X-Git-Url: http://git.salome-platform.org/gitweb/?p=modules%2Fsmesh.git;a=blobdiff_plain;f=src%2FControls%2FSMESH_Controls.cxx;h=7fcc948da5ef4c6789c2fdd0fe844ea5264c50ab;hp=48c4d878d668a2212f3bc50a36095a64f46f5ed8;hb=24dd5df5f053455d186962be79786dc9237a1a0e;hpb=251f8c052dd12dd29922210dc901b295fe999a0e diff --git a/src/Controls/SMESH_Controls.cxx b/src/Controls/SMESH_Controls.cxx index 48c4d878d..7fcc948da 100644 --- a/src/Controls/SMESH_Controls.cxx +++ b/src/Controls/SMESH_Controls.cxx @@ -1,4 +1,4 @@ -// Copyright (C) 2007-2015 CEA/DEN, EDF R&D, OPEN CASCADE +// Copyright (C) 2007-2016 CEA/DEN, EDF R&D, OPEN CASCADE // // Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN, // CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS @@ -23,27 +23,33 @@ #include "SMESH_ControlsDef.hxx" #include "SMDS_BallElement.hxx" +#include "SMDS_FacePosition.hxx" #include "SMDS_Iterator.hxx" #include "SMDS_Mesh.hxx" #include "SMDS_MeshElement.hxx" #include "SMDS_MeshNode.hxx" -#include "SMDS_QuadraticEdge.hxx" -#include "SMDS_QuadraticFaceOfNodes.hxx" #include "SMDS_VolumeTool.hxx" #include "SMESHDS_GroupBase.hxx" +#include "SMESHDS_GroupOnFilter.hxx" #include "SMESHDS_Mesh.hxx" -#include "SMESH_OctreeNode.hxx" #include "SMESH_MeshAlgos.hxx" +#include "SMESH_OctreeNode.hxx" #include #include +#include +#include +#include #include #include +#include #include #include #include +#include #include +#include #include #include #include @@ -91,6 +97,15 @@ namespace { v2.Magnitude() < gp::Resolution() ? 0 : v1.Angle( v2 ); } + inline double getCos2( const gp_XYZ& P1, const gp_XYZ& P2, const gp_XYZ& P3 ) + { + gp_Vec v1( P1 - P2 ), v2( P3 - P2 ); + double dot = v1 * v2, len1 = v1.SquareMagnitude(), len2 = v2.SquareMagnitude(); + + return ( dot < 0 || len1 < gp::Resolution() || len2 < gp::Resolution() ? -1 : + dot * dot / len1 / len2 ); + } + inline double getArea( const gp_XYZ& P1, const gp_XYZ& P2, const gp_XYZ& P3 ) { gp_Vec aVec1( P2 - P1 ); @@ -130,13 +145,13 @@ namespace { // +-----+------+ +-----+------+ // | | | | // | | | | - // result sould be 2 in both cases + // result should be 2 in both cases // int aResult0 = 0, aResult1 = 0; // last node, it is a medium one in a quadratic edge const SMDS_MeshNode* aLastNode = anEdge->GetNode( anEdge->NbNodes() - 1 ); - const SMDS_MeshNode* aNode0 = anEdge->GetNode( 0 ); - const SMDS_MeshNode* aNode1 = anEdge->GetNode( 1 ); + const SMDS_MeshNode* aNode0 = anEdge->GetNode( 0 ); + const SMDS_MeshNode* aNode1 = anEdge->GetNode( 1 ); if ( aNode1 == aLastNode ) aNode1 = 0; SMDS_ElemIteratorPtr anElemIter = aLastNode->GetInverseElementIterator(); @@ -158,29 +173,6 @@ namespace { } int aResult = std::max ( aResult0, aResult1 ); -// TColStd_MapOfInteger aMap; - -// SMDS_ElemIteratorPtr anIter = anEdge->nodesIterator(); -// if ( anIter != 0 ) { -// while( anIter->more() ) { -// const SMDS_MeshNode* aNode = (SMDS_MeshNode*)anIter->next(); -// if ( aNode == 0 ) -// return 0; -// SMDS_ElemIteratorPtr anElemIter = aNode->GetInverseElementIterator(); -// while( anElemIter->more() ) { -// const SMDS_MeshElement* anElem = anElemIter->next(); -// if ( anElem != 0 && anElem->GetType() != SMDSAbs_Edge ) { -// int anId = anElem->GetID(); - -// if ( anIter->more() ) // i.e. first node -// aMap.Add( anId ); -// else if ( aMap.Contains( anId ) ) -// aResult++; -// } -// } -// } -// } - return aResult; } @@ -196,7 +188,7 @@ namespace { n += q2 ^ q3; } double len = n.Modulus(); - bool zeroLen = ( len <= numeric_limits::min()); + bool zeroLen = ( len <= std::numeric_limits::min()); if ( !zeroLen ) n /= len; @@ -232,7 +224,7 @@ void NumericalFunctor::SetMesh( const SMDS_Mesh* theMesh ) myMesh = theMesh; } -bool NumericalFunctor::GetPoints(const int theId, +bool NumericalFunctor::GetPoints(const int theId, TSequenceOfXYZ& theRes ) const { theRes.clear(); @@ -256,33 +248,15 @@ bool NumericalFunctor::GetPoints(const SMDS_MeshElement* anElem, return false; theRes.reserve( anElem->NbNodes() ); + theRes.setElement( anElem ); // Get nodes of the element - SMDS_ElemIteratorPtr anIter; - - if ( anElem->IsQuadratic() ) { - switch ( anElem->GetType() ) { - case SMDSAbs_Edge: - anIter = dynamic_cast - (anElem)->interlacedNodesElemIterator(); - break; - case SMDSAbs_Face: - anIter = dynamic_cast - (anElem)->interlacedNodesElemIterator(); - break; - default: - anIter = anElem->nodesIterator(); - //return false; - } - } - else { - anIter = anElem->nodesIterator(); - } - + SMDS_NodeIteratorPtr anIter= anElem->interlacedNodesIterator(); if ( anIter ) { + SMESH_NodeXYZ p; while( anIter->more() ) { - if ( const SMDS_MeshNode* aNode = static_cast( anIter->next() )) - theRes.push_back( gp_XYZ( aNode->X(), aNode->Y(), aNode->Z() ) ); + if ( p.Set( anIter->next() )) + theRes.push_back( p ); } } @@ -329,12 +303,12 @@ double NumericalFunctor::Round( const double & aVal ) */ //================================================================================ -void NumericalFunctor::GetHistogram(int nbIntervals, - std::vector& nbEvents, - std::vector& funValues, - const vector& elements, - const double* minmax, - const bool isLogarithmic) +void NumericalFunctor::GetHistogram(int nbIntervals, + std::vector& nbEvents, + std::vector& funValues, + const std::vector& elements, + const double* minmax, + const bool isLogarithmic) { if ( nbIntervals < 1 || !myMesh || @@ -347,13 +321,13 @@ void NumericalFunctor::GetHistogram(int nbIntervals, std::multiset< double > values; if ( elements.empty() ) { - SMDS_ElemIteratorPtr elemIt = myMesh->elementsIterator(GetType()); + SMDS_ElemIteratorPtr elemIt = myMesh->elementsIterator( GetType() ); while ( elemIt->more() ) values.insert( GetValue( elemIt->next()->GetID() )); } else { - vector::const_iterator id = elements.begin(); + std::vector::const_iterator id = elements.begin(); for ( ; id != elements.end(); ++id ) values.insert( GetValue( *id )); } @@ -480,6 +454,27 @@ double MaxElementLength2D::GetValue( const TSequenceOfXYZ& P ) double D2 = getDistance(P( 3 ),P( 7 )); aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(D1,D2)); } + // Diagonals are undefined for concave polygons + // else if ( P.getElementEntity() == SMDSEntity_Quad_Polygon && P.size() > 2 ) // quad polygon + // { + // // sides + // aVal = getDistance( P( 1 ), P( P.size() )) + getDistance( P( P.size() ), P( P.size()-1 )); + // for ( size_t i = 1; i < P.size()-1; i += 2 ) + // { + // double L = getDistance( P( i ), P( i+1 )) + getDistance( P( i+1 ), P( i+2 )); + // aVal = Max( aVal, L ); + // } + // // diagonals + // for ( int i = P.size()-5; i > 0; i -= 2 ) + // for ( int j = i + 4; j < P.size() + i - 2; i += 2 ) + // { + // double D = getDistance( P( i ), P( j )); + // aVal = Max( aVal, D ); + // } + // } + // { // polygons + + // } if( myPrecision >= 0 ) { @@ -518,148 +513,165 @@ double MaxElementLength3D::GetValue( long theElementId ) if( GetPoints( theElementId, P ) ) { double aVal = 0; const SMDS_MeshElement* aElem = myMesh->FindElement( theElementId ); - SMDSAbs_ElementType aType = aElem->GetType(); + SMDSAbs_EntityType aType = aElem->GetEntityType(); int len = P.size(); - switch( aType ) { - case SMDSAbs_Volume: - if( len == 4 ) { // tetras - double L1 = getDistance(P( 1 ),P( 2 )); - double L2 = getDistance(P( 2 ),P( 3 )); - double L3 = getDistance(P( 3 ),P( 1 )); - double L4 = getDistance(P( 1 ),P( 4 )); - double L5 = getDistance(P( 2 ),P( 4 )); - double L6 = getDistance(P( 3 ),P( 4 )); - aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6)); - break; - } - else if( len == 5 ) { // pyramids - double L1 = getDistance(P( 1 ),P( 2 )); - double L2 = getDistance(P( 2 ),P( 3 )); - double L3 = getDistance(P( 3 ),P( 4 )); - double L4 = getDistance(P( 4 ),P( 1 )); - double L5 = getDistance(P( 1 ),P( 5 )); - double L6 = getDistance(P( 2 ),P( 5 )); - double L7 = getDistance(P( 3 ),P( 5 )); - double L8 = getDistance(P( 4 ),P( 5 )); - aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6)); - aVal = Max(aVal,Max(L7,L8)); - break; - } - else if( len == 6 ) { // pentas - double L1 = getDistance(P( 1 ),P( 2 )); - double L2 = getDistance(P( 2 ),P( 3 )); - double L3 = getDistance(P( 3 ),P( 1 )); - double L4 = getDistance(P( 4 ),P( 5 )); - double L5 = getDistance(P( 5 ),P( 6 )); - double L6 = getDistance(P( 6 ),P( 4 )); - double L7 = getDistance(P( 1 ),P( 4 )); - double L8 = getDistance(P( 2 ),P( 5 )); - double L9 = getDistance(P( 3 ),P( 6 )); - aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6)); - aVal = Max(aVal,Max(Max(L7,L8),L9)); - break; - } - else if( len == 8 ) { // hexas - double L1 = getDistance(P( 1 ),P( 2 )); - double L2 = getDistance(P( 2 ),P( 3 )); - double L3 = getDistance(P( 3 ),P( 4 )); - double L4 = getDistance(P( 4 ),P( 1 )); - double L5 = getDistance(P( 5 ),P( 6 )); - double L6 = getDistance(P( 6 ),P( 7 )); - double L7 = getDistance(P( 7 ),P( 8 )); - double L8 = getDistance(P( 8 ),P( 5 )); - double L9 = getDistance(P( 1 ),P( 5 )); - double L10= getDistance(P( 2 ),P( 6 )); - double L11= getDistance(P( 3 ),P( 7 )); - double L12= getDistance(P( 4 ),P( 8 )); - double D1 = getDistance(P( 1 ),P( 7 )); - double D2 = getDistance(P( 2 ),P( 8 )); - double D3 = getDistance(P( 3 ),P( 5 )); - double D4 = getDistance(P( 4 ),P( 6 )); - aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6)); - aVal = Max(aVal,Max(Max(L7,L8),Max(L9,L10))); - aVal = Max(aVal,Max(L11,L12)); - aVal = Max(aVal,Max(Max(D1,D2),Max(D3,D4))); - break; - } - else if( len == 12 ) { // hexagonal prism - for ( int i1 = 1; i1 < 12; ++i1 ) - for ( int i2 = i1+1; i1 <= 12; ++i1 ) - aVal = Max( aVal, getDistance(P( i1 ),P( i2 ))); - break; - } - else if( len == 10 ) { // quadratic tetras - double L1 = getDistance(P( 1 ),P( 5 )) + getDistance(P( 5 ),P( 2 )); - double L2 = getDistance(P( 2 ),P( 6 )) + getDistance(P( 6 ),P( 3 )); - double L3 = getDistance(P( 3 ),P( 7 )) + getDistance(P( 7 ),P( 1 )); - double L4 = getDistance(P( 1 ),P( 8 )) + getDistance(P( 8 ),P( 4 )); - double L5 = getDistance(P( 2 ),P( 9 )) + getDistance(P( 9 ),P( 4 )); - double L6 = getDistance(P( 3 ),P( 10 )) + getDistance(P( 10 ),P( 4 )); - aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6)); - break; - } - else if( len == 13 ) { // quadratic pyramids - double L1 = getDistance(P( 1 ),P( 6 )) + getDistance(P( 6 ),P( 2 )); - double L2 = getDistance(P( 2 ),P( 7 )) + getDistance(P( 7 ),P( 3 )); - double L3 = getDistance(P( 3 ),P( 8 )) + getDistance(P( 8 ),P( 4 )); - double L4 = getDistance(P( 4 ),P( 9 )) + getDistance(P( 9 ),P( 1 )); - double L5 = getDistance(P( 1 ),P( 10 )) + getDistance(P( 10 ),P( 5 )); - double L6 = getDistance(P( 2 ),P( 11 )) + getDistance(P( 11 ),P( 5 )); - double L7 = getDistance(P( 3 ),P( 12 )) + getDistance(P( 12 ),P( 5 )); - double L8 = getDistance(P( 4 ),P( 13 )) + getDistance(P( 13 ),P( 5 )); - aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6)); - aVal = Max(aVal,Max(L7,L8)); - break; - } - else if( len == 15 ) { // quadratic pentas - double L1 = getDistance(P( 1 ),P( 7 )) + getDistance(P( 7 ),P( 2 )); - double L2 = getDistance(P( 2 ),P( 8 )) + getDistance(P( 8 ),P( 3 )); - double L3 = getDistance(P( 3 ),P( 9 )) + getDistance(P( 9 ),P( 1 )); - double L4 = getDistance(P( 4 ),P( 10 )) + getDistance(P( 10 ),P( 5 )); - double L5 = getDistance(P( 5 ),P( 11 )) + getDistance(P( 11 ),P( 6 )); - double L6 = getDistance(P( 6 ),P( 12 )) + getDistance(P( 12 ),P( 4 )); - double L7 = getDistance(P( 1 ),P( 13 )) + getDistance(P( 13 ),P( 4 )); - double L8 = getDistance(P( 2 ),P( 14 )) + getDistance(P( 14 ),P( 5 )); - double L9 = getDistance(P( 3 ),P( 15 )) + getDistance(P( 15 ),P( 6 )); - aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6)); - aVal = Max(aVal,Max(Max(L7,L8),L9)); - break; - } - else if( len == 20 || len == 27 ) { // quadratic hexas - double L1 = getDistance(P( 1 ),P( 9 )) + getDistance(P( 9 ),P( 2 )); - double L2 = getDistance(P( 2 ),P( 10 )) + getDistance(P( 10 ),P( 3 )); - double L3 = getDistance(P( 3 ),P( 11 )) + getDistance(P( 11 ),P( 4 )); - double L4 = getDistance(P( 4 ),P( 12 )) + getDistance(P( 12 ),P( 1 )); - double L5 = getDistance(P( 5 ),P( 13 )) + getDistance(P( 13 ),P( 6 )); - double L6 = getDistance(P( 6 ),P( 14 )) + getDistance(P( 14 ),P( 7 )); - double L7 = getDistance(P( 7 ),P( 15 )) + getDistance(P( 15 ),P( 8 )); - double L8 = getDistance(P( 8 ),P( 16 )) + getDistance(P( 16 ),P( 5 )); - double L9 = getDistance(P( 1 ),P( 17 )) + getDistance(P( 17 ),P( 5 )); - double L10= getDistance(P( 2 ),P( 18 )) + getDistance(P( 18 ),P( 6 )); - double L11= getDistance(P( 3 ),P( 19 )) + getDistance(P( 19 ),P( 7 )); - double L12= getDistance(P( 4 ),P( 20 )) + getDistance(P( 20 ),P( 8 )); - double D1 = getDistance(P( 1 ),P( 7 )); - double D2 = getDistance(P( 2 ),P( 8 )); - double D3 = getDistance(P( 3 ),P( 5 )); - double D4 = getDistance(P( 4 ),P( 6 )); - aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6)); - aVal = Max(aVal,Max(Max(L7,L8),Max(L9,L10))); - aVal = Max(aVal,Max(L11,L12)); - aVal = Max(aVal,Max(Max(D1,D2),Max(D3,D4))); - break; - } - else if( len > 1 && aElem->IsPoly() ) { // polys - // get the maximum distance between all pairs of nodes - for( int i = 1; i <= len; i++ ) { - for( int j = 1; j <= len; j++ ) { - if( j > i ) { // optimization of the loop - double D = getDistance( P(i), P(j) ); - aVal = Max( aVal, D ); - } + switch ( aType ) { + case SMDSEntity_Tetra: { // tetras + double L1 = getDistance(P( 1 ),P( 2 )); + double L2 = getDistance(P( 2 ),P( 3 )); + double L3 = getDistance(P( 3 ),P( 1 )); + double L4 = getDistance(P( 1 ),P( 4 )); + double L5 = getDistance(P( 2 ),P( 4 )); + double L6 = getDistance(P( 3 ),P( 4 )); + aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6)); + break; + } + case SMDSEntity_Pyramid: { // pyramids + double L1 = getDistance(P( 1 ),P( 2 )); + double L2 = getDistance(P( 2 ),P( 3 )); + double L3 = getDistance(P( 3 ),P( 4 )); + double L4 = getDistance(P( 4 ),P( 1 )); + double L5 = getDistance(P( 1 ),P( 5 )); + double L6 = getDistance(P( 2 ),P( 5 )); + double L7 = getDistance(P( 3 ),P( 5 )); + double L8 = getDistance(P( 4 ),P( 5 )); + aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6)); + aVal = Max(aVal,Max(L7,L8)); + break; + } + case SMDSEntity_Penta: { // pentas + double L1 = getDistance(P( 1 ),P( 2 )); + double L2 = getDistance(P( 2 ),P( 3 )); + double L3 = getDistance(P( 3 ),P( 1 )); + double L4 = getDistance(P( 4 ),P( 5 )); + double L5 = getDistance(P( 5 ),P( 6 )); + double L6 = getDistance(P( 6 ),P( 4 )); + double L7 = getDistance(P( 1 ),P( 4 )); + double L8 = getDistance(P( 2 ),P( 5 )); + double L9 = getDistance(P( 3 ),P( 6 )); + aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6)); + aVal = Max(aVal,Max(Max(L7,L8),L9)); + break; + } + case SMDSEntity_Hexa: { // hexas + double L1 = getDistance(P( 1 ),P( 2 )); + double L2 = getDistance(P( 2 ),P( 3 )); + double L3 = getDistance(P( 3 ),P( 4 )); + double L4 = getDistance(P( 4 ),P( 1 )); + double L5 = getDistance(P( 5 ),P( 6 )); + double L6 = getDistance(P( 6 ),P( 7 )); + double L7 = getDistance(P( 7 ),P( 8 )); + double L8 = getDistance(P( 8 ),P( 5 )); + double L9 = getDistance(P( 1 ),P( 5 )); + double L10= getDistance(P( 2 ),P( 6 )); + double L11= getDistance(P( 3 ),P( 7 )); + double L12= getDistance(P( 4 ),P( 8 )); + double D1 = getDistance(P( 1 ),P( 7 )); + double D2 = getDistance(P( 2 ),P( 8 )); + double D3 = getDistance(P( 3 ),P( 5 )); + double D4 = getDistance(P( 4 ),P( 6 )); + aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6)); + aVal = Max(aVal,Max(Max(L7,L8),Max(L9,L10))); + aVal = Max(aVal,Max(L11,L12)); + aVal = Max(aVal,Max(Max(D1,D2),Max(D3,D4))); + break; + } + case SMDSEntity_Hexagonal_Prism: { // hexagonal prism + for ( int i1 = 1; i1 < 12; ++i1 ) + for ( int i2 = i1+1; i1 <= 12; ++i1 ) + aVal = Max( aVal, getDistance(P( i1 ),P( i2 ))); + break; + } + case SMDSEntity_Quad_Tetra: { // quadratic tetras + double L1 = getDistance(P( 1 ),P( 5 )) + getDistance(P( 5 ),P( 2 )); + double L2 = getDistance(P( 2 ),P( 6 )) + getDistance(P( 6 ),P( 3 )); + double L3 = getDistance(P( 3 ),P( 7 )) + getDistance(P( 7 ),P( 1 )); + double L4 = getDistance(P( 1 ),P( 8 )) + getDistance(P( 8 ),P( 4 )); + double L5 = getDistance(P( 2 ),P( 9 )) + getDistance(P( 9 ),P( 4 )); + double L6 = getDistance(P( 3 ),P( 10 )) + getDistance(P( 10 ),P( 4 )); + aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6)); + break; + } + case SMDSEntity_Quad_Pyramid: { // quadratic pyramids + double L1 = getDistance(P( 1 ),P( 6 )) + getDistance(P( 6 ),P( 2 )); + double L2 = getDistance(P( 2 ),P( 7 )) + getDistance(P( 7 ),P( 3 )); + double L3 = getDistance(P( 3 ),P( 8 )) + getDistance(P( 8 ),P( 4 )); + double L4 = getDistance(P( 4 ),P( 9 )) + getDistance(P( 9 ),P( 1 )); + double L5 = getDistance(P( 1 ),P( 10 )) + getDistance(P( 10 ),P( 5 )); + double L6 = getDistance(P( 2 ),P( 11 )) + getDistance(P( 11 ),P( 5 )); + double L7 = getDistance(P( 3 ),P( 12 )) + getDistance(P( 12 ),P( 5 )); + double L8 = getDistance(P( 4 ),P( 13 )) + getDistance(P( 13 ),P( 5 )); + aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6)); + aVal = Max(aVal,Max(L7,L8)); + break; + } + case SMDSEntity_Quad_Penta: + case SMDSEntity_BiQuad_Penta: { // quadratic pentas + double L1 = getDistance(P( 1 ),P( 7 )) + getDistance(P( 7 ),P( 2 )); + double L2 = getDistance(P( 2 ),P( 8 )) + getDistance(P( 8 ),P( 3 )); + double L3 = getDistance(P( 3 ),P( 9 )) + getDistance(P( 9 ),P( 1 )); + double L4 = getDistance(P( 4 ),P( 10 )) + getDistance(P( 10 ),P( 5 )); + double L5 = getDistance(P( 5 ),P( 11 )) + getDistance(P( 11 ),P( 6 )); + double L6 = getDistance(P( 6 ),P( 12 )) + getDistance(P( 12 ),P( 4 )); + double L7 = getDistance(P( 1 ),P( 13 )) + getDistance(P( 13 ),P( 4 )); + double L8 = getDistance(P( 2 ),P( 14 )) + getDistance(P( 14 ),P( 5 )); + double L9 = getDistance(P( 3 ),P( 15 )) + getDistance(P( 15 ),P( 6 )); + aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6)); + aVal = Max(aVal,Max(Max(L7,L8),L9)); + break; + } + case SMDSEntity_Quad_Hexa: + case SMDSEntity_TriQuad_Hexa: { // quadratic hexas + double L1 = getDistance(P( 1 ),P( 9 )) + getDistance(P( 9 ),P( 2 )); + double L2 = getDistance(P( 2 ),P( 10 )) + getDistance(P( 10 ),P( 3 )); + double L3 = getDistance(P( 3 ),P( 11 )) + getDistance(P( 11 ),P( 4 )); + double L4 = getDistance(P( 4 ),P( 12 )) + getDistance(P( 12 ),P( 1 )); + double L5 = getDistance(P( 5 ),P( 13 )) + getDistance(P( 13 ),P( 6 )); + double L6 = getDistance(P( 6 ),P( 14 )) + getDistance(P( 14 ),P( 7 )); + double L7 = getDistance(P( 7 ),P( 15 )) + getDistance(P( 15 ),P( 8 )); + double L8 = getDistance(P( 8 ),P( 16 )) + getDistance(P( 16 ),P( 5 )); + double L9 = getDistance(P( 1 ),P( 17 )) + getDistance(P( 17 ),P( 5 )); + double L10= getDistance(P( 2 ),P( 18 )) + getDistance(P( 18 ),P( 6 )); + double L11= getDistance(P( 3 ),P( 19 )) + getDistance(P( 19 ),P( 7 )); + double L12= getDistance(P( 4 ),P( 20 )) + getDistance(P( 20 ),P( 8 )); + double D1 = getDistance(P( 1 ),P( 7 )); + double D2 = getDistance(P( 2 ),P( 8 )); + double D3 = getDistance(P( 3 ),P( 5 )); + double D4 = getDistance(P( 4 ),P( 6 )); + aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6)); + aVal = Max(aVal,Max(Max(L7,L8),Max(L9,L10))); + aVal = Max(aVal,Max(L11,L12)); + aVal = Max(aVal,Max(Max(D1,D2),Max(D3,D4))); + break; + } + case SMDSEntity_Quad_Polyhedra: + case SMDSEntity_Polyhedra: { // polys + // get the maximum distance between all pairs of nodes + for( int i = 1; i <= len; i++ ) { + for( int j = 1; j <= len; j++ ) { + if( j > i ) { // optimization of the loop + double D = getDistance( P(i), P(j) ); + aVal = Max( aVal, D ); } } } + break; } + case SMDSEntity_Node: + case SMDSEntity_0D: + case SMDSEntity_Edge: + case SMDSEntity_Quad_Edge: + case SMDSEntity_Triangle: + case SMDSEntity_Quad_Triangle: + case SMDSEntity_BiQuad_Triangle: + case SMDSEntity_Quadrangle: + case SMDSEntity_Quad_Quadrangle: + case SMDSEntity_BiQuad_Quadrangle: + case SMDSEntity_Polygon: + case SMDSEntity_Quad_Polygon: + case SMDSEntity_Ball: + case SMDSEntity_Last: return 0; + } // switch ( aType ) if( myPrecision >= 0 ) { @@ -690,20 +702,25 @@ SMDSAbs_ElementType MaxElementLength3D::GetType() const double MinimumAngle::GetValue( const TSequenceOfXYZ& P ) { - double aMin; - - if (P.size() <3) + if ( P.size() < 3 ) return 0.; - aMin = getAngle(P( P.size() ), P( 1 ), P( 2 )); - aMin = Min(aMin,getAngle(P( P.size()-1 ), P( P.size() ), P( 1 ))); + double aMaxCos2; - for (int i=2; i= 1 ) return 0; + return acos( cos ) * 180.0 / M_PI; } double MinimumAngle::GetBadRate( double Value, int nbNodes ) const @@ -733,8 +750,8 @@ double AspectRatio::GetValue( long theId ) if ( myCurrElement && myCurrElement->GetVtkType() == VTK_QUAD ) { // issue 21723 - vtkUnstructuredGrid* grid = SMDS_Mesh::_meshList[myCurrElement->getMeshId()]->getGrid(); - if ( vtkCell* avtkCell = grid->GetCell( myCurrElement->getVtkId() )) + vtkUnstructuredGrid* grid = const_cast( myMesh )->GetGrid(); + if ( vtkCell* avtkCell = grid->GetCell( myCurrElement->GetVtkID() )) aVal = Round( vtkMeshQuality::QuadAspectRatio( avtkCell )); } else @@ -762,58 +779,51 @@ double AspectRatio::GetValue( const TSequenceOfXYZ& P ) if ( nbNodes == 3 ) { // Compute lengths of the sides - std::vector< double > aLen (nbNodes); - for ( int i = 0; i < nbNodes - 1; i++ ) - aLen[ i ] = getDistance( P( i + 1 ), P( i + 2 ) ); - aLen[ nbNodes - 1 ] = getDistance( P( 1 ), P( nbNodes ) ); + double aLen1 = getDistance( P( 1 ), P( 2 )); + double aLen2 = getDistance( P( 2 ), P( 3 )); + double aLen3 = getDistance( P( 3 ), P( 1 )); // Q = alfa * h * p / S, where // // alfa = sqrt( 3 ) / 6 // h - length of the longest edge // p - half perimeter // S - triangle surface - const double alfa = sqrt( 3. ) / 6.; - double maxLen = Max( aLen[ 0 ], Max( aLen[ 1 ], aLen[ 2 ] ) ); - double half_perimeter = ( aLen[0] + aLen[1] + aLen[2] ) / 2.; - double anArea = getArea( P( 1 ), P( 2 ), P( 3 ) ); + const double alfa = sqrt( 3. ) / 6.; + double maxLen = Max( aLen1, Max( aLen2, aLen3 )); + double half_perimeter = ( aLen1 + aLen2 + aLen3 ) / 2.; + double anArea = getArea( P( 1 ), P( 2 ), P( 3 )); if ( anArea <= theEps ) return theInf; return alfa * maxLen * half_perimeter / anArea; } else if ( nbNodes == 6 ) { // quadratic triangles // Compute lengths of the sides - std::vector< double > aLen (3); - aLen[0] = getDistance( P(1), P(3) ); - aLen[1] = getDistance( P(3), P(5) ); - aLen[2] = getDistance( P(5), P(1) ); - // Q = alfa * h * p / S, where - // - // alfa = sqrt( 3 ) / 6 - // h - length of the longest edge - // p - half perimeter - // S - triangle surface - const double alfa = sqrt( 3. ) / 6.; - double maxLen = Max( aLen[ 0 ], Max( aLen[ 1 ], aLen[ 2 ] ) ); - double half_perimeter = ( aLen[0] + aLen[1] + aLen[2] ) / 2.; - double anArea = getArea( P(1), P(3), P(5) ); + double aLen1 = getDistance( P( 1 ), P( 3 )); + double aLen2 = getDistance( P( 3 ), P( 5 )); + double aLen3 = getDistance( P( 5 ), P( 1 )); + // algo same as for the linear triangle + const double alfa = sqrt( 3. ) / 6.; + double maxLen = Max( aLen1, Max( aLen2, aLen3 )); + double half_perimeter = ( aLen1 + aLen2 + aLen3 ) / 2.; + double anArea = getArea( P( 1 ), P( 3 ), P( 5 )); if ( anArea <= theEps ) return theInf; return alfa * maxLen * half_perimeter / anArea; } else if( nbNodes == 4 ) { // quadrangle // Compute lengths of the sides - std::vector< double > aLen (4); + double aLen[4]; aLen[0] = getDistance( P(1), P(2) ); aLen[1] = getDistance( P(2), P(3) ); aLen[2] = getDistance( P(3), P(4) ); aLen[3] = getDistance( P(4), P(1) ); // Compute lengths of the diagonals - std::vector< double > aDia (2); + double aDia[2]; aDia[0] = getDistance( P(1), P(3) ); aDia[1] = getDistance( P(2), P(4) ); // Compute areas of all triangles which can be built // taking three nodes of the quadrangle - std::vector< double > anArea (4); + double anArea[4]; anArea[0] = getArea( P(1), P(2), P(3) ); anArea[1] = getArea( P(1), P(2), P(4) ); anArea[2] = getArea( P(1), P(3), P(4) ); @@ -829,35 +839,35 @@ double AspectRatio::GetValue( const TSequenceOfXYZ& P ) // Si - areas of the triangles const double alpha = sqrt( 1 / 32. ); double L = Max( aLen[ 0 ], - Max( aLen[ 1 ], - Max( aLen[ 2 ], - Max( aLen[ 3 ], - Max( aDia[ 0 ], aDia[ 1 ] ) ) ) ) ); + Max( aLen[ 1 ], + Max( aLen[ 2 ], + Max( aLen[ 3 ], + Max( aDia[ 0 ], aDia[ 1 ] ) ) ) ) ); double C1 = sqrt( ( aLen[0] * aLen[0] + aLen[1] * aLen[1] + aLen[2] * aLen[2] + aLen[3] * aLen[3] ) / 4. ); double C2 = Min( anArea[ 0 ], - Min( anArea[ 1 ], - Min( anArea[ 2 ], anArea[ 3 ] ) ) ); + Min( anArea[ 1 ], + Min( anArea[ 2 ], anArea[ 3 ] ) ) ); if ( C2 <= theEps ) return theInf; return alpha * L * C1 / C2; } else if( nbNodes == 8 || nbNodes == 9 ) { // nbNodes==8 - quadratic quadrangle // Compute lengths of the sides - std::vector< double > aLen (4); + double aLen[4]; aLen[0] = getDistance( P(1), P(3) ); aLen[1] = getDistance( P(3), P(5) ); aLen[2] = getDistance( P(5), P(7) ); aLen[3] = getDistance( P(7), P(1) ); // Compute lengths of the diagonals - std::vector< double > aDia (2); + double aDia[2]; aDia[0] = getDistance( P(1), P(5) ); aDia[1] = getDistance( P(3), P(7) ); // Compute areas of all triangles which can be built // taking three nodes of the quadrangle - std::vector< double > anArea (4); + double anArea[4]; anArea[0] = getArea( P(1), P(3), P(5) ); anArea[1] = getArea( P(1), P(3), P(7) ); anArea[2] = getArea( P(1), P(5), P(7) ); @@ -984,8 +994,8 @@ double AspectRatio3D::GetValue( long theId ) // Action from CoTech | ACTION 31.3: // EURIWARE BO: Homogenize the formulas used to calculate the Controls in SMESH to fit with // those of ParaView. The library used by ParaView for those calculations can be reused in SMESH. - vtkUnstructuredGrid* grid = SMDS_Mesh::_meshList[myCurrElement->getMeshId()]->getGrid(); - if ( vtkCell* avtkCell = grid->GetCell( myCurrElement->getVtkId() )) + vtkUnstructuredGrid* grid = const_cast( myMesh )->GetGrid(); + if ( vtkCell* avtkCell = grid->GetCell( myCurrElement->GetVtkID() )) aVal = Round( vtkMeshQuality::TetAspectRatio( avtkCell )); } else @@ -1004,7 +1014,7 @@ double AspectRatio3D::GetValue( const TSequenceOfXYZ& P ) int nbNodes = P.size(); - if(myCurrElement->IsQuadratic()) { + if( myCurrElement->IsQuadratic() ) { if(nbNodes==10) nbNodes=4; // quadratic tetrahedron else if(nbNodes==13) nbNodes=5; // quadratic pyramid else if(nbNodes==15) nbNodes=6; // quadratic pentahedron @@ -1248,7 +1258,7 @@ double AspectRatio3D::GetValue( const TSequenceOfXYZ& P ) } // switch(nbNodes) if ( nbNodes > 4 ) { - // avaluate aspect ratio of quadranle faces + // evaluate aspect ratio of quadrangle faces AspectRatio aspect2D; SMDS_VolumeTool::VolumeType type = SMDS_VolumeTool::GetType( nbNodes ); int nbFaces = SMDS_VolumeTool::NbFaces( type ); @@ -1257,7 +1267,7 @@ double AspectRatio3D::GetValue( const TSequenceOfXYZ& P ) if ( SMDS_VolumeTool::NbFaceNodes( type, i ) != 4 ) continue; const int* pInd = SMDS_VolumeTool::GetFaceNodesIndices( type, i, true ); - for ( int p = 0; p < 4; ++p ) // loop on nodes of a quadranle face + for ( int p = 0; p < 4; ++p ) // loop on nodes of a quadrangle face points( p + 1 ) = P( pInd[ p ] + 1 ); aQuality = std::max( aQuality, aspect2D.GetValue( points )); } @@ -1356,10 +1366,10 @@ double Taper::GetValue( const TSequenceOfXYZ& P ) return 0.; // Compute taper - double J1 = getArea( P( 4 ), P( 1 ), P( 2 ) ) / 2.; - double J2 = getArea( P( 3 ), P( 1 ), P( 2 ) ) / 2.; - double J3 = getArea( P( 2 ), P( 3 ), P( 4 ) ) / 2.; - double J4 = getArea( P( 3 ), P( 4 ), P( 1 ) ) / 2.; + double J1 = getArea( P( 4 ), P( 1 ), P( 2 ) ); + double J2 = getArea( P( 3 ), P( 1 ), P( 2 ) ); + double J3 = getArea( P( 2 ), P( 3 ), P( 4 ) ); + double J4 = getArea( P( 3 ), P( 4 ), P( 1 ) ); double JA = 0.25 * ( J1 + J2 + J3 + J4 ); if ( JA <= theEps ) @@ -1380,7 +1390,7 @@ double Taper::GetValue( const TSequenceOfXYZ& P ) double Taper::GetBadRate( double Value, int /*nbNodes*/ ) const { // the taper is in the range [0.0,1.0] - // 0.0 = good (no taper) + // 0.0 = good (no taper) // 1.0 = bad (les cotes opposes sont allignes) return Value; } @@ -1466,13 +1476,16 @@ SMDSAbs_ElementType Skew::GetType() const double Area::GetValue( const TSequenceOfXYZ& P ) { double val = 0.0; - if ( P.size() > 2 ) { + if ( P.size() > 2 ) + { gp_Vec aVec1( P(2) - P(1) ); gp_Vec aVec2( P(3) - P(1) ); gp_Vec SumVec = aVec1 ^ aVec2; - for (int i=4; i<=P.size(); i++) { + + for (size_t i=4; i<=P.size(); i++) + { gp_Vec aVec1( P(i-1) - P(1) ); - gp_Vec aVec2( P(i) - P(1) ); + gp_Vec aVec2( P(i ) - P(1) ); gp_Vec tmp = aVec1 ^ aVec2; SumVec.Add(tmp); } @@ -1522,204 +1535,244 @@ SMDSAbs_ElementType Length::GetType() const //================================================================================ /* Class : Length2D - Description : Functor for calculating length of edge + Description : Functor for calculating minimal length of edge */ //================================================================================ -double Length2D::GetValue( long theElementId ) +double Length2D::GetValue( const TSequenceOfXYZ& P ) { - TSequenceOfXYZ P; - - //cout<<"Length2D::GetValue"<FindElement( theElementId ); - SMDSAbs_ElementType aType = aElem->GetType(); - - int len = P.size(); - - switch (aType){ - case SMDSAbs_All: - case SMDSAbs_Node: - case SMDSAbs_Edge: - if (len == 2){ - aVal = getDistance( P( 1 ), P( 2 ) ); - break; - } - else if (len == 3){ // quadratic edge - aVal = getDistance(P( 1 ),P( 3 )) + getDistance(P( 3 ),P( 2 )); - break; - } - case SMDSAbs_Face: - if (len == 3){ // triangles - double L1 = getDistance(P( 1 ),P( 2 )); - double L2 = getDistance(P( 2 ),P( 3 )); - double L3 = getDistance(P( 3 ),P( 1 )); - aVal = Min(L1,Min(L2,L3)); - break; - } - else if (len == 4){ // quadrangles - double L1 = getDistance(P( 1 ),P( 2 )); - double L2 = getDistance(P( 2 ),P( 3 )); - double L3 = getDistance(P( 3 ),P( 4 )); - double L4 = getDistance(P( 4 ),P( 1 )); - aVal = Min(Min(L1,L2),Min(L3,L4)); - break; - } - if (len == 6){ // quadratic triangles - double L1 = getDistance(P( 1 ),P( 2 )) + getDistance(P( 2 ),P( 3 )); - double L2 = getDistance(P( 3 ),P( 4 )) + getDistance(P( 4 ),P( 5 )); - double L3 = getDistance(P( 5 ),P( 6 )) + getDistance(P( 6 ),P( 1 )); - aVal = Min(L1,Min(L2,L3)); - //cout<<"L1="< aSetOfFaces; + // take all faces that shared first node - SMDS_ElemIteratorPtr anItr = theLink.myNode1->facesIterator(); - for ( ; anItr->more(); ) - { - SMDS_MeshFace* aFace = (SMDS_MeshFace*)anItr->next(); - if ( !aFace ) - continue; - aSetOfFaces.insert( aFace ); - } + SMDS_ElemIteratorPtr anItr = theLink.myNode1->GetInverseElementIterator( SMDSAbs_Face ); + SMDS_StdIterator< const SMDS_MeshElement*, SMDS_ElemIteratorPtr > faces( anItr ), facesEnd; + std::set aSetOfFaces( faces, facesEnd ); + // take all faces that shared second node - anItr = theLink.myNode2->facesIterator(); + anItr = theLink.myNode2->GetInverseElementIterator( SMDSAbs_Face ); // find the common part of two sets for ( ; anItr->more(); ) { - SMDS_MeshFace* aFace = (SMDS_MeshFace*)anItr->next(); - if ( aSetOfFaces.count( aFace ) ) - theFaces.push_back( aFace ); + const SMDS_MeshElement* aFace = anItr->next(); + if ( aSetOfFaces.count( aFace )) + theFaces.push_back( (SMDS_MeshFace*) aFace ); } } - /* - ElementsOnSurface + Class : BelongToMeshGroup + Description : Verify whether a mesh element is included into a mesh group */ +BelongToMeshGroup::BelongToMeshGroup(): myGroup( 0 ) +{ +} + +void BelongToMeshGroup::SetGroup( SMESHDS_GroupBase* g ) +{ + myGroup = g; +} + +void BelongToMeshGroup::SetStoreName( const std::string& sn ) +{ + myStoreName = sn; +} + +void BelongToMeshGroup::SetMesh( const SMDS_Mesh* theMesh ) +{ + if ( myGroup && myGroup->GetMesh() != theMesh ) + { + myGroup = 0; + } + if ( !myGroup && !myStoreName.empty() ) + { + if ( const SMESHDS_Mesh* aMesh = dynamic_cast(theMesh)) + { + const std::set& grps = aMesh->GetGroups(); + std::set::const_iterator g = grps.begin(); + for ( ; g != grps.end() && !myGroup; ++g ) + if ( *g && myStoreName == (*g)->GetStoreName() ) + myGroup = *g; + } + } + if ( myGroup ) + { + myGroup->IsEmpty(); // make GroupOnFilter update its predicate + } +} + +bool BelongToMeshGroup::IsSatisfy( long theElementId ) +{ + return myGroup ? myGroup->Contains( theElementId ) : false; +} + +SMDSAbs_ElementType BelongToMeshGroup::GetType() const +{ + return myGroup ? myGroup->GetType() : SMDSAbs_All; +} + +//================================================================================ +// ElementsOnSurface +//================================================================================ ElementsOnSurface::ElementsOnSurface() { @@ -3957,15 +4143,71 @@ bool ElementsOnSurface::isOnSurface( const SMDS_MeshNode* theNode ) } -/* - ElementsOnShape -*/ +//================================================================================ +// ElementsOnShape +//================================================================================ -ElementsOnShape::ElementsOnShape() - : //myMesh(0), - myType(SMDSAbs_All), - myToler(Precision::Confusion()), - myAllNodesFlag(false) +namespace { + const int theIsCheckedFlag = 0x0000100; +} + +struct ElementsOnShape::Classifier +{ + Classifier() { mySolidClfr = 0; myFlags = 0; } + ~Classifier(); + void Init(const TopoDS_Shape& s, double tol, const Bnd_B3d* box = 0 ); + bool IsOut(const gp_Pnt& p) { return SetChecked( true ), (this->*myIsOutFun)( p ); } + TopAbs_ShapeEnum ShapeType() const { return myShape.ShapeType(); } + const TopoDS_Shape& Shape() const { return myShape; } + const Bnd_B3d* GetBndBox() const { return & myBox; } + bool IsChecked() { return myFlags & theIsCheckedFlag; } + bool IsSetFlag( int flag ) const { return myFlags & flag; } + void SetChecked( bool is ) { is ? SetFlag( theIsCheckedFlag ) : UnsetFlag( theIsCheckedFlag ); } + void SetFlag ( int flag ) { myFlags |= flag; } + void UnsetFlag( int flag ) { myFlags &= ~flag; } + +private: + bool isOutOfSolid (const gp_Pnt& p); + bool isOutOfBox (const gp_Pnt& p); + bool isOutOfFace (const gp_Pnt& p); + bool isOutOfEdge (const gp_Pnt& p); + bool isOutOfVertex(const gp_Pnt& p); + bool isBox (const TopoDS_Shape& s); + + bool (Classifier::* myIsOutFun)(const gp_Pnt& p); + BRepClass3d_SolidClassifier* mySolidClfr; // ptr because of a run-time forbidden copy-constructor + Bnd_B3d myBox; + GeomAPI_ProjectPointOnSurf myProjFace; + GeomAPI_ProjectPointOnCurve myProjEdge; + gp_Pnt myVertexXYZ; + TopoDS_Shape myShape; + double myTol; + int myFlags; +}; + +struct ElementsOnShape::OctreeClassifier : public SMESH_Octree +{ + OctreeClassifier( const std::vector< ElementsOnShape::Classifier* >& classifiers ); + OctreeClassifier( const OctreeClassifier* otherTree, + const std::vector< ElementsOnShape::Classifier >& clsOther, + std::vector< ElementsOnShape::Classifier >& cls ); + void GetClassifiersAtPoint( const gp_XYZ& p, + std::vector< ElementsOnShape::Classifier* >& classifiers ); +protected: + OctreeClassifier() {} + SMESH_Octree* newChild() const { return new OctreeClassifier; } + void buildChildrenData(); + Bnd_B3d* buildRootBox(); + + std::vector< ElementsOnShape::Classifier* > myClassifiers; +}; + + +ElementsOnShape::ElementsOnShape(): + myOctree(0), + myType(SMDSAbs_All), + myToler(Precision::Confusion()), + myAllNodesFlag(false) { } @@ -3974,6 +4216,25 @@ ElementsOnShape::~ElementsOnShape() clearClassifiers(); } +Predicate* ElementsOnShape::clone() const +{ + ElementsOnShape* cln = new ElementsOnShape(); + cln->SetAllNodes ( myAllNodesFlag ); + cln->SetTolerance( myToler ); + cln->SetMesh ( myMeshModifTracer.GetMesh() ); + cln->myShape = myShape; // avoid creation of myClassifiers + cln->SetShape ( myShape, myType ); + cln->myClassifiers.resize( myClassifiers.size() ); + for ( size_t i = 0; i < myClassifiers.size(); ++i ) + cln->myClassifiers[ i ].Init( BRepBuilderAPI_Copy( myClassifiers[ i ].Shape()), + myToler, myClassifiers[ i ].GetBndBox() ); + if ( myOctree ) // copy myOctree + { + cln->myOctree = new OctreeClassifier( myOctree, myClassifiers, cln->myClassifiers ); + } + return cln; +} + SMDSAbs_ElementType ElementsOnShape::GetType() const { return myType; @@ -4039,27 +4300,32 @@ void ElementsOnShape::setNodeIsOut( const SMDS_MeshNode* n, bool isOut ) void ElementsOnShape::SetShape (const TopoDS_Shape& theShape, const SMDSAbs_ElementType theType) { + bool shapeChanges = ( myShape != theShape ); myType = theType; myShape = theShape; if ( myShape.IsNull() ) return; - TopTools_IndexedMapOfShape shapesMap; - TopAbs_ShapeEnum shapeTypes[4] = { TopAbs_SOLID, TopAbs_FACE, TopAbs_EDGE, TopAbs_VERTEX }; - TopExp_Explorer sub; - for ( int i = 0; i < 4; ++i ) + if ( shapeChanges ) { - if ( shapesMap.IsEmpty() ) - for ( sub.Init( myShape, shapeTypes[i] ); sub.More(); sub.Next() ) - shapesMap.Add( sub.Current() ); - if ( i > 0 ) - for ( sub.Init( myShape, shapeTypes[i], shapeTypes[i-1] ); sub.More(); sub.Next() ) - shapesMap.Add( sub.Current() ); - } + // find most complex shapes + TopTools_IndexedMapOfShape shapesMap; + TopAbs_ShapeEnum shapeTypes[4] = { TopAbs_SOLID, TopAbs_FACE, TopAbs_EDGE, TopAbs_VERTEX }; + TopExp_Explorer sub; + for ( int i = 0; i < 4; ++i ) + { + if ( shapesMap.IsEmpty() ) + for ( sub.Init( myShape, shapeTypes[i] ); sub.More(); sub.Next() ) + shapesMap.Add( sub.Current() ); + if ( i > 0 ) + for ( sub.Init( myShape, shapeTypes[i], shapeTypes[i-1] ); sub.More(); sub.Next() ) + shapesMap.Add( sub.Current() ); + } - clearClassifiers(); - myClassifiers.resize( shapesMap.Extent() ); - for ( int i = 0; i < shapesMap.Extent(); ++i ) - myClassifiers[ i ] = new TClassifier( shapesMap( i+1 ), myToler ); + clearClassifiers(); + myClassifiers.resize( shapesMap.Extent() ); + for ( int i = 0; i < shapesMap.Extent(); ++i ) + myClassifiers[ i ].Init( shapesMap( i+1 ), myToler ); + } if ( theType == SMDSAbs_Node ) { @@ -4074,23 +4340,42 @@ void ElementsOnShape::SetShape (const TopoDS_Shape& theShape, void ElementsOnShape::clearClassifiers() { - for ( size_t i = 0; i < myClassifiers.size(); ++i ) - delete myClassifiers[ i ]; + // for ( size_t i = 0; i < myClassifiers.size(); ++i ) + // delete myClassifiers[ i ]; myClassifiers.clear(); + + delete myOctree; + myOctree = 0; } -bool ElementsOnShape::IsSatisfy (long elemId) +bool ElementsOnShape::IsSatisfy( long elemId ) { - const SMDS_Mesh* mesh = myMeshModifTracer.GetMesh(); - const SMDS_MeshElement* elem = - ( myType == SMDSAbs_Node ? mesh->FindNode( elemId ) : mesh->FindElement( elemId )); - if ( !elem || myClassifiers.empty() ) + if ( myClassifiers.empty() ) + return false; + + const SMDS_Mesh* mesh = myMeshModifTracer.GetMesh(); + if ( myType == SMDSAbs_Node ) + return IsSatisfy( mesh->FindNode( elemId )); + return IsSatisfy( mesh->FindElement( elemId )); +} + +bool ElementsOnShape::IsSatisfy (const SMDS_MeshElement* elem) +{ + if ( !elem ) return false; bool isSatisfy = myAllNodesFlag, isNodeOut; gp_XYZ centerXYZ (0, 0, 0); + if ( !myOctree && myClassifiers.size() > 5 ) + { + myWorkClassifiers.resize( myClassifiers.size() ); + for ( size_t i = 0; i < myClassifiers.size(); ++i ) + myWorkClassifiers[ i ] = & myClassifiers[ i ]; + myOctree = new OctreeClassifier( myWorkClassifiers ); + } + SMDS_ElemIteratorPtr aNodeItr = elem->nodesIterator(); while (aNodeItr->more() && (isSatisfy == myAllNodesFlag)) { @@ -4100,99 +4385,204 @@ bool ElementsOnShape::IsSatisfy (long elemId) isNodeOut = true; if ( !getNodeIsOut( aPnt._node, isNodeOut )) { - for ( size_t i = 0; i < myClassifiers.size() && isNodeOut; ++i ) - isNodeOut = myClassifiers[i]->IsOut( aPnt ); + if ( myOctree ) + { + myWorkClassifiers.clear(); + myOctree->GetClassifiersAtPoint( aPnt, myWorkClassifiers ); + + for ( size_t i = 0; i < myWorkClassifiers.size(); ++i ) + myWorkClassifiers[i]->SetChecked( false ); + for ( size_t i = 0; i < myWorkClassifiers.size() && isNodeOut; ++i ) + if ( !myWorkClassifiers[i]->IsChecked() ) + isNodeOut = myWorkClassifiers[i]->IsOut( aPnt ); + } + else + { + for ( size_t i = 0; i < myClassifiers.size() && isNodeOut; ++i ) + isNodeOut = myClassifiers[i].IsOut( aPnt ); + } setNodeIsOut( aPnt._node, isNodeOut ); } isSatisfy = !isNodeOut; } // Check the center point for volumes MantisBug 0020168 - if (isSatisfy && - myAllNodesFlag && - myClassifiers[0]->ShapeType() == TopAbs_SOLID) + if ( isSatisfy && + myAllNodesFlag && + myClassifiers[0].ShapeType() == TopAbs_SOLID ) { centerXYZ /= elem->NbNodes(); isSatisfy = false; - for ( size_t i = 0; i < myClassifiers.size() && !isSatisfy; ++i ) - isSatisfy = ! myClassifiers[i]->IsOut( centerXYZ ); + if ( myOctree ) + for ( size_t i = 0; i < myWorkClassifiers.size() && !isSatisfy; ++i ) + isSatisfy = ! myWorkClassifiers[i]->IsOut( centerXYZ ); + else + for ( size_t i = 0; i < myClassifiers.size() && !isSatisfy; ++i ) + isSatisfy = ! myClassifiers[i].IsOut( centerXYZ ); } return isSatisfy; } -TopAbs_ShapeEnum ElementsOnShape::TClassifier::ShapeType() const -{ - return myShape.ShapeType(); -} +//================================================================================ +/*! + * \brief Check and optionally return a satisfying shape + */ +//================================================================================ -bool ElementsOnShape::TClassifier::IsOut(const gp_Pnt& p) +bool ElementsOnShape::IsSatisfy (const SMDS_MeshNode* node, + TopoDS_Shape* okShape) { - return (this->*myIsOutFun)( p ); + if ( !node ) + return false; + + if ( !myOctree && myClassifiers.size() > 5 ) + { + myWorkClassifiers.resize( myClassifiers.size() ); + for ( size_t i = 0; i < myClassifiers.size(); ++i ) + myWorkClassifiers[ i ] = & myClassifiers[ i ]; + myOctree = new OctreeClassifier( myWorkClassifiers ); + } + + bool isNodeOut = true; + + if ( okShape || !getNodeIsOut( node, isNodeOut )) + { + SMESH_NodeXYZ aPnt = node; + if ( myOctree ) + { + myWorkClassifiers.clear(); + myOctree->GetClassifiersAtPoint( aPnt, myWorkClassifiers ); + + for ( size_t i = 0; i < myWorkClassifiers.size(); ++i ) + myWorkClassifiers[i]->SetChecked( false ); + + for ( size_t i = 0; i < myWorkClassifiers.size(); ++i ) + if ( !myWorkClassifiers[i]->IsChecked() && + !myWorkClassifiers[i]->IsOut( aPnt )) + { + isNodeOut = false; + if ( okShape ) + *okShape = myWorkClassifiers[i]->Shape(); + break; + } + } + else + { + for ( size_t i = 0; i < myClassifiers.size(); ++i ) + if ( !myClassifiers[i].IsOut( aPnt )) + { + isNodeOut = false; + if ( okShape ) + *okShape = myWorkClassifiers[i]->Shape(); + break; + } + } + setNodeIsOut( node, isNodeOut ); + } + + return !isNodeOut; } -void ElementsOnShape::TClassifier::Init (const TopoDS_Shape& theShape, double theTol) +void ElementsOnShape::Classifier::Init( const TopoDS_Shape& theShape, + double theTol, + const Bnd_B3d* theBox ) { myShape = theShape; myTol = theTol; + myFlags = 0; + + bool isShapeBox = false; switch ( myShape.ShapeType() ) { - case TopAbs_SOLID: { - if ( isBox( theShape )) + case TopAbs_SOLID: + { + if (( isShapeBox = isBox( theShape ))) { - myIsOutFun = & ElementsOnShape::TClassifier::isOutOfBox; + myIsOutFun = & ElementsOnShape::Classifier::isOutOfBox; } else { - mySolidClfr.Load(theShape); - myIsOutFun = & ElementsOnShape::TClassifier::isOutOfSolid; + mySolidClfr = new BRepClass3d_SolidClassifier(theShape); + myIsOutFun = & ElementsOnShape::Classifier::isOutOfSolid; } break; } - case TopAbs_FACE: { + case TopAbs_FACE: + { Standard_Real u1,u2,v1,v2; Handle(Geom_Surface) surf = BRep_Tool::Surface( TopoDS::Face( theShape )); surf->Bounds( u1,u2,v1,v2 ); myProjFace.Init(surf, u1,u2, v1,v2, myTol ); - myIsOutFun = & ElementsOnShape::TClassifier::isOutOfFace; + myIsOutFun = & ElementsOnShape::Classifier::isOutOfFace; break; } - case TopAbs_EDGE: { + case TopAbs_EDGE: + { Standard_Real u1, u2; - Handle(Geom_Curve) curve = BRep_Tool::Curve( TopoDS::Edge(theShape), u1, u2); + Handle(Geom_Curve) curve = BRep_Tool::Curve( TopoDS::Edge( theShape ), u1, u2); myProjEdge.Init(curve, u1, u2); - myIsOutFun = & ElementsOnShape::TClassifier::isOutOfEdge; + myIsOutFun = & ElementsOnShape::Classifier::isOutOfEdge; break; } - case TopAbs_VERTEX:{ + case TopAbs_VERTEX: + { myVertexXYZ = BRep_Tool::Pnt( TopoDS::Vertex( theShape ) ); - myIsOutFun = & ElementsOnShape::TClassifier::isOutOfVertex; + myIsOutFun = & ElementsOnShape::Classifier::isOutOfVertex; break; } default: - throw SALOME_Exception("Programmer error in usage of ElementsOnShape::TClassifier"); + throw SALOME_Exception("Programmer error in usage of ElementsOnShape::Classifier"); } + + if ( !isShapeBox ) + { + if ( theBox ) + { + myBox = *theBox; + } + else + { + Bnd_Box box; + BRepBndLib::Add( myShape, box ); + myBox.Clear(); + myBox.Add( box.CornerMin() ); + myBox.Add( box.CornerMax() ); + gp_XYZ halfSize = 0.5 * ( box.CornerMax().XYZ() - box.CornerMin().XYZ() ); + for ( int iDim = 1; iDim <= 3; ++iDim ) + { + double x = halfSize.Coord( iDim ); + halfSize.SetCoord( iDim, x + Max( myTol, 1e-2 * x )); + } + myBox.SetHSize( halfSize ); + } + } +} + +ElementsOnShape::Classifier::~Classifier() +{ + delete mySolidClfr; mySolidClfr = 0; } -bool ElementsOnShape::TClassifier::isOutOfSolid (const gp_Pnt& p) +bool ElementsOnShape::Classifier::isOutOfSolid (const gp_Pnt& p) { - mySolidClfr.Perform( p, myTol ); - return ( mySolidClfr.State() != TopAbs_IN && mySolidClfr.State() != TopAbs_ON ); + mySolidClfr->Perform( p, myTol ); + return ( mySolidClfr->State() != TopAbs_IN && mySolidClfr->State() != TopAbs_ON ); } -bool ElementsOnShape::TClassifier::isOutOfBox (const gp_Pnt& p) +bool ElementsOnShape::Classifier::isOutOfBox (const gp_Pnt& p) { return myBox.IsOut( p.XYZ() ); } -bool ElementsOnShape::TClassifier::isOutOfFace (const gp_Pnt& p) +bool ElementsOnShape::Classifier::isOutOfFace (const gp_Pnt& p) { myProjFace.Perform( p ); if ( myProjFace.IsDone() && myProjFace.LowerDistance() <= myTol ) { // check relatively to the face - Quantity_Parameter u, v; + Standard_Real u, v; myProjFace.LowerDistanceParameters(u, v); gp_Pnt2d aProjPnt (u, v); BRepClass_FaceClassifier aClsf ( TopoDS::Face( myShape ), aProjPnt, myTol ); @@ -4202,18 +4592,18 @@ bool ElementsOnShape::TClassifier::isOutOfFace (const gp_Pnt& p) return true; } -bool ElementsOnShape::TClassifier::isOutOfEdge (const gp_Pnt& p) +bool ElementsOnShape::Classifier::isOutOfEdge (const gp_Pnt& p) { myProjEdge.Perform( p ); return ! ( myProjEdge.NbPoints() > 0 && myProjEdge.LowerDistance() <= myTol ); } -bool ElementsOnShape::TClassifier::isOutOfVertex(const gp_Pnt& p) +bool ElementsOnShape::Classifier::isOutOfVertex(const gp_Pnt& p) { return ( myVertexXYZ.Distance( p ) > myTol ); } -bool ElementsOnShape::TClassifier::isBox (const TopoDS_Shape& theShape) +bool ElementsOnShape::Classifier::isBox (const TopoDS_Shape& theShape) { TopTools_IndexedMapOfShape vMap; TopExp::MapShapes( theShape, TopAbs_VERTEX, vMap ); @@ -4240,6 +4630,118 @@ bool ElementsOnShape::TClassifier::isBox (const TopoDS_Shape& theShape) return true; } +ElementsOnShape:: +OctreeClassifier::OctreeClassifier( const std::vector< ElementsOnShape::Classifier* >& classifiers ) + :SMESH_Octree( new SMESH_TreeLimit ) +{ + myClassifiers = classifiers; + compute(); +} + +ElementsOnShape:: +OctreeClassifier::OctreeClassifier( const OctreeClassifier* otherTree, + const std::vector< ElementsOnShape::Classifier >& clsOther, + std::vector< ElementsOnShape::Classifier >& cls ) + :SMESH_Octree( new SMESH_TreeLimit ) +{ + myBox = new Bnd_B3d( *otherTree->getBox() ); + + if (( myIsLeaf = otherTree->isLeaf() )) + { + myClassifiers.resize( otherTree->myClassifiers.size() ); + for ( size_t i = 0; i < otherTree->myClassifiers.size(); ++i ) + { + int ind = otherTree->myClassifiers[i] - & clsOther[0]; + myClassifiers[ i ] = & cls[ ind ]; + } + } + else if ( otherTree->myChildren ) + { + myChildren = new SMESH_Tree< Bnd_B3d, 8 > * [ 8 ]; + for ( int i = 0; i < nbChildren(); i++ ) + myChildren[i] = + new OctreeClassifier( static_cast( otherTree->myChildren[i]), + clsOther, cls ); + } +} + +void ElementsOnShape:: +OctreeClassifier::GetClassifiersAtPoint( const gp_XYZ& point, + std::vector< ElementsOnShape::Classifier* >& result ) +{ + if ( getBox()->IsOut( point )) + return; + + if ( isLeaf() ) + { + for ( size_t i = 0; i < myClassifiers.size(); ++i ) + if ( !myClassifiers[i]->GetBndBox()->IsOut( point )) + result.push_back( myClassifiers[i] ); + } + else + { + for (int i = 0; i < nbChildren(); i++) + ((OctreeClassifier*) myChildren[i])->GetClassifiersAtPoint( point, result ); + } +} + +void ElementsOnShape::OctreeClassifier::buildChildrenData() +{ + // distribute myClassifiers among myChildren + + const int childFlag[8] = { 0x0000001, + 0x0000002, + 0x0000004, + 0x0000008, + 0x0000010, + 0x0000020, + 0x0000040, + 0x0000080 }; + int nbInChild[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; + + for ( size_t i = 0; i < myClassifiers.size(); ++i ) + { + for ( int j = 0; j < nbChildren(); j++ ) + { + if ( !myClassifiers[i]->GetBndBox()->IsOut( *myChildren[j]->getBox() )) + { + myClassifiers[i]->SetFlag( childFlag[ j ]); + ++nbInChild[ j ]; + } + } + } + + for ( int j = 0; j < nbChildren(); j++ ) + { + OctreeClassifier* child = static_cast( myChildren[ j ]); + child->myClassifiers.resize( nbInChild[ j ]); + for ( size_t i = 0; nbInChild[ j ] && i < myClassifiers.size(); ++i ) + { + if ( myClassifiers[ i ]->IsSetFlag( childFlag[ j ])) + { + --nbInChild[ j ]; + child->myClassifiers[ nbInChild[ j ]] = myClassifiers[ i ]; + myClassifiers[ i ]->UnsetFlag( childFlag[ j ]); + } + } + } + SMESHUtils::FreeVector( myClassifiers ); + + // define if a child isLeaf() + for ( int i = 0; i < nbChildren(); i++ ) + { + OctreeClassifier* child = static_cast( myChildren[ i ]); + child->myIsLeaf = ( child->myClassifiers.size() <= 5 ); + } +} + +Bnd_B3d* ElementsOnShape::OctreeClassifier::buildRootBox() +{ + Bnd_B3d* box = new Bnd_B3d; + for ( size_t i = 0; i < myClassifiers.size(); ++i ) + box->Add( *myClassifiers[i]->GetBndBox() ); + return box; +} /* Class : BelongToGeom @@ -4249,25 +4751,38 @@ bool ElementsOnShape::TClassifier::isBox (const TopoDS_Shape& theShape) BelongToGeom::BelongToGeom() : myMeshDS(NULL), - myType(SMDSAbs_All), + myType(SMDSAbs_NbElementTypes), myIsSubshape(false), myTolerance(Precision::Confusion()) {} +Predicate* BelongToGeom::clone() const +{ + BelongToGeom* cln = new BelongToGeom( *this ); + cln->myElementsOnShapePtr.reset( static_cast( myElementsOnShapePtr->clone() )); + return cln; +} + void BelongToGeom::SetMesh( const SMDS_Mesh* theMesh ) { - myMeshDS = dynamic_cast(theMesh); - init(); + if ( myMeshDS != theMesh ) + { + myMeshDS = dynamic_cast(theMesh); + init(); + } } void BelongToGeom::SetGeom( const TopoDS_Shape& theShape ) { - myShape = theShape; - init(); + if ( myShape != theShape ) + { + myShape = theShape; + init(); + } } static bool IsSubShape (const TopTools_IndexedMapOfShape& theMap, - const TopoDS_Shape& theShape) + const TopoDS_Shape& theShape) { if (theMap.Contains(theShape)) return true; @@ -4289,7 +4804,7 @@ static bool IsSubShape (const TopTools_IndexedMapOfShape& theMap, void BelongToGeom::init() { - if (!myMeshDS || myShape.IsNull()) return; + if ( !myMeshDS || myShape.IsNull() ) return; // is sub-shape of main shape? TopoDS_Shape aMainShape = myMeshDS->ShapeToMesh(); @@ -4298,40 +4813,33 @@ void BelongToGeom::init() } else { TopTools_IndexedMapOfShape aMap; - TopExp::MapShapes(aMainShape, aMap); - myIsSubshape = IsSubShape(aMap, myShape); + TopExp::MapShapes( aMainShape, aMap ); + myIsSubshape = IsSubShape( aMap, myShape ); + if ( myIsSubshape ) + { + aMap.Clear(); + TopExp::MapShapes( myShape, aMap ); + mySubShapesIDs.Clear(); + for ( int i = 1; i <= aMap.Extent(); ++i ) + { + int subID = myMeshDS->ShapeToIndex( aMap( i )); + if ( subID > 0 ) + mySubShapesIDs.Add( subID ); + } + } } //if (!myIsSubshape) // to be always ready to check an element not bound to geometry { - myElementsOnShapePtr.reset(new ElementsOnShape()); - myElementsOnShapePtr->SetTolerance(myTolerance); - myElementsOnShapePtr->SetAllNodes(true); // "belong", while false means "lays on" - myElementsOnShapePtr->SetMesh(myMeshDS); - myElementsOnShapePtr->SetShape(myShape, myType); + if ( !myElementsOnShapePtr ) + myElementsOnShapePtr.reset( new ElementsOnShape() ); + myElementsOnShapePtr->SetTolerance( myTolerance ); + myElementsOnShapePtr->SetAllNodes( true ); // "belong", while false means "lays on" + myElementsOnShapePtr->SetMesh( myMeshDS ); + myElementsOnShapePtr->SetShape( myShape, myType ); } } -static bool IsContains( const SMESHDS_Mesh* theMeshDS, - const TopoDS_Shape& theShape, - const SMDS_MeshElement* theElem, - TopAbs_ShapeEnum theFindShapeEnum, - TopAbs_ShapeEnum theAvoidShapeEnum = TopAbs_SHAPE ) -{ - TopExp_Explorer anExp( theShape,theFindShapeEnum,theAvoidShapeEnum ); - - while( anExp.More() ) - { - const TopoDS_Shape& aShape = anExp.Current(); - if( SMESHDS_SubMesh* aSubMesh = theMeshDS->MeshElements( aShape ) ){ - if( aSubMesh->Contains( theElem ) ) - return true; - } - anExp.Next(); - } - return false; -} - bool BelongToGeom::IsSatisfy (long theId) { if (myMeshDS == 0 || myShape.IsNull()) @@ -4342,49 +4850,28 @@ bool BelongToGeom::IsSatisfy (long theId) return myElementsOnShapePtr->IsSatisfy(theId); } - // Case of submesh + // Case of sub-mesh + if (myType == SMDSAbs_Node) { - if( const SMDS_MeshNode* aNode = myMeshDS->FindNode( theId ) ) + if ( const SMDS_MeshNode* aNode = myMeshDS->FindNode( theId )) { if ( aNode->getshapeId() < 1 ) return myElementsOnShapePtr->IsSatisfy(theId); - - const SMDS_PositionPtr& aPosition = aNode->GetPosition(); - SMDS_TypeOfPosition aTypeOfPosition = aPosition->GetTypeOfPosition(); - switch( aTypeOfPosition ) - { - case SMDS_TOP_VERTEX : return ( IsContains( myMeshDS,myShape,aNode,TopAbs_VERTEX )); - case SMDS_TOP_EDGE : return ( IsContains( myMeshDS,myShape,aNode,TopAbs_EDGE )); - case SMDS_TOP_FACE : return ( IsContains( myMeshDS,myShape,aNode,TopAbs_FACE )); - case SMDS_TOP_3DSPACE: return ( IsContains( myMeshDS,myShape,aNode,TopAbs_SOLID ) || - IsContains( myMeshDS,myShape,aNode,TopAbs_SHELL )); - } + else + return mySubShapesIDs.Contains( aNode->getshapeId() ); } } else { if ( const SMDS_MeshElement* anElem = myMeshDS->FindElement( theId )) { - if ( anElem->getshapeId() < 1 ) - return myElementsOnShapePtr->IsSatisfy(theId); - - if( myType == SMDSAbs_All ) - { - return ( IsContains( myMeshDS,myShape,anElem,TopAbs_EDGE ) || - IsContains( myMeshDS,myShape,anElem,TopAbs_FACE ) || - IsContains( myMeshDS,myShape,anElem,TopAbs_SOLID )|| - IsContains( myMeshDS,myShape,anElem,TopAbs_SHELL )); - } - else if( myType == anElem->GetType() ) + if ( anElem->GetType() == myType ) { - switch( myType ) - { - case SMDSAbs_Edge : return ( IsContains( myMeshDS,myShape,anElem,TopAbs_EDGE )); - case SMDSAbs_Face : return ( IsContains( myMeshDS,myShape,anElem,TopAbs_FACE )); - case SMDSAbs_Volume: return ( IsContains( myMeshDS,myShape,anElem,TopAbs_SOLID )|| - IsContains( myMeshDS,myShape,anElem,TopAbs_SHELL )); - } + if ( anElem->getshapeId() < 1 ) + return myElementsOnShapePtr->IsSatisfy(theId); + else + return mySubShapesIDs.Contains( anElem->getshapeId() ); } } } @@ -4394,8 +4881,11 @@ bool BelongToGeom::IsSatisfy (long theId) void BelongToGeom::SetType (SMDSAbs_ElementType theType) { - myType = theType; - init(); + if ( myType != theType ) + { + myType = theType; + init(); + } } SMDSAbs_ElementType BelongToGeom::GetType() const @@ -4416,8 +4906,7 @@ const SMESHDS_Mesh* BelongToGeom::GetMeshDS() const void BelongToGeom::SetTolerance (double theTolerance) { myTolerance = theTolerance; - if (!myIsSubshape) - init(); + init(); } double BelongToGeom::GetTolerance() @@ -4428,26 +4917,39 @@ double BelongToGeom::GetTolerance() /* Class : LyingOnGeom Description : Predicate for verifying whether entiy lying or partially lying on - specified geometrical support + specified geometrical support */ LyingOnGeom::LyingOnGeom() : myMeshDS(NULL), - myType(SMDSAbs_All), + myType(SMDSAbs_NbElementTypes), myIsSubshape(false), myTolerance(Precision::Confusion()) {} +Predicate* LyingOnGeom::clone() const +{ + LyingOnGeom* cln = new LyingOnGeom( *this ); + cln->myElementsOnShapePtr.reset( static_cast( myElementsOnShapePtr->clone() )); + return cln; +} + void LyingOnGeom::SetMesh( const SMDS_Mesh* theMesh ) { - myMeshDS = dynamic_cast(theMesh); - init(); + if ( myMeshDS != theMesh ) + { + myMeshDS = dynamic_cast(theMesh); + init(); + } } void LyingOnGeom::SetGeom( const TopoDS_Shape& theShape ) { - myShape = theShape; - init(); + if ( myShape != theShape ) + { + myShape = theShape; + init(); + } } void LyingOnGeom::init() @@ -4460,18 +4962,29 @@ void LyingOnGeom::init() myIsSubshape = false; } else { - TopTools_IndexedMapOfShape aMap; - TopExp::MapShapes(aMainShape, aMap); - myIsSubshape = IsSubShape(aMap, myShape); + myIsSubshape = myMeshDS->IsGroupOfSubShapes( myShape ); } - if (!myIsSubshape) + if (myIsSubshape) { - myElementsOnShapePtr.reset(new ElementsOnShape()); - myElementsOnShapePtr->SetTolerance(myTolerance); - myElementsOnShapePtr->SetAllNodes(false); // lays on, while true means "belong" - myElementsOnShapePtr->SetMesh(myMeshDS); - myElementsOnShapePtr->SetShape(myShape, myType); + TopTools_IndexedMapOfShape shapes; + TopExp::MapShapes( myShape, shapes ); + mySubShapesIDs.Clear(); + for ( int i = 1; i <= shapes.Extent(); ++i ) + { + int subID = myMeshDS->ShapeToIndex( shapes( i )); + if ( subID > 0 ) + mySubShapesIDs.Add( subID ); + } + } + // else // to be always ready to check an element not bound to geometry + { + if ( !myElementsOnShapePtr ) + myElementsOnShapePtr.reset( new ElementsOnShape() ); + myElementsOnShapePtr->SetTolerance( myTolerance ); + myElementsOnShapePtr->SetAllNodes( false ); // lays on, while true means "belong" + myElementsOnShapePtr->SetMesh( myMeshDS ); + myElementsOnShapePtr->SetShape( myShape, myType ); } } @@ -4485,43 +4998,22 @@ bool LyingOnGeom::IsSatisfy( long theId ) return myElementsOnShapePtr->IsSatisfy(theId); } - // Case of submesh - if( myType == SMDSAbs_Node ) - { - if( const SMDS_MeshNode* aNode = myMeshDS->FindNode( theId ) ) - { - const SMDS_PositionPtr& aPosition = aNode->GetPosition(); - SMDS_TypeOfPosition aTypeOfPosition = aPosition->GetTypeOfPosition(); - switch( aTypeOfPosition ) - { - case SMDS_TOP_VERTEX : return IsContains( myMeshDS,myShape,aNode,TopAbs_VERTEX ); - case SMDS_TOP_EDGE : return IsContains( myMeshDS,myShape,aNode,TopAbs_EDGE ); - case SMDS_TOP_FACE : return IsContains( myMeshDS,myShape,aNode,TopAbs_FACE ); - case SMDS_TOP_3DSPACE: return IsContains( myMeshDS,myShape,aNode,TopAbs_SHELL ); - } - } - } - else + // Case of sub-mesh + + const SMDS_MeshElement* elem = + ( myType == SMDSAbs_Node ) ? myMeshDS->FindNode( theId ) : myMeshDS->FindElement( theId ); + + if ( mySubShapesIDs.Contains( elem->getshapeId() )) + return true; + + if ( elem->GetType() != SMDSAbs_Node && elem->GetType() == myType ) { - if( const SMDS_MeshElement* anElem = myMeshDS->FindElement( theId ) ) + SMDS_ElemIteratorPtr nodeItr = elem->nodesIterator(); + while ( nodeItr->more() ) { - if( myType == SMDSAbs_All ) - { - return Contains( myMeshDS,myShape,anElem,TopAbs_EDGE ) || - Contains( myMeshDS,myShape,anElem,TopAbs_FACE ) || - Contains( myMeshDS,myShape,anElem,TopAbs_SHELL )|| - Contains( myMeshDS,myShape,anElem,TopAbs_SOLID ); - } - else if( myType == anElem->GetType() ) - { - switch( myType ) - { - case SMDSAbs_Edge : return Contains( myMeshDS,myShape,anElem,TopAbs_EDGE ); - case SMDSAbs_Face : return Contains( myMeshDS,myShape,anElem,TopAbs_FACE ); - case SMDSAbs_Volume: return Contains( myMeshDS,myShape,anElem,TopAbs_SHELL )|| - Contains( myMeshDS,myShape,anElem,TopAbs_SOLID ); - } - } + const SMDS_MeshElement* aNode = nodeItr->next(); + if ( mySubShapesIDs.Contains( aNode->getshapeId() )) + return true; } } @@ -4530,8 +5022,11 @@ bool LyingOnGeom::IsSatisfy( long theId ) void LyingOnGeom::SetType( SMDSAbs_ElementType theType ) { - myType = theType; - init(); + if ( myType != theType ) + { + myType = theType; + init(); + } } SMDSAbs_ElementType LyingOnGeom::GetType() const @@ -4552,8 +5047,7 @@ const SMESHDS_Mesh* LyingOnGeom::GetMeshDS() const void LyingOnGeom::SetTolerance (double theTolerance) { myTolerance = theTolerance; - if (!myIsSubshape) - init(); + init(); } double LyingOnGeom::GetTolerance() @@ -4561,57 +5055,20 @@ double LyingOnGeom::GetTolerance() return myTolerance; } -bool LyingOnGeom::Contains( const SMESHDS_Mesh* theMeshDS, - const TopoDS_Shape& theShape, - const SMDS_MeshElement* theElem, - TopAbs_ShapeEnum theFindShapeEnum, - TopAbs_ShapeEnum theAvoidShapeEnum ) -{ - if (IsContains(theMeshDS, theShape, theElem, theFindShapeEnum, theAvoidShapeEnum)) - return true; - - TopTools_IndexedMapOfShape aSubShapes; - TopExp::MapShapes( theShape, aSubShapes ); - - for (int i = 1; i <= aSubShapes.Extent(); i++) - { - const TopoDS_Shape& aShape = aSubShapes.FindKey(i); - - if( SMESHDS_SubMesh* aSubMesh = theMeshDS->MeshElements( aShape ) ){ - if( aSubMesh->Contains( theElem ) ) - return true; - - SMDS_NodeIteratorPtr aNodeIt = aSubMesh->GetNodes(); - while ( aNodeIt->more() ) - { - const SMDS_MeshNode* aNode = static_cast(aNodeIt->next()); - SMDS_ElemIteratorPtr anElemIt = aNode->GetInverseElementIterator(); - while ( anElemIt->more() ) - { - const SMDS_MeshElement* anElement = static_cast(anElemIt->next()); - if (anElement == theElem) - return true; - } - } - } - } - return false; -} - -TSequenceOfXYZ::TSequenceOfXYZ() +TSequenceOfXYZ::TSequenceOfXYZ(): myElem(0) {} -TSequenceOfXYZ::TSequenceOfXYZ(size_type n) : myArray(n) +TSequenceOfXYZ::TSequenceOfXYZ(size_type n) : myArray(n), myElem(0) {} -TSequenceOfXYZ::TSequenceOfXYZ(size_type n, const gp_XYZ& t) : myArray(n,t) +TSequenceOfXYZ::TSequenceOfXYZ(size_type n, const gp_XYZ& t) : myArray(n,t), myElem(0) {} -TSequenceOfXYZ::TSequenceOfXYZ(const TSequenceOfXYZ& theSequenceOfXYZ) : myArray(theSequenceOfXYZ.myArray) +TSequenceOfXYZ::TSequenceOfXYZ(const TSequenceOfXYZ& theSequenceOfXYZ) : myArray(theSequenceOfXYZ.myArray), myElem(theSequenceOfXYZ.myElem) {} template -TSequenceOfXYZ::TSequenceOfXYZ(InputIterator theBegin, InputIterator theEnd): myArray(theBegin,theEnd) +TSequenceOfXYZ::TSequenceOfXYZ(InputIterator theBegin, InputIterator theEnd): myArray(theBegin,theEnd), myElem(0) {} TSequenceOfXYZ::~TSequenceOfXYZ() @@ -4620,6 +5077,7 @@ TSequenceOfXYZ::~TSequenceOfXYZ() TSequenceOfXYZ& TSequenceOfXYZ::operator=(const TSequenceOfXYZ& theSequenceOfXYZ) { myArray = theSequenceOfXYZ.myArray; + myElem = theSequenceOfXYZ.myElem; return *this; } @@ -4653,6 +5111,11 @@ TSequenceOfXYZ::size_type TSequenceOfXYZ::size() const return myArray.size(); } +SMDSAbs_EntityType TSequenceOfXYZ::getElementEntity() const +{ + return myElem ? myElem->GetEntityType() : SMDSEntity_Last; +} + TMeshModifTracer::TMeshModifTracer(): myMeshModifTime(0), myMesh(0) {