X-Git-Url: http://git.salome-platform.org/gitweb/?p=modules%2Fsmesh.git;a=blobdiff_plain;f=doc%2Fsalome%2Fgui%2FSMESH%2Finput%2Fsmeshpy_interface.doc;h=699e5c981ee9fe8046286bfafd5f5073b2316f8f;hp=a677107cffeab97a17127d6319daa1667c3d08de;hb=20c126bc220757c06b5576f71ed6f34ae85e3e40;hpb=91c92cb54310225231438b4d3bafeb0d1643a7c0 diff --git a/doc/salome/gui/SMESH/input/smeshpy_interface.doc b/doc/salome/gui/SMESH/input/smeshpy_interface.doc index a677107cf..699e5c981 100644 --- a/doc/salome/gui/SMESH/input/smeshpy_interface.doc +++ b/doc/salome/gui/SMESH/input/smeshpy_interface.doc @@ -2,134 +2,49 @@ \page smeshpy_interface_page Python interface -Python package smesh defines several classes, destined for easy and -clear mesh creation and edition. +Python API for SALOME %Mesh module defines several classes that can +be used for easy mesh creation and edition. -Documentation for smesh package is available in two forms: - -The structured -documentation for smesh package, where all methods and +Documentation for SALOME %Mesh module Python API is available in two forms: +- Structured documentation, where all methods and classes are grouped by their functionality, like it is done in the GUI documentation -and the \ref smeshDC "linear documentation for smesh package" -grouped only by classes, declared in the smesh.py file. - -The main page of the \ref smeshDC "linear documentation for smesh package" -contains a list of data structures and a list of -functions, provided by the package smesh.py. The first item in -the list of data structures (\ref smeshDC::smeshDC "class smesh") -also represents documentation for the methods of the package smesh.py itself. +- Linear documentation grouped only by classes, declared +in the \ref smesh and StdMeshersDC Python packages. -The package smesh.py provides an interface to create and handle -meshes. Use it to create an empty mesh or to import it from the data file. +Python package \ref smesh provides an interface to create and handle +meshes. It can be used to create an empty mesh or to import mesh from the data file. -Once a mesh has been created, it is possible to manage it via its own -methods, described at \ref smeshDC::Mesh "class Mesh" documentation -(it is also accessible by the second item "class Mesh" in the list of data structures). +As soon as mesh is created, it is possible to manage it via its own +methods, described in \ref smesh.Mesh "class Mesh" documentation. -Class \b Mesh allows assigning algorithms to a mesh. -Please note, that some algorithms, included in the standard SALOME -distribution are always available: +Class \ref smesh.Mesh "Mesh" allows assigning algorithms to a mesh. +Please note that some algorithms, included in the standard SALOME +distribution are always available. Python package \ref StdMeshersDC +provides an interface for standard meshing algorithms included into +the SALOME %Mesh module distribution, like: - REGULAR (1D) - COMPOSITE (1D) - MEFISTO (2D) - Quadrangle (2D) - Hexa(3D) -- etc... - -There are also some algorithms, which can be installed optionally, -some of them are based on open-source meshers: -- NETGEN (1D-2D, 2D, 1D-2D-3D, 3D) +- etc ... -... and others are based on commercial meshers: -- GHS3D (3D) -- BLSURF (2D) +To add meshing hypotheses, it is possible to use the functions provided by the +algorithms interfaces. -To add hypotheses, use the interfaces, provided by the assigned -algorithms. - -Below you can see an example of usage of the package smesh for 3d mesh generation. +An example below demonstrates usage of the Python API for 3d mesh generation. \anchor example_3d_mesh -

Example of 3d mesh generation with NETGEN:

- -\code -from geompy import * -import smesh - -### -# Geometry: an assembly of a box, a cylinder and a truncated cone -# meshed with tetrahedral -### - -# Define values -name = "ex21_lamp" -cote = 60 -section = 20 -size = 200 -radius_1 = 80 -radius_2 = 40 -height = 100 - -# Build a box -box = MakeBox(-cote, -cote, -cote, +cote, +cote, +cote) - -# Build a cylinder -pt1 = MakeVertex(0, 0, cote/3) -di1 = MakeVectorDXDYDZ(0, 0, 1) -cyl = MakeCylinder(pt1, di1, section, size) - -# Build a truncated cone -pt2 = MakeVertex(0, 0, size) -cone = MakeCone(pt2, di1, radius_1, radius_2, height) - -# Fuse -box_cyl = MakeFuse(box, cyl) -piece = MakeFuse(box_cyl, cone) - -# Add to the study -addToStudy(piece, name) - -# Create a group of faces -group = CreateGroup(piece, ShapeType["FACE"]) -group_name = name + "_grp" -addToStudy(group, group_name) -group.SetName(group_name) - -# Add faces to the group -faces = SubShapeAllIDs(piece, ShapeType["FACE"]) -UnionIDs(group, faces) - -### -# Create a mesh -### - -# Define a mesh on a geometry -tetra = smesh.Mesh(piece, name) - -# Define 1D hypothesis -algo1d = tetra.Segment() -algo1d.LocalLength(10) - -# Define 2D hypothesis -algo2d = tetra.Triangle() -algo2d.LengthFromEdges() - -# Define 3D hypothesis -algo3d = tetra.Tetrahedron(smesh.NETGEN) -algo3d.MaxElementVolume(100) - -# Compute the mesh -tetra.Compute() - -# Create a groupe of faces -tetra.Group(group) - -\endcode +

Example of 3d mesh generation:

+\include 3dmesh.py +Download this script -Examples of Python scripts for all Mesh operations are available by +Examples of Python scripts for Mesh operations are available by the following links: - \subpage tui_creating_meshes_page +- \subpage tui_cartesian_algo +- \subpage tui_use_existing_faces - \subpage tui_viewing_meshes_page - \subpage tui_defining_hypotheses_page - \subpage tui_quality_controls_page @@ -139,6 +54,8 @@ the following links: - \subpage tui_transforming_meshes_page - \subpage tui_notebook_smesh_page - \subpage tui_measurements_page -- \subpage tui_generate_flat_elements_page +- \subpage tui_generate_flat_elements_page +- \subpage tui_work_on_objects_from_gui +- \subpage tui_prism_3d_algo */