From 64defa70153e1a86014dd1be5cf42bb391c83a95 Mon Sep 17 00:00:00 2001 From: Anthony Geay Date: Mon, 14 Aug 2023 15:54:18 +0200 Subject: [PATCH] [EDF27860] : MEDCouplingUMesh.getCellsContainingPoints eps parameter specifies a balls radius relative to the conidered cell --- src/INTERP_KERNEL/InterpolationUtils.hxx | 8 ++++-- src/INTERP_KERNEL/PointLocatorAlgos.txx | 9 ++++--- src/MEDCoupling/MEDCouplingUMesh.cxx | 4 +-- .../MEDCouplingBasicsTest7.py | 25 +++++++++++++++++++ 4 files changed, 38 insertions(+), 8 deletions(-) diff --git a/src/INTERP_KERNEL/InterpolationUtils.hxx b/src/INTERP_KERNEL/InterpolationUtils.hxx index 5b58de09b..3638f9c64 100644 --- a/src/INTERP_KERNEL/InterpolationUtils.hxx +++ b/src/INTERP_KERNEL/InterpolationUtils.hxx @@ -1293,14 +1293,18 @@ namespace INTERP_KERNEL return normFact; } - /*! Computes the triple product (XA^XB).XC (in 3D)*/ - inline double TripleProduct(const double* A, const double*B, const double*C, const double*X) + /*! + * Computes the triple product (XA^XB).XC/(norm(XA^XB)) (in 3D) + * Returned value is equal to the distance (positive or negative depending of the position of C relative to XAB plane) between XAB plane and C point. + */ + inline double TripleProduct(const double *A, const double *B, const double *C, const double *X) { double XA[3]={ A[0]-X[0], A[1]-X[1], A[2]-X[2] }; double XB[3]={ B[0]-X[0], B[1]-X[1], B[2]-X[2] }; double XC[3]={ C[0]-X[0], C[1]-X[1], C[2]-X[2] }; double XA_cross_XB[3] = {XA[1]*XB[2]-XA[2]*XB[1], XA[2]*XB[0]-XA[0]*XB[2], XA[0]*XB[1]-XA[1]*XB[0]}; + // norm is equal to double the area of the triangle double norm = std::sqrt(XA_cross_XB[0]*XA_cross_XB[0]+XA_cross_XB[1]*XA_cross_XB[1]+XA_cross_XB[2]*XA_cross_XB[2]); return ( XA_cross_XB[0]*XC[0]+ XA_cross_XB[1]*XC[1] + XA_cross_XB[2]*XC[2] ) / norm; diff --git a/src/INTERP_KERNEL/PointLocatorAlgos.txx b/src/INTERP_KERNEL/PointLocatorAlgos.txx index 4d4d1b8b7..3ccb2c391 100644 --- a/src/INTERP_KERNEL/PointLocatorAlgos.txx +++ b/src/INTERP_KERNEL/PointLocatorAlgos.txx @@ -219,14 +219,15 @@ namespace INTERP_KERNEL (ptToTest[2]-centerPt[2])/normalizeFact}; for (int iface=0; ifaceeps ) + else if( lengthNorm>eps ) sign[iface]=1; else sign[iface]=0; diff --git a/src/MEDCoupling/MEDCouplingUMesh.cxx b/src/MEDCoupling/MEDCouplingUMesh.cxx index c06cb2838..6d2ad7a88 100755 --- a/src/MEDCoupling/MEDCouplingUMesh.cxx +++ b/src/MEDCoupling/MEDCouplingUMesh.cxx @@ -4356,7 +4356,7 @@ mcIdType MEDCouplingUMesh::getCellContainingPoint(const double *pos, double eps) * point, for more points getCellsContainingPoints() is recommended as it is * faster. * \param [in] pos - array of coordinates of the ball central point. - * \param [in] eps - ball radius. + * \param [in] eps - ball radius (i.e. the precision) relative to max dimension along X, Y or Z of the the considered cell bounding box. * \param [out] elts - vector returning ids of the found cells. It is cleared * before inserting ids. * \throw If the coordinates array is not set. @@ -4423,7 +4423,7 @@ void MEDCouplingUMesh::getCellsContainingPointsZeAlg(const double *pos, mcIdType * X0,Y0,Z0,X1,Y1,Z1,... Size of the array must be \a * this->getSpaceDimension() * \a nbOfPoints * \param [in] nbOfPoints - number of points to locate within \a this mesh. - * \param [in] eps - radius of balls (i.e. the precision). + * \param [in] eps - ball radius (i.e. the precision) relative to max dimension along X, Y or Z of the the considered cell bounding box. * \param [out] elts - vector returning ids of found cells. * \param [out] eltsIndex - an array, of length \a nbOfPoints + 1, * dividing cell ids in \a elts into groups each referring to one diff --git a/src/MEDCoupling_Swig/MEDCouplingBasicsTest7.py b/src/MEDCoupling_Swig/MEDCouplingBasicsTest7.py index 2a75dce56..c45f74141 100644 --- a/src/MEDCoupling_Swig/MEDCouplingBasicsTest7.py +++ b/src/MEDCoupling_Swig/MEDCouplingBasicsTest7.py @@ -1305,6 +1305,31 @@ class MEDCouplingBasicsTest7(unittest.TestCase): c,d = DataArrayInt.ExtractFromIndexedArrays( cell, pE3[1], pE3[2] ) self.assertTrue( ref_c.isEqual(c) ) self.assertTrue( ref_d.isEqual(d) ) + + def testGetCellContainingPointRelativeEps(self): + """ + See EDF27860 : This test checks that detection of point inside a cell works by normalizing cell around origin with factor equal to the max delta of bbox along axis X, Y or Z. + """ + # in this test cell is vuluntary far from origin {15260.775604514516, 11197.646906189217, 14187.820484060947} + # and caracteritic size is ~ 1500 + coo = DataArrayDouble( [(14724.199858870656, 11928.888084722483, 14442.32726944039), (14788.407409534622, 11992.60694822231, 14453.86181555231), (15572.175148726046, 10798.586790270576, 14471.54225356788), (15643.898717334796, 10853.094666047728, 14477.233802854305), (15005.31495255754, 11573.261110174888, 13933.313698681504), (15070.29423166349, 11636.377758513776, 13946.650959030132), (15797.351350158377, 10466.40572765595, 13965.524190108257), (15869.808770928525, 10519.99285973948, 13972.419352086607), (15273.866774426142, 11216.458197414971, 13433.169979717744), (15340.421031616577, 11277.882145177837, 13446.53598386297), (16013.382514001762, 10132.795887638129, 13465.184281842226), (16086.979064572806, 10184.802292369684, 13472.147425473782)] ) + m = MEDCouplingUMesh("",3) + m.setCoords(coo) + m.allocateCells() + m.insertNextCell(NORM_TETRA4,[0,5,4,6]) + m.insertNextCell(NORM_TETRA4,[4,5,9,7]) + + ##### See EDF2760 pt is outside cell 0 (6e-4) and 1 (8e-4) + pt = DataArrayDouble([(15263.41200205526, 11314.957094727113, 13950.0)]) + a,b = m.getCellsContainingPoints(pt,1e-3) + self.assertTrue(a.isEqual(DataArrayInt([0,1]))) + self.assertTrue(b.isEqual(DataArrayInt([0,2]))) + + # by shifting pt by 10 along Z pt in only inside cell # 0 + pt += [0,0,10] + a1,b1 = m.getCellsContainingPoints(pt,1e-3) + self.assertTrue(a1.isEqual(DataArrayInt([0]))) + self.assertTrue(b1.isEqual(DataArrayInt([0,1]))) pass -- 2.39.2