1 .. _a1d_meshing_hypo_page:
3 *********************
4 1D Meshing Hypotheses
5 *********************
7 Basic 1D hypothesis specifies:
8         * how a :ref:`Wire Discretization <a1d_algos_anchor>` should divide the edge;
9         * how a :ref:`Composite Side Discretization <a1d_algos_anchor>` should divide the group of C1-continuous edges.
11 1D hypotheses can be categorized by type of nodes distribution as follows:
12         * Uniform distribution:
13                 * :ref:`Local Length <average_length_anchor>`
14                 * :ref:`Max Size <max_length_anchor>`
15                 * :ref:`Number of Segments <number_of_segments_anchor>` with Equidistant distribution
16                 * :ref:`Automatic Length <automatic_length_anchor>`
18         * Constantly increasing or decreasing length of segments:
19                 * :ref:`Arithmetic Progression <arithmetic_1d_anchor>`
20                 * :ref:`Geometric Progression <geometric_1d_anchor>`
21                 * :ref:`Start and end length <start_and_end_length_anchor>`
22                 * :ref:`Number of Segments <number_of_segments_anchor>` with Scale distribution
24         * Distribution depending on curvature:
26                 * :ref:`Deflection <deflection_1d_anchor>`
28         * Arbitrary distribution:
29                 * :ref:`Fixed Points <fixed_points_1d_anchor>`
30                 * :ref:`Number of Segments <number_of_segments_anchor>` with :ref:`Analytic Density Distribution <analyticdensity_anchor>` or Table Density Distribution
36 ###################
38 **Adaptive** hypothesis allows to split edges into segments with a length that depends on the curvature of edges and faces and is limited by **Min. Size** and **Max Size**. The length of a segment also depends on the lengths of adjacent segments (that can't differ more than twice) and on the  distance to close geometrical entities (edges and faces) to avoid creation of narrow 2D elements.
41                 :align: center
43 * **Min size** parameter limits the minimal segment size.
44 * **Max size** parameter defines the length of segments on straight edges.
45 * **Deflection** parameter gives maximal distance of a segment from a curved edge.
48                 :align: center
50         .. centered::
51                 Adaptive hypothesis and NETGEN 2D algorithm - the size of mesh segments reflects the size of geometrical features
53 **See Also** a :ref:`sample TUI Script <tui_1d_adaptive>` that uses Adaptive hypothesis.
55 .. _arithmetic_1d_anchor:
57 Arithmetic Progression hypothesis
58 #################################
60 **Arithmetic Progression** hypothesis allows to split edges into segments with a length that changes in arithmetic progression (Lk = Lk-1 + d) beginning from a given starting length and up to a given end length.
62 The splitting direction is defined by the orientation of the underlying geometrical edge. **Reverse Edges** list box allows specifying the edges, for which the splitting should be made in the direction opposite to their orientation. This list box is usable only if a geometry object is selected for meshing. In this case it is possible to select edges to be reversed either directly picking them in the 3D viewer or by selecting the edges or groups of edges in the Object Browser. Use
65 :ref:`Helper <reversed_edges_helper_anchor>` group assists you in defining **Reversed Edges** parameter.
68 .. image:: ../images/a-arithmetic1d.png
69         :align: center
72 .. image:: ../images/b-ithmetic1d.png
73         :align: center
75 .. centered::
76         Arithmetic Progression hypothesis - the size of mesh elements gradually increases
78 **See Also** a sample TUI Script of :ref:`Defining Arithmetic Progression and Geometric Progression hypothesis <tui_1d_arithmetic>` operation.
80 .. _geometric_1d_anchor:
82 Geometric Progression hypothesis
83 ################################
85 **Geometric Progression** hypothesis allows splitting edges into segments with a length that changes in geometric progression (Lk = Lk-1 * d) starting from a given **Start Length** and with a given **Common Ratio**.
87 The splitting direction is defined by the orientation of the underlying geometrical edge.
88 **Reverse Edges** list box allows specifying the edges, for which the splitting should be made in the direction opposite to their orientation. This list box is usable only if a geometry object is selected for meshing. In this case it is possible to select edges to be reversed either directly picking them in the 3D viewer or by selecting the edges or groups of edges in the Object Browser. Use **Add** button to add the selected edges to the list.
90 :ref:`Helper <reversed_edges_helper_anchor>` group assists you in defining **Reversed Edges** parameter.
92 .. image:: ../images/a-geometric1d.png
93         :align: center
95 **See Also** a sample TUI Script of :ref:`Defining Arithmetic Progression and Geometric Progression hypothesis <tui_1d_arithmetic>` operation.
97 .. _deflection_1d_anchor:
99 Deflection hypothesis
100 #####################
102 **Deflection** hypothesis can be applied for meshing curvilinear edges composing your geometrical object. It defines only one parameter: the value of deflection (or chord error).
104 A geometrical edge is divided into segments of length depending on edge curvature. The more curved the edge, the shorter the segment. Nodes on the edge are placed so that the maximum distance between the edge and a segment approximating a part of edge between two nodes should not exceed the value of deflection.
106 .. image:: ../images/a-deflection1d.png
107         :align: center
109 .. image:: ../images/b-flection1d.png
110         :align: center
112 .. centered::
113         Deflection hypothesis - useful for meshing curvilinear edges
115 **See Also** a sample TUI Script of :ref:`Defining Deflection hypothesis <tui_deflection_1d>` operation.
117 .. _average_length_anchor:
119 Local Length hypothesis
120 #######################
122 **Local Length** hypothesis can be applied for meshing of edges composing your geometrical object. Definition of this hypothesis consists of setting the **length** of segments, which will approximate these edges, and the **precision** of rounding.
124 The **precision** parameter is used to round a *number of segments*, calculated by dividing the *edge length* by the specified **length** of segment, to the higher integer if the *remainder* exceeds the **precision** and to the lower integer otherwise.
125 Use value 0.5 to provide rounding to the nearest integer, 1.0 for the lower integer, 0.0 for the higher integer. Default value is 1e-07.
127 For example: if *edge length* is 10.0 and the segment **length**
128 is 3.0 then their division gives 10./3. = 3.33(3) and the *remainder* is 0.33(3).
129 If **precision** is less than 0.33(3) then the edge is divided into 3 segments.
130 If **precision** is more than 0.33(3) then the edge is divided into 4 segments.
133 .. image:: ../images/image41.gif
134         :align: center
136 .. image:: ../images/a-averagelength.png
137         :align: center
139 .. image:: ../images/b-erage_length.png
140         :align: center
142 .. centered::
143         Local Length hypothesis - all 1D mesh segments are equal
145 **See Also** a sample TUI Script of :ref:`Defining Local Length <tui_average_length>` hypothesis
146 operation.
148 .. _max_length_anchor:
150 Max Size
151 ########
153 **Max Size** hypothesis allows splitting geometrical edges into segments not longer than the given length. Definition of this hypothesis consists of setting the maximal allowed **length** of segments.
154 **Use preestimated length** check box lets you use **length** automatically calculated basing on size of your geometrical object, namely as diagonal of bounding box divided by ten. The divider can be changed via :ref:`Ratio Bounding Box Diagonal / Max Size <diagonal_size_ratio_pref>` preference parameter.
155 **Use preestimated length** check box is enabled only if the geometrical object has been selected before hypothesis definition.
157 .. image:: ../images/a-maxsize1d.png
158         :align: center
160 .. _number_of_segments_anchor:
162 Number of Segments hypothesis
163 #############################
165 **Number of Segments** hypothesis can be applied for approximating edges by a definite number of mesh segments with length depending on the selected type of distribution of nodes. The default number of segments can be set via :ref:`Automatic Parameters / Default Number of Segments <nb_segments_pref>` preference parameter.
167 The direction of the splitting is defined by the orientation of the underlying geometrical edge. **Reverse Edges** list box allows to specify the edges for which the splitting should be made in the direction opposing to their orientation. This list box is enabled only if the geometry object is selected for the meshing. In this case it is possible to select edges to be reversed either by directly picking them in the 3D viewer or by selecting the edges or groups of edges in the Object Browser.
169 :ref:`Helper <reversed_edges_helper_anchor>` group assists you in defining **Reversed Edges** parameter.
171 You can set the type of node distribution for this hypothesis in the **Hypothesis Construction** dialog box:
173 .. image:: ../images/a-nbsegments1.png
174         :align: center
176 **Equidistant Distribution** - all segments will have the same length, you define only the **Number of Segments**.
178 **Scale Distribution** - length of segments gradually changes depending on the **Scale Factor**, which is a ratio of the first segment length to the last segment length.
180 Length of segments changes in geometric progression with the common ratio (A) depending on the **Scale Factor** (S) and **Number of Segments** (N) as follows: A = S**(1/(N-1)). For an edge of length L, length of the first segment is L * (1 - A)/(1 - A**N)
182 .. image:: ../images/a-nbsegments2.png
183         :align: center
185 .. _analyticdensity_anchor:
187 **Distribution with Analytic Density** - you input the formula, which will rule the change of length of segments and the module shows in the plot the density function curve in red and the node distribution as blue crosses.
189 .. image:: ../images/distributionwithanalyticdensity.png
190         :align: center
192 The node distribution is computed so that to have the density function integral on the range between two nodes equal for all segments.
194 .. image:: ../images/analyticdensity.png
195         :align: center
197 **Distribution with Table Density** - you input a number of pairs **t - F(t)**, where **t** ranges from 0 to 1, and the module computes the formula, which will rule the change of length of segments and shows in the plot the density function curve in red and the node distribution as blue crosses. The node distribution is computed in the same way as for :ref:`Distribution with Analytic Density <analyticdensity_anchor>`. You can select the **Conversion mode** from **Exponent** and **Cut negative**.
199 .. image:: ../images/distributionwithtabledensity.png
200         :align: center
203 **See Also** a sample TUI Script of :ref:`Defining Number of Segments <tui_deflection_1d>` hypothesis operation.
205 .. note:: The plot functionality is available only if GUI module is built with Plot 2D Viewer (option SALOME_USE_PLOT2DVIEWER is ON when building GUI module).
207 .. _start_and_end_length_anchor:
209 Start and End Length hypothesis
210 ###############################
212 **Start and End Length** hypothesis allows to divide a geometrical edge into segments so that the first and the last segments have a specified length. The length of medium segments changes with automatically chosen geometric progression.
214 The direction of the splitting is defined by the orientation of the underlying geometrical edge. **Reverse Edges** list box allows to specify the edges, for which the splitting should be made in the direction opposing to their orientation. This list box is enabled only if the geometry object is selected for the meshing. In this case it is possible to select edges to be reversed either by directly picking them in the 3D viewer or by selecting the edges or groups of edges in the Object Browser.
216 :ref:`Helper <reversed_edges_helper_anchor>` group assists you in defining **Reversed Edges** parameter.
219 .. image:: ../images/a-startendlength.png
220         :align: center
222 .. image:: ../images/b-art_end_length.png
223         :align: center
225 .. centered::
226          The lengths of the first and the last segment are strictly defined
228 **See Also** a sample TUI Script of :ref:`Defining Start and End Length <tui_start_and_end_length>` hypothesis operation.
231 .. _automatic_length_anchor:
233 Automatic Length
234 ################
236 The dialog box prompts you to define the quality of the future mesh by only one parameter, which is **Fineness**, ranging from 0 (coarse mesh, low number of segments) to 1 (extremely fine mesh, great number of segments).
238 .. image:: ../images/automaticlength.png
239         :align: center
241 Compare one and the same object (sphere) meshed with minimum and maximum value of this parameter.
243 .. image:: ../images/image147.gif
244         :align: center
246 .. centered::
247         Example of a rough mesh at Automatic Length Fineness of 0.
249 .. image:: ../images/image148.gif
250         :align: center
252 .. centered::
253         Example of a fine mesh at Automatic Length Fineness of 1.
255 .. _fixed_points_1d_anchor:
257 Fixed Points hypothesis
258 #######################
260 **Fixed Points** hypothesis allows splitting edges through a set of points parametrized on the edge (from 1 to 0) and a number of segments for each interval limited by the points.
262 .. image:: ../images/hypo_fixedpnt_dlg.png
263         :align: center
265 It is possible to check in **Same Nb. Segments for all intervals** option and to define one value for all intervals.
267 The splitting direction is defined by the orientation of the underlying geometrical edge. **Reverse Edges** list box allows to specify the edges for which the splitting should be made in the direction opposite to their orientation. This list box is enabled only if the geometrical object is selected for meshing. In this case it is possible to select the edges to be reversed either directly picking them in the 3D viewer or selecting the edges or groups of edges in the Object Browser.
269 :ref:`Helper <reversed_edges_helper_anchor>`  group assists in defining **Reversed Edges** parameter.
272 .. image:: ../images/mesh_fixedpnt.png
273         :align: center
275 .. centered::
276         Example of a sub-mesh on the edge built using Fixed Points hypothesis
278 **See Also** a sample TUI Script of a :ref:`Defining Fixed Points <tui_fixed_points>` hypothesis operation.
281 .. _reversed_edges_helper_anchor:
283 Reversed Edges Helper
284 #####################
286 .. image:: ../images/rev_edges_helper_dlg.png
287         :align: center
289 **Helper** group assists in defining **Reversed Edges** parameter of the hypotheses depending on edge direction.
291 **Show whole geometry** check-box allows seeing the whole geometrical model in the 3D Viewer, which can help to understand the location of a set of edges within the model.
293 **Propagation chains** group allows defining **Reversed Edges** for splitting opposite edges of quadrilateral faces in a logically uniform direction. When this group is activated, the list is filled with propagation chains found within the shape on which a hypothesis is assigned. When a chain is selected in the list its edges are shown in the Viewer with arrows, which enables choosing a common direction for all chain edges. **Reverse** button inverts the common direction of chain edges. **Add** button is active if some edges of a chain have a different direction, so you can click **Add** button to add them to **Reversed Edges** list.
295 .. image:: ../images/propagation_chain.png
296         :align: center
298 .. centered::
299         The whole geometry and a propagation chain
301 .. note:: Alternatively, uniform direction of edges of one propagation chain can be achieved by :ref:`definition of a sub-mesh <constructing_submeshes_page>` on one edge of the chain and assigning a :ref:`Propagation <propagation_anchor>` additional hypothesis. Orientation of this edge (and hence of all the rest edges of the chain) can be controlled by using **Reversed Edges** field.