From: eap The MESH module contains a set of meshing algorithms,
which are used for meshing entities (1D, 2D, 3D) composing geometrical
- objects. They are as follows:Defining meshing algorithms
+Basic meshing algorithms
@@ -145,11 +146,11 @@ if (window.writeIntopicBar)
Triangle meshing algorithm - Faces are split - into triangular elements.
Triangle meshing algorithms (Mefisto and Netgen + 1D-2D ) - Faces are split into triangular elements.
Quadrangle meshing algorithm - Faces are split - into quadrangular elements.
Quadrangle meshing algorithm (Mapping) - Faces + are split into quadrangular elements.
Hexahedron meshing algorithm - Volumes are - split into hexahedral (cubic) elements.
Hexahedron meshing algorithm (i,j,k) - Volumes + are split into hexahedral (cubic) elements.
Tetrahedron (Netgen) meshing algorithm - Volumes are split into tetrahedral (pyramidal) elements.
-
+ +
There also is a number of more specific algorithms:
-Select this algorithm in the Create Mesh dialog box.
++
See Also
a sample TUI Script of a Define
diff --git a/doc/salome/gui/SMESH/image157.gif b/doc/salome/gui/SMESH/image157.gif
new file mode 100644
index 000000000..459215172
Binary files /dev/null and b/doc/salome/gui/SMESH/image157.gif differ
diff --git a/doc/salome/gui/SMESH/pics/distribution_of_layers.png b/doc/salome/gui/SMESH/pics/distribution_of_layers.png
new file mode 100644
index 000000000..3d01d66f4
Binary files /dev/null and b/doc/salome/gui/SMESH/pics/distribution_of_layers.png differ
diff --git a/doc/salome/gui/SMESH/pics/number_of_layers.png b/doc/salome/gui/SMESH/pics/number_of_layers.png
new file mode 100644
index 000000000..846fa2c3e
Binary files /dev/null and b/doc/salome/gui/SMESH/pics/number_of_layers.png differ
diff --git a/doc/salome/gui/SMESH/pics/projection_1d.png b/doc/salome/gui/SMESH/pics/projection_1d.png
new file mode 100644
index 000000000..1560acaee
Binary files /dev/null and b/doc/salome/gui/SMESH/pics/projection_1d.png differ
diff --git a/doc/salome/gui/SMESH/pics/projection_2d.png b/doc/salome/gui/SMESH/pics/projection_2d.png
new file mode 100644
index 000000000..91d446b5c
Binary files /dev/null and b/doc/salome/gui/SMESH/pics/projection_2d.png differ
diff --git a/doc/salome/gui/SMESH/pics/projection_3d.png b/doc/salome/gui/SMESH/pics/projection_3d.png
new file mode 100644
index 000000000..aeffc7a48
Binary files /dev/null and b/doc/salome/gui/SMESH/pics/projection_3d.png differ
diff --git a/doc/salome/gui/SMESH/prism_3d_algorithm.htm b/doc/salome/gui/SMESH/prism_3d_algorithm.htm
new file mode 100644
index 000000000..da64656c0
--- /dev/null
+++ b/doc/salome/gui/SMESH/prism_3d_algorithm.htm
@@ -0,0 +1,116 @@
+
+
+
+
+
+ Prism 3D algorithm can be used for meshing prisms, i.e. 3D
+ Shapes defined by two opposing
+ faces having the same number of vertices and edges and meshed using the
+ 2D Projection algorithm. These
+ two faces should be connected by quadrangle "side" faces. The opposing faces can be meshed with
+ either quadrangles or triangles, while the side faces should be meshed
+ with quadranglees only. As you can see, the Prism3D
+ algorithm permits to build and to have in the same 3D mesh such elements
+ as hexahedrons, prisms and polyhedrons. Projection algorithms allow
+ to define the mesh of a geometrical object by the projection of another
+ already meshed geometrical object. Projection
+ 1D algorithm permits to define the mesh of an edge by the projection
+ of another already meshed edge. To apply this algorithm
+ select the edge to be meshed (indicated in the field Geometry
+ of Create mesh dialog box), Projection 1D in the list of 1D algorithms
+ and click the button. The following dialog box will appear:
+ In this menu you can define the Name
+ of the algorithm, the algeady meshed source Edge
+ and the Mesh (optional, use it
+ if there are several different meshes on the same edge). It could also
+ be necessary to define the orientation of edges, which is done by indicating
+ the Source Vertex being the first
+ point of the Source Edge and the Target
+ Vertex being the first point of the created Edge. Projection 2D algorithm permits to define the mesh of a face
+ by the projection of another already meshed face. This algorithm works
+ only if all edges of the target
+ face have been meshed as 1D Projections of the edges of the source face. To apply this algorithm select the face to be meshed (indicated in the
+ field Geometry of
+ Create mesh dialog box), Projection
+ 2D in the list of 2D algorithms and click the button.
+ The following dialog box will appear: In this menu you can define the Name
+ of the algorithm, the algeady meshed source Face
+ and the Mesh (optional, use it
+ if there are several different meshes on the same face). It could also
+ be necessary to define the orientation of mesh on the face, which is done
+ by indicating two Source Vertices, which
+ belong to the same edge of the source
+ face, and two Target Vertices,
+ which belong to the same edge of the created
+ Face. Projection 3D algorithm permits
+ to define the mesh of a shape by the projection of another already meshed
+ shape. This
+ algorithm works only if all faces and edges of the
+ target face have been meshed as 1D Projections of the faces and
+ edges of the source face. Another limitation is that this algorithm currently
+ works only on boxes. To apply this algorithm select the solid to be meshed (indicated in
+ the field Geometry of
+ Create mesh dialog box), Projection
+ 3D in the list of 3D algorithms and click the button.
+ The following dialog box will appear: In this menu you can define the Name
+ of the algorithm, the algeady meshed source 3D
+ shape and the Mesh (optional,
+ use it if there are several different meshes on the same shape). It could
+ also be necessary to define the orientation of mesh on the shape, which
+ is done by indicating two Source Vertices,
+ which belong to the same edge of the
+ source 3D Shape, and two Target Vertices, which belong to the
+ same edge of the source 3D Shape. This algorithm applies to the meshing of a hollow 3D shape, i.e. such
+ shape should be composed of two meshed shells: an outer shell and an internal
+ shell without intersection with the outer shell. One of the shells should
+ be a 2D Projection of the other shell. The meshes of the shells can consist
+ both of triangles and quadrangles. The Radial Prism algorithm would fill the
+ space between the two shells with meshes. This algorithm also needs the information
+ concerning the number and distribution of mesh layers between the inner
+ and the outer shapes. Distribution of layers can be set with any
+ of 1D Hypotheses. Prism 3D Algorithm
+
+Projection Algorithms
+
+Radial Prism
+
+