From: rnc Date: Mon, 26 Mar 2012 10:07:53 +0000 (+0000) Subject: Improvement of color filtering algorithm for the contour detection : X-Git-Tag: V6_5_0a1~6 X-Git-Url: http://git.salome-platform.org/gitweb/?a=commitdiff_plain;h=e98f44ce25261a145847339e200be7e711c489f5;p=modules%2Fgeom.git Improvement of color filtering algorithm for the contour detection : hue / saturation histogram used instead of a simple hue histogram --- diff --git a/src/ShapeRecognition/ShapeRec_FeatureDetector.cxx b/src/ShapeRecognition/ShapeRec_FeatureDetector.cxx index 11cd47a0d..48207cc77 100644 --- a/src/ShapeRecognition/ShapeRec_FeatureDetector.cxx +++ b/src/ShapeRecognition/ShapeRec_FeatureDetector.cxx @@ -240,20 +240,25 @@ Mat ShapeRec_FeatureDetector::_colorFiltering() cvResetImageROI(find_image); IplImage* test_hsv = cvCreateImage(cvGetSize(test_image),8,3); - IplImage* test_hue = cvCreateImage(cvGetSize(test_image),8,1); + IplImage* h_plane = cvCreateImage( cvGetSize(test_image), 8, 1 ); + IplImage* s_plane = cvCreateImage( cvGetSize(test_image), 8, 1 ); CvHistogram* hist; cvCvtColor(test_image, test_hsv, CV_BGR2HSV); - cvCvtPixToPlane(test_hsv, test_hue, 0, 0, 0); + + cvCvtPixToPlane(test_hsv, h_plane, s_plane, 0, 0); + IplImage* planes[] = { h_plane, s_plane }; //create hist - int size_hist = 10; - float hranges[] = {0, 180}; - float* ranges = hranges; - hist = cvCreateHist(1, &size_hist, CV_HIST_ARRAY, &ranges, 1); + int hbins = 30, sbins = 32; // TODO think to the best values here + int hist_size[] = { hbins, sbins }; + float hranges[] = { 0, 180 }; + float sranges[] = { 0, 255 }; + float* ranges[] = { hranges, sranges }; + hist = cvCreateHist(2, hist_size, CV_HIST_ARRAY, ranges, 1); - //calculate hue` histogram - cvCalcHist(&test_hue, hist, 0 ,0); + //calculate hue /saturation histogram + cvCalcHist(planes, hist, 0 ,0); // // TEST print of the histogram for debugging // IplImage* hist_image = cvCreateImage(cvSize(320,300),8,3); @@ -279,21 +284,28 @@ Mat ShapeRec_FeatureDetector::_colorFiltering() // cvNamedWindow("hist", 1); cvShowImage("hist",hist_image); - //calculate back projection of hue plane of input image + //calculate back projection of hue and saturation planes of input image IplImage* backproject = cvCreateImage(cvGetSize(find_image), 8, 1); IplImage* binary_backproject = cvCreateImage(cvGetSize(find_image), 8, 1); IplImage* find_hsv = cvCreateImage(cvGetSize(find_image),8,3); - IplImage* find_hue = cvCreateImage(cvGetSize(find_image),8,1); + IplImage* find_hplane = cvCreateImage(cvGetSize(find_image),8,1); + IplImage* find_splane = cvCreateImage(cvGetSize(find_image),8,1); cvCvtColor(find_image, find_hsv, CV_BGR2HSV); - cvCvtPixToPlane(find_hsv, find_hue, 0, 0, 0); - cvCalcBackProject(&find_hue, backproject, hist); + cvCvtPixToPlane(find_hsv, find_hplane, find_splane, 0, 0); + IplImage* find_planes[] = { find_hplane, find_splane }; + cvCalcBackProject(find_planes, backproject, hist); // Threshold in order to obtain binary image cvThreshold(backproject, binary_backproject, 1, 255, CV_THRESH_BINARY); // NOTE it would be good to think about the best threshold to use (it's 1 for now) cvReleaseImage(&test_image); cvReleaseImage(&test_hsv); - cvReleaseImage(&test_hue); + cvReleaseImage(&h_plane); + cvReleaseImage(&s_plane); + cvReleaseImage(&find_image); + cvReleaseImage(&find_hsv); + cvReleaseImage(&find_hplane); + cvReleaseImage(&find_splane); cvReleaseImage(&backproject); return Mat(binary_backproject);