From: Jean-Philippe ARGAUD Date: Sat, 23 Jan 2021 09:07:02 +0000 (+0100) Subject: Minor improvements for internal variables initialization X-Git-Tag: V9_7_0b1~43 X-Git-Url: http://git.salome-platform.org/gitweb/?a=commitdiff_plain;h=ca6379d242ea17f4ae343b7ef985d567c7d4c826;p=modules%2Fadao.git Minor improvements for internal variables initialization --- diff --git a/src/daComposant/daCore/NumericObjects.py b/src/daComposant/daCore/NumericObjects.py index b9379a9..836400d 100644 --- a/src/daComposant/daCore/NumericObjects.py +++ b/src/daComposant/daCore/NumericObjects.py @@ -507,6 +507,59 @@ def mmqr( # return variables, Ecart, [n,p,iteration,increment,0] +# ============================================================================== +def BackgroundEnsembleGeneration( _bgcenter, _bgcovariance, _nbmembers, _withSVD = True): + "Génération d'un ensemble d'ébauches aléatoires de taille _nbmembers-1" + def __CenteredRandomAnomalies(Zr, N): + """ + Génère une matrice de N anomalies aléatoires centrées sur Zr selon les + notes manuscrites de MB et conforme au code de PS avec eps = -1 + """ + eps = -1 + Q = numpy.eye(N-1)-numpy.ones((N-1,N-1))/numpy.sqrt(N)/(numpy.sqrt(N)-eps) + Q = numpy.concatenate((Q, [eps*numpy.ones(N-1)/numpy.sqrt(N)]), axis=0) + R, _ = numpy.linalg.qr(numpy.random.normal(size = (N-1,N-1))) + Q = numpy.dot(Q,R) + Zr = numpy.dot(Q,Zr) + return Zr.T + # + if _nbmembers < 1: + raise ValueError("Number of members has to be strictly more than 1 (given number: %s)."%(str(_nbmembers),)) + if _bgcovariance is None: + BackgroundEnsemble = numpy.tile( numpy.ravel(_bgcenter)[:,None], _nbmembers) + else: + if _withSVD: + U, s, V = numpy.linalg.svd(_bgcovariance, full_matrices=False) + _nbctl = numpy.ravel(_bgcenter).size + if _nbmembers > _nbctl: + _Z = numpy.concatenate((numpy.dot( + numpy.diag(numpy.sqrt(s[:_nbctl])), V[:_nbctl]), + numpy.random.multivariate_normal(numpy.zeros(_nbctl),_bgcovariance,_nbmembers-1-_nbctl)), axis = 0) + else: + _Z = numpy.dot(numpy.diag(numpy.sqrt(s[:_nbmembers-1])), V[:_nbmembers-1]) + _Zca = __CenteredRandomAnomalies(_Z, _nbmembers) + BackgroundEnsemble = numpy.ravel(_bgcenter)[:,None] + _Zca + else: + if max(abs(_bgcovariance.flatten())) > 0: + _nbctl = numpy.ravel(_bgcenter).size + _Z = numpy.random.multivariate_normal(numpy.zeros(_nbctl),_bgcovariance,_nbmembers-1) + _Zca = __CenteredRandomAnomalies(_Z, _nbmembers) + BackgroundEnsemble = numpy.ravel(_bgcenter)[:,None] + _Zca + else: + BackgroundEnsemble = numpy.tile( numpy.ravel(_bgcenter)[:,None], _nbmembers) + # + return BackgroundEnsemble + +# ============================================================================== +def EnsembleCenteredAnomalies( _ensemble, _optmean = None): + "Renvoie les anomalies centrées à partir d'un ensemble TailleEtat*NbMembres" + if _optmean is None: + Em = numpy.asarray(_ensemble).mean(axis=1, dtype=mfp).astype('float')[:,numpy.newaxis] + else: + Em = numpy.ravel(_optmean)[:,numpy.newaxis] + # + return numpy.asarray(_ensemble) - Em + # ============================================================================== def CovarianceInflation( InputCovOrEns, @@ -619,13 +672,13 @@ def senkf(selfA, Xb, Y, U, HO, EM, CM, R, B, Q): # -------------- __n = Xb.size __m = selfA._parameters["NumberOfMembers"] - Xn = numpy.asmatrix(numpy.dot( Xb.reshape(__n,1), numpy.ones((1,__m)) )) if hasattr(B,"asfullmatrix"): Pn = B.asfullmatrix(__n) else: Pn = B if hasattr(R,"asfullmatrix"): Rn = R.asfullmatrix(__p) else: Rn = R if hasattr(Q,"asfullmatrix"): Qn = Q.asfullmatrix(__n) else: Qn = Q + Xn = numpy.asmatrix(numpy.dot( Xb.reshape((__n,1)), numpy.ones((1,__m)) )) # if len(selfA.StoredVariables["Analysis"])==0 or not selfA._parameters["nextStep"]: selfA.StoredVariables["Analysis"].store( numpy.ravel(Xb) ) @@ -705,6 +758,7 @@ def senkf(selfA, Xb, Y, U, HO, EM, CM, R, B, Q): ) # Xa = Xn.mean(axis=1, dtype=mfp).astype('float') + #-------------------------- # if selfA._parameters["StoreInternalVariables"] \ or selfA._toStore("CostFunctionJ") \ @@ -1202,13 +1256,13 @@ def mlef(selfA, Xb, Y, U, HO, EM, CM, R, B, Q, BnotT=False, _epsilon=1.e-1, _e=1 # -------------- __n = Xb.size __m = selfA._parameters["NumberOfMembers"] - Xn = numpy.asmatrix(numpy.dot( Xb.reshape(__n,1), numpy.ones((1,__m)) )) if hasattr(B,"asfullmatrix"): Pn = B.asfullmatrix(__n) else: Pn = B if hasattr(R,"asfullmatrix"): Rn = R.asfullmatrix(__p) else: Rn = R if hasattr(Q,"asfullmatrix"): Qn = Q.asfullmatrix(__n) else: Qn = Q + Xn = BackgroundEnsembleGeneration( Xb, None, __m ) # if len(selfA.StoredVariables["Analysis"])==0 or not selfA._parameters["nextStep"]: selfA.StoredVariables["Analysis"].store( numpy.ravel(Xb) ) @@ -1218,9 +1272,7 @@ def mlef(selfA, Xb, Y, U, HO, EM, CM, R, B, Q, BnotT=False, _epsilon=1.e-1, _e=1 # previousJMinimum = numpy.finfo(float).max # - # Predimensionnement - Xn_predicted = numpy.asmatrix(numpy.zeros((__n,__m))) - # + Xn_predicted = numpy.zeros((__n,__m)) for step in range(duration-1): if hasattr(Y,"store"): Ynpu = numpy.asmatrix(numpy.ravel( Y[step+1] )).T