Salome HOME
Fix regression of smesh/2D_mesh_Polygons_00/A2
[modules/smesh.git] / src / Controls / SMESH_Controls.cxx
index 4ac7baab524f0951c37ca43843352b72d11232fb..f86b5638719dfb201d6e15ab0a6e4487a1b0f174 100644 (file)
@@ -23,6 +23,7 @@
 #include "SMESH_ControlsDef.hxx"
 
 #include "SMDS_BallElement.hxx"
+#include "SMDS_FacePosition.hxx"
 #include "SMDS_Iterator.hxx"
 #include "SMDS_Mesh.hxx"
 #include "SMDS_MeshElement.hxx"
 #include <Basics_Utils.hxx>
 
 #include <BRepAdaptor_Surface.hxx>
+#include <BRepBndLib.hxx>
+#include <BRepBuilderAPI_Copy.hxx>
+#include <BRepClass3d_SolidClassifier.hxx>
 #include <BRepClass_FaceClassifier.hxx>
 #include <BRep_Tool.hxx>
+#include <GeomLib_IsPlanarSurface.hxx>
 #include <Geom_CylindricalSurface.hxx>
 #include <Geom_Plane.hxx>
 #include <Geom_Surface.hxx>
 #include <NCollection_Map.hxx>
 #include <Precision.hxx>
+#include <ShapeAnalysis_Surface.hxx>
 #include <TColStd_MapIteratorOfMapOfInteger.hxx>
 #include <TColStd_MapOfInteger.hxx>
 #include <TColStd_SequenceOfAsciiString.hxx>
@@ -93,6 +99,15 @@ namespace {
       v2.Magnitude() < gp::Resolution() ? 0 : v1.Angle( v2 );
   }
 
+  inline double getCos2( const gp_XYZ& P1, const gp_XYZ& P2, const gp_XYZ& P3 )
+  {
+    gp_Vec v1( P1 - P2 ), v2( P3 - P2 );
+    double dot = v1 * v2, len1 = v1.SquareMagnitude(), len2 = v2.SquareMagnitude();
+
+    return ( dot < 0 || len1 < gp::Resolution() || len2 < gp::Resolution() ? -1 :
+             dot * dot / len1 / len2 );
+  }
+
   inline double getArea( const gp_XYZ& P1, const gp_XYZ& P2, const gp_XYZ& P3 )
   {
     gp_Vec aVec1( P2 - P1 );
@@ -132,7 +147,7 @@ namespace {
     //  +-----+------+  +-----+------+ 
     //  |            |  |            |
     //  |            |  |            |
-    // result sould be 2 in both cases
+    // result should be 2 in both cases
     //
     int aResult0 = 0, aResult1 = 0;
      // last node, it is a medium one in a quadratic edge
@@ -259,13 +274,10 @@ bool NumericalFunctor::GetPoints(const SMDS_MeshElement* anElem,
   }
 
   if ( anIter ) {
-    double xyz[3];
+    SMESH_NodeXYZ p;
     while( anIter->more() ) {
-      if ( const SMDS_MeshNode* aNode = static_cast<const SMDS_MeshNode*>( anIter->next() ))
-      {
-        aNode->GetXYZ( xyz );
-        theRes.push_back( gp_XYZ( xyz[0], xyz[1], xyz[2] ));
-      }
+      if ( p.Set( anIter->next() ))
+        theRes.push_back( p );
     }
   }
 
@@ -614,7 +626,8 @@ double MaxElementLength3D::GetValue( long theElementId )
       aVal = Max(aVal,Max(L7,L8));
       break;
     }
-    case SMDSEntity_Quad_Penta: { // quadratic pentas
+    case SMDSEntity_Quad_Penta:
+    case SMDSEntity_BiQuad_Penta: { // quadratic pentas
       double L1 = getDistance(P( 1 ),P( 7 )) + getDistance(P( 7 ),P( 2 ));
       double L2 = getDistance(P( 2 ),P( 8 )) + getDistance(P( 8 ),P( 3 ));
       double L3 = getDistance(P( 3 ),P( 9 )) + getDistance(P( 9 ),P( 1 ));
@@ -710,21 +723,25 @@ SMDSAbs_ElementType MaxElementLength3D::GetType() const
 
 double MinimumAngle::GetValue( const TSequenceOfXYZ& P )
 {
-  double aMin;
-
-  if (P.size() <3)
+  if ( P.size() < 3 )
     return 0.;
 
-  aMin = getAngle(P( P.size() ), P( 1 ), P( 2 ));
-  aMin = Min(aMin,getAngle(P( P.size()-1 ), P( P.size() ), P( 1 )));
+  double aMaxCos2;
+
+  aMaxCos2 = getCos2( P( P.size() ), P( 1 ), P( 2 ));
+  aMaxCos2 = Max( aMaxCos2, getCos2( P( P.size()-1 ), P( P.size() ), P( 1 )));
 
   for ( size_t i = 2; i < P.size(); i++ )
   {
-    double A0 = getAngle( P( i-1 ), P( i ), P( i+1 ) );
-    aMin = Min(aMin,A0);
+    double A0 = getCos2( P( i-1 ), P( i ), P( i+1 ) );
+    aMaxCos2 = Max( aMaxCos2, A0 );
   }
+  if ( aMaxCos2 < 0 )
+    return 0; // all nodes coincide
 
-  return aMin * 180.0 / M_PI;
+  double cos = sqrt( aMaxCos2 );
+  if ( cos >=  1 ) return 0;
+  return acos( cos ) * 180.0 / M_PI;
 }
 
 double MinimumAngle::GetBadRate( double Value, int nbNodes ) const
@@ -783,58 +800,51 @@ double AspectRatio::GetValue( const TSequenceOfXYZ& P )
 
   if ( nbNodes == 3 ) {
     // Compute lengths of the sides
-    std::vector< double > aLen (nbNodes);
-    for ( int i = 0; i < nbNodes - 1; i++ )
-      aLen[ i ] = getDistance( P( i + 1 ), P( i + 2 ) );
-    aLen[ nbNodes - 1 ] = getDistance( P( 1 ), P( nbNodes ) );
+    double aLen1 = getDistance( P( 1 ), P( 2 ));
+    double aLen2 = getDistance( P( 2 ), P( 3 ));
+    double aLen3 = getDistance( P( 3 ), P( 1 ));
     // Q = alfa * h * p / S, where
     //
     // alfa = sqrt( 3 ) / 6
     // h - length of the longest edge
     // p - half perimeter
     // S - triangle surface
-    const double alfa = sqrt( 3. ) / 6.;
-    double maxLen = Max( aLen[ 0 ], Max( aLen[ 1 ], aLen[ 2 ] ) );
-    double half_perimeter = ( aLen[0] + aLen[1] + aLen[2] ) / 2.;
-    double anArea = getArea( P( 1 ), P( 2 ), P( 3 ) );
+    const double     alfa = sqrt( 3. ) / 6.;
+    double         maxLen = Max( aLen1, Max( aLen2, aLen3 ));
+    double half_perimeter = ( aLen1 + aLen2 + aLen3 ) / 2.;
+    double         anArea = getArea( P( 1 ), P( 2 ), P( 3 ));
     if ( anArea <= theEps  )
       return theInf;
     return alfa * maxLen * half_perimeter / anArea;
   }
   else if ( nbNodes == 6 ) { // quadratic triangles
     // Compute lengths of the sides
-    std::vector< double > aLen (3);
-    aLen[0] = getDistance( P(1), P(3) );
-    aLen[1] = getDistance( P(3), P(5) );
-    aLen[2] = getDistance( P(5), P(1) );
-    // Q = alfa * h * p / S, where
-    //
-    // alfa = sqrt( 3 ) / 6
-    // h - length of the longest edge
-    // p - half perimeter
-    // S - triangle surface
-    const double alfa = sqrt( 3. ) / 6.;
-    double maxLen = Max( aLen[ 0 ], Max( aLen[ 1 ], aLen[ 2 ] ) );
-    double half_perimeter = ( aLen[0] + aLen[1] + aLen[2] ) / 2.;
-    double anArea = getArea( P(1), P(3), P(5) );
+    double aLen1 = getDistance( P( 1 ), P( 3 ));
+    double aLen2 = getDistance( P( 3 ), P( 5 ));
+    double aLen3 = getDistance( P( 5 ), P( 1 ));
+    // algo same as for the linear triangle
+    const double     alfa = sqrt( 3. ) / 6.;
+    double         maxLen = Max( aLen1, Max( aLen2, aLen3 ));
+    double half_perimeter = ( aLen1 + aLen2 + aLen3 ) / 2.;
+    double         anArea = getArea( P( 1 ), P( 3 ), P( 5 ));
     if ( anArea <= theEps )
       return theInf;
     return alfa * maxLen * half_perimeter / anArea;
   }
   else if( nbNodes == 4 ) { // quadrangle
     // Compute lengths of the sides
-    std::vector< double > aLen (4);
+    double aLen[4];
     aLen[0] = getDistance( P(1), P(2) );
     aLen[1] = getDistance( P(2), P(3) );
     aLen[2] = getDistance( P(3), P(4) );
     aLen[3] = getDistance( P(4), P(1) );
     // Compute lengths of the diagonals
-    std::vector< double > aDia (2);
+    double aDia[2];
     aDia[0] = getDistance( P(1), P(3) );
     aDia[1] = getDistance( P(2), P(4) );
     // Compute areas of all triangles which can be built
     // taking three nodes of the quadrangle
-    std::vector< double > anArea (4);
+    double anArea[4];
     anArea[0] = getArea( P(1), P(2), P(3) );
     anArea[1] = getArea( P(1), P(2), P(4) );
     anArea[2] = getArea( P(1), P(3), P(4) );
@@ -850,35 +860,35 @@ double AspectRatio::GetValue( const TSequenceOfXYZ& P )
     // Si - areas of the triangles
     const double alpha = sqrt( 1 / 32. );
     double L = Max( aLen[ 0 ],
-                 Max( aLen[ 1 ],
-                   Max( aLen[ 2 ],
-                     Max( aLen[ 3 ],
-                       Max( aDia[ 0 ], aDia[ 1 ] ) ) ) ) );
+                    Max( aLen[ 1 ],
+                         Max( aLen[ 2 ],
+                              Max( aLen[ 3 ],
+                                   Max( aDia[ 0 ], aDia[ 1 ] ) ) ) ) );
     double C1 = sqrt( ( aLen[0] * aLen[0] +
                         aLen[1] * aLen[1] +
                         aLen[2] * aLen[2] +
                         aLen[3] * aLen[3] ) / 4. );
     double C2 = Min( anArea[ 0 ],
-                  Min( anArea[ 1 ],
-                    Min( anArea[ 2 ], anArea[ 3 ] ) ) );
+                     Min( anArea[ 1 ],
+                          Min( anArea[ 2 ], anArea[ 3 ] ) ) );
     if ( C2 <= theEps )
       return theInf;
     return alpha * L * C1 / C2;
   }
   else if( nbNodes == 8 || nbNodes == 9 ) { // nbNodes==8 - quadratic quadrangle
     // Compute lengths of the sides
-    std::vector< double > aLen (4);
+    double aLen[4];
     aLen[0] = getDistance( P(1), P(3) );
     aLen[1] = getDistance( P(3), P(5) );
     aLen[2] = getDistance( P(5), P(7) );
     aLen[3] = getDistance( P(7), P(1) );
     // Compute lengths of the diagonals
-    std::vector< double > aDia (2);
+    double aDia[2];
     aDia[0] = getDistance( P(1), P(5) );
     aDia[1] = getDistance( P(3), P(7) );
     // Compute areas of all triangles which can be built
     // taking three nodes of the quadrangle
-    std::vector< double > anArea (4);
+    double anArea[4];
     anArea[0] = getArea( P(1), P(3), P(5) );
     anArea[1] = getArea( P(1), P(3), P(7) );
     anArea[2] = getArea( P(1), P(5), P(7) );
@@ -1550,246 +1560,240 @@ SMDSAbs_ElementType Length::GetType() const
 */
 //================================================================================
 
-double Length2D::GetValue( long theElementId )
+double Length2D::GetValue( const TSequenceOfXYZ& P )
 {
-  TSequenceOfXYZ P;
-
-  if ( GetPoints( theElementId, P ))
-  {
-    double aVal = 0;
-    int len = P.size();
-    SMDSAbs_EntityType aType = P.getElementEntity();
+  double aVal = 0;
+  int len = P.size();
+  SMDSAbs_EntityType aType = P.getElementEntity();
 
-    switch (aType) {
-    case SMDSEntity_Edge:
-      if (len == 2)
-        aVal = getDistance( P( 1 ), P( 2 ) );
-      break;
-    case SMDSEntity_Quad_Edge:
-      if (len == 3) // quadratic edge
-        aVal = getDistance(P( 1 ),P( 3 )) + getDistance(P( 3 ),P( 2 ));
-      break;
-    case SMDSEntity_Triangle:
-      if (len == 3){ // triangles
-        double L1 = getDistance(P( 1 ),P( 2 ));
-        double L2 = getDistance(P( 2 ),P( 3 ));
-        double L3 = getDistance(P( 3 ),P( 1 ));
-        aVal = Min(L1,Min(L2,L3));
-      }
-      break;
-    case SMDSEntity_Quadrangle:
-      if (len == 4){ // quadrangles
-        double L1 = getDistance(P( 1 ),P( 2 ));
-        double L2 = getDistance(P( 2 ),P( 3 ));
-        double L3 = getDistance(P( 3 ),P( 4 ));
-        double L4 = getDistance(P( 4 ),P( 1 ));
-        aVal = Min(Min(L1,L2),Min(L3,L4));
-      }
-      break;
-    case SMDSEntity_Quad_Triangle:
-    case SMDSEntity_BiQuad_Triangle:
-      if (len >= 6){ // quadratic triangles
-        double L1 = getDistance(P( 1 ),P( 2 )) + getDistance(P( 2 ),P( 3 ));
-        double L2 = getDistance(P( 3 ),P( 4 )) + getDistance(P( 4 ),P( 5 ));
-        double L3 = getDistance(P( 5 ),P( 6 )) + getDistance(P( 6 ),P( 1 ));
-        aVal = Min(L1,Min(L2,L3));
-      }
-      break;
-    case SMDSEntity_Quad_Quadrangle:
-    case SMDSEntity_BiQuad_Quadrangle:
-      if (len >= 8){ // quadratic quadrangles
-        double L1 = getDistance(P( 1 ),P( 2 )) + getDistance(P( 2 ),P( 3 ));
-        double L2 = getDistance(P( 3 ),P( 4 )) + getDistance(P( 4 ),P( 5 ));
-        double L3 = getDistance(P( 5 ),P( 6 )) + getDistance(P( 6 ),P( 7 ));
-        double L4 = getDistance(P( 7 ),P( 8 )) + getDistance(P( 8 ),P( 1 ));
-        aVal = Min(Min(L1,L2),Min(L3,L4));
-      }
-      break;
-    case SMDSEntity_Tetra:
-      if (len == 4){ // tetrahedra
-        double L1 = getDistance(P( 1 ),P( 2 ));
-        double L2 = getDistance(P( 2 ),P( 3 ));
-        double L3 = getDistance(P( 3 ),P( 1 ));
-        double L4 = getDistance(P( 1 ),P( 4 ));
-        double L5 = getDistance(P( 2 ),P( 4 ));
-        double L6 = getDistance(P( 3 ),P( 4 ));
-        aVal = Min(Min(Min(L1,L2),Min(L3,L4)),Min(L5,L6));
-      }
-      break;
-    case SMDSEntity_Pyramid:
-      if (len == 5){ // piramids
-        double L1 = getDistance(P( 1 ),P( 2 ));
-        double L2 = getDistance(P( 2 ),P( 3 ));
-        double L3 = getDistance(P( 3 ),P( 4 ));
-        double L4 = getDistance(P( 4 ),P( 1 ));
-        double L5 = getDistance(P( 1 ),P( 5 ));
-        double L6 = getDistance(P( 2 ),P( 5 ));
-        double L7 = getDistance(P( 3 ),P( 5 ));
-        double L8 = getDistance(P( 4 ),P( 5 ));
-
-        aVal = Min(Min(Min(L1,L2),Min(L3,L4)),Min(L5,L6));
-        aVal = Min(aVal,Min(L7,L8));
-      }
-      break;
-    case SMDSEntity_Penta:
-      if (len == 6) { // pentaidres
-        double L1 = getDistance(P( 1 ),P( 2 ));
-        double L2 = getDistance(P( 2 ),P( 3 ));
-        double L3 = getDistance(P( 3 ),P( 1 ));
-        double L4 = getDistance(P( 4 ),P( 5 ));
-        double L5 = getDistance(P( 5 ),P( 6 ));
-        double L6 = getDistance(P( 6 ),P( 4 ));
-        double L7 = getDistance(P( 1 ),P( 4 ));
-        double L8 = getDistance(P( 2 ),P( 5 ));
-        double L9 = getDistance(P( 3 ),P( 6 ));
-
-        aVal = Min(Min(Min(L1,L2),Min(L3,L4)),Min(L5,L6));
-        aVal = Min(aVal,Min(Min(L7,L8),L9));
-      }
-      break;
-    case SMDSEntity_Hexa:
-      if (len == 8){ // hexahedron
-        double L1 = getDistance(P( 1 ),P( 2 ));
-        double L2 = getDistance(P( 2 ),P( 3 ));
-        double L3 = getDistance(P( 3 ),P( 4 ));
-        double L4 = getDistance(P( 4 ),P( 1 ));
-        double L5 = getDistance(P( 5 ),P( 6 ));
-        double L6 = getDistance(P( 6 ),P( 7 ));
-        double L7 = getDistance(P( 7 ),P( 8 ));
-        double L8 = getDistance(P( 8 ),P( 5 ));
-        double L9 = getDistance(P( 1 ),P( 5 ));
-        double L10= getDistance(P( 2 ),P( 6 ));
-        double L11= getDistance(P( 3 ),P( 7 ));
-        double L12= getDistance(P( 4 ),P( 8 ));
-
-        aVal = Min(Min(Min(L1,L2),Min(L3,L4)),Min(L5,L6));
-        aVal = Min(aVal,Min(Min(L7,L8),Min(L9,L10)));
-        aVal = Min(aVal,Min(L11,L12));
-      }
-      break;
-    case SMDSEntity_Quad_Tetra:
-      if (len == 10){ // quadratic tetraidrs
-        double L1 = getDistance(P( 1 ),P( 5 )) + getDistance(P( 5 ),P( 2 ));
-        double L2 = getDistance(P( 2 ),P( 6 )) + getDistance(P( 6 ),P( 3 ));
-        double L3 = getDistance(P( 3 ),P( 7 )) + getDistance(P( 7 ),P( 1 ));
-        double L4 = getDistance(P( 1 ),P( 8 )) + getDistance(P( 8 ),P( 4 ));
-        double L5 = getDistance(P( 2 ),P( 9 )) + getDistance(P( 9 ),P( 4 ));
-        double L6 = getDistance(P( 3 ),P( 10 )) + getDistance(P( 10 ),P( 4 ));
-        aVal = Min(Min(Min(L1,L2),Min(L3,L4)),Min(L5,L6));
-      }
-      break;
-    case SMDSEntity_Quad_Pyramid:
-      if (len == 13){ // quadratic piramids
-        double L1 = getDistance(P( 1 ),P( 6 )) + getDistance(P( 6 ),P( 2 ));
-        double L2 = getDistance(P( 2 ),P( 7 )) + getDistance(P( 7 ),P( 3 ));
-        double L3 = getDistance(P( 3 ),P( 8 )) + getDistance(P( 8 ),P( 4 ));
-        double L4 = getDistance(P( 4 ),P( 9 )) + getDistance(P( 9 ),P( 1 ));
-        double L5 = getDistance(P( 1 ),P( 10 )) + getDistance(P( 10 ),P( 5 ));
-        double L6 = getDistance(P( 2 ),P( 11 )) + getDistance(P( 11 ),P( 5 ));
-        double L7 = getDistance(P( 3 ),P( 12 )) + getDistance(P( 12 ),P( 5 ));
-        double L8 = getDistance(P( 4 ),P( 13 )) + getDistance(P( 13 ),P( 5 ));
-        aVal = Min(Min(Min(L1,L2),Min(L3,L4)),Min(L5,L6));
-        aVal = Min(aVal,Min(L7,L8));
-      }
-      break;
-    case SMDSEntity_Quad_Penta:
-      if (len == 15){ // quadratic pentaidres
-        double L1 = getDistance(P( 1 ),P( 7 )) + getDistance(P( 7 ),P( 2 ));
-        double L2 = getDistance(P( 2 ),P( 8 )) + getDistance(P( 8 ),P( 3 ));
-        double L3 = getDistance(P( 3 ),P( 9 )) + getDistance(P( 9 ),P( 1 ));
-        double L4 = getDistance(P( 4 ),P( 10 )) + getDistance(P( 10 ),P( 5 ));
-        double L5 = getDistance(P( 5 ),P( 11 )) + getDistance(P( 11 ),P( 6 ));
-        double L6 = getDistance(P( 6 ),P( 12 )) + getDistance(P( 12 ),P( 4 ));
-        double L7 = getDistance(P( 1 ),P( 13 )) + getDistance(P( 13 ),P( 4 ));
-        double L8 = getDistance(P( 2 ),P( 14 )) + getDistance(P( 14 ),P( 5 ));
-        double L9 = getDistance(P( 3 ),P( 15 )) + getDistance(P( 15 ),P( 6 ));
-        aVal = Min(Min(Min(L1,L2),Min(L3,L4)),Min(L5,L6));
-        aVal = Min(aVal,Min(Min(L7,L8),L9));
-      }
-      break;
-    case SMDSEntity_Quad_Hexa:
-    case SMDSEntity_TriQuad_Hexa:
-      if (len >= 20) { // quadratic hexaider
-        double L1 = getDistance(P( 1 ),P( 9 )) + getDistance(P( 9 ),P( 2 ));
-        double L2 = getDistance(P( 2 ),P( 10 )) + getDistance(P( 10 ),P( 3 ));
-        double L3 = getDistance(P( 3 ),P( 11 )) + getDistance(P( 11 ),P( 4 ));
-        double L4 = getDistance(P( 4 ),P( 12 )) + getDistance(P( 12 ),P( 1 ));
-        double L5 = getDistance(P( 5 ),P( 13 )) + getDistance(P( 13 ),P( 6 ));
-        double L6 = getDistance(P( 6 ),P( 14 )) + getDistance(P( 14 ),P( 7 ));
-        double L7 = getDistance(P( 7 ),P( 15 )) + getDistance(P( 15 ),P( 8 ));
-        double L8 = getDistance(P( 8 ),P( 16 )) + getDistance(P( 16 ),P( 5 ));
-        double L9 = getDistance(P( 1 ),P( 17 )) + getDistance(P( 17 ),P( 5 ));
-        double L10= getDistance(P( 2 ),P( 18 )) + getDistance(P( 18 ),P( 6 ));
-        double L11= getDistance(P( 3 ),P( 19 )) + getDistance(P( 19 ),P( 7 ));
-        double L12= getDistance(P( 4 ),P( 20 )) + getDistance(P( 20 ),P( 8 ));
-        aVal = Min(Min(Min(L1,L2),Min(L3,L4)),Min(L5,L6));
-        aVal = Min(aVal,Min(Min(L7,L8),Min(L9,L10)));
-        aVal = Min(aVal,Min(L11,L12));
-      }
-      break;
-    case SMDSEntity_Polygon:
-      if ( len > 1 ) {
-        aVal = getDistance( P(1), P( P.size() ));
-        for ( size_t i = 1; i < P.size(); ++i )
-          aVal = Min( aVal, getDistance( P( i ), P( i+1 )));
-      }
-      break;
-    case SMDSEntity_Quad_Polygon:
-      if ( len > 2 ) {
-        aVal = getDistance( P(1), P( P.size() )) + getDistance( P(P.size()), P( P.size()-1 ));
-        for ( size_t i = 1; i < P.size()-1; i += 2 )
-          aVal = Min( aVal, getDistance( P( i ), P( i+1 )) + getDistance( P( i+1 ), P( i+2 )));
-      }
-      break;
-    case SMDSEntity_Hexagonal_Prism:
-      if (len == 12) { // hexagonal prism
-        double L1 = getDistance(P( 1 ),P( 2 ));
-        double L2 = getDistance(P( 2 ),P( 3 ));
-        double L3 = getDistance(P( 3 ),P( 4 ));
-        double L4 = getDistance(P( 4 ),P( 5 ));
-        double L5 = getDistance(P( 5 ),P( 6 ));
-        double L6 = getDistance(P( 6 ),P( 1 ));
-
-        double L7 = getDistance(P( 7 ), P( 8 ));
-        double L8 = getDistance(P( 8 ), P( 9 ));
-        double L9 = getDistance(P( 9 ), P( 10 ));
-        double L10= getDistance(P( 10 ),P( 11 ));
-        double L11= getDistance(P( 11 ),P( 12 ));
-        double L12= getDistance(P( 12 ),P( 7 ));
-
-        double L13 = getDistance(P( 1 ),P( 7 ));
-        double L14 = getDistance(P( 2 ),P( 8 ));
-        double L15 = getDistance(P( 3 ),P( 9 ));
-        double L16 = getDistance(P( 4 ),P( 10 ));
-        double L17 = getDistance(P( 5 ),P( 11 ));
-        double L18 = getDistance(P( 6 ),P( 12 ));
-        aVal = Min(Min(Min(L1,L2),Min(L3,L4)),Min(L5,L6));
-        aVal = Min(aVal, Min(Min(Min(L7,L8),Min(L9,L10)),Min(L11,L12)));
-        aVal = Min(aVal, Min(Min(Min(L13,L14),Min(L15,L16)),Min(L17,L18)));
-      }
-      break;
-    case SMDSEntity_Polyhedra:
-    {
+  switch (aType) {
+  case SMDSEntity_Edge:
+    if (len == 2)
+      aVal = getDistance( P( 1 ), P( 2 ) );
+    break;
+  case SMDSEntity_Quad_Edge:
+    if (len == 3) // quadratic edge
+      aVal = getDistance(P( 1 ),P( 3 )) + getDistance(P( 3 ),P( 2 ));
+    break;
+  case SMDSEntity_Triangle:
+    if (len == 3){ // triangles
+      double L1 = getDistance(P( 1 ),P( 2 ));
+      double L2 = getDistance(P( 2 ),P( 3 ));
+      double L3 = getDistance(P( 3 ),P( 1 ));
+      aVal = Min(L1,Min(L2,L3));
     }
     break;
-    default:
-      return 0;
+  case SMDSEntity_Quadrangle:
+    if (len == 4){ // quadrangles
+      double L1 = getDistance(P( 1 ),P( 2 ));
+      double L2 = getDistance(P( 2 ),P( 3 ));
+      double L3 = getDistance(P( 3 ),P( 4 ));
+      double L4 = getDistance(P( 4 ),P( 1 ));
+      aVal = Min(Min(L1,L2),Min(L3,L4));
+    }
+    break;
+  case SMDSEntity_Quad_Triangle:
+  case SMDSEntity_BiQuad_Triangle:
+    if (len >= 6){ // quadratic triangles
+      double L1 = getDistance(P( 1 ),P( 2 )) + getDistance(P( 2 ),P( 3 ));
+      double L2 = getDistance(P( 3 ),P( 4 )) + getDistance(P( 4 ),P( 5 ));
+      double L3 = getDistance(P( 5 ),P( 6 )) + getDistance(P( 6 ),P( 1 ));
+      aVal = Min(L1,Min(L2,L3));
     }
+    break;
+  case SMDSEntity_Quad_Quadrangle:
+  case SMDSEntity_BiQuad_Quadrangle:
+    if (len >= 8){ // quadratic quadrangles
+      double L1 = getDistance(P( 1 ),P( 2 )) + getDistance(P( 2 ),P( 3 ));
+      double L2 = getDistance(P( 3 ),P( 4 )) + getDistance(P( 4 ),P( 5 ));
+      double L3 = getDistance(P( 5 ),P( 6 )) + getDistance(P( 6 ),P( 7 ));
+      double L4 = getDistance(P( 7 ),P( 8 )) + getDistance(P( 8 ),P( 1 ));
+      aVal = Min(Min(L1,L2),Min(L3,L4));
+    }
+    break;
+  case SMDSEntity_Tetra:
+    if (len == 4){ // tetrahedra
+      double L1 = getDistance(P( 1 ),P( 2 ));
+      double L2 = getDistance(P( 2 ),P( 3 ));
+      double L3 = getDistance(P( 3 ),P( 1 ));
+      double L4 = getDistance(P( 1 ),P( 4 ));
+      double L5 = getDistance(P( 2 ),P( 4 ));
+      double L6 = getDistance(P( 3 ),P( 4 ));
+      aVal = Min(Min(Min(L1,L2),Min(L3,L4)),Min(L5,L6));
+    }
+    break;
+  case SMDSEntity_Pyramid:
+    if (len == 5){ // pyramid
+      double L1 = getDistance(P( 1 ),P( 2 ));
+      double L2 = getDistance(P( 2 ),P( 3 ));
+      double L3 = getDistance(P( 3 ),P( 4 ));
+      double L4 = getDistance(P( 4 ),P( 1 ));
+      double L5 = getDistance(P( 1 ),P( 5 ));
+      double L6 = getDistance(P( 2 ),P( 5 ));
+      double L7 = getDistance(P( 3 ),P( 5 ));
+      double L8 = getDistance(P( 4 ),P( 5 ));
+
+      aVal = Min(Min(Min(L1,L2),Min(L3,L4)),Min(L5,L6));
+      aVal = Min(aVal,Min(L7,L8));
+    }
+    break;
+  case SMDSEntity_Penta:
+    if (len == 6) { // pentahedron
+      double L1 = getDistance(P( 1 ),P( 2 ));
+      double L2 = getDistance(P( 2 ),P( 3 ));
+      double L3 = getDistance(P( 3 ),P( 1 ));
+      double L4 = getDistance(P( 4 ),P( 5 ));
+      double L5 = getDistance(P( 5 ),P( 6 ));
+      double L6 = getDistance(P( 6 ),P( 4 ));
+      double L7 = getDistance(P( 1 ),P( 4 ));
+      double L8 = getDistance(P( 2 ),P( 5 ));
+      double L9 = getDistance(P( 3 ),P( 6 ));
 
-    if (aVal < 0 ) {
-      return 0.;
+      aVal = Min(Min(Min(L1,L2),Min(L3,L4)),Min(L5,L6));
+      aVal = Min(aVal,Min(Min(L7,L8),L9));
     }
+    break;
+  case SMDSEntity_Hexa:
+    if (len == 8){ // hexahedron
+      double L1 = getDistance(P( 1 ),P( 2 ));
+      double L2 = getDistance(P( 2 ),P( 3 ));
+      double L3 = getDistance(P( 3 ),P( 4 ));
+      double L4 = getDistance(P( 4 ),P( 1 ));
+      double L5 = getDistance(P( 5 ),P( 6 ));
+      double L6 = getDistance(P( 6 ),P( 7 ));
+      double L7 = getDistance(P( 7 ),P( 8 ));
+      double L8 = getDistance(P( 8 ),P( 5 ));
+      double L9 = getDistance(P( 1 ),P( 5 ));
+      double L10= getDistance(P( 2 ),P( 6 ));
+      double L11= getDistance(P( 3 ),P( 7 ));
+      double L12= getDistance(P( 4 ),P( 8 ));
 
-    if ( myPrecision >= 0 )
-    {
-      double prec = pow( 10., (double)( myPrecision ) );
-      aVal = floor( aVal * prec + 0.5 ) / prec;
+      aVal = Min(Min(Min(L1,L2),Min(L3,L4)),Min(L5,L6));
+      aVal = Min(aVal,Min(Min(L7,L8),Min(L9,L10)));
+      aVal = Min(aVal,Min(L11,L12));
+    }
+    break;
+  case SMDSEntity_Quad_Tetra:
+    if (len == 10){ // quadratic tetrahedron
+      double L1 = getDistance(P( 1 ),P( 5 )) + getDistance(P( 5 ),P( 2 ));
+      double L2 = getDistance(P( 2 ),P( 6 )) + getDistance(P( 6 ),P( 3 ));
+      double L3 = getDistance(P( 3 ),P( 7 )) + getDistance(P( 7 ),P( 1 ));
+      double L4 = getDistance(P( 1 ),P( 8 )) + getDistance(P( 8 ),P( 4 ));
+      double L5 = getDistance(P( 2 ),P( 9 )) + getDistance(P( 9 ),P( 4 ));
+      double L6 = getDistance(P( 3 ),P( 10 )) + getDistance(P( 10 ),P( 4 ));
+      aVal = Min(Min(Min(L1,L2),Min(L3,L4)),Min(L5,L6));
+    }
+    break;
+  case SMDSEntity_Quad_Pyramid:
+    if (len == 13){ // quadratic pyramid
+      double L1 = getDistance(P( 1 ),P( 6 )) + getDistance(P( 6 ),P( 2 ));
+      double L2 = getDistance(P( 2 ),P( 7 )) + getDistance(P( 7 ),P( 3 ));
+      double L3 = getDistance(P( 3 ),P( 8 )) + getDistance(P( 8 ),P( 4 ));
+      double L4 = getDistance(P( 4 ),P( 9 )) + getDistance(P( 9 ),P( 1 ));
+      double L5 = getDistance(P( 1 ),P( 10 )) + getDistance(P( 10 ),P( 5 ));
+      double L6 = getDistance(P( 2 ),P( 11 )) + getDistance(P( 11 ),P( 5 ));
+      double L7 = getDistance(P( 3 ),P( 12 )) + getDistance(P( 12 ),P( 5 ));
+      double L8 = getDistance(P( 4 ),P( 13 )) + getDistance(P( 13 ),P( 5 ));
+      aVal = Min(Min(Min(L1,L2),Min(L3,L4)),Min(L5,L6));
+      aVal = Min(aVal,Min(L7,L8));
+    }
+    break;
+  case SMDSEntity_Quad_Penta:
+  case SMDSEntity_BiQuad_Penta:
+    if (len >= 15){ // quadratic pentahedron
+      double L1 = getDistance(P( 1 ),P( 7 )) + getDistance(P( 7 ),P( 2 ));
+      double L2 = getDistance(P( 2 ),P( 8 )) + getDistance(P( 8 ),P( 3 ));
+      double L3 = getDistance(P( 3 ),P( 9 )) + getDistance(P( 9 ),P( 1 ));
+      double L4 = getDistance(P( 4 ),P( 10 )) + getDistance(P( 10 ),P( 5 ));
+      double L5 = getDistance(P( 5 ),P( 11 )) + getDistance(P( 11 ),P( 6 ));
+      double L6 = getDistance(P( 6 ),P( 12 )) + getDistance(P( 12 ),P( 4 ));
+      double L7 = getDistance(P( 1 ),P( 13 )) + getDistance(P( 13 ),P( 4 ));
+      double L8 = getDistance(P( 2 ),P( 14 )) + getDistance(P( 14 ),P( 5 ));
+      double L9 = getDistance(P( 3 ),P( 15 )) + getDistance(P( 15 ),P( 6 ));
+      aVal = Min(Min(Min(L1,L2),Min(L3,L4)),Min(L5,L6));
+      aVal = Min(aVal,Min(Min(L7,L8),L9));
+    }
+    break;
+  case SMDSEntity_Quad_Hexa:
+  case SMDSEntity_TriQuad_Hexa:
+    if (len >= 20) { // quadratic hexahedron
+      double L1 = getDistance(P( 1 ),P( 9 )) + getDistance(P( 9 ),P( 2 ));
+      double L2 = getDistance(P( 2 ),P( 10 )) + getDistance(P( 10 ),P( 3 ));
+      double L3 = getDistance(P( 3 ),P( 11 )) + getDistance(P( 11 ),P( 4 ));
+      double L4 = getDistance(P( 4 ),P( 12 )) + getDistance(P( 12 ),P( 1 ));
+      double L5 = getDistance(P( 5 ),P( 13 )) + getDistance(P( 13 ),P( 6 ));
+      double L6 = getDistance(P( 6 ),P( 14 )) + getDistance(P( 14 ),P( 7 ));
+      double L7 = getDistance(P( 7 ),P( 15 )) + getDistance(P( 15 ),P( 8 ));
+      double L8 = getDistance(P( 8 ),P( 16 )) + getDistance(P( 16 ),P( 5 ));
+      double L9 = getDistance(P( 1 ),P( 17 )) + getDistance(P( 17 ),P( 5 ));
+      double L10= getDistance(P( 2 ),P( 18 )) + getDistance(P( 18 ),P( 6 ));
+      double L11= getDistance(P( 3 ),P( 19 )) + getDistance(P( 19 ),P( 7 ));
+      double L12= getDistance(P( 4 ),P( 20 )) + getDistance(P( 20 ),P( 8 ));
+      aVal = Min(Min(Min(L1,L2),Min(L3,L4)),Min(L5,L6));
+      aVal = Min(aVal,Min(Min(L7,L8),Min(L9,L10)));
+      aVal = Min(aVal,Min(L11,L12));
     }
+    break;
+  case SMDSEntity_Polygon:
+    if ( len > 1 ) {
+      aVal = getDistance( P(1), P( P.size() ));
+      for ( size_t i = 1; i < P.size(); ++i )
+        aVal = Min( aVal, getDistance( P( i ), P( i+1 )));
+    }
+    break;
+  case SMDSEntity_Quad_Polygon:
+    if ( len > 2 ) {
+      aVal = getDistance( P(1), P( P.size() )) + getDistance( P(P.size()), P( P.size()-1 ));
+      for ( size_t i = 1; i < P.size()-1; i += 2 )
+        aVal = Min( aVal, getDistance( P( i ), P( i+1 )) + getDistance( P( i+1 ), P( i+2 )));
+    }
+    break;
+  case SMDSEntity_Hexagonal_Prism:
+    if (len == 12) { // hexagonal prism
+      double L1 = getDistance(P( 1 ),P( 2 ));
+      double L2 = getDistance(P( 2 ),P( 3 ));
+      double L3 = getDistance(P( 3 ),P( 4 ));
+      double L4 = getDistance(P( 4 ),P( 5 ));
+      double L5 = getDistance(P( 5 ),P( 6 ));
+      double L6 = getDistance(P( 6 ),P( 1 ));
+
+      double L7 = getDistance(P( 7 ), P( 8 ));
+      double L8 = getDistance(P( 8 ), P( 9 ));
+      double L9 = getDistance(P( 9 ), P( 10 ));
+      double L10= getDistance(P( 10 ),P( 11 ));
+      double L11= getDistance(P( 11 ),P( 12 ));
+      double L12= getDistance(P( 12 ),P( 7 ));
+
+      double L13 = getDistance(P( 1 ),P( 7 ));
+      double L14 = getDistance(P( 2 ),P( 8 ));
+      double L15 = getDistance(P( 3 ),P( 9 ));
+      double L16 = getDistance(P( 4 ),P( 10 ));
+      double L17 = getDistance(P( 5 ),P( 11 ));
+      double L18 = getDistance(P( 6 ),P( 12 ));
+      aVal = Min(Min(Min(L1,L2),Min(L3,L4)),Min(L5,L6));
+      aVal = Min(aVal, Min(Min(Min(L7,L8),Min(L9,L10)),Min(L11,L12)));
+      aVal = Min(aVal, Min(Min(Min(L13,L14),Min(L15,L16)),Min(L17,L18)));
+    }
+    break;
+  case SMDSEntity_Polyhedra:
+  {
+  }
+  break;
+  default:
+    return 0;
+  }
 
-    return aVal;
+  if (aVal < 0 ) {
+    return 0.;
+  }
 
+  if ( myPrecision >= 0 )
+  {
+    double prec = pow( 10., (double)( myPrecision ) );
+    aVal = floor( aVal * prec + 0.5 ) / prec;
   }
-  return 0.;
+
+  return aVal;
 }
 
 double Length2D::GetBadRate( double Value, int /*nbNodes*/ ) const
@@ -1832,10 +1836,10 @@ void Length2D::GetValues(TValues& theValues)
         dynamic_cast<const SMDS_VtkFace*>(anElem);
       // use special nodes iterator
       SMDS_ElemIteratorPtr anIter = F->interlacedNodesElemIterator();
-      long aNodeId[4];
+      long aNodeId[4] = { 0,0,0,0 };
       gp_Pnt P[4];
 
-      double aLength;
+      double aLength = 0;
       const SMDS_MeshElement* aNode;
       if(anIter->more()){
         aNode = anIter->next();
@@ -1869,7 +1873,7 @@ void Length2D::GetValues(TValues& theValues)
     }
     else {
       SMDS_ElemIteratorPtr aNodesIter = anElem->nodesIterator();
-      long aNodeId[2];
+      long aNodeId[2] = {0,0};
       gp_Pnt P[3];
 
       double aLength;
@@ -1904,6 +1908,97 @@ void Length2D::GetValues(TValues& theValues)
   }
 }
 
+//================================================================================
+/*
+  Class       : Deflection2D
+  Description : Functor for calculating number of faces conneted to the edge
+*/
+//================================================================================
+
+double Deflection2D::GetValue( const TSequenceOfXYZ& P )
+{
+  if ( myMesh && P.getElement() )
+  {
+    // get underlying surface
+    if ( myShapeIndex != P.getElement()->getshapeId() )
+    {
+      mySurface.Nullify();
+      myShapeIndex = P.getElement()->getshapeId();
+      const TopoDS_Shape& S =
+        static_cast< const SMESHDS_Mesh* >( myMesh )->IndexToShape( myShapeIndex );
+      if ( !S.IsNull() && S.ShapeType() == TopAbs_FACE )
+      {
+        mySurface = new ShapeAnalysis_Surface( BRep_Tool::Surface( TopoDS::Face( S )));
+
+        GeomLib_IsPlanarSurface isPlaneCheck( mySurface->Surface() );
+        if ( isPlaneCheck.IsPlanar() )
+          myPlane.reset( new gp_Pln( isPlaneCheck.Plan() ));
+        else
+          myPlane.reset();
+      }
+    }
+    // project gravity center to the surface
+    if ( !mySurface.IsNull() )
+    {
+      gp_XYZ gc(0,0,0);
+      gp_XY  uv(0,0);
+      int nbUV = 0;
+      for ( size_t i = 0; i < P.size(); ++i )
+      {
+        gc += P(i+1);
+
+        if ( const SMDS_FacePosition* fPos = dynamic_cast<const SMDS_FacePosition*>
+             ( P.getElement()->GetNode( i )->GetPosition() ))
+        {
+          uv.ChangeCoord(1) += fPos->GetUParameter();
+          uv.ChangeCoord(2) += fPos->GetVParameter();
+          ++nbUV;
+        }
+      }
+      gc /= P.size();
+      if ( nbUV ) uv /= nbUV;
+
+      double maxLen = MaxElementLength2D().GetValue( P );
+      double    tol = 1e-3 * maxLen;
+      double dist;
+      if ( myPlane )
+      {
+        dist = myPlane->Distance( gc );
+        if ( dist < tol )
+          dist = 0;
+      }
+      else
+      {
+        if ( uv.X() != 0 && uv.Y() != 0 ) // faster way
+          mySurface->NextValueOfUV( uv, gc, tol, 0.5 * maxLen );
+        else
+          mySurface->ValueOfUV( gc, tol );
+        dist = mySurface->Gap();
+      }
+      return Round( dist );
+    }
+  }
+  return 0;
+}
+
+void Deflection2D::SetMesh( const SMDS_Mesh* theMesh )
+{
+  NumericalFunctor::SetMesh( dynamic_cast<const SMESHDS_Mesh* >( theMesh ));
+  myShapeIndex = -100;
+  myPlane.reset();
+}
+
+SMDSAbs_ElementType Deflection2D::GetType() const
+{
+  return SMDSAbs_Face;
+}
+
+double Deflection2D::GetBadRate( double Value, int /*nbNodes*/ ) const
+{
+  // meaningless as it is not quality control functor
+  return Value;
+}
+
 //================================================================================
 /*
   Class       : MultiConnection
@@ -1957,7 +2052,7 @@ double MultiConnection2D::GetValue( long theElementId )
       SMDS_ElemIteratorPtr anIter = aFaceElem->nodesIterator();
       if (!anIter) break;
 
-      const SMDS_MeshNode *aNode, *aNode0;
+      const SMDS_MeshNode *aNode, *aNode0 = 0;
       TColStd_MapOfInteger aMap, aMapPrev;
 
       for (i = 0; i <= len; i++) {
@@ -2038,7 +2133,7 @@ void MultiConnection2D::GetValues(MValues& theValues)
         (anElem)->interlacedNodesElemIterator();
     else
       aNodesIter = anElem->nodesIterator();
-    long aNodeId[3];
+    long aNodeId[3] = {0,0,0};
 
     //int aNbConnects=0;
     const SMDS_MeshNode* aNode0;
@@ -2114,6 +2209,42 @@ SMDSAbs_ElementType BallDiameter::GetType() const
   return SMDSAbs_Ball;
 }
 
+//================================================================================
+/*
+  Class       : NodeConnectivityNumber
+  Description : Functor returning number of elements connected to a node
+*/
+//================================================================================
+
+double NodeConnectivityNumber::GetValue( long theId )
+{
+  double nb = 0;
+
+  if ( const SMDS_MeshNode* node = myMesh->FindNode( theId ))
+  {
+    SMDSAbs_ElementType type;
+    if ( myMesh->NbVolumes() > 0 )
+      type = SMDSAbs_Volume;
+    else if ( myMesh->NbFaces() > 0 )
+      type = SMDSAbs_Face;
+    else if ( myMesh->NbEdges() > 0 )
+      type = SMDSAbs_Edge;
+    else
+      return 0;
+    nb = node->NbInverseElements( type );
+  }
+  return nb;
+}
+
+double NodeConnectivityNumber::GetBadRate( double Value, int /*nbNodes*/ ) const
+{
+  return Value;
+}
+
+SMDSAbs_ElementType NodeConnectivityNumber::GetType() const
+{
+  return SMDSAbs_Node;
+}
 
 /*
                             PREDICATES
@@ -2511,7 +2642,7 @@ void FreeEdges::GetBoreders(TBorders& theBorders)
         interlacedNodesElemIterator();
     else
       aNodesIter = anElem->nodesIterator();
-    long aNodeId[2];
+    long aNodeId[2] = {0,0};
     const SMDS_MeshElement* aNode;
     if(aNodesIter->more()){
       aNode = aNodesIter->next();
@@ -2612,7 +2743,7 @@ bool FreeFaces::IsSatisfy( long theId )
   for ( ; volItr != volEnd; ++volItr )
     if ( (*volItr).second >= nbNode )
        nbVol++;
-  // face is not free if number of volumes constructed on thier nodes more than one
+  // face is not free if number of volumes constructed on their nodes more than one
   return (nbVol < 2);
 }
 
@@ -2660,7 +2791,7 @@ SMDSAbs_ElementType LinearOrQuadratic::GetType() const
 //================================================================================
 /*
   Class       : GroupColor
-  Description : Functor for check color of group to whic mesh element belongs to
+  Description : Functor for check color of group to which mesh element belongs to
 */
 //================================================================================
 
@@ -3218,7 +3349,7 @@ bool RangeOfIds::SetRangeStr( const TCollection_AsciiString& theStr )
   {
     char c = aStr.Value( i );
     if ( !isdigit( c ) && c != ',' && c != '-' )
-      aStr.SetValue( i, ' ');
+      aStr.SetValue( i, ',');
   }
   aStr.RemoveAll( ' ' );
 
@@ -3949,9 +4080,9 @@ SMDSAbs_ElementType BelongToMeshGroup::GetType() const
   return myGroup ? myGroup->GetType() : SMDSAbs_All;
 }
 
-/*
-  ElementsOnSurface
-*/
+//================================================================================
+//  ElementsOnSurface
+//================================================================================
 
 ElementsOnSurface::ElementsOnSurface()
 {
@@ -4085,15 +4216,71 @@ bool ElementsOnSurface::isOnSurface( const SMDS_MeshNode* theNode )
 }
 
 
-/*
-  ElementsOnShape
-*/
+//================================================================================
+//  ElementsOnShape
+//================================================================================
 
-ElementsOnShape::ElementsOnShape()
-  : //myMesh(0),
-    myType(SMDSAbs_All),
-    myToler(Precision::Confusion()),
-    myAllNodesFlag(false)
+namespace {
+  const int theIsCheckedFlag = 0x0000100;
+}
+
+struct ElementsOnShape::Classifier
+{
+  Classifier() { mySolidClfr = 0; myFlags = 0; }
+  ~Classifier();
+  void Init(const TopoDS_Shape& s, double tol, const Bnd_B3d* box = 0 );
+  bool IsOut(const gp_Pnt& p)        { return SetChecked( true ), (this->*myIsOutFun)( p ); }
+  TopAbs_ShapeEnum ShapeType() const { return myShape.ShapeType(); }
+  const TopoDS_Shape& Shape() const  { return myShape; }
+  const Bnd_B3d* GetBndBox() const   { return & myBox; }
+  bool IsChecked()                   { return myFlags & theIsCheckedFlag; }
+  bool IsSetFlag( int flag ) const   { return myFlags & flag; }
+  void SetChecked( bool is ) { is ? SetFlag( theIsCheckedFlag ) : UnsetFlag( theIsCheckedFlag ); }
+  void SetFlag  ( int flag ) { myFlags |= flag; }
+  void UnsetFlag( int flag ) { myFlags &= ~flag; }
+
+private:
+  bool isOutOfSolid (const gp_Pnt& p);
+  bool isOutOfBox   (const gp_Pnt& p);
+  bool isOutOfFace  (const gp_Pnt& p);
+  bool isOutOfEdge  (const gp_Pnt& p);
+  bool isOutOfVertex(const gp_Pnt& p);
+  bool isBox        (const TopoDS_Shape& s);
+
+  bool (Classifier::*          myIsOutFun)(const gp_Pnt& p);
+  BRepClass3d_SolidClassifier* mySolidClfr; // ptr because of a run-time forbidden copy-constructor
+  Bnd_B3d                      myBox;
+  GeomAPI_ProjectPointOnSurf   myProjFace;
+  GeomAPI_ProjectPointOnCurve  myProjEdge;
+  gp_Pnt                       myVertexXYZ;
+  TopoDS_Shape                 myShape;
+  double                       myTol;
+  int                          myFlags;
+};
+
+struct ElementsOnShape::OctreeClassifier : public SMESH_Octree
+{
+  OctreeClassifier( const std::vector< ElementsOnShape::Classifier* >& classifiers );
+  OctreeClassifier( const OctreeClassifier*                           otherTree,
+                    const std::vector< ElementsOnShape::Classifier >& clsOther,
+                    std::vector< ElementsOnShape::Classifier >&       cls );
+  void GetClassifiersAtPoint( const gp_XYZ& p,
+                              std::vector< ElementsOnShape::Classifier* >& classifiers );
+protected:
+  OctreeClassifier() {}
+  SMESH_Octree* newChild() const { return new OctreeClassifier; }
+  void          buildChildrenData();
+  Bnd_B3d*      buildRootBox();
+
+  std::vector< ElementsOnShape::Classifier* > myClassifiers;
+};
+
+
+ElementsOnShape::ElementsOnShape():
+  myOctree(0),
+  myType(SMDSAbs_All),
+  myToler(Precision::Confusion()),
+  myAllNodesFlag(false)
 {
 }
 
@@ -4102,6 +4289,25 @@ ElementsOnShape::~ElementsOnShape()
   clearClassifiers();
 }
 
+Predicate* ElementsOnShape::clone() const
+{
+  ElementsOnShape* cln = new ElementsOnShape();
+  cln->SetAllNodes ( myAllNodesFlag );
+  cln->SetTolerance( myToler );
+  cln->SetMesh     ( myMeshModifTracer.GetMesh() );
+  cln->myShape = myShape; // avoid creation of myClassifiers
+  cln->SetShape    ( myShape, myType );
+  cln->myClassifiers.resize( myClassifiers.size() );
+  for ( size_t i = 0; i < myClassifiers.size(); ++i )
+    cln->myClassifiers[ i ].Init( BRepBuilderAPI_Copy( myClassifiers[ i ].Shape()),
+                                  myToler, myClassifiers[ i ].GetBndBox() );
+  if ( myOctree ) // copy myOctree
+  {
+    cln->myOctree = new OctreeClassifier( myOctree, myClassifiers, cln->myClassifiers );
+  }
+  return cln;
+}
+
 SMDSAbs_ElementType ElementsOnShape::GetType() const
 {
   return myType;
@@ -4167,27 +4373,32 @@ void ElementsOnShape::setNodeIsOut( const SMDS_MeshNode* n, bool  isOut )
 void ElementsOnShape::SetShape (const TopoDS_Shape&       theShape,
                                 const SMDSAbs_ElementType theType)
 {
+  bool shapeChanges = ( myShape != theShape );
   myType  = theType;
   myShape = theShape;
   if ( myShape.IsNull() ) return;
 
-  TopTools_IndexedMapOfShape shapesMap;
-  TopAbs_ShapeEnum shapeTypes[4] = { TopAbs_SOLID, TopAbs_FACE, TopAbs_EDGE, TopAbs_VERTEX };
-  TopExp_Explorer sub;
-  for ( int i = 0; i < 4; ++i )
+  if ( shapeChanges )
   {
-    if ( shapesMap.IsEmpty() )
-      for ( sub.Init( myShape, shapeTypes[i] ); sub.More(); sub.Next() )
-        shapesMap.Add( sub.Current() );
-    if ( i > 0 )
-      for ( sub.Init( myShape, shapeTypes[i], shapeTypes[i-1] ); sub.More(); sub.Next() )
-        shapesMap.Add( sub.Current() );
-  }
+    // find most complex shapes
+    TopTools_IndexedMapOfShape shapesMap;
+    TopAbs_ShapeEnum shapeTypes[4] = { TopAbs_SOLID, TopAbs_FACE, TopAbs_EDGE, TopAbs_VERTEX };
+    TopExp_Explorer sub;
+    for ( int i = 0; i < 4; ++i )
+    {
+      if ( shapesMap.IsEmpty() )
+        for ( sub.Init( myShape, shapeTypes[i] ); sub.More(); sub.Next() )
+          shapesMap.Add( sub.Current() );
+      if ( i > 0 )
+        for ( sub.Init( myShape, shapeTypes[i], shapeTypes[i-1] ); sub.More(); sub.Next() )
+          shapesMap.Add( sub.Current() );
+    }
 
-  clearClassifiers();
-  myClassifiers.resize( shapesMap.Extent() );
-  for ( int i = 0; i < shapesMap.Extent(); ++i )
-    myClassifiers[ i ] = new TClassifier( shapesMap( i+1 ), myToler );
+    clearClassifiers();
+    myClassifiers.resize( shapesMap.Extent() );
+    for ( int i = 0; i < shapesMap.Extent(); ++i )
+      myClassifiers[ i ].Init( shapesMap( i+1 ), myToler );
+  }
 
   if ( theType == SMDSAbs_Node )
   {
@@ -4202,23 +4413,42 @@ void ElementsOnShape::SetShape (const TopoDS_Shape&       theShape,
 
 void ElementsOnShape::clearClassifiers()
 {
-  for ( size_t i = 0; i < myClassifiers.size(); ++i )
-    delete myClassifiers[ i ];
+  // for ( size_t i = 0; i < myClassifiers.size(); ++i )
+  //   delete myClassifiers[ i ];
   myClassifiers.clear();
+
+  delete myOctree;
+  myOctree = 0;
 }
 
-bool ElementsOnShape::IsSatisfy (long elemId)
+bool ElementsOnShape::IsSatisfy( long elemId )
 {
-  const SMDS_Mesh*        mesh = myMeshModifTracer.GetMesh();
-  const SMDS_MeshElement* elem =
-    ( myType == SMDSAbs_Node ? mesh->FindNode( elemId ) : mesh->FindElement( elemId ));
-  if ( !elem || myClassifiers.empty() )
+  if ( myClassifiers.empty() )
+    return false;
+
+  const SMDS_Mesh* mesh = myMeshModifTracer.GetMesh();
+  if ( myType == SMDSAbs_Node )
+    return IsSatisfy( mesh->FindNode( elemId ));
+  return IsSatisfy( mesh->FindElement( elemId ));
+}
+
+bool ElementsOnShape::IsSatisfy (const SMDS_MeshElement* elem)
+{
+  if ( !elem )
     return false;
 
   bool isSatisfy = myAllNodesFlag, isNodeOut;
 
   gp_XYZ centerXYZ (0, 0, 0);
 
+  if ( !myOctree && myClassifiers.size() > 5 )
+  {
+    myWorkClassifiers.resize( myClassifiers.size() );
+    for ( size_t i = 0; i < myClassifiers.size(); ++i )
+      myWorkClassifiers[ i ] = & myClassifiers[ i ];
+    myOctree = new OctreeClassifier( myWorkClassifiers );
+  }
+
   SMDS_ElemIteratorPtr aNodeItr = elem->nodesIterator();
   while (aNodeItr->more() && (isSatisfy == myAllNodesFlag))
   {
@@ -4228,99 +4458,198 @@ bool ElementsOnShape::IsSatisfy (long elemId)
     isNodeOut = true;
     if ( !getNodeIsOut( aPnt._node, isNodeOut ))
     {
-      for ( size_t i = 0; i < myClassifiers.size() && isNodeOut; ++i )
-        isNodeOut = myClassifiers[i]->IsOut( aPnt );
+      if ( myOctree )
+      {
+        myWorkClassifiers.clear();
+        myOctree->GetClassifiersAtPoint( aPnt, myWorkClassifiers );
 
+        for ( size_t i = 0; i < myWorkClassifiers.size(); ++i )
+          myWorkClassifiers[i]->SetChecked( false );
+
+        for ( size_t i = 0; i < myWorkClassifiers.size() && isNodeOut; ++i )
+          if ( !myWorkClassifiers[i]->IsChecked() )
+            isNodeOut = myWorkClassifiers[i]->IsOut( aPnt );
+      }
+      else
+      {
+        for ( size_t i = 0; i < myClassifiers.size() && isNodeOut; ++i )
+          isNodeOut = myClassifiers[i].IsOut( aPnt );
+      }
       setNodeIsOut( aPnt._node, isNodeOut );
     }
     isSatisfy = !isNodeOut;
   }
 
   // Check the center point for volumes MantisBug 0020168
-  if (isSatisfy &&
-      myAllNodesFlag &&
-      myClassifiers[0]->ShapeType() == TopAbs_SOLID)
+  if ( isSatisfy &&
+       myAllNodesFlag &&
+       myClassifiers[0].ShapeType() == TopAbs_SOLID )
   {
     centerXYZ /= elem->NbNodes();
     isSatisfy = false;
-    for ( size_t i = 0; i < myClassifiers.size() && !isSatisfy; ++i )
-      isSatisfy = ! myClassifiers[i]->IsOut( centerXYZ );
+    if ( myOctree )
+      for ( size_t i = 0; i < myWorkClassifiers.size() && !isSatisfy; ++i )
+        isSatisfy = ! myWorkClassifiers[i]->IsOut( centerXYZ );
+    else
+      for ( size_t i = 0; i < myClassifiers.size() && !isSatisfy; ++i )
+        isSatisfy = ! myClassifiers[i].IsOut( centerXYZ );
   }
 
   return isSatisfy;
 }
 
-TopAbs_ShapeEnum ElementsOnShape::TClassifier::ShapeType() const
+bool ElementsOnShape::IsSatisfy (const SMDS_MeshNode* node,
+                                 TopoDS_Shape*        okShape)
 {
-  return myShape.ShapeType();
-}
+  if ( !node )
+    return false;
 
-bool ElementsOnShape::TClassifier::IsOut(const gp_Pnt& p)
-{
-  return (this->*myIsOutFun)( p );
+  if ( !myOctree && myClassifiers.size() > 5 )
+  {
+    myWorkClassifiers.resize( myClassifiers.size() );
+    for ( size_t i = 0; i < myClassifiers.size(); ++i )
+      myWorkClassifiers[ i ] = & myClassifiers[ i ];
+    myOctree = new OctreeClassifier( myWorkClassifiers );
+  }
+
+  bool isNodeOut = true;
+
+  if ( okShape || !getNodeIsOut( node, isNodeOut ))
+  {
+    SMESH_NodeXYZ aPnt = node;
+    if ( myOctree )
+    {
+      myWorkClassifiers.clear();
+      myOctree->GetClassifiersAtPoint( aPnt, myWorkClassifiers );
+
+      for ( size_t i = 0; i < myWorkClassifiers.size(); ++i )
+        myWorkClassifiers[i]->SetChecked( false );
+
+      for ( size_t i = 0; i < myWorkClassifiers.size(); ++i )
+        if ( !myWorkClassifiers[i]->IsChecked() &&
+             !myWorkClassifiers[i]->IsOut( aPnt ))
+        {
+          isNodeOut = false;
+          if ( okShape )
+            *okShape = myWorkClassifiers[i]->Shape();
+          break;
+        }
+    }
+    else
+    {
+      for ( size_t i = 0; i < myClassifiers.size(); ++i )
+        if ( !myClassifiers[i].IsOut( aPnt ))
+        {
+          isNodeOut = false;
+          if ( okShape )
+            *okShape = myWorkClassifiers[i]->Shape();
+          break;
+        }
+    }
+    setNodeIsOut( node, isNodeOut );
+  }
+
+  return !isNodeOut;
 }
 
-void ElementsOnShape::TClassifier::Init (const TopoDS_Shape& theShape, double theTol)
+void ElementsOnShape::Classifier::Init( const TopoDS_Shape& theShape,
+                                        double              theTol,
+                                        const Bnd_B3d*      theBox )
 {
   myShape = theShape;
   myTol   = theTol;
+  myFlags = 0;
+
+  bool isShapeBox = false;
   switch ( myShape.ShapeType() )
   {
-  case TopAbs_SOLID: {
-    if ( isBox( theShape ))
+  case TopAbs_SOLID:
+  {
+    if (( isShapeBox = isBox( theShape )))
     {
-      myIsOutFun = & ElementsOnShape::TClassifier::isOutOfBox;
+      myIsOutFun = & ElementsOnShape::Classifier::isOutOfBox;
     }
     else
     {
-      mySolidClfr.Load(theShape);
-      myIsOutFun = & ElementsOnShape::TClassifier::isOutOfSolid;
+      mySolidClfr = new BRepClass3d_SolidClassifier(theShape);
+      myIsOutFun = & ElementsOnShape::Classifier::isOutOfSolid;
     }
     break;
   }
-  case TopAbs_FACE:  {
+  case TopAbs_FACE:
+  {
     Standard_Real u1,u2,v1,v2;
     Handle(Geom_Surface) surf = BRep_Tool::Surface( TopoDS::Face( theShape ));
     surf->Bounds( u1,u2,v1,v2 );
     myProjFace.Init(surf, u1,u2, v1,v2, myTol );
-    myIsOutFun = & ElementsOnShape::TClassifier::isOutOfFace;
+    myIsOutFun = & ElementsOnShape::Classifier::isOutOfFace;
     break;
   }
-  case TopAbs_EDGE:  {
+  case TopAbs_EDGE:
+  {
     Standard_Real u1, u2;
-    Handle(Geom_Curve) curve = BRep_Tool::Curve( TopoDS::Edge(theShape), u1, u2);
+    Handle(Geom_Curve) curve = BRep_Tool::Curve( TopoDS::Edge( theShape ), u1, u2);
     myProjEdge.Init(curve, u1, u2);
-    myIsOutFun = & ElementsOnShape::TClassifier::isOutOfEdge;
+    myIsOutFun = & ElementsOnShape::Classifier::isOutOfEdge;
     break;
   }
-  case TopAbs_VERTEX:{
+  case TopAbs_VERTEX:
+  {
     myVertexXYZ = BRep_Tool::Pnt( TopoDS::Vertex( theShape ) );
-    myIsOutFun = & ElementsOnShape::TClassifier::isOutOfVertex;
+    myIsOutFun = & ElementsOnShape::Classifier::isOutOfVertex;
     break;
   }
   default:
-    throw SALOME_Exception("Programmer error in usage of ElementsOnShape::TClassifier");
+    throw SALOME_Exception("Programmer error in usage of ElementsOnShape::Classifier");
   }
+
+  if ( !isShapeBox )
+  {
+    if ( theBox )
+    {
+      myBox = *theBox;
+    }
+    else
+    {
+      Bnd_Box box;
+      BRepBndLib::Add( myShape, box );
+      myBox.Clear();
+      myBox.Add( box.CornerMin() );
+      myBox.Add( box.CornerMax() );
+      gp_XYZ halfSize = 0.5 * ( box.CornerMax().XYZ() - box.CornerMin().XYZ() );
+      for ( int iDim = 1; iDim <= 3; ++iDim )
+      {
+        double x = halfSize.Coord( iDim );
+        halfSize.SetCoord( iDim, x + Max( myTol, 1e-2 * x ));
+      }
+      myBox.SetHSize( halfSize );
+    }
+  }
+}
+
+ElementsOnShape::Classifier::~Classifier()
+{
+  delete mySolidClfr; mySolidClfr = 0;
 }
 
-bool ElementsOnShape::TClassifier::isOutOfSolid (const gp_Pnt& p)
+bool ElementsOnShape::Classifier::isOutOfSolid (const gp_Pnt& p)
 {
-  mySolidClfr.Perform( p, myTol );
-  return ( mySolidClfr.State() != TopAbs_IN && mySolidClfr.State() != TopAbs_ON );
+  mySolidClfr->Perform( p, myTol );
+  return ( mySolidClfr->State() != TopAbs_IN && mySolidClfr->State() != TopAbs_ON );
 }
 
-bool ElementsOnShape::TClassifier::isOutOfBox (const gp_Pnt& p)
+bool ElementsOnShape::Classifier::isOutOfBox (const gp_Pnt& p)
 {
   return myBox.IsOut( p.XYZ() );
 }
 
-bool ElementsOnShape::TClassifier::isOutOfFace  (const gp_Pnt& p)
+bool ElementsOnShape::Classifier::isOutOfFace  (const gp_Pnt& p)
 {
   myProjFace.Perform( p );
   if ( myProjFace.IsDone() && myProjFace.LowerDistance() <= myTol )
   {
     // check relatively to the face
-    Quantity_Parameter u, v;
+    Standard_Real u, v;
     myProjFace.LowerDistanceParameters(u, v);
     gp_Pnt2d aProjPnt (u, v);
     BRepClass_FaceClassifier aClsf ( TopoDS::Face( myShape ), aProjPnt, myTol );
@@ -4330,18 +4659,18 @@ bool ElementsOnShape::TClassifier::isOutOfFace  (const gp_Pnt& p)
   return true;
 }
 
-bool ElementsOnShape::TClassifier::isOutOfEdge  (const gp_Pnt& p)
+bool ElementsOnShape::Classifier::isOutOfEdge  (const gp_Pnt& p)
 {
   myProjEdge.Perform( p );
   return ! ( myProjEdge.NbPoints() > 0 && myProjEdge.LowerDistance() <= myTol );
 }
 
-bool ElementsOnShape::TClassifier::isOutOfVertex(const gp_Pnt& p)
+bool ElementsOnShape::Classifier::isOutOfVertex(const gp_Pnt& p)
 {
   return ( myVertexXYZ.Distance( p ) > myTol );
 }
 
-bool ElementsOnShape::TClassifier::isBox (const TopoDS_Shape& theShape)
+bool ElementsOnShape::Classifier::isBox (const TopoDS_Shape& theShape)
 {
   TopTools_IndexedMapOfShape vMap;
   TopExp::MapShapes( theShape, TopAbs_VERTEX, vMap );
@@ -4368,6 +4697,118 @@ bool ElementsOnShape::TClassifier::isBox (const TopoDS_Shape& theShape)
   return true;
 }
 
+ElementsOnShape::
+OctreeClassifier::OctreeClassifier( const std::vector< ElementsOnShape::Classifier* >& classifiers )
+  :SMESH_Octree( new SMESH_TreeLimit )
+{
+  myClassifiers = classifiers;
+  compute();
+}
+
+ElementsOnShape::
+OctreeClassifier::OctreeClassifier( const OctreeClassifier*                           otherTree,
+                                    const std::vector< ElementsOnShape::Classifier >& clsOther,
+                                    std::vector< ElementsOnShape::Classifier >&       cls )
+  :SMESH_Octree( new SMESH_TreeLimit )
+{
+  myBox = new Bnd_B3d( *otherTree->getBox() );
+
+  if (( myIsLeaf = otherTree->isLeaf() ))
+  {
+    myClassifiers.resize( otherTree->myClassifiers.size() );
+    for ( size_t i = 0; i < otherTree->myClassifiers.size(); ++i )
+    {
+      int ind = otherTree->myClassifiers[i] - & clsOther[0];
+      myClassifiers[ i ] = & cls[ ind ];
+    }
+  }
+  else if ( otherTree->myChildren )
+  {
+    myChildren = new SMESH_Tree< Bnd_B3d, 8 > * [ 8 ];
+    for ( int i = 0; i < nbChildren(); i++ )
+      myChildren[i] =
+        new OctreeClassifier( static_cast<const OctreeClassifier*>( otherTree->myChildren[i]),
+                              clsOther, cls );
+  }
+}
+
+void ElementsOnShape::
+OctreeClassifier::GetClassifiersAtPoint( const gp_XYZ& point,
+                                         std::vector< ElementsOnShape::Classifier* >& result )
+{
+  if ( getBox()->IsOut( point ))
+    return;
+
+  if ( isLeaf() )
+  {
+    for ( size_t i = 0; i < myClassifiers.size(); ++i )
+      if ( !myClassifiers[i]->GetBndBox()->IsOut( point ))
+        result.push_back( myClassifiers[i] );
+  }
+  else
+  {
+    for (int i = 0; i < nbChildren(); i++)
+      ((OctreeClassifier*) myChildren[i])->GetClassifiersAtPoint( point, result );
+  }
+}
+
+void ElementsOnShape::OctreeClassifier::buildChildrenData()
+{
+  // distribute myClassifiers among myChildren
+
+  const int childFlag[8] = { 0x0000001,
+                             0x0000002,
+                             0x0000004,
+                             0x0000008,
+                             0x0000010,
+                             0x0000020,
+                             0x0000040,
+                             0x0000080 };
+  int nbInChild[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
+
+  for ( size_t i = 0; i < myClassifiers.size(); ++i )
+  {
+    for ( int j = 0; j < nbChildren(); j++ )
+    {
+      if ( !myClassifiers[i]->GetBndBox()->IsOut( *myChildren[j]->getBox() ))
+      {
+        myClassifiers[i]->SetFlag( childFlag[ j ]);
+        ++nbInChild[ j ];
+      }
+    }
+  }
+
+  for ( int j = 0; j < nbChildren(); j++ )
+  {
+    OctreeClassifier* child = static_cast<OctreeClassifier*>( myChildren[ j ]);
+    child->myClassifiers.resize( nbInChild[ j ]);
+    for ( size_t i = 0; nbInChild[ j ] && i < myClassifiers.size(); ++i )
+    {
+      if ( myClassifiers[ i ]->IsSetFlag( childFlag[ j ]))
+      {
+        --nbInChild[ j ];
+        child->myClassifiers[ nbInChild[ j ]] = myClassifiers[ i ];
+        myClassifiers[ i ]->UnsetFlag( childFlag[ j ]);
+      }
+    }
+  }
+  SMESHUtils::FreeVector( myClassifiers );
+
+  // define if a child isLeaf()
+  for ( int i = 0; i < nbChildren(); i++ )
+  {
+    OctreeClassifier* child = static_cast<OctreeClassifier*>( myChildren[ i ]);
+    child->myIsLeaf = ( child->myClassifiers.size() <= 5  );
+  }
+}
+
+Bnd_B3d* ElementsOnShape::OctreeClassifier::buildRootBox()
+{
+  Bnd_B3d* box = new Bnd_B3d;
+  for ( size_t i = 0; i < myClassifiers.size(); ++i )
+    box->Add( *myClassifiers[i]->GetBndBox() );
+  return box;
+}
 
 /*
   Class       : BelongToGeom
@@ -4377,25 +4818,38 @@ bool ElementsOnShape::TClassifier::isBox (const TopoDS_Shape& theShape)
 
 BelongToGeom::BelongToGeom()
   : myMeshDS(NULL),
-    myType(SMDSAbs_All),
+    myType(SMDSAbs_NbElementTypes),
     myIsSubshape(false),
     myTolerance(Precision::Confusion())
 {}
 
+Predicate* BelongToGeom::clone() const
+{
+  BelongToGeom* cln = new BelongToGeom( *this );
+  cln->myElementsOnShapePtr.reset( static_cast<ElementsOnShape*>( myElementsOnShapePtr->clone() ));
+  return cln;
+}
+
 void BelongToGeom::SetMesh( const SMDS_Mesh* theMesh )
 {
-  myMeshDS = dynamic_cast<const SMESHDS_Mesh*>(theMesh);
-  init();
+  if ( myMeshDS != theMesh )
+  {
+    myMeshDS = dynamic_cast<const SMESHDS_Mesh*>(theMesh);
+    init();
+  }
 }
 
 void BelongToGeom::SetGeom( const TopoDS_Shape& theShape )
 {
-  myShape = theShape;
-  init();
+  if ( myShape != theShape )
+  {
+    myShape = theShape;
+    init();
+  }
 }
 
 static bool IsSubShape (const TopTools_IndexedMapOfShape& theMap,
-                        const TopoDS_Shape& theShape)
+                        const TopoDS_Shape&               theShape)
 {
   if (theMap.Contains(theShape)) return true;
 
@@ -4417,7 +4871,7 @@ static bool IsSubShape (const TopTools_IndexedMapOfShape& theMap,
 
 void BelongToGeom::init()
 {
-  if (!myMeshDS || myShape.IsNull()) return;
+  if ( !myMeshDS || myShape.IsNull() ) return;
 
   // is sub-shape of main shape?
   TopoDS_Shape aMainShape = myMeshDS->ShapeToMesh();
@@ -4426,40 +4880,33 @@ void BelongToGeom::init()
   }
   else {
     TopTools_IndexedMapOfShape aMap;
-    TopExp::MapShapes(aMainShape, aMap);
-    myIsSubshape = IsSubShape(aMap, myShape);
+    TopExp::MapShapes( aMainShape, aMap );
+    myIsSubshape = IsSubShape( aMap, myShape );
+    if ( myIsSubshape )
+    {
+      aMap.Clear();
+      TopExp::MapShapes( myShape, aMap );
+      mySubShapesIDs.Clear();
+      for ( int i = 1; i <= aMap.Extent(); ++i )
+      {
+        int subID = myMeshDS->ShapeToIndex( aMap( i ));
+        if ( subID > 0 )
+          mySubShapesIDs.Add( subID );
+      }
+    }
   }
 
   //if (!myIsSubshape) // to be always ready to check an element not bound to geometry
   {
-    myElementsOnShapePtr.reset(new ElementsOnShape());
-    myElementsOnShapePtr->SetTolerance(myTolerance);
-    myElementsOnShapePtr->SetAllNodes(true); // "belong", while false means "lays on"
-    myElementsOnShapePtr->SetMesh(myMeshDS);
-    myElementsOnShapePtr->SetShape(myShape, myType);
+    if ( !myElementsOnShapePtr )
+      myElementsOnShapePtr.reset( new ElementsOnShape() );
+    myElementsOnShapePtr->SetTolerance( myTolerance );
+    myElementsOnShapePtr->SetAllNodes( true ); // "belong", while false means "lays on"
+    myElementsOnShapePtr->SetMesh( myMeshDS );
+    myElementsOnShapePtr->SetShape( myShape, myType );
   }
 }
 
-static bool IsContains( const SMESHDS_Mesh*     theMeshDS,
-                        const TopoDS_Shape&     theShape,
-                        const SMDS_MeshElement* theElem,
-                        TopAbs_ShapeEnum        theFindShapeEnum,
-                        TopAbs_ShapeEnum        theAvoidShapeEnum = TopAbs_SHAPE )
-{
-  TopExp_Explorer anExp( theShape,theFindShapeEnum,theAvoidShapeEnum );
-
-  while( anExp.More() )
-  {
-    const TopoDS_Shape& aShape = anExp.Current();
-    if( SMESHDS_SubMesh* aSubMesh = theMeshDS->MeshElements( aShape ) ){
-      if( aSubMesh->Contains( theElem ) )
-        return true;
-    }
-    anExp.Next();
-  }
-  return false;
-}
-
 bool BelongToGeom::IsSatisfy (long theId)
 {
   if (myMeshDS == 0 || myShape.IsNull())
@@ -4470,51 +4917,28 @@ bool BelongToGeom::IsSatisfy (long theId)
     return myElementsOnShapePtr->IsSatisfy(theId);
   }
 
-  // Case of submesh
+  // Case of sub-mesh
+
   if (myType == SMDSAbs_Node)
   {
-    if( const SMDS_MeshNode* aNode = myMeshDS->FindNode( theId ) )
+    if ( const SMDS_MeshNode* aNode = myMeshDS->FindNode( theId ))
     {
       if ( aNode->getshapeId() < 1 )
         return myElementsOnShapePtr->IsSatisfy(theId);
-
-      const SMDS_PositionPtr& aPosition = aNode->GetPosition();
-      SMDS_TypeOfPosition aTypeOfPosition = aPosition->GetTypeOfPosition();
-      switch( aTypeOfPosition )
-      {
-      case SMDS_TOP_VERTEX : return ( IsContains( myMeshDS,myShape,aNode,TopAbs_VERTEX ));
-      case SMDS_TOP_EDGE   : return ( IsContains( myMeshDS,myShape,aNode,TopAbs_EDGE ));
-      case SMDS_TOP_FACE   : return ( IsContains( myMeshDS,myShape,aNode,TopAbs_FACE ));
-      case SMDS_TOP_3DSPACE: return ( IsContains( myMeshDS,myShape,aNode,TopAbs_SOLID ) ||
-                                      IsContains( myMeshDS,myShape,aNode,TopAbs_SHELL ));
-      default:;
-      }
+      else
+        return mySubShapesIDs.Contains( aNode->getshapeId() );
     }
   }
   else
   {
     if ( const SMDS_MeshElement* anElem = myMeshDS->FindElement( theId ))
     {
-      if ( anElem->getshapeId() < 1 )
-        return myElementsOnShapePtr->IsSatisfy(theId);
-
-      if( myType == SMDSAbs_All )
+      if ( anElem->GetType() == myType )
       {
-        return ( IsContains( myMeshDS,myShape,anElem,TopAbs_EDGE ) ||
-                 IsContains( myMeshDS,myShape,anElem,TopAbs_FACE ) ||
-                 IsContains( myMeshDS,myShape,anElem,TopAbs_SOLID )||
-                 IsContains( myMeshDS,myShape,anElem,TopAbs_SHELL ));
-      }
-      else if( myType == anElem->GetType() )
-      {
-        switch( myType )
-        {
-        case SMDSAbs_Edge  : return ( IsContains( myMeshDS,myShape,anElem,TopAbs_EDGE ));
-        case SMDSAbs_Face  : return ( IsContains( myMeshDS,myShape,anElem,TopAbs_FACE ));
-        case SMDSAbs_Volume: return ( IsContains( myMeshDS,myShape,anElem,TopAbs_SOLID )||
-                                      IsContains( myMeshDS,myShape,anElem,TopAbs_SHELL ));
-        default:;
-        }
+        if ( anElem->getshapeId() < 1 )
+          return myElementsOnShapePtr->IsSatisfy(theId);
+        else
+          return mySubShapesIDs.Contains( anElem->getshapeId() );
       }
     }
   }
@@ -4524,8 +4948,11 @@ bool BelongToGeom::IsSatisfy (long theId)
 
 void BelongToGeom::SetType (SMDSAbs_ElementType theType)
 {
-  myType = theType;
-  init();
+  if ( myType != theType )
+  {
+    myType = theType;
+    init();
+  }
 }
 
 SMDSAbs_ElementType BelongToGeom::GetType() const
@@ -4546,8 +4973,7 @@ const SMESHDS_Mesh* BelongToGeom::GetMeshDS() const
 void BelongToGeom::SetTolerance (double theTolerance)
 {
   myTolerance = theTolerance;
-  if (!myIsSubshape)
-    init();
+  init();
 }
 
 double BelongToGeom::GetTolerance()
@@ -4558,26 +4984,39 @@ double BelongToGeom::GetTolerance()
 /*
   Class       : LyingOnGeom
   Description : Predicate for verifying whether entiy lying or partially lying on
-                specified geometrical support
+  specified geometrical support
 */
 
 LyingOnGeom::LyingOnGeom()
   : myMeshDS(NULL),
-    myType(SMDSAbs_All),
+    myType(SMDSAbs_NbElementTypes),
     myIsSubshape(false),
     myTolerance(Precision::Confusion())
 {}
 
+Predicate* LyingOnGeom::clone() const
+{
+  LyingOnGeom* cln = new LyingOnGeom( *this );
+  cln->myElementsOnShapePtr.reset( static_cast<ElementsOnShape*>( myElementsOnShapePtr->clone() ));
+  return cln;
+}
+
 void LyingOnGeom::SetMesh( const SMDS_Mesh* theMesh )
 {
-  myMeshDS = dynamic_cast<const SMESHDS_Mesh*>(theMesh);
-  init();
+  if ( myMeshDS != theMesh )
+  {
+    myMeshDS = dynamic_cast<const SMESHDS_Mesh*>(theMesh);
+    init();
+  }
 }
 
 void LyingOnGeom::SetGeom( const TopoDS_Shape& theShape )
 {
-  myShape = theShape;
-  init();
+  if ( myShape != theShape )
+  {
+    myShape = theShape;
+    init();
+  }
 }
 
 void LyingOnGeom::init()
@@ -4605,13 +5044,14 @@ void LyingOnGeom::init()
         mySubShapesIDs.Add( subID );
     }
   }
-  else
+  // else // to be always ready to check an element not bound to geometry
   {
-    myElementsOnShapePtr.reset(new ElementsOnShape());
-    myElementsOnShapePtr->SetTolerance(myTolerance);
-    myElementsOnShapePtr->SetAllNodes(false); // lays on, while true means "belong"
-    myElementsOnShapePtr->SetMesh(myMeshDS);
-    myElementsOnShapePtr->SetShape(myShape, myType);
+    if ( !myElementsOnShapePtr )
+      myElementsOnShapePtr.reset( new ElementsOnShape() );
+    myElementsOnShapePtr->SetTolerance( myTolerance );
+    myElementsOnShapePtr->SetAllNodes( false ); // lays on, while true means "belong"
+    myElementsOnShapePtr->SetMesh( myMeshDS );
+    myElementsOnShapePtr->SetShape( myShape, myType );
   }
 }
 
@@ -4633,7 +5073,7 @@ bool LyingOnGeom::IsSatisfy( long theId )
   if ( mySubShapesIDs.Contains( elem->getshapeId() ))
     return true;
 
-  if ( elem->GetType() != SMDSAbs_Node )
+  if ( elem->GetType() != SMDSAbs_Node && elem->GetType() == myType )
   {
     SMDS_ElemIteratorPtr nodeItr = elem->nodesIterator();
     while ( nodeItr->more() )
@@ -4649,8 +5089,11 @@ bool LyingOnGeom::IsSatisfy( long theId )
 
 void LyingOnGeom::SetType( SMDSAbs_ElementType theType )
 {
-  myType = theType;
-  init();
+  if ( myType != theType )
+  {
+    myType = theType;
+    init();
+  }
 }
 
 SMDSAbs_ElementType LyingOnGeom::GetType() const
@@ -4671,8 +5114,7 @@ const SMESHDS_Mesh* LyingOnGeom::GetMeshDS() const
 void LyingOnGeom::SetTolerance (double theTolerance)
 {
   myTolerance = theTolerance;
-  if (!myIsSubshape)
-    init();
+  init();
 }
 
 double LyingOnGeom::GetTolerance()
@@ -4680,39 +5122,6 @@ double LyingOnGeom::GetTolerance()
   return myTolerance;
 }
 
-bool LyingOnGeom::Contains( const SMESHDS_Mesh*     theMeshDS,
-                            const TopoDS_Shape&     theShape,
-                            const SMDS_MeshElement* theElem,
-                            TopAbs_ShapeEnum        theFindShapeEnum,
-                            TopAbs_ShapeEnum        theAvoidShapeEnum )
-{
-  // if (IsContains(theMeshDS, theShape, theElem, theFindShapeEnum, theAvoidShapeEnum))
-  //   return true;
-
-  // TopTools_MapOfShape aSubShapes;
-  // TopExp_Explorer exp( theShape, theFindShapeEnum, theAvoidShapeEnum );
-  // for ( ; exp.More(); exp.Next() )
-  // {
-  //   const TopoDS_Shape& aShape = exp.Current();
-  //   if ( !aSubShapes.Add( aShape )) continue;
-
-  //   if ( SMESHDS_SubMesh* aSubMesh = theMeshDS->MeshElements( aShape ))
-  //   {
-  //     if ( aSubMesh->Contains( theElem ))
-  //       return true;
-
-  //     SMDS_ElemIteratorPtr nodeItr = theElem->nodesIterator();
-  //     while ( nodeItr->more() )
-  //     {
-  //       const SMDS_MeshElement* aNode = nodeItr->next();
-  //       if ( aSubMesh->Contains( aNode ))
-  //         return true;
-  //     }
-  //   }
-  // }
-  return false;
-}
-
 TSequenceOfXYZ::TSequenceOfXYZ(): myElem(0)
 {}