From: Jean-Philippe ARGAUD Date: Sat, 2 Jan 2021 19:50:34 +0000 (+0100) Subject: Improvement and extension of EnKF algorithm (VAR) X-Git-Tag: V9_7_0b1~55 X-Git-Url: http://git.salome-platform.org/gitweb/?a=commitdiff_plain;h=2510d8d0f27b24f6982f148214e30beb6b618f59;p=modules%2Fadao.git Improvement and extension of EnKF algorithm (VAR) --- diff --git a/src/daComposant/daAlgorithms/EnsembleKalmanFilter.py b/src/daComposant/daAlgorithms/EnsembleKalmanFilter.py index d242b6b..b1019ee 100644 --- a/src/daComposant/daAlgorithms/EnsembleKalmanFilter.py +++ b/src/daComposant/daAlgorithms/EnsembleKalmanFilter.py @@ -37,6 +37,7 @@ class ElementaryAlgorithm(BasicObjects.Algorithm): "StochasticEnKF", "ETKF", "ETKF-KFF", + "ETKF-VAR", ], ) self.defineRequiredParameter( @@ -158,6 +159,8 @@ class ElementaryAlgorithm(BasicObjects.Algorithm): NumericObjects.senkf(self, Xb, Y, U, HO, EM, CM, R, B, Q) elif self._parameters["Minimizer"] in ["ETKF", "ETKF-KFF"]: NumericObjects.etkf(self, Xb, Y, U, HO, EM, CM, R, B, Q, KorV="KalmanFilterFormula") + elif self._parameters["Minimizer"] == "ETKF-VAR": + NumericObjects.etkf(self, Xb, Y, U, HO, EM, CM, R, B, Q, KorV="Variational") else: raise ValueError("Error in Minimizer name: %s"%self._parameters["Minimizer"]) # diff --git a/src/daComposant/daCore/NumericObjects.py b/src/daComposant/daCore/NumericObjects.py index 15300a9..8e847b3 100644 --- a/src/daComposant/daCore/NumericObjects.py +++ b/src/daComposant/daCore/NumericObjects.py @@ -26,7 +26,7 @@ __doc__ = """ __author__ = "Jean-Philippe ARGAUD" import os, time, copy, types, sys, logging -import math, numpy, scipy +import math, numpy, scipy, scipy.optimize from daCore.BasicObjects import Operator from daCore.PlatformInfo import PlatformInfo mpr = PlatformInfo().MachinePrecision() @@ -914,6 +914,30 @@ def etkf(selfA, Xb, Y, U, HO, EM, CM, R, B, Q, KorV="KalmanFilterFormula"): # Xn = Xfm.reshape((__n,-1)) + EaX @ ( vw.reshape((__m,-1)) + numpy.sqrt(__m-1) * Tdemi @ mU ) #-------------------------- + elif KorV == "Variational": + RI = R.getI() + HXfm = H((Xfm, Un)) # Eventuellement Hfm + def CostFunction(w): + _A = Ynpu.reshape((__p,-1)) - HXfm.reshape((__p,-1)) - (EaHX @ w).reshape((__p,-1)) + _J = 0.5 * (__m-1) * w.T @ w + 0.5 * _A.T * RI * _A + return float(_J) + def GradientOfCostFunction(w): + _A = Ynpu.reshape((__p,-1)) - HXfm.reshape((__p,-1)) - (EaHX @ w).reshape((__p,-1)) + _GradJ = (__m-1) * w.reshape((__m,1)) - EaHX.T * RI * _A + return numpy.ravel(_GradJ) + vw = scipy.optimize.fmin_cg( + f = CostFunction, + x0 = numpy.zeros(__m), + fprime = GradientOfCostFunction, + args = (), + disp = False, + ) + # + Pta = numpy.linalg.inv( (__m-1)*numpy.eye(__m) + EaHX.T * RI * EaHX ) + EWa = numpy.real(scipy.linalg.sqrtm((__m-1)*Pta)) # Partie imaginaire ~= 10^-18 + # + Xn = Xfm.reshape((__n,-1)) + EaX @ (vw.reshape((__m,-1)) + EWa) + #-------------------------- else: raise ValueError("KorV has to be chosen as either \"KalmanFilterFormula\" or \"Variational\".") #