# Copyright (C) 2003 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN, # CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # # See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com # # # # File : SMESH_withHole.py # Author : Lucien PIGNOLONI # Module : SMESH # $Header$ #------------------------------------------------------------------------- import salome import geompy import smesh # ---------------------------- GEOM -------------------------------------- # ---- define contigous arcs and segment to define a closed wire p1 = geompy.MakeVertex( 100.0, 0.0, 0.0 ) p2 = geompy.MakeVertex( 50.0, 50.0, 0.0 ) p3 = geompy.MakeVertex( 100.0, 100.0, 0.0 ) arc1 = geompy.MakeArc( p1, p2, p3 ) p4 = geompy.MakeVertex( 170.0, 100.0, 0.0 ) seg1 = geompy.MakeVector( p3, p4 ) p5 = geompy.MakeVertex( 200.0, 70.0, 0.0 ) p6 = geompy.MakeVertex( 170.0, 40.0, 0.0 ) arc2 = geompy.MakeArc( p4, p5, p6 ) p7 = geompy.MakeVertex( 120.0, 30.0, 0.0 ) arc3 = geompy.MakeArc( p6, p7, p1 ) # ---- define a closed wire with arcs and segment List1 = [] List1.append( arc1 ) List1.append( seg1 ) List1.append( arc2 ) List1.append( arc3 ) wire1 = geompy.MakeWire( List1 ) Id_wire1 = geompy.addToStudy( wire1, "wire1" ) # ---- define a planar face with wire WantPlanarFace = 1 #True face1 = geompy.MakeFace( wire1, WantPlanarFace ) Id_face1 = geompy.addToStudy( face1, "face1" ) # ---- create a shape by extrusion pO = geompy.MakeVertex( 0.0, 0.0, 0.0 ) pz = geompy.MakeVertex( 0.0, 0.0, 100.0 ) vz = geompy.MakeVector( pO, pz ) prism1 = geompy.MakePrismVecH( face1, vz, 100.0 ) Id_prism1 = geompy.addToStudy( prism1, "prism1" ) # ---- create two cylinders pc1 = geompy.MakeVertex( 90.0, 50.0, -40.0 ) pc2 = geompy.MakeVertex( 170.0, 70.0, -40.0 ) radius = 20.0 height = 180.0 cyl1 = geompy.MakeCylinder( pc1, vz, radius, height ) cyl2 = geompy.MakeCylinder( pc2, vz, radius, height ) Id_Cyl1 = geompy.addToStudy( cyl1, "cyl1" ) Id_Cyl2 = geompy.addToStudy( cyl2, "cyl2" ) # ---- cut with cyl1 shape = geompy.MakeBoolean( prism1, cyl1, 2 ) # ---- fuse with cyl2 to obtain the final mechanic piece :) mechanic = geompy.MakeBoolean( shape, cyl2, 3 ) Id_mechanic = geompy.addToStudy( mechanic, "mechanic" ) # ---- explode on faces SubFaceL = geompy.SubShapeAllSorted(mechanic, geompy.ShapeType["FACE"]) # ---- add a face sub shape in study to be meshed different sub_face1 = SubFaceL[0] name = geompy.SubShapeName( sub_face1, mechanic ) Id_SubFace1 = geompy.addToStudyInFather( mechanic, sub_face1, name ) # ---- add a face sub shape in study to be meshed different sub_face2 = SubFaceL[4] name = geompy.SubShapeName( sub_face2, mechanic ) Id_SubFace2 = geompy.addToStudyInFather( mechanic, sub_face2, name ) # ---- add a face sub shape in study to be meshed different sub_face3 = SubFaceL[5] name = geompy.SubShapeName( sub_face3, mechanic ) Id_SubFace3 = geompy.addToStudyInFather( mechanic, sub_face3, name ) # ---- add a face sub shape in study to be meshed different sub_face4 = SubFaceL[10] name = geompy.SubShapeName( sub_face4, mechanic ) Id_SubFace4 = geompy.addToStudyInFather( mechanic, sub_face4, name ) # ---------------------------- SMESH -------------------------------------- # -- Init -- shape_mesh = salome.IDToObject( Id_mechanic ) mesh = smesh.Mesh(shape_mesh, "Mesh_mechanic") print "-------------------------- NumberOfSegments" numberOfSegment = 10 algo = mesh.Segment() hypNbSeg = algo.NumberOfSegments(numberOfSegment) print hypNbSeg.GetName() print hypNbSeg.GetId() print hypNbSeg.GetNumberOfSegments() smesh.SetName(hypNbSeg, "NumberOfSegments_" + str(numberOfSegment)) print "-------------------------- MaxElementArea" maxElementArea = 25 algo = mesh.Triangle() hypArea25 = algo.MaxElementArea(maxElementArea) print hypArea25.GetName() print hypArea25.GetId() print hypArea25.GetMaxElementArea() smesh.SetName(hypArea25, "MaxElementArea_" + str(maxElementArea)) # Create submesh on sub_face1 - sub_face4 # --------------------------------------- # Set 2D algorithm to submesh on sub_face1 algo = mesh.Quadrangle(sub_face1) smesh.SetName(algo.GetSubMesh(), "SubMeshFace1") submesh1 = algo.GetSubMesh() # Set 2D algorithm to submesh on sub_face2 algo = mesh.Quadrangle(sub_face2) smesh.SetName(algo.GetSubMesh(), "SubMeshFace2") submesh2 = algo.GetSubMesh() # Set 2D algorithm to submesh on sub_face3 algo = mesh.Quadrangle(sub_face3) smesh.SetName(algo.GetSubMesh(), "SubMeshFace3") submesh3 = algo.GetSubMesh() # Set 2D algorithm to submesh on sub_face4 algo = mesh.Quadrangle(sub_face4) smesh.SetName(algo.GetSubMesh(), "SubMeshFace4") submesh4 = algo.GetSubMesh() print "-------------------------- compute the mesh of the mechanic piece" mesh.Compute() print "Information about the Mesh_mechanic:" print "Number of nodes : ", mesh.NbNodes() print "Number of edges : ", mesh.NbEdges() print "Number of faces : ", mesh.NbFaces() print "Number of triangles : ", mesh.NbTriangles() print "Number of quadrangles : ", mesh.NbQuadrangles() print "Number of volumes : ", mesh.NbVolumes() print "Number of tetrahedrons: ", mesh.NbTetras() #1 cutting of quadrangles of the 'SubMeshFace2' submesh mesh.SplitQuadObject(submesh2, 1) #2 cutting of triangles of the group FacesTriToQuad = [2381, 2382, 2383, 2384, 2385, 2386, 2387, 2388, 2389, 2390, 2391, 2392, 2393, 2394, 2395, 2396, 2397, 2398, 2399, 2400, 2401, 2402, 2403, 2404, 2405, 2406, 2407, 2408, 2409, 2410, 2411, 2412, 2413, 2414, 2415, 2416, 2417, 2418, 2419, 2420, 2421, 2422] GroupTriToQuad = mesh.MakeGroupByIds("Group of faces (quad)", smesh.FACE, FacesTriToQuad) mesh.TriToQuadObject(GroupTriToQuad, None , 1.57) #3 extrusion of the group point = smesh.PointStruct(0, 0, 5) vector = smesh.DirStruct(point) mesh.ExtrusionSweepObject(GroupTriToQuad, vector, 5) #4 mirror object mesh.Mirror([], smesh.AxisStruct(0, 0, 0, 0, 0, 0), smesh.POINT, 0) #5 mesh translation point = smesh.PointStruct(10, 10, 10) vector = smesh.DirStruct(point) mesh.Translate([], vector, 0) #6 mesh rotation axisXYZ = smesh.AxisStruct(0, 0, 0, 10, 10, 10) angle180 = 180*3.141/180 mesh.Rotate([], axisXYZ, angle180, 0) #7 group smoothing FacesSmooth = [864, 933, 941, 950, 1005, 1013] GroupSmooth = mesh.MakeGroupByIds("Group of faces (smooth)", smesh.FACE, FacesSmooth) mesh.SmoothObject(GroupSmooth, [], 20, 2, smesh.CENTROIDAL_SMOOTH) #8 rotation sweep object FacesRotate = [492, 493, 502, 503] GroupRotate = mesh.MakeGroupByIds("Group of faces (rotate)", smesh.FACE, FacesRotate) angle45 = 45*3.141/180 axisXYZ = smesh.AxisStruct(-38.3128, -73.3658, -133.321, -13.3402, -13.3265, 6.66632) mesh.RotationSweepObject(GroupRotate, axisXYZ, angle45, 4, 1e-5) #9 reorientation of the submesh1 mesh.ReorientObject(submesh1) salome.sg.updateObjBrowser(1)