1 // Copyright (C) 2007-2016 CEA/DEN, EDF R&D, OPEN CASCADE
3 // Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
4 // CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
6 // This library is free software; you can redistribute it and/or
7 // modify it under the terms of the GNU Lesser General Public
8 // License as published by the Free Software Foundation; either
9 // version 2.1 of the License, or (at your option) any later version.
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 // Lesser General Public License for more details.
16 // You should have received a copy of the GNU Lesser General Public
17 // License along with this library; if not, write to the Free Software
18 // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
23 // File : StdMeshers_Quadrangle_2D.cxx
24 // Author : Paul RASCLE, EDF
27 #include "StdMeshers_Quadrangle_2D.hxx"
29 #include "SMDS_EdgePosition.hxx"
30 #include "SMDS_FacePosition.hxx"
31 #include "SMDS_MeshElement.hxx"
32 #include "SMDS_MeshNode.hxx"
33 #include "SMESHDS_Mesh.hxx"
34 #include "SMESH_Block.hxx"
35 #include "SMESH_Comment.hxx"
36 #include "SMESH_Gen.hxx"
37 #include "SMESH_HypoFilter.hxx"
38 #include "SMESH_Mesh.hxx"
39 #include "SMESH_MeshAlgos.hxx"
40 #include "SMESH_MesherHelper.hxx"
41 #include "SMESH_subMesh.hxx"
42 #include "StdMeshers_FaceSide.hxx"
43 #include "StdMeshers_QuadrangleParams.hxx"
44 #include "StdMeshers_ViscousLayers2D.hxx"
46 #include <BRepBndLib.hxx>
47 #include <BRepClass_FaceClassifier.hxx>
48 #include <BRep_Tool.hxx>
49 #include <Bnd_Box.hxx>
50 #include <GeomAPI_ProjectPointOnSurf.hxx>
51 #include <Geom_Surface.hxx>
52 #include <NCollection_DefineArray2.hxx>
53 #include <Precision.hxx>
54 #include <TColStd_SequenceOfInteger.hxx>
55 #include <TColStd_SequenceOfReal.hxx>
56 #include <TColgp_SequenceOfXY.hxx>
58 #include <TopExp_Explorer.hxx>
59 #include <TopTools_DataMapOfShapeReal.hxx>
60 #include <TopTools_ListIteratorOfListOfShape.hxx>
61 #include <TopTools_MapOfShape.hxx>
64 #include "utilities.h"
65 #include "Utils_ExceptHandlers.hxx"
67 #include <boost/container/flat_set.hpp>
68 #include <boost/intrusive/circular_list_algorithms.hpp>
70 typedef NCollection_Array2<const SMDS_MeshNode*> StdMeshers_Array2OfNode;
73 typedef SMESH_Comment TComm;
77 //=============================================================================
81 //=============================================================================
83 StdMeshers_Quadrangle_2D::StdMeshers_Quadrangle_2D (int hypId,
85 : SMESH_2D_Algo(hypId, gen),
86 myQuadranglePreference(false),
87 myTrianglePreference(false),
92 myQuadType(QUAD_STANDARD),
95 _name = "Quadrangle_2D";
96 _shapeType = (1 << TopAbs_FACE);
97 _compatibleHypothesis.push_back("QuadrangleParams");
98 _compatibleHypothesis.push_back("QuadranglePreference");
99 _compatibleHypothesis.push_back("TrianglePreference");
100 _compatibleHypothesis.push_back("ViscousLayers2D");
103 //=============================================================================
107 //=============================================================================
109 StdMeshers_Quadrangle_2D::~StdMeshers_Quadrangle_2D()
113 //=============================================================================
117 //=============================================================================
119 bool StdMeshers_Quadrangle_2D::CheckHypothesis
121 const TopoDS_Shape& aShape,
122 SMESH_Hypothesis::Hypothesis_Status& aStatus)
125 myQuadType = QUAD_STANDARD;
126 myQuadranglePreference = false;
127 myTrianglePreference = false;
128 myHelper = (SMESH_MesherHelper*)NULL;
133 aStatus = SMESH_Hypothesis::HYP_OK;
135 const list <const SMESHDS_Hypothesis * >& hyps =
136 GetUsedHypothesis(aMesh, aShape, false);
137 const SMESHDS_Hypothesis * aHyp = 0;
139 bool isFirstParams = true;
141 // First assigned hypothesis (if any) is processed now
142 if (hyps.size() > 0) {
144 if (strcmp("QuadrangleParams", aHyp->GetName()) == 0)
146 myParams = (const StdMeshers_QuadrangleParams*)aHyp;
147 myTriaVertexID = myParams->GetTriaVertex();
148 myQuadType = myParams->GetQuadType();
149 if (myQuadType == QUAD_QUADRANGLE_PREF ||
150 myQuadType == QUAD_QUADRANGLE_PREF_REVERSED)
151 myQuadranglePreference = true;
152 else if (myQuadType == QUAD_TRIANGLE_PREF)
153 myTrianglePreference = true;
155 else if (strcmp("QuadranglePreference", aHyp->GetName()) == 0) {
156 isFirstParams = false;
157 myQuadranglePreference = true;
159 else if (strcmp("TrianglePreference", aHyp->GetName()) == 0){
160 isFirstParams = false;
161 myTrianglePreference = true;
164 isFirstParams = false;
168 // Second(last) assigned hypothesis (if any) is processed now
169 if (hyps.size() > 1) {
172 if (strcmp("QuadranglePreference", aHyp->GetName()) == 0) {
173 myQuadranglePreference = true;
174 myTrianglePreference = false;
175 myQuadType = QUAD_STANDARD;
177 else if (strcmp("TrianglePreference", aHyp->GetName()) == 0){
178 myQuadranglePreference = false;
179 myTrianglePreference = true;
180 myQuadType = QUAD_STANDARD;
183 else if (const StdMeshers_QuadrangleParams* aHyp2 =
184 dynamic_cast<const StdMeshers_QuadrangleParams*>( aHyp ))
186 myTriaVertexID = aHyp2->GetTriaVertex();
188 if (!myQuadranglePreference && !myTrianglePreference) { // priority of hypos
189 myQuadType = aHyp2->GetQuadType();
190 if (myQuadType == QUAD_QUADRANGLE_PREF ||
191 myQuadType == QUAD_QUADRANGLE_PREF_REVERSED)
192 myQuadranglePreference = true;
193 else if (myQuadType == QUAD_TRIANGLE_PREF)
194 myTrianglePreference = true;
199 error( StdMeshers_ViscousLayers2D::CheckHypothesis( aMesh, aShape, aStatus ));
201 return aStatus == HYP_OK;
204 //=============================================================================
208 //=============================================================================
210 bool StdMeshers_Quadrangle_2D::Compute (SMESH_Mesh& aMesh,
211 const TopoDS_Shape& aShape)
213 const TopoDS_Face& F = TopoDS::Face(aShape);
214 aMesh.GetSubMesh( F );
216 // do not initialize my fields before this as StdMeshers_ViscousLayers2D
217 // can call Compute() recursively
218 SMESH_ProxyMesh::Ptr proxyMesh = StdMeshers_ViscousLayers2D::Compute( aMesh, F );
222 myProxyMesh = proxyMesh;
224 SMESH_MesherHelper helper (aMesh);
227 _quadraticMesh = myHelper->IsQuadraticSubMesh(aShape);
228 myHelper->SetElementsOnShape( true );
229 myNeedSmooth = false;
232 FaceQuadStruct::Ptr quad = CheckNbEdges( aMesh, F, /*considerMesh=*/true, myHelper );
236 myQuadList.push_back( quad );
238 if ( !getEnforcedUV() )
241 updateDegenUV( quad );
243 int n1 = quad->side[0].NbPoints();
244 int n2 = quad->side[1].NbPoints();
245 int n3 = quad->side[2].NbPoints();
246 int n4 = quad->side[3].NbPoints();
248 enum { NOT_COMPUTED = -1, COMPUTE_FAILED = 0, COMPUTE_OK = 1 };
249 int res = NOT_COMPUTED;
250 if ( myQuadranglePreference )
252 int nfull = n1+n2+n3+n4;
253 if ((nfull % 2) == 0 && ((n1 != n3) || (n2 != n4)))
255 // special path generating only quandrangle faces
256 res = computeQuadPref( aMesh, F, quad );
259 else if ( myQuadType == QUAD_REDUCED )
263 int n13tmp = n13/2; n13tmp = n13tmp*2;
264 int n24tmp = n24/2; n24tmp = n24tmp*2;
265 if ((n1 == n3 && n2 != n4 && n24tmp == n24) ||
266 (n2 == n4 && n1 != n3 && n13tmp == n13))
268 res = computeReduced( aMesh, F, quad );
272 if ( n1 != n3 && n2 != n4 )
273 error( COMPERR_WARNING,
274 "To use 'Reduced' transition, "
275 "two opposite sides should have same number of segments, "
276 "but actual number of segments is different on all sides. "
277 "'Standard' transion has been used.");
278 else if ( ! ( n1 == n3 && n2 == n4 ))
279 error( COMPERR_WARNING,
280 "To use 'Reduced' transition, "
281 "two opposite sides should have an even difference in number of segments. "
282 "'Standard' transion has been used.");
286 if ( res == NOT_COMPUTED )
288 if ( n1 != n3 || n2 != n4 )
289 res = computeTriangles( aMesh, F, quad );
291 res = computeQuadDominant( aMesh, F );
294 if ( res == COMPUTE_OK && myNeedSmooth )
297 if ( res == COMPUTE_OK )
300 return ( res == COMPUTE_OK );
303 //================================================================================
305 * \brief Compute quadrangles and triangles on the quad
307 //================================================================================
309 bool StdMeshers_Quadrangle_2D::computeTriangles(SMESH_Mesh& aMesh,
310 const TopoDS_Face& aFace,
311 FaceQuadStruct::Ptr quad)
313 int nb = quad->side[0].grid->NbPoints();
314 int nr = quad->side[1].grid->NbPoints();
315 int nt = quad->side[2].grid->NbPoints();
316 int nl = quad->side[3].grid->NbPoints();
318 // rotate the quad to have nbNodeOut sides on TOP [and LEFT]
320 quad->shift( nl > nr ? 3 : 2, true );
322 quad->shift( 1, true );
324 quad->shift( nt > nb ? 0 : 3, true );
326 if ( !setNormalizedGrid( quad ))
329 if ( quad->nbNodeOut( QUAD_TOP_SIDE ))
331 splitQuad( quad, 0, quad->jSize-2 );
333 if ( quad->nbNodeOut( QUAD_BOTTOM_SIDE )) // this should not happen
335 splitQuad( quad, 0, 1 );
337 FaceQuadStruct::Ptr newQuad = myQuadList.back();
338 if ( quad != newQuad ) // split done
340 { // update left side limit till where to make triangles
341 FaceQuadStruct::Ptr botQuad = // a bottom part
342 ( quad->side[ QUAD_LEFT_SIDE ].from == 0 ) ? quad : newQuad;
343 if ( botQuad->nbNodeOut( QUAD_LEFT_SIDE ) > 0 )
344 botQuad->side[ QUAD_LEFT_SIDE ].to += botQuad->nbNodeOut( QUAD_LEFT_SIDE );
345 else if ( botQuad->nbNodeOut( QUAD_RIGHT_SIDE ) > 0 )
346 botQuad->side[ QUAD_RIGHT_SIDE ].to += botQuad->nbNodeOut( QUAD_RIGHT_SIDE );
348 // make quad be a greatest one
349 if ( quad->side[ QUAD_LEFT_SIDE ].NbPoints() == 2 ||
350 quad->side[ QUAD_RIGHT_SIDE ].NbPoints() == 2 )
352 if ( !setNormalizedGrid( quad ))
356 if ( quad->nbNodeOut( QUAD_RIGHT_SIDE ))
358 splitQuad( quad, quad->iSize-2, 0 );
360 if ( quad->nbNodeOut( QUAD_LEFT_SIDE ))
362 splitQuad( quad, 1, 0 );
364 if ( quad->nbNodeOut( QUAD_TOP_SIDE ))
366 newQuad = myQuadList.back();
367 if ( newQuad == quad ) // too narrow to split
369 // update left side limit till where to make triangles
370 quad->side[ QUAD_LEFT_SIDE ].to--;
374 FaceQuadStruct::Ptr leftQuad =
375 ( quad->side[ QUAD_BOTTOM_SIDE ].from == 0 ) ? quad : newQuad;
376 leftQuad->nbNodeOut( QUAD_TOP_SIDE ) = 0;
381 if ( ! computeQuadDominant( aMesh, aFace ))
384 // try to fix zero-area triangles near straight-angle corners
389 //================================================================================
391 * \brief Compute quadrangles and possibly triangles on all quads of myQuadList
393 //================================================================================
395 bool StdMeshers_Quadrangle_2D::computeQuadDominant(SMESH_Mesh& aMesh,
396 const TopoDS_Face& aFace)
398 if ( !addEnforcedNodes() )
401 std::list< FaceQuadStruct::Ptr >::iterator quad = myQuadList.begin();
402 for ( ; quad != myQuadList.end(); ++quad )
403 if ( !computeQuadDominant( aMesh, aFace, *quad ))
409 //================================================================================
411 * \brief Compute quadrangles and possibly triangles
413 //================================================================================
415 bool StdMeshers_Quadrangle_2D::computeQuadDominant(SMESH_Mesh& aMesh,
416 const TopoDS_Face& aFace,
417 FaceQuadStruct::Ptr quad)
419 // --- set normalized grid on unit square in parametric domain
421 if ( !setNormalizedGrid( quad ))
424 // --- create nodes on points, and create quadrangles
426 int nbhoriz = quad->iSize;
427 int nbvertic = quad->jSize;
429 // internal mesh nodes
430 SMESHDS_Mesh * meshDS = aMesh.GetMeshDS();
431 Handle(Geom_Surface) S = BRep_Tool::Surface(aFace);
432 int i,j, geomFaceID = meshDS->ShapeToIndex(aFace);
433 for (i = 1; i < nbhoriz - 1; i++)
434 for (j = 1; j < nbvertic - 1; j++)
436 UVPtStruct& uvPnt = quad->UVPt( i, j );
437 gp_Pnt P = S->Value( uvPnt.u, uvPnt.v );
438 uvPnt.node = meshDS->AddNode(P.X(), P.Y(), P.Z());
439 meshDS->SetNodeOnFace( uvPnt.node, geomFaceID, uvPnt.u, uvPnt.v );
445 // --.--.--.--.--.-- nbvertic
451 // ---.----.----.--- 0
452 // 0 > > > > > > > > nbhoriz
457 int iup = nbhoriz - 1;
458 if (quad->nbNodeOut(3)) { ilow++; } else { if (quad->nbNodeOut(1)) iup--; }
461 int jup = nbvertic - 1;
462 if (quad->nbNodeOut(0)) { jlow++; } else { if (quad->nbNodeOut(2)) jup--; }
464 // regular quadrangles
465 for (i = ilow; i < iup; i++) {
466 for (j = jlow; j < jup; j++) {
467 const SMDS_MeshNode *a, *b, *c, *d;
468 a = quad->uv_grid[ j * nbhoriz + i ].node;
469 b = quad->uv_grid[ j * nbhoriz + i + 1].node;
470 c = quad->uv_grid[(j + 1) * nbhoriz + i + 1].node;
471 d = quad->uv_grid[(j + 1) * nbhoriz + i ].node;
472 myHelper->AddFace(a, b, c, d);
476 // Boundary elements (must always be on an outer boundary of the FACE)
478 const vector<UVPtStruct>& uv_e0 = quad->side[0].grid->GetUVPtStruct();
479 const vector<UVPtStruct>& uv_e1 = quad->side[1].grid->GetUVPtStruct();
480 const vector<UVPtStruct>& uv_e2 = quad->side[2].grid->GetUVPtStruct();
481 const vector<UVPtStruct>& uv_e3 = quad->side[3].grid->GetUVPtStruct();
483 if (uv_e0.empty() || uv_e1.empty() || uv_e2.empty() || uv_e3.empty())
484 return error(COMPERR_BAD_INPUT_MESH);
486 double eps = Precision::Confusion();
488 int nbdown = (int) uv_e0.size();
489 int nbup = (int) uv_e2.size();
490 int nbright = (int) uv_e1.size();
491 int nbleft = (int) uv_e3.size();
493 if (quad->nbNodeOut(0) && nbvertic == 2) // this should not occur
497 // |___|___|___|___|___|___|
499 // |___|___|___|___|___|___|
501 // |___|___|___|___|___|___| __ first row of the regular grid
502 // . . . . . . . . . __ down edge nodes
504 // >->->->->->->->->->->->-> -- direction of processing
506 int g = 0; // number of last processed node in the regular grid
508 // number of last node of the down edge to be processed
509 int stop = nbdown - 1;
510 // if right edge is out, we will stop at a node, previous to the last one
511 //if (quad->nbNodeOut(1)) stop--;
512 if ( quad->nbNodeOut( QUAD_RIGHT_SIDE ))
513 quad->UVPt( nbhoriz-1, 1 ).node = uv_e1[1].node;
514 if ( quad->nbNodeOut( QUAD_LEFT_SIDE ))
515 quad->UVPt( 0, 1 ).node = uv_e3[1].node;
517 // for each node of the down edge find nearest node
518 // in the first row of the regular grid and link them
519 for (i = 0; i < stop; i++) {
520 const SMDS_MeshNode *a, *b, *c=0, *d;
522 b = uv_e0[i + 1].node;
523 gp_Pnt pb (b->X(), b->Y(), b->Z());
525 // find node c in the regular grid, which will be linked with node b
528 // right bound reached, link with the rightmost node
530 c = quad->uv_grid[nbhoriz + iup].node;
533 // find in the grid node c, nearest to the b
535 double mind = RealLast();
536 for (int k = g; k <= iup; k++) {
538 const SMDS_MeshNode *nk;
539 if (k < ilow) // this can be, if left edge is out
540 nk = uv_e3[1].node; // get node from the left edge
542 nk = quad->uv_grid[nbhoriz + k].node; // get one of middle nodes
544 gp_Pnt pnk (nk->X(), nk->Y(), nk->Z());
545 double dist = pb.Distance(pnk);
546 if (dist < mind - eps) {
556 if (near == g) { // make triangle
557 myHelper->AddFace(a, b, c);
559 else { // make quadrangle
563 d = quad->uv_grid[nbhoriz + near - 1].node;
564 //SMDS_MeshFace* face = meshDS->AddFace(a, b, c, d);
566 if (!myTrianglePreference){
567 myHelper->AddFace(a, b, c, d);
570 splitQuadFace(meshDS, geomFaceID, a, b, c, d);
573 // if node d is not at position g - make additional triangles
575 for (int k = near - 1; k > g; k--) {
576 c = quad->uv_grid[nbhoriz + k].node;
580 d = quad->uv_grid[nbhoriz + k - 1].node;
581 myHelper->AddFace(a, c, d);
588 if (quad->nbNodeOut(2) && nbvertic == 2)
592 // <-<-<-<-<-<-<-<-<-<-<-<-< -- direction of processing
594 // . . . . . . . . . __ up edge nodes
595 // ___ ___ ___ ___ ___ ___ __ first row of the regular grid
597 // |___|___|___|___|___|___|
599 // |___|___|___|___|___|___|
602 int g = nbhoriz - 1; // last processed node in the regular grid
608 if ( quad->side[3].grid->Edge(0).IsNull() ) // left side is simulated one
610 if ( nbright == 2 ) // quad divided at I but not at J (2D_mesh_QuadranglePreference_01/B1)
611 stop++; // we stop at a second node
615 if ( quad->nbNodeOut( QUAD_RIGHT_SIDE ))
616 quad->UVPt( nbhoriz-1, 0 ).node = uv_e1[ nbright-2 ].node;
617 if ( quad->nbNodeOut( QUAD_LEFT_SIDE ))
618 quad->UVPt( 0, 0 ).node = uv_e3[ nbleft-2 ].node;
620 if ( nbright > 2 ) // there was a split at J
621 quad->nbNodeOut( QUAD_LEFT_SIDE ) = 0;
623 const SMDS_MeshNode *a, *b, *c, *d;
625 // avoid creating zero-area triangles near a straight-angle corner
629 c = uv_e1[nbright-2].node;
630 SMESH_TNodeXYZ pa( a ), pb( b ), pc( c );
631 double area = 0.5 * (( pb - pa ) ^ ( pc - pa )).Modulus();
632 if ( Abs( area ) < 1e-20 )
635 d = quad->UVPt( g, nbvertic-2 ).node;
636 if ( myTrianglePreference )
638 myHelper->AddFace(a, d, c);
642 if ( SMDS_MeshFace* face = myHelper->AddFace(a, b, d, c))
644 SMESH_ComputeErrorPtr& err = aMesh.GetSubMesh( aFace )->GetComputeError();
645 if ( !err || err->IsOK() || err->myName < COMPERR_WARNING )
647 SMESH_BadInputElements* badElems =
648 new SMESH_BadInputElements( meshDS, COMPERR_WARNING,
649 "Bad quality quad created");
650 badElems->add( face );
651 err.reset( badElems );
658 // for each node of the up edge find nearest node
659 // in the first row of the regular grid and link them
660 for ( ; i > stop; i--)
663 b = uv_e2[i - 1].node;
664 gp_Pnt pb = SMESH_TNodeXYZ( b );
666 // find node c in the grid, which will be linked with node b
668 if (i == stop + 1) { // left bound reached, link with the leftmost node
669 c = quad->uv_grid[nbhoriz*(nbvertic - 2) + ilow].node;
672 // find node c in the grid, nearest to the b
673 double mind = RealLast();
674 for (int k = g; k >= ilow; k--) {
675 const SMDS_MeshNode *nk;
677 nk = uv_e1[nbright - 2].node;
679 nk = quad->uv_grid[nbhoriz*(nbvertic - 2) + k].node;
680 gp_Pnt pnk = SMESH_TNodeXYZ( nk );
681 double dist = pb.Distance(pnk);
682 if (dist < mind - eps) {
692 if (near == g) { // make triangle
693 myHelper->AddFace(a, b, c);
695 else { // make quadrangle
697 d = uv_e1[nbright - 2].node;
699 d = quad->uv_grid[nbhoriz*(nbvertic - 2) + near + 1].node;
700 //SMDS_MeshFace* face = meshDS->AddFace(a, b, c, d);
701 if (!myTrianglePreference){
702 myHelper->AddFace(a, b, c, d);
705 splitQuadFace(meshDS, geomFaceID, a, b, c, d);
708 if (near + 1 < g) { // if d is not at g - make additional triangles
709 for (int k = near + 1; k < g; k++) {
710 c = quad->uv_grid[nbhoriz*(nbvertic - 2) + k].node;
712 d = uv_e1[nbright - 2].node;
714 d = quad->uv_grid[nbhoriz*(nbvertic - 2) + k + 1].node;
715 myHelper->AddFace(a, c, d);
724 // right or left boundary quadrangles
725 if (quad->nbNodeOut( QUAD_RIGHT_SIDE ) && nbhoriz == 2) // this should not occur
727 int g = 0; // last processed node in the grid
728 int stop = nbright - 1;
730 if (quad->side[ QUAD_RIGHT_SIDE ].from != i ) i++;
731 if (quad->side[ QUAD_RIGHT_SIDE ].to != stop ) stop--;
732 for ( ; i < stop; i++) {
733 const SMDS_MeshNode *a, *b, *c, *d;
735 b = uv_e1[i + 1].node;
736 gp_Pnt pb (b->X(), b->Y(), b->Z());
738 // find node c in the grid, nearest to the b
741 if (i == stop - 1) { // up boundary reached
742 c = quad->uv_grid[nbhoriz*(jup + 1) - 2].node;
745 double mind = RealLast();
746 for (int k = g; k <= jup; k++) {
747 const SMDS_MeshNode *nk;
749 nk = uv_e0[nbdown - 2].node;
751 nk = quad->uv_grid[nbhoriz*(k + 1) - 2].node;
752 gp_Pnt pnk (nk->X(), nk->Y(), nk->Z());
753 double dist = pb.Distance(pnk);
754 if (dist < mind - eps) {
764 if (near == g) { // make triangle
765 myHelper->AddFace(a, b, c);
767 else { // make quadrangle
769 d = uv_e0[nbdown - 2].node;
771 d = quad->uv_grid[nbhoriz*near - 2].node;
772 //SMDS_MeshFace* face = meshDS->AddFace(a, b, c, d);
774 if (!myTrianglePreference){
775 myHelper->AddFace(a, b, c, d);
778 splitQuadFace(meshDS, geomFaceID, a, b, c, d);
781 if (near - 1 > g) { // if d not is at g - make additional triangles
782 for (int k = near - 1; k > g; k--) {
783 c = quad->uv_grid[nbhoriz*(k + 1) - 2].node;
785 d = uv_e0[nbdown - 2].node;
787 d = quad->uv_grid[nbhoriz*k - 2].node;
788 myHelper->AddFace(a, c, d);
795 if (quad->nbNodeOut(3) && nbhoriz == 2)
797 int g = nbvertic - 1; // last processed node in the grid
799 i = quad->side[ QUAD_LEFT_SIDE ].to-1; // nbleft - 1;
801 const SMDS_MeshNode *a, *b, *c, *d;
802 // avoid creating zero-area triangles near a straight-angle corner
806 c = quad->UVPt( 1, g ).node;
807 SMESH_TNodeXYZ pa( a ), pb( b ), pc( c );
808 double area = 0.5 * (( pb - pa ) ^ ( pc - pa )).Modulus();
809 if ( Abs( area ) < 1e-20 )
812 d = quad->UVPt( 1, g ).node;
813 if ( myTrianglePreference )
815 myHelper->AddFace(a, d, c);
819 if ( SMDS_MeshFace* face = myHelper->AddFace(a, b, d, c))
821 SMESH_ComputeErrorPtr& err = aMesh.GetSubMesh( aFace )->GetComputeError();
822 if ( !err || err->IsOK() || err->myName < COMPERR_WARNING )
824 SMESH_BadInputElements* badElems =
825 new SMESH_BadInputElements( meshDS, COMPERR_WARNING,
826 "Bad quality quad created");
827 badElems->add( face );
828 err.reset( badElems );
835 for (; i > stop; i--) // loop on nodes on the left side
838 b = uv_e3[i - 1].node;
839 gp_Pnt pb (b->X(), b->Y(), b->Z());
841 // find node c in the grid, nearest to the b
843 if (i == stop + 1) { // down boundary reached
844 c = quad->uv_grid[nbhoriz*jlow + 1].node;
848 double mind = RealLast();
849 for (int k = g; k >= jlow; k--) {
850 const SMDS_MeshNode *nk;
852 nk = quad->uv_grid[nbhoriz*jup + 1].node; //uv_e2[1].node;
854 nk = quad->uv_grid[nbhoriz*k + 1].node;
855 gp_Pnt pnk (nk->X(), nk->Y(), nk->Z());
856 double dist = pb.Distance(pnk);
857 if (dist < mind - eps) {
867 if (near == g) { // make triangle
868 myHelper->AddFace(a, b, c);
870 else { // make quadrangle
872 d = quad->uv_grid[nbhoriz*jup + 1].node; //uv_e2[1].node;
874 d = quad->uv_grid[nbhoriz*(near + 1) + 1].node;
875 if (!myTrianglePreference) {
876 myHelper->AddFace(a, b, c, d);
879 splitQuadFace(meshDS, geomFaceID, a, b, c, d);
882 if (near + 1 < g) { // if d not is at g - make additional triangles
883 for (int k = near + 1; k < g; k++) {
884 c = quad->uv_grid[nbhoriz*k + 1].node;
886 d = quad->uv_grid[nbhoriz*jup + 1].node; //uv_e2[1].node;
888 d = quad->uv_grid[nbhoriz*(k + 1) + 1].node;
889 myHelper->AddFace(a, c, d);
903 //=============================================================================
907 //=============================================================================
909 bool StdMeshers_Quadrangle_2D::Evaluate(SMESH_Mesh& aMesh,
910 const TopoDS_Shape& aFace,
911 MapShapeNbElems& aResMap)
914 aMesh.GetSubMesh(aFace);
916 std::vector<int> aNbNodes(4);
917 bool IsQuadratic = false;
918 if (!checkNbEdgesForEvaluate(aMesh, aFace, aResMap, aNbNodes, IsQuadratic)) {
919 std::vector<int> aResVec(SMDSEntity_Last);
920 for (int i=SMDSEntity_Node; i<SMDSEntity_Last; i++) aResVec[i] = 0;
921 SMESH_subMesh * sm = aMesh.GetSubMesh(aFace);
922 aResMap.insert(std::make_pair(sm,aResVec));
923 SMESH_ComputeErrorPtr& smError = sm->GetComputeError();
924 smError.reset(new SMESH_ComputeError(COMPERR_ALGO_FAILED,"Submesh can not be evaluated",this));
928 if (myQuadranglePreference) {
929 int n1 = aNbNodes[0];
930 int n2 = aNbNodes[1];
931 int n3 = aNbNodes[2];
932 int n4 = aNbNodes[3];
933 int nfull = n1+n2+n3+n4;
936 if (nfull==ntmp && ((n1!=n3) || (n2!=n4))) {
937 // special path for using only quandrangle faces
938 return evaluateQuadPref(aMesh, aFace, aNbNodes, aResMap, IsQuadratic);
943 int nbdown = aNbNodes[0];
944 int nbup = aNbNodes[2];
946 int nbright = aNbNodes[1];
947 int nbleft = aNbNodes[3];
949 int nbhoriz = Min(nbdown, nbup);
950 int nbvertic = Min(nbright, nbleft);
952 int dh = Max(nbdown, nbup) - nbhoriz;
953 int dv = Max(nbright, nbleft) - nbvertic;
960 int nbNodes = (nbhoriz-2)*(nbvertic-2);
961 //int nbFaces3 = dh + dv + kdh*(nbvertic-1)*2 + kdv*(nbhoriz-1)*2;
962 int nbFaces3 = dh + dv;
963 //if (kdh==1 && kdv==1) nbFaces3 -= 2;
964 //if (dh>0 && dv>0) nbFaces3 -= 2;
965 //int nbFaces4 = (nbhoriz-1-kdh)*(nbvertic-1-kdv);
966 int nbFaces4 = (nbhoriz-1)*(nbvertic-1);
968 std::vector<int> aVec(SMDSEntity_Last);
969 for (int i=SMDSEntity_Node; i<SMDSEntity_Last; i++) aVec[i] = 0;
971 aVec[SMDSEntity_Quad_Triangle] = nbFaces3;
972 aVec[SMDSEntity_Quad_Quadrangle] = nbFaces4;
973 int nbbndedges = nbdown + nbup + nbright + nbleft -4;
974 int nbintedges = (nbFaces4*4 + nbFaces3*3 - nbbndedges) / 2;
975 aVec[SMDSEntity_Node] = nbNodes + nbintedges;
976 if (aNbNodes.size()==5) {
977 aVec[SMDSEntity_Quad_Triangle] = nbFaces3 + aNbNodes[3] -1;
978 aVec[SMDSEntity_Quad_Quadrangle] = nbFaces4 - aNbNodes[3] +1;
982 aVec[SMDSEntity_Node] = nbNodes;
983 aVec[SMDSEntity_Triangle] = nbFaces3;
984 aVec[SMDSEntity_Quadrangle] = nbFaces4;
985 if (aNbNodes.size()==5) {
986 aVec[SMDSEntity_Triangle] = nbFaces3 + aNbNodes[3] - 1;
987 aVec[SMDSEntity_Quadrangle] = nbFaces4 - aNbNodes[3] + 1;
990 SMESH_subMesh * sm = aMesh.GetSubMesh(aFace);
991 aResMap.insert(std::make_pair(sm,aVec));
996 //================================================================================
998 * \brief Return true if the algorithm can mesh this shape
999 * \param [in] aShape - shape to check
1000 * \param [in] toCheckAll - if true, this check returns OK if all shapes are OK,
1001 * else, returns OK if at least one shape is OK
1003 //================================================================================
1005 bool StdMeshers_Quadrangle_2D::IsApplicable( const TopoDS_Shape & aShape, bool toCheckAll )
1007 int nbFoundFaces = 0;
1008 for (TopExp_Explorer exp( aShape, TopAbs_FACE ); exp.More(); exp.Next(), ++nbFoundFaces )
1010 const TopoDS_Shape& aFace = exp.Current();
1011 int nbWire = SMESH_MesherHelper::Count( aFace, TopAbs_WIRE, false );
1012 if ( nbWire != 1 ) {
1013 if ( toCheckAll ) return false;
1017 int nbNoDegenEdges = 0, totalNbEdges = 0;
1018 TopExp_Explorer eExp( aFace, TopAbs_EDGE );
1019 for ( ; eExp.More() && nbNoDegenEdges < 3; eExp.Next(), ++totalNbEdges ) {
1020 if ( !SMESH_Algo::isDegenerated( TopoDS::Edge( eExp.Current() )))
1023 if ( toCheckAll && ( totalNbEdges < 4 && nbNoDegenEdges < 3 )) return false;
1024 if ( !toCheckAll && ( totalNbEdges >= 4 || nbNoDegenEdges >= 3 )) return true;
1026 return ( toCheckAll && nbFoundFaces != 0 );
1031 //================================================================================
1033 * \brief Return true if only two given edges meat at their common vertex
1035 //================================================================================
1037 bool twoEdgesMeatAtVertex(const TopoDS_Edge& e1,
1038 const TopoDS_Edge& e2,
1042 if (!TopExp::CommonVertex(e1, e2, v))
1044 TopTools_ListIteratorOfListOfShape ancestIt(mesh.GetAncestors(v));
1045 for (; ancestIt.More() ; ancestIt.Next())
1046 if (ancestIt.Value().ShapeType() == TopAbs_EDGE)
1047 if (!e1.IsSame(ancestIt.Value()) && !e2.IsSame(ancestIt.Value()))
1052 //--------------------------------------------------------------------------------
1054 * \brief EDGE of a FACE
1059 TopoDS_Vertex my1stVertex;
1061 double myAngle; // angle at my1stVertex
1062 int myNbSegments; // discretization
1063 Edge* myPrev; // preceding EDGE
1064 Edge* myNext; // next EDGE
1066 // traits used by boost::intrusive::circular_list_algorithms
1068 typedef Edge * node_ptr;
1069 typedef const Edge * const_node_ptr;
1070 static node_ptr get_next(const_node_ptr n) { return n->myNext; }
1071 static void set_next(node_ptr n, node_ptr next) { n->myNext = next; }
1072 static node_ptr get_previous(const_node_ptr n) { return n->myPrev; }
1073 static void set_previous(node_ptr n, node_ptr prev){ n->myPrev = prev; }
1076 //--------------------------------------------------------------------------------
1078 * \brief Four sides of a quadrangle evaluating its quality
1082 typedef std::set< QuadQuality, QuadQuality > set;
1087 // quality criteria to minimize
1092 // Compute quality criateria and add self to the set of variants
1094 void AddSelf( QuadQuality::set& theVariants )
1096 if ( myCornerE[2] == myCornerE[1] || // exclude invalid variants
1097 myCornerE[2] == myCornerE[3] ||
1098 myCornerE[0] == myCornerE[3] )
1101 // count nb segments between corners
1103 double totNbSeg = 0;
1104 for ( int i1 = 3, i2 = 0; i2 < 4; i1 = i2++ )
1107 for ( Edge* e = myCornerE[ i1 ]; e != myCornerE[ i2 ]; e = e->myNext )
1108 myNbSeg[ i1 ] += e->myNbSegments;
1109 mySumAngle -= myCornerE[ i1 ]->myAngle / M_PI; // [-1,1]
1110 totNbSeg += myNbSeg[ i1 ];
1113 myOppDiff = ( Abs( myNbSeg[0] - myNbSeg[2] ) +
1114 Abs( myNbSeg[1] - myNbSeg[3] ));
1116 double nbSideIdeal = totNbSeg / 4.;
1117 myQuartDiff = -( Min( Min( myNbSeg[0], myNbSeg[1] ),
1118 Min( myNbSeg[2], myNbSeg[3] )) / nbSideIdeal );
1120 theVariants.insert( *this );
1123 if ( theVariants.size() > 1 ) // erase a worse variant
1124 theVariants.erase( ++theVariants.begin() );
1128 // first criterion - equality of nbSeg of opposite sides
1129 int crit1() const { return myOppDiff; }
1131 // second criterion - equality of nbSeg of adjacent sides and sharpness of angles
1132 double crit2() const { return myQuartDiff + mySumAngle; }
1134 bool operator () ( const QuadQuality& q1, const QuadQuality& q2) const
1136 if ( q1.crit1() < q2.crit1() )
1138 if ( q1.crit1() > q2.crit1() )
1140 return q1.crit2() < q2.crit2();
1144 //================================================================================
1146 * \brief Unite EDGEs to get a required number of sides
1147 * \param [in] theNbCorners - the required number of sides
1148 * \param [in] theConsiderMesh - to considered only meshed VERTEXes
1149 * \param [in] theFaceSide - the FACE EDGEs
1150 * \param [out] theVertices - the found corner vertices
1152 //================================================================================
1154 void uniteEdges( const int theNbCorners,
1155 const bool theConsiderMesh,
1156 const StdMeshers_FaceSide& theFaceSide,
1157 const TopoDS_Shape& theBaseVertex,
1158 std::vector<TopoDS_Vertex>& theVertices,
1159 bool& theHaveConcaveVertices)
1161 // form a circular list of EDGEs
1162 std::vector< Edge > edges( theFaceSide.NbEdges() );
1163 boost::intrusive::circular_list_algorithms< Edge > circularList;
1164 circularList.init_header( &edges[0] );
1165 edges[0].myEdge = theFaceSide.Edge( 0 );
1166 edges[0].myIndex = 0;
1167 edges[0].myNbSegments = 0;
1168 for ( int i = 1; i < theFaceSide.NbEdges(); ++i )
1170 edges[ i ].myEdge = theFaceSide.Edge( i );
1171 edges[ i ].myIndex = i;
1172 edges[ i ].myNbSegments = 0;
1173 circularList.link_after( &edges[ i-1 ], &edges[ i ] );
1175 // remove degenerated edges
1176 int nbEdges = edges.size();
1177 Edge* edge0 = &edges[0];
1178 for ( size_t i = 0; i < edges.size(); ++i )
1179 if ( SMESH_Algo::isDegenerated( edges[i].myEdge ))
1181 edge0 = circularList.unlink( &edges[i] );
1185 // sort edges by angle
1186 std::multimap< double, Edge* > edgeByAngle;
1187 int i, iBase = -1, nbConvexAngles = 0, nbSharpAngles = 0;
1188 const double angTol = 5. / 180 * M_PI;
1189 const double sharpAngle = 0.5 * M_PI - angTol;
1191 for ( i = 0; i < nbEdges; ++i, e = e->myNext )
1193 e->my1stVertex = SMESH_MesherHelper::IthVertex( 0, e->myEdge );
1194 if ( e->my1stVertex.IsSame( theBaseVertex ))
1197 e->myAngle = -2 * M_PI;
1198 if ( !theConsiderMesh || theFaceSide.VertexNode( e->myIndex ))
1200 e->myAngle = SMESH_MesherHelper::GetAngle( e->myPrev->myEdge, e->myEdge,
1201 theFaceSide.Face(), e->my1stVertex );
1202 if ( e->myAngle > 2 * M_PI ) // GetAngle() failed
1205 edgeByAngle.insert( std::make_pair( e->myAngle, e ));
1206 nbConvexAngles += ( e->myAngle > angTol );
1207 nbSharpAngles += ( e->myAngle > sharpAngle );
1210 theHaveConcaveVertices = ( nbConvexAngles < nbEdges );
1212 if ((int) theVertices.size() == theNbCorners )
1215 theVertices.clear();
1217 if ( !theConsiderMesh || theNbCorners < 4 ||
1218 nbConvexAngles <= theNbCorners ||
1219 nbSharpAngles == theNbCorners )
1221 if ( nbEdges == theNbCorners ) // return all vertices
1223 for ( e = edge0; (int) theVertices.size() < theNbCorners; e = e->myNext )
1224 theVertices.push_back( e->my1stVertex );
1228 // return corners with maximal angles
1230 std::set< int > cornerIndices;
1232 cornerIndices.insert( iBase );
1234 std::multimap< double, Edge* >::reverse_iterator a2e = edgeByAngle.rbegin();
1235 for (; (int) cornerIndices.size() < theNbCorners; ++a2e )
1236 cornerIndices.insert( a2e->second->myIndex );
1238 std::set< int >::iterator i = cornerIndices.begin();
1239 for ( ; i != cornerIndices.end(); ++i )
1240 theVertices.push_back( edges[ *i ].my1stVertex );
1245 // get nb of segments
1246 int totNbSeg = 0; // tatal nb segments
1247 std::vector<const SMDS_MeshNode*> nodes;
1248 for ( i = 0, e = edge0; i < nbEdges; ++i, e = e->myNext )
1251 theFaceSide.GetEdgeNodes( e->myIndex, nodes, /*addVertex=*/true, true );
1252 if ( nodes.size() == 2 && nodes[0] == nodes[1] ) // all nodes merged
1254 e->myAngle = -1; // to remove
1258 e->myNbSegments += nodes.size() - 1;
1259 totNbSeg += nodes.size() - 1;
1262 // join with the previous edge those edges with concave angles
1263 if ( e->myAngle <= 0 )
1265 e->myPrev->myNbSegments += e->myNbSegments;
1266 e = circularList.unlink( e )->myPrev;
1272 if ( edge0->myNext->myPrev != edge0 ) // edge0 removed, find another edge0
1273 for ( size_t i = 0; i < edges.size(); ++i )
1274 if ( edges[i].myNext->myPrev == & edges[i] )
1281 // sort different variants by quality
1283 QuadQuality::set quadVariants;
1285 // find index of a corner most opposite to corner of edge0
1286 int iOpposite0, nbHalf = 0;
1287 for ( e = edge0; nbHalf <= totNbSeg / 2; e = e->myNext )
1288 nbHalf += e->myNbSegments;
1289 iOpposite0 = e->myIndex;
1291 // compose different variants of quadrangles
1293 for ( ; edge0->myIndex != iOpposite0; edge0 = edge0->myNext )
1295 quad.myCornerE[ 0 ] = edge0;
1297 // find opposite corner 2
1298 for ( nbHalf = 0, e = edge0; nbHalf < totNbSeg / 2; e = e->myNext )
1299 nbHalf += e->myNbSegments;
1300 if ( e == edge0->myNext ) // no space for corner 1
1302 quad.myCornerE[ 2 ] = e;
1304 bool moreVariants2 = ( totNbSeg % 2 || nbHalf != totNbSeg / 2 );
1306 // enumerate different variants of corners 1 and 3
1307 for ( Edge* e1 = edge0->myNext; e1 != quad.myCornerE[ 2 ]; e1 = e1->myNext )
1309 quad.myCornerE[ 1 ] = e1;
1311 // find opposite corner 3
1312 for ( nbHalf = 0, e = e1; nbHalf < totNbSeg / 2; e = e->myNext )
1313 nbHalf += e->myNbSegments;
1314 if ( e == quad.myCornerE[ 2 ] )
1316 quad.myCornerE[ 3 ] = e;
1318 bool moreVariants3 = ( totNbSeg % 2 || nbHalf != totNbSeg / 2 );
1320 quad.AddSelf( quadVariants );
1323 if ( moreVariants2 )
1325 quad.myCornerE[ 2 ] = quad.myCornerE[ 2 ]->myPrev;
1326 quad.AddSelf( quadVariants );
1327 quad.myCornerE[ 2 ] = quad.myCornerE[ 2 ]->myNext;
1329 if ( moreVariants3 )
1331 quad.myCornerE[ 3 ] = quad.myCornerE[ 3 ]->myPrev;
1332 quad.AddSelf( quadVariants );
1334 if ( moreVariants2 )
1336 quad.myCornerE[ 2 ] = quad.myCornerE[ 2 ]->myPrev;
1337 quad.AddSelf( quadVariants );
1338 quad.myCornerE[ 2 ] = quad.myCornerE[ 2 ]->myNext;
1344 const QuadQuality& bestQuad = *quadVariants.begin();
1345 theVertices.resize( 4 );
1346 theVertices[ 0 ] = bestQuad.myCornerE[ 0 ]->my1stVertex;
1347 theVertices[ 1 ] = bestQuad.myCornerE[ 1 ]->my1stVertex;
1348 theVertices[ 2 ] = bestQuad.myCornerE[ 2 ]->my1stVertex;
1349 theVertices[ 3 ] = bestQuad.myCornerE[ 3 ]->my1stVertex;
1356 //================================================================================
1358 * \brief Finds vertices at the most sharp face corners
1359 * \param [in] theFace - the FACE
1360 * \param [in,out] theWire - the ordered edges of the face. It can be modified to
1361 * have the first VERTEX of the first EDGE in \a vertices
1362 * \param [out] theVertices - the found corner vertices in the order corresponding to
1363 * the order of EDGEs in \a theWire
1364 * \param [out] theNbDegenEdges - nb of degenerated EDGEs in theFace
1365 * \param [in] theConsiderMesh - if \c true, only meshed VERTEXes are considered
1366 * as possible corners
1367 * \return int - number of quad sides found: 0, 3 or 4
1369 //================================================================================
1371 int StdMeshers_Quadrangle_2D::getCorners(const TopoDS_Face& theFace,
1372 SMESH_Mesh & theMesh,
1373 std::list<TopoDS_Edge>& theWire,
1374 std::vector<TopoDS_Vertex>& theVertices,
1375 int & theNbDegenEdges,
1376 const bool theConsiderMesh)
1378 theNbDegenEdges = 0;
1380 SMESH_MesherHelper helper( theMesh );
1382 helper.CopySubShapeInfo( *myHelper );
1384 StdMeshers_FaceSide faceSide( theFace, theWire, &theMesh,
1385 /*isFwd=*/true, /*skipMedium=*/true, &helper );
1387 // count degenerated EDGEs and possible corner VERTEXes
1388 for ( int iE = 0; iE < faceSide.NbEdges(); ++iE )
1390 if ( SMESH_Algo::isDegenerated( faceSide.Edge( iE )))
1392 else if ( !theConsiderMesh || faceSide.VertexNode( iE ))
1393 theVertices.push_back( faceSide.FirstVertex( iE ));
1396 // find out required nb of corners (3 or 4)
1398 TopoDS_Shape triaVertex = helper.GetMeshDS()->IndexToShape( myTriaVertexID );
1399 if ( !triaVertex.IsNull() &&
1400 triaVertex.ShapeType() == TopAbs_VERTEX &&
1401 helper.IsSubShape( triaVertex, theFace ) &&
1402 theVertices.size() != 4 )
1405 triaVertex.Nullify();
1407 // check nb of available EDGEs
1408 if ( faceSide.NbEdges() < nbCorners )
1409 return error(COMPERR_BAD_SHAPE,
1410 TComm("Face must have 4 sides but not ") << faceSide.NbEdges() );
1412 if ( theConsiderMesh )
1414 const int nbSegments = Max( faceSide.NbPoints()-1, faceSide.NbSegments() );
1415 if ( nbSegments < nbCorners )
1416 return error(COMPERR_BAD_INPUT_MESH, TComm("Too few boundary nodes: ") << nbSegments);
1419 if ( nbCorners == 3 )
1421 if ( theVertices.size() < 3 )
1422 return error(COMPERR_BAD_SHAPE,
1423 TComm("Face must have 3 meshed sides but not ") << theVertices.size() );
1425 else // triaVertex not defined or invalid
1427 if ( theVertices.size() == 3 && theNbDegenEdges == 0 )
1429 if ( myTriaVertexID < 1 )
1430 return error(COMPERR_BAD_PARMETERS,
1431 "No Base vertex provided for a trilateral geometrical face");
1433 TComm comment("Invalid Base vertex: ");
1434 comment << myTriaVertexID << ", which is not in [ ";
1435 comment << helper.GetMeshDS()->ShapeToIndex( faceSide.FirstVertex(0) ) << ", ";
1436 comment << helper.GetMeshDS()->ShapeToIndex( faceSide.FirstVertex(1) ) << ", ";
1437 comment << helper.GetMeshDS()->ShapeToIndex( faceSide.FirstVertex(2) ) << " ]";
1438 return error(COMPERR_BAD_PARMETERS, comment );
1440 if ( theVertices.size() + theNbDegenEdges < 4 )
1441 return error(COMPERR_BAD_SHAPE,
1442 TComm("Face must have 4 meshed sides but not ") << theVertices.size() );
1446 if ( theVertices.size() > 3 )
1448 uniteEdges( nbCorners, theConsiderMesh, faceSide, triaVertex, theVertices, myCheckOri );
1451 if ( nbCorners == 3 && !triaVertex.IsSame( theVertices[0] ))
1453 // make theVertices begin from triaVertex
1454 for ( size_t i = 0; i < theVertices.size(); ++i )
1455 if ( triaVertex.IsSame( theVertices[i] ))
1457 theVertices.erase( theVertices.begin(), theVertices.begin() + i );
1462 theVertices.push_back( theVertices[i] );
1466 // make theWire begin from the 1st corner vertex
1467 while ( !theVertices[0].IsSame( helper.IthVertex( 0, theWire.front() )) ||
1468 SMESH_Algo::isDegenerated( theWire.front() ))
1469 theWire.splice( theWire.end(), theWire, theWire.begin() );
1474 //=============================================================================
1478 //=============================================================================
1480 FaceQuadStruct::Ptr StdMeshers_Quadrangle_2D::CheckNbEdges(SMESH_Mesh & aMesh,
1481 const TopoDS_Shape & aShape,
1482 const bool considerMesh,
1483 SMESH_MesherHelper* aFaceHelper)
1485 if ( !myQuadList.empty() && myQuadList.front()->face.IsSame( aShape ))
1486 return myQuadList.front();
1488 TopoDS_Face F = TopoDS::Face(aShape);
1489 if ( F.Orientation() >= TopAbs_INTERNAL ) F.Orientation( TopAbs_FORWARD );
1490 const bool ignoreMediumNodes = _quadraticMesh;
1492 // verify 1 wire only
1493 list< TopoDS_Edge > edges;
1494 list< int > nbEdgesInWire;
1495 int nbWire = SMESH_Block::GetOrderedEdges (F, edges, nbEdgesInWire);
1497 error(COMPERR_BAD_SHAPE, TComm("Wrong number of wires: ") << nbWire);
1498 return FaceQuadStruct::Ptr();
1501 // find corner vertices of the quad
1502 myHelper = ( aFaceHelper && aFaceHelper->GetSubShape() == aShape ) ? aFaceHelper : NULL;
1503 vector<TopoDS_Vertex> corners;
1504 int nbDegenEdges, nbSides = getCorners( F, aMesh, edges, corners, nbDegenEdges, considerMesh );
1507 return FaceQuadStruct::Ptr();
1509 FaceQuadStruct::Ptr quad( new FaceQuadStruct );
1510 quad->side.reserve(nbEdgesInWire.front());
1513 list< TopoDS_Edge >::iterator edgeIt = edges.begin();
1514 if ( nbSides == 3 ) // 3 sides and corners[0] is a vertex with myTriaVertexID
1516 for ( int iSide = 0; iSide < 3; ++iSide )
1518 list< TopoDS_Edge > sideEdges;
1519 TopoDS_Vertex nextSideV = corners[( iSide + 1 ) % 3 ];
1520 while ( edgeIt != edges.end() &&
1521 !nextSideV.IsSame( SMESH_MesherHelper::IthVertex( 0, *edgeIt )))
1522 if ( SMESH_Algo::isDegenerated( *edgeIt ))
1525 sideEdges.push_back( *edgeIt++ );
1526 if ( !sideEdges.empty() )
1527 quad->side.push_back( StdMeshers_FaceSide::New(F, sideEdges, &aMesh, iSide < QUAD_TOP_SIDE,
1528 ignoreMediumNodes, myHelper, myProxyMesh));
1532 const vector<UVPtStruct>& UVPSleft = quad->side[0].GetUVPtStruct(true,0);
1533 /* vector<UVPtStruct>& UVPStop = */quad->side[1].GetUVPtStruct(false,1);
1534 /* vector<UVPtStruct>& UVPSright = */quad->side[2].GetUVPtStruct(true,1);
1535 const SMDS_MeshNode* aNode = UVPSleft[0].node;
1536 gp_Pnt2d aPnt2d = UVPSleft[0].UV();
1537 quad->side.push_back( StdMeshers_FaceSide::New( quad->side[1].grid.get(), aNode, &aPnt2d ));
1538 myNeedSmooth = ( nbDegenEdges > 0 );
1543 myNeedSmooth = ( corners.size() == 4 && nbDegenEdges > 0 );
1544 int iSide = 0, nbUsedDegen = 0, nbLoops = 0;
1545 for ( ; edgeIt != edges.end(); ++nbLoops )
1547 list< TopoDS_Edge > sideEdges;
1548 TopoDS_Vertex nextSideV = corners[( iSide + 1 - nbUsedDegen ) % corners.size() ];
1549 bool nextSideVReached = false;
1552 const TopoDS_Edge& edge = *edgeIt;
1553 nextSideVReached = nextSideV.IsSame( myHelper->IthVertex( 1, edge ));
1554 if ( SMESH_Algo::isDegenerated( edge ))
1556 if ( !myNeedSmooth ) // need to make a side on a degen edge
1558 if ( sideEdges.empty() )
1560 sideEdges.push_back( edge );
1562 nextSideVReached = true;
1570 else //if ( !myHelper || !myHelper->IsRealSeam( edge ))
1572 sideEdges.push_back( edge );
1576 while ( edgeIt != edges.end() && !nextSideVReached );
1578 if ( !sideEdges.empty() )
1580 quad->side.push_back
1581 ( StdMeshers_FaceSide::New( F, sideEdges, &aMesh, iSide < QUAD_TOP_SIDE,
1582 ignoreMediumNodes, myHelper, myProxyMesh ));
1585 if ( quad->side.size() == 4 )
1589 error(TComm("Bug: infinite loop in StdMeshers_Quadrangle_2D::CheckNbEdges()"));
1594 if ( quad && quad->side.size() != 4 )
1596 error(TComm("Bug: ") << quad->side.size() << " sides found instead of 4");
1605 //=============================================================================
1609 //=============================================================================
1611 bool StdMeshers_Quadrangle_2D::checkNbEdgesForEvaluate(SMESH_Mesh& aMesh,
1612 const TopoDS_Shape & aShape,
1613 MapShapeNbElems& aResMap,
1614 std::vector<int>& aNbNodes,
1618 const TopoDS_Face & F = TopoDS::Face(aShape);
1620 // verify 1 wire only, with 4 edges
1621 list< TopoDS_Edge > edges;
1622 list< int > nbEdgesInWire;
1623 int nbWire = SMESH_Block::GetOrderedEdges (F, edges, nbEdgesInWire);
1631 list< TopoDS_Edge >::iterator edgeIt = edges.begin();
1632 SMESH_subMesh * sm = aMesh.GetSubMesh(*edgeIt);
1633 MapShapeNbElemsItr anIt = aResMap.find(sm);
1634 if (anIt==aResMap.end()) {
1637 std::vector<int> aVec = (*anIt).second;
1638 IsQuadratic = (aVec[SMDSEntity_Quad_Edge] > aVec[SMDSEntity_Edge]);
1639 if (nbEdgesInWire.front() == 3) { // exactly 3 edges
1640 if (myTriaVertexID>0) {
1641 SMESHDS_Mesh* meshDS = aMesh.GetMeshDS();
1642 TopoDS_Vertex V = TopoDS::Vertex(meshDS->IndexToShape(myTriaVertexID));
1644 TopoDS_Edge E1,E2,E3;
1645 for (; edgeIt != edges.end(); ++edgeIt) {
1646 TopoDS_Edge E = TopoDS::Edge(*edgeIt);
1647 TopoDS_Vertex VF, VL;
1648 TopExp::Vertices(E, VF, VL, true);
1651 else if (VL.IsSame(V))
1656 SMESH_subMesh * sm = aMesh.GetSubMesh(E1);
1657 MapShapeNbElemsItr anIt = aResMap.find(sm);
1658 if (anIt==aResMap.end()) return false;
1659 std::vector<int> aVec = (*anIt).second;
1661 aNbNodes[0] = (aVec[SMDSEntity_Node]-1)/2 + 2;
1663 aNbNodes[0] = aVec[SMDSEntity_Node] + 2;
1664 sm = aMesh.GetSubMesh(E2);
1665 anIt = aResMap.find(sm);
1666 if (anIt==aResMap.end()) return false;
1667 aVec = (*anIt).second;
1669 aNbNodes[1] = (aVec[SMDSEntity_Node]-1)/2 + 2;
1671 aNbNodes[1] = aVec[SMDSEntity_Node] + 2;
1672 sm = aMesh.GetSubMesh(E3);
1673 anIt = aResMap.find(sm);
1674 if (anIt==aResMap.end()) return false;
1675 aVec = (*anIt).second;
1677 aNbNodes[2] = (aVec[SMDSEntity_Node]-1)/2 + 2;
1679 aNbNodes[2] = aVec[SMDSEntity_Node] + 2;
1680 aNbNodes[3] = aNbNodes[1];
1686 if (nbEdgesInWire.front() == 4) { // exactly 4 edges
1687 for (; edgeIt != edges.end(); edgeIt++) {
1688 SMESH_subMesh * sm = aMesh.GetSubMesh(*edgeIt);
1689 MapShapeNbElemsItr anIt = aResMap.find(sm);
1690 if (anIt==aResMap.end()) {
1693 std::vector<int> aVec = (*anIt).second;
1695 aNbNodes[nbSides] = (aVec[SMDSEntity_Node]-1)/2 + 2;
1697 aNbNodes[nbSides] = aVec[SMDSEntity_Node] + 2;
1701 else if (nbEdgesInWire.front() > 4) { // more than 4 edges - try to unite some
1702 list< TopoDS_Edge > sideEdges;
1703 while (!edges.empty()) {
1705 sideEdges.splice(sideEdges.end(), edges, edges.begin()); // edges.front() -> sideEdges.end()
1706 bool sameSide = true;
1707 while (!edges.empty() && sameSide) {
1708 sameSide = SMESH_Algo::IsContinuous(sideEdges.back(), edges.front());
1710 sideEdges.splice(sideEdges.end(), edges, edges.begin());
1712 if (nbSides == 0) { // go backward from the first edge
1714 while (!edges.empty() && sameSide) {
1715 sameSide = SMESH_Algo::IsContinuous(sideEdges.front(), edges.back());
1717 sideEdges.splice(sideEdges.begin(), edges, --edges.end());
1720 list<TopoDS_Edge>::iterator ite = sideEdges.begin();
1721 aNbNodes[nbSides] = 1;
1722 for (; ite!=sideEdges.end(); ite++) {
1723 SMESH_subMesh * sm = aMesh.GetSubMesh(*ite);
1724 MapShapeNbElemsItr anIt = aResMap.find(sm);
1725 if (anIt==aResMap.end()) {
1728 std::vector<int> aVec = (*anIt).second;
1730 aNbNodes[nbSides] += (aVec[SMDSEntity_Node]-1)/2 + 1;
1732 aNbNodes[nbSides] += aVec[SMDSEntity_Node] + 1;
1736 // issue 20222. Try to unite only edges shared by two same faces
1739 SMESH_Block::GetOrderedEdges (F, edges, nbEdgesInWire);
1740 while (!edges.empty()) {
1742 sideEdges.splice(sideEdges.end(), edges, edges.begin());
1743 bool sameSide = true;
1744 while (!edges.empty() && sameSide) {
1746 SMESH_Algo::IsContinuous(sideEdges.back(), edges.front()) &&
1747 twoEdgesMeatAtVertex(sideEdges.back(), edges.front(), aMesh);
1749 sideEdges.splice(sideEdges.end(), edges, edges.begin());
1751 if (nbSides == 0) { // go backward from the first edge
1753 while (!edges.empty() && sameSide) {
1755 SMESH_Algo::IsContinuous(sideEdges.front(), edges.back()) &&
1756 twoEdgesMeatAtVertex(sideEdges.front(), edges.back(), aMesh);
1758 sideEdges.splice(sideEdges.begin(), edges, --edges.end());
1761 list<TopoDS_Edge>::iterator ite = sideEdges.begin();
1762 aNbNodes[nbSides] = 1;
1763 for (; ite!=sideEdges.end(); ite++) {
1764 SMESH_subMesh * sm = aMesh.GetSubMesh(*ite);
1765 MapShapeNbElemsItr anIt = aResMap.find(sm);
1766 if (anIt==aResMap.end()) {
1769 std::vector<int> aVec = (*anIt).second;
1771 aNbNodes[nbSides] += (aVec[SMDSEntity_Node]-1)/2 + 1;
1773 aNbNodes[nbSides] += aVec[SMDSEntity_Node] + 1;
1781 nbSides = nbEdgesInWire.front();
1782 error(COMPERR_BAD_SHAPE, TComm("Face must have 4 sides but not ") << nbSides);
1790 //=============================================================================
1794 //=============================================================================
1797 StdMeshers_Quadrangle_2D::CheckAnd2Dcompute (SMESH_Mesh & aMesh,
1798 const TopoDS_Shape & aShape,
1799 const bool CreateQuadratic)
1801 _quadraticMesh = CreateQuadratic;
1803 FaceQuadStruct::Ptr quad = CheckNbEdges(aMesh, aShape);
1806 // set normalized grid on unit square in parametric domain
1807 if ( ! setNormalizedGrid( quad ))
1815 inline const vector<UVPtStruct>& getUVPtStructIn(FaceQuadStruct::Ptr& quad, int i, int nbSeg)
1817 bool isXConst = (i == QUAD_BOTTOM_SIDE || i == QUAD_TOP_SIDE);
1818 double constValue = (i == QUAD_BOTTOM_SIDE || i == QUAD_LEFT_SIDE) ? 0 : 1;
1820 quad->nbNodeOut(i) ?
1821 quad->side[i].grid->SimulateUVPtStruct(nbSeg,isXConst,constValue) :
1822 quad->side[i].grid->GetUVPtStruct (isXConst,constValue);
1824 inline gp_UV calcUV(double x, double y,
1825 const gp_UV& a0,const gp_UV& a1,const gp_UV& a2,const gp_UV& a3,
1826 const gp_UV& p0,const gp_UV& p1,const gp_UV& p2,const gp_UV& p3)
1829 ((1 - y) * p0 + x * p1 + y * p2 + (1 - x) * p3 ) -
1830 ((1 - x) * (1 - y) * a0 + x * (1 - y) * a1 + x * y * a2 + (1 - x) * y * a3);
1834 //=============================================================================
1838 //=============================================================================
1840 bool StdMeshers_Quadrangle_2D::setNormalizedGrid (FaceQuadStruct::Ptr quad)
1842 if ( !quad->uv_grid.empty() )
1845 // Algorithme décrit dans "Génération automatique de maillages"
1846 // P.L. GEORGE, MASSON, § 6.4.1 p. 84-85
1847 // traitement dans le domaine paramétrique 2d u,v
1848 // transport - projection sur le carré unité
1851 // |<----north-2-------^ a3 -------------> a2
1853 // west-3 east-1 =right | |
1857 // v----south-0--------> a0 -------------> a1
1861 const FaceQuadStruct::Side & bSide = quad->side[0];
1862 const FaceQuadStruct::Side & rSide = quad->side[1];
1863 const FaceQuadStruct::Side & tSide = quad->side[2];
1864 const FaceQuadStruct::Side & lSide = quad->side[3];
1866 int nbhoriz = Min( bSide.NbPoints(), tSide.NbPoints() );
1867 int nbvertic = Min( rSide.NbPoints(), lSide.NbPoints() );
1868 if ( nbhoriz < 1 || nbvertic < 1 )
1869 return error("Algo error: empty quad");
1871 if ( myQuadList.size() == 1 )
1873 // all sub-quads must have NO sides with nbNodeOut > 0
1874 quad->nbNodeOut(0) = Max( 0, bSide.grid->NbPoints() - tSide.grid->NbPoints() );
1875 quad->nbNodeOut(1) = Max( 0, rSide.grid->NbPoints() - lSide.grid->NbPoints() );
1876 quad->nbNodeOut(2) = Max( 0, tSide.grid->NbPoints() - bSide.grid->NbPoints() );
1877 quad->nbNodeOut(3) = Max( 0, lSide.grid->NbPoints() - rSide.grid->NbPoints() );
1879 const vector<UVPtStruct>& uv_e0 = bSide.GetUVPtStruct();
1880 const vector<UVPtStruct>& uv_e1 = rSide.GetUVPtStruct();
1881 const vector<UVPtStruct>& uv_e2 = tSide.GetUVPtStruct();
1882 const vector<UVPtStruct>& uv_e3 = lSide.GetUVPtStruct();
1883 if (uv_e0.empty() || uv_e1.empty() || uv_e2.empty() || uv_e3.empty())
1884 //return error("Can't find nodes on sides");
1885 return error(COMPERR_BAD_INPUT_MESH);
1887 quad->uv_grid.resize( nbvertic * nbhoriz );
1888 quad->iSize = nbhoriz;
1889 quad->jSize = nbvertic;
1890 UVPtStruct *uv_grid = & quad->uv_grid[0];
1892 quad->uv_box.Clear();
1894 // copy data of face boundary
1896 FaceQuadStruct::SideIterator sideIter;
1900 const double x0 = bSide.First().normParam;
1901 const double dx = bSide.Last().normParam - bSide.First().normParam;
1902 for ( sideIter.Init( bSide ); sideIter.More(); sideIter.Next() ) {
1903 sideIter.UVPt().x = ( sideIter.UVPt().normParam - x0 ) / dx;
1904 sideIter.UVPt().y = 0.;
1905 uv_grid[ j * nbhoriz + sideIter.Count() ] = sideIter.UVPt();
1906 quad->uv_box.Add( sideIter.UVPt().UV() );
1910 const int i = nbhoriz - 1;
1911 const double y0 = rSide.First().normParam;
1912 const double dy = rSide.Last().normParam - rSide.First().normParam;
1913 sideIter.Init( rSide );
1914 if ( quad->UVPt( i, sideIter.Count() ).node )
1915 sideIter.Next(); // avoid copying from a split emulated side
1916 for ( ; sideIter.More(); sideIter.Next() ) {
1917 sideIter.UVPt().x = 1.;
1918 sideIter.UVPt().y = ( sideIter.UVPt().normParam - y0 ) / dy;
1919 uv_grid[ sideIter.Count() * nbhoriz + i ] = sideIter.UVPt();
1920 quad->uv_box.Add( sideIter.UVPt().UV() );
1924 const int j = nbvertic - 1;
1925 const double x0 = tSide.First().normParam;
1926 const double dx = tSide.Last().normParam - tSide.First().normParam;
1927 int i = 0, nb = nbhoriz;
1928 sideIter.Init( tSide );
1929 if ( quad->UVPt( nb-1, j ).node ) --nb; // avoid copying from a split emulated side
1930 for ( ; i < nb; i++, sideIter.Next()) {
1931 sideIter.UVPt().x = ( sideIter.UVPt().normParam - x0 ) / dx;
1932 sideIter.UVPt().y = 1.;
1933 uv_grid[ j * nbhoriz + i ] = sideIter.UVPt();
1934 quad->uv_box.Add( sideIter.UVPt().UV() );
1939 const double y0 = lSide.First().normParam;
1940 const double dy = lSide.Last().normParam - lSide.First().normParam;
1941 int j = 0, nb = nbvertic;
1942 sideIter.Init( lSide );
1943 if ( quad->UVPt( i, j ).node )
1944 ++j, sideIter.Next(); // avoid copying from a split emulated side
1945 if ( quad->UVPt( i, nb-1 ).node )
1947 for ( ; j < nb; j++, sideIter.Next()) {
1948 sideIter.UVPt().x = 0.;
1949 sideIter.UVPt().y = ( sideIter.UVPt().normParam - y0 ) / dy;
1950 uv_grid[ j * nbhoriz + i ] = sideIter.UVPt();
1951 quad->uv_box.Add( sideIter.UVPt().UV() );
1955 // normalized 2d parameters on grid
1957 for (int i = 1; i < nbhoriz-1; i++)
1959 const double x0 = quad->UVPt( i, 0 ).x;
1960 const double x1 = quad->UVPt( i, nbvertic-1 ).x;
1961 for (int j = 1; j < nbvertic-1; j++)
1963 const double y0 = quad->UVPt( 0, j ).y;
1964 const double y1 = quad->UVPt( nbhoriz-1, j ).y;
1965 // --- intersection : x=x0+(y0+x(y1-y0))(x1-x0)
1966 double x = (x0 + y0 * (x1 - x0)) / (1 - (y1 - y0) * (x1 - x0));
1967 double y = y0 + x * (y1 - y0);
1968 int ij = j * nbhoriz + i;
1971 uv_grid[ij].node = NULL;
1975 // projection on 2d domain (u,v)
1977 gp_UV a0 = quad->UVPt( 0, 0 ).UV();
1978 gp_UV a1 = quad->UVPt( nbhoriz-1, 0 ).UV();
1979 gp_UV a2 = quad->UVPt( nbhoriz-1, nbvertic-1 ).UV();
1980 gp_UV a3 = quad->UVPt( 0, nbvertic-1 ).UV();
1982 for (int i = 1; i < nbhoriz-1; i++)
1984 gp_UV p0 = quad->UVPt( i, 0 ).UV();
1985 gp_UV p2 = quad->UVPt( i, nbvertic-1 ).UV();
1986 for (int j = 1; j < nbvertic-1; j++)
1988 gp_UV p1 = quad->UVPt( nbhoriz-1, j ).UV();
1989 gp_UV p3 = quad->UVPt( 0, j ).UV();
1991 int ij = j * nbhoriz + i;
1992 double x = uv_grid[ij].x;
1993 double y = uv_grid[ij].y;
1995 gp_UV uv = calcUV(x,y, a0,a1,a2,a3, p0,p1,p2,p3);
1997 uv_grid[ij].u = uv.X();
1998 uv_grid[ij].v = uv.Y();
2004 //=======================================================================
2005 //function : ShiftQuad
2006 //purpose : auxiliary function for computeQuadPref
2007 //=======================================================================
2009 void StdMeshers_Quadrangle_2D::shiftQuad(FaceQuadStruct::Ptr& quad, const int num )
2011 quad->shift( num, /*ori=*/true, /*keepGrid=*/myQuadList.size() > 1 );
2014 //================================================================================
2016 * \brief Rotate sides of a quad CCW by given nb of quartes
2017 * \param nb - number of rotation quartes
2018 * \param ori - to keep orientation of sides as in an unit quad or not
2019 * \param keepGrid - if \c true Side::grid is not changed, Side::from and Side::to
2020 * are altered instead
2022 //================================================================================
2024 void FaceQuadStruct::shift( size_t nb, bool ori, bool keepGrid )
2026 if ( nb == 0 ) return;
2028 nb = nb % NB_QUAD_SIDES;
2030 vector< Side > newSides( side.size() );
2031 vector< Side* > sidePtrs( side.size() );
2032 for (int i = QUAD_BOTTOM_SIDE; i < NB_QUAD_SIDES; ++i)
2034 int id = (i + nb) % NB_QUAD_SIDES;
2037 bool wasForward = (i < QUAD_TOP_SIDE);
2038 bool newForward = (id < QUAD_TOP_SIDE);
2039 if ( wasForward != newForward )
2040 side[ i ].Reverse( keepGrid );
2042 newSides[ id ] = side[ i ];
2043 sidePtrs[ i ] = & side[ i ];
2045 // make newSides refer newSides via Side::Contact's
2046 for ( size_t i = 0; i < newSides.size(); ++i )
2048 FaceQuadStruct::Side& ns = newSides[ i ];
2049 for ( size_t iC = 0; iC < ns.contacts.size(); ++iC )
2051 FaceQuadStruct::Side* oSide = ns.contacts[iC].other_side;
2052 vector< Side* >::iterator sIt = std::find( sidePtrs.begin(), sidePtrs.end(), oSide );
2053 if ( sIt != sidePtrs.end() )
2054 ns.contacts[iC].other_side = & newSides[ *sIt - sidePtrs[0] ];
2057 newSides.swap( side );
2059 if ( keepGrid && !uv_grid.empty() )
2061 if ( nb == 2 ) // "PI"
2063 std::reverse( uv_grid.begin(), uv_grid.end() );
2067 FaceQuadStruct newQuad;
2068 newQuad.uv_grid.resize( uv_grid.size() );
2069 newQuad.iSize = jSize;
2070 newQuad.jSize = iSize;
2071 int i, j, iRev, jRev;
2072 int *iNew = ( nb == 1 ) ? &jRev : &j;
2073 int *jNew = ( nb == 1 ) ? &i : &iRev;
2074 for ( i = 0, iRev = iSize-1; i < iSize; ++i, --iRev )
2075 for ( j = 0, jRev = jSize-1; j < jSize; ++j, --jRev )
2076 newQuad.UVPt( *iNew, *jNew ) = UVPt( i, j );
2078 std::swap( iSize, jSize );
2079 std::swap( uv_grid, newQuad.uv_grid );
2088 //=======================================================================
2090 //purpose : auxiliary function for computeQuadPref
2091 //=======================================================================
2093 static gp_UV calcUV(double x0, double x1, double y0, double y1,
2094 FaceQuadStruct::Ptr& quad,
2095 const gp_UV& a0, const gp_UV& a1,
2096 const gp_UV& a2, const gp_UV& a3)
2098 double x = (x0 + y0 * (x1 - x0)) / (1 - (y1 - y0) * (x1 - x0));
2099 double y = y0 + x * (y1 - y0);
2101 gp_UV p0 = quad->side[QUAD_BOTTOM_SIDE].grid->Value2d(x).XY();
2102 gp_UV p1 = quad->side[QUAD_RIGHT_SIDE ].grid->Value2d(y).XY();
2103 gp_UV p2 = quad->side[QUAD_TOP_SIDE ].grid->Value2d(x).XY();
2104 gp_UV p3 = quad->side[QUAD_LEFT_SIDE ].grid->Value2d(y).XY();
2106 gp_UV uv = calcUV(x,y, a0,a1,a2,a3, p0,p1,p2,p3);
2111 //=======================================================================
2112 //function : calcUV2
2113 //purpose : auxiliary function for computeQuadPref
2114 //=======================================================================
2116 static gp_UV calcUV2(double x, double y,
2117 FaceQuadStruct::Ptr& quad,
2118 const gp_UV& a0, const gp_UV& a1,
2119 const gp_UV& a2, const gp_UV& a3)
2121 gp_UV p0 = quad->side[QUAD_BOTTOM_SIDE].grid->Value2d(x).XY();
2122 gp_UV p1 = quad->side[QUAD_RIGHT_SIDE ].grid->Value2d(y).XY();
2123 gp_UV p2 = quad->side[QUAD_TOP_SIDE ].grid->Value2d(x).XY();
2124 gp_UV p3 = quad->side[QUAD_LEFT_SIDE ].grid->Value2d(y).XY();
2126 gp_UV uv = calcUV(x,y, a0,a1,a2,a3, p0,p1,p2,p3);
2132 //=======================================================================
2134 * Create only quandrangle faces
2136 //=======================================================================
2138 bool StdMeshers_Quadrangle_2D::computeQuadPref (SMESH_Mesh & aMesh,
2139 const TopoDS_Face& aFace,
2140 FaceQuadStruct::Ptr quad)
2142 const bool OldVersion = (myQuadType == QUAD_QUADRANGLE_PREF_REVERSED);
2143 const bool WisF = true;
2145 SMESHDS_Mesh * meshDS = aMesh.GetMeshDS();
2146 Handle(Geom_Surface) S = BRep_Tool::Surface(aFace);
2147 int i,j, geomFaceID = meshDS->ShapeToIndex(aFace);
2149 int nb = quad->side[0].NbPoints();
2150 int nr = quad->side[1].NbPoints();
2151 int nt = quad->side[2].NbPoints();
2152 int nl = quad->side[3].NbPoints();
2153 int dh = abs(nb-nt);
2154 int dv = abs(nr-nl);
2156 if ( myForcedPnts.empty() )
2158 // rotate sides to be as in the picture below and to have
2159 // dh >= dv and nt > nb
2161 shiftQuad( quad, ( nt > nb ) ? 0 : 2 );
2163 shiftQuad( quad, ( nr > nl ) ? 1 : 3 );
2167 // rotate the quad to have nt > nb [and nr > nl]
2169 shiftQuad ( quad, nr > nl ? 1 : 2 );
2171 shiftQuad( quad, nb == nt ? 1 : 0 );
2173 shiftQuad( quad, 3 );
2176 nb = quad->side[0].NbPoints();
2177 nr = quad->side[1].NbPoints();
2178 nt = quad->side[2].NbPoints();
2179 nl = quad->side[3].NbPoints();
2182 int nbh = Max(nb,nt);
2183 int nbv = Max(nr,nl);
2187 // Orientation of face and 3 main domain for future faces
2188 // ----------- Old version ---------------
2194 // left | |__| | right
2201 // ----------- New version ---------------
2207 // left |/________\| right
2215 //const int bfrom = quad->side[0].from;
2216 //const int rfrom = quad->side[1].from;
2217 const int tfrom = quad->side[2].from;
2218 //const int lfrom = quad->side[3].from;
2220 const vector<UVPtStruct>& uv_eb_vec = quad->side[0].GetUVPtStruct(true,0);
2221 const vector<UVPtStruct>& uv_er_vec = quad->side[1].GetUVPtStruct(false,1);
2222 const vector<UVPtStruct>& uv_et_vec = quad->side[2].GetUVPtStruct(true,1);
2223 const vector<UVPtStruct>& uv_el_vec = quad->side[3].GetUVPtStruct(false,0);
2224 if (uv_eb_vec.empty() ||
2225 uv_er_vec.empty() ||
2226 uv_et_vec.empty() ||
2228 return error(COMPERR_BAD_INPUT_MESH);
2230 FaceQuadStruct::SideIterator uv_eb, uv_er, uv_et, uv_el;
2231 uv_eb.Init( quad->side[0] );
2232 uv_er.Init( quad->side[1] );
2233 uv_et.Init( quad->side[2] );
2234 uv_el.Init( quad->side[3] );
2236 gp_UV a0,a1,a2,a3, p0,p1,p2,p3, uv;
2239 a0 = uv_eb[ 0 ].UV();
2240 a1 = uv_er[ 0 ].UV();
2241 a2 = uv_er[ nr-1 ].UV();
2242 a3 = uv_et[ 0 ].UV();
2244 if ( !myForcedPnts.empty() )
2246 if ( dv != 0 && dh != 0 ) // here myQuadList.size() == 1
2248 const int dmin = Min( dv, dh );
2250 // Make a side separating domains L and Cb
2251 StdMeshers_FaceSidePtr sideLCb;
2252 UVPtStruct p3dom; // a point where 3 domains meat
2254 vector<UVPtStruct> pointsLCb( dmin+1 ); // 1--------1
2255 pointsLCb[0] = uv_eb[0]; // | | |
2256 for ( int i = 1; i <= dmin; ++i ) // | |Ct|
2258 x = uv_et[ i ].normParam; // | |__|
2259 y = uv_er[ i ].normParam; // | / |
2260 p0 = quad->side[0].grid->Value2d( x ).XY(); // | / Cb |dmin
2261 p1 = uv_er[ i ].UV(); // |/ |
2262 p2 = uv_et[ i ].UV(); // 0--------0
2263 p3 = quad->side[3].grid->Value2d( y ).XY();
2264 uv = calcUV( x,y, a0,a1,a2,a3, p0,p1,p2,p3 );
2265 pointsLCb[ i ].u = uv.X();
2266 pointsLCb[ i ].v = uv.Y();
2268 sideLCb = StdMeshers_FaceSide::New( pointsLCb, aFace );
2269 p3dom = pointsLCb.back();
2271 gp_Pnt xyz = S->Value( p3dom.u, p3dom.v );
2272 p3dom.node = myHelper->AddNode( xyz.X(), xyz.Y(), xyz.Z(), 0, p3dom.u, p3dom.v );
2273 pointsLCb.back() = p3dom;
2275 // Make a side separating domains L and Ct
2276 StdMeshers_FaceSidePtr sideLCt;
2278 vector<UVPtStruct> pointsLCt( nl );
2279 pointsLCt[0] = p3dom;
2280 pointsLCt.back() = uv_et[ dmin ];
2281 x = uv_et[ dmin ].normParam;
2282 p0 = quad->side[0].grid->Value2d( x ).XY();
2283 p2 = uv_et[ dmin ].UV();
2284 double y0 = uv_er[ dmin ].normParam;
2285 for ( int i = 1; i < nl-1; ++i )
2287 y = y0 + i / ( nl-1. ) * ( 1. - y0 );
2288 p1 = quad->side[1].grid->Value2d( y ).XY();
2289 p3 = quad->side[3].grid->Value2d( y ).XY();
2290 uv = calcUV( x,y, a0,a1,a2,a3, p0,p1,p2,p3 );
2291 pointsLCt[ i ].u = uv.X();
2292 pointsLCt[ i ].v = uv.Y();
2294 sideLCt = StdMeshers_FaceSide::New( pointsLCt, aFace );
2296 // Make a side separating domains Cb and Ct
2297 StdMeshers_FaceSidePtr sideCbCt;
2299 vector<UVPtStruct> pointsCbCt( nb );
2300 pointsCbCt[0] = p3dom;
2301 pointsCbCt.back() = uv_er[ dmin ];
2302 y = uv_er[ dmin ].normParam;
2303 p1 = uv_er[ dmin ].UV();
2304 p3 = quad->side[3].grid->Value2d( y ).XY();
2305 double x0 = uv_et[ dmin ].normParam;
2306 for ( int i = 1; i < nb-1; ++i )
2308 x = x0 + i / ( nb-1. ) * ( 1. - x0 );
2309 p2 = quad->side[2].grid->Value2d( x ).XY();
2310 p0 = quad->side[0].grid->Value2d( x ).XY();
2311 uv = calcUV( x,y, a0,a1,a2,a3, p0,p1,p2,p3 );
2312 pointsCbCt[ i ].u = uv.X();
2313 pointsCbCt[ i ].v = uv.Y();
2315 sideCbCt = StdMeshers_FaceSide::New( pointsCbCt, aFace );
2318 FaceQuadStruct* qCb = new FaceQuadStruct( quad->face, "Cb" );
2319 myQuadList.push_back( FaceQuadStruct::Ptr( qCb ));
2320 qCb->side.resize(4);
2321 qCb->side[0] = quad->side[0];
2322 qCb->side[1] = quad->side[1];
2323 qCb->side[2] = sideCbCt;
2324 qCb->side[3] = sideLCb;
2325 qCb->side[1].to = dmin+1;
2327 FaceQuadStruct* qL = new FaceQuadStruct( quad->face, "L" );
2328 myQuadList.push_back( FaceQuadStruct::Ptr( qL ));
2330 qL->side[0] = sideLCb;
2331 qL->side[1] = sideLCt;
2332 qL->side[2] = quad->side[2];
2333 qL->side[3] = quad->side[3];
2334 qL->side[2].to = dmin+1;
2335 // Make Ct from the main quad
2336 FaceQuadStruct::Ptr qCt = quad;
2337 qCt->side[0] = sideCbCt;
2338 qCt->side[3] = sideLCt;
2339 qCt->side[1].from = dmin;
2340 qCt->side[2].from = dmin;
2341 qCt->uv_grid.clear();
2345 qCb->side[3].AddContact( dmin, & qCb->side[2], 0 );
2346 qCb->side[3].AddContact( dmin, & qCt->side[3], 0 );
2347 qCt->side[3].AddContact( 0, & qCt->side[0], 0 );
2348 qCt->side[0].AddContact( 0, & qL ->side[0], dmin );
2349 qL ->side[0].AddContact( dmin, & qL ->side[1], 0 );
2350 qL ->side[0].AddContact( dmin, & qCb->side[2], 0 );
2353 return computeQuadDominant( aMesh, aFace );
2355 return computeQuadPref( aMesh, aFace, qCt );
2357 } // if ( dv != 0 && dh != 0 )
2359 //const int db = quad->side[0].IsReversed() ? -1 : +1;
2360 //const int dr = quad->side[1].IsReversed() ? -1 : +1;
2361 const int dt = quad->side[2].IsReversed() ? -1 : +1;
2362 //const int dl = quad->side[3].IsReversed() ? -1 : +1;
2364 // Case dv == 0, here possibly myQuadList.size() > 1
2376 const int lw = dh/2; // lateral width
2380 double lL = quad->side[3].Length();
2381 double lLwL = quad->side[2].Length( tfrom,
2382 tfrom + ( lw ) * dt );
2383 yCbL = lLwL / ( lLwL + lL );
2385 double lR = quad->side[1].Length();
2386 double lLwR = quad->side[2].Length( tfrom + ( lw + nb-1 ) * dt,
2387 tfrom + ( lw + nb-1 + lw ) * dt);
2388 yCbR = lLwR / ( lLwR + lR );
2390 // Make sides separating domains Cb and L and R
2391 StdMeshers_FaceSidePtr sideLCb, sideRCb;
2392 UVPtStruct pTBL, pTBR; // points where 3 domains meat
2394 vector<UVPtStruct> pointsLCb( lw+1 ), pointsRCb( lw+1 );
2395 pointsLCb[0] = uv_eb[ 0 ];
2396 pointsRCb[0] = uv_eb[ nb-1 ];
2397 for ( int i = 1, i2 = nt-2; i <= lw; ++i, --i2 )
2399 x = quad->side[2].Param( i );
2401 p0 = quad->side[0].Value2d( x );
2402 p1 = quad->side[1].Value2d( y );
2403 p2 = uv_et[ i ].UV();
2404 p3 = quad->side[3].Value2d( y );
2405 uv = calcUV( x,y, a0,a1,a2,a3, p0,p1,p2,p3 );
2406 pointsLCb[ i ].u = uv.X();
2407 pointsLCb[ i ].v = uv.Y();
2408 pointsLCb[ i ].x = x;
2410 x = quad->side[2].Param( i2 );
2412 p1 = quad->side[1].Value2d( y );
2413 p0 = quad->side[0].Value2d( x );
2414 p2 = uv_et[ i2 ].UV();
2415 p3 = quad->side[3].Value2d( y );
2416 uv = calcUV( x,y, a0,a1,a2,a3, p0,p1,p2,p3 );
2417 pointsRCb[ i ].u = uv.X();
2418 pointsRCb[ i ].v = uv.Y();
2419 pointsRCb[ i ].x = x;
2421 sideLCb = StdMeshers_FaceSide::New( pointsLCb, aFace );
2422 sideRCb = StdMeshers_FaceSide::New( pointsRCb, aFace );
2423 pTBL = pointsLCb.back();
2424 pTBR = pointsRCb.back();
2426 gp_Pnt xyz = S->Value( pTBL.u, pTBL.v );
2427 pTBL.node = myHelper->AddNode( xyz.X(), xyz.Y(), xyz.Z(), 0, pTBL.u, pTBL.v );
2428 pointsLCb.back() = pTBL;
2431 gp_Pnt xyz = S->Value( pTBR.u, pTBR.v );
2432 pTBR.node = myHelper->AddNode( xyz.X(), xyz.Y(), xyz.Z(), 0, pTBR.u, pTBR.v );
2433 pointsRCb.back() = pTBR;
2436 // Make sides separating domains Ct and L and R
2437 StdMeshers_FaceSidePtr sideLCt, sideRCt;
2439 vector<UVPtStruct> pointsLCt( nl ), pointsRCt( nl );
2440 pointsLCt[0] = pTBL;
2441 pointsLCt.back() = uv_et[ lw ];
2442 pointsRCt[0] = pTBR;
2443 pointsRCt.back() = uv_et[ lw + nb - 1 ];
2445 p0 = quad->side[0].Value2d( x );
2446 p2 = uv_et[ lw ].UV();
2447 int iR = lw + nb - 1;
2449 gp_UV p0R = quad->side[0].Value2d( xR );
2450 gp_UV p2R = uv_et[ iR ].UV();
2451 for ( int i = 1; i < nl-1; ++i )
2453 y = yCbL + ( 1. - yCbL ) * i / (nl-1.);
2454 p1 = quad->side[1].Value2d( y );
2455 p3 = quad->side[3].Value2d( y );
2456 uv = calcUV( x,y, a0,a1,a2,a3, p0,p1,p2,p3 );
2457 pointsLCt[ i ].u = uv.X();
2458 pointsLCt[ i ].v = uv.Y();
2460 y = yCbR + ( 1. - yCbR ) * i / (nl-1.);
2461 p1 = quad->side[1].Value2d( y );
2462 p3 = quad->side[3].Value2d( y );
2463 uv = calcUV( xR,y, a0,a1,a2,a3, p0R,p1,p2R,p3 );
2464 pointsRCt[ i ].u = uv.X();
2465 pointsRCt[ i ].v = uv.Y();
2467 sideLCt = StdMeshers_FaceSide::New( pointsLCt, aFace );
2468 sideRCt = StdMeshers_FaceSide::New( pointsRCt, aFace );
2470 // Make a side separating domains Cb and Ct
2471 StdMeshers_FaceSidePtr sideCbCt;
2473 vector<UVPtStruct> pointsCbCt( nb );
2474 pointsCbCt[0] = pTBL;
2475 pointsCbCt.back() = pTBR;
2476 p1 = quad->side[1].Value2d( yCbR );
2477 p3 = quad->side[3].Value2d( yCbL );
2478 for ( int i = 1; i < nb-1; ++i )
2480 x = quad->side[2].Param( i + lw );
2481 y = yCbL + ( yCbR - yCbL ) * i / (nb-1.);
2482 p2 = uv_et[ i + lw ].UV();
2483 p0 = quad->side[0].Value2d( x );
2484 uv = calcUV( x,y, a0,a1,a2,a3, p0,p1,p2,p3 );
2485 pointsCbCt[ i ].u = uv.X();
2486 pointsCbCt[ i ].v = uv.Y();
2488 sideCbCt = StdMeshers_FaceSide::New( pointsCbCt, aFace );
2491 FaceQuadStruct* qCb = new FaceQuadStruct( quad->face, "Cb" );
2492 myQuadList.push_back( FaceQuadStruct::Ptr( qCb ));
2493 qCb->side.resize(4);
2494 qCb->side[0] = quad->side[0];
2495 qCb->side[1] = sideRCb;
2496 qCb->side[2] = sideCbCt;
2497 qCb->side[3] = sideLCb;
2499 FaceQuadStruct* qL = new FaceQuadStruct( quad->face, "L" );
2500 myQuadList.push_back( FaceQuadStruct::Ptr( qL ));
2502 qL->side[0] = sideLCb;
2503 qL->side[1] = sideLCt;
2504 qL->side[2] = quad->side[2];
2505 qL->side[3] = quad->side[3];
2506 qL->side[2].to = ( lw + 1 ) * dt + tfrom;
2508 FaceQuadStruct* qR = new FaceQuadStruct( quad->face, "R" );
2509 myQuadList.push_back( FaceQuadStruct::Ptr( qR ));
2511 qR->side[0] = sideRCb;
2512 qR->side[0].from = lw;
2513 qR->side[0].to = -1;
2514 qR->side[0].di = -1;
2515 qR->side[1] = quad->side[1];
2516 qR->side[2] = quad->side[2];
2517 qR->side[2].from = ( lw + nb-1 ) * dt + tfrom;
2518 qR->side[3] = sideRCt;
2519 // Make Ct from the main quad
2520 FaceQuadStruct::Ptr qCt = quad;
2521 qCt->side[0] = sideCbCt;
2522 qCt->side[1] = sideRCt;
2523 qCt->side[2].from = ( lw ) * dt + tfrom;
2524 qCt->side[2].to = ( lw + nb ) * dt + tfrom;
2525 qCt->side[3] = sideLCt;
2526 qCt->uv_grid.clear();
2530 qCb->side[3].AddContact( lw, & qCb->side[2], 0 );
2531 qCb->side[3].AddContact( lw, & qCt->side[3], 0 );
2532 qCt->side[3].AddContact( 0, & qCt->side[0], 0 );
2533 qCt->side[0].AddContact( 0, & qL ->side[0], lw );
2534 qL ->side[0].AddContact( lw, & qL ->side[1], 0 );
2535 qL ->side[0].AddContact( lw, & qCb->side[2], 0 );
2537 qCb->side[1].AddContact( lw, & qCb->side[2], nb-1 );
2538 qCb->side[1].AddContact( lw, & qCt->side[1], 0 );
2539 qCt->side[0].AddContact( nb-1, & qCt->side[1], 0 );
2540 qCt->side[0].AddContact( nb-1, & qR ->side[0], lw );
2541 qR ->side[3].AddContact( 0, & qR ->side[0], lw );
2542 qR ->side[3].AddContact( 0, & qCb->side[2], nb-1 );
2544 return computeQuadDominant( aMesh, aFace );
2546 } // if ( !myForcedPnts.empty() )
2557 // arrays for normalized params
2558 TColStd_SequenceOfReal npb, npr, npt, npl;
2559 for (i=0; i<nb; i++) {
2560 npb.Append(uv_eb[i].normParam);
2562 for (i=0; i<nr; i++) {
2563 npr.Append(uv_er[i].normParam);
2565 for (i=0; i<nt; i++) {
2566 npt.Append(uv_et[i].normParam);
2568 for (i=0; i<nl; i++) {
2569 npl.Append(uv_el[i].normParam);
2574 // add some params to right and left after the first param
2577 double dpr = (npr.Value(2) - npr.Value(1))/(dr+1);
2578 for (i=1; i<=dr; i++) {
2579 npr.InsertAfter(1,npr.Value(2)-dpr);
2583 dpr = (npl.Value(2) - npl.Value(1))/(dl+1);
2584 for (i=1; i<=dl; i++) {
2585 npl.InsertAfter(1,npl.Value(2)-dpr);
2589 int nnn = Min(nr,nl);
2590 // auxiliary sequence of XY for creation nodes
2591 // in the bottom part of central domain
2592 // Length of UVL and UVR must be == nbv-nnn
2593 TColgp_SequenceOfXY UVL, UVR, UVT;
2596 // step1: create faces for left domain
2597 StdMeshers_Array2OfNode NodesL(1,dl+1,1,nl);
2599 for (j=1; j<=nl; j++)
2600 NodesL.SetValue(1,j,uv_el[j-1].node);
2603 for (i=1; i<=dl; i++)
2604 NodesL.SetValue(i+1,nl,uv_et[i].node);
2605 // create and add needed nodes
2606 TColgp_SequenceOfXY UVtmp;
2607 for (i=1; i<=dl; i++) {
2608 double x0 = npt.Value(i+1);
2611 double y0 = npl.Value(i+1);
2612 double y1 = npr.Value(i+1);
2613 gp_UV UV = calcUV(x0, x1, y0, y1, quad, a0, a1, a2, a3);
2614 gp_Pnt P = S->Value(UV.X(),UV.Y());
2615 SMDS_MeshNode * N = meshDS->AddNode(P.X(), P.Y(), P.Z());
2616 meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
2617 NodesL.SetValue(i+1,1,N);
2618 if (UVL.Length()<nbv-nnn) UVL.Append(UV);
2620 for (j=2; j<nl; j++) {
2621 double y0 = npl.Value(dl+j);
2622 double y1 = npr.Value(dl+j);
2623 gp_UV UV = calcUV(x0, x1, y0, y1, quad, a0, a1, a2, a3);
2624 gp_Pnt P = S->Value(UV.X(),UV.Y());
2625 SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
2626 meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
2627 NodesL.SetValue(i+1,j,N);
2628 if (i==dl) UVtmp.Append(UV);
2631 for (i=1; i<=UVtmp.Length() && UVL.Length()<nbv-nnn; i++) {
2632 UVL.Append(UVtmp.Value(i));
2635 for (i=1; i<=dl; i++) {
2636 for (j=1; j<nl; j++) {
2638 myHelper->AddFace(NodesL.Value(i,j), NodesL.Value(i+1,j),
2639 NodesL.Value(i+1,j+1), NodesL.Value(i,j+1));
2645 // fill UVL using c2d
2646 for (i=1; i<npl.Length() && UVL.Length()<nbv-nnn; i++) {
2647 UVL.Append(gp_UV (uv_el[i].u, uv_el[i].v));
2651 // step2: create faces for right domain
2652 StdMeshers_Array2OfNode NodesR(1,dr+1,1,nr);
2654 for (j=1; j<=nr; j++)
2655 NodesR.SetValue(1,j,uv_er[nr-j].node);
2658 for (i=1; i<=dr; i++)
2659 NodesR.SetValue(i+1,1,uv_et[nt-1-i].node);
2660 // create and add needed nodes
2661 TColgp_SequenceOfXY UVtmp;
2662 for (i=1; i<=dr; i++) {
2663 double x0 = npt.Value(nt-i);
2666 double y0 = npl.Value(i+1);
2667 double y1 = npr.Value(i+1);
2668 gp_UV UV = calcUV(x0, x1, y0, y1, quad, a0, a1, a2, a3);
2669 gp_Pnt P = S->Value(UV.X(),UV.Y());
2670 SMDS_MeshNode * N = meshDS->AddNode(P.X(), P.Y(), P.Z());
2671 meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
2672 NodesR.SetValue(i+1,nr,N);
2673 if (UVR.Length()<nbv-nnn) UVR.Append(UV);
2675 for (j=2; j<nr; j++) {
2676 double y0 = npl.Value(nbv-j+1);
2677 double y1 = npr.Value(nbv-j+1);
2678 gp_UV UV = calcUV(x0, x1, y0, y1, quad, a0, a1, a2, a3);
2679 gp_Pnt P = S->Value(UV.X(),UV.Y());
2680 SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
2681 meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
2682 NodesR.SetValue(i+1,j,N);
2683 if (i==dr) UVtmp.Prepend(UV);
2686 for (i=1; i<=UVtmp.Length() && UVR.Length()<nbv-nnn; i++) {
2687 UVR.Append(UVtmp.Value(i));
2690 for (i=1; i<=dr; i++) {
2691 for (j=1; j<nr; j++) {
2693 myHelper->AddFace(NodesR.Value(i,j), NodesR.Value(i+1,j),
2694 NodesR.Value(i+1,j+1), NodesR.Value(i,j+1));
2700 // fill UVR using c2d
2701 for (i=1; i<npr.Length() && UVR.Length()<nbv-nnn; i++) {
2702 UVR.Append(gp_UV(uv_er[i].u, uv_er[i].v));
2706 // step3: create faces for central domain
2707 StdMeshers_Array2OfNode NodesC(1,nb,1,nbv);
2708 // add first line using NodesL
2709 for (i=1; i<=dl+1; i++)
2710 NodesC.SetValue(1,i,NodesL(i,1));
2711 for (i=2; i<=nl; i++)
2712 NodesC.SetValue(1,dl+i,NodesL(dl+1,i));
2713 // add last line using NodesR
2714 for (i=1; i<=dr+1; i++)
2715 NodesC.SetValue(nb,i,NodesR(i,nr));
2716 for (i=1; i<nr; i++)
2717 NodesC.SetValue(nb,dr+i+1,NodesR(dr+1,nr-i));
2718 // add top nodes (last columns)
2719 for (i=dl+2; i<nbh-dr; i++)
2720 NodesC.SetValue(i-dl,nbv,uv_et[i-1].node);
2721 // add bottom nodes (first columns)
2722 for (i=2; i<nb; i++)
2723 NodesC.SetValue(i,1,uv_eb[i-1].node);
2725 // create and add needed nodes
2726 // add linear layers
2727 for (i=2; i<nb; i++) {
2728 double x0 = npt.Value(dl+i);
2730 for (j=1; j<nnn; j++) {
2731 double y0 = npl.Value(nbv-nnn+j);
2732 double y1 = npr.Value(nbv-nnn+j);
2733 gp_UV UV = calcUV(x0, x1, y0, y1, quad, a0, a1, a2, a3);
2734 gp_Pnt P = S->Value(UV.X(),UV.Y());
2735 SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
2736 meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
2737 NodesC.SetValue(i,nbv-nnn+j,N);
2742 // add diagonal layers
2743 gp_UV A2 = UVR.Value(nbv-nnn);
2744 gp_UV A3 = UVL.Value(nbv-nnn);
2745 for (i=1; i<nbv-nnn; i++) {
2746 gp_UV p1 = UVR.Value(i);
2747 gp_UV p3 = UVL.Value(i);
2748 double y = i / double(nbv-nnn);
2749 for (j=2; j<nb; j++) {
2750 double x = npb.Value(j);
2751 gp_UV p0( uv_eb[j-1].u, uv_eb[j-1].v );
2752 gp_UV p2 = UVT.Value( j-1 );
2753 gp_UV UV = calcUV(x, y, a0, a1, A2, A3, p0,p1,p2,p3 );
2754 gp_Pnt P = S->Value(UV.X(),UV.Y());
2755 SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
2756 meshDS->SetNodeOnFace(N, geomFaceID, UV.X(),UV.Y());
2757 NodesC.SetValue(j,i+1,N);
2761 for (i=1; i<nb; i++) {
2762 for (j=1; j<nbv; j++) {
2764 myHelper->AddFace(NodesC.Value(i,j), NodesC.Value(i+1,j),
2765 NodesC.Value(i+1,j+1), NodesC.Value(i,j+1));
2771 else { // New version (!OldVersion)
2772 // step1: create faces for bottom rectangle domain
2773 StdMeshers_Array2OfNode NodesBRD(1,nb,1,nnn-1);
2774 // fill UVL and UVR using c2d
2775 for (j=0; j<nb; j++) {
2776 NodesBRD.SetValue(j+1,1,uv_eb[j].node);
2778 for (i=1; i<nnn-1; i++) {
2779 NodesBRD.SetValue(1,i+1,uv_el[i].node);
2780 NodesBRD.SetValue(nb,i+1,uv_er[i].node);
2781 for (j=2; j<nb; j++) {
2782 double x = npb.Value(j);
2783 double y = (1-x) * npl.Value(i+1) + x * npr.Value(i+1);
2784 gp_UV UV = calcUV2(x, y, quad, a0, a1, a2, a3);
2785 gp_Pnt P = S->Value(UV.X(),UV.Y());
2786 SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
2787 meshDS->SetNodeOnFace(N, geomFaceID, UV.X(),UV.Y());
2788 NodesBRD.SetValue(j,i+1,N);
2791 for (j=1; j<nnn-1; j++) {
2792 for (i=1; i<nb; i++) {
2794 myHelper->AddFace(NodesBRD.Value(i,j), NodesBRD.Value(i+1,j),
2795 NodesBRD.Value(i+1,j+1), NodesBRD.Value(i,j+1));
2799 int drl = abs(nr-nl);
2800 // create faces for region C
2801 StdMeshers_Array2OfNode NodesC(1,nb,1,drl+1+addv);
2802 // add nodes from previous region
2803 for (j=1; j<=nb; j++) {
2804 NodesC.SetValue(j,1,NodesBRD.Value(j,nnn-1));
2806 if ((drl+addv) > 0) {
2811 TColgp_SequenceOfXY UVtmp;
2812 double drparam = npr.Value(nr) - npr.Value(nnn-1);
2813 double dlparam = npl.Value(nnn) - npl.Value(nnn-1);
2814 double y0 = 0, y1 = 0;
2815 for (i=1; i<=drl; i++) {
2816 // add existed nodes from right edge
2817 NodesC.SetValue(nb,i+1,uv_er[nnn+i-2].node);
2818 //double dtparam = npt.Value(i+1);
2819 y1 = npr.Value(nnn+i-1); // param on right edge
2820 double dpar = (y1 - npr.Value(nnn-1))/drparam;
2821 y0 = npl.Value(nnn-1) + dpar*dlparam; // param on left edge
2822 double dy = y1 - y0;
2823 for (j=1; j<nb; j++) {
2824 double x = npt.Value(i+1) + npb.Value(j)*(1-npt.Value(i+1));
2825 double y = y0 + dy*x;
2826 gp_UV UV = calcUV2(x, y, quad, a0, a1, a2, a3);
2827 gp_Pnt P = S->Value(UV.X(),UV.Y());
2828 SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
2829 meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
2830 NodesC.SetValue(j,i+1,N);
2833 double dy0 = (1-y0)/(addv+1);
2834 double dy1 = (1-y1)/(addv+1);
2835 for (i=1; i<=addv; i++) {
2836 double yy0 = y0 + dy0*i;
2837 double yy1 = y1 + dy1*i;
2838 double dyy = yy1 - yy0;
2839 for (j=1; j<=nb; j++) {
2840 double x = npt.Value(i+1+drl) +
2841 npb.Value(j) * (npt.Value(nt-i) - npt.Value(i+1+drl));
2842 double y = yy0 + dyy*x;
2843 gp_UV UV = calcUV2(x, y, quad, a0, a1, a2, a3);
2844 gp_Pnt P = S->Value(UV.X(),UV.Y());
2845 SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
2846 meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
2847 NodesC.SetValue(j,i+drl+1,N);
2854 TColgp_SequenceOfXY UVtmp;
2855 double dlparam = npl.Value(nl) - npl.Value(nnn-1);
2856 double drparam = npr.Value(nnn) - npr.Value(nnn-1);
2857 double y0 = npl.Value(nnn-1);
2858 double y1 = npr.Value(nnn-1);
2859 for (i=1; i<=drl; i++) {
2860 // add existed nodes from right edge
2861 NodesC.SetValue(1,i+1,uv_el[nnn+i-2].node);
2862 y0 = npl.Value(nnn+i-1); // param on left edge
2863 double dpar = (y0 - npl.Value(nnn-1))/dlparam;
2864 y1 = npr.Value(nnn-1) + dpar*drparam; // param on right edge
2865 double dy = y1 - y0;
2866 for (j=2; j<=nb; j++) {
2867 double x = npb.Value(j)*npt.Value(nt-i);
2868 double y = y0 + dy*x;
2869 gp_UV UV = calcUV2(x, y, quad, a0, a1, a2, a3);
2870 gp_Pnt P = S->Value(UV.X(),UV.Y());
2871 SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
2872 meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
2873 NodesC.SetValue(j,i+1,N);
2876 double dy0 = (1-y0)/(addv+1);
2877 double dy1 = (1-y1)/(addv+1);
2878 for (i=1; i<=addv; i++) {
2879 double yy0 = y0 + dy0*i;
2880 double yy1 = y1 + dy1*i;
2881 double dyy = yy1 - yy0;
2882 for (j=1; j<=nb; j++) {
2883 double x = npt.Value(i+1) +
2884 npb.Value(j) * (npt.Value(nt-i-drl) - npt.Value(i+1));
2885 double y = yy0 + dyy*x;
2886 gp_UV UV = calcUV2(x, y, quad, a0, a1, a2, a3);
2887 gp_Pnt P = S->Value(UV.X(),UV.Y());
2888 SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
2889 meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
2890 NodesC.SetValue(j,i+drl+1,N);
2895 for (j=1; j<=drl+addv; j++) {
2896 for (i=1; i<nb; i++) {
2898 myHelper->AddFace(NodesC.Value(i,j), NodesC.Value(i+1,j),
2899 NodesC.Value(i+1,j+1), NodesC.Value(i,j+1));
2904 StdMeshers_Array2OfNode NodesLast(1,nt,1,2);
2905 for (i=1; i<=nt; i++) {
2906 NodesLast.SetValue(i,2,uv_et[i-1].node);
2909 for (i=n1; i<drl+addv+1; i++) {
2911 NodesLast.SetValue(nnn,1,NodesC.Value(1,i));
2913 for (i=1; i<=nb; i++) {
2915 NodesLast.SetValue(nnn,1,NodesC.Value(i,drl+addv+1));
2917 for (i=drl+addv; i>=n2; i--) {
2919 NodesLast.SetValue(nnn,1,NodesC.Value(nb,i));
2921 for (i=1; i<nt; i++) {
2923 myHelper->AddFace(NodesLast.Value(i,1), NodesLast.Value(i+1,1),
2924 NodesLast.Value(i+1,2), NodesLast.Value(i,2));
2927 } // if ((drl+addv) > 0)
2929 } // end new version implementation