From: Anthony Geay Date: Mon, 17 Dec 2018 06:53:16 +0000 (+0100) Subject: Update the documentation X-Git-Tag: V9_3_0a1~45 X-Git-Url: http://git.salome-platform.org/gitweb/?a=commitdiff_plain;h=622bb8763f1093c48efd56d7e120bb4f6e220282;p=tools%2Fmedcoupling.git Update the documentation --- diff --git a/doc/developer/doxygen/doxfiles/reference/interpolation/interptheory.dox b/doc/developer/doxygen/doxfiles/reference/interpolation/interptheory.dox index 21e5b8280..f1cf78e33 100644 --- a/doc/developer/doxygen/doxfiles/reference/interpolation/interptheory.dox +++ b/doc/developer/doxygen/doxfiles/reference/interpolation/interptheory.dox @@ -137,12 +137,12 @@ The first step of the interpolation leads to the following M1 matrix : \end{tabular}\right] \f] -\subsection TableNatureOfFieldExampleConservVol Conservative volumic case +\subsection TableNatureOfFieldExampleConservVol IntensiveMaximum case -If we apply the formula \ref TableNatureOfField "above" it leads to the following \f$ M_{Conservative Volumic} \f$ matrix : +If we apply the formula \ref TableNatureOfField "above" it leads to the following \f$ M_{IntensiveMaximum} \f$ matrix : \f[ - M_{Conservative Volumic}=\left[\begin{tabular}{cc} + M_{IntensiveMaximum}=\left[\begin{tabular}{cc} $\displaystyle{\frac{0.125}{0.125+0.75}}$ & $\displaystyle{\frac{0.75}{0.125+0.75}}$ \\ \end{tabular}\right]=\left[\begin{tabular}{cc} @@ -202,9 +202,9 @@ This type of interpolation is equivalent to the computation of \f$ FS_{vol} \f$ In the particular case treated \ref TableNatureOfFieldEx1 "here", it means that only a power of 25.055 W is intercepted by the target cell ! So from the 104 W of the source field \f$ FS \f$, only 25.055 W are transmitted in the target field using this nature of field. -In order to treat differently a power field, another policy, \ref TableNatureOfFieldExampleIntegralGlobConstraint "integral global constraint nature" is available. +In order to treat differently a power field, another policy, \ref TableNatureOfFieldExampleIntegralGlobConstraint "Extensive Conservation" is available. -\subsection TableNatureOfFieldExampleIntegralGlobConstraint ExtensiveMaximum with global constraints case +\subsection TableNatureOfFieldExampleIntegralGlobConstraint ExtensiveConservation case If we apply the formula \ref TableNatureOfField "above" it leads to the following \f$ M_{ExtensiveConservation} \f$ matrix : @@ -234,7 +234,7 @@ in the output target interpolated field. \b BUT, As we can see here, the maximum principle is \b not respected here, because the target cell #0 has a value higher than the two intercepted source cells. -\subsection TableNatureOfFieldExampleRevIntegral Reverse integral case +\subsection TableNatureOfFieldExampleRevIntegral IntensiveConservation case If we apply the formula \ref TableNatureOfField "above" it leads to the following \f$ M_{IntensiveConservation} \f$ matrix : @@ -259,7 +259,7 @@ If we apply the formula \ref TableNatureOfField "above" it leads to the followin This type of nature is particularly recommended to interpolate an intensive \b density field (moderator density, power density). -The difference with \ref TableNatureOfFieldExampleConservVol "conservative volumic" seen above is that here the +The difference with \ref TableNatureOfFieldExampleConservVol "Intensive Maximum" seen above is that here the target field is homogenized to the \b whole target cell. It explains why this nature of field does not follow the maximum principle. To illustrate the case, let's consider that \f$ FS \f$ is a power density field in \f$ W/m^2 \f$.