]> SALOME platform Git repositories - modules/adao.git/commitdiff
Salome HOME
Fixing iterating observation use (2)
authorJean-Philippe ARGAUD <jean-philippe.argaud@edf.fr>
Mon, 28 Jun 2021 17:01:20 +0000 (19:01 +0200)
committerJean-Philippe ARGAUD <jean-philippe.argaud@edf.fr>
Mon, 28 Jun 2021 17:01:20 +0000 (19:01 +0200)
src/daComposant/daAlgorithms/ExtendedKalmanFilter.py
src/daComposant/daCore/NumericObjects.py

index 27a3a1f61904a31c797817d14405973219882718..20c3976454a6a9b07a7bb793719eb6a3cf2e91ca 100644 (file)
@@ -21,7 +21,7 @@
 # Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
 
 import logging
-from daCore import BasicObjects
+from daCore import BasicObjects, NumericObjects
 import numpy
 
 # ==============================================================================
@@ -69,6 +69,7 @@ class ElementaryAlgorithm(BasicObjects.Algorithm):
                 "CurrentIterationNumber",
                 "CurrentOptimum",
                 "CurrentState",
+                "ForecastCovariance",
                 "ForecastState",
                 "IndexOfOptimum",
                 "InnovationAtCurrentAnalysis",
@@ -96,184 +97,9 @@ class ElementaryAlgorithm(BasicObjects.Algorithm):
     def run(self, Xb=None, Y=None, U=None, HO=None, EM=None, CM=None, R=None, B=None, Q=None, Parameters=None):
         self._pre_run(Parameters, Xb, Y, U, HO, EM, CM, R, B, Q)
         #
-        if self._parameters["EstimationOf"] == "Parameters":
-            self._parameters["StoreInternalVariables"] = True
-        #
-        # Opérateurs
-        # ----------
-        Hm = HO["Direct"].appliedControledFormTo
-        #
-        if self._parameters["EstimationOf"] == "State":
-            Mm = EM["Direct"].appliedControledFormTo
-        #
-        if CM is not None and "Tangent" in CM and U is not None:
-            Cm = CM["Tangent"].asMatrix(Xb)
-        else:
-            Cm = None
-        #
-        # Nombre de pas identique au nombre de pas d'observations
-        # -------------------------------------------------------
-        if hasattr(Y,"stepnumber"):
-            duration = Y.stepnumber()
-        else:
-            duration = 2
-        #
-        # Précalcul des inversions de B et R
-        # ----------------------------------
-        if self._parameters["StoreInternalVariables"] \
-            or self._toStore("CostFunctionJ") \
-            or self._toStore("CostFunctionJb") \
-            or self._toStore("CostFunctionJo") \
-            or self._toStore("CurrentOptimum") \
-            or self._toStore("APosterioriCovariance"):
-            BI = B.getI()
-            RI = R.getI()
-        #
-        # Initialisation
-        # --------------
-        Xn = Xb
-        Pn = B
-        #
-        if len(self.StoredVariables["Analysis"])==0 or not self._parameters["nextStep"]:
-            self.StoredVariables["CurrentIterationNumber"].store( len(self.StoredVariables["Analysis"]) )
-            self.StoredVariables["Analysis"].store( numpy.ravel(Xn) )
-            if self._toStore("APosterioriCovariance"):
-                self.StoredVariables["APosterioriCovariance"].store( Pn.asfullmatrix(Xn.size) )
-                covarianceXa = Pn
-                if self._parameters["EstimationOf"] == "Parameters":
-                    covarianceXaMin = Pn
-        #
-        if self._parameters["EstimationOf"] == "Parameters":
-            XaMin            = Xn
-            previousJMinimum = numpy.finfo(float).max
-        #
-        for step in range(duration-1):
-            if hasattr(Y,"store"):
-                Ynpu = numpy.asmatrix(numpy.ravel( Y[step+1] )).T
-            else:
-                Ynpu = numpy.asmatrix(numpy.ravel( Y )).T
-            #
-            Ht = HO["Tangent"].asMatrix(ValueForMethodForm = Xn)
-            Ht = Ht.reshape(Ynpu.size,Xn.size) # ADAO & check shape
-            Ha = HO["Adjoint"].asMatrix(ValueForMethodForm = Xn)
-            Ha = Ha.reshape(Xn.size,Ynpu.size) # ADAO & check shape
-            #
-            if self._parameters["EstimationOf"] == "State":
-                Mt = EM["Tangent"].asMatrix(ValueForMethodForm = Xn)
-                Mt = Mt.reshape(Xn.size,Xn.size) # ADAO & check shape
-                Ma = EM["Adjoint"].asMatrix(ValueForMethodForm = Xn)
-                Ma = Ma.reshape(Xn.size,Xn.size) # ADAO & check shape
-            #
-            if U is not None:
-                if hasattr(U,"store") and len(U)>1:
-                    Un = numpy.asmatrix(numpy.ravel( U[step] )).T
-                elif hasattr(U,"store") and len(U)==1:
-                    Un = numpy.asmatrix(numpy.ravel( U[0] )).T
-                else:
-                    Un = numpy.asmatrix(numpy.ravel( U )).T
-            else:
-                Un = None
-            #
-            if self._parameters["EstimationOf"] == "State":
-                Xn_predicted = numpy.asmatrix(numpy.ravel( Mm( (Xn, Un) ) )).T
-                if Cm is not None and Un is not None: # Attention : si Cm est aussi dans M, doublon !
-                    Cm = Cm.reshape(Xn.size,Un.size) # ADAO & check shape
-                    Xn_predicted = Xn_predicted + Cm * Un
-                Pn_predicted = Q + Mt * Pn * Ma
-            elif self._parameters["EstimationOf"] == "Parameters":
-                # --- > Par principe, M = Id, Q = 0
-                Xn_predicted = Xn
-                Pn_predicted = Pn
-            #
-            if self._parameters["Bounds"] is not None and self._parameters["ConstrainedBy"] == "EstimateProjection":
-                Xn_predicted = numpy.max(numpy.hstack((Xn_predicted,numpy.asmatrix(self._parameters["Bounds"])[:,0])),axis=1)
-                Xn_predicted = numpy.min(numpy.hstack((Xn_predicted,numpy.asmatrix(self._parameters["Bounds"])[:,1])),axis=1)
-            #
-            if self._parameters["EstimationOf"] == "State":
-                _HX          = numpy.asmatrix(numpy.ravel( Hm( (Xn_predicted, None) ) )).T
-                _Innovation  = Ynpu - _HX
-            elif self._parameters["EstimationOf"] == "Parameters":
-                _HX          = numpy.asmatrix(numpy.ravel( Hm( (Xn_predicted, Un) ) )).T
-                _Innovation  = Ynpu - _HX
-                if Cm is not None and Un is not None: # Attention : si Cm est aussi dans H, doublon !
-                    _Innovation = _Innovation - Cm * Un
-            #
-            Kn = Pn_predicted * Ha * numpy.linalg.inv(R + numpy.dot(Ht, Pn_predicted * Ha))
-            Xn = Xn_predicted + Kn * _Innovation
-            Pn = Pn_predicted - Kn * Ht * Pn_predicted
-            Xa = Xn # Pointeurs
-            #
-            self.StoredVariables["CurrentIterationNumber"].store( len(self.StoredVariables["Analysis"]) )
-            # ---> avec analysis
-            self.StoredVariables["Analysis"].store( Xa )
-            if self._toStore("SimulatedObservationAtCurrentAnalysis"):
-                self.StoredVariables["SimulatedObservationAtCurrentAnalysis"].store( Hm((Xn, None)) )
-            if self._toStore("InnovationAtCurrentAnalysis"):
-                self.StoredVariables["InnovationAtCurrentAnalysis"].store( _Innovation )
-            # ---> avec current state
-            if self._parameters["StoreInternalVariables"] \
-                or self._toStore("CurrentState"):
-                self.StoredVariables["CurrentState"].store( Xn )
-            if self._toStore("ForecastState"):
-                self.StoredVariables["ForecastState"].store( Xn_predicted )
-            if self._toStore("BMA"):
-                self.StoredVariables["BMA"].store( Xn_predicted - Xa )
-            if self._toStore("InnovationAtCurrentState"):
-                self.StoredVariables["InnovationAtCurrentState"].store( _Innovation )
-            if self._toStore("SimulatedObservationAtCurrentState") \
-                or self._toStore("SimulatedObservationAtCurrentOptimum"):
-                self.StoredVariables["SimulatedObservationAtCurrentState"].store( _HX )
-            # ---> autres
-            if self._parameters["StoreInternalVariables"] \
-                or self._toStore("CostFunctionJ") \
-                or self._toStore("CostFunctionJb") \
-                or self._toStore("CostFunctionJo") \
-                or self._toStore("CurrentOptimum") \
-                or self._toStore("APosterioriCovariance"):
-                Jb  = float( 0.5 * (Xa - Xb).T * BI * (Xa - Xb) )
-                Jo  = float( 0.5 * _Innovation.T * RI * _Innovation )
-                J   = Jb + Jo
-                self.StoredVariables["CostFunctionJb"].store( Jb )
-                self.StoredVariables["CostFunctionJo"].store( Jo )
-                self.StoredVariables["CostFunctionJ" ].store( J )
-                #
-                if self._toStore("IndexOfOptimum") \
-                    or self._toStore("CurrentOptimum") \
-                    or self._toStore("CostFunctionJAtCurrentOptimum") \
-                    or self._toStore("CostFunctionJbAtCurrentOptimum") \
-                    or self._toStore("CostFunctionJoAtCurrentOptimum") \
-                    or self._toStore("SimulatedObservationAtCurrentOptimum"):
-                    IndexMin = numpy.argmin( self.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
-                if self._toStore("IndexOfOptimum"):
-                    self.StoredVariables["IndexOfOptimum"].store( IndexMin )
-                if self._toStore("CurrentOptimum"):
-                    self.StoredVariables["CurrentOptimum"].store( self.StoredVariables["Analysis"][IndexMin] )
-                if self._toStore("SimulatedObservationAtCurrentOptimum"):
-                    self.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( self.StoredVariables["SimulatedObservationAtCurrentAnalysis"][IndexMin] )
-                if self._toStore("CostFunctionJbAtCurrentOptimum"):
-                    self.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( self.StoredVariables["CostFunctionJb"][IndexMin] )
-                if self._toStore("CostFunctionJoAtCurrentOptimum"):
-                    self.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( self.StoredVariables["CostFunctionJo"][IndexMin] )
-                if self._toStore("CostFunctionJAtCurrentOptimum"):
-                    self.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( self.StoredVariables["CostFunctionJ" ][IndexMin] )
-            if self._toStore("APosterioriCovariance"):
-                self.StoredVariables["APosterioriCovariance"].store( Pn )
-            if self._parameters["EstimationOf"] == "Parameters" \
-                and J < previousJMinimum:
-                previousJMinimum    = J
-                XaMin               = Xa
-                if self._toStore("APosterioriCovariance"):
-                    covarianceXaMin = Pn
-        #
-        # Stockage final supplémentaire de l'optimum en estimation de paramètres
-        # ----------------------------------------------------------------------
-        if self._parameters["EstimationOf"] == "Parameters":
-            self.StoredVariables["CurrentIterationNumber"].store( len(self.StoredVariables["Analysis"]) )
-            self.StoredVariables["Analysis"].store( XaMin )
-            if self._toStore("APosterioriCovariance"):
-                self.StoredVariables["APosterioriCovariance"].store( covarianceXaMin )
-            if self._toStore("BMA"):
-                self.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(XaMin) )
+        #--------------------------
+        NumericObjects.exkf(self, Xb, Y, U, HO, EM, CM, R, B, Q)
+        #--------------------------
         #
         self._post_run(HO)
         return 0
index 99cc8fbb033fb50bd4c4479f3f052bed9b5f18c9..cb256b94eac80b18c01faeccc188b933cca056a9 100644 (file)
@@ -1209,6 +1209,209 @@ def etkf(selfA, Xb, Y, U, HO, EM, CM, R, B, Q, VariantM="KalmanFilterFormula"):
     #
     return 0
 
+# ==============================================================================
+def exkf(selfA, Xb, Y, U, HO, EM, CM, R, B, Q):
+    """
+    Extended Kalman Filter
+    """
+    if selfA._parameters["EstimationOf"] == "Parameters":
+        selfA._parameters["StoreInternalVariables"] = True
+    #
+    # Opérateurs
+    H = HO["Direct"].appliedControledFormTo
+    #
+    if selfA._parameters["EstimationOf"] == "State":
+        M = EM["Direct"].appliedControledFormTo
+    #
+    if CM is not None and "Tangent" in CM and U is not None:
+        Cm = CM["Tangent"].asMatrix(Xb)
+    else:
+        Cm = None
+    #
+    # Durée d'observation et tailles
+    if hasattr(Y,"stepnumber"):
+        duration = Y.stepnumber()
+        __p = numpy.cumprod(Y.shape())[-1]
+    else:
+        duration = 2
+        __p = numpy.array(Y).size
+    #
+    # Précalcul des inversions de B et R
+    if selfA._parameters["StoreInternalVariables"] \
+        or selfA._toStore("CostFunctionJ") \
+        or selfA._toStore("CostFunctionJb") \
+        or selfA._toStore("CostFunctionJo") \
+        or selfA._toStore("CurrentOptimum") \
+        or selfA._toStore("APosterioriCovariance"):
+        BI = B.getI()
+        RI = R.getI()
+    #
+    __n = Xb.size
+    #
+    if len(selfA.StoredVariables["Analysis"])==0 or not selfA._parameters["nextStep"]:
+        Xn = Xb
+        Pn = B
+        selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
+        selfA.StoredVariables["Analysis"].store( Xb )
+        if selfA._toStore("APosterioriCovariance"):
+            if hasattr(B,"asfullmatrix"):
+                selfA.StoredVariables["APosterioriCovariance"].store( B.asfullmatrix(__n) )
+            else:
+                selfA.StoredVariables["APosterioriCovariance"].store( B )
+        selfA._setInternalState("seed", numpy.random.get_state())
+    elif selfA._parameters["nextStep"]:
+        Xn = selfA._getInternalState("Xn")
+        Pn = selfA._getInternalState("Pn")
+    #
+    previousJMinimum = numpy.finfo(float).max
+    #
+    for step in range(duration-1):
+        if hasattr(Y,"store"):
+            Ynpu = numpy.ravel( Y[step+1] ).reshape((__p,1))
+        else:
+            Ynpu = numpy.ravel( Y ).reshape((__p,1))
+        #
+        Ht = HO["Tangent"].asMatrix(ValueForMethodForm = Xn)
+        Ht = Ht.reshape(Ynpu.size,Xn.size) # ADAO & check shape
+        Ha = HO["Adjoint"].asMatrix(ValueForMethodForm = Xn)
+        Ha = Ha.reshape(Xn.size,Ynpu.size) # ADAO & check shape
+        #
+        if selfA._parameters["EstimationOf"] == "State":
+            Mt = EM["Tangent"].asMatrix(ValueForMethodForm = Xn)
+            Mt = Mt.reshape(Xn.size,Xn.size) # ADAO & check shape
+            Ma = EM["Adjoint"].asMatrix(ValueForMethodForm = Xn)
+            Ma = Ma.reshape(Xn.size,Xn.size) # ADAO & check shape
+        #
+        if U is not None:
+            if hasattr(U,"store") and len(U)>1:
+                Un = numpy.asmatrix(numpy.ravel( U[step] )).T
+            elif hasattr(U,"store") and len(U)==1:
+                Un = numpy.asmatrix(numpy.ravel( U[0] )).T
+            else:
+                Un = numpy.asmatrix(numpy.ravel( U )).T
+        else:
+            Un = None
+        #
+        if selfA._parameters["EstimationOf"] == "State": # Forecast + Q and observation of forecast
+            Xn_predicted = numpy.asmatrix(numpy.ravel( M( (Xn, Un) ) )).T
+            if Cm is not None and Un is not None: # Attention : si Cm est aussi dans M, doublon !
+                Cm = Cm.reshape(__n,Un.size) # ADAO & check shape
+                Xn_predicted = Xn_predicted + Cm * Un
+            Pn_predicted = Q + Mt * Pn * Ma
+        elif selfA._parameters["EstimationOf"] == "Parameters": # Observation of forecast
+            # --- > Par principe, M = Id, Q = 0
+            Xn_predicted = Xn
+            Pn_predicted = Pn
+        #
+        if selfA._parameters["Bounds"] is not None and selfA._parameters["ConstrainedBy"] == "EstimateProjection":
+            Xn_predicted = numpy.max(numpy.hstack((Xn_predicted,numpy.asmatrix(selfA._parameters["Bounds"])[:,0])),axis=1)
+            Xn_predicted = numpy.min(numpy.hstack((Xn_predicted,numpy.asmatrix(selfA._parameters["Bounds"])[:,1])),axis=1)
+        #
+        if selfA._parameters["EstimationOf"] == "State":
+            HX_predicted = numpy.asmatrix(numpy.ravel( H( (Xn_predicted, None) ) )).T
+            _Innovation  = Ynpu - HX_predicted
+        elif selfA._parameters["EstimationOf"] == "Parameters":
+            HX_predicted = numpy.asmatrix(numpy.ravel( H( (Xn_predicted, Un) ) )).T
+            _Innovation  = Ynpu - HX_predicted
+            if Cm is not None and Un is not None: # Attention : si Cm est aussi dans H, doublon !
+                _Innovation = _Innovation - Cm * Un
+        #
+        Kn = Pn_predicted * Ha * numpy.linalg.inv(R + numpy.dot(Ht, Pn_predicted * Ha))
+        Xn = Xn_predicted + Kn * _Innovation
+        Pn = Pn_predicted - Kn * Ht * Pn_predicted
+        #
+        Xa = Xn # Pointeurs
+        #--------------------------
+        selfA._setInternalState("Xn", Xn)
+        selfA._setInternalState("Pn", Pn)
+        #--------------------------
+        #
+        if selfA._parameters["StoreInternalVariables"] \
+            or selfA._toStore("CostFunctionJ") \
+            or selfA._toStore("CostFunctionJb") \
+            or selfA._toStore("CostFunctionJo") \
+            or selfA._toStore("APosterioriCovariance") \
+            or selfA._toStore("InnovationAtCurrentAnalysis") \
+            or selfA._toStore("SimulatedObservationAtCurrentAnalysis") \
+            or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+            _HXa = numpy.asmatrix(numpy.ravel( H((Xa, Un)) )).T
+        #
+        selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
+        # ---> avec analysis
+        selfA.StoredVariables["Analysis"].store( Xa )
+        if selfA._toStore("SimulatedObservationAtCurrentAnalysis"):
+            selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"].store( _HXa )
+        if selfA._toStore("InnovationAtCurrentAnalysis"):
+            selfA.StoredVariables["InnovationAtCurrentAnalysis"].store( _Innovation )
+        # ---> avec current state
+        if selfA._parameters["StoreInternalVariables"] \
+            or selfA._toStore("CurrentState"):
+            selfA.StoredVariables["CurrentState"].store( Xn )
+        if selfA._toStore("ForecastState"):
+            selfA.StoredVariables["ForecastState"].store( Xn_predicted )
+        if selfA._toStore("ForecastCovariance"):
+            selfA.StoredVariables["ForecastCovariance"].store( Pn_predicted )
+        if selfA._toStore("BMA"):
+            selfA.StoredVariables["BMA"].store( Xn_predicted - Xa )
+        if selfA._toStore("InnovationAtCurrentState"):
+            selfA.StoredVariables["InnovationAtCurrentState"].store( _Innovation )
+        if selfA._toStore("SimulatedObservationAtCurrentState") \
+            or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+            selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( HX_predicted )
+        # ---> autres
+        if selfA._parameters["StoreInternalVariables"] \
+            or selfA._toStore("CostFunctionJ") \
+            or selfA._toStore("CostFunctionJb") \
+            or selfA._toStore("CostFunctionJo") \
+            or selfA._toStore("CurrentOptimum") \
+            or selfA._toStore("APosterioriCovariance"):
+            Jb  = float( 0.5 * (Xa - Xb).T * BI * (Xa - Xb) )
+            Jo  = float( 0.5 * _Innovation.T * RI * _Innovation )
+            J   = Jb + Jo
+            selfA.StoredVariables["CostFunctionJb"].store( Jb )
+            selfA.StoredVariables["CostFunctionJo"].store( Jo )
+            selfA.StoredVariables["CostFunctionJ" ].store( J )
+            #
+            if selfA._toStore("IndexOfOptimum") \
+                or selfA._toStore("CurrentOptimum") \
+                or selfA._toStore("CostFunctionJAtCurrentOptimum") \
+                or selfA._toStore("CostFunctionJbAtCurrentOptimum") \
+                or selfA._toStore("CostFunctionJoAtCurrentOptimum") \
+                or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+                IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
+            if selfA._toStore("IndexOfOptimum"):
+                selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
+            if selfA._toStore("CurrentOptimum"):
+                selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["Analysis"][IndexMin] )
+            if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+                selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"][IndexMin] )
+            if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
+                selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
+            if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
+                selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
+            if selfA._toStore("CostFunctionJAtCurrentOptimum"):
+                selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
+        if selfA._toStore("APosterioriCovariance"):
+            selfA.StoredVariables["APosterioriCovariance"].store( Pn )
+        if selfA._parameters["EstimationOf"] == "Parameters" \
+            and J < previousJMinimum:
+            previousJMinimum    = J
+            XaMin               = Xa
+            if selfA._toStore("APosterioriCovariance"):
+                covarianceXaMin = selfA.StoredVariables["APosterioriCovariance"][-1]
+    #
+    # Stockage final supplémentaire de l'optimum en estimation de paramètres
+    # ----------------------------------------------------------------------
+    if selfA._parameters["EstimationOf"] == "Parameters":
+        selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
+        selfA.StoredVariables["Analysis"].store( XaMin )
+        if selfA._toStore("APosterioriCovariance"):
+            selfA.StoredVariables["APosterioriCovariance"].store( covarianceXaMin )
+        if selfA._toStore("BMA"):
+            selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(XaMin) )
+    #
+    return 0
+
 # ==============================================================================
 def ienkf(selfA, Xb, Y, U, HO, EM, CM, R, B, Q, VariantM="IEnKF12",
     BnotT=False, _epsilon=1.e-3, _e=1.e-7, _jmax=15000):