X-Git-Url: http://git.salome-platform.org/gitweb/?p=modules%2Fsmesh.git;a=blobdiff_plain;f=doc%2Fsalome%2Fgui%2FSMESH%2Finput%2Fsmeshpy_interface.doc;h=1dc47c40700a8376a71b6627d82a119e42cafe80;hp=e725ef99cf237c4d8d012ac6cd3f0752efb768f4;hb=5c5e1f2368ca2b3388f657ae028b2a6b5ce8ae36;hpb=bd4e115a78b52e3fbc016e5e30bb0e19b2a9e7d6 diff --git a/doc/salome/gui/SMESH/input/smeshpy_interface.doc b/doc/salome/gui/SMESH/input/smeshpy_interface.doc index e725ef99c..1dc47c407 100644 --- a/doc/salome/gui/SMESH/input/smeshpy_interface.doc +++ b/doc/salome/gui/SMESH/input/smeshpy_interface.doc @@ -2,137 +2,96 @@ \page smeshpy_interface_page Python interface -Python package smesh defines several classes, destined for easy and -clear mesh creation and edition. - -Documentation for smesh package is available in two forms: - -The structured -documentation for smesh package, where all methods and -classes are grouped by their functionality, like it is done in the GUI documentation -and the \ref smeshDC "linear documentation for smesh package" -grouped only by classes, declared in the smesh.py file. - -The main page of the \ref smeshDC "linear documentation for smesh package" -contains a list of data structures and a list of -functions, provided by the package smesh.py. The first item in -the list of data structures (\ref smeshDC::smeshDC "class smesh") -also represents documentation for the methods of the package smesh.py itself. - -The package smesh.py provides an interface to create and handle -meshes. Use it to create an empty mesh or to import it from the data file. - -Once a mesh has been created, it is possible to manage it via its own -methods, described at \ref smeshDC::Mesh "class Mesh" documentation -(it is also accessible by the second item "class Mesh" in the list of data structures). - -Class \b Mesh allows assigning algorithms to a mesh. -Please note, that some algorithms, included in the standard SALOME -distribution are always available: -- REGULAR (1D) -- COMPOSITE (1D) -- MEFISTO (2D) -- Quadrangle (2D) -- Hexa(3D) -- etc... - -To add hypotheses, use the interfaces, provided by the assigned -algorithms. - -Below you can see an example of usage of the package smesh for 3d mesh generation. +Python API for SALOME %Mesh module defines several classes that can +be used for easy mesh creation and edition. + +Documentation for SALOME %Mesh module Python API is available in two forms: +- Structured documentation, where all methods and +classes are grouped by their functionality. +- Linear documentation grouped only by classes, declared +in the \ref smeshBuilder and \ref StdMeshersBuilder Python packages. + +\n With SALOME 7.2, the Python interface for %Mesh has been slightly modified to offer new functionality. +\n You may have to modify your scripts generated with SALOME 6 or older versions. +\n Please see \subpage smesh_migration_page. + +Class \ref smeshBuilder.smeshBuilder "smeshBuilder" provides an interface to create and handle +meshes. It can be used to create an empty mesh or to import mesh from the data file. + +As soon as a mesh is created, it is possible to manage it via its own +methods, described in class \ref smeshBuilder.Mesh "Mesh" documentation. + +Class \ref smeshstudytools.SMeshStudyTools "SMeshStudyTools" provides several methods to manipulate mesh objects in Salome study. + +A usual workflow to generate a mesh on geometry is following: +
    +
  1. Create an instance of \ref smeshBuilder.smeshBuilder "smeshBuilder": +
    +      from salome.smesh import smeshBuilder
    +      smesh = smeshBuilder.New( salome.myStudy )
    +    
  2. +
  3. Create a \ref smeshBuilder.Mesh "mesh" object: +
    +      mesh = \ref smeshBuilder.smeshBuilder.Mesh "smesh.Mesh( geometry )" 
    +    
  4. +
  5. Create and assign \ref basic_meshing_algos_page "algorithms" by + calling corresponding methods of the mesh. If a sub-shape is + provided as an argument, a \ref constructing_submeshes_page "sub-mesh" + is implicitly created on this sub-shape: +
    +      regular1D = \ref smeshBuilder.Mesh.Segment "mesh.Segment"()
    +      mefisto   = \ref smeshBuilder.Mesh.Triangle "mesh.Triangle"( smeshBuilder.MEFISTO )
    +      # use other triangle algorithm on a face -- a sub-mesh appears in the mesh
    +      netgen    = \ref smeshBuilder.Mesh.Triangle "mesh.Triangle"( smeshBuilder.NETGEN_1D2D, face )
    +    
  6. +
  7. Create and assign \ref about_hypo_page "hypotheses" by calling + corresponding methods of algorithms: +
    +      segLen10 = \ref StdMeshersBuilder.StdMeshersBuilder_Segment.LocalLength "regular1D.LocalLength"( 10. )
    +      maxArea  = \ref StdMeshersBuilder.StdMeshersBuilder_Segment.LocalLength "mefisto.MaxElementArea"( 100. )
    +      netgen.SetMaxSize( 20. )
    +      netgen.SetFineness( smeshBuilder.VeryCoarse )
    +    
    +
  8. +
  9. \ref compute_anchor "Compute" the mesh (generate mesh nodes and elements): +
    +      \ref Mesh.Compute "mesh.Compute"()
    +    
    +
  10. +
+ +An easiest way to start with Python scripting is to do something in +GUI and then to get a corresponding Python script via + File > Dump Study menu item. Don't forget that you can get +all methods of any object in hand (e.g. a mesh group or a hypothesis) +by calling \a dir() Python built-in function. + +All methods of the Mesh Group can be found in \ref tui_create_standalone_group sample script. + +An example below demonstrates usage of the Python API for 3d mesh +generation and for retrieving information on mesh nodes and elements. \anchor example_3d_mesh

Example of 3d mesh generation:

+\tui_script{3dmesh.py} -\code -from geompy import * -import smesh - -### -# Geometry: an assembly of a box, a cylinder and a truncated cone -# meshed with tetrahedral -### - -# Define values -name = "ex21_lamp" -cote = 60 -section = 20 -size = 200 -radius_1 = 80 -radius_2 = 40 -height = 100 - -# Build a box -box = MakeBox(-cote, -cote, -cote, +cote, +cote, +cote) - -# Build a cylinder -pt1 = MakeVertex(0, 0, cote/3) -di1 = MakeVectorDXDYDZ(0, 0, 1) -cyl = MakeCylinder(pt1, di1, section, size) - -# Build a truncated cone -pt2 = MakeVertex(0, 0, size) -cone = MakeCone(pt2, di1, radius_1, radius_2, height) - -# Fuse -box_cyl = MakeFuse(box, cyl) -piece = MakeFuse(box_cyl, cone) - -# Add to the study -addToStudy(piece, name) - -# Create a group of faces -group = CreateGroup(piece, ShapeType["FACE"]) -group_name = name + "_grp" -addToStudy(group, group_name) -group.SetName(group_name) - -# Add faces to the group -faces = SubShapeAllIDs(piece, ShapeType["FACE"]) -UnionIDs(group, faces) - -### -# Create a mesh -### - -# Define a mesh on a geometry -tetra = smesh.Mesh(piece, name) - -# Define 1D hypothesis -algo1d = tetra.Segment() -algo1d.LocalLength(10) - -# Define 2D hypothesis -algo2d = tetra.Triangle() -algo2d.LengthFromEdges() - -# Define 3D hypothesis -algo3d = tetra.Tetrahedron() -algo3d.MaxElementVolume(100) - -# Compute the mesh -tetra.Compute() - -# Create a groupe of faces -tetra.Group(group) - -\endcode - -Examples of Python scripts for all Mesh operations are available by +Examples of Python scripts for Mesh operations are available by the following links: - \subpage tui_creating_meshes_page -- \subpage tui_cartesian_algo -- \subpage tui_viewing_meshes_page - \subpage tui_defining_hypotheses_page -- \subpage tui_quality_controls_page -- \subpage tui_filters_page - \subpage tui_grouping_elements_page +- \subpage tui_filters_page - \subpage tui_modifying_meshes_page - \subpage tui_transforming_meshes_page -- \subpage tui_notebook_smesh_page +- \subpage tui_viewing_meshes_page +- \subpage tui_quality_controls_page - \subpage tui_measurements_page -- \subpage tui_generate_flat_elements_page - \subpage tui_work_on_objects_from_gui +- \subpage tui_notebook_smesh_page +- \subpage tui_cartesian_algo +- \subpage tui_use_existing_faces +- \subpage tui_prism_3d_algo +- \subpage tui_generate_flat_elements_page */