--- /dev/null
+# Sample: KindOfShape method for faces, which are results of partitioning of a conical surface with a prism with complex base.
+# Faces of the prism are not perpendicular to cone axis, therefore contour-wires of resulting cone fragments are composed of lines and 2-order curves.
+
+import sys
+import salome
+
+salome.salome_init()
+import salome_notebook
+notebook = salome_notebook.NoteBook()
+
+###
+### GEOM component
+###
+
+import GEOM
+from salome.geom import geomBuilder
+import math
+import SALOMEDS
+
+
+def approximatelyEqual(a, b, epsilon = 1e-5):
+ return abs(a - b) <= ((abs(b) if (abs(a) < abs(b)) else abs(a)) * epsilon)
+
+
+def assertShapeKindEquals(iShapeInfo, iKind):
+ assert (len(iShapeInfo) > 0), "Yielded data array is empty."
+ assert (iShapeInfo[0] == iKind), f"Expected shape kind is {iKind}, but yielded kind is {iShapeInfo[0]}."
+
+
+def assertConePropsEqual(iShapeName, iShapeInfo, iExpectedShapeInfo):
+ assertShapeKindEquals(iShapeInfo, geompy.kind.CONE2D)
+ assert (len(iShapeInfo) == len(iExpectedShapeInfo)), f"{iShapeName}: Yielded data array is of unexpected length."
+ for idx in range(1, len(iShapeInfo)):
+ assert (approximatelyEqual(iShapeInfo[idx], iExpectedShapeInfo[idx])), f"{iShapeName}: Yielded data array element is not equal to the expected value."
+
+
+def assertConeInfoEquals(iFace, iExpectedShapeInfo, iAddRestoredConeToStudy = False):
+ ShapeInfo = geompy.KindOfShape(iFace)
+ print("ShapeInfo of " + iFace.GetName() + " = ", end = "")
+ print(ShapeInfo, ', ')
+ assertConePropsEqual(iFace.GetName(), ShapeInfo, iExpectedShapeInfo)
+
+ if (iAddRestoredConeToStudy):
+ BottomLidCenter = geompy.MakeVertex(ShapeInfo[1], ShapeInfo[2], ShapeInfo[3])
+ AxisAuxPnt = geompy.MakeVertex(ShapeInfo[1] + ShapeInfo[4], ShapeInfo[2] + ShapeInfo[5], ShapeInfo[3] + ShapeInfo[6])
+ Axis = geompy.MakeVector(BottomLidCenter, AxisAuxPnt)
+ R1 = ShapeInfo[7] # Bottom lid radius.
+ R2 = ShapeInfo[8] # Top lid radius.
+ H = ShapeInfo[9]
+ RestoredCone = geompy.MakeCone(BottomLidCenter, Axis, R1, R2, H)
+ geompy.addToStudy(RestoredCone, iFace.GetName() + '__RestoredCone')
+
+
+# iExpectedConeFragmentShapeInfos is a dictionary of [IndexOfFace, ExpectedShapeInfoOfFace]. IndexOfFace is zero-based index, not one-based one as in Shaper GUI!
+def partitionConeAndAssertShapeInfosEqual(iCone, iPartitioningShape, iExpectedConeFragmentShapeInfos, iAddResultsToStudy):
+ PartitionedCone = geompy.MakePartition([iCone], [iPartitioningShape], [], [], geompy.ShapeType["FACE"], 0, [], 0)
+ if (iAddResultsToStudy):
+ geompy.addToStudy(PartitionedCone, "Partitioned" + iCone.GetName())
+
+ ConeFragments = geompy.ExtractShapes(PartitionedCone, geompy.ShapeType["FACE"], True)
+ ConeFragmentsIdxs = iExpectedConeFragmentShapeInfos.keys()
+ for ConeFragmentIdx in ConeFragmentsIdxs:
+ assert (ConeFragmentIdx < len(ConeFragments)), f"Num of faces, {iCone.GetName()} is partitioned into, <= {ConeFragmentIdx} (zero-based index)."
+ ConeFragment = ConeFragments[ConeFragmentIdx]
+ ConeFragmentName = f"Partitioned{iCone.GetName()}_Face_{ConeFragmentIdx+1}" # Add index to a name as Shaper GUI does.
+
+ if (iAddResultsToStudy):
+ geompy.addToStudyInFather(PartitionedCone, ConeFragment, ConeFragmentName)
+ else:
+ ConeFragment.SetName(ConeFragmentName)
+
+ assertConeInfoEquals(ConeFragment, iExpectedConeFragmentShapeInfos[ConeFragmentIdx], iAddResultsToStudy)
+
+
+geompy = geomBuilder.New()
+
+OriginalConeBaseCenter = geompy.MakeVertex(100, 130, -60)
+OriginalConeAxisAuxPnt = geompy.MakeVertex(100, 230, 40)
+OriginalConeAxis = geompy.MakeVector(OriginalConeBaseCenter, OriginalConeAxisAuxPnt)
+OriginalCone = geompy.MakeCone(OriginalConeBaseCenter, OriginalConeAxis, 100, 50, 300)
+PrismSubstrateCenter = geompy.MakeVertex(100, 1000, 50)
+PrismDirAuxPnt = geompy.MakeVertex(100, 950, 50)
+PrismDir = geompy.MakeVector(PrismSubstrateCenter, PrismDirAuxPnt)
+PrismSubstrate = geompy.MakeDiskPntVecR(PrismSubstrateCenter, PrismDir, 100)
+sk = geompy.Sketcher2D()
+sk.addPoint(0.395986, 43.346713)
+sk.addSegmentAbsolute(66.321537, 41.733575)
+sk.addSegmentAbsolute(80.619408, -2.852314)
+sk.addSegmentAbsolute(67.641539, -38.565150)
+sk.addSegmentAbsolute(22.193602, -56.632163)
+sk.addSegmentAbsolute(-19.060136, -51.084351)
+sk.addSegmentAbsolute(-60.823572, 34.825751)
+sk.addSegmentAbsolute(-13.047004, 55.727527)
+sk.close()
+PrismBase = sk.wire(PrismSubstrate)
+Prism = geompy.MakePrismVecH(PrismBase, PrismDir, 1400)
+geompy.addToStudy( OriginalConeBaseCenter, 'OriginalConeBaseCenter' )
+geompy.addToStudy( OriginalConeAxisAuxPnt, 'OriginalConeAxisAuxPnt' )
+geompy.addToStudy( OriginalConeAxis, 'OriginalConeAxis' )
+geompy.addToStudy( OriginalCone, 'OriginalCone' )
+geompy.addToStudy( PrismSubstrateCenter, 'PrismSubstrateCenter' )
+geompy.addToStudy( PrismDirAuxPnt, 'PrismDirAuxPnt' )
+geompy.addToStudy( PrismDir, 'PrismDir' )
+geompy.addToStudy( PrismSubstrate, 'PrismSubstrate' )
+geompy.addToStudy( PrismBase, 'PrismBase' )
+geompy.addToStudy( Prism, 'Prism' )
+
+# Test on the original cone
+ExpectedOriginalConeFragmentsShapeInfos = {
+ 3: ["CONE2D", 100.0, 215.76160602318674, 25.761606023186744, 0.0, 0.7071067811865475, 0.7071067811865475, 79.7857956051852, 54.62305376134459, 150.9764510630437],
+ 5: ["CONE2D", 100.0, 129.99999999999753, -60.000000000002466, 0.0, 0.7071067811865475, 0.7071067811865475, 100.00000000000058, 69.82277418813575, 181.06335487118898],
+ 11: ["CONE2D", 100.0, 216.57653245407857, 26.57653245407856, 0.0, 0.7071067811865475, 0.7071067811865475, 79.59371560336794, 52.95933239773038, 159.80629923382543]
+}
+partitionConeAndAssertShapeInfosEqual(OriginalCone, Prism, ExpectedOriginalConeFragmentsShapeInfos, True)
+
+# Test on isotropically scaled cone. Non-isotropical scaling does not preserve shape kind - it is desired behavior.
+ScaledCone = geompy.MakeScaleTransform(OriginalCone, OriginalConeAxisAuxPnt, 2)
+ScaledCone.SetName('ScaledCone')
+ExpectedScaledConeFragmentsShapeInfos = {
+ 4: ["CONE2D", 100.0, 29.9999999999999, -160.00000000000009, 0.0, 0.7071067811865475, 0.7071067811865475, 200.00000000000003, 162.64508449690112, 224.1294930185934],
+ 6: ["CONE2D", 100.0, 262.09898500769475, 72.09898500769472, 0.0, 0.7071067811865475, 0.7071067811865475, 145.2937445981814, 120.13428858458612, 150.95673608157182],
+ 12: ["CONE2D", 100.0, 262.8999708414969, 72.8999708414969, 0.0, 0.7071067811865475, 0.7071067811865475, 145.10495042660943, 117.46838914559419, 165.8193676860916]
+}
+partitionConeAndAssertShapeInfosEqual(ScaledCone, Prism, ExpectedScaledConeFragmentsShapeInfos, False)
+
+# Test on a cone, mirrored relative to a point.
+PntMirroredCone = geompy.MakeMirrorByPoint(OriginalCone, OriginalConeAxisAuxPnt)
+PntMirroredCone.SetName('PntMirroredCone')
+ExpectedPntMirroredConeFragmentsShapeInfos = {
+ 2: ["CONE2D", 100.0, 229.8712015945071, 39.87120159450711, -0.0, -0.7071067811865475, -0.7071067811865475, 76.39941588513841, 51.25530645152799, 150.8646566016625],
+ 7: ["CONE2D", 100.0, 330.0, 140.0, -0.0, -0.7071067811865475, -0.7071067811865475, 100.0, 71.73019727352477, 169.61881635885143],
+ 10: ["CONE2D", 100.0, 249.15532313133338, 59.15532313133339, -0.0, -0.7071067811865475, -0.7071067811865475, 80.9447269211102, 51.428754043115056, 177.09583726797095]
+}
+partitionConeAndAssertShapeInfosEqual(PntMirroredCone, Prism, ExpectedPntMirroredConeFragmentsShapeInfos, False)
+
+if salome.sg.hasDesktop():
+ salome.sg.updateObjBrowser()
aP0=aPln.Location();
aAx3=aPln.Position();
//
- aInfo.SetKindOfShape(GEOMAlgo_KS_PLANE);
+ aInfo.SetKindOfShape(GEOMAlgo_KS_PLANE);
aInfo.SetKindOfName(GEOMAlgo_KN_PLANE);
aInfo.SetKindOfClosed(GEOMAlgo_KC_NOTCLOSED);
aInfo.SetLocation(aP0);
//||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
// 4. Cone
else if (aST==GeomAbs_Cone) {
- Standard_Real aSemiAngle;
- gp_Cone aCone;
- //
- aCone=aGAS.Cone();
- aP0=aCone.Location();
- aAx3=aCone.Position();
+ const gp_Cone aCone=aGAS.Cone();
//
aInfo.SetKindOfShape(GEOMAlgo_KS_CONE);
aInfo.SetKindOfName(GEOMAlgo_KN_CONE);
- aInfo.SetLocation(aP0);
- aInfo.SetPosition(aAx3);
//
BRepTools::UVBounds(aF, aUMin, aUMax, aVMin, aVMax);
+
bInfU1=Precision::IsNegativeInfinite(aUMin);
bInfU2=Precision::IsPositiveInfinite(aUMax);
bInfV1=Precision::IsNegativeInfinite(aVMin);
bInfV2=Precision::IsPositiveInfinite(aVMax);
//
- bInf=(bInfU1 || bInfU2 || bInfV1 || bInfV2);
+ bInf=bInfV1 || bInfV2;
if (bInf) {
+ aP0=aAx3.Location();
+ aAx3=aCone.Position();
+ aInfo.SetLocation(aP0);
+ aInfo.SetPosition(aAx3);
aInfo.SetKindOfBounds(GEOMAlgo_KB_INFINITE);
return;
}
//
aInfo.SetKindOfBounds(GEOMAlgo_KB_TRIMMED);
//
- aSemiAngle=fabs(aCone.SemiAngle());
- dV=(aVMax-aVMin)*cos(aSemiAngle);
-
- aInfo.SetHeight(dV);
- //
- FillDetails(aF, aCone);
+ const Standard_Real aSemiAngle = aCone.SemiAngle();
+
+ dV = aVMax - aVMin;
+ Standard_Real H = dV * std::cos(aSemiAngle);
+
+ aAx3 = aCone.Position();
+ Standard_Real aShiftAlongAxisLength = aVMin * std::cos(aSemiAngle); // Required, because R1 does not equal to gp_Cone.RefRadius() in general case, and gp_Cone.Location() corresponds to the latter one.
+ auto aShiftAlongAxis = gp_Vec(aAx3.Direction().XYZ());
+ aShiftAlongAxis *= aShiftAlongAxisLength;
+ aAx3.Translate(aShiftAlongAxis);
+
+ aP0=aAx3.Location();
+ aInfo.SetLocation(aP0);
+ aInfo.SetPosition(aAx3);
+
+ aR1 = aCone.RefRadius() + aVMin * std::sin(aSemiAngle);
+ aR2 = aCone.RefRadius() + aVMax * std::sin(aSemiAngle);
+
+ aInfo.SetRadius1(aR1);
+ aInfo.SetRadius2(aR2);
+ aInfo.SetHeight(H);
+ aInfo.SetKindOfDef(GEOMAlgo_KD_SPECIFIED);
}
//
//||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
aKD=aInfoF.KindOfDef();
}
if (aKD!=GEOMAlgo_KD_SPECIFIED) {
- aInfo.SetKindOfName(GEOMAlgo_KN_SOLID);
+ aInfo.SetKindOfName(GEOMAlgo_KN_SOLID);
return;
}
//
aNbShells=GEOMAlgo_ShapeInfoFiller::NbShells(aSd);
if (aNbShells>1) {
- aInfo.SetKindOfName(GEOMAlgo_KN_SOLID);
+ aInfo.SetKindOfName(GEOMAlgo_KN_SOLID);
return;
}
//
if (bSegment) {
// 2. may be it is TRIANGLE, POLYGON, QUADRANGLE, RECTANGLE
aInfo.SetKindOfDef(GEOMAlgo_KD_SPECIFIED);
- aInfo.SetKindOfName(GEOMAlgo_KN_POLYGON);
+ aInfo.SetKindOfName(GEOMAlgo_KN_POLYGON);
//
if (aNbV==3 && aNbE==3) {
aInfo.SetKindOfName(GEOMAlgo_KN_TRIANGLE);
//
aLength=aD1;
aWidth =aD0;
-
+
if (aD0>aD1) {
aLength=aD0;
aWidth =aD1;
void GEOMAlgo_ShapeInfoFiller::FillDetails(const TopoDS_Face& aF,
const gp_Sphere& )//aSph)
{
-
+
Standard_Integer aNbV, aNbE, aNbSE, aNbDE;
TopoDS_Edge aE;
TopExp_Explorer aExp;
GEOMAlgo_KindOfShape aKSE;//, aKSE;
//
GEOMAlgo_ShapeInfo& aInfo=myMapInfo.ChangeFromKey(aF);
- //
+ //
aInfo.SetKindOfDef(GEOMAlgo_KD_ARBITRARY);
aNbV=aInfo.NbSubShapes(TopAbs_VERTEX);
aNbE=aInfo.NbSubShapes(TopAbs_EDGE);
//=======================================================================
void GEOMAlgo_ShapeInfoFiller::FillDetails(const TopoDS_Face& aF,
const gp_Cylinder& aCyl)
-
+
{
Standard_Integer aNbV, aNbE, aNbCE, aNbSE;
Standard_Real aT0, aT1, aHeight;
//function : FillDetails
//purpose :
//=======================================================================
-void GEOMAlgo_ShapeInfoFiller::FillDetails(const TopoDS_Face& aF,
- const gp_Cone& aCone)
-{
- Standard_Integer aNbV, aNbE, aNbCE, aNbSE, aNbDE, i;
- Standard_Real aR[3], aHeight, aRmin, aRmax;
- gp_Pnt aPC[3], aPD, aPc, aPX[3];
- TopoDS_Vertex aVD;
- TopoDS_Edge aE;
- TopoDS_Iterator aIt;
- TopExp_Explorer aExp;
- TopTools_MapOfShape aM;
- GEOMAlgo_KindOfShape aKSE;
- GEOMAlgo_KindOfName aKNE;
- GEOMAlgo_KindOfClosed aKCE;
- //
- GEOMAlgo_ShapeInfo& aInfo=myMapInfo.ChangeFromKey(aF);
- //
- aInfo.SetKindOfDef(GEOMAlgo_KD_ARBITRARY);
- //
- aNbV=aInfo.NbSubShapes(TopAbs_VERTEX);
- aNbE=aInfo.NbSubShapes(TopAbs_EDGE);
- if (aNbV==2 && aNbE==3) {
- i=0;
- aNbCE=0;
- aNbSE=0;
- aNbDE=0;
- aExp.Init(aF, TopAbs_EDGE);
- for (; aExp.More(); aExp.Next()) {
- aE=TopoDS::Edge(aExp.Current());
- if(aM.Add(aE)) {
- const GEOMAlgo_ShapeInfo& aInfoE=myMapInfo.FindFromKey(aE);
- aKNE=aInfoE.KindOfName();
- aKCE=aInfoE.KindOfClosed();
- aKSE=aInfoE.KindOfShape();
- if (aKNE==GEOMAlgo_KN_CIRCLE && aKCE==GEOMAlgo_KC_CLOSED) {
- aPC[i]=aInfoE.Location();
- aR[i]=aInfoE.Radius1();
- //
- aIt.Initialize(aE);
- if (aIt.More()) {
- aVD=*((TopoDS_Vertex*)&aIt.Value());
- }
- aPX[i]=BRep_Tool::Pnt(aVD);
- //
- ++i;
- ++aNbCE;
- }
- else if (aKNE==GEOMAlgo_KN_SEGMENT) {
- if (BRep_Tool::IsClosed(aE, aF)) {
- ++aNbSE;
- }
- }
- else if (aKSE==GEOMAlgo_KS_DEGENERATED) {
- aIt.Initialize(aE);
- if (aIt.More()) {
- aVD=*((TopoDS_Vertex*)&aIt.Value());
- }
- //
- aPD=BRep_Tool::Pnt(aVD);
- //
- ++aNbDE;
- }
- }
- }
- //
- if ((aNbCE==2 || (aNbCE==1 && aNbDE==1)) && aNbSE==1) {
- if (aNbDE==1) {
- aPC[1]=aPD;
- aR[1]=0.;
- }
- //
- aHeight=aPC[0].Distance(aPC[1]);
- //
-
- gp_Ax2 aAx2new;
- //
- if (aR[0]>aR[1]) {
- aRmin=aR[1];
- aRmax=aR[0];
- aPc=aPC[0];
- gp_Vec aVz(aPC[0], aPC[1]);
- gp_Vec aVx(aPC[0], aPX[0]);
- gp_Dir aDz(aVz);
- gp_Dir aDx(aVx);
- gp_Ax2 aAx2(aPc, aDz, aDx);
- aAx2new=aAx2;
- }
- else {
- aRmin=aR[0];
- aRmax=aR[1];
- aPc=aPC[1];
- gp_Vec aVz(aPC[1], aPC[0]);
- gp_Vec aVx(aPC[1], aPX[1]);
- gp_Dir aDz(aVz);
- gp_Dir aDx(aVx);
- gp_Ax2 aAx2(aPc, aDz, aDx);
- aAx2new=aAx2;
- }
- //
- gp_Ax3 aAx3(aAx2new);
- aInfo.SetLocation(aPc);
- aInfo.SetPosition(aAx3);
- aInfo.SetRadius1(aRmax);
- aInfo.SetRadius2(aRmin);
- aInfo.SetHeight(aHeight);
- //
- aInfo.SetKindOfDef(GEOMAlgo_KD_SPECIFIED);
- return;
- }//if ((aNbCE==2 || (aNbCE==1 && aNbDE==1)) && aNbSE==1) {
- }//if (aNbV==2 && aNbE==3) {
- //
- aInfo.SetRadius1 (aCone.RefRadius());
- //
- aRmin=0.; // ZZ
- aInfo.SetRadius2(aRmin);
-}
-//=======================================================================
-//function : FillDetails
-//purpose :
-//=======================================================================
void GEOMAlgo_ShapeInfoFiller::FillDetails(const TopoDS_Face& aF,
const gp_Torus& )
{
-
+
Standard_Integer aNbV, aNbE, aNbSE;
TopoDS_Edge aE;
TopExp_Explorer aExp;
if (aKS!=GEOMAlgo_KS_TORUS) {
return;
}
-
+
aNbV=aInfo.NbSubShapes(TopAbs_VERTEX);
- aNbE=aInfo.NbSubShapes(TopAbs_EDGE);
-
+ aNbE=aInfo.NbSubShapes(TopAbs_EDGE);
+
if (aNbV==1 && aNbE==2) {
aNbSE=0;
aExp.Init(aF, TopAbs_EDGE);