// Copyright (C) 2007-2012 CEA/DEN, EDF R&D, OPEN CASCADE // // Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN, // CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com // // File : SMESH_MeshEditor.idl #ifndef _SMESH_MESHEDITOR_IDL_ #define _SMESH_MESHEDITOR_IDL_ #include "SMESH_Mesh.idl" #include "SMESH_Gen.idl" module SMESH { enum Bnd_Dimension { BND_2DFROM3D, BND_1DFROM3D, BND_1DFROM2D }; /*! * This interface makes modifications on the Mesh - removing elements and nodes etc. */ interface NumericalFunctor; interface SMESH_MeshEditor { /*! * Return data of mesh edition preview which is computed provided * that the editor was obtained trough SMESH_Mesh::GetMeshEditPreviewer() */ MeshPreviewStruct GetPreviewData(); /*! * If during last operation of MeshEditor some nodes were * created this method returns list of their IDs, if new nodes * not created - returns empty list */ long_array GetLastCreatedNodes(); /*! * If during last operation of MeshEditor some elements were * created this method returns list of their IDs, if new elements * not created - returns empty list */ long_array GetLastCreatedElems(); /*! * \brief Returns description of an error/warning occured during the last operation */ ComputeError GetLastError(); /*! * \brief Wrap a sequence of ids in a SMESH_IDSource * \param IDsOfElements list of mesh elements identifiers * \return new ID source object */ SMESH_IDSource MakeIDSource(in long_array IDsOfElements, in ElementType type); /*! * \brief Remove mesh elements specified by their identifiers. * \param IDsOfElements list of mesh elements identifiers * \return \c true if elements are correctly removed or \c false otherwise */ boolean RemoveElements(in long_array IDsOfElements); /*! * \brief Remove mesh nodes specified by their identifiers. * \param IDsOfNodes list of mesh nodes identifiers * \return \c true if nodes are correctly removed or \c false otherwise */ boolean RemoveNodes(in long_array IDsOfNodes); /*! * \brief Remove all orphan nodes. * \return number of removed nodes */ long RemoveOrphanNodes(); /*! * \brief Add a new node. * \param x X coordinate of new node * \param y Y coordinate of new node * \param z Z coordinate of new node * \return integer identifier of new node */ long AddNode(in double x, in double y, in double z); /*! * Create a 0D element on the given node. * \param IdOfNode Node IDs for creation of element. */ long Add0DElement(in long IDOfNode); /*! * Create a ball element on the given node. * \param IdOfNode Node IDs for creation of element. */ long AddBall(in long IDOfNode, in double diameter); /*! * Create an edge, either linear and quadratic (this is determed * by number of given nodes, two or three). * \param IdsOfNodes List of node IDs for creation of element. * Needed order of nodes in this list corresponds to description * of MED. This description is located by the following link: * http://www.salome-platform.org/salome2/web_med_internet/logiciels/medV2.2.2_doc_html/html/modele_de_donnees.html#3. */ long AddEdge(in long_array IDsOfNodes); /*! * Create face, either linear and quadratic (this is determed * by number of given nodes). * \param IdsOfNodes List of node IDs for creation of element. * Needed order of nodes in this list corresponds to description * of MED. This description is located by the following link: * http://www.salome-platform.org/salome2/web_med_internet/logiciels/medV2.2.2_doc_html/html/modele_de_donnees.html#3. */ long AddFace(in long_array IDsOfNodes); long AddPolygonalFace(in long_array IdsOfNodes); /*! * Create volume, either linear and quadratic (this is determed * by number of given nodes). * \param IdsOfNodes List of node IDs for creation of element. * Needed order of nodes in this list corresponds to description * of MED. This description is located by the following link: * http://www.salome-platform.org/salome2/web_med_internet/logiciels/medV2.2.2_doc_html/html/modele_de_donnees.html#3. */ long AddVolume(in long_array IDsOfNodes); /*! * Create volume of many faces, giving nodes for each face. * \param IdsOfNodes List of node IDs for volume creation face by face. * \param Quantities List of integer values, Quantities[i] * gives quantity of nodes in face number i. */ long AddPolyhedralVolume (in long_array IdsOfNodes, in long_array Quantities); /*! * Create volume of many faces, giving IDs of existing faces. * \param IdsOfFaces List of face IDs for volume creation. * \note The created volume will refer only to nodes * of the given faces, not to the faces itself. */ long AddPolyhedralVolumeByFaces (in long_array IdsOfFaces); /*! * Create 0D elements on all nodes of the given object except those * nodes on which a 0D element already exists. * \param theObject object on whose nodes 0D elements will be created. * \param theGroupName optional name of a group to add 0D elements created * and/or found on nodes of \a theObject. * \return an object (a new group or a temporary SMESH_IDSource) holding * ids of new and/or found 0D elements. */ SMESH_IDSource Create0DElementsOnAllNodes(in SMESH_IDSource theObject, in string theGroupName) raises (SALOME::SALOME_Exception); /*! * \brief Bind a node to a vertex * \param NodeID - node ID * \param VertexID - vertex ID available through GEOM_Object.GetSubShapeIndices()[0] */ void SetNodeOnVertex(in long NodeID, in long VertexID) raises (SALOME::SALOME_Exception); /*! * \brief Store node position on an edge * \param NodeID - node ID * \param EdgeID - edge ID available through GEOM_Object.GetSubShapeIndices()[0] * \param paramOnEdge - parameter on edge where the node is located */ void SetNodeOnEdge(in long NodeID, in long EdgeID, in double paramOnEdge) raises (SALOME::SALOME_Exception); /*! * \brief Store node position on a face * \param NodeID - node ID * \param FaceID - face ID available through GEOM_Object.GetSubShapeIndices()[0] * \param u - U parameter on face where the node is located * \param v - V parameter on face where the node is located */ void SetNodeOnFace(in long NodeID, in long FaceID, in double u, in double v) raises (SALOME::SALOME_Exception); /*! * \brief Bind a node to a solid * \param NodeID - node ID * \param SolidID - vertex ID available through GEOM_Object.GetSubShapeIndices()[0] */ void SetNodeInVolume(in long NodeID, in long SolidID) raises (SALOME::SALOME_Exception); /*! * \brief Bind an element to a shape * \param ElementID - element ID * \param ShapeID - shape ID available through GEOM_Object.GetSubShapeIndices()[0] */ void SetMeshElementOnShape(in long ElementID, in long ShapeID) raises (SALOME::SALOME_Exception); boolean MoveNode(in long NodeID, in double x, in double y, in double z); boolean InverseDiag(in long NodeID1, in long NodeID2); boolean DeleteDiag(in long NodeID1, in long NodeID2); boolean Reorient(in long_array IDsOfElements); boolean ReorientObject(in SMESH_IDSource theObject); /*! * \brief Reorient faces contained in \a the2Dgroup. * \param the2Dgroup - the mesh or its part to reorient * \param theDirection - desired direction of normal of \a theFace * \param theFace - ID of face whose orientation is checked. * It can be < 1 then \a thePoint is used to find a face. * \param thePoint - is used to find a face if \a theFace < 1. * \return number of reoriented elements. */ long Reorient2D(in SMESH_IDSource the2Dgroup, in DirStruct theDirection, in long theFace, in PointStruct thePoint) raises (SALOME::SALOME_Exception); /*! * \brief Fuse neighbour triangles into quadrangles. * \param theElems The triangles to be fused. * \param theCriterion Is used to choose a neighbour to fuse with. * \param theMaxAngle Is a max angle between element normals at which fusion * is still performed; theMaxAngle is mesured in radians. * \return TRUE in case of success, FALSE otherwise. */ boolean TriToQuad (in long_array IDsOfElements, in NumericalFunctor Criterion, in double MaxAngle); /*! * \brief Fuse neighbour triangles into quadrangles. * * Behaves like the above method, taking list of elements from \a theObject */ boolean TriToQuadObject (in SMESH_IDSource theObject, in NumericalFunctor Criterion, in double MaxAngle); /*! * \brief Split quadrangles into triangles. * \param theElems The faces to be splitted. * \param theCriterion Is used to choose a diagonal for splitting. * \return TRUE in case of success, FALSE otherwise. */ boolean QuadToTri (in long_array IDsOfElements, in NumericalFunctor Criterion); /*! * \brief Split quadrangles into triangles. * * Behaves like the above method, taking list of elements from \a theObject */ boolean QuadToTriObject (in SMESH_IDSource theObject, in NumericalFunctor Criterion); /*! * \brief Split quadrangles into triangles. * \param theElems The faces to be splitted. * \param the13Diag Is used to choose a diagonal for splitting. * \return TRUE in case of success, FALSE otherwise. */ boolean SplitQuad (in long_array IDsOfElements, in boolean Diag13); /*! * \brief Split quadrangles into triangles. * * Behaves like the above method, taking list of elements from \a theObject */ boolean SplitQuadObject (in SMESH_IDSource theObject, in boolean Diag13); /*! * Find better splitting of the given quadrangle. * \param IDOfQuad ID of the quadrangle to be splitted. * \param Criterion A criterion to choose a diagonal for splitting. * \return 1 if 1-3 diagonal is better, 2 if 2-4 * diagonal is better, 0 if error occurs. */ long BestSplit (in long IDOfQuad, in NumericalFunctor Criterion); /*! * \brief Split volumic elements into tetrahedrons * \param elems - elements to split * \param methodFlags - flags passing splitting method: * 1 - split the hexahedron into 5 tetrahedrons * 2 - split the hexahedron into 6 tetrahedrons * 3 - split the hexahedron into 24 tetrahedrons */ void SplitVolumesIntoTetra(in SMESH_IDSource elems, in short methodFlags) raises (SALOME::SALOME_Exception); enum Smooth_Method { LAPLACIAN_SMOOTH, CENTROIDAL_SMOOTH }; boolean Smooth(in long_array IDsOfElements, in long_array IDsOfFixedNodes, in long MaxNbOfIterations, in double MaxAspectRatio, in Smooth_Method Method); boolean SmoothObject(in SMESH_IDSource theObject, in long_array IDsOfFixedNodes, in long MaxNbOfIterations, in double MaxAspectRatio, in Smooth_Method Method); boolean SmoothParametric(in long_array IDsOfElements, in long_array IDsOfFixedNodes, in long MaxNbOfIterations, in double MaxAspectRatio, in Smooth_Method Method); boolean SmoothParametricObject(in SMESH_IDSource theObject, in long_array IDsOfFixedNodes, in long MaxNbOfIterations, in double MaxAspectRatio, in Smooth_Method Method); void ConvertToQuadratic(in boolean theForce3d); boolean ConvertFromQuadratic(); void ConvertToQuadraticObject(in boolean theForce3d, in SMESH_IDSource theObject) raises (SALOME::SALOME_Exception); void ConvertFromQuadraticObject(in SMESH_IDSource theObject) raises (SALOME::SALOME_Exception); void RenumberNodes(); void RenumberElements(); /*! * \brief Genarate dim+1 elements by rotation of given elements around axis * \param IDsOfElements - elements to ratate * \param Axix - rotation axis * \param AngleInRadians - rotation angle * \param NbOfSteps - number of elements to generate from one element */ void RotationSweep(in long_array IDsOfElements, in AxisStruct Axix, in double AngleInRadians, in long NbOfSteps, in double Tolerance); /*! * \brief Same as previous but additionally create groups of elements * generated from elements belonging to preexisting groups */ ListOfGroups RotationSweepMakeGroups(in long_array IDsOfElements, in AxisStruct Axix, in double AngleInRadians, in long NbOfSteps, in double Tolerance); /*! * \brief Genarate dim+1 elements by rotation of the object around axis * \param theObject - object containing elements to ratate * \param Axix - rotation axis * \param AngleInRadians - rotation angle * \param NbOfSteps - number of elements to generate from one element */ void RotationSweepObject(in SMESH_IDSource theObject, in AxisStruct Axix, in double AngleInRadians, in long NbOfSteps, in double Tolerance); /*! * \brief Same as previous but additionally create groups of elements * generated from elements belonging to preexisting groups */ ListOfGroups RotationSweepObjectMakeGroups(in SMESH_IDSource theObject, in AxisStruct Axix, in double AngleInRadians, in long NbOfSteps, in double Tolerance); /*! * \brief Genarate dim+1 elements by rotation of the object around axis * \param theObject - object containing elements to ratate * \param Axix - rotation axis * \param AngleInRadians - rotation angle * \param NbOfSteps - number of elements to generate from one element */ void RotationSweepObject1D(in SMESH_IDSource theObject, in AxisStruct Axix, in double AngleInRadians, in long NbOfSteps, in double Tolerance); /*! * \brief Same as previous but additionally create groups of elements * generated from elements belonging to preexisting groups */ ListOfGroups RotationSweepObject1DMakeGroups(in SMESH_IDSource theObject, in AxisStruct Axix, in double AngleInRadians, in long NbOfSteps, in double Tolerance); /*! * \brief Genarate dim+1 elements by rotation of the object around axis * \param theObject - object containing elements to ratate * \param Axix - rotation axis * \param AngleInRadians - rotation angle * \param NbOfSteps - number of elements to generate from one element */ void RotationSweepObject2D(in SMESH_IDSource theObject, in AxisStruct Axix, in double AngleInRadians, in long NbOfSteps, in double Tolerance); /*! * \brief Same as previous but additionally create groups of elements * generated from elements belonging to preexisting groups */ ListOfGroups RotationSweepObject2DMakeGroups(in SMESH_IDSource theObject, in AxisStruct Axix, in double AngleInRadians, in long NbOfSteps, in double Tolerance); /*! * \brief Genarate dim+1 elements by extrusion of elements along vector * \param IDsOfElements - elements to sweep * \param StepVector - vector giving direction and distance of an extrusion step * \param NbOfSteps - number of elements to generate from one element */ void ExtrusionSweep(in long_array IDsOfElements, in DirStruct StepVector, in long NbOfSteps); /*! * \brief Genarate dim+1 elements by extrusion of elements along vector * \param IDsOfElements - elements to sweep * \param StepVector - vector giving direction and distance of an extrusion step * \param NbOfSteps - number of elements to generate from one element */ void ExtrusionSweep0D(in long_array IDsOfElements, in DirStruct StepVector, in long NbOfSteps); /*! * \brief Same as previous but additionally create groups of elements * generated from elements belonging to preexisting groups */ ListOfGroups ExtrusionSweepMakeGroups(in long_array IDsOfElements, in DirStruct StepVector, in long NbOfSteps); /*! * \brief Same as previous but elements are nodes */ ListOfGroups ExtrusionSweepMakeGroups0D(in long_array IDsOfElements, in DirStruct StepVector, in long NbOfSteps); /*! * Generate new elements by extrusion of theElements * by StepVector by NbOfSteps * param ExtrFlags set flags for performing extrusion * param SewTolerance - uses for comparing locations of nodes if flag * EXTRUSION_FLAG_SEW is set */ void AdvancedExtrusion(in long_array IDsOfElements, in DirStruct StepVector, in long NbOfSteps, in long ExtrFlags, in double SewTolerance); /*! * \brief Same as previous but additionally create groups of elements * generated from elements belonging to preexisting groups */ ListOfGroups AdvancedExtrusionMakeGroups(in long_array IDsOfElements, in DirStruct StepVector, in long NbOfSteps, in long ExtrFlags, in double SewTolerance); void ExtrusionSweepObject(in SMESH_IDSource theObject, in DirStruct StepVector, in long NbOfSteps); ListOfGroups ExtrusionSweepObjectMakeGroups(in SMESH_IDSource theObject, in DirStruct StepVector, in long NbOfSteps); void ExtrusionSweepObject0D(in SMESH_IDSource theObject, in DirStruct StepVector, in long NbOfSteps); ListOfGroups ExtrusionSweepObject0DMakeGroups(in SMESH_IDSource theObject, in DirStruct StepVector, in long NbOfSteps); void ExtrusionSweepObject1D(in SMESH_IDSource theObject, in DirStruct StepVector, in long NbOfSteps); ListOfGroups ExtrusionSweepObject1DMakeGroups(in SMESH_IDSource theObject, in DirStruct StepVector, in long NbOfSteps); void ExtrusionSweepObject2D(in SMESH_IDSource theObject, in DirStruct StepVector, in long NbOfSteps); ListOfGroups ExtrusionSweepObject2DMakeGroups(in SMESH_IDSource theObject, in DirStruct StepVector, in long NbOfSteps); enum Extrusion_Error { EXTR_OK, EXTR_NO_ELEMENTS, EXTR_PATH_NOT_EDGE, EXTR_BAD_PATH_SHAPE, EXTR_BAD_STARTING_NODE, EXTR_BAD_ANGLES_NUMBER, EXTR_CANT_GET_TANGENT }; ListOfGroups ExtrusionAlongPathX(in long_array IDsOfElements, in SMESH_IDSource Path, in long NodeStart, in boolean HasAngles, in double_array Angles, in boolean LinearVariation, in boolean HasRefPoint, in PointStruct RefPoint, in boolean MakeGroups, in ElementType ElemType, out Extrusion_Error Error); ListOfGroups ExtrusionAlongPathObjX(in SMESH_IDSource theObject, in SMESH_IDSource Path, in long NodeStart, in boolean HasAngles, in double_array Angles, in boolean LinearVariation, in boolean HasRefPoint, in PointStruct RefPoint, in boolean MakeGroups, in ElementType ElemType, out Extrusion_Error Error); Extrusion_Error ExtrusionAlongPath(in long_array IDsOfElements, in SMESH_Mesh PathMesh, in GEOM::GEOM_Object PathShape, in long NodeStart, in boolean HasAngles, in double_array Angles, in boolean HasRefPoint, in PointStruct RefPoint); ListOfGroups ExtrusionAlongPathMakeGroups(in long_array IDsOfElements, in SMESH_Mesh PathMesh, in GEOM::GEOM_Object PathShape, in long NodeStart, in boolean HasAngles, in double_array Angles, in boolean HasRefPoint, in PointStruct RefPoint, out Extrusion_Error Error); Extrusion_Error ExtrusionAlongPathObject(in SMESH_IDSource theObject, in SMESH_Mesh PathMesh, in GEOM::GEOM_Object PathShape, in long NodeStart, in boolean HasAngles, in double_array Angles, in boolean HasRefPoint, in PointStruct RefPoint); ListOfGroups ExtrusionAlongPathObjectMakeGroups(in SMESH_IDSource theObject, in SMESH_Mesh PathMesh, in GEOM::GEOM_Object PathShape, in long NodeStart, in boolean HasAngles, in double_array Angles, in boolean HasRefPoint, in PointStruct RefPoint, out Extrusion_Error Error); Extrusion_Error ExtrusionAlongPathObject1D(in SMESH_IDSource theObject, in SMESH_Mesh PathMesh, in GEOM::GEOM_Object PathShape, in long NodeStart, in boolean HasAngles, in double_array Angles, in boolean HasRefPoint, in PointStruct RefPoint); ListOfGroups ExtrusionAlongPathObject1DMakeGroups(in SMESH_IDSource theObject, in SMESH_Mesh PathMesh, in GEOM::GEOM_Object PathShape, in long NodeStart, in boolean HasAngles, in double_array Angles, in boolean HasRefPoint, in PointStruct RefPoint, out Extrusion_Error Error); Extrusion_Error ExtrusionAlongPathObject2D(in SMESH_IDSource theObject, in SMESH_Mesh PathMesh, in GEOM::GEOM_Object PathShape, in long NodeStart, in boolean HasAngles, in double_array Angles, in boolean HasRefPoint, in PointStruct RefPoint); ListOfGroups ExtrusionAlongPathObject2DMakeGroups(in SMESH_IDSource theObject, in SMESH_Mesh PathMesh, in GEOM::GEOM_Object PathShape, in long NodeStart, in boolean HasAngles, in double_array Angles, in boolean HasRefPoint, in PointStruct RefPoint, out Extrusion_Error Error); /*! * Compute rotation angles for ExtrusionAlongPath as linear variation * of given angles along path steps * param PathMesh mesh containing a 1D sub-mesh on the edge, along * which proceeds the extrusion * param PathShape is shape(edge); as the mesh can be complex, the edge * is used to define the sub-mesh for the path */ double_array LinearAnglesVariation(in SMESH_Mesh PathMesh, in GEOM::GEOM_Object PathShape, in double_array Angles); enum MirrorType { POINT, AXIS, PLANE }; void Mirror (in long_array IDsOfElements, in AxisStruct Mirror, in MirrorType Type, in boolean Copy); ListOfGroups MirrorMakeGroups (in long_array IDsOfElements, in AxisStruct Mirror, in MirrorType Type); SMESH_Mesh MirrorMakeMesh (in long_array IDsOfElements, in AxisStruct Mirror, in MirrorType Type, in boolean CopyGroups, in string MeshName); void MirrorObject (in SMESH_IDSource theObject, in AxisStruct Mirror, in MirrorType Type, in boolean Copy); ListOfGroups MirrorObjectMakeGroups (in SMESH_IDSource theObject, in AxisStruct Mirror, in MirrorType Type); SMESH_Mesh MirrorObjectMakeMesh (in SMESH_IDSource theObject, in AxisStruct Mirror, in MirrorType Type, in boolean CopyGroups, in string MeshName); void Translate (in long_array IDsOfElements, in DirStruct Vector, in boolean Copy); ListOfGroups TranslateMakeGroups (in long_array IDsOfElements, in DirStruct Vector); SMESH_Mesh TranslateMakeMesh (in long_array IDsOfElements, in DirStruct Vector, in boolean CopyGroups, in string MeshName); void TranslateObject (in SMESH_IDSource theObject, in DirStruct Vector, in boolean Copy); ListOfGroups TranslateObjectMakeGroups (in SMESH_IDSource theObject, in DirStruct Vector); SMESH_Mesh TranslateObjectMakeMesh (in SMESH_IDSource theObject, in DirStruct Vector, in boolean CopyGroups, in string MeshName); void Scale (in SMESH_IDSource theObject, in PointStruct thePoint, in double_array theScaleFact, in boolean Copy); ListOfGroups ScaleMakeGroups (in SMESH_IDSource theObject, in PointStruct thePoint, in double_array theScaleFact); SMESH_Mesh ScaleMakeMesh (in SMESH_IDSource theObject, in PointStruct thePoint, in double_array theScaleFact, in boolean CopyGroups, in string MeshName); void Rotate (in long_array IDsOfElements, in AxisStruct Axis, in double AngleInRadians, in boolean Copy); ListOfGroups RotateMakeGroups (in long_array IDsOfElements, in AxisStruct Axis, in double AngleInRadians); SMESH_Mesh RotateMakeMesh (in long_array IDsOfElements, in AxisStruct Axis, in double AngleInRadians, in boolean CopyGroups, in string MeshName); void RotateObject (in SMESH_IDSource theObject, in AxisStruct Axis, in double AngleInRadians, in boolean Copy); ListOfGroups RotateObjectMakeGroups (in SMESH_IDSource theObject, in AxisStruct Axis, in double AngleInRadians); SMESH_Mesh RotateObjectMakeMesh (in SMESH_IDSource theObject, in AxisStruct Axis, in double AngleInRadians, in boolean CopyGroups, in string MeshName); void FindCoincidentNodes (in double Tolerance, out array_of_long_array GroupsOfNodes); void FindCoincidentNodesOnPart (in SMESH_IDSource SubMeshOrGroup, in double Tolerance, out array_of_long_array GroupsOfNodes); void FindCoincidentNodesOnPartBut (in SMESH_IDSource SubMeshOrGroup, in double Tolerance, out array_of_long_array GroupsOfNodes, in ListOfIDSources ExceptSubMeshOrGroups); void MergeNodes (in array_of_long_array GroupsOfNodes); /*! * \brief Find elements built on the same nodes. * \param MeshOrSubMeshOrGroup Mesh or SubMesh, or Group of elements for searching. * \return List of groups of equal elements. */ void FindEqualElements (in SMESH_IDSource MeshOrSubMeshOrGroup, out array_of_long_array GroupsOfElementsID); /*! * \brief Merge elements in each given group. * \param GroupsOfElementsID Groups of elements for merging. */ void MergeElements(in array_of_long_array GroupsOfElementsID); /*! * \brief Merge equal elements in the whole mesh. */ void MergeEqualElements(); /*! * If the given ID is a valid node ID (nodeID > 0), just move this node, else * move the node closest to the point to point's location and return ID of the node */ long MoveClosestNodeToPoint(in double x, in double y, in double z, in long nodeID); /*! * Return ID of node closest to a given point */ long FindNodeClosestTo(in double x, in double y, in double z); /*! * Return elements of given type where the given point is IN or ON. * * 'ALL' type means elements of any type excluding nodes and 0D elements */ long_array FindElementsByPoint(in double x, in double y, in double z, in ElementType type); /*! * Searching among the given elements, return elements of given type * where the given point is IN or ON. * * 'ALL' type means elements of any type excluding nodes and 0D elements */ long_array FindAmongElementsByPoint(in SMESH_IDSource elements, in double x, in double y, in double z, in ElementType type); /*! * Return point state in a closed 2D mesh in terms of TopAbs_State enumeration. * TopAbs_UNKNOWN state means that either mesh is wrong or the analysis fails. */ short GetPointState(in double x, in double y, in double z); enum Sew_Error { SEW_OK, SEW_BORDER1_NOT_FOUND, SEW_BORDER2_NOT_FOUND, SEW_BOTH_BORDERS_NOT_FOUND, SEW_BAD_SIDE_NODES, SEW_VOLUMES_TO_SPLIT, // for SewSideElements() only: SEW_DIFF_NB_OF_ELEMENTS, SEW_TOPO_DIFF_SETS_OF_ELEMENTS, SEW_BAD_SIDE1_NODES, SEW_BAD_SIDE2_NODES }; Sew_Error SewFreeBorders (in long FirstNodeID1, in long SecondNodeID1, in long LastNodeID1, in long FirstNodeID2, in long SecondNodeID2, in long LastNodeID2, in boolean CreatePolygons, in boolean CreatePolyedrs); Sew_Error SewConformFreeBorders (in long FirstNodeID1, in long SecondNodeID1, in long LastNodeID1, in long FirstNodeID2, in long SecondNodeID2); Sew_Error SewBorderToSide (in long FirstNodeIDOnFreeBorder, in long SecondNodeIDOnFreeBorder, in long LastNodeIDOnFreeBorder, in long FirstNodeIDOnSide, in long LastNodeIDOnSide, in boolean CreatePolygons, in boolean CreatePolyedrs); Sew_Error SewSideElements (in long_array IDsOfSide1Elements, in long_array IDsOfSide2Elements, in long NodeID1OfSide1ToMerge, in long NodeID1OfSide2ToMerge, in long NodeID2OfSide1ToMerge, in long NodeID2OfSide2ToMerge); /*! * Set new nodes for given element. * If number of nodes is not corresponded to type of * element - returns false */ boolean ChangeElemNodes(in long ide, in long_array newIDs); /*! * \brief Creates a hole in a mesh by doubling the nodes of some particular elements * \param theNodes - identifiers of nodes to be doubled * \param theModifiedElems - identifiers of elements to be updated by the new (doubled) * nodes. If list of element identifiers is empty then nodes are doubled but * they not assigned to elements * \return TRUE if operation has been completed successfully, FALSE otherwise * \sa DoubleNode(), DoubleNodeGroup(), DoubleNodeGroups() */ boolean DoubleNodes( in long_array theNodes, in long_array theModifiedElems ); /*! * \brief Creates a hole in a mesh by doubling the nodes of some particular elements * This method provided for convenience works as DoubleNodes() described above. * \param theNodeId - identifier of node to be doubled. * \param theModifiedElems - identifiers of elements to be updated. * \return TRUE if operation has been completed successfully, FALSE otherwise * \sa DoubleNodes(), DoubleNodeGroup(), DoubleNodeGroups() */ boolean DoubleNode( in long theNodeId, in long_array theModifiedElems ); /*! * \brief Creates a hole in a mesh by doubling the nodes of some particular elements * This method provided for convenience works as DoubleNodes() described above. * \param theNodes - group of nodes to be doubled. * \param theModifiedElems - group of elements to be updated. * \return TRUE if operation has been completed successfully, FALSE otherwise * \sa DoubleNode(), DoubleNodes(), DoubleNodeGroups(), DoubleNodeGroupNew() */ boolean DoubleNodeGroup( in SMESH_GroupBase theNodes, in SMESH_GroupBase theModifiedElems ); /*! * \brief Creates a hole in a mesh by doubling the nodes of some particular elements. * Works as DoubleNodeGroup() described above, but returns a new group with * newly created nodes. * \param theNodes - group of nodes to be doubled. * \param theModifiedElems - group of elements to be updated. * \return a new group with newly created nodes * \sa DoubleNodeGroup() */ SMESH_Group DoubleNodeGroupNew( in SMESH_GroupBase theNodes, in SMESH_GroupBase theModifiedElems ); /*! * \brief Creates a hole in a mesh by doubling the nodes of some particular elements * This method provided for convenience works as DoubleNodes() described above. * \param theNodes - list of groups of nodes to be doubled * \param theModifiedElems - list of groups of elements to be updated. * \return TRUE if operation has been completed successfully, FALSE otherwise * \sa DoubleNode(), DoubleNodeGroup(), DoubleNodes() */ boolean DoubleNodeGroups( in ListOfGroups theNodes, in ListOfGroups theModifiedElems ); /*! * \brief Creates a hole in a mesh by doubling the nodes of some particular elements * Works as DoubleNodeGroups() described above, but returns a new group with * newly created nodes. * \param theNodes - list of groups of nodes to be doubled * \param theModifiedElems - list of groups of elements to be updated. * \return a new group with newly created nodes * \sa DoubleNodeGroups() */ SMESH_Group DoubleNodeGroupsNew( in ListOfGroups theNodes, in ListOfGroups theModifiedElems ); /*! * \brief Creates a hole in a mesh by doubling the nodes of some particular elements * \param theElems - the list of elements (edges or faces) to be replicated * The nodes for duplication could be found from these elements * \param theNodesNot - list of nodes to NOT replicate * \param theAffectedElems - the list of elements (cells and edges) to which the * replicated nodes should be associated to. * \return TRUE if operation has been completed successfully, FALSE otherwise * \sa DoubleNodeGroup(), DoubleNodeGroups() */ boolean DoubleNodeElem( in long_array theElems, in long_array theNodesNot, in long_array theAffectedElems ); /*! * \brief Creates a hole in a mesh by doubling the nodes of some particular elements * \param theElems - the list of elements (edges or faces) to be replicated * The nodes for duplication could be found from these elements * \param theNodesNot - list of nodes to NOT replicate * \param theShape - shape to detect affected elements (element which geometric center * located on or inside shape). * The replicated nodes should be associated to affected elements. * \return TRUE if operation has been completed successfully, FALSE otherwise * \sa DoubleNodeGroupInRegion(), DoubleNodeGroupsInRegion() */ boolean DoubleNodeElemInRegion( in long_array theElems, in long_array theNodesNot, in GEOM::GEOM_Object theShape ); /*! * \brief Creates a hole in a mesh by doubling the nodes of some particular elements * This method provided for convenience works as DoubleNodes() described above. * \param theElems - group of of elements (edges or faces) to be replicated * \param theNodesNot - group of nodes not to replicated * \param theAffectedElems - group of elements to which the replicated nodes * should be associated to. * \return TRUE if operation has been completed successfully, FALSE otherwise * \sa DoubleNodes(), DoubleNodeGroups(), DoubleNodeElemGroupNew() */ boolean DoubleNodeElemGroup( in SMESH_GroupBase theElems, in SMESH_GroupBase theNodesNot, in SMESH_GroupBase theAffectedElems ); /*! * \brief Creates a hole in a mesh by doubling the nodes of some particular elements. * Works as DoubleNodeElemGroup() described above, but returns a new group with * newly created elements. * \param theElems - group of of elements (edges or faces) to be replicated * \param theNodesNot - group of nodes not to replicated * \param theAffectedElems - group of elements to which the replicated nodes * should be associated to. * \return a new group with newly created elements * \sa DoubleNodeElemGroup() */ SMESH_Group DoubleNodeElemGroupNew( in SMESH_GroupBase theElems, in SMESH_GroupBase theNodesNot, in SMESH_GroupBase theAffectedElems ); /*! * \brief Creates a hole in a mesh by doubling the nodes of some particular elements. * Works as DoubleNodeElemGroup() described above, but returns two new groups: * a group of newly created elements and a group of newly created nodes * \param theElems - group of of elements (edges or faces) to be replicated * \param theNodesNot - group of nodes not to replicated * \param theAffectedElems - group of elements to which the replicated nodes * should be associated to. * \param theElemGroupNeeded - to create group of new elements or not * \param theNodeGroupNeeded - to create group of new nodes or not * \return two new groups of newly created elements (1st) and nodes (2nd) * \sa DoubleNodeElemGroup() */ ListOfGroups DoubleNodeElemGroup2New( in SMESH_GroupBase theElems, in SMESH_GroupBase theNodesNot, in SMESH_GroupBase theAffectedElems, in boolean theElemGroupNeeded, in boolean theNodeGroupNeeded); /*! * \brief Creates a hole in a mesh by doubling the nodes of some particular elements * This method provided for convenience works as DoubleNodes() described above. * \param theElems - group of elements (edges or faces) to be replicated * \param theNodesNot - group of nodes not to replicated * \param theShape - shape to detect affected elements (element which geometric center * located on or inside shape). * The replicated nodes should be associated to affected elements. * \return TRUE if operation has been completed successfully, FALSE otherwise * \sa DoubleNodesInRegion(), DoubleNodeGroupsInRegion() */ boolean DoubleNodeElemGroupInRegion( in SMESH_GroupBase theElems, in SMESH_GroupBase theNodesNot, in GEOM::GEOM_Object theShape ); /*! * \brief Creates a hole in a mesh by doubling the nodes of some particular elements * This method provided for convenience works as DoubleNodes() described above. * \param theElems - list of groups of elements (edges or faces) to be replicated * \param theNodesNot - list of groups of nodes not to replicated * \param theAffectedElems - group of elements to which the replicated nodes * should be associated to. * \return TRUE if operation has been completed successfully, FALSE otherwise * \sa DoubleNodeGroup(), DoubleNodes(), DoubleNodeElemGroupsNew() */ boolean DoubleNodeElemGroups( in ListOfGroups theElems, in ListOfGroups theNodesNot, in ListOfGroups theAffectedElems ); /*! * \brief Creates a hole in a mesh by doubling the nodes of some particular elements. * Works as DoubleNodeElemGroups() described above, but returns a new group with * newly created elements. * \param theElems - list of groups of elements (edges or faces) to be replicated * \param theNodesNot - list of groups of nodes not to replicated * \param theAffectedElems - group of elements to which the replicated nodes * should be associated to. * \return a new group with newly created elements * \sa DoubleNodeElemGroups() */ SMESH_Group DoubleNodeElemGroupsNew( in ListOfGroups theElems, in ListOfGroups theNodesNot, in ListOfGroups theAffectedElems ); /*! * \brief Creates a hole in a mesh by doubling the nodes of some particular elements. * Works as DoubleNodeElemGroups() described above, but returns two new groups: * a group of newly created elements and a group of newly created nodes. * \param theElems - list of groups of elements (edges or faces) to be replicated * \param theNodesNot - list of groups of nodes not to replicated * \param theAffectedElems - group of elements to which the replicated nodes * should be associated to. * \param theElemGroupNeeded - to create group of new elements or not * \param theNodeGroupNeeded - to create group of new nodes or not * \return two new groups of newly created elements (1st) and nodes (2nd) * \sa DoubleNodeElemGroups() */ ListOfGroups DoubleNodeElemGroups2New( in ListOfGroups theElems, in ListOfGroups theNodesNot, in ListOfGroups theAffectedElems, in boolean theElemGroupNeeded, in boolean theNodeGroupNeeded ); /*! * \brief Creates a hole in a mesh by doubling the nodes of some particular elements * This method provided for convenience works as DoubleNodes() described above. * \param theElems - list of groups of elements (edges or faces) to be replicated * \param theNodesNot - list of groups of nodes not to replicated * \param theShape - shape to detect affected elements (element which geometric center * located on or inside shape). * The replicated nodes should be associated to affected elements. * \return TRUE if operation has been completed successfully, FALSE otherwise * \sa DoubleNodeGroupInRegion(), DoubleNodesInRegion() */ boolean DoubleNodeElemGroupsInRegion( in ListOfGroups theElems, in ListOfGroups theNodesNot, in GEOM::GEOM_Object theShape ); /*! * \brief Identify the elements that will be affected by node duplication (actual duplication is not performed). * This method is the first step of DoubleNodeElemGroupsInRegion. * \param theElems - list of groups of elements (edges or faces) to be replicated * \param theNodesNot - list of groups of nodes not to replicated * \param theShape - shape to detect affected elements (element which geometric center * located on or inside shape). * The replicated nodes should be associated to affected elements. * \return groups of affected elements * \sa DoubleNodeElemGroupsInRegion() */ ListOfGroups AffectedElemGroupsInRegion( in ListOfGroups theElems, in ListOfGroups theNodesNot, in GEOM::GEOM_Object theShape ); /*! * \brief Generates skin mesh (containing 2D cells) from 3D mesh * The created 2D mesh elements based on nodes of free faces of boundary volumes * \return TRUE if operation has been completed successfully, FALSE otherwise */ boolean Make2DMeshFrom3D(); /*! * \brief Creates missing boundary elements * \param elements - elements whose boundary is to be checked * \param dimension - defines type of boundary elements to create * BND_1DFROM3D creates mesh edges on all borders of free facets of 3D elements. * \param groupName - a name of group to store created boundary elements in, * "" means not to create the group * \param meshName - a name of new mesh to store created boundary elements in, * "" means not to create the new mesh * \param toCopyElements - if true, the checked elements will be copied into the new mesh * else only boundary elements will be copied into the new mesh * \param toCopyExistingBondary - if true, not only new but also pre-existing * boundary elements will be copied into the new mesh * \param group - returns the create group, if any * \retval SMESH::SMESH_Mesh - the mesh where elements were added to */ SMESH_Mesh MakeBoundaryMesh(in SMESH_IDSource elements, in Bnd_Dimension dimension, in string groupName, in string meshName, in boolean toCopyElements, in boolean toCopyExistingBondary, out SMESH_Group group); /*! * \brief Creates missing boundary elements around either the whole mesh or * groups of 2D elements * \param dimension - defines type of boundary elements to create * \param groupName - a name of group to store all boundary elements in, * "" means not to create the group * \param meshName - a name of a new mesh, which is a copy of the initial * mesh + created boundary elements; "" means not to create the new mesh * \param toCopyAll - if true, the whole initial mesh will be copied into * the new mesh else only boundary elements will be copied into the new mesh * \param groups - optional groups of 2D elements to make boundary around * \param mesh - returns the mesh where elements were added to * \param group - returns the created group, if any * \retval long - number of added boundary elements */ long MakeBoundaryElements(in Bnd_Dimension dimension, in string groupName, in string meshName, in boolean toCopyAll, in ListOfIDSources groups, out SMESH_Mesh mesh, out SMESH_Group group) raises (SALOME::SALOME_Exception); /*! * \brief Double nodes on shared faces between groups of volumes and create flat elements on demand. * Flat elements are mainly used by some types of mechanic calculations. * * The list of groups must describe a partition of the mesh volumes. * The nodes of the internal faces at the boundaries of the groups are doubled. * In option, the internal faces are replaced by flat elements. * Triangles are transformed in prisms, and quadrangles in hexahedrons. * \param theDomains - list of groups of volumes * \param createJointElems - if TRUE, create the elements * \return TRUE if operation has been completed successfully, FALSE otherwise */ boolean DoubleNodesOnGroupBoundaries( in ListOfGroups theDomains, in boolean createJointElems ) raises (SALOME::SALOME_Exception); /*! * \brief Double nodes on some external faces and create flat elements. * Flat elements are mainly used by some types of mechanic calculations. * * Each group of the list must be constituted of faces. * Triangles are transformed in prisms, and quadrangles in hexahedrons. * \param theGroupsOfFaces - list of groups of faces * \return TRUE if operation has been completed successfully, FALSE otherwise */ boolean CreateFlatElementsOnFacesGroups( in ListOfGroups theGroupsOfFaces ); /*! * \brief identify all the elements around a geom shape, get the faces delimiting the hole * Build groups of volume to remove, groups of faces to replace on the skin of the object, * groups of faces to remove insidethe object, (idem edges). * Build ordered list of nodes at the border of each group of faces to replace (to be used to build a geom subshape) */ void CreateHoleSkin(in double radius, in GEOM::GEOM_Object theShape, in string groupName, in double_array theNodesCoords, out array_of_long_array GroupsOfNodes) raises (SALOME::SALOME_Exception); }; }; #endif