From: Jean-Philippe ARGAUD Date: Wed, 24 Oct 2012 10:39:23 +0000 (+0200) Subject: Protecting internal variables from user interaction X-Git-Tag: V6_6_0~13 X-Git-Url: http://git.salome-platform.org/gitweb/?a=commitdiff_plain;h=cd63438357bf55d3483091577695f548771af17c;p=modules%2Fadao.git Protecting internal variables from user interaction --- diff --git a/src/daComposant/daNumerics/ApproximatedDerivatives.py b/src/daComposant/daNumerics/ApproximatedDerivatives.py index f963b1b..e53ef35 100644 --- a/src/daComposant/daNumerics/ApproximatedDerivatives.py +++ b/src/daComposant/daNumerics/ApproximatedDerivatives.py @@ -41,7 +41,7 @@ class FDApproximation: centrées si le booléen "centeredDF" est vrai. """ def __init__(self, Function = None, centeredDF = False, increment = 0.01, dX = None): - self.DirectOperator = Function + self.__userFunction = Function self.__centeredDF = bool(centeredDF) if float(increment) <> 0.: self.__increment = float(increment) @@ -52,6 +52,15 @@ class FDApproximation: else: self.__dX = numpy.asmatrix(numpy.ravel( dX )).T + # --------------------------------------------------------- + def DirectOperator(self, X ): + """ + Calcul du direct à l'aide de la fonction fournie. + """ + _X = numpy.asmatrix(numpy.ravel( X )).T + _HX = self.__userFunction( _X ) + return numpy.ravel( _HX ) + # --------------------------------------------------------- def TangentMatrix(self, X ): """ @@ -100,85 +109,85 @@ class FDApproximation: # # Boucle de calcul des colonnes de la Jacobienne # ---------------------------------------------- - Jacobienne = [] + _Jacobienne = [] for i in range( len(_dX) ): - X_plus_dXi = numpy.array( _X.A1, dtype=float ) - X_plus_dXi[i] = _X[i] + _dX[i] - X_moins_dXi = numpy.array( _X.A1, dtype=float ) - X_moins_dXi[i] = _X[i] - _dX[i] + _X_plus_dXi = numpy.array( _X.A1, dtype=float ) + _X_plus_dXi[i] = _X[i] + _dX[i] + _X_moins_dXi = numpy.array( _X.A1, dtype=float ) + _X_moins_dXi[i] = _X[i] - _dX[i] # - HX_plus_dXi = self.DirectOperator( X_plus_dXi ) - HX_moins_dXi = self.DirectOperator( X_moins_dXi ) + _HX_plus_dXi = self.DirectOperator( _X_plus_dXi ) + _HX_moins_dXi = self.DirectOperator( _X_moins_dXi ) # - HX_Diff = ( HX_plus_dXi - HX_moins_dXi ) / (2.*_dX[i]) + _HX_Diff = numpy.ravel( _HX_plus_dXi - _HX_moins_dXi ) / (2.*_dX[i]) # - Jacobienne.append( HX_Diff ) + _Jacobienne.append( _HX_Diff ) # else: # # Boucle de calcul des colonnes de la Jacobienne # ---------------------------------------------- - HX_plus_dX = [] + _HX_plus_dX = [] for i in range( len(_dX) ): - X_plus_dXi = numpy.array( _X.A1, dtype=float ) - X_plus_dXi[i] = _X[i] + _dX[i] + _X_plus_dXi = numpy.array( _X.A1, dtype=float ) + _X_plus_dXi[i] = _X[i] + _dX[i] # - HX_plus_dXi = self.DirectOperator( X_plus_dXi ) + _HX_plus_dXi = self.DirectOperator( _X_plus_dXi ) # - HX_plus_dX.append( HX_plus_dXi ) + _HX_plus_dX.append( _HX_plus_dXi ) # # Calcul de la valeur centrale # ---------------------------- - HX = self.DirectOperator( _X ) + _HX = self.DirectOperator( _X ) # # Calcul effectif de la Jacobienne par différences finies # ------------------------------------------------------- - Jacobienne = [] + _Jacobienne = [] for i in range( len(_dX) ): - Jacobienne.append( numpy.ravel(( HX_plus_dX[i] - HX ) / _dX[i]) ) + _Jacobienne.append( numpy.ravel(( _HX_plus_dX[i] - _HX ) / _dX[i]) ) # - Jacobienne = numpy.matrix( numpy.vstack( Jacobienne ) ).T + _Jacobienne = numpy.matrix( numpy.vstack( _Jacobienne ) ).T logging.debug(" == Fin du calcul de la Jacobienne") # - return Jacobienne + return _Jacobienne # --------------------------------------------------------- def TangentOperator(self, (X, dX) ): """ Calcul du tangent à l'aide de la Jacobienne. """ - Jacobienne = self.TangentMatrix( X ) + _Jacobienne = self.TangentMatrix( X ) if dX is None or len(dX) == 0: # # Calcul de la forme matricielle si le second argument est None # ------------------------------------------------------------- - return Jacobienne + return _Jacobienne else: # # Calcul de la valeur linéarisée de H en X appliqué à dX # ------------------------------------------------------ _dX = numpy.asmatrix(numpy.ravel( dX )).T - HtX = numpy.dot(Jacobienne, _dX) - return HtX.A1 + _HtX = numpy.dot(_Jacobienne, _dX) + return _HtX.A1 # --------------------------------------------------------- def AdjointOperator(self, (X, Y) ): """ Calcul de l'adjoint à l'aide de la Jacobienne. """ - JacobienneT = self.TangentMatrix( X ).T + _JacobienneT = self.TangentMatrix( X ).T if Y is None or len(Y) == 0: # # Calcul de la forme matricielle si le second argument est None # ------------------------------------------------------------- - return JacobienneT + return _JacobienneT else: # # Calcul de la valeur de l'adjoint en X appliqué à Y # -------------------------------------------------- _Y = numpy.asmatrix(numpy.ravel( Y )).T - HaY = numpy.dot(JacobienneT, _Y) - return HaY.A1 + _HaY = numpy.dot(_JacobienneT, _Y) + return _HaY.A1 # ============================================================================== # @@ -221,7 +230,6 @@ if __name__ == "__main__": print "Ad((X,Y)) =", FDA.AdjointOperator( (X0,range(3,3+2*len(X0))) ) print del FDA - FDA = FDApproximation( test1, centeredDF=True ) print "H(X) =", FDA.DirectOperator( X0 ) print "Tg matrice =\n", FDA.TangentMatrix( X0 ) @@ -230,6 +238,8 @@ if __name__ == "__main__": print del FDA + print "==============" + print X0 = range(5) FDA = FDApproximation( test1 ) @@ -239,3 +249,49 @@ if __name__ == "__main__": print "Ad((X,Y)) =", FDA.AdjointOperator( (X0,range(7,7+2*len(X0))) ) print del FDA + FDA = FDApproximation( test1, centeredDF=True ) + print "H(X) =", FDA.DirectOperator( X0 ) + print "Tg matrice =\n", FDA.TangentMatrix( X0 ) + print "Tg(X) =", FDA.TangentOperator( (X0, X0) ) + print "Ad((X,Y)) =", FDA.AdjointOperator( (X0,range(7,7+2*len(X0))) ) + print + del FDA + + print "==============" + print + X0 = numpy.arange(3) + + FDA = FDApproximation( test1 ) + print "H(X) =", FDA.DirectOperator( X0 ) + print "Tg matrice =\n", FDA.TangentMatrix( X0 ) + print "Tg(X) =", FDA.TangentOperator( (X0, X0) ) + print "Ad((X,Y)) =", FDA.AdjointOperator( (X0,range(7,7+2*len(X0))) ) + print + del FDA + FDA = FDApproximation( test1, centeredDF=True ) + print "H(X) =", FDA.DirectOperator( X0 ) + print "Tg matrice =\n", FDA.TangentMatrix( X0 ) + print "Tg(X) =", FDA.TangentOperator( (X0, X0) ) + print "Ad((X,Y)) =", FDA.AdjointOperator( (X0,range(7,7+2*len(X0))) ) + print + del FDA + + print "==============" + print + X0 = numpy.asmatrix(numpy.arange(4)).T + + FDA = FDApproximation( test1 ) + print "H(X) =", FDA.DirectOperator( X0 ) + print "Tg matrice =\n", FDA.TangentMatrix( X0 ) + print "Tg(X) =", FDA.TangentOperator( (X0, X0) ) + print "Ad((X,Y)) =", FDA.AdjointOperator( (X0,range(7,7+2*len(X0))) ) + print + del FDA + FDA = FDApproximation( test1, centeredDF=True ) + print "H(X) =", FDA.DirectOperator( X0 ) + print "Tg matrice =\n", FDA.TangentMatrix( X0 ) + print "Tg(X) =", FDA.TangentOperator( (X0, X0) ) + print "Ad((X,Y)) =", FDA.AdjointOperator( (X0,range(7,7+2*len(X0))) ) + print + del FDA +