
 MacMesh for Salome

user manual

The multi-purpose Salome plug-in for regular 2D quadrangle meshing

v. 10 avril 2012

Table of Contents

MacMesh for Salome user manual 1

1. Installation 4

2. Elementary Objects 4

2.1 Box11 5

2.2 Box42 8

2.3 BoxAng32 9

2.4 CompBox 10

2.5 CompBoxF 11

2.6 QuartCyl 12

3. Macros 14

3.1 Cylinder 15

3.2 SharpAngleOut 17

3.3 SharpAngleIn 20

3.4 CompositeBox 20

3.5 CentralUnrefine 20

4. Miscellaneous user-tools 21

4.1 PublishGroup.py 21

1. Installation

MacMesh module is distributed as a tar ball archive (.tar.gz) which contains in a single directory

all the necessary python code. The user is free to choose the directory of installation as long as

the latter is properly specified in the Salome scripts calling the MacMesh module.

 As an example, consider that the module is extracted in :

/local00/berro/SalomeFunc/MacMesh

 In order to call the MacMesh module and use the included functions, it is necessary to add

its installation path to the environment variable PATH. This can be accomplished in python by

adding in the header of the Salome script, the following commands :

sys.path.append('/local00/berro/SalomeFunc/MacMesh/')

from MacObject import *

 An illustrative example is given in the Example directory inside the tar ball. It represents the

creation of a parametric axisymmetric model of a pressure relief valve uniquely by using the

MacMesh module.

2. Elementary Objects

The MacMesh module is based on 5 elementary objects which are defined in the MacObject

python class. All supported geometries can be constructed by collating a number of

geometrically transformed (rotated and/or translated) elementary objects. The power of using

elementary objects for the construction of meshes lies in the possibility to perform elementary

level checks on the compatibility of the geometrical objects for producing conforming meshes.

2.1 Box11

Syntax

objname = MacObject ('Box11' ,

 [(Xc,Yc) , (DX,DY)] ,

 [Nseg] or ['auto'] ,

 groups = ['S_GR','N_GR','W_GR', 'E_GR'])

Figure 1: Schematic illustrating the Box11 elementary shape. The four sides of the box are cut

into the same number of segments (Nseg)

Examples

Square = MacObject('Box11',[(0.,0.),(20.,20.)],[10])

Figure 2: A Box11 square object centred about the origin (0,0), of a side length = 20 and cut into 10

segments (Nseg = 10) on the X and Y directions.

Rectangle = MacObject('Box11',[(0.,0.),(40.,20.)],[10])

Figure 3: A Box11 rectangle object centered about the origin (0,0), of an x-dimension of 40 and a

y-dimension of 20. The box is cut into 10 segments on each direction (Nseg = 10).

SquareWithGroups = MacObject('Box11',[(0.,0.),(20.,20.)],[10],

 groups=['Bottom','Top',None,None])

PublishGroups()

Figure 4: The same Box11 object as in Figure 2 but with a definition of groups on the upper and

lower boundaries.

SquareLeft = MacObject('Box11',[(0.,0.),(20.,20.)],[10],

 groups=['Boundary','Boundary','Boundary',None])

SquareRight = MacObject('Box11',[(20.,0.),(20.,20.)],['auto'],

 groups=['Boundary','Boundary',None,'Boundary'])

PublishGroups()

Figure 5: Two Box11 square objects collated side-by-side where the right square inherits the

number of segments (mesh parameters) automatically from the left square.

Box11 is the simplest object that can be thought of : a rectangle/square that is meshed with a

constant number of segments on each side. A single mesh parameter (Nseg) is thus needed to

define this kind of elementary object. The created 2D elements will have the same aspect ratio as

the box itself which can be seen in Figure 3.

 The groups option illustrated in Figure 4 and Figure 5 is particularly interesting because it

allows to automatically generate Salome geometric and mesh groups on the created element. The

groups are defined as borders with a known orientation : South (Y-) , North (Y+), West (X-), and

East (X+), with this strict order. In case that no particular group is needed on one direction, the

user can choose None (and not 'None') as illustrated in Figure 4.

 Another important feature is that group names are global and thus may associate elements

from different objects (see Figure 5).

 Finally, the ['auto'] mesh parameter can be used when an existing object has been created

and it is required to inherit mesh parameters from the neighbour(s). The module checks

whether a compatible parameter can be found and proceeds with building the object.

 The example in Figure 5 provides an excellent illustration of the last two concepts. In this

example, two squares are to be built side-by-side where the mesh parameter of the first one is

provided ([10]) but that of the second is set to automatic (['auto']). A single group called

'Boundary' containing south, north and west borders of the left square and south, north, and

east borders of square 2 is created.

 The meshing parameter (Nseg=10), for the second object (right square), was automatically

detected and used for its creation. With the PublishGroups() command, the boundary group

was successfully created with the specified directional criteria. Note that a unique

PublishGroups() call is required at the end of the script as all group information is saved

globally for all objects.

 This same logic can be applied to all other elementary objects described below as well as to

the macros allowing the construction of complicated geometries based on these elementary

objects. We will discuss each of them one by one.

2.2 Box42

Syntax

objname = MacObject ('Box42' ,

 [(Xc,Yc) , (DX,DY)] ,

 [Nseg, Orientation] ,

 groups = ['S_GR','N_GR','W_GR', 'E_GR'])

Orientation = 'SN' or 'NS' or 'WE' or 'EW'

Figure 6: An illustration of the Box42 elementary object in the SN (south-north) orientation. This

object allows to unrefine on a given direction with a factor of 2 (from 4n segments to 2n)

Figure 7: A Box42 object with 4 different values for the Nseg mesh parameter.

2.3 BoxAng32

Syntax

objname = MacObject ('BoxAng32' ,

 [(Xc,Yc) , (DX,DY)] ,

 [Nseg, Orientation],

 groups = ['S_GR','N_GR','W_GR', 'E_GR'])

Orientation = 'NE' or 'NW' or 'SE' or 'SW'

Figure 8: Illustration of the BoxAng32 elementary object with a NE (north-east) orientation. This

object can be used to radially unrefine with a ratio of 3:2.

Figure 9: A BoxAng32 object with different values for the Nseg mesh parameter.

2.4 CompBox

Syntax

objname = MacObject ('CompBox' ,

 [(Xc,Yc) , (DX,DY)] ,

 [Nseg] or ['auto'] ,

 groups = ['S_GR','N_GR','W_GR', 'E_GR'])

Figure 10: Illustration of the CompBox elementary object with Nseg = 5 and DY>DX. This object

is used to create a square or a rectangle that is based on perfect square mesh elements. This

evidently requires a condition on the ratio between the x and y dimensions are specified on the

figure.

2.5 CompBoxF

Syntax

objname = MacObject ('CompBoxF' ,

 [(Xc,Yc) , (DX,DY)] ,

 [(NsegX,NsegY)] or ['auto'] ,

 groups = ['S_GR','N_GR','W_GR', 'E_GR'])

Figure 11: Illustration of the CompBoxF (F corresponding to Free) elementary object which,

unlike CompBox does not require a condition on the ratio of DX/DY.

Note that if the mesh parameter is set to ['auto'], the module determines the NsegX and NsegY

from neighbouring objects. If information is missing for one of the directions, let's say the y-

direction, NsegY is calculated automatically as to render an optimal aspect ratio close to 1.

2.6 QuartCyl

Syntax

objname = MacObject ('QuartCyl' ,

 [(Xc,Yc) , (DX,DY)] ,

 [Nseg, Direction, PitchRatio],

 groups = ['S_GR','N_GR','W_GR', 'E_GR','Circle'])

Figure 12: Illustration of the QuartCyl object with a NE (north-east) orientation. This object

allows creating a quarter cylinder linked to a square or a rectangle.

In addition to the regular group definitions on each direction, it is possible to define for the

QuartCyl object, a fifth group corresponding to the interior circle boundary. The pitch ratio is

defined as the ratio between the circle's radius R and D, the gap between circle and the box's

boundary as shown in Figure 12.

Figure 13: A QuartCyl object (oriented NE) with different values for the PitchRatio and the Nseg

parameters.

 Note that when the pitch ratio increases, the refinement automatically increases in order to

yield an optimal aspect ratio in the constitutive elements of the object. In fact, the number of cuts

on the circumference of the quarter circle (4 in the first figure) depends on the PitchRatio

parameter because a quadrangle of the final mesh has a side length of a0=(D/2) on one side and

a1=(πR/2*Ncuts) on the side of the circle. When D decreases (that is PitchRatio increases), a bigger

number for Ncuts is chosen so that the ratio a0/a1 remain close to 1 and the final 2D mesh

elements are as close to squares as possible.

Figure 14: A schematic showing the influence of PitchRatio on the number of cuts. The purpose

being in all cases to reproduce mesh elements with aspect ratios of nearly 1 (squares)

3. Macros

Macros are common combinations of the previously defined elementary objects. They actually

make use of the elementary objects to produce geometries and meshes that make physical sense.

For example, the Cylinder macro creates a 2D cylinder (a circle) embedded inside a rectangle by

combining 4 QuartCyl objects. Macros also deal with the definition of groups on a high-level and

translate the information to their constitutive objects.

 Unlike elementary objects that are included in the MacObject.py class, macros are defined in

separate files and thus need to be imported separately in the script. For example :

from Cylinder import * # Cylinder macro

from SharpAngle import * # SharpAngIn and SharpAngOut macros

from CentralUnrefine import * # CentralUnrefine macro

from CompositeBox import * # CompositeBox macro

3.1 Cylinder

Syntax

objname = Cylinder(Xc, Yc, D, DX, DY, LocalMeshing,

 groups = ['S_GR','N_GR','W_GR','E_GR','InnerCircle_GR'])

Figure 15: Illustration of the Cylinder macro that works by combining four identical QuartCyl

elementary object with different orientations.

 LocalMeshing is defined in distance units as a first prescription for the finest refinement near

the cylinder (see Figure 15). Note that in most cases, the exact refinement can not be achieved

due to the discrete nature of the meshing concept. In these cases, the cylinder macro module

calculates an optimized value of the local refinement and displays it on the output screen.

 For example, let's suppose that we need to create a cylinder of D=10 mm, DX = 15 mm, and

DY = 18 mm, centered about the origin (see Figure 15 for geometry). This can be achieved with

the following simple command :

Cylinder (0. , 0., 10., 15., 18., LocalMeshing)

 Let's suppose LocalMeshing is set to 1mm. The program proceeds as follows. It calculates the

cylindre's circumference P = 31.415 mm. This value is then divided by the number of initial cuts

needed for an optimal aspect ratio. Ncuts is calculated using the relationship:

Ncuts = 4 x floor ([πD] / [min(DX,DY) – D])

In this example, D = 10, and min(DX,DY) = 15. Then Ncuts = 4 x floor (10π / 5) = 4 x floor (2π) = 24

Thus the minimum local refinement is P/Ncuts = 1.309 mm. The purpose is then to find the

smallest integer « i » that satisfies : 1.309/i < LocalMeshing where LocalMeshing = 1 in this case.

This gives : i > 1.309, hence i = 2. The possible local meshing is thus : 1.309 / 2 = 0.655 mm.

This value is returned by the function which displays the following:

A local pitch ratio of K = 2.0 will be used.

Possible Local meshing is : 0.654498469498 This value is returned by

this function for your convenience.

Initializing object No. 1

Generating quarter cylinder

Successfully created

Initializing object No. 2

Generating quarter cylinder

Successfully created

Initializing object No. 3

Generating quarter cylinder

Successfully created

 (………)

Initializing object No. 6

Generating composite box

Successfully created

 Notice that the macro creates 6 objects instead of only 4 which correspond to the QuartCyl

elementary objects. The last two actually are needed because the required Y dimension of the

box is bigger than its X dimension. In order to complete the gap, the macro automatically creates

two CompBoxF that extend from the Cylindre boundaries to the outer limits of the box.

3.2 SharpAngleOut

Syntax

objname = SharpAngleOut (Xo, Yo, DX, DY, DLocal,

 LocalMeshing, Orientation, NLevels

 groups = ['InnerH_GR','InnerV_GR',

 'OuterH_GR','OuterV_GR',

 'Inlet_GR' ,'Outlet_GR'])

Figure 16: Illustration of a SharpAngleOut macro with a NE (north-east) orientation and a

parameter Nlevels = 2.

As can be seen on Figure 16, this interesting macro is based on Box42, Box32, and CompBoxF

elementary objects. Such a macro is used for example when a special refinement is needed near

geometrical corners.

 Several parameters allows to control the way this macro is constructed as shown in Figure

16. Xo and Yo are the coordinates of the corner point. DX and DY represent the extents on the x

and y direction of the macro. DLocal represents the internal size of the refinement box, it can also

be set to 'auto'. In the latter case, DLocal is given the value of min(DX,DY). The LocalMeshing

parameter is given in distance units and is similar to that for the Cylindre macro in the sense that

it gives a prescription of the maximum local refinement which in this case is near (Xo,Yo) at the

corner's center. We will get back later on the method of its precise calculation.

 Orientation allows setting the corner's direction, from inner -> outer.

 NLevels is another very important parameter as it controls the number of “snake loops”

used for the refinement.

Figure 17: A ‚skeleton‛ representation of the cuts perfomed for the SharpAngleOut macro with

four different values of the NLevels parameter.

As shown in Figure 17, an increased number of NLevels results generally in an increased

unrefinement rate over DLocal. If a progressive unrefinement is required as in the cases where

interesting phenomena originate at a corner but then may propagate across the domain, it is

preferred to stick with a low number of levels and in extending DLocal as long as possible.

However, in static type problems where phenomena are localized, an increase in NLevels

permits achieving a high local resolution.

 As for the groups that can be saved with this macro, the notion of orientation is completely

different from that for elementary objects because of the particular form of the angle. Six groups

can be defined and correspond to the 6 boundaries of the SharpAngleOut macro as illustrated

on Figure 16.

 In order to illustrate the way local meshing criterion is determined, consider the example

case in which it is required to create an angle where the unrefinement extends over 8mm

(DLocal), the final box dimensions are required to be 10mm and 12mm on the x and y directions

respectively. Moreover, it is preferred that the local refinement is just lower than 0.2 mm.

 We will test four values for Nlevels, from 1 to 4.

 The geometrical cutting method imposes a lowest refinement which depends on DLocal and

NLevels, it is defined with the formula :

d0 = Dlocal / (2^(Nlevels+2) x 3) # Highest local refinement

This gives the following values for d0 in this case (Dlocal = 8mm)

 Nlevels = 1 Nlevels = 2 Nlevels = 3 Nlevels = 4

d0 1/3 = 0,3333 1/6 = 0,1666 1/12 = 0,0833 1/24 = 0,04166

 As with the cylinder, it follows that we look for the smallest integer “i” that satisfies the

inequation :

Real Meshing = d0/i < LocalMeshing

 In this case, if LocalMeshing is set to 0.2mm, i = 1 is OK for all cases of NLevels except

Nlevels=1 for which i=2. The possible real meshing distances are then :

 Nlevels = 1 Nlevels = 2 Nlevels = 3 Nlevels = 4

Real Meshing

< 0,2 mm

0,1666 1/6 = 0,1666 1/12 = 0,0833 1/24 = 0,04166

 This shows that an excessive refinement may be obtained when a large number of NLevels is

used. Note also that the real meshing value is displayed on the screen when this macro is used:

Possible Local meshing is : 0.166666666667 This value is returned by

this function for your convenience

 Finally, here is a snapshot of the meshes generated in the previous example.

Figure 18: snapshot of the obtained meshes with the SharpAngOut macro for different values of

the NLevels parameter.

 It is obvious that a better quality mesh is obtained with NLevels = 1 compared to Nlevels=2

even though the local meshing is exactly the same (see table). However, this comes at the cost of

800 face elements v.s only 272 for the case of NLevels = 2.

3.3 SharpAngleIn

Syntax

objname = SharpAngleIn (Xo, Yo, DX, DY, DLocal,

 LocalMeshing, Orientation, NLevels

 groups = ['S_GR','N_GR','W_GR', 'E_GR'])

Note that the orientation of the SharpAngleIn is outwards from the refinement corner.

3.4 CompositeBox

Syntax

objname = CompositeBox (Xo, Yo, DX, DY,

 groups = ['S_GR','N_GR','W_GR', 'E_GR'])

An apparently simple object that regroups all possibilities for inserting meshed boxes in any

situation. This macro inherits meshing parameters from the bounding objects even if there are

several objects on one direction or over several directions.

 In practice, unless we are creating the first object in the domain (in that case we have to

define a mesh parameter), it is always convenient to use a composite box. Note that an extra

macro can be used in case CompositeBox presents errors, it is called CompositeBoxF and uses

the same exact syntax and group options.

3.5 CentralUnrefine

Syntax

objname = CentralUnrefine (Xo, Yo, DX, DY, Orientation,

 groups = [(1),(2),(3),(4),(5),(6)])

Orientation = ‘SN’, ‘NS’, ‘EW’, or ‘WE’

This macro is based on Box42 and Box32 elementary objects. Xo and Yo represent the

coordinates of the center of the unrefinement neck while DX and DY represent the extension of

the unrefinement on X and Y as shown in Figure 19.

Figure 19: schematic of the CentralUnrefine object with an ‘EW’ orientation. The circled numbers

represent the order of the group names that can be defined for this object. This macro needs to

inherit its meshing properties from a ‘neck’ object as shown in the figure.

4. Miscellaneous user-tools

4.1 PublishGroup.py

Salome_mesh = PublishGroups()

In addition to publishing geometric and mesh groups, the PublishGroups function of the

PublishGroup module returns the salome smesh object corresponding to the final mesh. This is

practical if further script manipulations are necessary like extruding or revolving the 2D mesh.

ExtrudeMesh(Salome_mesh,

 --> Direction = [Vx,Vy,Vz],

 --> Distance = D,

 --> NSteps = N,

 --> Scale = r)

This command allows easy extrusion and rescaling of a published mesh. Only the mesh object is

obligatory for this command, defaults for Direction, Distance, NSteps, and Scale are : [0,0,1] (z-

axis), D=1, N=1, and r=1 (no scaling). Note that this command recovers the group names as

specified in the original mesh and creates one that defines the volume.

RevolveMesh(Salome_mesh,

 --> Direction = [Vx,Vy,Vz],

 --> Center = [Cx,Cy,Cz],

 --> AngleDeg = AlphaDeg,

 //OR AngleRad = AlphaRad,

 --> Scale = r)

This command allows easy revolving and rescaling of a published mesh for axisymmetric

studies. Only the mesh object is obligatory for this command, defaults for Direction, Center,

AngleDeg, AngleRad and Scale are : [0,0,1] (z-axis), [0,0,0] (origin), Alpha=10 degrees or

equivalent in radians, and finally r=1 (no scaling). This command recovers the group names as

specified in the original mesh and creates a new one that defines the volume.

	MacMesh for Salome user manual
	1. Installation
	2. Elementary Objects
	2.1 Box11
	Syntax
	Examples

	2.2 Box42
	Syntax

	2.3 BoxAng32
	Syntax

	2.4 CompBox
	Syntax

	2.5 CompBoxF
	Syntax

	2.6 QuartCyl
	Syntax

	3. Macros
	3.1 Cylinder
	Syntax

	3.2 SharpAngleOut
	Syntax

	3.3 SharpAngleIn
	Syntax

	3.4 CompositeBox
	Syntax

	3.5 CentralUnrefine
	Syntax

	4. Miscellaneous user-tools
	4.1 PublishGroup.py

