From: mzn Date: Fri, 20 Oct 2006 12:16:44 +0000 (+0000) Subject: smesh.py interface redesign. X-Git-Tag: V3_2_3pre1~13 X-Git-Url: http://git.salome-platform.org/gitweb/?a=commitdiff_plain;h=0809d8c97f3ae93ec3832ddd23c790004c922a5c;p=modules%2Fsmesh.git smesh.py interface redesign. --- diff --git a/src/SMESH_SWIG/smesh.py b/src/SMESH_SWIG/smesh.py index 82d0750e5..5aad243ef 100644 --- a/src/SMESH_SWIG/smesh.py +++ b/src/SMESH_SWIG/smesh.py @@ -1,26 +1,3 @@ -# Copyright (C) 2005 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN, -# CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS -# -# This library is free software; you can redistribute it and/or -# modify it under the terms of the GNU Lesser General Public -# License as published by the Free Software Foundation; either -# version 2.1 of the License. -# -# This library is distributed in the hope that it will be useful, -# but WITHOUT ANY WARRANTY; without even the implied warranty of -# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU -# Lesser General Public License for more details. -# -# You should have received a copy of the GNU Lesser General Public -# License along with this library; if not, write to the Free Software -# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA -# -# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com -# -# File : smesh.py -# Author : Francis KLOSS, OCC -# Module : SMESH - """ \namespace smesh \brief Module smesh @@ -30,20 +7,44 @@ import salome import geompy import StdMeshers import SMESH +from SMESH import * - +## Types of algo REGULAR = 1 PYTHON = 2 -NETGEN = 3 -GHS3D = 4 +MEFISTO = 3 +NETGEN = 4 +GHS3D = 5 +FULL_NETGEN = 6 -smesh = salome.lcc.FindOrLoadComponent("FactoryServer", "SMESH") -smesh.SetCurrentStudy(salome.myStudy) +## MirrorType enumeration +POINT = SMESH_MeshEditor.POINT +AXIS = SMESH_MeshEditor.AXIS +PLANE = SMESH_MeshEditor.PLANE + +## Smooth_Method enumeration +LAPLACIAN_SMOOTH = SMESH_MeshEditor.LAPLACIAN_SMOOTH +CENTROIDAL_SMOOTH = SMESH_MeshEditor.CENTROIDAL_SMOOTH + +## Fineness enumeration(for NETGEN) +VeryCoarse = 0 +Coarse = 1 +Moderate = 2 +Fine = 3 +VeryFine = 4 +Custom = 5 NO_NAME = "NoName" + +smesh = salome.lcc.FindOrLoadComponent("FactoryServer", "SMESH") +smesh.SetCurrentStudy(salome.myStudy) + +## Global functions + +## Gets object name def GetName(obj): ior = salome.orb.object_to_string(obj) sobj = salome.myStudy.FindObjectIOR(ior) @@ -53,13 +54,205 @@ def GetName(obj): attr = sobj.FindAttribute("AttributeName")[1] return attr.Value() +## Sets name to object def SetName(obj, name): ior = salome.orb.object_to_string(obj) sobj = salome.myStudy.FindObjectIOR(ior) if not sobj is None: attr = sobj.FindAttribute("AttributeName")[1] attr.SetValue(name) + +## Returns long value from enumeration +# Uses for FT_... enumeration +def EnumToLong(theItem): + return theItem._v + +## Get PointStruct from vertex +# @param theVertex is GEOM object(vertex) +# @return SMESH.PointStruct +def GetPointStruct(theVertex): + [x, y, z] = geompy.PointCoordinates(theVertex) + return PointStruct(x,y,z) + +## Get DirStruct from vector +# @param theVector is GEOM object(vector) +# @return SMESH.DirStruct +def GetDirStruct(theVector): + vertices = geompy.SubShapeAll( theVector, geompy.ShapeType["VERTEX"] ) + if(len(vertices) != 2): + print "Error: vector object is incorrect." + return None + p1 = geompy.PointCoordinates(vertices[0]) + p2 = geompy.PointCoordinates(vertices[1]) + pnt = PointStruct(p2[0]-p1[0], p2[1]-p1[1], p2[2]-p1[2]) + dir = DirStruct(pnt) + return dir + +## Get AxisStruct from object +# @param theObj is GEOM object(line or plane) +# @return SMESH.AxisStruct +def GetAxisStruct(theObj): + edges = geompy.SubShapeAll( theObj, geompy.ShapeType["EDGE"] ) + if len(edges) > 1: + vertex1, vertex2 = geompy.SubShapeAll( edges[0], geompy.ShapeType["VERTEX"] ) + vertex3, vertex4 = geompy.SubShapeAll( edges[1], geompy.ShapeType["VERTEX"] ) + vertex1 = geompy.PointCoordinates(vertex1) + vertex2 = geompy.PointCoordinates(vertex2) + vertex3 = geompy.PointCoordinates(vertex3) + vertex4 = geompy.PointCoordinates(vertex4) + v1 = [vertex2[0]-vertex1[0], vertex2[1]-vertex1[1], vertex2[2]-vertex1[2]] + v2 = [vertex4[0]-vertex3[0], vertex4[1]-vertex3[1], vertex4[2]-vertex3[2]] + normal = [ v1[1]*v2[2]-v2[1]*v1[2], v1[2]*v2[0]-v2[2]*v1[0], v1[0]*v2[1]-v2[0]*v1[1] ] + axis = AxisStruct(vertex1[0], vertex1[1], vertex1[2], normal[0], normal[1], normal[2]) + return axis + elif len(edges) == 1: + vertex1, vertex2 = geompy.SubShapeAll( edges[0], geompy.ShapeType["VERTEX"] ) + p1 = geompy.PointCoordinates( vertex1 ) + p2 = geompy.PointCoordinates( vertex2 ) + axis = AxisStruct(p1[0], p1[1], p1[2], p2[0]-p1[0], p2[1]-p1[1], p2[2]-p1[2]) + return axis + return None + +## From SMESH_Gen interface: +# ------------------------ + +## Set the current mode +def SetEmbeddedMode( theMode ): + smesh.SetEmbeddedMode(theMode) + +## Get the current mode +def IsEmbeddedMode(): + return smesh.IsEmbeddedMode() + +## Set the current study +def SetCurrentStudy( theStudy ): + smesh.SetCurrentStudy(theStudy) + +## Get the current study +def GetCurrentStudy(): + return smesh.GetCurrentStudy() + +## Create Mesh object importing data from given UNV file +# @return an instance of Mesh class +def CreateMeshesFromUNV( theFileName ): + aSmeshMesh = smesh.CreateMeshesFromUNV(theFileName) + aMesh = Mesh(aSmeshMesh) + return aMesh + +## Create Mesh object(s) importing data from given MED file +# @return a list of Mesh class instances +def CreateMeshesFromMED( theFileName ): + aSmeshMeshes, aStatus = smesh.CreateMeshesFromMED(theFileName) + aMeshes = [] + for iMesh in range(len(aSmeshMeshes)) : + aMesh = Mesh(aSmeshMeshes[iMesh]) + aMeshes.append(aMesh) + return aMeshes, aStatus + +## Create Mesh object importing data from given STL file +# @return an instance of Mesh class +def CreateMeshesFromSTL( theFileName ): + aSmeshMesh = smesh.CreateMeshesFromSTL(theFileName) + aMesh = Mesh(aSmeshMesh) + return aMesh + +## From SMESH_Gen interface +def GetSubShapesId( theMainObject, theListOfSubObjects ): + return smesh.GetSubShapesId(theMainObject, theListOfSubObjects) + + +## Filtering. Auxiliary functions: +# ------------------------------ + +## Creates an empty criterion +# @return SMESH.Filter.Criterion +def GetEmptyCriterion(): + Type = EnumToLong(FT_Undefined) + Compare = EnumToLong(FT_Undefined) + Threshold = 0 + ThresholdStr = "" + ThresholdID = "" + UnaryOp = EnumToLong(FT_Undefined) + BinaryOp = EnumToLong(FT_Undefined) + Tolerance = 1e-07 + TypeOfElement = ALL + Precision = -1 ##@1e-07 + return Filter.Criterion(Type, Compare, Threshold, ThresholdStr, ThresholdID, + UnaryOp, BinaryOp, Tolerance, TypeOfElement, Precision) + +## Creates a criterion by given parameters +# @param elementType is the type of elements(NODE, EDGE, FACE, VOLUME) +# @param CritType is type of criterion( FT_Taper, FT_Area, FT_RangeOfIds, FT_LyingOnGeom etc. ) +# @param Compare belong to {FT_LessThan, FT_MoreThan, FT_EqualTo} +# @param Treshold is threshold value (range of ids as string, shape, numeric) +# @param UnaryOp is FT_LogicalNOT or FT_Undefined +# @param BinaryOp is binary logical operation FT_LogicalAND, FT_LogicalOR or +# FT_Undefined(must be for the last criterion in criteria) +# @return SMESH.Filter.Criterion +def GetCriterion(elementType, + CritType, + Compare = FT_EqualTo, + Treshold="", + UnaryOp=FT_Undefined, + BinaryOp=FT_Undefined): + aCriterion = GetEmptyCriterion() + aCriterion.TypeOfElement = elementType + aCriterion.Type = EnumToLong(CritType) + + aTreshold = Treshold + + if Compare in [FT_LessThan, FT_MoreThan, FT_EqualTo]: + aCriterion.Compare = EnumToLong(Compare) + else: + aCriterion.Compare = EnumToLong(FT_EqualTo) + aTreshold = Compare + + if CritType in [FT_BelongToGeom, FT_BelongToPlane, + FT_BelongToCylinder, FT_LyingOnGeom]: + # Check treshold + if isinstance(aTreshold, geompy.GEOM._objref_GEOM_Object): + aCriterion.ThresholdStr = GetName(aTreshold) + aCriterion.ThresholdID = salome.ObjectToID(aTreshold) + else: + print "Error: Treshold should be a shape." + return None + elif CritType == FT_RangeOfIds: + # Check treshold + if isinstance(aTreshold, str): + aCriterion.ThresholdStr = aTreshold + else: + print "Error: Treshold should be a string." + return None + elif CritType in [FT_FreeBorders, FT_FreeEdges, FT_BadOrientedVolume]: + # Here we don't need treshold + if aTreshold == FT_LogicalNOT: + aCriterion.UnaryOp = EnumToLong(FT_LogicalNOT) + elif aTreshold in [FT_LogicalAND, FT_LogicalOR]: + aCriterion.BinaryOp = aTreshold + else: + # Check treshold + try: + aTreshold = float(aTreshold) + aCriterion.Threshold = aTreshold + except: + print "Error: Treshold should be a number." + return None + + if Treshold == FT_LogicalNOT or UnaryOp == FT_LogicalNOT: + aCriterion.UnaryOp = EnumToLong(FT_LogicalNOT) + + if Treshold in [FT_LogicalAND, FT_LogicalOR]: + aCriterion.BinaryOp = EnumToLong(Treshold) + if UnaryOp in [FT_LogicalAND, FT_LogicalOR]: + aCriterion.BinaryOp = EnumToLong(UnaryOp) + + if BinaryOp in [FT_LogicalAND, FT_LogicalOR]: + aCriterion.BinaryOp = EnumToLong(BinaryOp) + + return aCriterion + + ## Mother class to define algorithm, recommended to don't use directly. # # More details. @@ -83,36 +276,55 @@ class Mesh_Algorithm: def GetAlgorithm(self): return self.algo + ## Get list of hypothesis that can be used with this algorithm + def GetCompatibleHypothesis(self): + list = [] + if self.algo: + list = self.algo.GetCompatibleHypothesis() + return list + + ## Get name of algo + def GetName(self): + GetName(self.algo) + + ## Set name to algo + def SetName(self, name): + SetName(self.algo, name) + + ## Get id of algo + def GetId(self): + return self.algo.GetId() + ## Private method. Print error message if a hypothesis was not assigned. def TreatHypoStatus(self, status, hypName, geomName, isAlgo): if isAlgo: hypType = "algorithm" else: hypType = "hypothesis" - if status == SMESH.HYP_UNKNOWN_FATAL : + if status == HYP_UNKNOWN_FATAL : reason = "for unknown reason" - elif status == SMESH.HYP_INCOMPATIBLE : + elif status == HYP_INCOMPATIBLE : reason = "this hypothesis mismatches algorithm" - elif status == SMESH.HYP_NOTCONFORM : + elif status == HYP_NOTCONFORM : reason = "not conform mesh would be built" - elif status == SMESH.HYP_ALREADY_EXIST : + elif status == HYP_ALREADY_EXIST : reason = hypType + " of the same dimension already assigned to this shape" - elif status == SMESH.HYP_BAD_DIM : + elif status == HYP_BAD_DIM : reason = hypType + " mismatches shape" - elif status == SMESH.HYP_CONCURENT : + elif status == HYP_CONCURENT : reason = "there are concurrent hypotheses on sub-shapes" - elif status == SMESH.HYP_BAD_SUBSHAPE : + elif status == HYP_BAD_SUBSHAPE : reason = "shape is neither the main one, nor its subshape, nor a valid group" else: return hypName = '"' + hypName + '"' geomName= '"' + geomName+ '"' - if status < SMESH.HYP_UNKNOWN_FATAL: + if status < HYP_UNKNOWN_FATAL: print hypName, "was assigned to", geomName,"but", reason else: print hypName, "was not assigned to",geomName,":", reason pass - + ## Private method. def Create(self, mesh, geom, hypo, so="libStdMeshersEngine.so"): if geom is None: @@ -134,7 +346,7 @@ class Mesh_Algorithm: SetName(self.algo, name + "/" + hypo) status = mesh.mesh.AddHypothesis(self.geom, self.algo) self.TreatHypoStatus( status, hypo, name, 1 ) - + ## Private method def Hypothesis(self, hyp, args=[], so="libStdMeshersEngine.so"): hypo = smesh.CreateHypothesis(hyp, so) @@ -151,7 +363,7 @@ class Mesh_Algorithm: status = self.mesh.mesh.AddHypothesis(self.geom, hypo) self.TreatHypoStatus( status, hyp, name, 0 ) return hypo - + # Public class: Mesh_Segment # -------------------------- @@ -163,14 +375,14 @@ class Mesh_Segment(Mesh_Algorithm): ## Private constructor. def __init__(self, mesh, geom=0): self.Create(mesh, geom, "Regular_1D") - + ## Define "LocalLength" hypothesis to cut an edge in several segments with the same length # @param l for the length of segments that cut an edge def LocalLength(self, l): hyp = self.Hypothesis("LocalLength", [l]) hyp.SetLength(l) return hyp - + ## Define "NumberOfSegments" hypothesis to cut an edge in several fixed number of segments # @param n for the number of segments that cut an edge # @param s for the scale factor (optional) @@ -183,7 +395,7 @@ class Mesh_Segment(Mesh_Algorithm): hyp.SetScaleFactor(s) hyp.SetNumberOfSegments(n) return hyp - + ## Define "Arithmetic1D" hypothesis to cut an edge in several segments with arithmetic length increasing # @param start for the length of the first segment # @param end for the length of the last segment @@ -192,7 +404,7 @@ class Mesh_Segment(Mesh_Algorithm): hyp.SetLength(start, 1) hyp.SetLength(end , 0) return hyp - + ## Define "StartEndLength" hypothesis to cut an edge in several segments with geometric length increasing # @param start for the length of the first segment # @param end for the length of the last segment @@ -201,14 +413,14 @@ class Mesh_Segment(Mesh_Algorithm): hyp.SetLength(start, 1) hyp.SetLength(end , 0) return hyp - + ## Define "Deflection1D" hypothesis # @param d for the deflection def Deflection1D(self, d): hyp = self.Hypothesis("Deflection1D", [d]) hyp.SetDeflection(d) return hyp - + ## Define "Propagation" hypothesis that propagate all other hypothesis on all others edges that are in # the opposite side in the case of quadrangular faces def Propagation(self): @@ -243,7 +455,7 @@ class Mesh_Segment_Python(Mesh_Segment): def __init__(self, mesh, geom=0): import Python1dPlugin self.Create(mesh, geom, "Python_1D", "libPython1dEngine.so") - + ## Define "PythonSplit1D" hypothesis based on the Erwan Adam patch, awaiting equivalent SALOME functionality # @param n for the number of segments that cut an edge # @param func for the python function that calculate the length of all segments @@ -252,7 +464,7 @@ class Mesh_Segment_Python(Mesh_Segment): hyp.SetNumberOfSegments(n) hyp.SetPythonLog10RatioFunction(func) return hyp - + # Public class: Mesh_Triangle # --------------------------- @@ -261,21 +473,97 @@ class Mesh_Segment_Python(Mesh_Segment): # More details. class Mesh_Triangle(Mesh_Algorithm): + algoType = 0 + params = 0 + ## Private constructor. - def __init__(self, mesh, geom=0): - self.Create(mesh, geom, "MEFISTO_2D") + def __init__(self, mesh, algoType, geom=0): + if algoType == MEFISTO: + self.Create(mesh, geom, "MEFISTO_2D") + elif algoType == NETGEN: + self.Create(mesh, geom, "NETGEN_2D", "libNETGENEngine.so") + self.algoType = algoType ## Define "MaxElementArea" hypothesis to give the maximun area of each triangles # @param area for the maximum area of each triangles def MaxElementArea(self, area): - hyp = self.Hypothesis("MaxElementArea", [area]) - hyp.SetMaxElementArea(area) - return hyp - + if self.algoType == MEFISTO: + hyp = self.Hypothesis("MaxElementArea", [area]) + hyp.SetMaxElementArea(area) + return hyp + elif self.algoType == NETGEN: + print "Netgen 1D-2D algo doesn't support this hypothesis" + return None + ## Define "LengthFromEdges" hypothesis to build triangles based on the length of the edges taken from the wire def LengthFromEdges(self): - return self.Hypothesis("LengthFromEdges") - + if self.algoType == MEFISTO: + hyp = self.Hypothesis("LengthFromEdges") + return hyp + elif self.algoType == NETGEN: + print "Netgen 1D-2D algo doesn't support this hypothesis" + return None + + ## Define "Netgen 2D Parameters" hypothesis + def Parameters(self): + if self.algoType == NETGEN: + self.params = self.Hypothesis("NETGEN_Parameters_2D", [], "libNETGENEngine.so") + return self.params + elif self.algoType == MEFISTO: + print "Mefisto algo doesn't support this hypothesis" + return None + + ## Set MaxSize + def SetMaxSize(self, theSize): + if self.params == 0: + self.Parameters() + self.params.SetMaxSize(theSize) + + ## Set SecondOrder flag + def SetSecondOrder(seld, theVal): + if self.params == 0: + self.Parameters() + self.params.SetSecondOrder(theVal) + + ## Set Optimize flag + def SetOptimize(self, theVal): + if self.params == 0: + self.Parameters() + self.params.SetOptimize(theVal) + + ## Set Fineness + # @param theFineness is: + # VeryCoarse, Coarse, Moderate, Fine, VeryFine or Custom + def SetFineness(self, theFineness): + if self.params == 0: + self.Parameters() + self.params.SetFineness(theFineness) + + ## Set GrowthRate + def SetGrowthRate(self, theRate): + if self.params == 0: + self.Parameters() + self.params.SetGrowthRate(theRate) + + ## Set NbSegPerEdge + def SetNbSegPerEdge(self, theVal): + if self.params == 0: + self.Parameters() + self.params.SetNbSegPerEdge(theVal) + + ## Set NbSegPerRadius + def SetNbSegPerRadius(self, theVal): + if self.params == 0: + self.Parameters() + self.params.SetNbSegPerRadius(theVal) + + ## Set QuadAllowed flag + def SetQuadAllowed(self, toAllow): + if self.params == 0: + self.Parameters() + self.params.SetQuadAllowed(toAllow) + + # Public class: Mesh_Quadrangle # ----------------------------- @@ -287,14 +575,14 @@ class Mesh_Quadrangle(Mesh_Algorithm): ## Private constructor. def __init__(self, mesh, geom=0): self.Create(mesh, geom, "Quadrangle_2D") - + ## Define "QuadranglePreference" hypothesis, forcing construction # of quadrangles if the number of nodes on opposite edges is not the same # in the case where the global number of nodes on edges is even def QuadranglePreference(self): hyp = self.Hypothesis("QuadranglePreference") return hyp - + # Public class: Mesh_Tetrahedron # ------------------------------ @@ -303,13 +591,19 @@ class Mesh_Quadrangle(Mesh_Algorithm): # More details. class Mesh_Tetrahedron(Mesh_Algorithm): + params = 0 + algoType = 0 + ## Private constructor. - def __init__(self, mesh, algo, geom=0): - if algo == NETGEN: + def __init__(self, mesh, algoType, geom=0): + if algoType == NETGEN: self.Create(mesh, geom, "NETGEN_3D", "libNETGENEngine.so") - elif algo == GHS3D: + elif algoType == GHS3D: import GHS3DPlugin self.Create(mesh, geom, "GHS3D_3D" , "libGHS3DEngine.so") + elif algoType == FULL_NETGEN: + self.Create(mesh, geom, "NETGEN_2D3D", "libNETGENEngine.so") + self.algoType = algoType ## Define "MaxElementVolume" hypothesis to give the maximun volume of each tetrahedral # @param vol for the maximum volume of each tetrahedral @@ -318,6 +612,59 @@ class Mesh_Tetrahedron(Mesh_Algorithm): hyp.SetMaxElementVolume(vol) return hyp + ## Define "Netgen 3D Parameters" hypothesis + def Parameters(self): + if (self.algoType == FULL_NETGEN): + self.params = self.Hypothesis("NETGEN_Parameters", [], "libNETGENEngine.so") + return self.params + else: + print "Algo doesn't support this hypothesis" + return None + + ## Set MaxSize + def SetMaxSize(self, theSize): + if self.params == 0: + self.Parameters() + self.params.SetMaxSize(theSize) + + ## Set SecondOrder flag + def SetSecondOrder(self, theVal): + if self.params == 0: + self.Parameters() + self.params.SetSecondOrder(theVal) + + ## Set Optimize flag + def SetOptimize(self, theVal): + if self.params == 0: + self.Parameters() + self.params.SetOptimize(theVal) + + ## Set Fineness + # @param theFineness is: + # VeryCoarse, Coarse, Moderate, Fine, VeryFine or Custom + def SetFineness(self, theFineness): + if self.params == 0: + self.Parameters() + self.params.SetFineness(theFineness) + + ## Set GrowthRate + def SetGrowthRate(self, theRate): + if self.params == 0: + self.Parameters() + self.params.SetGrowthRate(theRate) + + ## Set NbSegPerEdge + def SetNbSegPerEdge(self, theVal): + if self.params == 0: + self.Parameters() + self.params.SetNbSegPerEdge(theVal) + + ## Set NbSegPerRadius + def SetNbSegPerRadius(self, theVal): + if self.params == 0: + self.Parameters() + self.params.SetNbSegPerRadius(theVal) + # Public class: Mesh_Hexahedron # ------------------------------ @@ -330,6 +677,7 @@ class Mesh_Hexahedron(Mesh_Algorithm): def __init__(self, mesh, geom=0): self.Create(mesh, geom, "Hexa_3D") +# Deprecated, only for compatibility! # Public class: Mesh_Netgen # ------------------------------ @@ -356,40 +704,104 @@ class Mesh_Netgen(Mesh_Algorithm): else: hyp = self.Hypothesis("NETGEN_Parameters_2D", [], "libNETGENEngine.so") return hyp - + # Public class: Mesh # ================== ## Class to define a mesh # +# The class contains mesh shape, SMESH_Mesh, SMESH_MeshEditor # More details. class Mesh: geom = 0 mesh = 0 + editor = 0 ## Constructor # - # Creates mesh on the shape \a geom, + # Creates mesh on the shape \a geom(or the empty mesh if geom equal to 0), # sets GUI name of this mesh to \a name. - # @param geom Shape to be meshed + # @param obj Shape to be meshed or SMESH_Mesh object # @param name Study name of the mesh - def __init__(self, geom, name=0): - self.geom = geom - self.mesh = smesh.CreateMesh(geom) - if name == 0: - SetName(self.mesh, GetName(geom)) + def __init__(self, obj=0, name=0): + if obj != 0: + if isinstance(obj, geompy.GEOM._objref_GEOM_Object): + self.geom = obj + self.mesh = smesh.CreateMesh(self.geom) + elif isinstance(obj, SMESH._objref_SMESH_Mesh): + self.SetMesh(obj) else: + self.mesh = smesh.CreateEmptyMesh() + if name != 0: SetName(self.mesh, name) + elif obj != 0: + SetName(self.mesh, GetName(obj)) + + self.editor = self.mesh.GetMeshEditor() + ## Method that inits the Mesh object from SMESH_Mesh interface + # @param theMesh is SMESH_Mesh object + def SetMesh(self, theMesh): + self.mesh = theMesh + self.geom = self.mesh.GetShapeToMesh() + ## Method that returns the mesh + # @return SMESH_Mesh object def GetMesh(self): return self.mesh + ## Get mesh name + def GetName(self): + name = GetName(self.GetMesh()) + return name + + ## Set name to mesh + def SetName(self, name): + SetName(self.GetMesh(), name) + + ## Get the subMesh object associated to a subShape. The subMesh object + # gives access to nodes and elements IDs. + # SubMesh will be used instead of SubShape in a next idl version to + # adress a specific subMesh... + def GetSubMesh(self, theSubObject, name): + submesh = self.mesh.GetSubMesh(theSubObject, name) + return submesh + ## Method that returns the shape associated to the mesh + # @return GEOM_Object def GetShape(self): return self.geom + ## Method that associates given shape to the mesh(entails the mesh recreation) + # @param geom shape to be meshed(GEOM_Object) + def SetShape(self, geom): + self.mesh = smesh.CreateMesh(geom) + + ## Return true if hypotheses are defined well + # @param theMesh is an instance of Mesh class + # @param theSubObject subshape of a mesh shape + def IsReadyToCompute(self, theSubObject): + return smesh.IsReadyToCompute(self.mesh, theSubObject) + + ## Return errors of hypotheses definintion + # error list is empty if everything is OK + # @param theMesh is an instance of Mesh class + # @param theSubObject subshape of a mesh shape + # @return a list of errors + def GetAlgoState(self, theSubObject): + return smesh.GetAlgoState(self.mesh, theSubObject) + + ## Return geometrical object the given element is built on. + # The returned geometrical object, if not nil, is either found in the + # study or is published by this method with the given name + # @param theMesh is an instance of Mesh class + # @param theElementID an id of the mesh element + # @param theGeomName user defined name of geometrical object + # @return GEOM::GEOM_Object instance + def GetGeometryByMeshElement(self, theElementID, theGeomName): + return smesh.GetGeometryByMeshElement( self.mesh, theElementID, theGeomName ) + ## Returns mesh dimension depending on shape one def MeshDimension(self): shells = geompy.SubShapeAllIDs( self.geom, geompy.ShapeType["SHELL"] ) @@ -402,7 +814,7 @@ class Mesh: else: return 0; pass - + ## Creates a segment discretization 1D algorithm. # If the optional \a algo parameter is not sets, this algorithm is REGULAR. # If the optional \a geom parameter is not sets, this algorithm is global. @@ -420,14 +832,20 @@ class Mesh: return Mesh_Segment_Python(self, geom) else: return Mesh_Segment(self, geom) - + ## Creates a triangle 2D algorithm for faces. # If the optional \a geom parameter is not sets, this algorithm is global. # Otherwise, this algorithm define a submesh based on \a geom subshape. + # @param algo values are: smesh.MEFISTO or smesh.NETGEN # @param geom If defined, subshape to be meshed - def Triangle(self, geom=0): - return Mesh_Triangle(self, geom) - + def Triangle(self, algo=MEFISTO, geom=0): + ## if Triangle(geom) is called by mistake + if ( isinstance( algo, geompy.GEOM._objref_GEOM_Object)): + geom = algo + algo = MEFISTO + + return Mesh_Triangle(self, algo, geom) + ## Creates a quadrangle 2D algorithm for faces. # If the optional \a geom parameter is not sets, this algorithm is global. # Otherwise, this algorithm define a submesh based on \a geom subshape. @@ -439,15 +857,15 @@ class Mesh: # The parameter \a algo permits to choice the algorithm: NETGEN or GHS3D # If the optional \a geom parameter is not sets, this algorithm is global. # Otherwise, this algorithm define a submesh based on \a geom subshape. - # @param algo values are: smesh.NETGEN, smesh.GHS3D + # @param algo values are: smesh.NETGEN, smesh.GHS3D, smesh.FULL_NETGEN # @param geom If defined, subshape to be meshed - def Tetrahedron(self, algo, geom=0): + def Tetrahedron(self, algo=NETGEN, geom=0): ## if Tetrahedron(geom) is called by mistake if ( isinstance( algo, geompy.GEOM._objref_GEOM_Object)): algo, geom = geom, algo pass return Mesh_Tetrahedron(self, algo, geom) - + ## Creates a hexahedron 3D algorithm for solids. # If the optional \a geom parameter is not sets, this algorithm is global. # Otherwise, this algorithm define a submesh based on \a geom subshape. @@ -455,7 +873,8 @@ class Mesh: def Hexahedron(self, geom=0): return Mesh_Hexahedron(self, geom) - ## Creates a NETGEN-based 2D or 3D independent algorithm (i.e. needs no + ## Deprecated, only for compatibility! + # Creates a NETGEN-based 2D or 3D independent algorithm (i.e. needs no # discrete boundary). # If the optional \a geom parameter is not sets, this algorithm is global. # Otherwise, this algorithm defines a submesh based on \a geom subshape. @@ -463,12 +882,18 @@ class Mesh: # @param geom If defined, subshape to be meshed def Netgen(self, is3D, geom=0): return Mesh_Netgen(self, is3D, geom) - + ## Compute the mesh and return the status of the computation - def Compute(self): - ok = smesh.Compute(self.mesh, self.geom) + def Compute(self, geom=0): + if geom == 0 or not isinstance(geom, geompy.GEOM._objref_GEOM_Object): + if self.geom == 0: + print "Compute impossible: mesh is not constructed on geom shape." + return 0 + else: + geom = self.geom + ok = smesh.Compute(self.mesh, geom) if not ok: - errors = smesh.GetAlgoState( self.mesh, self.geom ) + errors = smesh.GetAlgoState( self.mesh, geom ) allReasons = "" for err in errors: if err.isGlobalAlgo: @@ -477,9 +902,9 @@ class Mesh: glob = " local " pass dim = str(err.algoDim) - if err.name == SMESH.MISSING_ALGO: + if err.name == MISSING_ALGO: reason = glob + dim + "D algorithm is missing" - elif err.name == SMESH.MISSING_HYPO: + elif err.name == MISSING_HYPO: name = '"' + err.algoName + '"' reason = glob + dim + "D algorithm " + name + " misses " + dim + "D hypothesis" else: @@ -517,7 +942,7 @@ class Mesh: self.Tetrahedron(NETGEN) pass return self.Compute() - + ## Compute hexahedral mesh using AutomaticLength + Quadrangle + Hexahedron # The parameter \a fineness [0.-1.] defines mesh fineness def AutomaticHexahedralization(self, fineness=0): @@ -532,7 +957,12 @@ class Mesh: self.Hexahedron() pass return self.Compute() - + + ## Get the list of hypothesis added on a geom + # @param geom is subhape of mesh geometry + def GetHypothesisList(self, geom): + return self.mesh.GetHypothesisList( geom ) + ## Removes all global hypotheses def RemoveGlobalHypotheses(self): current_hyps = self.mesh.GetHypothesisList( self.geom ) @@ -540,71 +970,949 @@ class Mesh: self.mesh.RemoveHypothesis( self.geom, hyp ) pass pass - + ## Create a mesh group based on geometric object \a grp # and give a \a name, if this parameter is not defined # the name is the same as the geometric group name + # Note: this function is obsolete. Works like GroupOnGeom(). # @param grp is a geometric group, a vertex, an edge, a face or a solid # @param name is the name of the mesh group + # @return SMESH_GroupOnGeom def Group(self, grp, name=""): - if name == "": - name = grp.GetName() - - type = [] - tgeo = str(grp.GetShapeType()) - if tgeo == "VERTEX": - type = SMESH.NODE - elif tgeo == "EDGE": - type = SMESH.EDGE - elif tgeo == "FACE": - type = SMESH.FACE - elif tgeo == "SOLID": - type = SMESH.VOLUME - elif tgeo == "SHELL": - type = SMESH.VOLUME - elif tgeo == "COMPOUND": - if len( geompy.GetObjectIDs( grp )) == 0: - print "Mesh.Group: empty geometric group", GetName( grp ) - return 0 - tgeo = geompy.GetType(grp) - if tgeo == geompy.ShapeType["VERTEX"]: - type = SMESH.NODE - elif tgeo == geompy.ShapeType["EDGE"]: - type = SMESH.EDGE - elif tgeo == geompy.ShapeType["FACE"]: - type = SMESH.FACE - elif tgeo == geompy.ShapeType["SOLID"]: - type = SMESH.VOLUME - - if type == []: - print "Mesh.Group: bad first argument: expected a group, a vertex, an edge, a face or a solid" - return 0 - else: - return self.mesh.CreateGroupFromGEOM(type, name, grp) - - ## Export the mesh in a file with the MED format and choice the \a version of MED format + return self.GroupOnGeom(grp, name) + + ## Deprecated, only for compatibility! Please, use ExportMED() method instead. + # Export the mesh in a file with the MED format and choice the \a version of MED format # @param f is the file name # @param version values are SMESH.MED_V2_1, SMESH.MED_V2_2 def ExportToMED(self, f, version, opt=0): self.mesh.ExportToMED(f, opt, version) - + ## Export the mesh in a file with the MED format # @param f is the file name - def ExportMED(self, f, opt=0): - self.mesh.ExportMED(f, opt) - + # @param auto_groups boolean parameter for creating/not creating + # the groups Group_On_All_Nodes, Group_On_All_Faces, ... ; + # the typical use is auto_groups=false. + # @param version MED format version(MED_V2_1 or MED_V2_2) + def ExportMED(self, f, auto_groups=0, version=MED_V2_2): + self.mesh.ExportToMED(f, auto_groups, version) + ## Export the mesh in a file with the DAT format # @param f is the file name def ExportDAT(self, f): self.mesh.ExportDAT(f) - + ## Export the mesh in a file with the UNV format # @param f is the file name def ExportUNV(self, f): self.mesh.ExportUNV(f) - + ## Export the mesh in a file with the STL format # @param f is the file name # @param ascii defined the kind of file contents def ExportSTL(self, f, ascii=1): self.mesh.ExportSTL(f, ascii) + + ################################################################################### + + ## Operations with groups + # ---------------------- + + ## Creates an empty mesh group + # @param elementType is the type of elements in the group + # @param name is the name of the mesh group + # @return SMESH_Group + def CreateEmptyGroup(self, elementType, name): + return self.mesh.CreateGroup(elementType, name) + + ## Creates a mesh group based on geometric object \a grp + # and give a \a name, if this parameter is not defined + # the name is the same as the geometric group name + # @param grp is a geometric group, a vertex, an edge, a face or a solid + # @param name is the name of the mesh group + # @return SMESH_GroupOnGeom + def GroupOnGeom(self, grp, name="", type=None): + if name == "": + name = grp.GetName() + + if type == None: + tgeo = str(grp.GetShapeType()) + if tgeo == "VERTEX": + type = NODE + elif tgeo == "EDGE": + type = EDGE + elif tgeo == "FACE": + type = FACE + elif tgeo == "SOLID": + type = VOLUME + elif tgeo == "SHELL": + type = VOLUME + elif tgeo == "COMPOUND": + if len( geompy.GetObjectIDs( grp )) == 0: + print "Mesh.Group: empty geometric group", GetName( grp ) + return 0 + tgeo = geompy.GetType(grp) + if tgeo == geompy.ShapeType["VERTEX"]: + type = NODE + elif tgeo == geompy.ShapeType["EDGE"]: + type = EDGE + elif tgeo == geompy.ShapeType["FACE"]: + type = FACE + elif tgeo == geompy.ShapeType["SOLID"]: + type = VOLUME + + if type == None: + print "Mesh.Group: bad first argument: expected a group, a vertex, an edge, a face or a solid" + return 0 + else: + return self.mesh.CreateGroupFromGEOM(type, name, grp) + + ## Create a mesh group by the given ids of elements + # @param groupName is the name of the mesh group + # @param elementType is the type of elements in the group + # @param elemIDs is the list of ids + # @return SMESH_Group + def MakeGroupByIds(self, groupName, elementType, elemIDs): + group = self.mesh.CreateGroup(elementType, groupName) + group.Add(elemIDs) + return group + + ## Create a mesh group by the given conditions + # @param groupName is the name of the mesh group + # @param elementType is the type of elements in the group + # @param CritType is type of criterion( FT_Taper, FT_Area, FT_RangeOfIds, FT_LyingOnGeom etc. ) + # @param Compare belong to {FT_LessThan, FT_MoreThan, FT_EqualTo} + # @param Treshold is threshold value (range of id ids as string, shape, numeric) + # @param UnaryOp is FT_LogicalNOT or FT_Undefined + # @return SMESH_Group + def MakeGroup(self, + groupName, + elementType, + CritType=FT_Undefined, + Compare=FT_EqualTo, + Treshold="", + UnaryOp=FT_Undefined): + aCriterion = GetCriterion(elementType, CritType, Compare, Treshold, UnaryOp, FT_Undefined) + group = self.MakeGroupByCriterion(groupName, aCriterion) + return group + + ## Create a mesh group by the given criterion + # @param groupName is the name of the mesh group + # @param Criterion is the instance of Criterion class + # @return SMESH_Group + def MakeGroupByCriterion(self, groupName, Criterion): + aFilterMgr = smesh.CreateFilterManager() + aFilter = aFilterMgr.CreateFilter() + aCriteria = [] + aCriteria.append(Criterion) + aFilter.SetCriteria(aCriteria) + group = self.MakeGroupByFilter(groupName, aFilter) + return group + + ## Create a mesh group by the given criteria(list of criterions) + # @param groupName is the name of the mesh group + # @param Criteria is the list of criterions + # @return SMESH_Group + def MakeGroupByCriteria(self, groupName, theCriteria): + aFilterMgr = smesh.CreateFilterManager() + aFilter = aFilterMgr.CreateFilter() + aFilter.SetCriteria(theCriteria) + group = self.MakeGroupByFilter(groupName, aFilter) + return group + + ## Create a mesh group by the given filter + # @param groupName is the name of the mesh group + # @param Criterion is the instance of Filter class + # @return SMESH_Group + def MakeGroupByFilter(self, groupName, theFilter): + anIds = theFilter.GetElementsId(self.mesh) + anElemType = theFilter.GetElementType() + group = self.MakeGroupByIds(groupName, anElemType, anIds) + return group + + ## Creates filter by given parameters of criterion + # @param elementType is the type of elements in the group + # @param CritType is type of criterion( FT_Taper, FT_Area, FT_RangeOfIds, FT_LyingOnGeom etc. ) + # @param Compare belong to {FT_LessThan, FT_MoreThan, FT_EqualTo} + # @param Treshold is threshold value (range of id ids as string, shape, numeric) + # @param UnaryOp is FT_LogicalNOT or FT_Undefined + # @return SMESH_Filter + def GetFilter(self, + elementType, + CritType=FT_Undefined, + Compare=FT_EqualTo, + Treshold="", + UnaryOp=FT_Undefined): + aCriterion = GetCriterion(elementType, CritType, Compare, Treshold, UnaryOp, FT_Undefined) + aFilterMgr = smesh.CreateFilterManager() + aFilter = aFilterMgr.CreateFilter() + aCriteria = [] + aCriteria.append(aCriterion) + aFilter.SetCriteria(aCriteria) + return aFilter + + ## Remove a group + def RemoveGroup(self, group): + self.mesh.RemoveGroup(group) + + ## Remove group with its contents + def RemoveGroupWithContents(self, group): + self.mesh.RemoveGroupWithContents(group) + + ## Get the list of groups existing in the mesh + def GetGroups(self): + return self.mesh.GetGroups() + + ## Get the list of names of groups existing in the mesh + def GetGroupNames(self): + groups = self.GetGroups() + names = [] + for group in groups: + names.append(group.GetName()) + return names + + ## Union of two groups + # New group is created. All mesh elements that are + # present in initial groups are added to the new one + def UnionGroups(self, group1, group2, name): + return self.mesh.UnionGroups(group1, group2, name) + + ## Intersection of two groups + # New group is created. All mesh elements that are + # present in both initial groups are added to the new one. + def IntersectGroups(self, group1, group2, name): + return self.mesh.IntersectGroups(group1, group2, name) + + ## Cut of two groups + # New group is created. All mesh elements that are present in + # main group but do not present in tool group are added to the new one + def CutGroups(self, mainGroup, toolGroup, name): + return self.mesh.CutGroups(mainGroup, toolGroup, name) + + + ## Get some info about mesh: + # ------------------------ + + ## Get the log of nodes and elements added or removed since previous + # clear of the log. + # @param clearAfterGet log is emptied after Get (safe if concurrents access) + # @return list of log_block structures: + # commandType + # number + # coords + # indexes + def GetLog(self, clearAfterGet): + return self.mesh.GetLog(clearAfterGet) + + ## Clear the log of nodes and elements added or removed since previous + # clear. Must be used immediately after GetLog if clearAfterGet is false. + def ClearLog(self): + self.mesh.ClearLog() + + ## Get the internal Id + def GetId(self): + return self.mesh.GetId() + + ## Get the study Id + def GetStudyId(self): + return self.mesh.GetStudyId() + + ## Check group names for duplications. + # Consider maximum group name length stored in MED file. + def HasDuplicatedGroupNamesMED(self): + return self.mesh.GetStudyId() + + ## Obtain instance of SMESH_MeshEditor + def GetMeshEditor(self): + return self.mesh.GetMeshEditor() + + ## Get MED Mesh + def GetMEDMesh(self): + return self.mesh.GetMEDMesh() + + + ## Get informations about mesh contents: + # ------------------------------------ + + ## Returns number of nodes in mesh + def NbNodes(self): + return self.mesh.NbNodes() + + ## Returns number of elements in mesh + def NbElements(self): + return self.mesh.NbElements() + + ## Returns number of edges in mesh + def NbEdges(self): + return self.mesh.NbEdges() + + ## Returns number of edges with given order in mesh + # @param elementOrder is order of elements: + # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC + def NbEdgesOfOrder(self, elementOrder): + return self.mesh.NbEdgesOfOrder(elementOrder) + + ## Returns number of faces in mesh + def NbFaces(self): + return self.mesh.NbFaces() + + ## Returns number of faces with given order in mesh + # @param elementOrder is order of elements: + # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC + def NbFacesOfOrder(self, elementOrder): + return self.mesh.NbFacesOfOrder(elementOrder) + + ## Returns number of triangles in mesh + def NbTriangles(self): + return self.mesh.NbTriangles() + + ## Returns number of triangles with given order in mesh + # @param elementOrder is order of elements: + # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC + def NbTrianglesOfOrder(self, elementOrder): + return self.mesh.NbTrianglesOfOrder(elementOrder) + + ## Returns number of quadrangles in mesh + def NbQuadrangles(self): + return self.mesh.NbQuadrangles() + + ## Returns number of quadrangles with given order in mesh + # @param elementOrder is order of elements: + # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC + def NbQuadranglesOfOrder(self, elementOrder): + return self.mesh.NbQuadranglesOfOrder(elementOrder) + + ## Returns number of polygons in mesh + def NbPolygons(self): + return self.mesh.NbPolygons() + + ## Returns number of volumes in mesh + def NbVolumes(self): + return self.mesh.NbVolumes() + + ## Returns number of volumes with given order in mesh + # @param elementOrder is order of elements: + # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC + def NbVolumesOfOrder(self, elementOrder): + return self.mesh.NbVolumesOfOrder(elementOrder) + + ## Returns number of tetrahedrons in mesh + def NbTetras(self): + return self.mesh.NbTetras() + + ## Returns number of tetrahedrons with given order in mesh + # @param elementOrder is order of elements: + # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC + def NbTetrasOfOrder(self, elementOrder): + return self.mesh.NbTetrasOfOrder(elementOrder) + + ## Returns number of hexahedrons in mesh + def NbHexas(self): + return self.mesh.NbHexas() + + ## Returns number of hexahedrons with given order in mesh + # @param elementOrder is order of elements: + # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC + def NbHexasOfOrder(self, elementOrder): + return self.mesh.NbHexasOfOrder(elementOrder) + + ## Returns number of pyramids in mesh + def NbPyramids(self): + return self.mesh.NbPyramids() + + ## Returns number of pyramids with given order in mesh + # @param elementOrder is order of elements: + # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC + def NbPyramidsOfOrder(self, elementOrder): + return self.mesh.NbPyramidsOfOrder(elementOrder) + + ## Returns number of prisms in mesh + def NbPrisms(self): + return self.mesh.NbPrisms() + + ## Returns number of prisms with given order in mesh + # @param elementOrder is order of elements: + # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC + def NbPrismsOfOrder(self, elementOrder): + return self.mesh.NbPrismsOfOrder(elementOrder) + + ## Returns number of polyhedrons in mesh + def NbPolyhedrons(self): + return self.mesh.NbPolyhedrons() + + ## Returns number of submeshes in mesh + def NbSubMesh(self): + return self.mesh.NbSubMesh() + + ## Returns list of mesh elements ids + def GetElementsId(self): + return self.mesh.GetElementsId() + + ## Returns list of ids of mesh elements with given type + # @param elementType is required type of elements + def GetElementsByType(self, elementType): + return self.mesh.GetElementsByType(elementType) + + ## Returns list of mesh nodes ids + def GetNodesId(self): + return self.mesh.GetNodesId() + + ## Get informations about mesh elements: + # ------------------------------------ + + ## Returns type of mesh element + def GetElementType(self, id, iselem): + return self.mesh.GetElementType(id, iselem) + + ## Returns list of submesh elements ids + # @param shapeID is geom object(subshape) IOR + def GetSubMeshElementsId(self, shapeID): + return self.mesh.GetSubMeshElementsId(shapeID) + + ## Returns list of submesh nodes ids + # @param shapeID is geom object(subshape) IOR + def GetSubMeshNodesId(self, shapeID, all): + return self.mesh.GetSubMeshNodesId(shapeID, all) + + ## Returns list of ids of submesh elements with given type + # @param shapeID is geom object(subshape) IOR + def GetSubMeshElementType(self, shapeID): + return self.mesh.GetSubMeshElementType(shapeID) + + ## Get mesh description + def Dump(self): + return self.mesh.Dump() + + + ## Get information about nodes and elements of mesh by its ids: + # ----------------------------------------------------------- + + ## Get XYZ coordinates of node as list of double + # If there is not node for given ID - returns empty list + def GetNodeXYZ(self, id): + return self.mesh.GetNodeXYZ(id) + + ## For given node returns list of IDs of inverse elements + # If there is not node for given ID - returns empty list + def GetNodeInverseElements(self, id): + return self.mesh.GetNodeInverseElements(id) + + ## If given element is node returns IDs of shape from position + # else - return ID of result shape after Mesh.FindShape() + # If there is not element for given ID - returns -1 + def GetShapeID(self, id): + return self.mesh.GetShapeID(id) + + ## Returns number of nodes for given element + # If there is not element for given ID - returns -1 + def GetElemNbNodes(self, id): + return self.mesh.GetElemNbNodes(id) + + ## Returns ID of node by given index for given element + # If there is not element for given ID - returns -1 + # If there is not node for given index - returns -2 + def GetElemNode(self, id, index): + return self.mesh.GetElemNode(id, index) + + ## Returns true if given node is medium node + # in given quadratic element + def IsMediumNode(self, elementID, nodeID): + return self.mesh.IsMediumNode(elementID, nodeID) + + ## Returns true if given node is medium node + # in one of quadratic elements + def IsMediumNodeOfAnyElem(self, nodeID, elementType): + return self.mesh.IsMediumNodeOfAnyElem(nodeID, elementType) + + ## Returns number of edges for given element + def ElemNbEdges(self, id): + return self.mesh.ElemNbEdges(id) + + ## Returns number of faces for given element + def ElemNbFaces(self, id): + return self.mesh.ElemNbFaces(id) + + ## Returns true if given element is polygon + def IsPoly(self, id): + return self.mesh.IsPoly(id) + + ## Returns true if given element is quadratic + def IsQuadratic(self, id): + return self.mesh.IsQuadratic(id) + + ## Returns XYZ coordinates of bary center for given element + # as list of double + # If there is not element for given ID - returns empty list + def BaryCenter(self, id): + return self.mesh.BaryCenter(id) + + + ## Mesh edition (SMESH_MeshEditor functionality): + # --------------------------------------------- + + ## Removes elements from mesh by ids + # @param IDsOfElements is list of ids of elements to remove + def RemoveElements(self, IDsOfElements): + return self.editor.RemoveElements(IDsOfElements) + + ## Removes nodes from mesh by ids + # @param IDsOfNodes is list of ids of nodes to remove + def RemoveNodes(self, IDsOfNodes): + return self.editor.RemoveNodes(IDsOfNodes) + + ## Add node to mesh by coordinates + def AddNode(self, x, y, z): + return self.editor.AddNode( x, y, z) + + + ## Create edge both similar and quadratic (this is determed + # by number of given nodes). + # @param IdsOfNodes List of node IDs for creation of element. + # Needed order of nodes in this list corresponds to description + # of MED. This description is located by the following link: + # http://www.salome-platform.org/salome2/web_med_internet/logiciels/medV2.2.2_doc_html/html/modele_de_donnees.html#3. + def AddEdge(self, IDsOfNodes): + return self.editor.AddEdge(IDsOfNodes) + + ## Create face both similar and quadratic (this is determed + # by number of given nodes). + # @param IdsOfNodes List of node IDs for creation of element. + # Needed order of nodes in this list corresponds to description + # of MED. This description is located by the following link: + # http://www.salome-platform.org/salome2/web_med_internet/logiciels/medV2.2.2_doc_html/html/modele_de_donnees.html#3. + def AddFace(self, IDsOfNodes): + return self.editor.AddFace(IDsOfNodes) + + ## Add polygonal face to mesh by list of nodes ids + def AddPolygonalFace(self, IdsOfNodes): + return self.editor.AddPolygonalFace(IdsOfNodes) + + ## Create volume both similar and quadratic (this is determed + # by number of given nodes). + # @param IdsOfNodes List of node IDs for creation of element. + # Needed order of nodes in this list corresponds to description + # of MED. This description is located by the following link: + # http://www.salome-platform.org/salome2/web_med_internet/logiciels/medV2.2.2_doc_html/html/modele_de_donnees.html#3. + def AddVolume(self, IDsOfNodes): + return self.editor.AddVolume(IDsOfNodes) + + ## Create volume of many faces, giving nodes for each face. + # @param IdsOfNodes List of node IDs for volume creation face by face. + # @param Quantities List of integer values, Quantities[i] + # gives quantity of nodes in face number i. + def AddPolyhedralVolume (self, IdsOfNodes, Quantities): + return self.editor.AddPolyhedralVolume(IdsOfNodes, Quantities) + + ## Create volume of many faces, giving IDs of existing faces. + # @param IdsOfFaces List of face IDs for volume creation. + # + # Note: The created volume will refer only to nodes + # of the given faces, not to the faces itself. + def AddPolyhedralVolumeByFaces (self, IdsOfFaces): + return self.editor.AddPolyhedralVolumeByFaces(IdsOfFaces) + + ## Move node with given id + # @param NodeID id of the node + # @param x displacing along the X axis + # @param y displacing along the Y axis + # @param z displacing along the Z axis + def MoveNode(self, NodeID, x, y, z): + return self.editor.MoveNode(NodeID, x, y, z) + + ## Replace two neighbour triangles sharing Node1-Node2 link + # with ones built on the same 4 nodes but having other common link. + # @param NodeID1 first node id + # @param NodeID2 second node id + # @return false if proper faces not found + def InverseDiag(self, NodeID1, NodeID2): + return self.editor.InverseDiag(NodeID1, NodeID2) + + ## Replace two neighbour triangles sharing Node1-Node2 link + # with a quadrangle built on the same 4 nodes. + # @param NodeID1 first node id + # @param NodeID2 second node id + # @return false if proper faces not found + def DeleteDiag(self, NodeID1, NodeID2): + return self.editor.DeleteDiag(NodeID1, NodeID2) + + ## Reorient elements by ids + # @param IDsOfElements if undefined reorient all mesh elements + def Reorient(self, IDsOfElements=None): + if IDsOfElements == None: + IDsOfElements = self.GetElementsId() + return self.editor.Reorient(IDsOfElements) + + ## Reorient all elements of the object + # @param theObject is mesh, submesh or group + def ReorientObject(self, theObject): + return self.editor.ReorientObject(theObject) + + ## Fuse neighbour triangles into quadrangles. + # @param IDsOfElements The triangles to be fused, + # @param Criterion is used to choose a neighbour to fuse with. + # @param MaxAngle is a max angle between element normals at which fusion + # is still performed; theMaxAngle is mesured in radians. + # @return TRUE in case of success, FALSE otherwise. + def TriToQuad(self, IDsOfElements, Criterion, MaxAngle): + if IDsOfElements == []: + IDsOfElements = self.GetElementsId() + return self.editor.TriToQuad(IDsOfElements, Criterion, MaxAngle) + + ## Fuse neighbour triangles of the object into quadrangles + # @param theObject is mesh, submesh or group + # @param Criterion is used to choose a neighbour to fuse with. + # @param MaxAngle is a max angle between element normals at which fusion + # is still performed; theMaxAngle is mesured in radians. + # @return TRUE in case of success, FALSE otherwise. + def TriToQuadObject (self, theObject, Criterion, MaxAngle): + return self.editor.TriToQuadObject(theObject, Criterion, MaxAngle) + + ## Split quadrangles into triangles. + # @param IDsOfElements the faces to be splitted. + # @param theCriterion is used to choose a diagonal for splitting. + # @param @return TRUE in case of success, FALSE otherwise. + def QuadToTri (self, IDsOfElements, Criterion): + if IDsOfElements == []: + IDsOfElements = self.GetElementsId() + return self.editor.QuadToTri(IDsOfElements, Criterion) + + ## Split quadrangles into triangles. + # @param theObject object to taking list of elements from, is mesh, submesh or group + def QuadToTriObject (self, theObject, Criterion): + return self.editor.QuadToTriObject(theObject, Criterion) + + ## Split quadrangles into triangles. + # @param theElems The faces to be splitted + # @param the13Diag is used to choose a diagonal for splitting. + # @return TRUE in case of success, FALSE otherwise. + def SplitQuad (self, IDsOfElements, Diag13): + if IDsOfElements == []: + IDsOfElements = self.GetElementsId() + return self.editor.SplitQuad(IDsOfElements, Diag13) + + ## Split quadrangles into triangles. + # @param theObject is object to taking list of elements from, is mesh, submesh or group + def SplitQuadObject (self, theObject, Diag13): + return self.editor.SplitQuadObject(theObject, Diag13) + + ## Find better splitting of the given quadrangle. + # @param IDOfQuad ID of the quadrangle to be splitted. + # @param Criterion is a criterion to choose a diagonal for splitting. + # @return 1 if 1-3 diagonal is better, 2 if 2-4 + # diagonal is better, 0 if error occurs. + def BestSplit (self, IDOfQuad, Criterion): + return self.editor.BestSplit(IDOfQuad, Criterion) + + ## Smooth elements + # @param IDsOfElements list if ids of elements to smooth + # @param IDsOfFixedNodes list of ids of fixed nodes. + # Note that nodes built on edges and boundary nodes are always fixed. + # @param MaxNbOfIterations maximum number of iterations + # @param MaxAspectRatio varies in range [1.0, inf] + # @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH) + def Smooth(self, IDsOfElements, IDsOfFixedNodes, + MaxNbOfIterations, MaxAspectRatio, Method): + if IDsOfElements == []: + IDsOfElements = self.GetElementsId() + return self.editor.Smooth(IDsOfElements, IDsOfFixedNodes, + MaxNbOfIterations, MaxAspectRatio, Method) + + ## Smooth elements belong to given object + # @param theObject object to smooth + # @param IDsOfFixedNodes list of ids of fixed nodes. + # Note that nodes built on edges and boundary nodes are always fixed. + # @param MaxNbOfIterations maximum number of iterations + # @param MaxAspectRatio varies in range [1.0, inf] + # @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH) + def SmoothObject(self, theObject, IDsOfFixedNodes, + MaxNbOfIterations, MaxxAspectRatio, Method): + return self.editor.SmoothObject(theObject, IDsOfFixedNodes, + MaxNbOfIterations, MaxxAspectRatio, Method) + + ## Parametric smooth the given elements + # @param IDsOfElements list if ids of elements to smooth + # @param IDsOfFixedNodes list of ids of fixed nodes. + # Note that nodes built on edges and boundary nodes are always fixed. + # @param MaxNbOfIterations maximum number of iterations + # @param MaxAspectRatio varies in range [1.0, inf] + # @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH) + def SmoothParametric(IDsOfElements, IDsOfFixedNodes, + MaxNbOfIterations, MaxAspectRatio, Method): + if IDsOfElements == []: + IDsOfElements = self.GetElementsId() + return self.editor.SmoothParametric(IDsOfElements, IDsOfFixedNodes, + MaxNbOfIterations, MaxAspectRatio, Method) + + ## Parametric smooth elements belong to given object + # @param theObject object to smooth + # @param IDsOfFixedNodes list of ids of fixed nodes. + # Note that nodes built on edges and boundary nodes are always fixed. + # @param MaxNbOfIterations maximum number of iterations + # @param MaxAspectRatio varies in range [1.0, inf] + # @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH) + def SmoothParametricObject(self, theObject, IDsOfFixedNodes, + MaxNbOfIterations, MaxAspectRatio, Method): + return self.editor.SmoothParametricObject(theObject, IDsOfFixedNodes, + MaxNbOfIterations, MaxAspectRatio, Method) + + ## Converts all mesh to quadratic one, deletes old elements, replacing + # them with quadratic ones with the same id. + def ConvertToQuadratic(self, theForce3d): + self.editor.ConvertToQuadratic(theForce3d) + + ## Converts all mesh from quadratic to ordinary ones, + # deletes old quadratic elements, replacing + # them with ordinary mesh elements with the same id. + def ConvertFromQuadratic(self): + return self.editor.ConvertFromQuadratic() + + ## Renumber mesh nodes + def RenumberNodes(self): + self.editor.RenumberNodes() + + ## Renumber mesh elements + def RenumberElements(self): + self.editor.RenumberElements() + + ## Generate new elements by rotation of the elements around the axis + # @param IDsOfElements list of ids of elements to sweep + # @param Axix axis of rotation, AxisStruct or line(geom object) + # @param AngleInRadians angle of Rotation + # @param NbOfSteps number of steps + # @param Tolerance tolerance + def RotationSweep(self, IDsOfElements, Axix, AngleInRadians, NbOfSteps, Tolerance): + if IDsOfElements == []: + IDsOfElements = self.GetElementsId() + if ( isinstance( Axix, geompy.GEOM._objref_GEOM_Object)): + Axix = GetAxisStruct(Axix) + self.editor.RotationSweep(IDsOfElements, Axix, AngleInRadians, NbOfSteps, Tolerance) + + ## Generate new elements by rotation of the elements of object around the axis + # @param theObject object wich elements should be sweeped + # @param Axix axis of rotation, AxisStruct or line(geom object) + # @param AngleInRadians angle of Rotation + # @param NbOfSteps number of steps + # @param Tolerance tolerance + def RotationSweepObject(self, theObject, Axix, AngleInRadians, NbOfSteps, Tolerance): + if ( isinstance( Axix, geompy.GEOM._objref_GEOM_Object)): + Axix = GetAxisStruct(Axix) + self.editor.RotationSweepObject(theObject, Axix, AngleInRadians, NbOfSteps, Tolerance) + + ## Generate new elements by extrusion of the elements with given ids + # @param IDsOfElements list of elements ids for extrusion + # @param StepVector vector, defining the direction and value of extrusion + # @param NbOfSteps the number of steps + def ExtrusionSweep(self, IDsOfElements, StepVector, NbOfSteps): + if IDsOfElements == []: + IDsOfElements = self.GetElementsId() + if ( isinstance( StepVector, geompy.GEOM._objref_GEOM_Object)): + StepVector = GetDirStruct(StepVector) + self.editor.ExtrusionSweep(IDsOfElements, StepVector, NbOfSteps) + + ## Generate new elements by extrusion of the elements with given ids + # @param IDsOfElements is ids of elements + # @param StepVector vector, defining the direction and value of extrusion + # @param NbOfSteps the number of steps + # @param ExtrFlags set flags for performing extrusion + # @param SewTolerance uses for comparing locations of nodes if flag + # EXTRUSION_FLAG_SEW is set + def AdvancedExtrusion(self, IDsOfElements, StepVector, NbOfSteps, ExtrFlags, SewTolerance): + if ( isinstance( StepVector, geompy.GEOM._objref_GEOM_Object)): + StepVector = GetDirStruct(StepVector) + self.editor.AdvancedExtrusion(IDsOfElements, StepVector, NbOfSteps, ExtrFlags, SewTolerance) + + ## Generate new elements by extrusion of the elements belong to object + # @param theObject object wich elements should be processed + # @param StepVector vector, defining the direction and value of extrusion + # @param NbOfSteps the number of steps + def ExtrusionSweepObject(self, theObject, StepVector, NbOfSteps): + if ( isinstance( StepVector, geompy.GEOM._objref_GEOM_Object)): + StepVector = GetDirStruct(StepVector) + self.editor.ExtrusionSweepObject(theObject, StepVector, NbOfSteps) + + ## Generate new elements by extrusion of the elements belong to object + # @param theObject object wich elements should be processed + # @param StepVector vector, defining the direction and value of extrusion + # @param NbOfSteps the number of steps + def ExtrusionSweepObject1D(self, theObject, StepVector, NbOfSteps): + if ( isinstance( StepVector, geompy.GEOM._objref_GEOM_Object)): + StepVector = GetDirStruct(StepVector) + self.editor.ExtrusionSweepObject1D(theObject, StepVector, NbOfSteps) + + ## Generate new elements by extrusion of the elements belong to object + # @param theObject object wich elements should be processed + # @param StepVector vector, defining the direction and value of extrusion + # @param NbOfSteps the number of steps + def ExtrusionSweepObject2D(self, theObject, StepVector, NbOfSteps): + if ( isinstance( StepVector, geompy.GEOM._objref_GEOM_Object)): + StepVector = GetDirStruct(StepVector) + self.editor.ExtrusionSweepObject2D(theObject, StepVector, NbOfSteps) + + ## Generate new elements by extrusion of the given elements + # A path of extrusion must be a meshed edge. + # @param IDsOfElements is ids of elements + # @param PathMesh mesh containing a 1D sub-mesh on the edge, along which proceeds the extrusion + # @param PathShape is shape(edge); as the mesh can be complex, the edge is used to define the sub-mesh for the path + # @param NodeStart the first or the last node on the edge. It is used to define the direction of extrusion + # @param HasAngles allows the shape to be rotated around the path to get the resulting mesh in a helical fashion + # @param Angles list of angles + # @param HasRefPoint allows to use base point + # @param RefPoint point around which the shape is rotated(the mass center of the shape by default). + # User can specify any point as the Base Point and the shape will be rotated with respect to this point. + def ExtrusionAlongPath(self, IDsOfElements, PathMesh, PathShape, NodeStart, + HasAngles, Angles, HasRefPoint, RefPoint): + if IDsOfElements == []: + IDsOfElements = self.GetElementsId() + if ( isinstance( RefPoint, geompy.GEOM._objref_GEOM_Object)): + RefPoint = GetPointStruct(RefPoint) + return self.editor.ExtrusionAlongPath(IDsOfElements, PathMesh, PathShape, NodeStart, + HasAngles, Angles, HasRefPoint, RefPoint) + + ## Generate new elements by extrusion of the elements belong to object + # A path of extrusion must be a meshed edge. + # @param IDsOfElements is ids of elements + # @param PathMesh mesh containing a 1D sub-mesh on the edge, along which proceeds the extrusion + # @param PathShape is shape(edge); as the mesh can be complex, the edge is used to define the sub-mesh for the path + # @param NodeStart the first or the last node on the edge. It is used to define the direction of extrusion + # @param HasAngles allows the shape to be rotated around the path to get the resulting mesh in a helical fashion + # @param Angles list of angles + # @param HasRefPoint allows to use base point + # @param RefPoint point around which the shape is rotated(the mass center of the shape by default). + # User can specify any point as the Base Point and the shape will be rotated with respect to this point. + def ExtrusionAlongPathObject(self, theObject, PathMesh, PathShape, NodeStart, + HasAngles, Angles, HasRefPoint, RefPoint): + if ( isinstance( RefPoint, geompy.GEOM._objref_GEOM_Object)): + RefPoint = GetPointStruct(RefPoint) + return self.editor.ExtrusionAlongPathObject(theObject, PathMesh, PathShape, NodeStart, + HasAngles, Angles, HasRefPoint, RefPoint) + + ## Symmetrical copy of mesh elements + # @param IDsOfElements list of elements ids + # @param Mirror is AxisStruct or geom object(point, line, plane) + # @param theMirrorType is POINT, AXIS or PLANE + # If the Mirror is geom object this parameter is unnecessary + # @param Copy allows to copy element(Copy is 1) or to replace with its mirroring(Copy is 0) + def Mirror(self, IDsOfElements, Mirror, theMirrorType, Copy=0): + if IDsOfElements == []: + IDsOfElements = self.GetElementsId() + if ( isinstance( Mirror, geompy.GEOM._objref_GEOM_Object)): + Mirror = GetAxisStruct(Mirror) + self.editor.Mirror(IDsOfElements, Mirror, theMirrorType, Copy) + + ## Symmetrical copy of object + # @param theObject mesh, submesh or group + # @param Mirror is AxisStruct or geom object(point, line, plane) + # @param theMirrorType is POINT, AXIS or PLANE + # If the Mirror is geom object this parameter is unnecessary + # @param Copy allows to copy element(Copy is 1) or to replace with its mirroring(Copy is 0) + def MirrorObject (self, theObject, Mirror, theMirrorType, Copy=0): + if ( isinstance( Mirror, geompy.GEOM._objref_GEOM_Object)): + Mirror = GetAxisStruct(Mirror) + self.editor.MirrorObject(theObject, Mirror, theMirrorType, Copy) + + ## Translates the elements + # @param IDsOfElements list of elements ids + # @param Vector direction of translation(DirStruct or vector) + # @param Copy allows to copy the translated elements + def Translate(self, IDsOfElements, Vector, Copy): + if IDsOfElements == []: + IDsOfElements = self.GetElementsId() + if ( isinstance( Vector, geompy.GEOM._objref_GEOM_Object)): + Vector = GetDirStruct(Vector) + self.editor.Translate(IDsOfElements, Vector, Copy) + + ## Translates the object + # @param theObject object to translate(mesh, submesh, or group) + # @param Vector direction of translation(DirStruct or geom vector) + # @param Copy allows to copy the translated elements + def TranslateObject(self, theObject, Vector, Copy): + if ( isinstance( Vector, geompy.GEOM._objref_GEOM_Object)): + Vector = GetDirStruct(Vector) + self.editor.TranslateObject(theObject, Vector, Copy) + + ## Rotates the elements + # @param IDsOfElements list of elements ids + # @param Axis axis of rotation(AxisStruct or geom line) + # @param AngleInRadians angle of rotation(in radians) + # @param Copy allows to copy the rotated elements + def Rotate (self, IDsOfElements, Axis, AngleInRadians, Copy): + if IDsOfElements == []: + IDsOfElements = self.GetElementsId() + if ( isinstance( Axis, geompy.GEOM._objref_GEOM_Object)): + Axis = GetAxisStruct(Axis) + self.editor.Rotate(IDsOfElements, Axis, AngleInRadians, Copy) + + ## Rotates the object + # @param theObject object to rotate(mesh, submesh, or group) + # @param Axis axis of rotation(AxisStruct or geom line) + # @param AngleInRadians angle of rotation(in radians) + # @param Copy allows to copy the rotated elements + def RotateObject (self, theObject, Axis, AngleInRadians, Copy): + self.editor.RotateObject(theObject, Axis, AngleInRadians, Copy) + + ## Find group of nodes close to each other within Tolerance. + # @param Tolerance tolerance value + # @param list of group of nodes + def FindCoincidentNodes (self, Tolerance): + return self.editor.FindCoincidentNodes(Tolerance) + + ## Merge nodes + # @param list of group of nodes + def MergeNodes (self, GroupsOfNodes): + self.editor.MergeNodes(GroupsOfNodes) + + ## Remove all but one of elements built on the same nodes. + def MergeEqualElements(self): + self.editor.MergeEqualElements() + + ## Sew free borders + def SewFreeBorders (self, FirstNodeID1, SecondNodeID1, LastNodeID1, + FirstNodeID2, SecondNodeID2, LastNodeID2, + CreatePolygons, CreatePolyedrs): + return self.editor.SewFreeBorders(FirstNodeID1, SecondNodeID1, LastNodeID1, + FirstNodeID2, SecondNodeID2, LastNodeID2, + CreatePolygons, CreatePolyedrs) + + ## Sew conform free borders + def SewConformFreeBorders (self, FirstNodeID1, SecondNodeID1, LastNodeID1, + FirstNodeID2, SecondNodeID2): + return self.editor.SewConformFreeBorders(FirstNodeID1, SecondNodeID1, LastNodeID1, + FirstNodeID2, SecondNodeID2) + + ## Sew border to side + def SewBorderToSide (self, FirstNodeIDOnFreeBorder, SecondNodeIDOnFreeBorder, LastNodeIDOnFreeBorder, + FirstNodeIDOnSide, LastNodeIDOnSide, CreatePolygons, CreatePolyedrs): + return self.editor.SewBorderToSide(FirstNodeIDOnFreeBorder, SecondNodeIDOnFreeBorder, LastNodeIDOnFreeBorder, + FirstNodeIDOnSide, LastNodeIDOnSide, CreatePolygons, CreatePolyedrs) + + ## Sew two sides of a mesh. Nodes belonging to Side1 are + # merged with nodes of elements of Side2. + # Number of elements in theSide1 and in theSide2 must be + # equal and they should have similar node connectivity. + # The nodes to merge should belong to sides borders and + # the first node should be linked to the second. + def SewSideElements (self, IDsOfSide1Elements, IDsOfSide2Elements, + NodeID1OfSide1ToMerge, NodeID1OfSide2ToMerge, + NodeID2OfSide1ToMerge, NodeID2OfSide2ToMerge): + return self.editor.SewSideElements(IDsOfSide1Elements, IDsOfSide2Elements, + NodeID1OfSide1ToMerge, NodeID1OfSide2ToMerge, + NodeID2OfSide1ToMerge, NodeID2OfSide2ToMerge) + + ## Set new nodes for given element. + # @param ide the element id + # @param newIDs nodes ids + # @return If number of nodes is not corresponded to type of element - returns false + def ChangeElemNodes(self, ide, newIDs): + return self.editor.ChangeElemNodes(ide, newIDs) + + ## If during last operation of MeshEditor some nodes were + # created this method returns list of it's IDs, if new nodes + # not created - returns empty list + def GetLastCreatedNodes(self): + return self.editor.GetLastCreatedNodes() + + ## If during last operation of MeshEditor some elements were + # created this method returns list of it's IDs, if new elements + # not creared - returns empty list + def GetLastCreatedElems(self): + return self.editor.GetLastCreatedElems()