ElementsOnShape::Classifier::isOutOfEdge (const gp_Pnt& p) { myProjEdge.Perform( p ); return ! ( myProjEdge.NbPoints() > 0 && myProjEdge.LowerDistance() <= myTol ); } -bool ElementsOnShape::TClassifier::isOutOfVertex(const gp_Pnt& p) +bool ElementsOnShape::Classifier::isOutOfVertex(const gp_Pnt& p) { return ( myVertexXYZ.Distance( p ) > myTol ); } +bool ElementsOnShape::Classifier::isBox (const TopoDS_Shape& theShape) +{ + TopTools_IndexedMapOfShape vMap; + TopExp::MapShapes( theShape, TopAbs_VERTEX, vMap ); + if ( vMap.Extent() != 8 ) + return false; + + myBox.Clear(); + for ( int i = 1; i <= 8; ++i ) + myBox.Add( BRep_Tool::Pnt( TopoDS::Vertex( vMap( i ))).XYZ() ); + + gp_XYZ pMin = myBox.CornerMin(), pMax = myBox.CornerMax(); + for ( int i = 1; i <= 8; ++i ) + { + gp_Pnt p = BRep_Tool::Pnt( TopoDS::Vertex( vMap( i ))); + for ( int iC = 1; iC <= 3; ++ iC ) + { + double d1 = Abs( pMin.Coord( iC ) - p.Coord( iC )); + double d2 = Abs( pMax.Coord( iC ) - p.Coord( iC )); + if ( Min( d1, d2 ) > myTol ) + return false; + } + } + myBox.Enlarge( myTol ); + return true; +} -TSequenceOfXYZ::TSequenceOfXYZ() +ElementsOnShape:: +OctreeClassifier::OctreeClassifier( const std::vector< ElementsOnShape::Classifier* >& classifiers ) + :SMESH_Octree( new SMESH_TreeLimit ) +{ + myClassifiers = classifiers; + compute(); +} + +ElementsOnShape:: +OctreeClassifier::OctreeClassifier( const OctreeClassifier* otherTree, + const std::vector< ElementsOnShape::Classifier >& clsOther, + std::vector< ElementsOnShape::Classifier >& cls ) + :SMESH_Octree( new SMESH_TreeLimit ) +{ + myBox = new Bnd_B3d( *otherTree->getBox() ); + + if (( myIsLeaf = otherTree->isLeaf() )) + { + myClassifiers.resize( otherTree->myClassifiers.size() ); + for ( size_t i = 0; i < otherTree->myClassifiers.size(); ++i ) + { + int ind = otherTree->myClassifiers[i] - & clsOther[0]; + myClassifiers[ i ] = & cls[ ind ]; + } + } + else if ( otherTree->myChildren ) + { + myChildren = new SMESH_Tree< Bnd_B3d, 8 > * [ 8 ]; + for ( int i = 0; i < nbChildren(); i++ ) + myChildren[i] = + new OctreeClassifier( static_cast( otherTree->myChildren[i]), + clsOther, cls ); + } +} + +void ElementsOnShape:: +OctreeClassifier::GetClassifiersAtPoint( const gp_XYZ& point, + std::vector< ElementsOnShape::Classifier* >& result ) +{ + if ( getBox()->IsOut( point )) + return; + + if ( isLeaf() ) + { + for ( size_t i = 0; i < myClassifiers.size(); ++i ) + if ( !myClassifiers[i]->GetBndBox()->IsOut( point )) + result.push_back( myClassifiers[i] ); + } + else + { + for (int i = 0; i < nbChildren(); i++) + ((OctreeClassifier*) myChildren[i])->GetClassifiersAtPoint( point, result ); + } +} + +void ElementsOnShape::OctreeClassifier::buildChildrenData() +{ + // distribute myClassifiers among myChildren + + const int childFlag[8] = { 0x0000001, + 0x0000002, + 0x0000004, + 0x0000008, + 0x0000010, + 0x0000020, + 0x0000040, + 0x0000080 }; + int nbInChild[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; + + for ( size_t i = 0; i < myClassifiers.size(); ++i ) + { + for ( int j = 0; j < nbChildren(); j++ ) + { + if ( !myClassifiers[i]->GetBndBox()->IsOut( *myChildren[j]->getBox() )) + { + myClassifiers[i]->SetFlag( childFlag[ j ]); + ++nbInChild[ j ]; + } + } + } + + for ( int j = 0; j < nbChildren(); j++ ) + { + OctreeClassifier* child = static_cast( myChildren[ j ]); + child->myClassifiers.resize( nbInChild[ j ]); + for ( size_t i = 0; nbInChild[ j ] && i < myClassifiers.size(); ++i ) + { + if ( myClassifiers[ i ]->IsSetFlag( childFlag[ j ])) + { + --nbInChild[ j ]; + child->myClassifiers[ nbInChild[ j ]] = myClassifiers[ i ]; + myClassifiers[ i ]->UnsetFlag( childFlag[ j ]); + } + } + } + SMESHUtils::FreeVector( myClassifiers ); + + // define if a child isLeaf() + for ( int i = 0; i < nbChildren(); i++ ) + { + OctreeClassifier* child = static_cast( myChildren[ i ]); + child->myIsLeaf = ( child->myClassifiers.size() <= 5 ); + } +} + +Bnd_B3d* ElementsOnShape::OctreeClassifier::buildRootBox() +{ + Bnd_B3d* box = new Bnd_B3d; + for ( size_t i = 0; i < myClassifiers.size(); ++i ) + box->Add( *myClassifiers[i]->GetBndBox() ); + return box; +} + +/* + Class : BelongToGeom + Description : Predicate for verifying whether entity belongs to + specified geometrical support +*/ + +BelongToGeom::BelongToGeom() + : myMeshDS(NULL), + myType(SMDSAbs_NbElementTypes), + myIsSubshape(false), + myTolerance(Precision::Confusion()) +{} + +Predicate* BelongToGeom::clone() const +{ + BelongToGeom* cln = new BelongToGeom( *this ); + cln->myElementsOnShapePtr.reset( static_cast( myElementsOnShapePtr->clone() )); + return cln; +} + +void BelongToGeom::SetMesh( const SMDS_Mesh* theMesh ) +{ + if ( myMeshDS != theMesh ) + { + myMeshDS = dynamic_cast(theMesh); + init(); + } +} + +void BelongToGeom::SetGeom( const TopoDS_Shape& theShape ) +{ + if ( myShape != theShape ) + { + myShape = theShape; + init(); + } +} + +static bool IsSubShape (const TopTools_IndexedMapOfShape& theMap, + const TopoDS_Shape& theShape) +{ + if (theMap.Contains(theShape)) return true; + + if (theShape.ShapeType() == TopAbs_COMPOUND || + theShape.ShapeType() == TopAbs_COMPSOLID) + { + TopoDS_Iterator anIt (theShape, Standard_True, Standard_True); + for (; anIt.More(); anIt.Next()) + { + if (!IsSubShape(theMap, anIt.Value())) { + return false; + } + } + return true; + } + + return false; +} + +void BelongToGeom::init() +{ + if ( !myMeshDS || myShape.IsNull() ) return; + + // is sub-shape of main shape? + TopoDS_Shape aMainShape = myMeshDS->ShapeToMesh(); + if (aMainShape.IsNull()) { + myIsSubshape = false; + } + else { + TopTools_IndexedMapOfShape aMap; + TopExp::MapShapes( aMainShape, aMap ); + myIsSubshape = IsSubShape( aMap, myShape ); + if ( myIsSubshape ) + { + aMap.Clear(); + TopExp::MapShapes( myShape, aMap ); + mySubShapesIDs.Clear(); + for ( int i = 1; i <= aMap.Extent(); ++i ) + { + int subID = myMeshDS->ShapeToIndex( aMap( i )); + if ( subID > 0 ) + mySubShapesIDs.Add( subID ); + } + } + } + + //if (!myIsSubshape) // to be always ready to check an element not bound to geometry + { + if ( !myElementsOnShapePtr ) + myElementsOnShapePtr.reset( new ElementsOnShape() ); + myElementsOnShapePtr->SetTolerance( myTolerance ); + myElementsOnShapePtr->SetAllNodes( true ); // "belong", while false means "lays on" + myElementsOnShapePtr->SetMesh( myMeshDS ); + myElementsOnShapePtr->SetShape( myShape, myType ); + } +} + +bool BelongToGeom::IsSatisfy (long theId) +{ + if (myMeshDS == 0 || myShape.IsNull()) + return false; + + if (!myIsSubshape) + { + return myElementsOnShapePtr->IsSatisfy(theId); + } + + // Case of sub-mesh + + if (myType == SMDSAbs_Node) + { + if ( const SMDS_MeshNode* aNode = myMeshDS->FindNode( theId )) + { + if ( aNode->getshapeId() < 1 ) + return myElementsOnShapePtr->IsSatisfy(theId); + else + return mySubShapesIDs.Contains( aNode->getshapeId() ); + } + } + else + { + if ( const SMDS_MeshElement* anElem = myMeshDS->FindElement( theId )) + { + if ( anElem->GetType() == myType ) + { + if ( anElem->getshapeId() < 1 ) + return myElementsOnShapePtr->IsSatisfy(theId); + else + return mySubShapesIDs.Contains( anElem->getshapeId() ); + } + } + } + + return false; +} + +void BelongToGeom::SetType (SMDSAbs_ElementType theType) +{ + if ( myType != theType ) + { + myType = theType; + init(); + } +} + +SMDSAbs_ElementType BelongToGeom::GetType() const +{ + return myType; +} + +TopoDS_Shape BelongToGeom::GetShape() +{ + return myShape; +} + +const SMESHDS_Mesh* BelongToGeom::GetMeshDS() const +{ + return myMeshDS; +} + +void BelongToGeom::SetTolerance (double theTolerance) +{ + myTolerance = theTolerance; + init(); +} + +double BelongToGeom::GetTolerance() +{ + return myTolerance; +} + +/* + Class : LyingOnGeom + Description : Predicate for verifying whether entiy lying or partially lying on + specified geometrical support +*/ + +LyingOnGeom::LyingOnGeom() + : myMeshDS(NULL), + myType(SMDSAbs_NbElementTypes), + myIsSubshape(false), + myTolerance(Precision::Confusion()) {} -TSequenceOfXYZ::TSequenceOfXYZ(size_type n) : myArray(n) +Predicate* LyingOnGeom::clone() const +{ + LyingOnGeom* cln = new LyingOnGeom( *this ); + cln->myElementsOnShapePtr.reset( static_cast( myElementsOnShapePtr->clone() )); + return cln; +} + +void LyingOnGeom::SetMesh( const SMDS_Mesh* theMesh ) +{ + if ( myMeshDS != theMesh ) + { + myMeshDS = dynamic_cast(theMesh); + init(); + } +} + +void LyingOnGeom::SetGeom( const TopoDS_Shape& theShape ) +{ + if ( myShape != theShape ) + { + myShape = theShape; + init(); + } +} + +void LyingOnGeom::init() +{ + if (!myMeshDS || myShape.IsNull()) return; + + // is sub-shape of main shape? + TopoDS_Shape aMainShape = myMeshDS->ShapeToMesh(); + if (aMainShape.IsNull()) { + myIsSubshape = false; + } + else { + myIsSubshape = myMeshDS->IsGroupOfSubShapes( myShape ); + } + + if (myIsSubshape) + { + TopTools_IndexedMapOfShape shapes; + TopExp::MapShapes( myShape, shapes ); + mySubShapesIDs.Clear(); + for ( int i = 1; i <= shapes.Extent(); ++i ) + { + int subID = myMeshDS->ShapeToIndex( shapes( i )); + if ( subID > 0 ) + mySubShapesIDs.Add( subID ); + } + } + // else // to be always ready to check an element not bound to geometry + { + if ( !myElementsOnShapePtr ) + myElementsOnShapePtr.reset( new ElementsOnShape() ); + myElementsOnShapePtr->SetTolerance( myTolerance ); + myElementsOnShapePtr->SetAllNodes( false ); // lays on, while true means "belong" + myElementsOnShapePtr->SetMesh( myMeshDS ); + myElementsOnShapePtr->SetShape( myShape, myType ); + } +} + +bool LyingOnGeom::IsSatisfy( long theId ) +{ + if ( myMeshDS == 0 || myShape.IsNull() ) + return false; + + if (!myIsSubshape) + { + return myElementsOnShapePtr->IsSatisfy(theId); + } + + // Case of sub-mesh + + const SMDS_MeshElement* elem = + ( myType == SMDSAbs_Node ) ? myMeshDS->FindNode( theId ) : myMeshDS->FindElement( theId ); + + if ( mySubShapesIDs.Contains( elem->getshapeId() )) + return true; + + if ( elem->GetType() != SMDSAbs_Node && elem->GetType() == myType ) + { + SMDS_ElemIteratorPtr nodeItr = elem->nodesIterator(); + while ( nodeItr->more() ) + { + const SMDS_MeshElement* aNode = nodeItr->next(); + if ( mySubShapesIDs.Contains( aNode->getshapeId() )) + return true; + } + } + + return false; +} + +void LyingOnGeom::SetType( SMDSAbs_ElementType theType ) +{ + if ( myType != theType ) + { + myType = theType; + init(); + } +} + +SMDSAbs_ElementType LyingOnGeom::GetType() const +{ + return myType; +} + +TopoDS_Shape LyingOnGeom::GetShape() +{ + return myShape; +} + +const SMESHDS_Mesh* LyingOnGeom::GetMeshDS() const +{ + return myMeshDS; +} + +void LyingOnGeom::SetTolerance (double theTolerance) +{ + myTolerance = theTolerance; + init(); +} + +double LyingOnGeom::GetTolerance() +{ + return myTolerance; +} + +TSequenceOfXYZ::TSequenceOfXYZ(): myElem(0) {} -TSequenceOfXYZ::TSequenceOfXYZ(size_type n, const gp_XYZ& t) : myArray(n,t) +TSequenceOfXYZ::TSequenceOfXYZ(size_type n) : myArray(n), myElem(0) {} -TSequenceOfXYZ::TSequenceOfXYZ(const TSequenceOfXYZ& theSequenceOfXYZ) : myArray(theSequenceOfXYZ.myArray) +TSequenceOfXYZ::TSequenceOfXYZ(size_type n, const gp_XYZ& t) : myArray(n,t), myElem(0) +{} + +TSequenceOfXYZ::TSequenceOfXYZ(const TSequenceOfXYZ& theSequenceOfXYZ) : myArray(theSequenceOfXYZ.myArray), myElem(theSequenceOfXYZ.myElem) {} template -TSequenceOfXYZ::TSequenceOfXYZ(InputIterator theBegin, InputIterator theEnd): myArray(theBegin,theEnd) +TSequenceOfXYZ::TSequenceOfXYZ(InputIterator theBegin, InputIterator theEnd): myArray(theBegin,theEnd), myElem(0) {} TSequenceOfXYZ::~TSequenceOfXYZ() @@ -4142,6 +5144,7 @@ TSequenceOfXYZ::~TSequenceOfXYZ() TSequenceOfXYZ& TSequenceOfXYZ::operator=(const TSequenceOfXYZ& theSequenceOfXYZ) { myArray = theSequenceOfXYZ.myArray; + myElem = theSequenceOfXYZ.myElem; return *this; } @@ -4175,6 +5178,11 @@ TSequenceOfXYZ::size_type TSequenceOfXYZ::size() const return myArray.size(); } +SMDSAbs_EntityType TSequenceOfXYZ::getElementEntity() const +{ + return myElem ? myElem->GetEntityType() : SMDSEntity_Last; +} + TMeshModifTracer::TMeshModifTracer(): myMeshModifTime(0), myMesh(0) {