Example : ``hxb = ADD.get("SimulatedObservationAtBackground")[-1]``
+ SimulatedObservationAtCurrentState
+ *List of vectors*. Each element is an observed vector at the current state,
+ that is, in the observation space.
+
+ Example : ``Ys = ADD.get("SimulatedObservationAtCurrentState")[-1]``
+
SimulatedObservationAtOptimum
*List of vectors*. Each element is a vector of observation simulated from
the analysis or optimal state :math:`\mathbf{x}^a`.
Example : ``omb = ADD.get("OMB")[-1]``
+ SimulatedObservationAtCurrentState
+ *List of vectors*. Each element is an observed vector at the current state,
+ that is, in the observation space.
+
+ Example : ``Ys = ADD.get("SimulatedObservationAtCurrentState")[-1]``
+
SimulatedObservationAtOptimum
*List of vectors*. Each element is a vector of observation simulated from
the analysis or optimal state :math:`\mathbf{x}^a`.
Example : ``hxb = ADD.get("SimulatedObservationAtBackground")[-1]``
+ SimulatedObservationAtCurrentState
+ *List of vectors*. Each element is an observed vector at the current state,
+ that is, in the observation space.
+
+ Example : ``Ys = ADD.get("SimulatedObservationAtCurrentState")[-1]``
+
SimulatedObservationAtOptimum
*List of vectors*. Each element is a vector of observation simulated from
the analysis or optimal state :math:`\mathbf{x}^a`.
Example : ``hxb = ADD.get("SimulatedObservationAtBackground")[-1]``
+ SimulatedObservationAtCurrentState
+ *List of vectors*. Each element is an observed vector at the current state,
+ that is, in the observation space.
+
+ Example : ``Ys = ADD.get("SimulatedObservationAtCurrentState")[-1]``
+
SimulatedObservationAtOptimum
*List of vectors*. Each element is a vector of observation simulated from
the analysis or optimal state :math:`\mathbf{x}^a`.
calculations or memory consumptions. The default is a void list, none of
these variables being calculated and stored by default. The possible names
are in the following list: ["CostFunctionJ", "CurrentState", "Innovation",
- "ObservedState"].
+ "SimulatedObservationAtCurrentState"].
- Example : ``{"StoreSupplementaryCalculations":["CostFunctionJ", "ObservedState"]}``
+ Example : ``{"StoreSupplementaryCalculations":["CostFunctionJ", "SimulatedObservationAtCurrentState"]}``
See also
++++++++
Example : ``m = ADD.get("MahalanobisConsistency")[-1]``
- ObservedState
- *List of vectors*. Each element is an observed state vector, that is, in the
- observation space.
-
- Example : ``Ys = ADD.get("ObservedState")[-1]``
-
OMA
*List of vectors*. Each element is a vector of difference between the
observation and the optimal state in the observation space.
Example : ``hxb = ADD.get("SimulatedObservationAtBackground")[-1]``
+ SimulatedObservationAtCurrentState
+ *List of vectors*. Each element is an observed vector at the current state,
+ that is, in the observation space.
+
+ Example : ``Ys = ADD.get("SimulatedObservationAtCurrentState")[-1]``
+
SimulatedObservationAtOptimum
*List of vectors*. Each element is a vector of observation simulated from
the analysis or optimal state :math:`\mathbf{x}^a`.
Exemple : ``hxb = ADD.get("SimulatedObservationAtBackground")[-1]``
+ SimulatedObservationAtCurrentState
+ *Liste de vecteurs*. Chaque élément est un vecteur observé à l'état courant,
+ c'est-à-dire dans l'espace des observations.
+
+ Exemple : ``Ys = ADD.get("SimulatedObservationAtCurrentState")[-1]``
+
SimulatedObservationAtOptimum
*Liste de vecteurs*. Chaque élément est un vecteur d'observation simulé à
partir de l'analyse ou de l'état optimal :math:`\mathbf{x}^a`.
Exemple : ``omb = ADD.get("OMB")[-1]``
+ SimulatedObservationAtCurrentState
+ *Liste de vecteurs*. Chaque élément est un vecteur observé à l'état courant,
+ c'est-à-dire dans l'espace des observations.
+
+ Exemple : ``Ys = ADD.get("SimulatedObservationAtCurrentState")[-1]``
+
SimulatedObservationAtOptimum
*Liste de vecteurs*. Chaque élément est un vecteur d'observation simulé à
partir de l'analyse ou de l'état optimal :math:`\mathbf{x}^a`.
Exemple : ``hxb = ADD.get("SimulatedObservationAtBackground")[-1]``
+ SimulatedObservationAtCurrentState
+ *Liste de vecteurs*. Chaque élément est un vecteur observé à l'état courant,
+ c'est-à-dire dans l'espace des observations.
+
+ Exemple : ``Ys = ADD.get("SimulatedObservationAtCurrentState")[-1]``
+
SimulatedObservationAtOptimum
*Liste de vecteurs*. Chaque élément est un vecteur d'observation simulé à
partir de l'analyse ou de l'état optimal :math:`\mathbf{x}^a`.
Exemple : ``hxb = ADD.get("SimulatedObservationAtBackground")[-1]``
+ SimulatedObservationAtCurrentState
+ *Liste de vecteurs*. Chaque élément est un vecteur observé à l'état courant,
+ c'est-à-dire dans l'espace des observations.
+
+ Exemple : ``Ys = ADD.get("SimulatedObservationAtCurrentState")[-1]``
+
SimulatedObservationAtOptimum
*Liste de vecteurs*. Chaque élément est un vecteur d'observation simulé à
partir de l'analyse ou de l'état optimal :math:`\mathbf{x}^a`.
calculs ou du stockage coûteux. La valeur par défaut est une liste vide,
aucune de ces variables n'étant calculée et stockée par défaut. Les noms
possibles sont dans la liste suivante : ["CostFunctionJ", "CurrentState",
- "Innovation", "ObservedState"].
+ "Innovation", "SimulatedObservationAtCurrentState"].
- Exemple : ``{"StoreSupplementaryCalculations":["CostFunctionJ", "ObservedState"]}``
+ Exemple : ``{"StoreSupplementaryCalculations":["CostFunctionJ", "SimulatedObservationAtCurrentState"]}``
Voir aussi
++++++++++
Exemple : ``m = ADD.get("MahalanobisConsistency")[-1]``
- ObservedState
- *Liste de vecteurs*. Chaque élément est un vecteur d'état observé,
- c'est-à-dire dans l'espace des observations.
-
- Exemple : ``Ys = ADD.get("ObservedState")[-1]``
-
OMA
*Liste de vecteurs*. Chaque élément est un vecteur d'écart entre
l'observation et l'état optimal dans l'espace des observations.
Exemple : ``hxb = ADD.get("SimulatedObservationAtBackground")[-1]``
+ SimulatedObservationAtCurrentState
+ *Liste de vecteurs*. Chaque élément est un vecteur observé à l'état courant,
+ c'est-à-dire dans l'espace des observations.
+
+ Exemple : ``Ys = ADD.get("SimulatedObservationAtCurrentState")[-1]``
+
SimulatedObservationAtOptimum
*Liste de vecteurs*. Chaque élément est un vecteur d'observation simulé à
partir de l'analyse ou de l'état optimal :math:`\mathbf{x}^a`.
default = [],
typecast = tuple,
message = "Liste de calculs supplémentaires à stocker et/ou effectuer",
- listval = ["APosterioriCovariance", "BMA", "OMA", "OMB", "Innovation", "SigmaObs2", "MahalanobisConsistency", "SimulationQuantiles", "SimulatedObservationAtBackground", "SimulatedObservationAtOptimum"]
+ listval = ["APosterioriCovariance", "BMA", "OMA", "OMB", "Innovation", "SigmaObs2", "MahalanobisConsistency", "SimulationQuantiles", "SimulatedObservationAtBackground", "SimulatedObservationAtCurrentState", "SimulatedObservationAtOptimum"]
)
self.defineRequiredParameter(
name = "Quantiles",
J = float( Jb ) + float( Jo )
if self._parameters["StoreInternalVariables"]:
self.StoredVariables["CurrentState"].store( _X )
+ if "SimulatedObservationAtCurrentState" in self._parameters["StoreSupplementaryCalculations"]:
+ self.StoredVariables["SimulatedObservationAtCurrentState"].store( _HX )
self.StoredVariables["CostFunctionJb"].store( Jb )
self.StoredVariables["CostFunctionJo"].store( Jo )
self.StoredVariables["CostFunctionJ" ].store( J )
default = [],
typecast = tuple,
message = "Liste de calculs supplémentaires à stocker et/ou effectuer",
- listval = ["BMA", "OMA", "OMB", "Innovation", "SimulatedObservationAtOptimum"]
+ listval = ["BMA", "OMA", "OMB", "Innovation", "SimulatedObservationAtCurrentState", "SimulatedObservationAtOptimum"]
)
def run(self, Xb=None, Y=None, U=None, HO=None, EM=None, CM=None, R=None, B=None, Q=None, Parameters=None):
J = float( Jb ) + float( Jo )
if self._parameters["StoreInternalVariables"]:
self.StoredVariables["CurrentState"].store( _X )
+ if "SimulatedObservationAtCurrentState" in self._parameters["StoreSupplementaryCalculations"]:
+ self.StoredVariables["SimulatedObservationAtCurrentState"].store( _HX )
self.StoredVariables["CostFunctionJb"].store( Jb )
self.StoredVariables["CostFunctionJo"].store( Jo )
self.StoredVariables["CostFunctionJ" ].store( J )
default = [],
typecast = tuple,
message = "Liste de calculs supplémentaires à stocker et/ou effectuer",
- listval = ["BMA", "OMA", "OMB", "Innovation", "SimulatedObservationAtBackground", "SimulatedObservationAtOptimum"]
+ listval = ["BMA", "OMA", "OMB", "Innovation", "SimulatedObservationAtBackground", "SimulatedObservationAtCurrentState", "SimulatedObservationAtOptimum"]
)
def run(self, Xb=None, Y=None, U=None, HO=None, EM=None, CM=None, R=None, B=None, Q=None, Parameters=None):
self.StoredVariables["CostFunctionJb"].store( Jb )
self.StoredVariables["CostFunctionJo"].store( Jo )
self.StoredVariables["CostFunctionJ" ].store( J )
+ if "SimulatedObservationAtCurrentState" in self._parameters["StoreSupplementaryCalculations"]:
+ self.StoredVariables["SimulatedObservationAtCurrentState"].store( _HX )
return J
#
# Point de démarrage de l'optimisation : Xini = Xb
default = [],
typecast = tuple,
message = "Liste de calculs supplémentaires à stocker et/ou effectuer",
- listval = ["BMA", "OMA", "OMB", "Innovation", "SimulatedObservationAtBackground", "SimulatedObservationAtOptimum"]
+ listval = ["BMA", "OMA", "OMB", "Innovation", "SimulatedObservationAtBackground", "SimulatedObservationAtCurrentState", "SimulatedObservationAtOptimum"]
)
def run(self, Xb=None, Y=None, U=None, HO=None, EM=None, CM=None, R=None, B=None, Q=None, Parameters=None):
J = Jb + Jo
if self._parameters["StoreInternalVariables"]:
self.StoredVariables["CurrentState"].store( _X )
+ if "SimulatedObservationAtCurrentState" in self._parameters["StoreSupplementaryCalculations"]:
+ self.StoredVariables["SimulatedObservationAtCurrentState"].store( _HX )
self.StoredVariables["CostFunctionJb"].store( Jb )
self.StoredVariables["CostFunctionJo"].store( Jo )
self.StoredVariables["CostFunctionJ" ].store( J )
default = [],
typecast = tuple,
message = "Liste de calculs supplémentaires à stocker et/ou effectuer",
- listval = ["CostFunctionJ","CurrentState","Innovation","ObservedState"]
+ listval = ["CostFunctionJ","CurrentState","Innovation","SimulatedObservationAtCurrentState"]
)
self.defineRequiredParameter(
name = "SetSeed",
self.StoredVariables["CurrentState"].store( _X )
if "Innovation" in self._parameters["StoreSupplementaryCalculations"]:
self.StoredVariables["Innovation"].store( Y - _HX )
- if "ObservedState" in self._parameters["StoreSupplementaryCalculations"]:
- self.StoredVariables["ObservedState"].store( _HX )
+ if "SimulatedObservationAtCurrentState" in self._parameters["StoreSupplementaryCalculations"]:
+ self.StoredVariables["SimulatedObservationAtCurrentState"].store( _HX )
self.StoredVariables["CostFunctionJb"].store( Jb )
self.StoredVariables["CostFunctionJo"].store( Jo )
self.StoredVariables["CostFunctionJ" ].store( J )
- CurrentState : état courant lors d'itérations
- Analysis : l'analyse Xa
- SimulatedObservationAtBackground : l'état observé H(Xb) à l'ébauche
+ - SimulatedObservationAtCurrentState : l'état observé H(X) à l'état courant
- SimulatedObservationAtOptimum : l'état observé H(Xa) à l'optimum
- - ObservedState : l'état observé H(X)
- Innovation : l'innovation : d = Y - H(X)
- SigmaObs2 : indicateur de correction optimale des erreurs d'observation
- SigmaBck2 : indicateur de correction optimale des erreurs d'ébauche
self.__required_parameters = {}
self.StoredVariables = {}
#
- self.StoredVariables["CostFunctionJ"] = Persistence.OneScalar(name = "CostFunctionJ")
- self.StoredVariables["CostFunctionJb"] = Persistence.OneScalar(name = "CostFunctionJb")
- self.StoredVariables["CostFunctionJo"] = Persistence.OneScalar(name = "CostFunctionJo")
- self.StoredVariables["GradientOfCostFunctionJ"] = Persistence.OneVector(name = "GradientOfCostFunctionJ")
- self.StoredVariables["GradientOfCostFunctionJb"] = Persistence.OneVector(name = "GradientOfCostFunctionJb")
- self.StoredVariables["GradientOfCostFunctionJo"] = Persistence.OneVector(name = "GradientOfCostFunctionJo")
- self.StoredVariables["CurrentState"] = Persistence.OneVector(name = "CurrentState")
- self.StoredVariables["Analysis"] = Persistence.OneVector(name = "Analysis")
- self.StoredVariables["SimulatedObservationAtBackground"] = Persistence.OneVector(name = "SimulatedObservationAtBackground")
- self.StoredVariables["SimulatedObservationAtOptimum"] = Persistence.OneVector(name = "SimulatedObservationAtOptimum")
- self.StoredVariables["ObservedState"] = Persistence.OneVector(name = "ObservedState")
- self.StoredVariables["Innovation"] = Persistence.OneVector(name = "Innovation")
- self.StoredVariables["SigmaObs2"] = Persistence.OneScalar(name = "SigmaObs2")
- self.StoredVariables["SigmaBck2"] = Persistence.OneScalar(name = "SigmaBck2")
- self.StoredVariables["MahalanobisConsistency"] = Persistence.OneScalar(name = "MahalanobisConsistency")
- self.StoredVariables["OMA"] = Persistence.OneVector(name = "OMA")
- self.StoredVariables["OMB"] = Persistence.OneVector(name = "OMB")
- self.StoredVariables["BMA"] = Persistence.OneVector(name = "BMA")
- self.StoredVariables["APosterioriCovariance"] = Persistence.OneMatrix(name = "APosterioriCovariance")
- self.StoredVariables["SimulationQuantiles"] = Persistence.OneMatrix(name = "SimulationQuantiles")
+ self.StoredVariables["CostFunctionJ"] = Persistence.OneScalar(name = "CostFunctionJ")
+ self.StoredVariables["CostFunctionJb"] = Persistence.OneScalar(name = "CostFunctionJb")
+ self.StoredVariables["CostFunctionJo"] = Persistence.OneScalar(name = "CostFunctionJo")
+ self.StoredVariables["GradientOfCostFunctionJ"] = Persistence.OneVector(name = "GradientOfCostFunctionJ")
+ self.StoredVariables["GradientOfCostFunctionJb"] = Persistence.OneVector(name = "GradientOfCostFunctionJb")
+ self.StoredVariables["GradientOfCostFunctionJo"] = Persistence.OneVector(name = "GradientOfCostFunctionJo")
+ self.StoredVariables["CurrentState"] = Persistence.OneVector(name = "CurrentState")
+ self.StoredVariables["Analysis"] = Persistence.OneVector(name = "Analysis")
+ self.StoredVariables["SimulatedObservationAtBackground"] = Persistence.OneVector(name = "SimulatedObservationAtBackground")
+ self.StoredVariables["SimulatedObservationAtCurrentState"] = Persistence.OneVector(name = "SimulatedObservationAtCurrentState")
+ self.StoredVariables["SimulatedObservationAtOptimum"] = Persistence.OneVector(name = "SimulatedObservationAtOptimum")
+ self.StoredVariables["Innovation"] = Persistence.OneVector(name = "Innovation")
+ self.StoredVariables["SigmaObs2"] = Persistence.OneScalar(name = "SigmaObs2")
+ self.StoredVariables["SigmaBck2"] = Persistence.OneScalar(name = "SigmaBck2")
+ self.StoredVariables["MahalanobisConsistency"] = Persistence.OneScalar(name = "MahalanobisConsistency")
+ self.StoredVariables["OMA"] = Persistence.OneVector(name = "OMA")
+ self.StoredVariables["OMB"] = Persistence.OneVector(name = "OMB")
+ self.StoredVariables["BMA"] = Persistence.OneVector(name = "BMA")
+ self.StoredVariables["APosterioriCovariance"] = Persistence.OneMatrix(name = "APosterioriCovariance")
+ self.StoredVariables["SimulationQuantiles"] = Persistence.OneMatrix(name = "SimulationQuantiles")
def _pre_run(self):
logging.debug("%s Lancement"%self._name)
"Analysis",
"CurrentState",
"Innovation",
- "ObservedState",
+ "SimulatedObservationAtCurrentState",
"OMA",
"OMB",
"BMA",