]> SALOME platform Git repositories - modules/geom.git/commitdiff
Salome HOME
PR: update documentation and examples
authorprascle <prascle>
Wed, 13 Mar 2013 11:36:49 +0000 (11:36 +0000)
committerprascle <prascle>
Wed, 13 Mar 2013 11:36:49 +0000 (11:36 +0000)
140 files changed:
doc/salome/examples/3dsketcher.py
doc/salome/examples/advanced_geom_objs_ex01.py
doc/salome/examples/advanced_geom_objs_ex02.py
doc/salome/examples/advanced_geom_objs_ex03.py
doc/salome/examples/angle.py
doc/salome/examples/basic_geom_objs_ex01.py
doc/salome/examples/basic_geom_objs_ex02.py
doc/salome/examples/basic_geom_objs_ex03.py
doc/salome/examples/basic_geom_objs_ex04.py
doc/salome/examples/basic_geom_objs_ex05.py
doc/salome/examples/basic_geom_objs_ex06.py
doc/salome/examples/basic_geom_objs_ex07.py
doc/salome/examples/basic_geom_objs_ex08.py
doc/salome/examples/basic_geom_objs_ex09.py
doc/salome/examples/basic_operations_ex01.py
doc/salome/examples/basic_operations_ex02.py
doc/salome/examples/basic_operations_ex03.py
doc/salome/examples/basic_properties.py
doc/salome/examples/blocks_operations_ex01.py
doc/salome/examples/blocks_operations_ex02.py
doc/salome/examples/blocks_operations_ex03.py
doc/salome/examples/boolean_operations_ex01.py
doc/salome/examples/boolean_operations_ex02.py
doc/salome/examples/boolean_operations_ex03.py
doc/salome/examples/boolean_operations_ex04.py
doc/salome/examples/bounding_box.py
doc/salome/examples/building_by_blocks_ex01.py
doc/salome/examples/building_by_blocks_ex02.py
doc/salome/examples/center_of_mass.py
doc/salome/examples/check_compound_of_blocks.py
doc/salome/examples/check_self_intersections.py
doc/salome/examples/check_shape.py
doc/salome/examples/complex_objs_ex01.py
doc/salome/examples/complex_objs_ex02.py
doc/salome/examples/complex_objs_ex03.py
doc/salome/examples/complex_objs_ex04.py
doc/salome/examples/complex_objs_ex05.py
doc/salome/examples/complex_objs_ex06.py
doc/salome/examples/complex_objs_ex07.py
doc/salome/examples/complex_objs_ex08.py
doc/salome/examples/complex_objs_ex09.py
doc/salome/examples/complex_objs_ex10.py
doc/salome/examples/free_boundaries.py
doc/salome/examples/free_faces.py
doc/salome/examples/get_non_blocks.py
doc/salome/examples/import_export.py
doc/salome/examples/inertia.py
doc/salome/examples/min_distance.py
doc/salome/examples/normal_face.py
doc/salome/examples/notebook_geom.py
doc/salome/examples/point_coordinates.py
doc/salome/examples/primitives_ex01.py
doc/salome/examples/primitives_ex02.py
doc/salome/examples/primitives_ex03.py
doc/salome/examples/primitives_ex04.py
doc/salome/examples/primitives_ex05.py
doc/salome/examples/primitives_ex06.py
doc/salome/examples/primitives_ex07.py
doc/salome/examples/repairing_operations_ex01.py
doc/salome/examples/repairing_operations_ex02.py
doc/salome/examples/repairing_operations_ex03.py
doc/salome/examples/repairing_operations_ex04.py
doc/salome/examples/repairing_operations_ex05.py
doc/salome/examples/repairing_operations_ex06.py
doc/salome/examples/repairing_operations_ex07.py
doc/salome/examples/repairing_operations_ex08.py
doc/salome/examples/repairing_operations_ex09.py
doc/salome/examples/repairing_operations_ex10.py
doc/salome/examples/repairing_operations_ex11.py
doc/salome/examples/sketcher.py
doc/salome/examples/tolerance.py
doc/salome/examples/topological_geom_objs_ex01.py
doc/salome/examples/topological_geom_objs_ex02.py
doc/salome/examples/topological_geom_objs_ex03.py
doc/salome/examples/topological_geom_objs_ex04.py
doc/salome/examples/topological_geom_objs_ex05.py
doc/salome/examples/topological_geom_objs_ex06.py
doc/salome/examples/transformation_operations_ex01.py
doc/salome/examples/transformation_operations_ex02.py
doc/salome/examples/transformation_operations_ex03.py
doc/salome/examples/transformation_operations_ex04.py
doc/salome/examples/transformation_operations_ex05.py
doc/salome/examples/transformation_operations_ex06.py
doc/salome/examples/transformation_operations_ex07.py
doc/salome/examples/transformation_operations_ex08.py
doc/salome/examples/transformation_operations_ex09.py
doc/salome/examples/transformation_operations_ex10.py
doc/salome/examples/transformation_operations_ex11.py
doc/salome/examples/transformation_operations_ex12.py
doc/salome/examples/transformation_operations_ex13.py
doc/salome/examples/viewing_geom_objs_ex01.py
doc/salome/examples/viewing_geom_objs_ex02.py
doc/salome/examples/viewing_geom_objs_ex03.py
doc/salome/examples/viewing_geom_objs_ex04.py
doc/salome/examples/whatis.py
doc/salome/examples/working_with_groups_ex01.py
doc/salome/examples/working_with_groups_ex02.py
doc/salome/examples/working_with_groups_ex03.py
doc/salome/examples/working_with_groups_ex04.py
doc/salome/examples/working_with_groups_ex05.py
doc/salome/examples/working_with_groups_ex06.py
doc/salome/gui/GEOM/Makefile.am
doc/salome/gui/GEOM/doxyfile_py.in
doc/salome/gui/GEOM/input/geometrical_object_properties.doc
doc/salome/gui/GEOM/input/geompy.doc
src/GEOM_PY/geomtools.py
src/GEOM_PY/sketcher.py
src/GEOM_PY/structelem/__init__.py
src/GEOM_SWIG/GEOM_Nut.py
src/GEOM_SWIG/GEOM_ObjectInfo.py
src/GEOM_SWIG/GEOM_Partition1.py
src/GEOM_SWIG/GEOM_Partition2.py
src/GEOM_SWIG/GEOM_Partition3.py
src/GEOM_SWIG/GEOM_Partition4.py
src/GEOM_SWIG/GEOM_Partition5.py
src/GEOM_SWIG/GEOM_Sketcher.py
src/GEOM_SWIG/GEOM_blocks.py
src/GEOM_SWIG/GEOM_box.py [new file with mode: 0644]
src/GEOM_SWIG/GEOM_cyl2complementary.py
src/GEOM_SWIG/GEOM_example.py
src/GEOM_SWIG/GEOM_example2.py
src/GEOM_SWIG/GEOM_example3.py
src/GEOM_SWIG/GEOM_example4.py
src/GEOM_SWIG/GEOM_example5.py
src/GEOM_SWIG/GEOM_example6.py
src/GEOM_SWIG/GEOM_example7.py
src/GEOM_SWIG/GEOM_moteur.py
src/GEOM_SWIG/GEOM_shellSolid.py
src/GEOM_SWIG/GEOM_tube_geom.py
src/GEOM_SWIG/GEOM_tube_geom_gg2.py
src/GEOM_SWIG/GEOM_usinggeom.py
src/GEOM_SWIG/Makefile.am
src/GEOM_SWIG/PAL_MESH_019_020_geometry.py
src/GEOM_SWIG/PAL_MESH_028_geometry.py
src/GEOM_SWIG/PAL_MESH_030_geometry.py
src/GEOM_SWIG/PAL_MESH_033_geometry.py
src/GEOM_SWIG/PAL_MESH_035_geometry.py
src/GEOM_SWIG/batchmode_geompy.py [deleted file]
src/GEOM_SWIG/geomBuilder.py
src/GEOM_SWIG/geompyDC.py [deleted file]

index 69b779898d241ec76fb68e7d9efeda063a6d86a8..29f88e7108e24b0ff5b8d85c4665c4b1310aeb7c 100644 (file)
@@ -1,7 +1,10 @@
 # 3D Sketcher
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # Create a 3D sketcher (wire) on the given points coordinates
index eb3db5fe54495417b96261becead108a1756598f..a3b2d5968e138438442138a52ce6c8ac30fac3b9 100644 (file)
@@ -1,7 +1,10 @@
 # Creation of PipeTShape
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # create PipeTShape object
index 2ee3016883779dca8aa2f4f5169cc275dba0480a..442af631e3518d8d68043bdecc3c8c0730ba517f 100644 (file)
@@ -1,8 +1,10 @@
 # Creation of DividedDisk
 
-import geompy
 import salome
+salome.salome_init()
 import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # create DividedDisk object
index 195cda0dd3b39a1e3a76532417f90f3d3086edfb..915ee15866f85260ea832b225a64e6981679f682 100644 (file)
@@ -1,8 +1,10 @@
 # Creation of DividedCylinder
 
-import geompy
 import salome
+salome.salome_init()
 import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # create DividedCylinder object
index 324d72653c0ad68252af21a3a80595debdfc7bc5..1fd60440fff9e41fe384f6676e397fcff490248f 100644 (file)
@@ -2,10 +2,10 @@
 
 import salome
 salome.salome_init()
-
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 import math
-import geompy
-geompy.init_geom(salome.myStudy)
 
 OX  = geompy.MakeVectorDXDYDZ(10, 0,0)
 OXY = geompy.MakeVectorDXDYDZ(10,10,0)
index 05abb799d74eeee94debc1c989afe7f18e07e987..1501633ca2d09ab4037715412022da115a4e6a21 100644 (file)
@@ -1,7 +1,10 @@
 # Creation of a Point
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # create vertices
index 02f87e910af657aedaef7a1431da2cc540352464..858548f2327766b6e864de4c7f84172171902837 100644 (file)
@@ -1,7 +1,10 @@
 # Creation of a Line
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # create vertices
index 510ae18fcbeffcdbf3abdb88ffa943ff25006c0a..d7bdf2febe19c85e0db94f76a9e4a485e71df0a3 100644 (file)
@@ -1,7 +1,10 @@
 # Creation of a Circle
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # create vertices
index bf7d3e87066cb0a69c27bfda6be41eba426b01f7..51a1304d4cd6db88340285531b2d02a98e35a50e 100644 (file)
@@ -1,7 +1,10 @@
 # Creation of an Ellipse
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # create vertices
index 5a82c3b1ba1178324848849627ad266b8bee1cb1..fe24424ccd2af9c52897ef836d63edddf0cb140c 100644 (file)
@@ -1,7 +1,10 @@
 # Creation of an Arc
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # create vertices
index ba4940c1465bce1d81b1c8a08e51f252f57c3cf2..3ade40d2b90e8b5f08c4262ae5062b34e039399d 100644 (file)
@@ -1,7 +1,10 @@
 # Creation of a Curve
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # create vertices and vectors
index 2de687af0ff2a5801a55908dcc6f43871ca060fe..04673b1f4073cfacc5b08ba2b68afbe6c9c43783 100644 (file)
@@ -1,7 +1,10 @@
 # Creation of a Vector
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # create vertices
index 81a8745c573e8067665a522ae35b59a6323d36c2..707540a06e90f47ce297777d57cce92f459e60e2 100644 (file)
@@ -1,7 +1,10 @@
 # Creation of a Plane
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # create vertices
index 3934410ee765cd4ebe2434577cb963b956bf1364..91fa3ce6dfa09fbdf8ffc5d7f4e33dcf643c756f 100644 (file)
@@ -1,7 +1,10 @@
 # Creation of a Local Coordinate System
 
+import salome
+salome.salome_init()
 import GEOM
-import geompy
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 import math
 import SALOMEDS
 
index bed9e1c86b16dd1daca628a49a6d3b04d658acc8..b9152729ff311f479df8e384abcbbdf7ca563d7e 100644 (file)
@@ -1,7 +1,10 @@
 # Partition
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # create a vertex and a vector
index ac9b77b9d83ed6eb0fd8303ff64f8330d408b419..ff102f0d5bd6a11e72a27738c1148385769476da 100644 (file)
@@ -1,7 +1,10 @@
 # Archimede
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # create a vertex and a vector
index 39b1dd22b24a1c008861a9f0f56ead7928a4c74f..09ec3dafd5d3d6eb6ceb5f7fec8383193b2c288b 100644 (file)
@@ -1,8 +1,11 @@
 # Restore presentation parameters and sub-shapes
 
-import geompy
+import salome
+salome.salome_init()
 import GEOM
-import SALOMEDS
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
+mport SALOMEDS
 
 # create a box and a cylinder
 box = geompy.MakeBoxDXDYDZ(200, 200, 200)
index 239655901986916a78223c580fc5d47ef0dcaef3..ce6e45a9c1c3dfaf830c4a598b5f3359d2daef51 100644 (file)
@@ -1,6 +1,10 @@
 # Basic Properties
 
-import geompy
+import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 import math
 
 # create a box
index 5535f121da26ab89567111e33231e0c85d2c17c6..d8040637c4466ef64f2175076e985255cdb5828a 100644 (file)
@@ -1,7 +1,10 @@
 # Multi Transformation
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # create vertices
index 68fbb01a682f63e954d165cdd4277252323cbae0..03deab0a68237348b6b724be35f8705f57a0ea9a 100644 (file)
@@ -1,7 +1,10 @@
 # Explode on Blocks
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # create a box and a sphere
index 268a52e10f65e0b5b126aca0e807140c0a001790..c38bf6c83b6a913d601de7622367c2533f7a15ee 100644 (file)
@@ -1,7 +1,10 @@
 # Propagate
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 
 # create a box
 check_box = geompy.MakeBoxDXDYDZ(200, 200, 200)
index 5f52542c62e87f39605963d9eb5602905d77aebc..01809955eecf467531b3103693e9346cbcc6d0e8 100644 (file)
@@ -1,7 +1,10 @@
 # Fuse
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # create a vertex and a vector
index b7e73b7273c12bbde0696799aa51265e609e5c1c..90317ba93efe389d951cfbed3b28b05f04fb7c64 100644 (file)
@@ -1,7 +1,10 @@
 # Common
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # create a vertex and a vector
index 44c597405f42297596138ae81399ea437a7ee05e..7c97b09f0b49ed310c47487e3d56b14d30f08ed0 100644 (file)
@@ -1,7 +1,10 @@
 # Cut
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # create a vertex and a vector
index 9472f7aa13deefd7b90080cdd41b1625fe67521a..a7da6a9af157f6aca0098177b7687b18de1606b5 100644 (file)
@@ -1,7 +1,10 @@
 # Section
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # create a vertex and a vector
index d6480aeac1dc63d2d199d1cca217e3d353edbded..ed8736b98fa2fde1b275d2c9e88819c01a4e9b79 100644 (file)
@@ -1,6 +1,10 @@
 # Bounding Box
 
-import geompy
+import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 
 # create a box
 box = geompy.MakeBoxDXDYDZ(100,30,100)
index 16b02d75b0b105b3a65a21b77ee25d961093b988..fe93e7c4c3e8067e7fd48f9d3d80bde78876c509 100644 (file)
@@ -1,7 +1,10 @@
 # Quadrangle Face
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # create vertices
index ed81f423380aeb992ae3e4920e3ce2bd298dec54..8d40beec5a85c3b85bd553b6c16fa674320a5768 100644 (file)
@@ -1,7 +1,10 @@
 # Hexagonal Solid
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # create vertices
index acf5962ff8dc480c78fc2c81393554ce55095da1..9e570f3180ee3a8a0d1e741641a34a17205b02a0 100644 (file)
@@ -1,6 +1,10 @@
 # Center of masses
 
-import geompy
+import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 import math
 
 # create a box
index 2f1ba985004fca57484bcff4890e3ae24a24f83c..26f7c3012ae79064cb71317eb73e981612ecf07e 100644 (file)
@@ -1,7 +1,10 @@
 # Check Compound of Blocks
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # create boxes
index 44c55d257ded8aabc79cb67a0cd89d6daba9c639..8df91b9fe480015bbb1a8c30063db2dd3a2904f3 100644 (file)
@@ -1,6 +1,10 @@
 # Detect Self-intersections
 
-import geompy
+import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 
 # create a box
 box = geompy.MakeBoxDXDYDZ(100,30,100)
index b708494b39ca3e928ca5d6fe14aea1eb82cab4ed..30793345e0b8bab8f1aea3be88b700cadde67b5f 100644 (file)
@@ -1,6 +1,10 @@
 # Check Shape
 
-import geompy
+import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 
 # create a box
 box = geompy.MakeBoxDXDYDZ(100,30,100)
index a5cf102c82eb618ce7d4dd3c0bc5ed0a74b4d4f6..5a04f3a76b4ab29838cd42aeccbdc03a942dec96 100644 (file)
@@ -1,7 +1,10 @@
 # Creation of a Prism
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # create a vertex and a vector
index e096551fd8a3ad1334d7850b5eaf0357d33cb4b6..ec9f8572919f7d8c999223f7c62ed2778f7bc4fb 100644 (file)
@@ -1,7 +1,10 @@
 # Creation of a Revolution
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # create a vertex and a vector
index ec7767b2ae302c6c0b95adc7d8ca18c229d50735..35ccf08579f728bd45941d9c4d03ca851b9efeb9 100644 (file)
@@ -1,7 +1,10 @@
 # Creation of a Filling
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 mindeg = 2
index 72af08f2916d54708cd9cb86735537bc325b491c..4bff05d17c5a2f3b53da8fbe8edc43bb91929a14 100644 (file)
@@ -1,7 +1,10 @@
 # Creation of a Pipe
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # create vertices
index 724810c580b21871424995de86282d7b47a56957..f38f0816b6feeb868b48d8a04ebf56203813a155 100644 (file)
@@ -1,7 +1,10 @@
 # Creation of a PipeWithDifferentSections
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 Wire_1 = geompy.MakeSketcher("Sketcher:F 0 0:TT 100 0:R 0:C 100 90:T 0 200", [0, 0, 0, 0, 0, 1, 1, 0, -0])
index 4a3dfe43931fb7bd8031e70c008d564bbded0cc2..caa68c4c04808edbb6c36850bdbea86266840568 100644 (file)
@@ -1,7 +1,10 @@
 # Creation of a PipeWithShellSections
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 import math
 gg = salome.ImportComponentGUI("GEOM")
 
index 1b37a2e391f17b054746652ccfe9d654f88903a9..d9e72ae9654db84b5844e6990845ee0d42630eca 100644 (file)
@@ -1,7 +1,10 @@
 # Creation of a PipeShellsWithoutPath
 
-import geompy
-import math
+import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 import salome
 gg = salome.ImportComponentGUI("GEOM")
 
index 4777e071b4e0488f0d73c094d96203bdf8660a5b..bb4cac595aa01ea202b6b8565d4922facc75eeae 100644 (file)
@@ -1,4 +1,9 @@
 # Creation of a PipeBiNormalAlongVector
+import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 
 def MakeHelix(radius, height, rotation, direction):
     #  - create a helix -
@@ -14,7 +19,6 @@ def MakeHelix(radius, height, rotation, direction):
     length_z  = height
     length_xy = radius*rotation
     length = sqrt(length_z*length_z + length_xy*length_xy)
-    import geompy
     nb_steps = 1
     epsilon = 1.0e-6
     while 1:
@@ -48,7 +52,6 @@ def MakeSpring(radius, height, rotation, direction, thread_radius, base_rotation
     # create a helix
     helix = MakeHelix(radius, height, rotation, direction)
     # base in the (Ox, Oz) plane
-    import geompy
     p0 = geompy.MakeVertex(radius-3*thread_radius, 0.0, -thread_radius)
     p1 = geompy.MakeVertex(radius+3*thread_radius, 0.0, -thread_radius)
     p2 = geompy.MakeVertex(radius+3*thread_radius, 0.0, +thread_radius)
index 55c347a1faff69b2bbf7d0d772b58b37d1e02064..9615ad1ef7659276eb3f788120f5d40b2b1924bf 100644 (file)
@@ -1,7 +1,10 @@
 # Creation of a Middle Path
 
 import salome
-import geompy
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 
 # Create a box
 Box_1 = geompy.MakeBoxDXDYDZ(200, 200, 200)
index 8a14455eff5872247fb75072852f1989017b8900..b5128150594c7444354e4472faa21b6301a177f2 100644 (file)
@@ -1,7 +1,10 @@
 # Creation of Tangent Plane On Face
 
 import salome
-import geompy
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 
 # Create Vertexes for curve
 Vertex_1 = geompy.MakeVertex(0, 0, 0)
index 7582f79dcb9c584863fb51a380b747e69ae4b587..d36bbbbf71a794faea8cce944629931a6a126a13 100644 (file)
@@ -1,8 +1,11 @@
 # Check Free Boundaries
 
 import os
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # create boxes
index 16d705614394039b3a616fb188441f27933fd7e3..2d1de5a007a919515c7a6274c83c341566d82fe5 100644 (file)
@@ -1,7 +1,10 @@
 # Check Free Faces
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # create a vertex and a vector
index 267fa870a72eb7f739442272909ef45b876473aa..87bf934a6b5dbca8f7aa1f5009b5accc569d5832 100644 (file)
@@ -1,7 +1,10 @@
 # Get Non Blocks
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 
 # create solids
 box = geompy.MakeBoxDXDYDZ(100, 100, 100)
index ecde2442f12be3e4f0104654d9270e22310069e0..158fc637553af3832a061c2001ae70a8c1fa160d 100644 (file)
@@ -1,7 +1,10 @@
 # Import/Export
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 
 # Example of import from IGES using various formats
 
index 203a3943686fa7a5f94f962d761dc28baf91178a..a63608c12623a27533b2481663d9be0cc45c6a0c 100644 (file)
@@ -1,7 +1,10 @@
 # Inertia
 
-import geompy
-import math
+import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 
 # create a box
 box = geompy.MakeBoxDXDYDZ(100,30,100)
index e6048bba27abe55d83babe89fa3527471d11009b..e48804b308cc6f10700772995bd2978764ab2fd6 100644 (file)
@@ -1,6 +1,10 @@
 # Minimal Distance
 
-import geompy
+import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 
 # Create two curves with three closest points
 Vertex_1 = geompy.MakeVertex(0, 0, 0)
index 572b0f9f8e2df22007f6e89811f052b0b006b9e2..91eac0b5a3876befb0be8cf8942d592f2ba51043 100644 (file)
@@ -1,6 +1,10 @@
 # Normal to a Face
 
-import geompy
+import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 import math
 
 # create a box
index a84ae87de1b3db36478a6a7cacb8ee86b87ec360..5b52d9f2c3b0c78d597c78227b61ad9a6fee3e37 100644 (file)
@@ -1,7 +1,10 @@
 # Using SALOME NoteBook
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 import salome_notebook
 gg = salome.ImportComponentGUI("GEOM")
 
index 802c88ca566780fc6ac5d8f5b04d4c7d6979b3cf..e31569b69e96b12f96524b30d99d0e89356f1ab1 100644 (file)
@@ -1,7 +1,11 @@
 # Point Coordinates
 
 import math
-import geompy
+import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 
 # create a point
 point = geompy.MakeVertex(15., 23., 80.)
index 77db019cdf6f28d22be120eb98fd4afe5f1dff85..41590a5443fb3f7c947f536ce88bbb741c3642d8 100644 (file)
@@ -1,7 +1,10 @@
 # Creation of a Box
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # create vertices
index ed6a6f9a69dd6f79b42f31180fcadc53b47c29b0..d55d6510fdeb7b50fee463ab4ca1bd1775b0cc9a 100644 (file)
@@ -1,7 +1,10 @@
 # Creation of a Cylinder
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 
 gg = salome.ImportComponentGUI("GEOM")
 
index 21dbc9e7edd19e7b148c2212367e667093af075c..4f07701efe3d68685687d700135134e48db7eb97 100644 (file)
@@ -1,7 +1,10 @@
 # Creation of a Sphere
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # create a vertex
index 99a003a4b4bdb07eedba9f64d61a3a59abf87c6b..4e27ac41c53bbef9bbe372ac34b3f4d6b9da6b95 100644 (file)
@@ -1,7 +1,10 @@
 # Creation of a Torus
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # create a vertex and a vector
index b563303b27765888f930925cbcba64c0ed7ec002..61fcc3846d85a9dc5c945f018059c964311369a1 100644 (file)
@@ -1,7 +1,10 @@
 # Creation of a Cone
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # create a vertex and a vector
index d3fd53e353d709f013741ff2442cb1206d027238..b639ec0ca885482825af33f7df0673b90ecfa719 100644 (file)
@@ -1,7 +1,10 @@
 # Creation of a Disk
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # create vertices
index 75dad1e945fc42abef584a9c960f5b25ef6e3bcc..e5989dfe4ed97baa4fb72872a71b819dfe4332a9 100644 (file)
@@ -1,7 +1,10 @@
 # Creation of a Rectangle
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # create vertices
index 8a57db0407a606fd828f48fcae5f11bcf9b44c50..dc937caf00863d4903a37170ef26c1888d06ebd4 100644 (file)
@@ -1,7 +1,10 @@
 # Shape Processing
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # create vertices, an edge, an arc, a wire, a face and a prism
index f5ee65caf6385ef9275c78b63513faf5c2609d74..344ec4bff18bc686d598f25a2a9db5761278204d 100644 (file)
@@ -1,7 +1,10 @@
 # Suppress Faces
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # create a box
index 50eec11267b1d8a14a980741f46b93bec3d89fd1..8b8baedbd7ff845a6c1519a99205725333e3d384 100644 (file)
@@ -1,7 +1,10 @@
 # Close Contour
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # create vertices and vectors
index fad69131c59fb08e4a7ff680c4776aa478ed6d5f..242b17231d3ed3385b654857ac5add74fc82d674 100644 (file)
@@ -1,7 +1,10 @@
 # Suppress Internal Wires
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # create a vertex and a vector
index b7534ab654e2aa820a0fb59749cc92e75f0a26b4..e5fef2bb59719405501b7e052afb10ebe5681211 100644 (file)
@@ -1,8 +1,10 @@
 # Suppress Holes
 
-import geompy
 import salome
+salome.salome_init()
 import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # create a vertex and a vector
index e6120a7a6319941e510eb68401779f9e68da904c..8935962bf6457a9661054fb74b220aa6382e7f2e 100644 (file)
@@ -1,7 +1,10 @@
 # Sewing
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 import math
 gg = salome.ImportComponentGUI("GEOM")
 
index 6cc688a4e20a4def9a94d4732a0114fb821ab524..1a7ff79a472fa97d0778d7ccff6514386a46c261 100644 (file)
@@ -1,7 +1,10 @@
 # Glue Faces
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # create boxes
index a39d1108887996fcf11cc4ea070d3b7f61cc40e9..933298eefc439ae0c8653bdc26e93ff143c9968d 100644 (file)
@@ -1,7 +1,10 @@
 # Glue Edges
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # create boxes
index e94b1aa03c45c3f345ac93c3b28df88f96f635ca..2875051d269ea1db06769cd0e0d0ace843088a2c 100644 (file)
@@ -1,7 +1,10 @@
 # Limit Tolerance
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # import initial topology with bad tolerances (more than 1e-07)
index 7849a7cf50678c1d666a3b19aa0290fbe2d5e94c..898991b4e80931ef5f90ac36ef9a8d12997dab49 100644 (file)
@@ -1,7 +1,10 @@
 # Add Point on Edge
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 
 # create vertices
 p1 = geompy.MakeVertex(0,0,50)
index 396881c72a919489f96ea80d388bbd20aeb2e9a4..1b50e6ffd8f7566279a198968082864eabf948ac 100644 (file)
@@ -1,7 +1,10 @@
 # Fuse Collinear Edges within a Wire
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 
 # create vertices
 p1 = geompy.MakeVertex(0, 0, 0)
index 8ca1f98ce11aba7482e8b361b879dc0ddab5946a..6cd355da94bb62b8d78fc35fe9461c6f6c92ec11 100644 (file)
@@ -1,7 +1,10 @@
 # 2D Sketcher
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # create vertices
index 639a676cf27405e7f601b31cc50909aabb86552a..ac72a303119ece6a456f42204b7d18462a94cb12 100644 (file)
@@ -1,6 +1,10 @@
 # Tolerance
 
-import geompy
+import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 
 # create a box
 box = geompy.MakeBoxDXDYDZ(100,30,100)
index 77c1d18076449e6cbc813832c6ee3fdabb7bb004..257819c3d14311675335836436f662035ebbe05d 100644 (file)
@@ -1,7 +1,10 @@
 # Creation of an Edge
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 #
index 62806d770cc97cf25c38757e228975592c17a5f1..eb12ea6a5541a89a42fb878dd063fccb82ac0d22 100644 (file)
@@ -1,7 +1,10 @@
 # Creation of a Wire
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # create vertices
index 7b1600153fd17235840f5e9695af70ac71330514..db2f060a907c074b888d576fbe387f17a62c0a15 100644 (file)
@@ -1,7 +1,10 @@
 # Creation of a Face
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # create vertices
index b85e553f2b5dde410998f0e4b49c35d3f1ea0d7c..31a938dda55d61215a1c8ef3cf2653f9c324923c 100644 (file)
@@ -1,7 +1,10 @@
 # Creation of a Shell
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 #create vertices
index 700236b033c173c80f11fa9cb7a1bda18da52e7e..67bf79084cc0d75a53e421939f8c853dc9735ec8 100644 (file)
@@ -1,7 +1,10 @@
 # Creation of a Solid
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 #create vertices
index 071730b5299ca65fb012a1f3c8797272edf24c20..7ae16d8e6acac3356e57c85731a1034dfc72d93f 100644 (file)
@@ -1,7 +1,10 @@
 # Creation of a Compound
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # create a vertex and a vector
index 678afa9e2e1b614d29ea15ef724be96c4ae99936..5a01039fd0989a0eade93e689341603eda67b6ed 100644 (file)
@@ -1,7 +1,10 @@
 # Translation
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # create a vertex and a vector
index 7abbb78738bae1bc4694dec445e9f89e96e66dc0..564e1409d7b871871390bd0f59ebba86d1e41e32 100644 (file)
@@ -1,7 +1,10 @@
 # Rotation
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 import math
 gg = salome.ImportComponentGUI("GEOM")
 
index 3d250fd482e26232ee2e055035e14bf4ba64b553..6870a352958d5405dff9c316d7668464ed9c3a8e 100644 (file)
@@ -1,7 +1,10 @@
 # Modify Location
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 import math
 gg = salome.ImportComponentGUI("GEOM")
 
index 28e8b308a433ef0543c6d80ca085ddaf26d9d92d..ebcd1f48d103ab8aa5532796b19e6fdf62f753e6 100644 (file)
@@ -1,7 +1,10 @@
 # Mirror Image
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # create a box
index 7b906b9699172c114aa006ffa96c099a6b7f68dc..948fa0087bf667e7c0ae7aebbeb3417642556175 100644 (file)
@@ -1,7 +1,10 @@
 # Scale Transform
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # create a box and a sphere
index f6c2adfd4b3b8e6d2103ebf6db5dfa3501546022..64f8b66156e768c7ebf95c88fc68e3fc6775c816 100644 (file)
@@ -1,7 +1,10 @@
 # Offset Surface
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # create a box and a sphere
index c1efc39e32d6dfb704ad9be540736a5e81897064..206b93e803d6c0097d1c66fd191b1964c7e7c2ed 100644 (file)
@@ -1,7 +1,10 @@
 # Projection
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 
 # create a cylindric face and a curve(edge)
 cylinder = geompy.MakeCylinderRH(100, 300)
index fb103f950e72f1dfda342abd20dc5badde4bc550..c26774d6630eee5eb3bd323573eb34695da07582 100644 (file)
@@ -1,7 +1,10 @@
 # Multi Translation
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # create vertices and vectors
index 665a2acb376b93cf21cfd42fe51944a58a251e84..3467b5be654c521642a34fe2fadd8bdbeadf303a 100644 (file)
@@ -1,7 +1,10 @@
 # Multi Rotation
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 import math
 
index cd25273316a7ff1bcbe91482818eed156b2669d8..17747db1bbaa9dd0bbea1a62db7b9493d4c763f4 100644 (file)
@@ -1,7 +1,10 @@
 # Fillet 2D
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # create a face in OXY plane
index f3b4bd095910d29288d2a8fe916c8985341fc087..0bf3de12b57e5773105fc643890817aa590d9a7d 100644 (file)
@@ -1,7 +1,10 @@
 # Fillet 1D
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # create box
index 1f0f31c977455c82ba0ab3be6841cfa959deb8be..a59eda05f9f788ae3c2e4f4e1b4a80b95aadb4df 100644 (file)
@@ -1,7 +1,10 @@
 # Fillet
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 radius  = 10.
 ShapeTypeEdge = geompy.ShapeType["EDGE"]
index ecc896e2b3ba4b31cdc48c4fa0160ae957803027..ba857a05b74560affa1729547e1adf3cfc94be8f 100644 (file)
@@ -1,7 +1,10 @@
 # Chamfer
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 d1 = 10.
 d2 = 10.
index 473c7f15a591e726bcf95b4544ddf1fd84d3c9e5..0458d42bf38001c72ce42d0ee862d6dd99b1f90d 100644 (file)
@@ -1,7 +1,10 @@
 # Changing Display Mode
 
 import salome
-import geompy
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 box = geompy.MakeBox(0,0,0, 50,50,50)
 box2 = geompy.MakeBox(-50,-50,-50, 0,0,0)
 
index fd8243d2f1df38224cefcc71414920263a78c99b..b8629d61c5f72842c1030c4fcb97bd04030670c1 100644 (file)
@@ -1,7 +1,10 @@
 # Changing Color
 
 import salome
-import geompy
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 box = geompy.MakeBox(0,0,0, 50,50,50)
 
 sphere = geompy.MakeSphere(50,50,50, 30)
index 381f0e9ae525d3dda486e33c2a99aa13d0d807a6..9932eeec68fdf4e107eb14ab5d908774d83ef3a5 100644 (file)
@@ -1,7 +1,10 @@
 # Changing Transparency
 
 import salome
-import geompy
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 
 box = geompy.MakeBox(0,0,0, 50,50,50)
 sphere = geompy.MakeSphere(50,50,50, 30)
index f31edefeea4e883533c8ec44643d827173acbb9c..cbfcf40e6dedc38ecc467158506644b322784443 100644 (file)
@@ -1,8 +1,10 @@
 # Set Point Marker
 
 import salome
-import geompy
+salome.salome_init()
 import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 
 texture = geompy.LoadTexture(os.getenv("DATA_DIR")+"/Textures/texture1.dat")
 
index 42e7e4e4dc8e2fc24991085b34805248080f2e6c..632ab6226abb635c59fe07decd37206d745c3421 100644 (file)
@@ -1,6 +1,10 @@
 # What Is
 
-import geompy
+import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 
 # create a box
 box = geompy.MakeBoxDXDYDZ(100,30,100)
index 821862f4a7a2b27f0efdd95b8d3ca2ff1a3440b2..26678d58f394b30a91524aa37f56f0b01d7dfa16 100644 (file)
@@ -1,7 +1,10 @@
 # Creation of a group
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # create two vertices
index 4c415babe0c18b6b6c49b41da29f0b80decd32c3..6531cbfc992850e2f1f2d8fca8d53bf53a8240ef 100644 (file)
@@ -1,7 +1,10 @@
 # Adding an object to the group
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # create two vertices
index 2c8a3d5f38770242ca508c08bf11e1fff9c73660..0170d54ed7e678f93158835baeeea4f517ff1f00 100644 (file)
@@ -1,7 +1,10 @@
 # Removing an object from the group
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 gg = salome.ImportComponentGUI("GEOM")
 
 # create two vertices
index 945ae61fcb00c454d45cb462ad0a7aa6e41c4296..af9fc6f12280074dd02d71b6cea99901df116177 100644 (file)
@@ -1,7 +1,10 @@
 # Union Groups
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 
 # create a box and some groups of faces on it
 Box_1 = geompy.MakeBoxDXDYDZ(200, 200, 200)
index 422c67274624970e81f37e1efc513f6eeacaa9c7..50af27d5ea2660474dbb91d77cf55bed91dbbb79 100644 (file)
@@ -1,7 +1,10 @@
 # Intersect Groups
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 
 # create a box and some groups of faces on it
 Box_1 = geompy.MakeBoxDXDYDZ(200, 200, 200)
index 65c4fe21edb0683ca443d80893ab499740b8ef77..27fb6d509d86789f365e3bfd2a163b5a9dc71ccd 100644 (file)
@@ -1,7 +1,10 @@
 # Cut Groups
 
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 
 # create a box and some groups of faces on it
 Box_1 = geompy.MakeBoxDXDYDZ(200, 200, 200)
index 3b96e0abd42875ad17f27a9f8f1511d4f374ff2c..e8290f44ef610c4c38122c0eba03678df516a6f1 100755 (executable)
@@ -30,10 +30,6 @@ guidocdir = $(docdir)/gui/GEOM
 guidoc_DATA = images/head.png static/SALOME_BOA_PA.pdf
 
 usr_docs: doxyfile_tui doxyfile_py doxyfile
-       echo "===========================================" ;                    \
-       echo "Replacing geompyDC by geompy" ;                                   \
-       echo "===========================================" ;                    \
-       $(KERNEL_ROOT_DIR)/bin/salome/prepare_generating_doc.py geompy.py $(top_srcdir)/src/GEOM_SWIG/geompyDC.py geompy ;      \
        echo "===========================================" ;                    \
        echo "Generating examples documentation" ;                              \
        echo "===========================================" ;                    \
index bd50daa50e2129dabac8e52873c7e29b50b4b6d8..94e36663ffbde2b5b038f6d44e19d1298fa320e5 100755 (executable)
@@ -60,7 +60,7 @@ HIDE_FRIEND_COMPOUNDS  = NO
 HIDE_IN_BODY_DOCS      = NO
 INTERNAL_DOCS          = YES
 CASE_SENSE_NAMES       = YES
-HIDE_SCOPE_NAMES       = NO
+HIDE_SCOPE_NAMES       = YES
 SHOW_INCLUDE_FILES     = YES
 INLINE_INFO            = YES
 SORT_MEMBER_DOCS       = NO
@@ -99,7 +99,7 @@ EXAMPLE_RECURSIVE      = NO
 #---------------------------------------------------------------------------
 #Input related options
 #---------------------------------------------------------------------------
-INPUT             = geompy.py @top_srcdir@/src/GEOM_SWIG/gsketcher.py @top_srcdir@/idl/GEOM_Gen.idl
+INPUT             = @top_srcdir@/src/GEOM_SWIG/geomBuilder.py @top_srcdir@/src/GEOM_SWIG/gsketcher.py @top_srcdir@/idl/GEOM_Gen.idl
 FILE_PATTERNS     = 
 IMAGE_PATH        = @srcdir@/images
 EXAMPLE_PATH      = @top_srcdir@/src/GEOM_SWIG
index a5b55449a48b9800ab95c1579ac168770d2b7334..2d96537163c8143ceeae7d1cef1a231c1969928d 100644 (file)
@@ -73,7 +73,12 @@ that allows converting the geometrical object id value to its string representat
 
 For example, the output of the following code:
 \code
-import geompy
+import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
+
 box = geompy.MakeBoxDXDYDZ(10,10,10)
 type = geompy.ShapeIdToType(box.GetType())
 print type
@@ -94,8 +99,12 @@ of the \b GEOM_Object interface.
 
 For example:
 \code
-import geompy
+import salome
+salome.salome_init()
 import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
+
 box = geompy.MakeBoxDXDYDZ(10,10,10)
 type = box.GetShapeType()
 print type == GEOM.SOLID
index f34f87fe1f9933afeb104fdae0830d075374d7f1..c6411b7de0f87b7e3f9432c39270fb641f2f3213 100644 (file)
@@ -1,15 +1,20 @@
 /*!
 
-\page geompy_page Python Interface geompy.py
+\page geompy_page Python Interface geomBuilder.py
 
 \n Please, see
-<a href="geompy_doc/modules.html">structured documentation for geompy.py</a>,
+<a href="geompy_doc/modules.html">structured documentation for geomBuilder.py</a>,
 where all package functionality is separated in groups by purpose.
 
-\n Also you can find any function in the \ref geompy
-"linear documentation for geompy.py".
+\n Also you can find any function in the \ref GEOM_SWIG.geomBuilder
+"linear documentation for geomBuilder.py".
 
-By the links below you can find sample scripts for all operations
+\n
+\anchor tui_sample_geom_script
+<br><h2>GEOM Python script example</h2>
+\tui_script{GEOM_box.py}
+
+\n By the links below you can find sample scripts for all operations
 provided by Geometry module.
 
 <ul>
index 5a2062330f1375904df887b31a7570d96a071240..572b58be8f3b925da6453d04a14721487542ffa0 100644 (file)
@@ -52,17 +52,17 @@ def getGeompy(studyId = None):
     if studyId is None:
         studyId = getActiveStudyId()
     if not _geompys.has_key(studyId):
-        import geompyDC
+        from salome.geom import geomBuilder
         _geompys[studyId] = salome.lcc.FindOrLoadComponent("FactoryServer",
                                                            "GEOM")
-        _geompys[studyId].ShapeType = geompyDC.ShapeType
-        _geompys[studyId].GEOM = geompyDC.GEOM
-        _geompys[studyId].kind = geompyDC.kind
-        _geompys[studyId].info = geompyDC.info
-        _geompys[studyId].PackData = geompyDC.PackData
-        _geompys[studyId].ReadTexture = geompyDC.ReadTexture
+        _geompys[studyId].ShapeType = geomBuilder.ShapeType
+        _geompys[studyId].GEOM = geomBuilder.GEOM
+        _geompys[studyId].kind = geomBuilder.kind
+        _geompys[studyId].info = geomBuilder.info
+        _geompys[studyId].PackData = geomBuilder.PackData
+        _geompys[studyId].ReadTexture = geomBuilder.ReadTexture
         study = salome.myStudyManager.GetStudyByID(studyId)
-        _geompys[studyId].init_geom(study)
+        _geompys[studyId] = geomBuilder.New(study)
     return _geompys[studyId]
 
 
index aeba6b43b5fe79927e968d5fb346248f8a9b759a..70998e569fb9aaf948610c60f84d3c8d079d6991 100644 (file)
@@ -38,7 +38,8 @@ Example::
     wire = mysketcher.getGeomWire()
 
     # Put it in the study
-    import geompy
+    from salome.geom import geomBuilder
+    geompy = geomBuilder.New(salome.myStudy)
     geompy.addToStudy( wire, 'mysketch' )
 
 Additionnal examples can be found as unit tests in the source code.
@@ -46,7 +47,11 @@ Additionnal examples can be found as unit tests in the source code.
 
 geompyEnable = True
 try:
-    import geompy
+    import salome
+    salome.salome_init()
+    import GEOM
+    from salome.geom import geomBuilder
+    geompy = geomBuilder.New(salome.myStudy)
 except:
     geompyEnable = False
     
index be6557887a48db2fa36e49be221210655237c605..11c4eaede6d37b2af069fe2044e434d1e69d89d8 100644 (file)
@@ -414,7 +414,11 @@ class StructuralElement:
 
 
 def TEST_CreateGeometry():
-    import geompy
+    import salome
+    salome.salome_init()
+    import GEOM
+    from salome.geom import geomBuilder
+    geompy = geomBuilder.New(salome.myStudy)
     import SALOMEDS
     geompy.init_geom(salome.myStudy)
     Box_1 = geompy.MakeBoxDXDYDZ(200, 200, 200)
index 66ff092f3bfd6c527de574eac529b81a8d1ddbdd..76f7752ee3720dac031c7c853d3845bd737e0a4e 100755 (executable)
 #Auhtor                 :MASLOV Eugeny, KOVALTCHUK Alexey 
 #####################################################################
 #
-import geompy
-import salome
 import os
 import math
 
+import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
+
 #Sketcher_1 creation
 Sketcher_1 = geompy.MakeSketcher("Sketcher:F 100 -57.7:TT 100 57.7:TT 0 115.47:TT -100 57.7:TT -100 -57.7:TT 0 -115.47:WW") 
 geompy.addToStudy(Sketcher_1, "Sketcher_1")
index fb2ab3e15dff92f98c7e328ecbcd55bf333058ad..24edd3415821563ad161416ca7a770e0d0eb0718 100644 (file)
 #  Module : GEOM
 #
 import salome
-import geompy
-
-geom = salome.lcc.FindOrLoadComponent("FactoryServer", "GEOM")
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 
 # Create several objects
 obj1 = geompy.MakeVertex(0.,0.,0.)
@@ -45,13 +46,13 @@ obj4_entry = geompy.addToStudy(obj4, "Object4")
 obj5_entry = geompy.addToStudy(obj5, "Object5")
 
 # Get information about objects
-hasInfo = geom.hasObjectInfo()
+hasInfo = geompy.hasObjectInfo()
 print "Check if GEOM module provides information about its objects: ", hasInfo
 if hasInfo == True:
-    print "Information about first  object: ", geom.getObjectInfo(salome.myStudyId, obj1_entry) 
-    print "Information about second object: ", geom.getObjectInfo(salome.myStudyId, obj2_entry)
-    print "Information about third  object: ", geom.getObjectInfo(salome.myStudyId, obj3_entry)
-    print "Information about fourth object: ", geom.getObjectInfo(salome.myStudyId, obj4_entry)
-    print "Information about fifth  object: ", geom.getObjectInfo(salome.myStudyId, obj5_entry)
+    print "Information about first  object: ", geompy.getObjectInfo(salome.myStudyId, obj1_entry)
+    print "Information about second object: ", geompy.getObjectInfo(salome.myStudyId, obj2_entry)
+    print "Information about third  object: ", geompy.getObjectInfo(salome.myStudyId, obj3_entry)
+    print "Information about fourth object: ", geompy.getObjectInfo(salome.myStudyId, obj4_entry)
+    print "Information about fifth  object: ", geompy.getObjectInfo(salome.myStudyId, obj5_entry)
 
 salome.sg.updateObjBrowser(1)
index c997485829265e6fec189feb00c68198f8767848..4e210626a58ef014d37df539a297944d37a3948b 100755 (executable)
@@ -43,8 +43,11 @@ colis_center = sqrt(2.0)*colis_step/2
 
 # --
 
-import geompy
-geom = geompy.geom
+import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 
 boolean_common  = 1
 boolean_cut     = 2
index 838693dbbc4a5fff690944d9b973458f60c8cce1..a9bf7aa0138d25740938601e153e39e413d30a56 100755 (executable)
 # Geometrie avec une galerie perpendiculaire
 # --------------------------------------------
 #
-import geompy
-geom = geompy.geom
+
+import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 
 vecx = geompy.MakeVectorDXDYDZ(1.,0.,0.)
 vecy = geompy.MakeVectorDXDYDZ(0.,1.,0.)
index 7fcbc8019d3eec7372e28ff504359bf804f8ed89..567a9add72c8408fee1273d14cd71296e658f629 100755 (executable)
 # import callovo_01_GEOM
 # reload(callovo_01_GEOM)
 #
-import geompy
-geom = geompy.geom
+import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 
 vecx = geompy.MakeVectorDXDYDZ(1.,0.,0.)
 
index b0240a5e70dac8e46dd7ce201aec637f71741e9d..208a32302d8ce1c5d7ffe53169062ea6290cd6a3 100755 (executable)
@@ -49,8 +49,11 @@ gmDz = 100.0
 
 # --
 
-import geompy
-geom = geompy.geom
+import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 
 # -- Construction de backfill
 
index 8c22f0db46757d8498e2296cad59c3e629414cfb..e57a8478b872fc595522654aebbcf85a3ad0bc9c 100755 (executable)
 # reload(gallery_01_GEOM)
 # -- Import geompy pour piloter GEOM par script
 #
-import geompy
-geom = geompy.geom
+import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 
 # -- Dimensions de la boite enti\88re
 
index ade5407af1c6d80096d3d26dce9f1d096e4a4ecc..658a73bf58db6733d3e6637bf52b98eb20006fdf 100644 (file)
 #  Author : Damien COQUERET, Open CASCADE
 #  Module : GEOM
 #
-import geompy
+import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 
 #SKETCHER INFOS
 #Init Sketcher
index 6ad689eb0a6d2ddeec4a9c16e3d5aa29953d5916..71b00c66efe05ae7dca6df91d82827eff2face5e 100644 (file)
 #  Module : GEOM
 #
 import salome
-import geompy
-import math
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 
+import math
 import GEOM_Spanner
 
 isBlocksTest = 0 # False
diff --git a/src/GEOM_SWIG/GEOM_box.py b/src/GEOM_SWIG/GEOM_box.py
new file mode 100644 (file)
index 0000000..1d9864b
--- /dev/null
@@ -0,0 +1,16 @@
+# --- salome initialization
+import salome
+salome.salome_init()
+
+# --- geom Python interface
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
+
+# --- Create a box and publish it into the salome study
+Box_1 = geompy.MakeBoxDXDYDZ(200, 200, 200)
+geompy.addToStudy( Box_1, 'Box_1' )
+
+# --- update the study object browser
+if salome.sg.hasDesktop():
+  salome.sg.updateObjBrowser(1)
index 07ff303bbbe909746ceb93bb38417312b734588d..fcb3d9fda3013fc8f4b709fd638c664401c844cf 100755 (executable)
 # ------
 #
 import salome
-import geompy
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
+
 geomgui = salome.ImportComponentGUI("GEOM") 
 import salome_ComponentGUI
 def addToStudy(shape, name):
index b4b66046e63c3b8070b936b6f9a4d4fc6e5332a6..c84b7c5e460fc0a98341bce72d0233bd45657e19 100644 (file)
 #  Module : GEOM
 #
 import salome
-import geompy
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 
 ind = 0
 boxlist = []
index accb3eb6d9db24656ce773f991e7238884aa6211..6797c82d78585a20ebe2907423c2c581e2b9c9a7 100644 (file)
 #  Module : GEOM
 #
 import salome
-import geompy
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 import math
 
 geom = salome.lcc.FindOrLoadComponent("FactoryServer", "GEOM")
index 2537a9fe523fee35ec52ead8d870eab04013bf65..15b41c9460be6f1d9dbc5dc9de15c6c3678062dc 100644 (file)
 #  Module : GEOM
 #
 import salome
-import geompy
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 import math
 from time import sleep
 import salome_ComponentGUI
-geom = salome.lcc.FindOrLoadComponent("FactoryServer", "GEOM")
-myBuilder = salome.myStudy.NewBuilder()
 
 gg = salome.ImportComponentGUI("GEOM")
 
-BasicOp  = geom.GetIBasicOperations(salome.myStudyId)
-PrimOp   = geom.GetI3DPrimOperations(salome.myStudyId)
-InsertOp = geom.GetIInsertOperations(salome.myStudyId)
-TrsfOp   = geom.GetITransformOperations(salome.myStudyId)
+BasicOp  = geompy.GetIBasicOperations(salome.myStudyId)
+PrimOp   = geompy.GetI3DPrimOperations(salome.myStudyId)
+InsertOp = geompy.GetIInsertOperations(salome.myStudyId)
+TrsfOp   = geompy.GetITransformOperations(salome.myStudyId)
 
 point0  = BasicOp.MakePointXYZ(0.,0.,0.)
 pointz1 = BasicOp.MakePointXYZ(0.,0.,1.)
@@ -83,6 +84,7 @@ shapeList.append(torus2)
 idList.append(id_torus1)
 idList.append(id_torus2)
 
+print shapeList
 cage = geompy.MakeCompound(shapeList)
 id_cage = geompy.addToStudy(cage,"cage")
 if not isinstance(gg, type(salome_ComponentGUI)):
index 701d40b72ae4ba775314cfd460796dde93f1da95..e92d45d9689db1adf47598a54783329b70d1e7cb 100755 (executable)
 #  GEOM GEOM_SWIG : binding of C++ omplementaion with Python
 #  File   : GEOM_example4.py
 #  Module : GEOM
-#import SMESH
-#import smeshpy
 #
 import salome
-from salome import sg
-import math
-
-import geompy
-
-geom = salome.lcc.FindOrLoadComponent("FactoryServer", "GEOM")
-myBuilder = salome.myStudy.NewBuilder()
-#from geompy import gg
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 
-#smeshgui = salome.ImportComponentGUI("SMESH")
-#smeshgui.Init(salome.myStudyId);
-
-ShapeTypeCompSolid = 1
-ShapeTypeSolid = 2
-ShapeTypeShell = 3
-ShapeTypeFace = 4
-ShapeTypeWire = 5
-ShapeTypeEdge = 6
-ShapeTypeVertex = 7
+import math
 
 pi=math.pi
 
index 7675961854d4695e78117523aa81683e6b2a26b9..2ba66cc0c45d238bdfef710dff8560e7817f6fb1 100644 (file)
 #  Module : GEOM
 #
 import salome
-import geompy
-
-geom = salome.lcc.FindOrLoadComponent("FactoryServer", "GEOM")
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 
 #Create Points
-BasicOp = geom.GetIBasicOperations(salome.myStudyId)
+BasicOp = geompy.GetIBasicOperations(salome.myStudyId)
 Vertex1 = BasicOp.MakePointXYZ(0., 0., 0.)
 Vertex2 = BasicOp.MakePointXYZ(100., 20., 30.)
 Vertex3 = BasicOp.MakePointXYZ(150., 100., -25.)
index e168d341c09d67f1d9154410f4ecab70adf5ca29..9959d8ad5fa2cb1f74be3ed47e1761f1d23057b8 100755 (executable)
 #  Module : GEOM
 #
 import salome
-import geompy
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 
 ind = 1
 circlelist = []
index fa7179665e4cd935a0bc95c5b219055b87f7382a..fa5f3a677de41023b7455c93ddb2e7e741a5e843 100644 (file)
 #  Author : Vadim SANDLER, Open CASCADE S.A.S. (vadim.sandler@opencascade.com)
 # ---
 #
-import salome
-import geompy
 import os
+import salome
+salome.salome_init()
 import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 
 data_dir = os.getenv('DATA_DIR')
 if data_dir:
index 436030004418abe4a7a2b4f91fb291b831e21b02..de014111947857ffaa45fdbcd79f71364fe2a978 100644 (file)
 #  Module : GEOM
 #
 import salome
-import geompy
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 import math
 
-geom = salome.lcc.FindOrLoadComponent("FactoryServer", "GEOM")
-myBuilder = salome.myStudy.NewBuilder()
-
 #Variables modifiables
 PosX = 0          #Position du cylindre dans l'espace
 PosY = 0          #Il est oriente suivant Z
@@ -56,7 +56,7 @@ PosCour = PosZ + HauteurT * 4 / 7
 PosRot = PosZ + 0.9 * HauteurT
 
 #Points
-BasicOp = geom.GetIBasicOperations(salome.myStudyId)
+BasicOp = geompy.GetIBasicOperations(salome.myStudyId)
 OO = BasicOp.MakePointXYZ(0, 0, 0)
 P0 = BasicOp.MakePointXYZ(0, 0, 1)
 P1 = BasicOp.MakePointXYZ(PosX, PosY, PosZ)
index bc935d538c3168a72622a899682c597ed2ff8bb1..1972a6128633fb4eba1c7d0c6a348c082bf7e0d9 100755 (executable)
 # -------
 #
 import salome
-import SALOMEDS
-
-import geompy
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 
 # Interface with geometry
 # -----------------------
@@ -42,8 +43,6 @@ import geompy
 #geom = salome.lcc.FindOrLoadComponent("FactoryServer", "GEOM")
 geomgui = salome.ImportComponentGUI("GEOM")
 
-geom = geompy
-
 # Interface with study
 # --------------------
 
@@ -58,23 +57,23 @@ def setName(obj):
 
 
 def MakeVertex(x, y, z):
-    v = geom.MakeVertex(x, y, z)
+    v = geompy.MakeVertex(x, y, z)
     setName(v)
     return v
 
 def MakeEdge(v1, v2):
-    e = geom.MakeEdge(v1, v2)
+    e = geompy.MakeEdge(v1, v2)
     setName(e)
     return e
 
 def MakeArc(f, p, t):
-    e = geom.MakeArc(f, p, t)
+    e = geompy.MakeArc(f, p, t)
     setName(e)
     return e
 
 def MakeArcCenter(c, f, t):
     p = fkl(c, f, t)
-    e = geom.MakeArc(f, p, t)
+    e = geompy.MakeArc(f, p, t)
     setName(e)
     return e
 
@@ -89,8 +88,8 @@ def MakeQuadFace(e1, e2, e3, e4):
     l.append(e2)
     l.append(e3)
     l.append(e4)
-    w = geom.MakeWire(l)
-    f = geom.MakeFace(w, 1)
+    w = geompy.MakeWire(l)
+    f = geompy.MakeFace(w, 1)
     setName(f)
     return f
 
@@ -112,8 +111,8 @@ def MakeQuadFaceVertex(v1, v2, v3, v4):
     l.append(e)
     e = MakeEdge(v4, v1)
     l.append(e)
-    w = geom.MakeWire(l)
-    f = geom.MakeFace(w, 1)
+    w = geompy.MakeWire(l)
+    f = geompy.MakeFace(w, 1)
     setName(f)
     return f
 
@@ -131,11 +130,11 @@ def MakeHexaSolid(f1, f2, f3, f4, f5, f6):
     l.append(f4)
     l.append(f5)
     l.append(f6)
-    s = geom.MakeShell(l)
+    s = geompy.MakeShell(l)
 # FKL: bad shell
     l = []
     l.append(s)
-    s = geom.MakeSolid(l)
+    s = geompy.MakeSolid(l)
 # FKL: MakeSolid crash
     setName(s)
     return s
@@ -155,8 +154,8 @@ def MakeRevolution(g, pt, ve, angle):
     Creates a face  by rotation of an edge with an angle around an axis defined by a point and a vector or
     creates a solid by rotation of a  face with an angle around an axis defined by a point and a vector
     """
-    axis = geom.MakeAxisStruct(pt.x, pt.y, pt.z, ve.x, ve.y, ve.z)
-    s = geom.MakeRevolution(g, axis, angle)
+    axis = geompy.MakeAxisStruct(pt.x, pt.y, pt.z, ve.x, ve.y, ve.z)
+    s = geompy.MakeRevolution(g, axis, angle)
     setName(s)
     return s
 
@@ -167,7 +166,7 @@ def MakeSewing(ls):
     Creates a face  by sewing common edges between a list of faces or
     Creates a solid by sewing common faces between a list of solids
     """
-    s = geom.MakeSewing(ls)
+    s = geompy.MakeSewing(ls)
     setName(s)
     return s
 
@@ -178,7 +177,7 @@ def MakeCommon(s1, s2):
     Creates the common face  between 2 faces or
     Creates the common solid between 2 solids
     """
-    s = geom.MakeBoolean(s1, s2, 1)
+    s = geompy.MakeBoolean(s1, s2, 1)
     setName(s)
     return s
 
@@ -188,7 +187,7 @@ def MakeFuse(s1, s2):
     """
     Fuses 2 faces or 2 solids
     """
-    s = geom.MakeBoolean(s1, s2, 3)
+    s = geompy.MakeBoolean(s1, s2, 3)
     setName(s)
     return s
 
@@ -198,7 +197,7 @@ def MakeCut(s1, s2):
     """
     Cuts 2 faces or 2 solids
     """
-    s = geom.MakeBoolean(s1, s2, 2)
+    s = geompy.MakeBoolean(s1, s2, 2)
     setName(s)
     return s
 
@@ -214,7 +213,7 @@ def MakePrism(s, v):
     Creates a face  defined by a edge   and along a vector
     Creates a solid defined by a face   and along a vector
     """
-    r = geom.MakePrism(s, point(0, 0, 0), v)
+    r = geompy.MakePrism(s, point(0, 0, 0), v)
     setName(r)
     return r
 
@@ -224,7 +223,7 @@ def MakeScaleTransform(s, center, factor):
     """
     Creates a homothety of a geometric object
     """
-    r = geom.MakeScaleTransform(s, center, factor)
+    r = geompy.MakeScaleTransform(s, center, factor)
     setName(r)
     return r
 
@@ -237,7 +236,7 @@ def MakeTranslation(s, vx, vy, vz):
     """
     Translates a vertex, an edge, a face or a solid
     """
-    r = geom.MakeTranslation(s, vx, vy, vz)
+    r = geompy.MakeTranslation(s, vx, vy, vz)
     setName(r)
     return r
 
@@ -247,8 +246,8 @@ def MakeRotation(g, pt, ve, angle):
     """
     Creates a rotation of the geometric object with an angle around an axis defined by a point and a vector
     """
-    axis = geom.MakeAxisStruct(pt.x, pt.y, pt.z, ve.x, ve.y, ve.z)
-    s = geom.MakeRotation(g, axis, angle)
+    axis = geompy.MakeAxisStruct(pt.x, pt.y, pt.z, ve.x, ve.y, ve.z)
+    s = geompy.MakeRotation(g, axis, angle)
     setName(s)
     return s
 
@@ -275,7 +274,7 @@ def MakeMirrorByPlane(s, pt, ve):
     Creates a symmetric object by plane symetry defined by a point and a normal vector
     """
     p = plane(pt, ve)
-    r = geom.MakeMirrorByplane(s, p)
+    r = geompy.MakeMirrorByplane(s, p)
     setName(r)
     return r
 
@@ -349,37 +348,35 @@ def CheckHexaSolid(s):
 # ------------------
 
 def point(x, y, z):
-    p = geom.MakeVertex(x, y, z)
+    p = geompy.MakeVertex(x, y, z)
     return p
 
 def plane(pt, dir):
-    p = geom.MakePlane(pt, d, 100)
+    p = geompy.MakePlane(pt, d, 100)
     return p
 
 # Solid
 # -----
 
 def MakeCylinder(center, dir, radius, height):
-    s = geom.MakeCylinder(center, dir, radius, height)
+    s = geompy.MakeCylinder(center, dir, radius, height)
     setName(s)
     return s
 
 def MakeBox(p1, p2):
-    s = geom.MakeBoxTwoPnt(p1, p2)
+    s = geompy.MakeBoxTwoPnt(p1, p2)
     setName(s)
     return s
 
 # Compound
 # --------
 
-ShapeType = {"COMPOUND":0, "COMPSOLID":1, "SOLID":2, "SHELL":3, "FACE":4, "WIRE":5, "EDGE":6, "VERTEX":7, "SHAPE":8}
-
 def MakePartitionList(solids, tools):
     """
     Creates a list of shape by a partition of a list of solids by a list of tools
     """
-    p = geom.Partition(solids, tools, [], [], ShapeType["SHAPE"]);
-    l = geom.SubShapeAll(p, ShapeType["SHAPE"])
+    p = geompy.Partition(solids, tools, [], [], geompy.ShapeType["SHAPE"]);
+    l = geompy.SubShapeAll(p, geompy.ShapeType["SHAPE"])
     return l
 
 def MakePartition(solids, tools):
@@ -392,25 +389,25 @@ def MakePartition(solids, tools):
     return c
 
 def BlockMakeMultiTranslation1D(shape, dir, step, times):
-    m = geom.MakeMultiTranslation1D(shape, dir, step, times)
+    m = geompy.MakeMultiTranslation1D(shape, dir, step, times)
     c  = MakeGlueFaces(m, 1.e-5)
     setName(c)
     return c
 
 def BlockMakeMultiTranslation2D(shape, dir1, step1, times1, dir2, step2, times2):
-    m  = geom.MakeMultiTranslation2D(shape, dir1, step1, times1, dir2, step2, times2)
+    m  = geompy.MakeMultiTranslation2D(shape, dir1, step1, times1, dir2, step2, times2)
     c  = MakeGlueFaces(m, 1.e-5)
     setName(c)
     return c
 
 def BlockMakeMultiRotation1D(shape, dir, point, times):
-    m = geom.MakeMultiRotation1D(shape, dir, point, times)
+    m = geompy.MakeMultiRotation1D(shape, dir, point, times)
     c  = MakeGlueFaces(m, 1.e-5)
     setName(c)
     return c
 
 def BlockMakeMultiRotation2D(shape, dir, point, angle, times1, step, times2):
-    m = geom.MakeMultiRotation2D(shape, dir, point, angle, times1, step, times2)
+    m = geompy.MakeMultiRotation2D(shape, dir, point, angle, times1, step, times2)
     c  = MakeGlueFaces(m, 1.e-5)
     setName(c)
     return c
@@ -422,21 +419,21 @@ def MakeCompound(ls):
     """
     Creates a compound defined by a list
     """
-    c = geom.MakeCompound(ls)
+    c = geompy.MakeCompound(ls)
     return c
 
 def MakeSewingShape(s, eps):
     """
     Creates a shape fully sewed
     """
-    r = geom.MakeSewingShape(s, eps)
+    r = geompy.MakeSewingShape(s, eps)
     return r
 
 def MakeGlueFaces(s, eps):
     """
     Touched faces are replaced by one
     """
-    r = geom.MakeGlueFaces(s, eps)
+    r = geompy.MakeGlueFaces(s, eps)
     return r
 
 
@@ -697,4 +694,4 @@ piece = MakeCompound(l)
 # ------------
 
 idpiece = addToStudy(piece, "Cubes2pyGibi")
-#geom.InsertOp.Export(piece,"piece.brep", "BREP")
+#geompy.InsertOp.Export(piece,"piece.brep", "BREP")
index fe81b8419095508951c8d042d612709a115fefae..7268dc050d6d9177288804592890ca72d428b789 100755 (executable)
 # Geometrie du cas test
 #
 import salome
-from geompy import *
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 
 #
 # base de l'assemblage
@@ -41,16 +44,16 @@ l_base = 150.
 h_base = 75.
 e_base = 6.
 
-base_bot = MakeBox(0.,0.,0.,L_base,l_base,e_base)
-base_top = MakeTranslation(base_bot,0.,0.,h_base-e_base)
-base_front = MakeBox(0,0,0,L_base,e_base,h_base)
-base_rear = MakeTranslation(base_front,0.,l_base,0.)
+base_bot = geompy.MakeBox(0.,0.,0.,L_base,l_base,e_base)
+base_top = geompy.MakeTranslation(base_bot,0.,0.,h_base-e_base)
+base_front = geompy.MakeBox(0,0,0,L_base,e_base,h_base)
+base_rear = geompy.MakeTranslation(base_front,0.,l_base,0.)
 
-tmp = MakeBoolean(base_top,base_rear,3)
-tmp = MakeBoolean(tmp,base_bot,3)
-base = MakeBoolean(tmp,base_front,3)
+tmp = geompy.MakeBoolean(base_top,base_rear,3)
+tmp = geompy.MakeBoolean(tmp,base_bot,3)
+base = geompy.MakeBoolean(tmp,base_front,3)
 
-addToStudy(base,"base")
+geompy.addToStudy(base,"base")
 #
 # traverse
 #
@@ -59,103 +62,103 @@ h_trav = 300.
 e_trav = 7.
 marge = 15.
 
-flange_left = MakeBox(0.,0.,0,e_trav,L_trav,h_trav)
-flange_right = MakeTranslation(flange_left,L_trav-e_trav,0.,0.)
-flange_front = MakeBox(0.,0.,0,L_trav,e_trav,h_trav)
-flange_rear = MakeTranslation(flange_front,0.,L_trav-e_trav,0.)
+flange_left = geompy.MakeBox(0.,0.,0,e_trav,L_trav,h_trav)
+flange_right = geompy.MakeTranslation(flange_left,L_trav-e_trav,0.,0.)
+flange_front = geompy.MakeBox(0.,0.,0,L_trav,e_trav,h_trav)
+flange_rear = geompy.MakeTranslation(flange_front,0.,L_trav-e_trav,0.)
 
-tmp = MakeBoolean(flange_left,flange_rear,3)
-tmp = MakeBoolean(tmp,flange_right,3)
-flange = MakeBoolean(tmp,flange_front,3)
+tmp = geompy.MakeBoolean(flange_left,flange_rear,3)
+tmp = geompy.MakeBoolean(tmp,flange_right,3)
+flange = geompy.MakeBoolean(tmp,flange_front,3)
 #
 # left chamfer
 #
 import math
 length = e_trav/math.sin(math.pi/4.)
-p1 = MakeVertex(0,0,0)
-p2 = MakeVertex(0,1,0)
-yaxis = MakeVector(p1, p2)
-cut_left = MakeBox(0.,-marge,0.,-length,L_trav+marge,length)
-cut_left = MakeRotation(cut_left,yaxis,-math.pi/4.)
-cut_left = MakeTranslation(cut_left,e_trav,0.,0.)
+p1 = geompy.MakeVertex(0,0,0)
+p2 = geompy.MakeVertex(0,1,0)
+yaxis = geompy.MakeVector(p1, p2)
+cut_left = geompy.MakeBox(0.,-marge,0.,-length,L_trav+marge,length)
+cut_left = geompy.MakeRotation(cut_left,yaxis,-math.pi/4.)
+cut_left = geompy.MakeTranslation(cut_left,e_trav,0.,0.)
 #
 # right chamfer
 #
-symPlaneYZ = MakePlane(
-     MakeVertex(L_trav/2.,0.,0.),
-     MakeVector(p1,MakeVertex(1.,0.,0.)), 10000. )
-cut_right = MakeMirrorByPlane(cut_left,symPlaneYZ)
+symPlaneYZ = geompy.MakePlane(
+     geompy.MakeVertex(L_trav/2.,0.,0.),
+     geompy.MakeVector(p1,geompy.MakeVertex(1.,0.,0.)), 10000. )
+cut_right = geompy.MakeMirrorByPlane(cut_left,symPlaneYZ)
 #
 # front chamfer
 #
-xaxis = MakeVector(p1,MakeVertex(1.,0.,0.))
-cut_front = MakeBox(-marge,0.,0.,L_trav+marge,length,length)
-cut_front = MakeRotation(cut_front,xaxis,3.*math.pi/4.)
-cut_front = MakeTranslation(cut_front,0.,e_trav,0.)
+xaxis = geompy.MakeVector(p1,geompy.MakeVertex(1.,0.,0.))
+cut_front = geompy.MakeBox(-marge,0.,0.,L_trav+marge,length,length)
+cut_front = geompy.MakeRotation(cut_front,xaxis,3.*math.pi/4.)
+cut_front = geompy.MakeTranslation(cut_front,0.,e_trav,0.)
 #
 # rear chamfer
 #
-symPlaneXZ = MakePlane(
-     MakeVertex(0.,L_trav/2.,0.),
-     MakeVector(p1,MakeVertex(0.,1.,0.)), 10000. )
-cut_rear = MakeMirrorByPlane(cut_front,symPlaneXZ)
+symPlaneXZ = geompy.MakePlane(
+     geompy.MakeVertex(0.,L_trav/2.,0.),
+     geompy.MakeVector(p1,geompy.MakeVertex(0.,1.,0.)), 10000. )
+cut_rear = geompy.MakeMirrorByPlane(cut_front,symPlaneXZ)
 #
 # chamfer
 #
-trav = MakeBoolean(flange,cut_left,2)
-trav = MakeBoolean(trav,cut_right,2)
-trav = MakeBoolean(trav,cut_front,2)
-trav = MakeBoolean(trav,cut_rear,2)
-trav = MakeTranslation(trav,
+trav = geompy.MakeBoolean(flange,cut_left,2)
+trav = geompy.MakeBoolean(trav,cut_right,2)
+trav = geompy.MakeBoolean(trav,cut_front,2)
+trav = geompy.MakeBoolean(trav,cut_rear,2)
+trav = geompy.MakeTranslation(trav,
                        L_base/2.-L_trav/2.,
                        l_base/2.-L_trav/2.,
                        h_base)
-addToStudy(trav,"trav")
+geompy.addToStudy(trav,"trav")
 #
 # Welding
 #
-ground = MakeBox(-1000.,-1000.,0.,1000.,1000.,-1000.)
-weld_left = MakeBoolean(cut_left,ground,2)
-weld_right = MakeBoolean(cut_right,ground,2)
-weld_front = MakeBoolean(cut_front,ground,2)
-weld_rear = MakeBoolean(cut_rear,ground,2)
+ground = geompy.MakeBox(-1000.,-1000.,0.,1000.,1000.,-1000.)
+weld_left = geompy.MakeBoolean(cut_left,ground,2)
+weld_right = geompy.MakeBoolean(cut_right,ground,2)
+weld_front = geompy.MakeBoolean(cut_front,ground,2)
+weld_rear = geompy.MakeBoolean(cut_rear,ground,2)
 #
 # Assembly
 #
-coarse_weld = MakeBoolean(weld_left,weld_rear,3)
-coarse_weld = MakeBoolean(coarse_weld,weld_right,3)
-coarse_weld = MakeBoolean(coarse_weld,weld_front,3)
+coarse_weld = geompy.MakeBoolean(weld_left,weld_rear,3)
+coarse_weld = geompy.MakeBoolean(coarse_weld,weld_right,3)
+coarse_weld = geompy.MakeBoolean(coarse_weld,weld_front,3)
 #
 # Cleaners
 #
-left_cleaner = MakeBox(0.,-10*marge,0.,-10.*marge,10.*marge,10.*marge)
-left_cleaner = MakeRotation(left_cleaner,yaxis,math.pi/4.)
-left_cleaner = MakeTranslation(left_cleaner,-e_trav-2.*marge,0.,-2.*marge)
+left_cleaner = geompy.MakeBox(0.,-10*marge,0.,-10.*marge,10.*marge,10.*marge)
+left_cleaner = geompy.MakeRotation(left_cleaner,yaxis,math.pi/4.)
+left_cleaner = geompy.MakeTranslation(left_cleaner,-e_trav-2.*marge,0.,-2.*marge)
 
-right_cleaner = MakeMirrorByPlane(left_cleaner,symPlaneYZ)
+right_cleaner = geompy.MakeMirrorByPlane(left_cleaner,symPlaneYZ)
 
-front_cleaner = MakeBox(-10*marge,0.,0.,10.*marge,10.*marge,10.*marge)
-front_cleaner = MakeRotation(front_cleaner,xaxis,3.*math.pi/4.)
-front_cleaner = MakeTranslation(front_cleaner,0.,2.*marge-e_trav,2.*marge)
+front_cleaner = geompy.MakeBox(-10*marge,0.,0.,10.*marge,10.*marge,10.*marge)
+front_cleaner = geompy.MakeRotation(front_cleaner,xaxis,3.*math.pi/4.)
+front_cleaner = geompy.MakeTranslation(front_cleaner,0.,2.*marge-e_trav,2.*marge)
 
-rear_cleaner = MakeMirrorByPlane(front_cleaner,symPlaneXZ)
+rear_cleaner = geompy.MakeMirrorByPlane(front_cleaner,symPlaneXZ)
 #
 # Welding
 #
-weld = MakeBoolean(coarse_weld,left_cleaner,2)
-weld = MakeBoolean(weld,rear_cleaner,2)
-weld = MakeBoolean(weld,right_cleaner,2)
-weld = MakeBoolean(weld,front_cleaner,2)
-weld = MakeTranslation(weld,
+weld = geompy.MakeBoolean(coarse_weld,left_cleaner,2)
+weld = geompy.MakeBoolean(weld,rear_cleaner,2)
+weld = geompy.MakeBoolean(weld,right_cleaner,2)
+weld = geompy.MakeBoolean(weld,front_cleaner,2)
+weld = geompy.MakeTranslation(weld,
                        L_base/2.-L_trav/2.,
                        l_base/2.-L_trav/2.,
                        h_base)
-weldId = addToStudy(weld,"weld")
+weldId = geompy.addToStudy(weld,"weld")
 #
 # Assembly
 #
-assemblage = Partition([base ,weld ,trav])
-assemblageId = addToStudy(assemblage, "assemblage")
+assemblage = geompy.Partition([base ,weld ,trav])
+assemblageId = geompy.addToStudy(assemblage, "assemblage")
 salome.sg.updateObjBrowser(1)
 #
 # Display
index ee57b7b6ce1f39f049de93425a5ba58194c88619..02373dd73dd9592f2ea57a6655941c46cf5987fd 100755 (executable)
 #==============================================================================
 # Geometrie du cas test
 #
-from geompy import *
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 #
 # base de l'assemblage
 #
@@ -40,16 +43,16 @@ l_base = 150.
 h_base = 75.
 e_base = 6.
 
-base_bot = MakeBox(0.,0.,0.,L_base,l_base,e_base)
-base_top = MakeTranslation(base_bot,0.,0.,h_base-e_base)
-base_front = MakeBox(0,0,0,L_base,e_base,h_base)
-base_rear = MakeTranslation(base_front,0.,l_base,0.)
+base_bot = geompy.MakeBox(0.,0.,0.,L_base,l_base,e_base)
+base_top = geompy.MakeTranslation(base_bot,0.,0.,h_base-e_base)
+base_front = geompy.MakeBox(0,0,0,L_base,e_base,h_base)
+base_rear = geompy.MakeTranslation(base_front,0.,l_base,0.)
 
-tmp = MakeBoolean(base_top,base_rear,3)
-tmp = MakeBoolean(tmp,base_bot,3)
-base = MakeBoolean(tmp,base_front,3)
+tmp = geompy.MakeBoolean(base_top,base_rear,3)
+tmp = geompy.MakeBoolean(tmp,base_bot,3)
+base = geompy.MakeBoolean(tmp,base_front,3)
 
-baseId = addToStudy(base,"base")
+baseId = geompy.addToStudy(base,"base")
 #
 # traverse
 #
@@ -58,112 +61,112 @@ h_trav = 300.
 e_trav = 7.
 marge = 15.
 
-flange_left = MakeBox(0.,0.,0,e_trav,L_trav,h_trav)
-flange_right = MakeTranslation(flange_left,L_trav-e_trav,0.,0.)
-flange_front = MakeBox(0.,0.,0,L_trav,e_trav,h_trav)
-flange_rear = MakeTranslation(flange_front,0.,L_trav-e_trav,0.)
+flange_left = geompy.MakeBox(0.,0.,0,e_trav,L_trav,h_trav)
+flange_right = geompy.MakeTranslation(flange_left,L_trav-e_trav,0.,0.)
+flange_front = geompy.MakeBox(0.,0.,0,L_trav,e_trav,h_trav)
+flange_rear = geompy.MakeTranslation(flange_front,0.,L_trav-e_trav,0.)
 
-tmp = MakeBoolean(flange_left,flange_rear,3)
-tmp = MakeBoolean(tmp,flange_right,3)
-flange = MakeBoolean(tmp,flange_front,3)
+tmp = geompy.MakeBoolean(flange_left,flange_rear,3)
+tmp = geompy.MakeBoolean(tmp,flange_right,3)
+flange = geompy.MakeBoolean(tmp,flange_front,3)
 #
 # left chamfer
 #
 import math
 length = e_trav/math.sin(math.pi/4.)
-yaxis = MakeVectorDXDYDZ(0.,1.,0.)
-cut_left = MakeBox(0.,-marge,0.,-length,L_trav+marge,length)
-cut_left = MakeRotation(cut_left,yaxis,-math.pi/4.)
-cut_left = MakeTranslation(cut_left,e_trav,0.,0.)
+yaxis = geompy.MakeVectorDXDYDZ(0.,1.,0.)
+cut_left = geompy.MakeBox(0.,-marge,0.,-length,L_trav+marge,length)
+cut_left = geompy.MakeRotation(cut_left,yaxis,-math.pi/4.)
+cut_left = geompy.MakeTranslation(cut_left,e_trav,0.,0.)
 #
 # right chamfer
 #
-symPlaneYZ = MakePlane(
-     MakeVertex(L_trav/2.,0.,0.),
-     MakeVectorDXDYDZ(1.,0.,0.), 10000. )
-cut_right = MakeMirrorByPlane(cut_left,symPlaneYZ)
+symPlaneYZ = geompy.MakePlane(
+     geompy.MakeVertex(L_trav/2.,0.,0.),
+     geompy.MakeVectorDXDYDZ(1.,0.,0.), 10000. )
+cut_right = geompy.MakeMirrorByPlane(cut_left,symPlaneYZ)
 #
 # front chamfer
 #
-xaxis = MakeVectorDXDYDZ(1.,0.,0.)
-cut_front = MakeBox(-marge,0.,0.,L_trav+marge,length,length)
-cut_front = MakeRotation(cut_front,xaxis,3.*math.pi/4.)
-cut_front = MakeTranslation(cut_front,0.,e_trav,0.)
+xaxis = geompy.MakeVectorDXDYDZ(1.,0.,0.)
+cut_front = geompy.MakeBox(-marge,0.,0.,L_trav+marge,length,length)
+cut_front = geompy.MakeRotation(cut_front,xaxis,3.*math.pi/4.)
+cut_front = geompy.MakeTranslation(cut_front,0.,e_trav,0.)
 #
 # rear chamfer
 #
-symPlaneXZ = MakePlane(
-     MakeVertex(0.,L_trav/2.,0.),
-     MakeVectorDXDYDZ(0.,1.,0.), 10000. )
-cut_rear = MakeMirrorByPlane(cut_front,symPlaneXZ)
+symPlaneXZ = geompy.MakePlane(
+     geompy.MakeVertex(0.,L_trav/2.,0.),
+     geompy.MakeVectorDXDYDZ(0.,1.,0.), 10000. )
+cut_rear = geompy.MakeMirrorByPlane(cut_front,symPlaneXZ)
 #
 # chamfer
 #
-trav = MakeBoolean(flange,cut_left,2)
-trav = MakeBoolean(trav,cut_right,2)
-trav = MakeBoolean(trav,cut_front,2)
-trav = MakeBoolean(trav,cut_rear,2)
-trav = MakeTranslation(trav,
+trav = geompy.MakeBoolean(flange,cut_left,2)
+trav = geompy.MakeBoolean(trav,cut_right,2)
+trav = geompy.MakeBoolean(trav,cut_front,2)
+trav = geompy.MakeBoolean(trav,cut_rear,2)
+trav = geompy.MakeTranslation(trav,
                        L_base/2.-L_trav/2.,
                        l_base/2.-L_trav/2.,
                        h_base)
-travId = addToStudy(trav,"trav")
+travId = geompy.addToStudy(trav,"trav")
 #
 # Welding
 #
-ground = MakeBox(-1000.,-1000.,0.,1000.,1000.,-1000.)
-weld_left = MakeBoolean(cut_left,ground,2)
-weld_right = MakeBoolean(cut_right,ground,2)
-weld_front = MakeBoolean(cut_front,ground,2)
-weld_rear = MakeBoolean(cut_rear,ground,2)
+ground = geompy.MakeBox(-1000.,-1000.,0.,1000.,1000.,-1000.)
+weld_left = geompy.MakeBoolean(cut_left,ground,2)
+weld_right = geompy.MakeBoolean(cut_right,ground,2)
+weld_front = geompy.MakeBoolean(cut_front,ground,2)
+weld_rear = geompy.MakeBoolean(cut_rear,ground,2)
 #
 # Assembly
 #
-coarse_weld = MakeBoolean(weld_left,weld_rear,3)
-coarse_weld = MakeBoolean(coarse_weld,weld_right,3)
-coarse_weld = MakeBoolean(coarse_weld,weld_front,3)
+coarse_weld = geompy.MakeBoolean(weld_left,weld_rear,3)
+coarse_weld = geompy.MakeBoolean(coarse_weld,weld_right,3)
+coarse_weld = geompy.MakeBoolean(coarse_weld,weld_front,3)
 #
 # Cleaners
 #
-left_cleaner = MakeBox(0.,-10*marge,0.,-10.*marge,10.*marge,10.*marge)
-left_cleaner = MakeRotation(left_cleaner,yaxis,math.pi/4.)
-left_cleaner = MakeTranslation(left_cleaner,-e_trav-2.*marge,0.,-2.*marge)
+left_cleaner = geompy.MakeBox(0.,-10*marge,0.,-10.*marge,10.*marge,10.*marge)
+left_cleaner = geompy.MakeRotation(left_cleaner,yaxis,math.pi/4.)
+left_cleaner = geompy.MakeTranslation(left_cleaner,-e_trav-2.*marge,0.,-2.*marge)
 
-right_cleaner = MakeMirrorByPlane(left_cleaner,symPlaneYZ)
+right_cleaner = geompy.MakeMirrorByPlane(left_cleaner,symPlaneYZ)
 
-front_cleaner = MakeBox(-10*marge,0.,0.,10.*marge,10.*marge,10.*marge)
-front_cleaner = MakeRotation(front_cleaner,xaxis,3.*math.pi/4.)
-front_cleaner = MakeTranslation(front_cleaner,0.,2.*marge-e_trav,2.*marge)
+front_cleaner = geompy.MakeBox(-10*marge,0.,0.,10.*marge,10.*marge,10.*marge)
+front_cleaner = geompy.MakeRotation(front_cleaner,xaxis,3.*math.pi/4.)
+front_cleaner = geompy.MakeTranslation(front_cleaner,0.,2.*marge-e_trav,2.*marge)
 
-rear_cleaner = MakeMirrorByPlane(front_cleaner,symPlaneXZ)
+rear_cleaner = geompy.MakeMirrorByPlane(front_cleaner,symPlaneXZ)
 #
 # Welding
 #
-weld = MakeBoolean(coarse_weld,left_cleaner,2)
-weld = MakeBoolean(weld,rear_cleaner,2)
-weld = MakeBoolean(weld,right_cleaner,2)
-weld = MakeBoolean(weld,front_cleaner,2)
-weld = MakeTranslation(weld,
+weld = geompy.MakeBoolean(coarse_weld,left_cleaner,2)
+weld = geompy.MakeBoolean(weld,rear_cleaner,2)
+weld = geompy.MakeBoolean(weld,right_cleaner,2)
+weld = geompy.MakeBoolean(weld,front_cleaner,2)
+weld = geompy.MakeTranslation(weld,
                        L_base/2.-L_trav/2.,
                        l_base/2.-L_trav/2.,
                        h_base)
-weldId = addToStudy(weld,"weld")
+weldId = geompy.addToStudy(weld,"weld")
 #
 # Assembly
 #
 #assemblage = MakePartition([base.,weld.GetName()])
-assemblage = MakePartition([base,weld])
-addToStudy(assemblage, "base+weld")
+assemblage = geompy.MakePartition([base,weld])
+geompy.addToStudy(assemblage, "base+weld")
 #print assemblage.GetName()
 #print trav.GetName()
-#assemblage = MakePartition([assemblage.GetName(),trav.GetName()])
-assemblage = MakePartition([assemblage,trav])
-assemblageId = addToStudy(assemblage, "assemblage")
+#assemblage = geompy.MakePartition([assemblage.GetName(),trav.GetName()])
+assemblage = geompy.MakePartition([assemblage,trav])
+assemblageId = geompy.addToStudy(assemblage, "assemblage")
 
 #
 # Display
 #
-gg = ImportComponentGUI("GEOM")
+gg = salome.ImportComponentGUI("GEOM")
 import salome_ComponentGUI
 if not isinstance(gg, type(salome_ComponentGUI)):
     gg.initGeomGen()
index b62e7ce75e4f268be22c4e65068431ca9cc98c3b..9ae0924e9d68a74df9add4db04fd6b8ed3643877 100644 (file)
 #  Author : Damien COQUERET, Open CASCADE
 #  Module : GEOM
 #
-import geompy
+import salome
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
+
 import math
 
 import GEOM_TestAll
index 551ec18c511e2d8f10ab4b3bd9b85b86fa3fd08b..16d568ba437a8305b86b294d10938adc89f57145 100644 (file)
@@ -35,6 +35,7 @@ include $(top_srcdir)/adm_local/unix/make_common_starter.am
 dist_salomescript_DATA =               \
        geompy.py                       \
        GEOM_Spanner.py                 \
+       GEOM_box.py                     \
        GEOM_blocks.py                  \
        GEOM_example.py                 \
        GEOM_example2.py                \
index 72a71c35e93f0c19ef47cd31ab57dcfd28275112..de26bc95a5f967449c4460b48701f5bc93173faf 100755 (executable)
 #GUI test scenario      :PAL-MESH-019 (geometry part), PAL-MESH-020 (geometry part)
 #####################################################################################
 #
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 
 #Points creation (2.2)
 Vertex_1 = geompy.MakeVertex(0, 0, 0)
index d6815151ee687c11999118d55a59877f7a72dbee..b61ddcbbc519f26f30240d82b0769053ca32d7aa 100755 (executable)
 #GUI test scenario      :PAL-MESH-028 (geometry part)
 #####################################################################
 #
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
+
 import os
 
 #Initialization
-salome.salome_init(1)
 
 #Points construction (2.1)
 Vertices = [geompy.MakeVertex(0, 0, 0), geompy.MakeVertex(200, 0, 0), geompy.MakeVertex(200, 200, 0), geompy.MakeVertex(0, 200, 0), geompy.MakeVertex(50, 50, 200), geompy.MakeVertex(150, 50, 200), geompy.MakeVertex(150, 150, 200), geompy.MakeVertex(50, 150, 200)]
index 8480121c3b067eae0fa5648f31c184fc9c5d5576..c936708351d6c6c750c4449649e6a7bbccbdbf11 100755 (executable)
 #============================================================================== 
 #
 import salome
-import geompy
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 
 # Stage 2: "Creation of geometry"
 
index d624639c69c1040a5f71b440d8ce3ea6b7480131..77ed94c1a47fb2b98a4491c5e0ef32ea0eb0c596 100755 (executable)
 #GUI test scenario      :PAL-MESH-033 (geometry part)
 #####################################################################
 #
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 
 #Points creation (2.2)
 Vertex_1 = geompy.MakeVertex(0, 0, 0)
index 9b3a28054ff6881eada0de1b17ad8d881897fdf2..d32a602cc11c409898807ed0008d728a7f034adf 100755 (executable)
 #GUI test scenario      :PAL-MESH-035 (geometry part)
 #####################################################################
 #
-import geompy
 import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
 
 #Box creation (2.2)
 Box_1 = geompy.MakeBoxDXDYDZ(200, 400, 300)
diff --git a/src/GEOM_SWIG/batchmode_geompy.py b/src/GEOM_SWIG/batchmode_geompy.py
deleted file mode 100644 (file)
index 0dfacfa..0000000
+++ /dev/null
@@ -1,30 +0,0 @@
-#  -*- coding: iso-8859-1 -*-
-# Copyright (C) 2007-2012  CEA/DEN, EDF R&D, OPEN CASCADE
-#
-# Copyright (C) 2003-2007  OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
-# CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
-#
-# This library is free software; you can redistribute it and/or
-# modify it under the terms of the GNU Lesser General Public
-# License as published by the Free Software Foundation; either
-# version 2.1 of the License.
-#
-# This library is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
-# Lesser General Public License for more details.
-#
-# You should have received a copy of the GNU Lesser General Public
-# License along with this library; if not, write to the Free Software
-# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
-#
-# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
-#
-
-#  GEOM GEOM_SWIG : binding of C++ implementaion with Python
-#  File   : batchmode_geompy.py
-#  Author : Paul RASCLE, EDF
-#  Module : GEOM
-#  From Salome version 3.2.0 geompy package suits for work in batch mode
-#
-from geompy import *
index b8b86e39a4a9fe66545fb3f7edfc6ef532bb279f..7b39d5f2a0db34b3777e05e2795faff4bc0887c1 100644 (file)
@@ -199,11 +199,6 @@ import os
 
 from salome.geom.gsketcher import Sketcher3D
 
-## Enumeration ShapeType as a dictionary. \n
-## Topological types of shapes (like Open Cascade types). See GEOM::shape_type for details.
-#  @ingroup l1_geomBuilder_auxiliary
-ShapeType = {"AUTO":-1, "COMPOUND":0, "COMPSOLID":1, "SOLID":2, "SHELL":3, "FACE":4, "WIRE":5, "EDGE":6, "VERTEX":7, "SHAPE":8}
-
 # service function
 def _toListOfNames(_names, _size=-1):
     l = []
@@ -501,6 +496,11 @@ created = False
 
 class geomBuilder(object, GEOM._objref_GEOM_Gen):
 
+        ## Enumeration ShapeType as a dictionary. \n
+        ## Topological types of shapes (like Open Cascade types). See GEOM::shape_type for details.
+        #  @ingroup l1_geomBuilder_auxiliary
+        ShapeType = {"AUTO":-1, "COMPOUND":0, "COMPSOLID":1, "SOLID":2, "SHELL":3, "FACE":4, "WIRE":5, "EDGE":6, "VERTEX":7, "SHAPE":8}
+
         def __new__(cls):
             global engine
             global geom
@@ -4259,7 +4259,7 @@ class geomBuilder(object, GEOM._objref_GEOM_Gen):
                 Quantity of solids.
             """
             # Example: see GEOM_TestOthers.py
-            nb_solids = self.ShapesOp.NumberOfSubShapes(theShape, ShapeType["SOLID"])
+            nb_solids = self.ShapesOp.NumberOfSubShapes(theShape, self.ShapeType["SOLID"])
             RaiseIfFailed("NumberOfSolids", self.ShapesOp)
             return nb_solids
 
@@ -6644,7 +6644,7 @@ class geomBuilder(object, GEOM._objref_GEOM_Gen):
                 New GEOM.GEOM_Object, containing the result shapes.
             """
             # Example: see GEOM_TestAll.py
-            if Limit == ShapeType["AUTO"]:
+            if Limit == self.ShapeType["AUTO"]:
                 # automatic detection of the most appropriate shape limit type
                 lim = GEOM.SHAPE
                 for s in ListShapes: lim = min( lim, s.GetMaxShapeType() )
@@ -6692,7 +6692,7 @@ class geomBuilder(object, GEOM._objref_GEOM_Gen):
             Returns:   
                 New GEOM.GEOM_Object, containing the result shapes.
             """
-            if Limit == ShapeType["AUTO"]:
+            if Limit == self.ShapeType["AUTO"]:
                 # automatic detection of the most appropriate shape limit type
                 lim = GEOM.SHAPE
                 for s in ListShapes: lim = min( lim, s.GetMaxShapeType() )
@@ -8232,7 +8232,7 @@ class geomBuilder(object, GEOM._objref_GEOM_Gen):
             # Example: see GEOM_TestAll.py
             theR,Parameters = ParseParameters(theR)
             anObj = None
-            if theShapeType == ShapeType["EDGE"]:
+            if theShapeType == self.ShapeType["EDGE"]:
                 anObj = self.LocalOp.MakeFilletEdges(theShape, theR, theListShapes)
                 RaiseIfFailed("MakeFilletEdges", self.LocalOp)
             else:
@@ -8259,7 +8259,7 @@ class geomBuilder(object, GEOM._objref_GEOM_Gen):
             """
             theR1,theR2,Parameters = ParseParameters(theR1,theR2)
             anObj = None
-            if theShapeType == ShapeType["EDGE"]:
+            if theShapeType == self.ShapeType["EDGE"]:
                 anObj = self.LocalOp.MakeFilletEdgesR1R2(theShape, theR1, theR2, theListShapes)
                 RaiseIfFailed("MakeFilletEdgesR1R2", self.LocalOp)
             else:
@@ -8636,7 +8636,7 @@ class geomBuilder(object, GEOM._objref_GEOM_Gen):
             # Example: see GEOM_TestOthers.py
             anObj = None
             # note: auto-publishing is done in self.MakeChamferEdge() or self.MakeChamferFaces()
-            if aShapeType == ShapeType["EDGE"]:
+            if aShapeType == self.ShapeType["EDGE"]:
                 anObj = self.MakeChamferEdge(aShape,d1,d2,ListShape[0],ListShape[1],theName)
             else:
                 anObj = self.MakeChamferFaces(aShape,d1,d2,ListShape,theName)
@@ -9361,11 +9361,11 @@ class geomBuilder(object, GEOM._objref_GEOM_Gen):
             """
             # Example: see GEOM_TestMeasures.py
             aDict = {}
-            for typeSh in ShapeType:
+            for typeSh in self.ShapeType:
                 if typeSh in ( "AUTO", "SHAPE" ): continue
-                listSh = self.SubShapeAllIDs(theShape, ShapeType[typeSh])
+                listSh = self.SubShapeAllIDs(theShape, self.ShapeType[typeSh])
                 Nb = len(listSh)
-                if EnumToLong(theShape.GetShapeType()) == ShapeType[typeSh]:
+                if EnumToLong(theShape.GetShapeType()) == self.ShapeType[typeSh]:
                     Nb = Nb + 1
                     pass
                 aDict[typeSh] = Nb
@@ -9481,7 +9481,7 @@ class geomBuilder(object, GEOM._objref_GEOM_Gen):
                 New GEOM.GEOM_Object, containing the created vertex.
             """
             # Example: see GEOM_TestMeasures.py
-            nb_vert =  self.ShapesOp.NumberOfSubShapes(theShape, ShapeType["VERTEX"])
+            nb_vert =  self.ShapesOp.NumberOfSubShapes(theShape, self.ShapeType["VERTEX"])
             # note: auto-publishing is done in self.GetVertexByIndex()
             anObj = self.GetVertexByIndex(theShape, (nb_vert-1), theName)
             RaiseIfFailed("GetLastVertex", self.MeasuOp)
@@ -11426,7 +11426,7 @@ class geomBuilder(object, GEOM._objref_GEOM_Gen):
              Returns:
                 a newly created GEOM group of edges.
             """
-            edges = self.SubShapeAll(theShape, ShapeType["EDGE"])
+            edges = self.SubShapeAll(theShape, self.ShapeType["EDGE"])
             edges_in_range = []
             for edge in edges:
                 Props = self.BasicProperties(edge)
@@ -11444,7 +11444,7 @@ class geomBuilder(object, GEOM._objref_GEOM_Gen):
                 return None
 
             # note: auto-publishing is done in self.CreateGroup()
-            group_edges = self.CreateGroup(theShape, ShapeType["EDGE"], theName)
+            group_edges = self.CreateGroup(theShape, self.ShapeType["EDGE"], theName)
             self.UnionList(group_edges, edges_in_range)
 
             return group_edges
@@ -11965,7 +11965,36 @@ import omniORB
 # Register the new proxy for GEOM_Gen
 omniORB.registerObjref(GEOM._objref_GEOM_Gen._NP_RepositoryId, geomBuilder)
 
+## Create a new geomBuilder instance.The geomBuilder class provides the Python
+#  interface to GEOM operations.
+#
+#  Typical use is:
+#  \code
+#    import salome
+#    salome.salome_init()
+#    from salome.geom import geomBuilder
+#    geompy = geomBuilder.New(salome.myStudy)
+#  \endcode
+#  @param  study     SALOME study, generally obtained by salome.myStudy.
+#  @param  instance  CORBA proxy of GEOM Engine. If None, the default Engine is used.
+#  @return geomBuilder instance
 def New( study, instance=None):
+    """
+    Create a new geomBuilder instance.The geomBuilder class provides the Python
+    interface to GEOM operations.
+
+    Typical use is:
+        import salome
+        salome.salome_init()
+        from salome.geom import geomBuilder
+        geompy = geomBuilder.New(salome.myStudy)
+
+    Parameters:
+        study     SALOME study, generally obtained by salome.myStudy.
+        instance  CORBA proxy of GEOM Engine. If None, the default Engine is used.
+    Returns:
+        geomBuilder instance
+    """
     #print "New geomBuilder ", study, instance
     global engine
     global geom
diff --git a/src/GEOM_SWIG/geompyDC.py b/src/GEOM_SWIG/geompyDC.py
deleted file mode 100644 (file)
index 78ba5da..0000000
+++ /dev/null
@@ -1,12034 +0,0 @@
-#  -*- coding: iso-8859-1 -*-
-# Copyright (C) 2007-2012  CEA/DEN, EDF R&D, OPEN CASCADE
-#
-# This library is free software; you can redistribute it and/or
-# modify it under the terms of the GNU Lesser General Public
-# License as published by the Free Software Foundation; either
-# version 2.1 of the License.
-#
-# This library is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
-# Lesser General Public License for more details.
-#
-# You should have received a copy of the GNU Lesser General Public
-# License along with this library; if not, write to the Free Software
-# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
-#
-# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
-#
-
-#  GEOM GEOM_SWIG : binding of C++ implementation with Python
-#  File   : geompyDC.py
-#  Author : Paul RASCLE, EDF
-#  Module : GEOM
-
-"""
-    \namespace geompyDC
-    \brief Module geompyDC
-"""
-
-##
-## @defgroup l1_publish_data Publishing results in SALOME study
-## @{
-##
-## @details
-##
-## By default, all functions of geompy.py Python interface do not publish
-## resulting geometrical objects. This can be done in the Python script
-## by means of geompy.addToStudy() or geompy.addToStudyInFather()
-## functions.
-## 
-## However, it is possible to publish result data in the study
-## automatically. For this, almost each function of geompy.py module has
-## an additional @a theName parameter (@c None by default).
-## As soon as non-empty string value is passed to this parameter,
-## the result object is published in the study automatically.
-## 
-## For example,
-## 
-## @code
-## box = geompy.MakeBoxDXDYDZ(100, 100, 100) # box is not published in the study yet
-## geompy.addToStudy(box, "box")             # explicit publishing
-## @endcode
-## 
-## can be replaced by one-line instruction
-## 
-## @code
-## box = geompy.MakeBoxDXDYDZ(100, 100, 100, theName="box") # box is published in the study with "box" name
-## @endcode
-## 
-## ... or simply
-## 
-## @code
-## box = geompy.MakeBoxDXDYDZ(100, 100, 100, "box") # box is published in the study with "box" name
-## @endcode
-##
-## Note, that some functions produce more than one geometrical objects. For example,
-## geompy.GetNonBlocks() function returns two objects: group of all non-hexa solids and group of
-## all non-quad faces. For such functions it is possible to specify separate names for results.
-##
-## For example
-##
-## @code
-## # create and publish cylinder
-## cyl = geompy.MakeCylinderRH(100, 100, "cylinder")
-## # get non blocks from cylinder
-## g1, g2 = geompy.GetNonBlocks(cyl, "nonblock")
-## @endcode
-##
-## Above example will publish both result compounds (first with non-hexa solids and
-## second with non-quad faces) as two items, both named "nonblock".
-## However, if second command is invoked as
-##
-## @code
-## g1, g2 = geompy.GetNonBlocks(cyl, ("nonhexa", "nonquad"))
-## @endcode
-##
-## ... the first compound will be published with "nonhexa" name, and second will be named "nonquad".
-##
-## Automatic publication of all results can be also enabled/disabled by means of the function
-## geompy.addToStudyAuto(). The automatic publishing is managed by the numeric parameter passed
-## to this function:
-## - if @a maxNbSubShapes = 0, automatic publishing is disabled.
-## - if @a maxNbSubShapes = -1 (default), automatic publishing is enabled and
-##   maximum number of sub-shapes allowed for publishing is unlimited; any negative
-##   value passed as parameter has the same effect.
-## - if @a maxNbSubShapes is any positive value, automatic publishing is enabled and
-##   maximum number of sub-shapes allowed for publishing is set to specified value.
-## 
-## When automatic publishing is enabled, you even do not need to pass @a theName parameter 
-## to the functions creating objects, instead default names will be used. However, you
-## can always change the behavior, by passing explicit name to the @a theName parameter
-## and it will be used instead default one.
-## The publishing of the collections of objects will be done according to the above
-## mentioned rules (maximum allowed number of sub-shapes).
-##
-## For example:
-##
-## @code
-## geompy.addToStudyAuto() # enable automatic publication
-## box = geompy.MakeBoxDXDYDZ(100, 100, 100) 
-## # the box is created and published in the study with default name
-## geompy.addToStudyAuto(5) # set max allowed number of sub-shapes to 5
-## vertices = geompy.SubShapeAll(box, geompy.ShapeType['VERTEX'])
-## # only 5 first vertices will be published, with default names
-## print len(vertices)
-## # note, that result value still containes all 8 vertices
-## geompy.addToStudyAuto(-1) # disable automatic publication
-## @endcode
-##
-## This feature can be used, for example, for debugging purposes.
-##
-## @note
-## - Use automatic publication feature with caution. When it is enabled, any function of geompy.py module
-##   publishes the results in the study, that can lead to the huge size of the study data tree.
-##   For example, repeating call of geompy.SubShapeAll() command on the same main shape each time will
-##   publish all child objects, that will lead to a lot of duplicated items in the study.
-## - Sub-shapes are automatically published as child items of the parent main shape in the study if main
-##   shape was also published before. Otherwise, sub-shapes are published as top-level objects.
-## - Not that some functions of geompy.py module do not have @theName parameter (and, thus, do not support
-##   automatic publication). For example, some transformation operations like geompy.TranslateDXDYDZ().
-##   Refer to the documentation to check if some function has such possibility.
-##
-## @}
-
-
-## @defgroup l1_geompy_auxiliary Auxiliary data structures and methods
-
-## @defgroup l1_geompyDC_purpose   All package methods, grouped by their purpose
-## @{
-##   @defgroup l2_import_export Importing/exporting geometrical objects
-##   @defgroup l2_creating      Creating geometrical objects
-##   @{
-##     @defgroup l3_basic_go      Creating Basic Geometric Objects
-##     @{
-##       @defgroup l4_curves        Creating Curves
-
-##     @}
-##     @defgroup l3_3d_primitives Creating 3D Primitives
-##     @defgroup l3_complex       Creating Complex Objects
-##     @defgroup l3_groups        Working with groups
-##     @defgroup l3_blocks        Building by blocks
-##     @{
-##       @defgroup l4_blocks_measure Check and Improve
-
-##     @}
-##     @defgroup l3_sketcher      Sketcher
-##     @defgroup l3_advanced      Creating Advanced Geometrical Objects
-##     @{
-##       @defgroup l4_decompose     Decompose objects
-##       @defgroup l4_decompose_d   Decompose objects deprecated methods
-##       @defgroup l4_access        Access to sub-shapes by their unique IDs inside the main shape
-##       @defgroup l4_obtain        Access to sub-shapes by a criteria
-##       @defgroup l4_advanced      Advanced objects creation functions
-
-##     @}
-
-##   @}
-##   @defgroup l2_transforming  Transforming geometrical objects
-##   @{
-##     @defgroup l3_basic_op      Basic Operations
-##     @defgroup l3_boolean       Boolean Operations
-##     @defgroup l3_transform     Transformation Operations
-##     @defgroup l3_transform_d   Transformation Operations deprecated methods
-##     @defgroup l3_local         Local Operations (Fillet, Chamfer and other Features)
-##     @defgroup l3_blocks_op     Blocks Operations
-##     @defgroup l3_healing       Repairing Operations
-##     @defgroup l3_restore_ss    Restore presentation parameters and a tree of sub-shapes
-
-##   @}
-##   @defgroup l2_measure       Using measurement tools
-
-## @}
-
-# initialize SALOME session in try/except block
-# to avoid problems in some cases, e.g. when generating documentation
-try:
-    import salome
-    salome.salome_init()
-    from salome import *
-except:
-    pass
-
-from salome_notebook import *
-
-import GEOM
-import math
-import os
-
-from gsketcher import Sketcher3D
-
-## Enumeration ShapeType as a dictionary. \n
-## Topological types of shapes (like Open Cascade types). See GEOM::shape_type for details.
-#  @ingroup l1_geompyDC_auxiliary
-ShapeType = {"AUTO":-1, "COMPOUND":0, "COMPSOLID":1, "SOLID":2, "SHELL":3, "FACE":4, "WIRE":5, "EDGE":6, "VERTEX":7, "SHAPE":8}
-
-# service function
-def _toListOfNames(_names, _size=-1):
-    l = []
-    import types
-    if type(_names) in [types.ListType, types.TupleType]:
-        for i in _names: l.append(i)
-    elif _names:
-        l.append(_names)
-    if l and len(l) < _size:
-        for i in range(len(l), _size): l.append("%s_%d"%(l[0],i))
-    return l
-
-## Raise an Error, containing the Method_name, if Operation is Failed
-## @ingroup l1_geompyDC_auxiliary
-def RaiseIfFailed (Method_name, Operation):
-    if Operation.IsDone() == 0 and Operation.GetErrorCode() != "NOT_FOUND_ANY":
-        raise RuntimeError, Method_name + " : " + Operation.GetErrorCode()
-
-## Return list of variables value from salome notebook
-## @ingroup l1_geompyDC_auxiliary
-def ParseParameters(*parameters):
-    Result = []
-    StringResult = []
-    for parameter in parameters:
-        if isinstance(parameter, list):
-            lResults = ParseParameters(*parameter)
-            if len(lResults) > 0:
-                Result.append(lResults[:-1])
-                StringResult += lResults[-1].split(":")
-                pass
-            pass
-        else:
-            if isinstance(parameter,str):
-                if notebook.isVariable(parameter):
-                    Result.append(notebook.get(parameter))
-                else:
-                    raise RuntimeError, "Variable with name '" + parameter + "' doesn't exist!!!"
-                pass
-            else:
-                Result.append(parameter)
-                pass
-            StringResult.append(str(parameter))
-            pass
-        pass
-    if Result:
-        Result.append(":".join(StringResult))
-    else:
-        Result = ":".join(StringResult)
-    return Result
-
-## Return list of variables value from salome notebook
-## @ingroup l1_geompyDC_auxiliary
-def ParseList(list):
-    Result = []
-    StringResult = ""
-    for parameter in list:
-        if isinstance(parameter,str) and notebook.isVariable(parameter):
-            Result.append(str(notebook.get(parameter)))
-            pass
-        else:
-            Result.append(str(parameter))
-            pass
-
-        StringResult = StringResult + str(parameter)
-        StringResult = StringResult + ":"
-        pass
-    StringResult = StringResult[:len(StringResult)-1]
-    return Result, StringResult
-
-## Return list of variables value from salome notebook
-## @ingroup l1_geompyDC_auxiliary
-def ParseSketcherCommand(command):
-    Result = ""
-    StringResult = ""
-    sections = command.split(":")
-    for section in sections:
-        parameters = section.split(" ")
-        paramIndex = 1
-        for parameter in parameters:
-            if paramIndex > 1 and parameter.find("'") != -1:
-                parameter = parameter.replace("'","")
-                if notebook.isVariable(parameter):
-                    Result = Result + str(notebook.get(parameter)) + " "
-                    pass
-                else:
-                    raise RuntimeError, "Variable with name '" + parameter + "' doesn't exist!!!"
-                    pass
-                pass
-            else:
-                Result = Result + str(parameter) + " "
-                pass
-            if paramIndex > 1:
-                StringResult = StringResult + parameter
-                StringResult = StringResult + ":"
-                pass
-            paramIndex = paramIndex + 1
-            pass
-        Result = Result[:len(Result)-1] + ":"
-        pass
-    Result = Result[:len(Result)-1]
-    return Result, StringResult
-
-## Helper function which can be used to pack the passed string to the byte data.
-## Only '1' an '0' symbols are valid for the string. The missing bits are replaced by zeroes.
-## If the string contains invalid symbol (neither '1' nor '0'), the function raises an exception.
-## For example,
-## \code
-## val = PackData("10001110") # val = 0xAE
-## val = PackData("1")        # val = 0x80
-## \endcode
-## @param data unpacked data - a string containing '1' and '0' symbols
-## @return data packed to the byte stream
-## @ingroup l1_geompyDC_auxiliary
-def PackData(data):
-    """
-    Helper function which can be used to pack the passed string to the byte data.
-    Only '1' an '0' symbols are valid for the string. The missing bits are replaced by zeroes.
-    If the string contains invalid symbol (neither '1' nor '0'), the function raises an exception.
-
-    Parameters:
-        data unpacked data - a string containing '1' and '0' symbols
-
-    Returns:
-        data packed to the byte stream
-        
-    Example of usage:
-        val = PackData("10001110") # val = 0xAE
-        val = PackData("1")        # val = 0x80
-    """
-    bytes = len(data)/8
-    if len(data)%8: bytes += 1
-    res = ""
-    for b in range(bytes):
-        d = data[b*8:(b+1)*8]
-        val = 0
-        for i in range(8):
-            val *= 2
-            if i < len(d):
-                if d[i] == "1": val += 1
-                elif d[i] != "0":
-                    raise "Invalid symbol %s" % d[i]
-                pass
-            pass
-        res += chr(val)
-        pass
-    return res
-
-## Read bitmap texture from the text file.
-## In that file, any non-zero symbol represents '1' opaque pixel of the bitmap.
-## A zero symbol ('0') represents transparent pixel of the texture bitmap.
-## The function returns width and height of the pixmap in pixels and byte stream representing
-## texture bitmap itself.
-##
-## This function can be used to read the texture to the byte stream in order to pass it to
-## the AddTexture() function of geompyDC class.
-## For example,
-## \code
-## import geompyDC
-## geompy = geompyDC.geomInstance(salome.myStudy)
-## texture = geompy.readtexture('mytexture.dat')
-## texture = geompy.AddTexture(*texture)
-## obj.SetMarkerTexture(texture)
-## \endcode
-## @param fname texture file name
-## @return sequence of tree values: texture's width, height in pixels and its byte stream
-## @ingroup l1_geompyDC_auxiliary
-def ReadTexture(fname):
-    """
-    Read bitmap texture from the text file.
-    In that file, any non-zero symbol represents '1' opaque pixel of the bitmap.
-    A zero symbol ('0') represents transparent pixel of the texture bitmap.
-    The function returns width and height of the pixmap in pixels and byte stream representing
-    texture bitmap itself.
-    This function can be used to read the texture to the byte stream in order to pass it to
-    the AddTexture() function of geompyDC class.
-    
-    Parameters:
-        fname texture file name
-
-    Returns:
-        sequence of tree values: texture's width, height in pixels and its byte stream
-    
-    Example of usage:
-        import geompyDC
-        geompy = geompyDC.geomInstance(salome.myStudy)
-        texture = geompy.readtexture('mytexture.dat')
-        texture = geompy.AddTexture(*texture)
-        obj.SetMarkerTexture(texture)
-    """
-    try:
-        f = open(fname)
-        lines = [ l.strip() for l in f.readlines()]
-        f.close()
-        maxlen = 0
-        if lines: maxlen = max([len(x) for x in lines])
-        lenbytes = maxlen/8
-        if maxlen%8: lenbytes += 1
-        bytedata=""
-        for line in lines:
-            if len(line)%8:
-                lenline = (len(line)/8+1)*8
-                pass
-            else:
-                lenline = (len(line)/8)*8
-                pass
-            for i in range(lenline/8):
-                byte=""
-                for j in range(8):
-                    if i*8+j < len(line) and line[i*8+j] != "0": byte += "1"
-                    else: byte += "0"
-                    pass
-                bytedata += PackData(byte)
-                pass
-            for i in range(lenline/8, lenbytes):
-                bytedata += PackData("0")
-            pass
-        return lenbytes*8, len(lines), bytedata
-    except:
-        pass
-    return 0, 0, ""
-
-## Returns a long value from enumeration type
-#  Can be used for CORBA enumerator types like GEOM.shape_type
-#  @param theItem enumeration type
-#  @ingroup l1_geompyDC_auxiliary
-def EnumToLong(theItem):
-    """
-    Returns a long value from enumeration type
-    Can be used for CORBA enumerator types like geompyDC.ShapeType
-
-    Parameters:
-        theItem enumeration type
-    """
-    ret = theItem
-    if hasattr(theItem, "_v"): ret = theItem._v
-    return ret
-
-## Kinds of shape in terms of <VAR>GEOM.GEOM_IKindOfShape.shape_kind</VAR> enumeration
-#  and a list of parameters, describing the shape.
-#  List of parameters, describing the shape:
-#  - COMPOUND:            [nb_solids  nb_faces  nb_edges  nb_vertices]
-#  - COMPSOLID:           [nb_solids  nb_faces  nb_edges  nb_vertices]
-#
-#  - SHELL:       [info.CLOSED / info.UNCLOSED  nb_faces  nb_edges  nb_vertices]
-#
-#  - WIRE:        [info.CLOSED / info.UNCLOSED nb_edges  nb_vertices]
-#
-#  - SPHERE:       [xc yc zc            R]
-#  - CYLINDER:     [xb yb zb  dx dy dz  R         H]
-#  - BOX:          [xc yc zc                      ax ay az]
-#  - ROTATED_BOX:  [xc yc zc  zx zy zz  xx xy xz  ax ay az]
-#  - TORUS:        [xc yc zc  dx dy dz  R_1  R_2]
-#  - CONE:         [xb yb zb  dx dy dz  R_1  R_2  H]
-#  - POLYHEDRON:                       [nb_faces  nb_edges  nb_vertices]
-#  - SOLID:                            [nb_faces  nb_edges  nb_vertices]
-#
-#  - SPHERE2D:     [xc yc zc            R]
-#  - CYLINDER2D:   [xb yb zb  dx dy dz  R         H]
-#  - TORUS2D:      [xc yc zc  dx dy dz  R_1  R_2]
-#  - CONE2D:       [xc yc zc  dx dy dz  R_1  R_2  H]
-#  - DISK_CIRCLE:  [xc yc zc  dx dy dz  R]
-#  - DISK_ELLIPSE: [xc yc zc  dx dy dz  R_1  R_2]
-#  - POLYGON:      [xo yo zo  dx dy dz            nb_edges  nb_vertices]
-#  - PLANE:        [xo yo zo  dx dy dz]
-#  - PLANAR:       [xo yo zo  dx dy dz            nb_edges  nb_vertices]
-#  - FACE:                                       [nb_edges  nb_vertices]
-#
-#  - CIRCLE:       [xc yc zc  dx dy dz  R]
-#  - ARC_CIRCLE:   [xc yc zc  dx dy dz  R         x1 y1 z1  x2 y2 z2]
-#  - ELLIPSE:      [xc yc zc  dx dy dz  R_1  R_2]
-#  - ARC_ELLIPSE:  [xc yc zc  dx dy dz  R_1  R_2  x1 y1 z1  x2 y2 z2]
-#  - LINE:         [xo yo zo  dx dy dz]
-#  - SEGMENT:      [x1 y1 z1  x2 y2 z2]
-#  - EDGE:                                                 [nb_vertices]
-#
-#  - VERTEX:       [x  y  z]
-#  @ingroup l1_geompyDC_auxiliary
-kind = GEOM.GEOM_IKindOfShape
-
-## Information about closed/unclosed state of shell or wire
-#  @ingroup l1_geompyDC_auxiliary
-class info:
-    """
-    Information about closed/unclosed state of shell or wire
-    """
-    UNKNOWN  = 0
-    CLOSED   = 1
-    UNCLOSED = 2
-
-# Warning: geom is a singleton
-geom = None
-engine = None
-doLcc = False
-created = False
-
-class geompyDC(object, GEOM._objref_GEOM_Gen):
-
-        def __new__(cls):
-            global engine
-            global geom
-            global doLcc
-            global created
-            print "__new__ ", engine, geom, doLcc, created
-            if geom is None:
-                # geom engine is either retrieved from engine, or created
-                geom = engine
-                # Following test avoids a recursive loop
-                if doLcc:
-                    if geom is not None:
-                        # geom engine not created: existing engine found
-                        doLcc = False
-                    if doLcc and not created:
-                        doLcc = False
-                        created = True
-                        # FindOrLoadComponent called:
-                        # 1. CORBA resolution of server
-                        # 2. the __new__ method is called again
-                        print "FindOrLoadComponent ", engine, geom, doLcc, created
-                        geom = lcc.FindOrLoadComponent( "FactoryServer", "GEOM" )
-                else:
-                    # FindOrLoadComponent not called
-                    if geom is None:
-                        # geompyDC instance is created from lcc.FindOrLoadComponent
-                        created = True
-                        print "super ", engine, geom, doLcc, created
-                        geom = super(geompyDC,cls).__new__(cls)
-                    else:
-                        # geom engine not created: existing engine found
-                        print "existing ", engine, geom, doLcc, created
-                        pass
-
-                return geom
-
-            return geom
-
-        def __init__(self):
-            #global created
-            #print "-------- geompyDC __init__ --- ", created, self
-            GEOM._objref_GEOM_Gen.__init__(self)
-            self.myMaxNbSubShapesAllowed = 0 # auto-publishing is disabled by default
-            self.myBuilder = None
-            self.myStudyId = 0
-            self.father    = None
-
-            self.BasicOp  = None
-            self.CurvesOp = None
-            self.PrimOp   = None
-            self.ShapesOp = None
-            self.HealOp   = None
-            self.InsertOp = None
-            self.BoolOp   = None
-            self.TrsfOp   = None
-            self.LocalOp  = None
-            self.MeasuOp  = None
-            self.BlocksOp = None
-            self.GroupOp  = None
-            self.AdvOp    = None
-            pass
-
-        ## @addtogroup l1_geompyDC_auxiliary
-        ## Process object publication in the study, as follows:
-        #  - if @a theName is specified (not None), the object is published in the study
-        #    with this name, not taking into account "auto-publishing" option;
-        #  - if @a theName is NOT specified, the object is published in the study
-        #    (using default name, which can be customized using @a theDefaultName parameter)
-        #    only if auto-publishing is switched on.
-        #
-        #  @param theObj  object, a subject for publishing
-        #  @param theName object name for study
-        #  @param theDefaultName default name for the auto-publishing
-        #
-        #  @sa addToStudyAuto()
-        def _autoPublish(self, theObj, theName, theDefaultName="noname"):
-            # ---
-            def _item_name(_names, _defname, _idx=-1):
-                if not _names: _names = _defname
-                if type(_names) in [types.ListType, types.TupleType]:
-                    if _idx >= 0:
-                        if _idx >= len(_names) or not _names[_idx]:
-                            if type(_defname) not in [types.ListType, types.TupleType]:
-                                _name = "%s_%d"%(_defname, _idx+1)
-                            elif len(_defname) > 0 and _idx >= 0 and _idx < len(_defname):
-                                _name = _defname[_idx]
-                            else:
-                                _name = "%noname_%d"%(dn, _idx+1)
-                            pass
-                        else:
-                            _name = _names[_idx]
-                        pass
-                    else:
-                        # must be wrong  usage
-                        _name = _names[0]
-                    pass
-                else:
-                    if _idx >= 0:
-                        _name = "%s_%d"%(_names, _idx+1)
-                    else:
-                        _name = _names
-                    pass
-                return _name
-            # ---
-            if not theObj:
-                return # null object
-            if not theName and not self.myMaxNbSubShapesAllowed:
-                return # nothing to do: auto-publishing is disabled
-            if not theName and not theDefaultName:
-                return # neither theName nor theDefaultName is given
-            import types
-            if type(theObj) in [types.ListType, types.TupleType]:
-                # list of objects is being published
-                idx = 0
-                for obj in theObj:
-                    if not obj: continue # bad object
-                    ###if obj.GetStudyEntry(): continue # already published
-                    name = _item_name(theName, theDefaultName, idx)
-                    if obj.IsMainShape() or not obj.GetMainShape().GetStudyEntry():
-                        self.addToStudy(obj, name) # "%s_%d"%(aName, idx)
-                    else:
-                        self.addToStudyInFather(obj.GetMainShape(), obj, name) # "%s_%d"%(aName, idx)
-                        pass
-                    idx = idx+1
-                    if not theName and idx == self.myMaxNbSubShapesAllowed: break
-                    pass
-                pass
-            else:
-                # single object is published
-                ###if theObj.GetStudyEntry(): return # already published
-                name = _item_name(theName, theDefaultName)
-                if theObj.IsMainShape():
-                    self.addToStudy(theObj, name)
-                else:
-                    self.addToStudyInFather(theObj.GetMainShape(), theObj, name)
-                    pass
-                pass
-            pass
-
-        ## @addtogroup l1_geompy_auxiliary
-        ## @{
-        def init_geom(self,theStudy):
-            self.myStudy = theStudy
-            self.myStudyId = self.myStudy._get_StudyId()
-            self.myBuilder = self.myStudy.NewBuilder()
-            self.father = self.myStudy.FindComponent("GEOM")
-            if self.father is None:
-                self.father = self.myBuilder.NewComponent("GEOM")
-                A1 = self.myBuilder.FindOrCreateAttribute(self.father, "AttributeName")
-                FName = A1._narrow(SALOMEDS.AttributeName)
-                FName.SetValue("Geometry")
-                A2 = self.myBuilder.FindOrCreateAttribute(self.father, "AttributePixMap")
-                aPixmap = A2._narrow(SALOMEDS.AttributePixMap)
-                aPixmap.SetPixMap("ICON_OBJBROWSER_Geometry")
-                self.myBuilder.DefineComponentInstance(self.father,self)
-                pass
-            self.BasicOp  = self.GetIBasicOperations    (self.myStudyId)
-            self.CurvesOp = self.GetICurvesOperations   (self.myStudyId)
-            self.PrimOp   = self.GetI3DPrimOperations   (self.myStudyId)
-            self.ShapesOp = self.GetIShapesOperations   (self.myStudyId)
-            self.HealOp   = self.GetIHealingOperations  (self.myStudyId)
-            self.InsertOp = self.GetIInsertOperations   (self.myStudyId)
-            self.BoolOp   = self.GetIBooleanOperations  (self.myStudyId)
-            self.TrsfOp   = self.GetITransformOperations(self.myStudyId)
-            self.LocalOp  = self.GetILocalOperations    (self.myStudyId)
-            self.MeasuOp  = self.GetIMeasureOperations  (self.myStudyId)
-            self.BlocksOp = self.GetIBlocksOperations   (self.myStudyId)
-            self.GroupOp  = self.GetIGroupOperations    (self.myStudyId)
-            self.AdvOp    = self.GetIAdvancedOperations (self.myStudyId)
-            pass
-
-        ## Enable / disable results auto-publishing
-        # 
-        #  The automatic publishing is managed in the following way:
-        #  - if @a maxNbSubShapes = 0, automatic publishing is disabled.
-        #  - if @a maxNbSubShapes = -1 (default), automatic publishing is enabled and
-        #  maximum number of sub-shapes allowed for publishing is unlimited; any negative
-        #  value passed as parameter has the same effect.
-        #  - if @a maxNbSubShapes is any positive value, automatic publishing is enabled and
-        #  maximum number of sub-shapes allowed for publishing is set to specified value.
-        #
-        #  @param maxNbSubShapes maximum number of sub-shapes allowed for publishing.
-        #  @ingroup l1_publish_data
-        def addToStudyAuto(self, maxNbSubShapes=-1):
-            """
-            Enable / disable results auto-publishing
-
-            The automatic publishing is managed in the following way:
-            - if @a maxNbSubShapes = 0, automatic publishing is disabled;
-            - if @a maxNbSubShapes = -1 (default), automatic publishing is enabled and
-            maximum number of sub-shapes allowed for publishing is unlimited; any negative
-            value passed as parameter has the same effect.
-            - if @a maxNbSubShapes is any positive value, automatic publishing is enabled and
-            maximum number of sub-shapes allowed for publishing is set to this value.
-
-            Parameters:
-                maxNbSubShapes maximum number of sub-shapes allowed for publishing.
-
-            Example of usage:
-                geompy.addToStudyAuto()   # enable auto-publishing
-                geompy.MakeBoxDXDYDZ(100) # box is created and published with default name
-                geompy.addToStudyAuto(0)  # disable auto-publishing
-            """
-            self.myMaxNbSubShapesAllowed = max(-1, maxNbSubShapes)
-            pass
-
-        ## Dump component to the Python script
-        #  This method overrides IDL function to allow default values for the parameters.
-        def DumpPython(self, theStudy, theIsPublished=True, theIsMultiFile=True):
-            """
-            Dump component to the Python script
-            This method overrides IDL function to allow default values for the parameters.
-            """
-            return GEOM._objref_GEOM_Gen.DumpPython(self, theStudy, theIsPublished, theIsMultiFile)
-
-        ## Get name for sub-shape aSubObj of shape aMainObj
-        #
-        # @ref swig_SubShapeName "Example"
-        def SubShapeName(self,aSubObj, aMainObj):
-            """
-            Get name for sub-shape aSubObj of shape aMainObj
-            """
-            # Example: see GEOM_TestAll.py
-
-            #aSubId  = orb.object_to_string(aSubObj)
-            #aMainId = orb.object_to_string(aMainObj)
-            #index = gg.getIndexTopology(aSubId, aMainId)
-            #name = gg.getShapeTypeString(aSubId) + "_%d"%(index)
-            index = self.ShapesOp.GetTopologyIndex(aMainObj, aSubObj)
-            name = self.ShapesOp.GetShapeTypeString(aSubObj) + "_%d"%(index)
-            return name
-
-        ## Publish in study aShape with name aName
-        #
-        #  \param aShape the shape to be published
-        #  \param aName  the name for the shape
-        #  \param doRestoreSubShapes if True, finds and publishes also
-        #         sub-shapes of <VAR>aShape</VAR>, corresponding to its arguments
-        #         and published sub-shapes of arguments
-        #  \param theArgs,theFindMethod,theInheritFirstArg see RestoreSubShapes() for
-        #                                                  these arguments description
-        #  \return study entry of the published shape in form of string
-        #
-        #  @ingroup l1_publish_data
-        #  @ref swig_all_addtostudy "Example"
-        def addToStudy(self, aShape, aName, doRestoreSubShapes=False,
-                       theArgs=[], theFindMethod=GEOM.FSM_GetInPlace, theInheritFirstArg=False):
-            """
-            Publish in study aShape with name aName
-
-            Parameters:
-                aShape the shape to be published
-                aName  the name for the shape
-                doRestoreSubShapes if True, finds and publishes also
-                                   sub-shapes of aShape, corresponding to its arguments
-                                   and published sub-shapes of arguments
-                theArgs,theFindMethod,theInheritFirstArg see geompy.RestoreSubShapes() for
-                                                         these arguments description
-
-            Returns:
-                study entry of the published shape in form of string
-
-            Example of usage:
-                id_block1 = geompy.addToStudy(Block1, "Block 1")
-            """
-            # Example: see GEOM_TestAll.py
-            try:
-                aSObject = self.AddInStudy(self.myStudy, aShape, aName, None)
-                if aSObject and aName: aSObject.SetAttrString("AttributeName", aName)
-                if doRestoreSubShapes:
-                    self.RestoreSubShapesSO(self.myStudy, aSObject, theArgs,
-                                            theFindMethod, theInheritFirstArg, True )
-            except:
-                print "addToStudy() failed"
-                return ""
-            return aShape.GetStudyEntry()
-
-        ## Publish in study aShape with name aName as sub-object of previously published aFather
-        #  \param aFather previously published object
-        #  \param aShape the shape to be published as sub-object of <VAR>aFather</VAR>
-        #  \param aName  the name for the shape
-        #
-        #  \return study entry of the published shape in form of string
-        #
-        #  @ingroup l1_publish_data
-        #  @ref swig_all_addtostudyInFather "Example"
-        def addToStudyInFather(self, aFather, aShape, aName):
-            """
-            Publish in study aShape with name aName as sub-object of previously published aFather
-
-            Parameters:
-                aFather previously published object
-                aShape the shape to be published as sub-object of aFather
-                aName  the name for the shape
-
-            Returns:
-                study entry of the published shape in form of string
-            """
-            # Example: see GEOM_TestAll.py
-            try:
-                aSObject = self.AddInStudy(self.myStudy, aShape, aName, aFather)
-                if aSObject and aName: aSObject.SetAttrString("AttributeName", aName)
-            except:
-                print "addToStudyInFather() failed"
-                return ""
-            return aShape.GetStudyEntry()
-
-        ## Unpublish object in study
-        #
-        #  \param obj the object to be unpublished
-        def hideInStudy(self, obj):
-            """
-            Unpublish object in study
-
-            Parameters:
-                obj the object to be unpublished
-            """
-            ior = salome.orb.object_to_string(obj)
-            aSObject = self.myStudy.FindObjectIOR(ior)
-            if aSObject is not None:
-                genericAttribute = self.myBuilder.FindOrCreateAttribute(aSObject, "AttributeDrawable")
-                drwAttribute = genericAttribute._narrow(SALOMEDS.AttributeDrawable)
-                drwAttribute.SetDrawable(False)
-                pass
-
-        # end of l1_geompyDC_auxiliary
-        ## @}
-
-        ## @addtogroup l3_restore_ss
-        ## @{
-
-        ## Publish sub-shapes, standing for arguments and sub-shapes of arguments
-        #  To be used from python scripts out of addToStudy() (non-default usage)
-        #  \param theObject published GEOM.GEOM_Object, arguments of which will be published
-        #  \param theArgs   list of GEOM.GEOM_Object, operation arguments to be published.
-        #                   If this list is empty, all operation arguments will be published
-        #  \param theFindMethod method to search sub-shapes, corresponding to arguments and
-        #                       their sub-shapes. Value from enumeration GEOM.find_shape_method.
-        #  \param theInheritFirstArg set properties of the first argument for <VAR>theObject</VAR>.
-        #                            Do not publish sub-shapes in place of arguments, but only
-        #                            in place of sub-shapes of the first argument,
-        #                            because the whole shape corresponds to the first argument.
-        #                            Mainly to be used after transformations, but it also can be
-        #                            usefull after partition with one object shape, and some other
-        #                            operations, where only the first argument has to be considered.
-        #                            If theObject has only one argument shape, this flag is automatically
-        #                            considered as True, not regarding really passed value.
-        #  \param theAddPrefix add prefix "from_" to names of restored sub-shapes,
-        #                      and prefix "from_subshapes_of_" to names of partially restored sub-shapes.
-        #  \return list of published sub-shapes
-        #
-        #  @ref tui_restore_prs_params "Example"
-        def RestoreSubShapes (self, theObject, theArgs=[], theFindMethod=GEOM.FSM_GetInPlace,
-                              theInheritFirstArg=False, theAddPrefix=True):
-            """
-            Publish sub-shapes, standing for arguments and sub-shapes of arguments
-            To be used from python scripts out of geompy.addToStudy (non-default usage)
-
-            Parameters:
-                theObject published GEOM.GEOM_Object, arguments of which will be published
-                theArgs   list of GEOM.GEOM_Object, operation arguments to be published.
-                          If this list is empty, all operation arguments will be published
-                theFindMethod method to search sub-shapes, corresponding to arguments and
-                              their sub-shapes. Value from enumeration GEOM.find_shape_method.
-                theInheritFirstArg set properties of the first argument for theObject.
-                                   Do not publish sub-shapes in place of arguments, but only
-                                   in place of sub-shapes of the first argument,
-                                   because the whole shape corresponds to the first argument.
-                                   Mainly to be used after transformations, but it also can be
-                                   usefull after partition with one object shape, and some other
-                                   operations, where only the first argument has to be considered.
-                                   If theObject has only one argument shape, this flag is automatically
-                                   considered as True, not regarding really passed value.
-                theAddPrefix add prefix "from_" to names of restored sub-shapes,
-                             and prefix "from_subshapes_of_" to names of partially restored sub-shapes.
-            Returns:
-                list of published sub-shapes
-            """
-            # Example: see GEOM_TestAll.py
-            return self.RestoreSubShapesO(self.myStudy, theObject, theArgs,
-                                          theFindMethod, theInheritFirstArg, theAddPrefix)
-
-        ## Publish sub-shapes, standing for arguments and sub-shapes of arguments
-        #  To be used from python scripts out of addToStudy() (non-default usage)
-        #  \param theObject published GEOM.GEOM_Object, arguments of which will be published
-        #  \param theArgs   list of GEOM.GEOM_Object, operation arguments to be published.
-        #                   If this list is empty, all operation arguments will be published
-        #  \param theFindMethod method to search sub-shapes, corresponding to arguments and
-        #                       their sub-shapes. Value from enumeration GEOM::find_shape_method.
-        #  \param theInheritFirstArg set properties of the first argument for <VAR>theObject</VAR>.
-        #                            Do not publish sub-shapes in place of arguments, but only
-        #                            in place of sub-shapes of the first argument,
-        #                            because the whole shape corresponds to the first argument.
-        #                            Mainly to be used after transformations, but it also can be
-        #                            usefull after partition with one object shape, and some other
-        #                            operations, where only the first argument has to be considered.
-        #                            If theObject has only one argument shape, this flag is automatically
-        #                            considered as True, not regarding really passed value.
-        #  \param theAddPrefix add prefix "from_" to names of restored sub-shapes,
-        #                      and prefix "from_subshapes_of_" to names of partially restored sub-shapes.
-        #  \return list of published sub-shapes
-        #
-        #  @ref tui_restore_prs_params "Example"
-        def RestoreGivenSubShapes (self, theObject, theArgs=[], theFindMethod=GEOM.FSM_GetInPlace,
-                                   theInheritFirstArg=False, theAddPrefix=True):
-            """
-            Publish sub-shapes, standing for arguments and sub-shapes of arguments
-            To be used from python scripts out of geompy.addToStudy() (non-default usage)
-
-            Parameters:
-                theObject published GEOM.GEOM_Object, arguments of which will be published
-                theArgs   list of GEOM.GEOM_Object, operation arguments to be published.
-                          If this list is empty, all operation arguments will be published
-                theFindMethod method to search sub-shapes, corresponding to arguments and
-                              their sub-shapes. Value from enumeration GEOM::find_shape_method.
-                theInheritFirstArg set properties of the first argument for theObject.
-                                   Do not publish sub-shapes in place of arguments, but only
-                                   in place of sub-shapes of the first argument,
-                                   because the whole shape corresponds to the first argument.
-                                   Mainly to be used after transformations, but it also can be
-                                   usefull after partition with one object shape, and some other
-                                   operations, where only the first argument has to be considered.
-                                   If theObject has only one argument shape, this flag is automatically
-                                   considered as True, not regarding really passed value.
-                theAddPrefix add prefix "from_" to names of restored sub-shapes,
-                             and prefix "from_subshapes_of_" to names of partially restored sub-shapes.
-
-            Returns: 
-                list of published sub-shapes
-            """
-            # Example: see GEOM_TestAll.py
-            return self.RestoreGivenSubShapesO(self.myStudy, theObject, theArgs,
-                                               theFindMethod, theInheritFirstArg, theAddPrefix)
-
-        # end of l3_restore_ss
-        ## @}
-
-        ## @addtogroup l3_basic_go
-        ## @{
-
-        ## Create point by three coordinates.
-        #  @param theX The X coordinate of the point.
-        #  @param theY The Y coordinate of the point.
-        #  @param theZ The Z coordinate of the point.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created point.
-        #
-        #  @ref tui_creation_point "Example"
-        def MakeVertex(self, theX, theY, theZ, theName=None):
-            """
-            Create point by three coordinates.
-
-            Parameters:
-                theX The X coordinate of the point.
-                theY The Y coordinate of the point.
-                theZ The Z coordinate of the point.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-                
-            Returns: 
-                New GEOM.GEOM_Object, containing the created point.
-            """
-            # Example: see GEOM_TestAll.py
-            theX,theY,theZ,Parameters = ParseParameters(theX, theY, theZ)
-            anObj = self.BasicOp.MakePointXYZ(theX, theY, theZ)
-            RaiseIfFailed("MakePointXYZ", self.BasicOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "vertex")
-            return anObj
-
-        ## Create a point, distant from the referenced point
-        #  on the given distances along the coordinate axes.
-        #  @param theReference The referenced point.
-        #  @param theX Displacement from the referenced point along OX axis.
-        #  @param theY Displacement from the referenced point along OY axis.
-        #  @param theZ Displacement from the referenced point along OZ axis.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created point.
-        #
-        #  @ref tui_creation_point "Example"
-        def MakeVertexWithRef(self, theReference, theX, theY, theZ, theName=None):
-            """
-            Create a point, distant from the referenced point
-            on the given distances along the coordinate axes.
-
-            Parameters:
-                theReference The referenced point.
-                theX Displacement from the referenced point along OX axis.
-                theY Displacement from the referenced point along OY axis.
-                theZ Displacement from the referenced point along OZ axis.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the created point.
-            """
-            # Example: see GEOM_TestAll.py
-            theX,theY,theZ,Parameters = ParseParameters(theX, theY, theZ)
-            anObj = self.BasicOp.MakePointWithReference(theReference, theX, theY, theZ)
-            RaiseIfFailed("MakePointWithReference", self.BasicOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "vertex")
-            return anObj
-
-        ## Create a point, corresponding to the given parameter on the given curve.
-        #  @param theRefCurve The referenced curve.
-        #  @param theParameter Value of parameter on the referenced curve.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created point.
-        #
-        #  @ref tui_creation_point "Example"
-        def MakeVertexOnCurve(self, theRefCurve, theParameter, theName=None):
-            """
-            Create a point, corresponding to the given parameter on the given curve.
-
-            Parameters:
-                theRefCurve The referenced curve.
-                theParameter Value of parameter on the referenced curve.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the created point.
-
-            Example of usage:
-                p_on_arc = geompy.MakeVertexOnCurve(Arc, 0.25)
-            """
-            # Example: see GEOM_TestAll.py
-            theParameter, Parameters = ParseParameters(theParameter)
-            anObj = self.BasicOp.MakePointOnCurve(theRefCurve, theParameter)
-            RaiseIfFailed("MakePointOnCurve", self.BasicOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "vertex")
-            return anObj
-
-        ## Create a point by projection give coordinates on the given curve
-        #  @param theRefCurve The referenced curve.
-        #  @param theX X-coordinate in 3D space
-        #  @param theY Y-coordinate in 3D space
-        #  @param theZ Z-coordinate in 3D space
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created point.
-        #
-        #  @ref tui_creation_point "Example"
-        def MakeVertexOnCurveByCoord(self, theRefCurve, theX, theY, theZ, theName=None):
-            """
-            Create a point by projection give coordinates on the given curve
-            
-            Parameters:
-                theRefCurve The referenced curve.
-                theX X-coordinate in 3D space
-                theY Y-coordinate in 3D space
-                theZ Z-coordinate in 3D space
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the created point.
-
-            Example of usage:
-                p_on_arc3 = geompy.MakeVertexOnCurveByCoord(Arc, 100, -10, 10)
-            """
-            # Example: see GEOM_TestAll.py
-            theX, theY, theZ, Parameters = ParseParameters(theX, theY, theZ)
-            anObj = self.BasicOp.MakePointOnCurveByCoord(theRefCurve, theX, theY, theZ)
-            RaiseIfFailed("MakeVertexOnCurveByCoord", self.BasicOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "vertex")
-            return anObj
-
-        ## Create a point, corresponding to the given length on the given curve.
-        #  @param theRefCurve The referenced curve.
-        #  @param theLength Length on the referenced curve. It can be negative.
-        #  @param theStartPoint Point allowing to choose the direction for the calculation
-        #                       of the length. If None, start from the first point of theRefCurve.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created point.
-        #
-        #  @ref tui_creation_point "Example"
-        def MakeVertexOnCurveByLength(self, theRefCurve, theLength, theStartPoint = None, theName=None):
-            """
-            Create a point, corresponding to the given length on the given curve.
-
-            Parameters:
-                theRefCurve The referenced curve.
-                theLength Length on the referenced curve. It can be negative.
-                theStartPoint Point allowing to choose the direction for the calculation
-                              of the length. If None, start from the first point of theRefCurve.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the created point.
-            """
-            # Example: see GEOM_TestAll.py
-            theLength, Parameters = ParseParameters(theLength)
-            anObj = self.BasicOp.MakePointOnCurveByLength(theRefCurve, theLength, theStartPoint)
-            RaiseIfFailed("MakePointOnCurveByLength", self.BasicOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "vertex")
-            return anObj
-
-        ## Create a point, corresponding to the given parameters on the
-        #    given surface.
-        #  @param theRefSurf The referenced surface.
-        #  @param theUParameter Value of U-parameter on the referenced surface.
-        #  @param theVParameter Value of V-parameter on the referenced surface.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created point.
-        #
-        #  @ref swig_MakeVertexOnSurface "Example"
-        def MakeVertexOnSurface(self, theRefSurf, theUParameter, theVParameter, theName=None):
-            """
-            Create a point, corresponding to the given parameters on the
-            given surface.
-
-            Parameters:
-                theRefSurf The referenced surface.
-                theUParameter Value of U-parameter on the referenced surface.
-                theVParameter Value of V-parameter on the referenced surface.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the created point.
-
-            Example of usage:
-                p_on_face = geompy.MakeVertexOnSurface(Face, 0.1, 0.8)
-            """
-            theUParameter, theVParameter, Parameters = ParseParameters(theUParameter, theVParameter)
-            # Example: see GEOM_TestAll.py
-            anObj = self.BasicOp.MakePointOnSurface(theRefSurf, theUParameter, theVParameter)
-            RaiseIfFailed("MakePointOnSurface", self.BasicOp)
-            anObj.SetParameters(Parameters);
-            self._autoPublish(anObj, theName, "vertex")
-            return anObj
-
-        ## Create a point by projection give coordinates on the given surface
-        #  @param theRefSurf The referenced surface.
-        #  @param theX X-coordinate in 3D space
-        #  @param theY Y-coordinate in 3D space
-        #  @param theZ Z-coordinate in 3D space
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created point.
-        #
-        #  @ref swig_MakeVertexOnSurfaceByCoord "Example"
-        def MakeVertexOnSurfaceByCoord(self, theRefSurf, theX, theY, theZ, theName=None):
-            """
-            Create a point by projection give coordinates on the given surface
-
-            Parameters:
-                theRefSurf The referenced surface.
-                theX X-coordinate in 3D space
-                theY Y-coordinate in 3D space
-                theZ Z-coordinate in 3D space
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the created point.
-
-            Example of usage:
-                p_on_face2 = geompy.MakeVertexOnSurfaceByCoord(Face, 0., 0., 0.)
-            """
-            theX, theY, theZ, Parameters = ParseParameters(theX, theY, theZ)
-            # Example: see GEOM_TestAll.py
-            anObj = self.BasicOp.MakePointOnSurfaceByCoord(theRefSurf, theX, theY, theZ)
-            RaiseIfFailed("MakeVertexOnSurfaceByCoord", self.BasicOp)
-            anObj.SetParameters(Parameters);
-            self._autoPublish(anObj, theName, "vertex")
-            return anObj
-
-        ## Create a point, which lays on the given face.
-        #  The point will lay in arbitrary place of the face.
-        #  The only condition on it is a non-zero distance to the face boundary.
-        #  Such point can be used to uniquely identify the face inside any
-        #  shape in case, when the shape does not contain overlapped faces.
-        #  @param theFace The referenced face.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created point.
-        #
-        #  @ref swig_MakeVertexInsideFace "Example"
-        def MakeVertexInsideFace (self, theFace, theName=None):
-            """
-            Create a point, which lays on the given face.
-            The point will lay in arbitrary place of the face.
-            The only condition on it is a non-zero distance to the face boundary.
-            Such point can be used to uniquely identify the face inside any
-            shape in case, when the shape does not contain overlapped faces.
-
-            Parameters:
-                theFace The referenced face.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the created point.
-
-            Example of usage:
-                p_on_face = geompy.MakeVertexInsideFace(Face)
-            """
-            # Example: see GEOM_TestAll.py
-            anObj = self.BasicOp.MakePointOnFace(theFace)
-            RaiseIfFailed("MakeVertexInsideFace", self.BasicOp)
-            self._autoPublish(anObj, theName, "vertex")
-            return anObj
-
-        ## Create a point on intersection of two lines.
-        #  @param theRefLine1, theRefLine2 The referenced lines.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created point.
-        #
-        #  @ref swig_MakeVertexOnLinesIntersection "Example"
-        def MakeVertexOnLinesIntersection(self, theRefLine1, theRefLine2, theName=None):
-            """
-            Create a point on intersection of two lines.
-
-            Parameters:
-                theRefLine1, theRefLine2 The referenced lines.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the created point.
-            """
-            # Example: see GEOM_TestAll.py
-            anObj = self.BasicOp.MakePointOnLinesIntersection(theRefLine1, theRefLine2)
-            RaiseIfFailed("MakePointOnLinesIntersection", self.BasicOp)
-            self._autoPublish(anObj, theName, "vertex")
-            return anObj
-
-        ## Create a tangent, corresponding to the given parameter on the given curve.
-        #  @param theRefCurve The referenced curve.
-        #  @param theParameter Value of parameter on the referenced curve.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created tangent.
-        #
-        #  @ref swig_MakeTangentOnCurve "Example"
-        def MakeTangentOnCurve(self, theRefCurve, theParameter, theName=None):
-            """
-            Create a tangent, corresponding to the given parameter on the given curve.
-
-            Parameters:
-                theRefCurve The referenced curve.
-                theParameter Value of parameter on the referenced curve.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the created tangent.
-
-            Example of usage:
-                tan_on_arc = geompy.MakeTangentOnCurve(Arc, 0.7)
-            """
-            anObj = self.BasicOp.MakeTangentOnCurve(theRefCurve, theParameter)
-            RaiseIfFailed("MakeTangentOnCurve", self.BasicOp)
-            self._autoPublish(anObj, theName, "tangent")
-            return anObj
-
-        ## Create a tangent plane, corresponding to the given parameter on the given face.
-        #  @param theFace The face for which tangent plane should be built.
-        #  @param theParameterV vertical value of the center point (0.0 - 1.0).
-        #  @param theParameterU horisontal value of the center point (0.0 - 1.0).
-        #  @param theTrimSize the size of plane.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created tangent.
-        #
-        #  @ref swig_MakeTangentPlaneOnFace "Example"
-        def MakeTangentPlaneOnFace(self, theFace, theParameterU, theParameterV, theTrimSize, theName=None):
-            """
-            Create a tangent plane, corresponding to the given parameter on the given face.
-
-            Parameters:
-                theFace The face for which tangent plane should be built.
-                theParameterV vertical value of the center point (0.0 - 1.0).
-                theParameterU horisontal value of the center point (0.0 - 1.0).
-                theTrimSize the size of plane.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-           Returns: 
-                New GEOM.GEOM_Object, containing the created tangent.
-
-           Example of usage:
-                an_on_face = geompy.MakeTangentPlaneOnFace(tan_extrusion, 0.7, 0.5, 150)
-            """
-            anObj = self.BasicOp.MakeTangentPlaneOnFace(theFace, theParameterU, theParameterV, theTrimSize)
-            RaiseIfFailed("MakeTangentPlaneOnFace", self.BasicOp)
-            self._autoPublish(anObj, theName, "tangent")
-            return anObj
-
-        ## Create a vector with the given components.
-        #  @param theDX X component of the vector.
-        #  @param theDY Y component of the vector.
-        #  @param theDZ Z component of the vector.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created vector.
-        #
-        #  @ref tui_creation_vector "Example"
-        def MakeVectorDXDYDZ(self, theDX, theDY, theDZ, theName=None):
-            """
-            Create a vector with the given components.
-
-            Parameters:
-                theDX X component of the vector.
-                theDY Y component of the vector.
-                theDZ Z component of the vector.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:     
-                New GEOM.GEOM_Object, containing the created vector.
-            """
-            # Example: see GEOM_TestAll.py
-            theDX,theDY,theDZ,Parameters = ParseParameters(theDX, theDY, theDZ)
-            anObj = self.BasicOp.MakeVectorDXDYDZ(theDX, theDY, theDZ)
-            RaiseIfFailed("MakeVectorDXDYDZ", self.BasicOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "vector")
-            return anObj
-
-        ## Create a vector between two points.
-        #  @param thePnt1 Start point for the vector.
-        #  @param thePnt2 End point for the vector.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created vector.
-        #
-        #  @ref tui_creation_vector "Example"
-        def MakeVector(self, thePnt1, thePnt2, theName=None):
-            """
-            Create a vector between two points.
-
-            Parameters:
-                thePnt1 Start point for the vector.
-                thePnt2 End point for the vector.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:        
-                New GEOM.GEOM_Object, containing the created vector.
-            """
-            # Example: see GEOM_TestAll.py
-            anObj = self.BasicOp.MakeVectorTwoPnt(thePnt1, thePnt2)
-            RaiseIfFailed("MakeVectorTwoPnt", self.BasicOp)
-            self._autoPublish(anObj, theName, "vector")
-            return anObj
-
-        ## Create a line, passing through the given point
-        #  and parrallel to the given direction
-        #  @param thePnt Point. The resulting line will pass through it.
-        #  @param theDir Direction. The resulting line will be parallel to it.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created line.
-        #
-        #  @ref tui_creation_line "Example"
-        def MakeLine(self, thePnt, theDir, theName=None):
-            """
-            Create a line, passing through the given point
-            and parrallel to the given direction
-
-            Parameters:
-                thePnt Point. The resulting line will pass through it.
-                theDir Direction. The resulting line will be parallel to it.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the created line.
-            """
-            # Example: see GEOM_TestAll.py
-            anObj = self.BasicOp.MakeLine(thePnt, theDir)
-            RaiseIfFailed("MakeLine", self.BasicOp)
-            self._autoPublish(anObj, theName, "line")
-            return anObj
-
-        ## Create a line, passing through the given points
-        #  @param thePnt1 First of two points, defining the line.
-        #  @param thePnt2 Second of two points, defining the line.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created line.
-        #
-        #  @ref tui_creation_line "Example"
-        def MakeLineTwoPnt(self, thePnt1, thePnt2, theName=None):
-            """
-            Create a line, passing through the given points
-
-            Parameters:
-                thePnt1 First of two points, defining the line.
-                thePnt2 Second of two points, defining the line.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the created line.
-            """
-            # Example: see GEOM_TestAll.py
-            anObj = self.BasicOp.MakeLineTwoPnt(thePnt1, thePnt2)
-            RaiseIfFailed("MakeLineTwoPnt", self.BasicOp)
-            self._autoPublish(anObj, theName, "line")
-            return anObj
-
-        ## Create a line on two faces intersection.
-        #  @param theFace1 First of two faces, defining the line.
-        #  @param theFace2 Second of two faces, defining the line.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created line.
-        #
-        #  @ref swig_MakeLineTwoFaces "Example"
-        def MakeLineTwoFaces(self, theFace1, theFace2, theName=None):
-            """
-            Create a line on two faces intersection.
-
-            Parameters:
-                theFace1 First of two faces, defining the line.
-                theFace2 Second of two faces, defining the line.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the created line.
-            """
-            # Example: see GEOM_TestAll.py
-            anObj = self.BasicOp.MakeLineTwoFaces(theFace1, theFace2)
-            RaiseIfFailed("MakeLineTwoFaces", self.BasicOp)
-            self._autoPublish(anObj, theName, "line")
-            return anObj
-
-        ## Create a plane, passing through the given point
-        #  and normal to the given vector.
-        #  @param thePnt Point, the plane has to pass through.
-        #  @param theVec Vector, defining the plane normal direction.
-        #  @param theTrimSize Half size of a side of quadrangle face, representing the plane.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created plane.
-        #
-        #  @ref tui_creation_plane "Example"
-        def MakePlane(self, thePnt, theVec, theTrimSize, theName=None):
-            """
-            Create a plane, passing through the given point
-            and normal to the given vector.
-
-            Parameters:
-                thePnt Point, the plane has to pass through.
-                theVec Vector, defining the plane normal direction.
-                theTrimSize Half size of a side of quadrangle face, representing the plane.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:    
-                New GEOM.GEOM_Object, containing the created plane.
-            """
-            # Example: see GEOM_TestAll.py
-            theTrimSize, Parameters = ParseParameters(theTrimSize);
-            anObj = self.BasicOp.MakePlanePntVec(thePnt, theVec, theTrimSize)
-            RaiseIfFailed("MakePlanePntVec", self.BasicOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "plane")
-            return anObj
-
-        ## Create a plane, passing through the three given points
-        #  @param thePnt1 First of three points, defining the plane.
-        #  @param thePnt2 Second of three points, defining the plane.
-        #  @param thePnt3 Fird of three points, defining the plane.
-        #  @param theTrimSize Half size of a side of quadrangle face, representing the plane.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created plane.
-        #
-        #  @ref tui_creation_plane "Example"
-        def MakePlaneThreePnt(self, thePnt1, thePnt2, thePnt3, theTrimSize, theName=None):
-            """
-            Create a plane, passing through the three given points
-
-            Parameters:
-                thePnt1 First of three points, defining the plane.
-                thePnt2 Second of three points, defining the plane.
-                thePnt3 Fird of three points, defining the plane.
-                theTrimSize Half size of a side of quadrangle face, representing the plane.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the created plane.
-            """
-            # Example: see GEOM_TestAll.py
-            theTrimSize, Parameters = ParseParameters(theTrimSize);
-            anObj = self.BasicOp.MakePlaneThreePnt(thePnt1, thePnt2, thePnt3, theTrimSize)
-            RaiseIfFailed("MakePlaneThreePnt", self.BasicOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "plane")
-            return anObj
-
-        ## Create a plane, similar to the existing one, but with another size of representing face.
-        #  @param theFace Referenced plane or LCS(Marker).
-        #  @param theTrimSize New half size of a side of quadrangle face, representing the plane.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created plane.
-        #
-        #  @ref tui_creation_plane "Example"
-        def MakePlaneFace(self, theFace, theTrimSize, theName=None):
-            """
-            Create a plane, similar to the existing one, but with another size of representing face.
-
-            Parameters:
-                theFace Referenced plane or LCS(Marker).
-                theTrimSize New half size of a side of quadrangle face, representing the plane.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the created plane.
-            """
-            # Example: see GEOM_TestAll.py
-            theTrimSize, Parameters = ParseParameters(theTrimSize);
-            anObj = self.BasicOp.MakePlaneFace(theFace, theTrimSize)
-            RaiseIfFailed("MakePlaneFace", self.BasicOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "plane")
-            return anObj
-
-        ## Create a plane, passing through the 2 vectors
-        #  with center in a start point of the first vector.
-        #  @param theVec1 Vector, defining center point and plane direction.
-        #  @param theVec2 Vector, defining the plane normal direction.
-        #  @param theTrimSize Half size of a side of quadrangle face, representing the plane.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created plane.
-        #
-        #  @ref tui_creation_plane "Example"
-        def MakePlane2Vec(self, theVec1, theVec2, theTrimSize, theName=None):
-            """
-            Create a plane, passing through the 2 vectors
-            with center in a start point of the first vector.
-
-            Parameters:
-                theVec1 Vector, defining center point and plane direction.
-                theVec2 Vector, defining the plane normal direction.
-                theTrimSize Half size of a side of quadrangle face, representing the plane.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns: 
-                New GEOM.GEOM_Object, containing the created plane.
-            """
-            # Example: see GEOM_TestAll.py
-            theTrimSize, Parameters = ParseParameters(theTrimSize);
-            anObj = self.BasicOp.MakePlane2Vec(theVec1, theVec2, theTrimSize)
-            RaiseIfFailed("MakePlane2Vec", self.BasicOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "plane")
-            return anObj
-
-        ## Create a plane, based on a Local coordinate system.
-        #  @param theLCS  coordinate system, defining plane.
-        #  @param theTrimSize Half size of a side of quadrangle face, representing the plane.
-        #  @param theOrientation OXY, OYZ or OZX orientation - (1, 2 or 3)
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created plane.
-        #
-        #  @ref tui_creation_plane "Example"
-        def MakePlaneLCS(self, theLCS, theTrimSize, theOrientation, theName=None):
-            """
-            Create a plane, based on a Local coordinate system.
-
-           Parameters: 
-                theLCS  coordinate system, defining plane.
-                theTrimSize Half size of a side of quadrangle face, representing the plane.
-                theOrientation OXY, OYZ or OZX orientation - (1, 2 or 3)
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns: 
-                New GEOM.GEOM_Object, containing the created plane.
-            """
-            # Example: see GEOM_TestAll.py
-            theTrimSize, Parameters = ParseParameters(theTrimSize);
-            anObj = self.BasicOp.MakePlaneLCS(theLCS, theTrimSize, theOrientation)
-            RaiseIfFailed("MakePlaneLCS", self.BasicOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "plane")
-            return anObj
-
-        ## Create a local coordinate system.
-        #  @param OX,OY,OZ Three coordinates of coordinate system origin.
-        #  @param XDX,XDY,XDZ Three components of OX direction
-        #  @param YDX,YDY,YDZ Three components of OY direction
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created coordinate system.
-        #
-        #  @ref swig_MakeMarker "Example"
-        def MakeMarker(self, OX,OY,OZ, XDX,XDY,XDZ, YDX,YDY,YDZ, theName=None):
-            """
-            Create a local coordinate system.
-
-            Parameters: 
-                OX,OY,OZ Three coordinates of coordinate system origin.
-                XDX,XDY,XDZ Three components of OX direction
-                YDX,YDY,YDZ Three components of OY direction
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns: 
-                New GEOM.GEOM_Object, containing the created coordinate system.
-            """
-            # Example: see GEOM_TestAll.py
-            OX,OY,OZ, XDX,XDY,XDZ, YDX,YDY,YDZ, Parameters = ParseParameters(OX,OY,OZ, XDX,XDY,XDZ, YDX,YDY,YDZ);
-            anObj = self.BasicOp.MakeMarker(OX,OY,OZ, XDX,XDY,XDZ, YDX,YDY,YDZ)
-            RaiseIfFailed("MakeMarker", self.BasicOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "lcs")
-            return anObj
-
-        ## Create a local coordinate system from shape.
-        #  @param theShape The initial shape to detect the coordinate system.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created coordinate system.
-        #
-        #  @ref tui_creation_lcs "Example"
-        def MakeMarkerFromShape(self, theShape, theName=None):
-            """
-            Create a local coordinate system from shape.
-
-            Parameters:
-                theShape The initial shape to detect the coordinate system.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-                
-            Returns: 
-                New GEOM.GEOM_Object, containing the created coordinate system.
-            """
-            anObj = self.BasicOp.MakeMarkerFromShape(theShape)
-            RaiseIfFailed("MakeMarkerFromShape", self.BasicOp)
-            self._autoPublish(anObj, theName, "lcs")
-            return anObj
-
-        ## Create a local coordinate system from point and two vectors.
-        #  @param theOrigin Point of coordinate system origin.
-        #  @param theXVec Vector of X direction
-        #  @param theYVec Vector of Y direction
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created coordinate system.
-        #
-        #  @ref tui_creation_lcs "Example"
-        def MakeMarkerPntTwoVec(self, theOrigin, theXVec, theYVec, theName=None):
-            """
-            Create a local coordinate system from point and two vectors.
-
-            Parameters:
-                theOrigin Point of coordinate system origin.
-                theXVec Vector of X direction
-                theYVec Vector of Y direction
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns: 
-                New GEOM.GEOM_Object, containing the created coordinate system.
-
-            """
-            anObj = self.BasicOp.MakeMarkerPntTwoVec(theOrigin, theXVec, theYVec)
-            RaiseIfFailed("MakeMarkerPntTwoVec", self.BasicOp)
-            self._autoPublish(anObj, theName, "lcs")
-            return anObj
-
-        # end of l3_basic_go
-        ## @}
-
-        ## @addtogroup l4_curves
-        ## @{
-
-        ##  Create an arc of circle, passing through three given points.
-        #  @param thePnt1 Start point of the arc.
-        #  @param thePnt2 Middle point of the arc.
-        #  @param thePnt3 End point of the arc.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created arc.
-        #
-        #  @ref swig_MakeArc "Example"
-        def MakeArc(self, thePnt1, thePnt2, thePnt3, theName=None):
-            """
-            Create an arc of circle, passing through three given points.
-
-            Parameters:
-                thePnt1 Start point of the arc.
-                thePnt2 Middle point of the arc.
-                thePnt3 End point of the arc.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns: 
-                New GEOM.GEOM_Object, containing the created arc.
-            """
-            # Example: see GEOM_TestAll.py
-            anObj = self.CurvesOp.MakeArc(thePnt1, thePnt2, thePnt3)
-            RaiseIfFailed("MakeArc", self.CurvesOp)
-            self._autoPublish(anObj, theName, "arc")
-            return anObj
-
-        ##  Create an arc of circle from a center and 2 points.
-        #  @param thePnt1 Center of the arc
-        #  @param thePnt2 Start point of the arc. (Gives also the radius of the arc)
-        #  @param thePnt3 End point of the arc (Gives also a direction)
-        #  @param theSense Orientation of the arc
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created arc.
-        #
-        #  @ref swig_MakeArc "Example"
-        def MakeArcCenter(self, thePnt1, thePnt2, thePnt3, theSense=False, theName=None):
-            """
-            Create an arc of circle from a center and 2 points.
-
-            Parameters:
-                thePnt1 Center of the arc
-                thePnt2 Start point of the arc. (Gives also the radius of the arc)
-                thePnt3 End point of the arc (Gives also a direction)
-                theSense Orientation of the arc
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the created arc.
-            """
-            # Example: see GEOM_TestAll.py
-            anObj = self.CurvesOp.MakeArcCenter(thePnt1, thePnt2, thePnt3, theSense)
-            RaiseIfFailed("MakeArcCenter", self.CurvesOp)
-            self._autoPublish(anObj, theName, "arc")
-            return anObj
-
-        ##  Create an arc of ellipse, of center and two points.
-        #  @param theCenter Center of the arc.
-        #  @param thePnt1 defines major radius of the arc by distance from Pnt1 to Pnt2.
-        #  @param thePnt2 defines plane of ellipse and minor radius as distance from Pnt3 to line from Pnt1 to Pnt2.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created arc.
-        #
-        #  @ref swig_MakeArc "Example"
-        def MakeArcOfEllipse(self, theCenter, thePnt1, thePnt2, theName=None):
-            """
-            Create an arc of ellipse, of center and two points.
-
-            Parameters:
-                theCenter Center of the arc.
-                thePnt1 defines major radius of the arc by distance from Pnt1 to Pnt2.
-                thePnt2 defines plane of ellipse and minor radius as distance from Pnt3 to line from Pnt1 to Pnt2.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the created arc.
-            """
-            # Example: see GEOM_TestAll.py
-            anObj = self.CurvesOp.MakeArcOfEllipse(theCenter, thePnt1, thePnt2)
-            RaiseIfFailed("MakeArcOfEllipse", self.CurvesOp)
-            self._autoPublish(anObj, theName, "arc")
-            return anObj
-
-        ## Create a circle with given center, normal vector and radius.
-        #  @param thePnt Circle center.
-        #  @param theVec Vector, normal to the plane of the circle.
-        #  @param theR Circle radius.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created circle.
-        #
-        #  @ref tui_creation_circle "Example"
-        def MakeCircle(self, thePnt, theVec, theR, theName=None):
-            """
-            Create a circle with given center, normal vector and radius.
-
-            Parameters:
-                thePnt Circle center.
-                theVec Vector, normal to the plane of the circle.
-                theR Circle radius.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the created circle.
-            """
-            # Example: see GEOM_TestAll.py
-            theR, Parameters = ParseParameters(theR)
-            anObj = self.CurvesOp.MakeCirclePntVecR(thePnt, theVec, theR)
-            RaiseIfFailed("MakeCirclePntVecR", self.CurvesOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "circle")
-            return anObj
-
-        ## Create a circle with given radius.
-        #  Center of the circle will be in the origin of global
-        #  coordinate system and normal vector will be codirected with Z axis
-        #  @param theR Circle radius.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created circle.
-        def MakeCircleR(self, theR, theName=None):
-            """
-            Create a circle with given radius.
-            Center of the circle will be in the origin of global
-            coordinate system and normal vector will be codirected with Z axis
-
-            Parameters:
-                theR Circle radius.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the created circle.
-            """
-            anObj = self.CurvesOp.MakeCirclePntVecR(None, None, theR)
-            RaiseIfFailed("MakeCirclePntVecR", self.CurvesOp)
-            self._autoPublish(anObj, theName, "circle")
-            return anObj
-
-        ## Create a circle, passing through three given points
-        #  @param thePnt1,thePnt2,thePnt3 Points, defining the circle.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created circle.
-        #
-        #  @ref tui_creation_circle "Example"
-        def MakeCircleThreePnt(self, thePnt1, thePnt2, thePnt3, theName=None):
-            """
-            Create a circle, passing through three given points
-
-            Parameters:
-                thePnt1,thePnt2,thePnt3 Points, defining the circle.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the created circle.
-            """
-            # Example: see GEOM_TestAll.py
-            anObj = self.CurvesOp.MakeCircleThreePnt(thePnt1, thePnt2, thePnt3)
-            RaiseIfFailed("MakeCircleThreePnt", self.CurvesOp)
-            self._autoPublish(anObj, theName, "circle")
-            return anObj
-
-        ## Create a circle, with given point1 as center,
-        #  passing through the point2 as radius and laying in the plane,
-        #  defined by all three given points.
-        #  @param thePnt1,thePnt2,thePnt3 Points, defining the circle.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created circle.
-        #
-        #  @ref swig_MakeCircle "Example"
-        def MakeCircleCenter2Pnt(self, thePnt1, thePnt2, thePnt3, theName=None):
-            """
-            Create a circle, with given point1 as center,
-            passing through the point2 as radius and laying in the plane,
-            defined by all three given points.
-
-            Parameters:
-                thePnt1,thePnt2,thePnt3 Points, defining the circle.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the created circle.
-            """
-            # Example: see GEOM_example6.py
-            anObj = self.CurvesOp.MakeCircleCenter2Pnt(thePnt1, thePnt2, thePnt3)
-            RaiseIfFailed("MakeCircleCenter2Pnt", self.CurvesOp)
-            self._autoPublish(anObj, theName, "circle")
-            return anObj
-
-        ## Create an ellipse with given center, normal vector and radiuses.
-        #  @param thePnt Ellipse center.
-        #  @param theVec Vector, normal to the plane of the ellipse.
-        #  @param theRMajor Major ellipse radius.
-        #  @param theRMinor Minor ellipse radius.
-        #  @param theVecMaj Vector, direction of the ellipse's main axis.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created ellipse.
-        #
-        #  @ref tui_creation_ellipse "Example"
-        def MakeEllipse(self, thePnt, theVec, theRMajor, theRMinor, theVecMaj=None, theName=None):
-            """
-            Create an ellipse with given center, normal vector and radiuses.
-
-            Parameters:
-                thePnt Ellipse center.
-                theVec Vector, normal to the plane of the ellipse.
-                theRMajor Major ellipse radius.
-                theRMinor Minor ellipse radius.
-                theVecMaj Vector, direction of the ellipse's main axis.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:    
-                New GEOM.GEOM_Object, containing the created ellipse.
-            """
-            # Example: see GEOM_TestAll.py
-            theRMajor, theRMinor, Parameters = ParseParameters(theRMajor, theRMinor)
-            if theVecMaj is not None:
-                anObj = self.CurvesOp.MakeEllipseVec(thePnt, theVec, theRMajor, theRMinor, theVecMaj)
-            else:
-                anObj = self.CurvesOp.MakeEllipse(thePnt, theVec, theRMajor, theRMinor)
-                pass
-            RaiseIfFailed("MakeEllipse", self.CurvesOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "ellipse")
-            return anObj
-
-        ## Create an ellipse with given radiuses.
-        #  Center of the ellipse will be in the origin of global
-        #  coordinate system and normal vector will be codirected with Z axis
-        #  @param theRMajor Major ellipse radius.
-        #  @param theRMinor Minor ellipse radius.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created ellipse.
-        def MakeEllipseRR(self, theRMajor, theRMinor, theName=None):
-            """
-            Create an ellipse with given radiuses.
-            Center of the ellipse will be in the origin of global
-            coordinate system and normal vector will be codirected with Z axis
-
-            Parameters:
-                theRMajor Major ellipse radius.
-                theRMinor Minor ellipse radius.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-            New GEOM.GEOM_Object, containing the created ellipse.
-            """
-            anObj = self.CurvesOp.MakeEllipse(None, None, theRMajor, theRMinor)
-            RaiseIfFailed("MakeEllipse", self.CurvesOp)
-            self._autoPublish(anObj, theName, "ellipse")
-            return anObj
-
-        ## Create a polyline on the set of points.
-        #  @param thePoints Sequence of points for the polyline.
-        #  @param theIsClosed If True, build a closed wire.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created polyline.
-        #
-        #  @ref tui_creation_curve "Example"
-        def MakePolyline(self, thePoints, theIsClosed=False, theName=None):
-            """
-            Create a polyline on the set of points.
-
-            Parameters:
-                thePoints Sequence of points for the polyline.
-                theIsClosed If True, build a closed wire.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the created polyline.
-            """
-            # Example: see GEOM_TestAll.py
-            anObj = self.CurvesOp.MakePolyline(thePoints, theIsClosed)
-            RaiseIfFailed("MakePolyline", self.CurvesOp)
-            self._autoPublish(anObj, theName, "polyline")
-            return anObj
-
-        ## Create bezier curve on the set of points.
-        #  @param thePoints Sequence of points for the bezier curve.
-        #  @param theIsClosed If True, build a closed curve.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created bezier curve.
-        #
-        #  @ref tui_creation_curve "Example"
-        def MakeBezier(self, thePoints, theIsClosed=False, theName=None):
-            """
-            Create bezier curve on the set of points.
-
-            Parameters:
-                thePoints Sequence of points for the bezier curve.
-                theIsClosed If True, build a closed curve.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the created bezier curve.
-            """
-            # Example: see GEOM_TestAll.py
-            anObj = self.CurvesOp.MakeSplineBezier(thePoints, theIsClosed)
-            RaiseIfFailed("MakeSplineBezier", self.CurvesOp)
-            self._autoPublish(anObj, theName, "bezier")
-            return anObj
-
-        ## Create B-Spline curve on the set of points.
-        #  @param thePoints Sequence of points for the B-Spline curve.
-        #  @param theIsClosed If True, build a closed curve.
-        #  @param theDoReordering If TRUE, the algo does not follow the order of
-        #                         \a thePoints but searches for the closest vertex.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created B-Spline curve.
-        #
-        #  @ref tui_creation_curve "Example"
-        def MakeInterpol(self, thePoints, theIsClosed=False, theDoReordering=False, theName=None):
-            """
-            Create B-Spline curve on the set of points.
-
-            Parameters:
-                thePoints Sequence of points for the B-Spline curve.
-                theIsClosed If True, build a closed curve.
-                theDoReordering If True, the algo does not follow the order of
-                                thePoints but searches for the closest vertex.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:                     
-                New GEOM.GEOM_Object, containing the created B-Spline curve.
-            """
-            # Example: see GEOM_TestAll.py
-            anObj = self.CurvesOp.MakeSplineInterpolation(thePoints, theIsClosed, theDoReordering)
-            RaiseIfFailed("MakeInterpol", self.CurvesOp)
-            self._autoPublish(anObj, theName, "bspline")
-            return anObj
-
-        ## Create B-Spline curve on the set of points.
-        #  @param thePoints Sequence of points for the B-Spline curve.
-        #  @param theFirstVec Vector object, defining the curve direction at its first point.
-        #  @param theLastVec Vector object, defining the curve direction at its last point.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created B-Spline curve.
-        #
-        #  @ref tui_creation_curve "Example"
-        def MakeInterpolWithTangents(self, thePoints, theFirstVec, theLastVec, theName=None):
-            """
-            Create B-Spline curve on the set of points.
-
-            Parameters:
-                thePoints Sequence of points for the B-Spline curve.
-                theFirstVec Vector object, defining the curve direction at its first point.
-                theLastVec Vector object, defining the curve direction at its last point.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:                     
-                New GEOM.GEOM_Object, containing the created B-Spline curve.
-            """
-            # Example: see GEOM_TestAll.py
-            anObj = self.CurvesOp.MakeSplineInterpolWithTangents(thePoints, theFirstVec, theLastVec)
-            RaiseIfFailed("MakeInterpolWithTangents", self.CurvesOp)
-            self._autoPublish(anObj, theName, "bspline")
-            return anObj
-
-        ## Creates a curve using the parametric definition of the basic points.
-        #  @param thexExpr parametric equation of the coordinates X.
-        #  @param theyExpr parametric equation of the coordinates Y.
-        #  @param thezExpr parametric equation of the coordinates Z.
-        #  @param theParamMin the minimal value of the parameter.
-        #  @param theParamMax the maximum value of the parameter.
-        #  @param theParamStep the number of steps if theNewMethod = True, else step value of the parameter.
-        #  @param theCurveType the type of the curve.
-        #  @param theNewMethod flag for switching to the new method if the flag is set to false a deprecated method is used which can lead to a bug.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created curve.
-        #
-        #  @ref tui_creation_curve "Example"
-        def MakeCurveParametric(self, thexExpr, theyExpr, thezExpr,
-                                theParamMin, theParamMax, theParamStep, theCurveType, theNewMethod=False, theName=None ):
-            """
-            Creates a curve using the parametric definition of the basic points.
-
-            Parameters:
-                thexExpr parametric equation of the coordinates X.
-                theyExpr parametric equation of the coordinates Y.
-                thezExpr parametric equation of the coordinates Z.
-                theParamMin the minimal value of the parameter.
-                theParamMax the maximum value of the parameter.
-                theParamStep the number of steps if theNewMethod = True, else step value of the parameter.
-                theCurveType the type of the curve.
-                theNewMethod flag for switching to the new method if the flag is set to false a deprecated
-                             method is used which can lead to a bug.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the created curve.
-            """
-            theParamMin,theParamMax,theParamStep,Parameters = ParseParameters(theParamMin,theParamMax,theParamStep)
-            if theNewMethod:
-              anObj = self.CurvesOp.MakeCurveParametricNew(thexExpr,theyExpr,thezExpr,theParamMin,theParamMax,theParamStep,theCurveType)
-            else:
-              anObj = self.CurvesOp.MakeCurveParametric(thexExpr,theyExpr,thezExpr,theParamMin,theParamMax,theParamStep,theCurveType)   
-            RaiseIfFailed("MakeSplineInterpolation", self.CurvesOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "curve")
-            return anObj
-
-        # end of l4_curves
-        ## @}
-
-        ## @addtogroup l3_sketcher
-        ## @{
-
-        ## Create a sketcher (wire or face), following the textual description,
-        #  passed through <VAR>theCommand</VAR> argument. \n
-        #  Edges of the resulting wire or face will be arcs of circles and/or linear segments. \n
-        #  Format of the description string have to be the following:
-        #
-        #  "Sketcher[:F x1 y1]:CMD[:CMD[:CMD...]]"
-        #
-        #  Where:
-        #  - x1, y1 are coordinates of the first sketcher point (zero by default),
-        #  - CMD is one of
-        #     - "R angle" : Set the direction by angle
-        #     - "D dx dy" : Set the direction by DX & DY
-        #     .
-        #       \n
-        #     - "TT x y" : Create segment by point at X & Y
-        #     - "T dx dy" : Create segment by point with DX & DY
-        #     - "L length" : Create segment by direction & Length
-        #     - "IX x" : Create segment by direction & Intersect. X
-        #     - "IY y" : Create segment by direction & Intersect. Y
-        #     .
-        #       \n
-        #     - "C radius length" : Create arc by direction, radius and length(in degree)
-        #     - "AA x y": Create arc by point at X & Y
-        #     - "A dx dy" : Create arc by point with DX & DY
-        #     - "UU x y radius flag1": Create arc by point at X & Y with given radiUs
-        #     - "U dx dy radius flag1" : Create arc by point with DX & DY with given radiUs
-        #     - "EE x y xc yc flag1 flag2": Create arc by point at X & Y with given cEnter coordinates
-        #     - "E dx dy dxc dyc radius flag1 flag2" : Create arc by point with DX & DY with given cEnter coordinates
-        #     .
-        #       \n
-        #     - "WW" : Close Wire (to finish)
-        #     - "WF" : Close Wire and build face (to finish)
-        #     .
-        #        \n
-        #  - Flag1 (= reverse) is 0 or 2 ...
-        #     - if 0 the drawn arc is the one of lower angle (< Pi)
-        #     - if 2 the drawn arc ius the one of greater angle (> Pi)
-        #     .
-        #        \n
-        #  - Flag2 (= control tolerance) is 0 or 1 ...
-        #     - if 0 the specified end point can be at a distance of the arc greater than the tolerance (10^-7)
-        #     - if 1 the wire is built only if the end point is on the arc
-        #       with a tolerance of 10^-7 on the distance else the creation fails
-        #
-        #  @param theCommand String, defining the sketcher in local
-        #                    coordinates of the working plane.
-        #  @param theWorkingPlane Nine double values, defining origin,
-        #                         OZ and OX directions of the working plane.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created wire.
-        #
-        #  @ref tui_sketcher_page "Example"
-        def MakeSketcher(self, theCommand, theWorkingPlane = [0,0,0, 0,0,1, 1,0,0], theName=None):
-            """
-            Create a sketcher (wire or face), following the textual description, passed
-            through theCommand argument.
-            Edges of the resulting wire or face will be arcs of circles and/or linear segments.
-            Format of the description string have to be the following:
-                "Sketcher[:F x1 y1]:CMD[:CMD[:CMD...]]"
-            Where:
-            - x1, y1 are coordinates of the first sketcher point (zero by default),
-            - CMD is one of
-               - "R angle" : Set the direction by angle
-               - "D dx dy" : Set the direction by DX & DY
-               
-               - "TT x y" : Create segment by point at X & Y
-               - "T dx dy" : Create segment by point with DX & DY
-               - "L length" : Create segment by direction & Length
-               - "IX x" : Create segment by direction & Intersect. X
-               - "IY y" : Create segment by direction & Intersect. Y
-
-               - "C radius length" : Create arc by direction, radius and length(in degree)
-               - "AA x y": Create arc by point at X & Y
-               - "A dx dy" : Create arc by point with DX & DY
-               - "UU x y radius flag1": Create arc by point at X & Y with given radiUs
-               - "U dx dy radius flag1" : Create arc by point with DX & DY with given radiUs
-               - "EE x y xc yc flag1 flag2": Create arc by point at X & Y with given cEnter coordinates
-               - "E dx dy dxc dyc radius flag1 flag2" : Create arc by point with DX & DY with given cEnter coordinates
-
-               - "WW" : Close Wire (to finish)
-               - "WF" : Close Wire and build face (to finish)
-            
-            - Flag1 (= reverse) is 0 or 2 ...
-               - if 0 the drawn arc is the one of lower angle (< Pi)
-               - if 2 the drawn arc ius the one of greater angle (> Pi)
-        
-            - Flag2 (= control tolerance) is 0 or 1 ...
-               - if 0 the specified end point can be at a distance of the arc greater than the tolerance (10^-7)
-               - if 1 the wire is built only if the end point is on the arc
-                 with a tolerance of 10^-7 on the distance else the creation fails
-
-            Parameters:
-                theCommand String, defining the sketcher in local
-                           coordinates of the working plane.
-                theWorkingPlane Nine double values, defining origin,
-                                OZ and OX directions of the working plane.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the created wire.
-            """
-            # Example: see GEOM_TestAll.py
-            theCommand,Parameters = ParseSketcherCommand(theCommand)
-            anObj = self.CurvesOp.MakeSketcher(theCommand, theWorkingPlane)
-            RaiseIfFailed("MakeSketcher", self.CurvesOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "wire")
-            return anObj
-
-        ## Create a sketcher (wire or face), following the textual description,
-        #  passed through <VAR>theCommand</VAR> argument. \n
-        #  For format of the description string see MakeSketcher() method.\n
-        #  @param theCommand String, defining the sketcher in local
-        #                    coordinates of the working plane.
-        #  @param theWorkingPlane Planar Face or LCS(Marker) of the working plane.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created wire.
-        #
-        #  @ref tui_sketcher_page "Example"
-        def MakeSketcherOnPlane(self, theCommand, theWorkingPlane, theName=None):
-            """
-            Create a sketcher (wire or face), following the textual description,
-            passed through theCommand argument.
-            For format of the description string see geompy.MakeSketcher() method.
-
-            Parameters:
-                theCommand String, defining the sketcher in local
-                           coordinates of the working plane.
-                theWorkingPlane Planar Face or LCS(Marker) of the working plane.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the created wire.
-            """
-            theCommand,Parameters = ParseSketcherCommand(theCommand)
-            anObj = self.CurvesOp.MakeSketcherOnPlane(theCommand, theWorkingPlane)
-            RaiseIfFailed("MakeSketcherOnPlane", self.CurvesOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "wire")
-            return anObj
-
-        ## Create a sketcher wire, following the numerical description,
-        #  passed through <VAR>theCoordinates</VAR> argument. \n
-        #  @param theCoordinates double values, defining points to create a wire,
-        #                                                      passing from it.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created wire.
-        #
-        #  @ref tui_3dsketcher_page "Example"
-        def Make3DSketcher(self, theCoordinates, theName=None):
-            """
-            Create a sketcher wire, following the numerical description,
-            passed through theCoordinates argument.
-
-            Parameters:
-                theCoordinates double values, defining points to create a wire,
-                               passing from it.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM_Object, containing the created wire.
-            """
-            theCoordinates,Parameters = ParseParameters(theCoordinates)
-            anObj = self.CurvesOp.Make3DSketcher(theCoordinates)
-            RaiseIfFailed("Make3DSketcher", self.CurvesOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "wire")
-            return anObj
-
-        ## Obtain a 3D sketcher interface
-        #  @return An instance of @ref gsketcher.Sketcher3D "Sketcher3D" interface
-        #
-        #  @ref tui_3dsketcher_page "Example"
-        def Sketcher3D (self):
-            """
-            Obtain a 3D sketcher interface.
-
-            Example of usage:
-                sk = geompy.Sketcher3D()
-                sk.addPointsAbsolute(0,0,0, 70,0,0)
-                sk.addPointsRelative(0, 0, 130)
-                sk.addPointAnglesLength("OXY", 50, 0, 100)
-                sk.addPointAnglesLength("OXZ", 30, 80, 130)
-                sk.close()
-                a3D_Sketcher_1 = sk.wire()
-            """
-            sk = Sketcher3D (self)
-            return sk
-
-        # end of l3_sketcher
-        ## @}
-
-        ## @addtogroup l3_3d_primitives
-        ## @{
-
-        ## Create a box by coordinates of two opposite vertices.
-        #
-        #  @param x1,y1,z1 double values, defining first point it.
-        #  @param x2,y2,z2 double values, defining first point it.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created box.
-        #
-        #  @ref tui_creation_box "Example"
-        def MakeBox(self, x1, y1, z1, x2, y2, z2, theName=None):
-            """
-            Create a box by coordinates of two opposite vertices.
-            
-            Parameters:
-                x1,y1,z1 double values, defining first point.
-                x2,y2,z2 double values, defining second point.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-                
-            Returns:
-                New GEOM.GEOM_Object, containing the created box.
-            """
-            # Example: see GEOM_TestAll.py
-            pnt1 = self.MakeVertex(x1,y1,z1)
-            pnt2 = self.MakeVertex(x2,y2,z2)
-            # note: auto-publishing is done in self.MakeBoxTwoPnt()
-            return self.MakeBoxTwoPnt(pnt1, pnt2, theName)
-
-        ## Create a box with specified dimensions along the coordinate axes
-        #  and with edges, parallel to the coordinate axes.
-        #  Center of the box will be at point (DX/2, DY/2, DZ/2).
-        #  @param theDX Length of Box edges, parallel to OX axis.
-        #  @param theDY Length of Box edges, parallel to OY axis.
-        #  @param theDZ Length of Box edges, parallel to OZ axis.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created box.
-        #
-        #  @ref tui_creation_box "Example"
-        def MakeBoxDXDYDZ(self, theDX, theDY, theDZ, theName=None):
-            """
-            Create a box with specified dimensions along the coordinate axes
-            and with edges, parallel to the coordinate axes.
-            Center of the box will be at point (DX/2, DY/2, DZ/2).
-
-            Parameters:
-                theDX Length of Box edges, parallel to OX axis.
-                theDY Length of Box edges, parallel to OY axis.
-                theDZ Length of Box edges, parallel to OZ axis.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:   
-                New GEOM.GEOM_Object, containing the created box.
-            """
-            # Example: see GEOM_TestAll.py
-            theDX,theDY,theDZ,Parameters = ParseParameters(theDX, theDY, theDZ)
-            anObj = self.PrimOp.MakeBoxDXDYDZ(theDX, theDY, theDZ)
-            RaiseIfFailed("MakeBoxDXDYDZ", self.PrimOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "box")
-            return anObj
-
-        ## Create a box with two specified opposite vertices,
-        #  and with edges, parallel to the coordinate axes
-        #  @param thePnt1 First of two opposite vertices.
-        #  @param thePnt2 Second of two opposite vertices.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created box.
-        #
-        #  @ref tui_creation_box "Example"
-        def MakeBoxTwoPnt(self, thePnt1, thePnt2, theName=None):
-            """
-            Create a box with two specified opposite vertices,
-            and with edges, parallel to the coordinate axes
-
-            Parameters:
-                thePnt1 First of two opposite vertices.
-                thePnt2 Second of two opposite vertices.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the created box.
-            """
-            # Example: see GEOM_TestAll.py
-            anObj = self.PrimOp.MakeBoxTwoPnt(thePnt1, thePnt2)
-            RaiseIfFailed("MakeBoxTwoPnt", self.PrimOp)
-            self._autoPublish(anObj, theName, "box")
-            return anObj
-
-        ## Create a face with specified dimensions with edges parallel to coordinate axes.
-        #  @param theH height of Face.
-        #  @param theW width of Face.
-        #  @param theOrientation face orientation: 1-OXY, 2-OYZ, 3-OZX
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created face.
-        #
-        #  @ref tui_creation_face "Example"
-        def MakeFaceHW(self, theH, theW, theOrientation, theName=None):
-            """
-            Create a face with specified dimensions with edges parallel to coordinate axes.
-
-            Parameters:
-                theH height of Face.
-                theW width of Face.
-                theOrientation face orientation: 1-OXY, 2-OYZ, 3-OZX
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the created face.
-            """
-            # Example: see GEOM_TestAll.py
-            theH,theW,Parameters = ParseParameters(theH, theW)
-            anObj = self.PrimOp.MakeFaceHW(theH, theW, theOrientation)
-            RaiseIfFailed("MakeFaceHW", self.PrimOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "rectangle")
-            return anObj
-
-        ## Create a face from another plane and two sizes,
-        #  vertical size and horisontal size.
-        #  @param theObj   Normale vector to the creating face or
-        #  the face object.
-        #  @param theH     Height (vertical size).
-        #  @param theW     Width (horisontal size).
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created face.
-        #
-        #  @ref tui_creation_face "Example"
-        def MakeFaceObjHW(self, theObj, theH, theW, theName=None):
-            """
-            Create a face from another plane and two sizes,
-            vertical size and horisontal size.
-
-            Parameters:
-                theObj   Normale vector to the creating face or
-                         the face object.
-                theH     Height (vertical size).
-                theW     Width (horisontal size).
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM_Object, containing the created face.
-            """
-            # Example: see GEOM_TestAll.py
-            theH,theW,Parameters = ParseParameters(theH, theW)
-            anObj = self.PrimOp.MakeFaceObjHW(theObj, theH, theW)
-            RaiseIfFailed("MakeFaceObjHW", self.PrimOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "rectangle")
-            return anObj
-
-        ## Create a disk with given center, normal vector and radius.
-        #  @param thePnt Disk center.
-        #  @param theVec Vector, normal to the plane of the disk.
-        #  @param theR Disk radius.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created disk.
-        #
-        #  @ref tui_creation_disk "Example"
-        def MakeDiskPntVecR(self, thePnt, theVec, theR, theName=None):
-            """
-            Create a disk with given center, normal vector and radius.
-
-            Parameters:
-                thePnt Disk center.
-                theVec Vector, normal to the plane of the disk.
-                theR Disk radius.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:    
-                New GEOM.GEOM_Object, containing the created disk.
-            """
-            # Example: see GEOM_TestAll.py
-            theR,Parameters = ParseParameters(theR)
-            anObj = self.PrimOp.MakeDiskPntVecR(thePnt, theVec, theR)
-            RaiseIfFailed("MakeDiskPntVecR", self.PrimOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "disk")
-            return anObj
-
-        ## Create a disk, passing through three given points
-        #  @param thePnt1,thePnt2,thePnt3 Points, defining the disk.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created disk.
-        #
-        #  @ref tui_creation_disk "Example"
-        def MakeDiskThreePnt(self, thePnt1, thePnt2, thePnt3, theName=None):
-            """
-            Create a disk, passing through three given points
-
-            Parameters:
-                thePnt1,thePnt2,thePnt3 Points, defining the disk.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:    
-                New GEOM.GEOM_Object, containing the created disk.
-            """
-            # Example: see GEOM_TestAll.py
-            anObj = self.PrimOp.MakeDiskThreePnt(thePnt1, thePnt2, thePnt3)
-            RaiseIfFailed("MakeDiskThreePnt", self.PrimOp)
-            self._autoPublish(anObj, theName, "disk")
-            return anObj
-
-        ## Create a disk with specified dimensions along OX-OY coordinate axes.
-        #  @param theR Radius of Face.
-        #  @param theOrientation set the orientation belong axis OXY or OYZ or OZX
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created disk.
-        #
-        #  @ref tui_creation_face "Example"
-        def MakeDiskR(self, theR, theOrientation, theName=None):
-            """
-            Create a disk with specified dimensions along OX-OY coordinate axes.
-
-            Parameters:
-                theR Radius of Face.
-                theOrientation set the orientation belong axis OXY or OYZ or OZX
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns: 
-                New GEOM.GEOM_Object, containing the created disk.
-
-            Example of usage:
-                Disk3 = geompy.MakeDiskR(100., 1)
-            """
-            # Example: see GEOM_TestAll.py
-            theR,Parameters = ParseParameters(theR)
-            anObj = self.PrimOp.MakeDiskR(theR, theOrientation)
-            RaiseIfFailed("MakeDiskR", self.PrimOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "disk")
-            return anObj
-
-        ## Create a cylinder with given base point, axis, radius and height.
-        #  @param thePnt Central point of cylinder base.
-        #  @param theAxis Cylinder axis.
-        #  @param theR Cylinder radius.
-        #  @param theH Cylinder height.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created cylinder.
-        #
-        #  @ref tui_creation_cylinder "Example"
-        def MakeCylinder(self, thePnt, theAxis, theR, theH, theName=None):
-            """
-            Create a cylinder with given base point, axis, radius and height.
-
-            Parameters:
-                thePnt Central point of cylinder base.
-                theAxis Cylinder axis.
-                theR Cylinder radius.
-                theH Cylinder height.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns: 
-                New GEOM.GEOM_Object, containing the created cylinder.
-            """
-            # Example: see GEOM_TestAll.py
-            theR,theH,Parameters = ParseParameters(theR, theH)
-            anObj = self.PrimOp.MakeCylinderPntVecRH(thePnt, theAxis, theR, theH)
-            RaiseIfFailed("MakeCylinderPntVecRH", self.PrimOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "cylinder")
-            return anObj
-
-        ## Create a cylinder with given radius and height at
-        #  the origin of coordinate system. Axis of the cylinder
-        #  will be collinear to the OZ axis of the coordinate system.
-        #  @param theR Cylinder radius.
-        #  @param theH Cylinder height.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created cylinder.
-        #
-        #  @ref tui_creation_cylinder "Example"
-        def MakeCylinderRH(self, theR, theH, theName=None):
-            """
-            Create a cylinder with given radius and height at
-            the origin of coordinate system. Axis of the cylinder
-            will be collinear to the OZ axis of the coordinate system.
-
-            Parameters:
-                theR Cylinder radius.
-                theH Cylinder height.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:    
-                New GEOM.GEOM_Object, containing the created cylinder.
-            """
-            # Example: see GEOM_TestAll.py
-            theR,theH,Parameters = ParseParameters(theR, theH)
-            anObj = self.PrimOp.MakeCylinderRH(theR, theH)
-            RaiseIfFailed("MakeCylinderRH", self.PrimOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "cylinder")
-            return anObj
-
-        ## Create a sphere with given center and radius.
-        #  @param thePnt Sphere center.
-        #  @param theR Sphere radius.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created sphere.
-        #
-        #  @ref tui_creation_sphere "Example"
-        def MakeSpherePntR(self, thePnt, theR, theName=None):
-            """
-            Create a sphere with given center and radius.
-
-            Parameters:
-                thePnt Sphere center.
-                theR Sphere radius.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:    
-                New GEOM.GEOM_Object, containing the created sphere.            
-            """
-            # Example: see GEOM_TestAll.py
-            theR,Parameters = ParseParameters(theR)
-            anObj = self.PrimOp.MakeSpherePntR(thePnt, theR)
-            RaiseIfFailed("MakeSpherePntR", self.PrimOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "sphere")
-            return anObj
-
-        ## Create a sphere with given center and radius.
-        #  @param x,y,z Coordinates of sphere center.
-        #  @param theR Sphere radius.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created sphere.
-        #
-        #  @ref tui_creation_sphere "Example"
-        def MakeSphere(self, x, y, z, theR, theName=None):
-            """
-            Create a sphere with given center and radius.
-
-            Parameters: 
-                x,y,z Coordinates of sphere center.
-                theR Sphere radius.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the created sphere.
-            """
-            # Example: see GEOM_TestAll.py
-            point = self.MakeVertex(x, y, z)
-            # note: auto-publishing is done in self.MakeSpherePntR()
-            anObj = self.MakeSpherePntR(point, theR, theName)
-            return anObj
-
-        ## Create a sphere with given radius at the origin of coordinate system.
-        #  @param theR Sphere radius.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created sphere.
-        #
-        #  @ref tui_creation_sphere "Example"
-        def MakeSphereR(self, theR, theName=None):
-            """
-            Create a sphere with given radius at the origin of coordinate system.
-
-            Parameters: 
-                theR Sphere radius.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the created sphere.            
-            """
-            # Example: see GEOM_TestAll.py
-            theR,Parameters = ParseParameters(theR)
-            anObj = self.PrimOp.MakeSphereR(theR)
-            RaiseIfFailed("MakeSphereR", self.PrimOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "sphere")
-            return anObj
-
-        ## Create a cone with given base point, axis, height and radiuses.
-        #  @param thePnt Central point of the first cone base.
-        #  @param theAxis Cone axis.
-        #  @param theR1 Radius of the first cone base.
-        #  @param theR2 Radius of the second cone base.
-        #    \note If both radiuses are non-zero, the cone will be truncated.
-        #    \note If the radiuses are equal, a cylinder will be created instead.
-        #  @param theH Cone height.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created cone.
-        #
-        #  @ref tui_creation_cone "Example"
-        def MakeCone(self, thePnt, theAxis, theR1, theR2, theH, theName=None):
-            """
-            Create a cone with given base point, axis, height and radiuses.
-
-            Parameters: 
-                thePnt Central point of the first cone base.
-                theAxis Cone axis.
-                theR1 Radius of the first cone base.
-                theR2 Radius of the second cone base.
-                theH Cone height.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Note:
-                If both radiuses are non-zero, the cone will be truncated.
-                If the radiuses are equal, a cylinder will be created instead.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the created cone.
-            """
-            # Example: see GEOM_TestAll.py
-            theR1,theR2,theH,Parameters = ParseParameters(theR1,theR2,theH)
-            anObj = self.PrimOp.MakeConePntVecR1R2H(thePnt, theAxis, theR1, theR2, theH)
-            RaiseIfFailed("MakeConePntVecR1R2H", self.PrimOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "cone")
-            return anObj
-
-        ## Create a cone with given height and radiuses at
-        #  the origin of coordinate system. Axis of the cone will
-        #  be collinear to the OZ axis of the coordinate system.
-        #  @param theR1 Radius of the first cone base.
-        #  @param theR2 Radius of the second cone base.
-        #    \note If both radiuses are non-zero, the cone will be truncated.
-        #    \note If the radiuses are equal, a cylinder will be created instead.
-        #  @param theH Cone height.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created cone.
-        #
-        #  @ref tui_creation_cone "Example"
-        def MakeConeR1R2H(self, theR1, theR2, theH, theName=None):
-            """
-            Create a cone with given height and radiuses at
-            the origin of coordinate system. Axis of the cone will
-            be collinear to the OZ axis of the coordinate system.
-
-            Parameters: 
-                theR1 Radius of the first cone base.
-                theR2 Radius of the second cone base.
-                theH Cone height.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Note:
-                If both radiuses are non-zero, the cone will be truncated.
-                If the radiuses are equal, a cylinder will be created instead.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the created cone.
-            """
-            # Example: see GEOM_TestAll.py
-            theR1,theR2,theH,Parameters = ParseParameters(theR1,theR2,theH)
-            anObj = self.PrimOp.MakeConeR1R2H(theR1, theR2, theH)
-            RaiseIfFailed("MakeConeR1R2H", self.PrimOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "cone")
-            return anObj
-
-        ## Create a torus with given center, normal vector and radiuses.
-        #  @param thePnt Torus central point.
-        #  @param theVec Torus axis of symmetry.
-        #  @param theRMajor Torus major radius.
-        #  @param theRMinor Torus minor radius.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created torus.
-        #
-        #  @ref tui_creation_torus "Example"
-        def MakeTorus(self, thePnt, theVec, theRMajor, theRMinor, theName=None):
-            """
-            Create a torus with given center, normal vector and radiuses.
-
-            Parameters: 
-                thePnt Torus central point.
-                theVec Torus axis of symmetry.
-                theRMajor Torus major radius.
-                theRMinor Torus minor radius.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-           Returns:
-                New GEOM.GEOM_Object, containing the created torus.
-            """
-            # Example: see GEOM_TestAll.py
-            theRMajor,theRMinor,Parameters = ParseParameters(theRMajor,theRMinor)
-            anObj = self.PrimOp.MakeTorusPntVecRR(thePnt, theVec, theRMajor, theRMinor)
-            RaiseIfFailed("MakeTorusPntVecRR", self.PrimOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "torus")
-            return anObj
-
-        ## Create a torus with given radiuses at the origin of coordinate system.
-        #  @param theRMajor Torus major radius.
-        #  @param theRMinor Torus minor radius.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created torus.
-        #
-        #  @ref tui_creation_torus "Example"
-        def MakeTorusRR(self, theRMajor, theRMinor, theName=None):
-            """
-           Create a torus with given radiuses at the origin of coordinate system.
-
-           Parameters: 
-                theRMajor Torus major radius.
-                theRMinor Torus minor radius.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-           Returns:
-                New GEOM.GEOM_Object, containing the created torus.            
-            """
-            # Example: see GEOM_TestAll.py
-            theRMajor,theRMinor,Parameters = ParseParameters(theRMajor,theRMinor)
-            anObj = self.PrimOp.MakeTorusRR(theRMajor, theRMinor)
-            RaiseIfFailed("MakeTorusRR", self.PrimOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "torus")
-            return anObj
-
-        # end of l3_3d_primitives
-        ## @}
-
-        ## @addtogroup l3_complex
-        ## @{
-
-        ## Create a shape by extrusion of the base shape along a vector, defined by two points.
-        #  @param theBase Base shape to be extruded.
-        #  @param thePoint1 First end of extrusion vector.
-        #  @param thePoint2 Second end of extrusion vector.
-        #  @param theScaleFactor Use it to make prism with scaled second base.
-        #                        Nagative value means not scaled second base.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created prism.
-        #
-        #  @ref tui_creation_prism "Example"
-        def MakePrism(self, theBase, thePoint1, thePoint2, theScaleFactor = -1.0, theName=None):
-            """
-            Create a shape by extrusion of the base shape along a vector, defined by two points.
-
-            Parameters: 
-                theBase Base shape to be extruded.
-                thePoint1 First end of extrusion vector.
-                thePoint2 Second end of extrusion vector.
-                theScaleFactor Use it to make prism with scaled second base.
-                               Nagative value means not scaled second base.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the created prism.
-            """
-            # Example: see GEOM_TestAll.py
-            anObj = None
-            Parameters = ""
-            if theScaleFactor > 0:
-                theScaleFactor,Parameters = ParseParameters(theScaleFactor)
-                anObj = self.PrimOp.MakePrismTwoPntWithScaling(theBase, thePoint1, thePoint2, theScaleFactor)
-            else:
-                anObj = self.PrimOp.MakePrismTwoPnt(theBase, thePoint1, thePoint2)
-            RaiseIfFailed("MakePrismTwoPnt", self.PrimOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "prism")
-            return anObj
-
-        ## Create a shape by extrusion of the base shape along a
-        #  vector, defined by two points, in 2 Ways (forward/backward).
-        #  @param theBase Base shape to be extruded.
-        #  @param thePoint1 First end of extrusion vector.
-        #  @param thePoint2 Second end of extrusion vector.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created prism.
-        #
-        #  @ref tui_creation_prism "Example"
-        def MakePrism2Ways(self, theBase, thePoint1, thePoint2, theName=None):
-            """
-            Create a shape by extrusion of the base shape along a
-            vector, defined by two points, in 2 Ways (forward/backward).
-
-            Parameters: 
-                theBase Base shape to be extruded.
-                thePoint1 First end of extrusion vector.
-                thePoint2 Second end of extrusion vector.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the created prism.
-            """
-            # Example: see GEOM_TestAll.py
-            anObj = self.PrimOp.MakePrismTwoPnt2Ways(theBase, thePoint1, thePoint2)
-            RaiseIfFailed("MakePrismTwoPnt", self.PrimOp)
-            self._autoPublish(anObj, theName, "prism")
-            return anObj
-
-        ## Create a shape by extrusion of the base shape along the vector,
-        #  i.e. all the space, transfixed by the base shape during its translation
-        #  along the vector on the given distance.
-        #  @param theBase Base shape to be extruded.
-        #  @param theVec Direction of extrusion.
-        #  @param theH Prism dimension along theVec.
-        #  @param theScaleFactor Use it to make prism with scaled second base.
-        #                        Negative value means not scaled second base.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created prism.
-        #
-        #  @ref tui_creation_prism "Example"
-        def MakePrismVecH(self, theBase, theVec, theH, theScaleFactor = -1.0, theName=None):
-            """
-            Create a shape by extrusion of the base shape along the vector,
-            i.e. all the space, transfixed by the base shape during its translation
-            along the vector on the given distance.
-
-            Parameters: 
-                theBase Base shape to be extruded.
-                theVec Direction of extrusion.
-                theH Prism dimension along theVec.
-                theScaleFactor Use it to make prism with scaled second base.
-                               Negative value means not scaled second base.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the created prism.
-            """
-            # Example: see GEOM_TestAll.py
-            anObj = None
-            Parameters = ""
-            if theScaleFactor > 0:
-                theH,theScaleFactor,Parameters = ParseParameters(theH,theScaleFactor)
-                anObj = self.PrimOp.MakePrismVecHWithScaling(theBase, theVec, theH, theScaleFactor)
-            else:
-                theH,Parameters = ParseParameters(theH)
-                anObj = self.PrimOp.MakePrismVecH(theBase, theVec, theH)
-            RaiseIfFailed("MakePrismVecH", self.PrimOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "prism")
-            return anObj
-
-        ## Create a shape by extrusion of the base shape along the vector,
-        #  i.e. all the space, transfixed by the base shape during its translation
-        #  along the vector on the given distance in 2 Ways (forward/backward).
-        #  @param theBase Base shape to be extruded.
-        #  @param theVec Direction of extrusion.
-        #  @param theH Prism dimension along theVec in forward direction.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created prism.
-        #
-        #  @ref tui_creation_prism "Example"
-        def MakePrismVecH2Ways(self, theBase, theVec, theH, theName=None):
-            """
-            Create a shape by extrusion of the base shape along the vector,
-            i.e. all the space, transfixed by the base shape during its translation
-            along the vector on the given distance in 2 Ways (forward/backward).
-
-            Parameters:
-                theBase Base shape to be extruded.
-                theVec Direction of extrusion.
-                theH Prism dimension along theVec in forward direction.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the created prism.
-            """
-            # Example: see GEOM_TestAll.py
-            theH,Parameters = ParseParameters(theH)
-            anObj = self.PrimOp.MakePrismVecH2Ways(theBase, theVec, theH)
-            RaiseIfFailed("MakePrismVecH2Ways", self.PrimOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "prism")
-            return anObj
-
-        ## Create a shape by extrusion of the base shape along the dx, dy, dz direction
-        #  @param theBase Base shape to be extruded.
-        #  @param theDX, theDY, theDZ Directions of extrusion.
-        #  @param theScaleFactor Use it to make prism with scaled second base.
-        #                        Nagative value means not scaled second base.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created prism.
-        #
-        #  @ref tui_creation_prism "Example"
-        def MakePrismDXDYDZ(self, theBase, theDX, theDY, theDZ, theScaleFactor = -1.0, theName=None):
-            """
-            Create a shape by extrusion of the base shape along the dx, dy, dz direction
-
-            Parameters:
-                theBase Base shape to be extruded.
-                theDX, theDY, theDZ Directions of extrusion.
-                theScaleFactor Use it to make prism with scaled second base.
-                               Nagative value means not scaled second base.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns: 
-                New GEOM.GEOM_Object, containing the created prism.
-            """
-            # Example: see GEOM_TestAll.py
-            anObj = None
-            Parameters = ""
-            if theScaleFactor > 0:
-                theDX,theDY,theDZ,theScaleFactor,Parameters = ParseParameters(theDX, theDY, theDZ, theScaleFactor)
-                anObj = self.PrimOp.MakePrismDXDYDZWithScaling(theBase, theDX, theDY, theDZ, theScaleFactor)
-            else:
-                theDX,theDY,theDZ,Parameters = ParseParameters(theDX, theDY, theDZ)
-                anObj = self.PrimOp.MakePrismDXDYDZ(theBase, theDX, theDY, theDZ)
-            RaiseIfFailed("MakePrismDXDYDZ", self.PrimOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "prism")
-            return anObj
-
-        ## Create a shape by extrusion of the base shape along the dx, dy, dz direction
-        #  i.e. all the space, transfixed by the base shape during its translation
-        #  along the vector on the given distance in 2 Ways (forward/backward).
-        #  @param theBase Base shape to be extruded.
-        #  @param theDX, theDY, theDZ Directions of extrusion.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created prism.
-        #
-        #  @ref tui_creation_prism "Example"
-        def MakePrismDXDYDZ2Ways(self, theBase, theDX, theDY, theDZ, theName=None):
-            """
-            Create a shape by extrusion of the base shape along the dx, dy, dz direction
-            i.e. all the space, transfixed by the base shape during its translation
-            along the vector on the given distance in 2 Ways (forward/backward).
-
-            Parameters:
-                theBase Base shape to be extruded.
-                theDX, theDY, theDZ Directions of extrusion.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the created prism.
-            """
-            # Example: see GEOM_TestAll.py
-            theDX,theDY,theDZ,Parameters = ParseParameters(theDX, theDY, theDZ)
-            anObj = self.PrimOp.MakePrismDXDYDZ2Ways(theBase, theDX, theDY, theDZ)
-            RaiseIfFailed("MakePrismDXDYDZ2Ways", self.PrimOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "prism")
-            return anObj
-
-        ## Create a shape by revolution of the base shape around the axis
-        #  on the given angle, i.e. all the space, transfixed by the base
-        #  shape during its rotation around the axis on the given angle.
-        #  @param theBase Base shape to be rotated.
-        #  @param theAxis Rotation axis.
-        #  @param theAngle Rotation angle in radians.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created revolution.
-        #
-        #  @ref tui_creation_revolution "Example"
-        def MakeRevolution(self, theBase, theAxis, theAngle, theName=None):
-            """
-            Create a shape by revolution of the base shape around the axis
-            on the given angle, i.e. all the space, transfixed by the base
-            shape during its rotation around the axis on the given angle.
-
-            Parameters:
-                theBase Base shape to be rotated.
-                theAxis Rotation axis.
-                theAngle Rotation angle in radians.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns: 
-                New GEOM.GEOM_Object, containing the created revolution.
-            """
-            # Example: see GEOM_TestAll.py
-            theAngle,Parameters = ParseParameters(theAngle)
-            anObj = self.PrimOp.MakeRevolutionAxisAngle(theBase, theAxis, theAngle)
-            RaiseIfFailed("MakeRevolutionAxisAngle", self.PrimOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "revolution")
-            return anObj
-
-        ## Create a shape by revolution of the base shape around the axis
-        #  on the given angle, i.e. all the space, transfixed by the base
-        #  shape during its rotation around the axis on the given angle in
-        #  both directions (forward/backward)
-        #  @param theBase Base shape to be rotated.
-        #  @param theAxis Rotation axis.
-        #  @param theAngle Rotation angle in radians.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created revolution.
-        #
-        #  @ref tui_creation_revolution "Example"
-        def MakeRevolution2Ways(self, theBase, theAxis, theAngle, theName=None):
-            """
-            Create a shape by revolution of the base shape around the axis
-            on the given angle, i.e. all the space, transfixed by the base
-            shape during its rotation around the axis on the given angle in
-            both directions (forward/backward).
-
-            Parameters:
-                theBase Base shape to be rotated.
-                theAxis Rotation axis.
-                theAngle Rotation angle in radians.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns: 
-                New GEOM.GEOM_Object, containing the created revolution.
-            """
-            theAngle,Parameters = ParseParameters(theAngle)
-            anObj = self.PrimOp.MakeRevolutionAxisAngle2Ways(theBase, theAxis, theAngle)
-            RaiseIfFailed("MakeRevolutionAxisAngle2Ways", self.PrimOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "revolution")
-            return anObj
-
-        ## Create a filling from the given compound of contours.
-        #  @param theShape the compound of contours
-        #  @param theMinDeg a minimal degree of BSpline surface to create
-        #  @param theMaxDeg a maximal degree of BSpline surface to create
-        #  @param theTol2D a 2d tolerance to be reached
-        #  @param theTol3D a 3d tolerance to be reached
-        #  @param theNbIter a number of iteration of approximation algorithm
-        #  @param theMethod Kind of method to perform filling operation(see GEOM::filling_oper_method())
-        #  @param isApprox if True, BSpline curves are generated in the process
-        #                  of surface construction. By default it is False, that means
-        #                  the surface is created using given curves. The usage of
-        #                  Approximation makes the algorithm work slower, but allows
-        #                  building the surface for rather complex cases.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created filling surface.
-        #
-        #  @ref tui_creation_filling "Example"
-        def MakeFilling(self, theShape, theMinDeg=2, theMaxDeg=5, theTol2D=0.0001,
-                        theTol3D=0.0001, theNbIter=0, theMethod=GEOM.FOM_Default, isApprox=0, theName=None):
-            """
-            Create a filling from the given compound of contours.
-
-            Parameters:
-                theShape the compound of contours
-                theMinDeg a minimal degree of BSpline surface to create
-                theMaxDeg a maximal degree of BSpline surface to create
-                theTol2D a 2d tolerance to be reached
-                theTol3D a 3d tolerance to be reached
-                theNbIter a number of iteration of approximation algorithm
-                theMethod Kind of method to perform filling operation(see GEOM::filling_oper_method())
-                isApprox if True, BSpline curves are generated in the process
-                         of surface construction. By default it is False, that means
-                         the surface is created using given curves. The usage of
-                         Approximation makes the algorithm work slower, but allows
-                         building the surface for rather complex cases
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns: 
-                New GEOM.GEOM_Object, containing the created filling surface.
-
-            Example of usage:
-                filling = geompy.MakeFilling(compound, 2, 5, 0.0001, 0.0001, 5)
-            """
-            # Example: see GEOM_TestAll.py
-            theMinDeg,theMaxDeg,theTol2D,theTol3D,theNbIter,Parameters = ParseParameters(theMinDeg, theMaxDeg, theTol2D, theTol3D, theNbIter)
-            anObj = self.PrimOp.MakeFilling(theShape, theMinDeg, theMaxDeg,
-                                            theTol2D, theTol3D, theNbIter,
-                                            theMethod, isApprox)
-            RaiseIfFailed("MakeFilling", self.PrimOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "filling")
-            return anObj
-
-
-        ## Create a filling from the given compound of contours.
-        #  This method corresponds to MakeFilling with isApprox=True
-        #  @param theShape the compound of contours
-        #  @param theMinDeg a minimal degree of BSpline surface to create
-        #  @param theMaxDeg a maximal degree of BSpline surface to create
-        #  @param theTol3D a 3d tolerance to be reached
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created filling surface.
-        #
-        #  @ref tui_creation_filling "Example"
-        def MakeFillingNew(self, theShape, theMinDeg=2, theMaxDeg=5, theTol3D=0.0001, theName=None):
-            """
-            Create a filling from the given compound of contours.
-            This method corresponds to MakeFilling with isApprox=True
-
-            Parameters:
-                theShape the compound of contours
-                theMinDeg a minimal degree of BSpline surface to create
-                theMaxDeg a maximal degree of BSpline surface to create
-                theTol3D a 3d tolerance to be reached
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns: 
-                New GEOM.GEOM_Object, containing the created filling surface.
-
-            Example of usage:
-                filling = geompy.MakeFillingNew(compound, 2, 5, 0.0001)
-            """
-            # Example: see GEOM_TestAll.py
-            theMinDeg,theMaxDeg,theTol3D,Parameters = ParseParameters(theMinDeg, theMaxDeg, theTol3D)
-            anObj = self.PrimOp.MakeFilling(theShape, theMinDeg, theMaxDeg,
-                                            0, theTol3D, 0, GEOM.FOM_Default, True)
-            RaiseIfFailed("MakeFillingNew", self.PrimOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "filling")
-            return anObj
-
-        ## Create a shell or solid passing through set of sections.Sections should be wires,edges or vertices.
-        #  @param theSeqSections - set of specified sections.
-        #  @param theModeSolid - mode defining building solid or shell
-        #  @param thePreci - precision 3D used for smoothing
-        #  @param theRuled - mode defining type of the result surfaces (ruled or smoothed).
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created shell or solid.
-        #
-        #  @ref swig_todo "Example"
-        def MakeThruSections(self, theSeqSections, theModeSolid, thePreci, theRuled, theName=None):
-            """
-            Create a shell or solid passing through set of sections.Sections should be wires,edges or vertices.
-
-            Parameters:
-                theSeqSections - set of specified sections.
-                theModeSolid - mode defining building solid or shell
-                thePreci - precision 3D used for smoothing
-                theRuled - mode defining type of the result surfaces (ruled or smoothed).
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the created shell or solid.
-            """
-            # Example: see GEOM_TestAll.py
-            anObj = self.PrimOp.MakeThruSections(theSeqSections,theModeSolid,thePreci,theRuled)
-            RaiseIfFailed("MakeThruSections", self.PrimOp)
-            self._autoPublish(anObj, theName, "filling")
-            return anObj
-
-        ## Create a shape by extrusion of the base shape along
-        #  the path shape. The path shape can be a wire or an edge.
-        #  @param theBase Base shape to be extruded.
-        #  @param thePath Path shape to extrude the base shape along it.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created pipe.
-        #
-        #  @ref tui_creation_pipe "Example"
-        def MakePipe(self, theBase, thePath, theName=None):
-            """
-            Create a shape by extrusion of the base shape along
-            the path shape. The path shape can be a wire or an edge.
-
-            Parameters:
-                theBase Base shape to be extruded.
-                thePath Path shape to extrude the base shape along it.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the created pipe.
-            """
-            # Example: see GEOM_TestAll.py
-            anObj = self.PrimOp.MakePipe(theBase, thePath)
-            RaiseIfFailed("MakePipe", self.PrimOp)
-            self._autoPublish(anObj, theName, "pipe")
-            return anObj
-
-        ## Create a shape by extrusion of the profile shape along
-        #  the path shape. The path shape can be a wire or an edge.
-        #  the several profiles can be specified in the several locations of path.
-        #  @param theSeqBases - list of  Bases shape to be extruded.
-        #  @param theLocations - list of locations on the path corresponding
-        #                        specified list of the Bases shapes. Number of locations
-        #                        should be equal to number of bases or list of locations can be empty.
-        #  @param thePath - Path shape to extrude the base shape along it.
-        #  @param theWithContact - the mode defining that the section is translated to be in
-        #                          contact with the spine.
-        #  @param theWithCorrection - defining that the section is rotated to be
-        #                             orthogonal to the spine tangent in the correspondent point
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created pipe.
-        #
-        #  @ref tui_creation_pipe_with_diff_sec "Example"
-        def MakePipeWithDifferentSections(self, theSeqBases,
-                                          theLocations, thePath,
-                                          theWithContact, theWithCorrection, theName=None):
-            """
-            Create a shape by extrusion of the profile shape along
-            the path shape. The path shape can be a wire or an edge.
-            the several profiles can be specified in the several locations of path.
-
-            Parameters:
-                theSeqBases - list of  Bases shape to be extruded.
-                theLocations - list of locations on the path corresponding
-                               specified list of the Bases shapes. Number of locations
-                               should be equal to number of bases or list of locations can be empty.
-                thePath - Path shape to extrude the base shape along it.
-                theWithContact - the mode defining that the section is translated to be in
-                                 contact with the spine(0/1)
-                theWithCorrection - defining that the section is rotated to be
-                                    orthogonal to the spine tangent in the correspondent point (0/1)
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the created pipe.
-            """
-            anObj = self.PrimOp.MakePipeWithDifferentSections(theSeqBases,
-                                                              theLocations, thePath,
-                                                              theWithContact, theWithCorrection)
-            RaiseIfFailed("MakePipeWithDifferentSections", self.PrimOp)
-            self._autoPublish(anObj, theName, "pipe")
-            return anObj
-
-        ## Create a shape by extrusion of the profile shape along
-        #  the path shape. The path shape can be a wire or a edge.
-        #  the several profiles can be specified in the several locations of path.
-        #  @param theSeqBases - list of  Bases shape to be extruded. Base shape must be
-        #                       shell or face. If number of faces in neighbour sections
-        #                       aren't coincided result solid between such sections will
-        #                       be created using external boundaries of this shells.
-        #  @param theSeqSubBases - list of corresponding sub-shapes of section shapes.
-        #                          This list is used for searching correspondences between
-        #                          faces in the sections. Size of this list must be equal
-        #                          to size of list of base shapes.
-        #  @param theLocations - list of locations on the path corresponding
-        #                        specified list of the Bases shapes. Number of locations
-        #                        should be equal to number of bases. First and last
-        #                        locations must be coincided with first and last vertexes
-        #                        of path correspondingly.
-        #  @param thePath - Path shape to extrude the base shape along it.
-        #  @param theWithContact - the mode defining that the section is translated to be in
-        #                          contact with the spine.
-        #  @param theWithCorrection - defining that the section is rotated to be
-        #                             orthogonal to the spine tangent in the correspondent point
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created solids.
-        #
-        #  @ref tui_creation_pipe_with_shell_sec "Example"
-        def MakePipeWithShellSections(self, theSeqBases, theSeqSubBases,
-                                      theLocations, thePath,
-                                      theWithContact, theWithCorrection, theName=None):
-            """
-            Create a shape by extrusion of the profile shape along
-            the path shape. The path shape can be a wire or a edge.
-            the several profiles can be specified in the several locations of path.
-
-            Parameters:
-                theSeqBases - list of  Bases shape to be extruded. Base shape must be
-                              shell or face. If number of faces in neighbour sections
-                              aren't coincided result solid between such sections will
-                              be created using external boundaries of this shells.
-                theSeqSubBases - list of corresponding sub-shapes of section shapes.
-                                 This list is used for searching correspondences between
-                                 faces in the sections. Size of this list must be equal
-                                 to size of list of base shapes.
-                theLocations - list of locations on the path corresponding
-                               specified list of the Bases shapes. Number of locations
-                               should be equal to number of bases. First and last
-                               locations must be coincided with first and last vertexes
-                               of path correspondingly.
-                thePath - Path shape to extrude the base shape along it.
-                theWithContact - the mode defining that the section is translated to be in
-                                 contact with the spine (0/1)
-                theWithCorrection - defining that the section is rotated to be
-                                    orthogonal to the spine tangent in the correspondent point (0/1)
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:                           
-                New GEOM.GEOM_Object, containing the created solids.
-            """
-            anObj = self.PrimOp.MakePipeWithShellSections(theSeqBases, theSeqSubBases,
-                                                          theLocations, thePath,
-                                                          theWithContact, theWithCorrection)
-            RaiseIfFailed("MakePipeWithShellSections", self.PrimOp)
-            self._autoPublish(anObj, theName, "pipe")
-            return anObj
-
-        ## Create a shape by extrusion of the profile shape along
-        #  the path shape. This function is used only for debug pipe
-        #  functionality - it is a version of function MakePipeWithShellSections()
-        #  which give a possibility to recieve information about
-        #  creating pipe between each pair of sections step by step.
-        def MakePipeWithShellSectionsBySteps(self, theSeqBases, theSeqSubBases,
-                                             theLocations, thePath,
-                                             theWithContact, theWithCorrection, theName=None):
-            """
-            Create a shape by extrusion of the profile shape along
-            the path shape. This function is used only for debug pipe
-            functionality - it is a version of previous function
-            geompy.MakePipeWithShellSections() which give a possibility to
-            recieve information about creating pipe between each pair of
-            sections step by step.
-            """
-            res = []
-            nbsect = len(theSeqBases)
-            nbsubsect = len(theSeqSubBases)
-            #print "nbsect = ",nbsect
-            for i in range(1,nbsect):
-                #print "  i = ",i
-                tmpSeqBases = [ theSeqBases[i-1], theSeqBases[i] ]
-                tmpLocations = [ theLocations[i-1], theLocations[i] ]
-                tmpSeqSubBases = []
-                if nbsubsect>0: tmpSeqSubBases = [ theSeqSubBases[i-1], theSeqSubBases[i] ]
-                anObj = self.PrimOp.MakePipeWithShellSections(tmpSeqBases, tmpSeqSubBases,
-                                                              tmpLocations, thePath,
-                                                              theWithContact, theWithCorrection)
-                if self.PrimOp.IsDone() == 0:
-                    print "Problems with pipe creation between ",i," and ",i+1," sections"
-                    RaiseIfFailed("MakePipeWithShellSections", self.PrimOp)
-                    break
-                else:
-                    print "Pipe between ",i," and ",i+1," sections is OK"
-                    res.append(anObj)
-                    pass
-                pass
-
-            resc = self.MakeCompound(res)
-            #resc = self.MakeSewing(res, 0.001)
-            #print "resc: ",resc
-            self._autoPublish(resc, theName, "pipe")
-            return resc
-
-        ## Create solids between given sections
-        #  @param theSeqBases - list of sections (shell or face).
-        #  @param theLocations - list of corresponding vertexes
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created solids.
-        #
-        #  @ref tui_creation_pipe_without_path "Example"
-        def MakePipeShellsWithoutPath(self, theSeqBases, theLocations, theName=None):
-            """
-            Create solids between given sections
-
-            Parameters:
-                theSeqBases - list of sections (shell or face).
-                theLocations - list of corresponding vertexes
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the created solids.
-            """
-            anObj = self.PrimOp.MakePipeShellsWithoutPath(theSeqBases, theLocations)
-            RaiseIfFailed("MakePipeShellsWithoutPath", self.PrimOp)
-            self._autoPublish(anObj, theName, "pipe")
-            return anObj
-
-        ## Create a shape by extrusion of the base shape along
-        #  the path shape with constant bi-normal direction along the given vector.
-        #  The path shape can be a wire or an edge.
-        #  @param theBase Base shape to be extruded.
-        #  @param thePath Path shape to extrude the base shape along it.
-        #  @param theVec Vector defines a constant binormal direction to keep the
-        #                same angle beetween the direction and the sections
-        #                along the sweep surface.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created pipe.
-        #
-        #  @ref tui_creation_pipe "Example"
-        def MakePipeBiNormalAlongVector(self, theBase, thePath, theVec, theName=None):
-            """
-            Create a shape by extrusion of the base shape along
-            the path shape with constant bi-normal direction along the given vector.
-            The path shape can be a wire or an edge.
-
-            Parameters:
-                theBase Base shape to be extruded.
-                thePath Path shape to extrude the base shape along it.
-                theVec Vector defines a constant binormal direction to keep the
-                       same angle beetween the direction and the sections
-                       along the sweep surface.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:              
-                New GEOM.GEOM_Object, containing the created pipe.
-            """
-            # Example: see GEOM_TestAll.py
-            anObj = self.PrimOp.MakePipeBiNormalAlongVector(theBase, thePath, theVec)
-            RaiseIfFailed("MakePipeBiNormalAlongVector", self.PrimOp)
-            self._autoPublish(anObj, theName, "pipe")
-            return anObj
-              
-        ## Makes a thick solid from a face or a shell
-        #  @param theShape Face or Shell to be thicken
-        #  @param theThickness Thickness of the resulting solid
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created solid
-        #
-        def MakeThickSolid(self, theShape, theThickness, theName=None):
-            """
-            Make a thick solid from a face or a shell
-
-            Parameters:
-                 theShape Face or Shell to be thicken
-                 theThickness Thickness of the resulting solid
-                 theName Object name; when specified, this parameter is used
-                 for result publication in the study. Otherwise, if automatic
-                 publication is switched on, default value is used for result name.
-                 
-            Returns:
-                New GEOM.GEOM_Object, containing the created solid
-            """
-            # Example: see GEOM_TestAll.py
-            anObj = self.PrimOp.MakeThickening(theShape, theThickness, True)
-            RaiseIfFailed("MakeThickening", self.PrimOp)
-            self._autoPublish(anObj, theName, "pipe")
-            return anObj
-            
-
-        ## Modifies a face or a shell to make it a thick solid
-        #  @param theShape Face or Shell to be thicken
-        #  @param theThickness Thickness of the resulting solid
-        #
-        #  @return The modified shape
-        #
-        def Thicken(self, theShape, theThickness):
-            """
-            Modifies a face or a shell to make it a thick solid
-
-            Parameters:
-                theBase Base shape to be extruded.
-                thePath Path shape to extrude the base shape along it.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                The modified shape
-            """
-            # Example: see GEOM_TestAll.py
-            anObj = self.PrimOp.MakeThickening(theShape, theThickness, False)
-            RaiseIfFailed("MakeThickening", self.PrimOp)
-            return anObj
-
-        ## Build a middle path of a pipe-like shape.
-        #  The path shape can be a wire or an edge.
-        #  @param theShape It can be closed or unclosed pipe-like shell
-        #                  or a pipe-like solid.
-        #  @param theBase1, theBase2 Two bases of the supposed pipe. This
-        #                            should be wires or faces of theShape.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @note It is not assumed that exact or approximate copy of theShape
-        #        can be obtained by applying existing Pipe operation on the
-        #        resulting "Path" wire taking theBase1 as the base - it is not
-        #        always possible; though in some particular cases it might work
-        #        it is not guaranteed. Thus, RestorePath function should not be
-        #        considered as an exact reverse operation of the Pipe.
-        #
-        #  @return New GEOM.GEOM_Object, containing an edge or wire that represent
-        #                                source pipe's "path".
-        #
-        #  @ref tui_creation_pipe_path "Example"
-        def RestorePath (self, theShape, theBase1, theBase2, theName=None):
-            """
-            Build a middle path of a pipe-like shape.
-            The path shape can be a wire or an edge.
-
-            Parameters:
-                theShape It can be closed or unclosed pipe-like shell
-                         or a pipe-like solid.
-                theBase1, theBase2 Two bases of the supposed pipe. This
-                                   should be wires or faces of theShape.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM_Object, containing an edge or wire that represent
-                                 source pipe's path.
-            """
-            anObj = self.PrimOp.RestorePath(theShape, theBase1, theBase2)
-            RaiseIfFailed("RestorePath", self.PrimOp)
-            self._autoPublish(anObj, theName, "path")
-            return anObj
-
-        ## Build a middle path of a pipe-like shape.
-        #  The path shape can be a wire or an edge.
-        #  @param theShape It can be closed or unclosed pipe-like shell
-        #                  or a pipe-like solid.
-        #  @param listEdges1, listEdges2 Two bases of the supposed pipe. This
-        #                                should be lists of edges of theShape.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @note It is not assumed that exact or approximate copy of theShape
-        #        can be obtained by applying existing Pipe operation on the
-        #        resulting "Path" wire taking theBase1 as the base - it is not
-        #        always possible; though in some particular cases it might work
-        #        it is not guaranteed. Thus, RestorePath function should not be
-        #        considered as an exact reverse operation of the Pipe.
-        #
-        #  @return New GEOM.GEOM_Object, containing an edge or wire that represent
-        #                                source pipe's "path".
-        #
-        #  @ref tui_creation_pipe_path "Example"
-        def RestorePathEdges (self, theShape, listEdges1, listEdges2, theName=None):
-            """
-            Build a middle path of a pipe-like shape.
-            The path shape can be a wire or an edge.
-
-            Parameters:
-                theShape It can be closed or unclosed pipe-like shell
-                         or a pipe-like solid.
-                listEdges1, listEdges2 Two bases of the supposed pipe. This
-                                       should be lists of edges of theShape.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM_Object, containing an edge or wire that represent
-                                 source pipe's path.
-            """
-            anObj = self.PrimOp.RestorePathEdges(theShape, listEdges1, listEdges2)
-            RaiseIfFailed("RestorePath", self.PrimOp)
-            self._autoPublish(anObj, theName, "path")
-            return anObj
-
-        # end of l3_complex
-        ## @}
-
-        ## @addtogroup l3_advanced
-        ## @{
-
-        ## Create a linear edge with specified ends.
-        #  @param thePnt1 Point for the first end of edge.
-        #  @param thePnt2 Point for the second end of edge.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created edge.
-        #
-        #  @ref tui_creation_edge "Example"
-        def MakeEdge(self, thePnt1, thePnt2, theName=None):
-            """
-            Create a linear edge with specified ends.
-
-            Parameters:
-                thePnt1 Point for the first end of edge.
-                thePnt2 Point for the second end of edge.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:           
-                New GEOM.GEOM_Object, containing the created edge.
-            """
-            # Example: see GEOM_TestAll.py
-            anObj = self.ShapesOp.MakeEdge(thePnt1, thePnt2)
-            RaiseIfFailed("MakeEdge", self.ShapesOp)
-            self._autoPublish(anObj, theName, "edge")
-            return anObj
-
-        ## Create a new edge, corresponding to the given length on the given curve.
-        #  @param theRefCurve The referenced curve (edge).
-        #  @param theLength Length on the referenced curve. It can be negative.
-        #  @param theStartPoint Any point can be selected for it, the new edge will begin
-        #                       at the end of \a theRefCurve, close to the selected point.
-        #                       If None, start from the first point of \a theRefCurve.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created edge.
-        #
-        #  @ref tui_creation_edge "Example"
-        def MakeEdgeOnCurveByLength(self, theRefCurve, theLength, theStartPoint = None, theName=None):
-            """
-            Create a new edge, corresponding to the given length on the given curve.
-
-            Parameters:
-                theRefCurve The referenced curve (edge).
-                theLength Length on the referenced curve. It can be negative.
-                theStartPoint Any point can be selected for it, the new edge will begin
-                              at the end of theRefCurve, close to the selected point.
-                              If None, start from the first point of theRefCurve.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:              
-                New GEOM.GEOM_Object, containing the created edge.
-            """
-            # Example: see GEOM_TestAll.py
-            theLength, Parameters = ParseParameters(theLength)
-            anObj = self.ShapesOp.MakeEdgeOnCurveByLength(theRefCurve, theLength, theStartPoint)
-            RaiseIfFailed("MakeEdgeOnCurveByLength", self.ShapesOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "edge")
-            return anObj
-
-        ## Create an edge from specified wire.
-        #  @param theWire source Wire
-        #  @param theLinearTolerance linear tolerance value (default = 1e-07)
-        #  @param theAngularTolerance angular tolerance value (default = 1e-12)
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created edge.
-        #
-        #  @ref tui_creation_edge "Example"
-        def MakeEdgeWire(self, theWire, theLinearTolerance = 1e-07, theAngularTolerance = 1e-12, theName=None):
-            """
-            Create an edge from specified wire.
-
-            Parameters:
-                theWire source Wire
-                theLinearTolerance linear tolerance value (default = 1e-07)
-                theAngularTolerance angular tolerance value (default = 1e-12)
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the created edge.
-            """
-            # Example: see GEOM_TestAll.py
-            anObj = self.ShapesOp.MakeEdgeWire(theWire, theLinearTolerance, theAngularTolerance)
-            RaiseIfFailed("MakeEdgeWire", self.ShapesOp)
-            self._autoPublish(anObj, theName, "edge")
-            return anObj
-
-        ## Create a wire from the set of edges and wires.
-        #  @param theEdgesAndWires List of edges and/or wires.
-        #  @param theTolerance Maximum distance between vertices, that will be merged.
-        #                      Values less than 1e-07 are equivalent to 1e-07 (Precision::Confusion())
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created wire.
-        #
-        #  @ref tui_creation_wire "Example"
-        def MakeWire(self, theEdgesAndWires, theTolerance = 1e-07, theName=None):
-            """
-            Create a wire from the set of edges and wires.
-
-            Parameters:
-                theEdgesAndWires List of edges and/or wires.
-                theTolerance Maximum distance between vertices, that will be merged.
-                             Values less than 1e-07 are equivalent to 1e-07 (Precision::Confusion()).
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:                    
-                New GEOM.GEOM_Object, containing the created wire.
-            """
-            # Example: see GEOM_TestAll.py
-            anObj = self.ShapesOp.MakeWire(theEdgesAndWires, theTolerance)
-            RaiseIfFailed("MakeWire", self.ShapesOp)
-            self._autoPublish(anObj, theName, "wire")
-            return anObj
-
-        ## Create a face on the given wire.
-        #  @param theWire closed Wire or Edge to build the face on.
-        #  @param isPlanarWanted If TRUE, the algorithm tries to build a planar face.
-        #                        If the tolerance of the obtained planar face is less
-        #                        than 1e-06, this face will be returned, otherwise the
-        #                        algorithm tries to build any suitable face on the given
-        #                        wire and prints a warning message.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created face.
-        #
-        #  @ref tui_creation_face "Example"
-        def MakeFace(self, theWire, isPlanarWanted, theName=None):
-            """
-            Create a face on the given wire.
-
-            Parameters:
-                theWire closed Wire or Edge to build the face on.
-                isPlanarWanted If TRUE, the algorithm tries to build a planar face.
-                               If the tolerance of the obtained planar face is less
-                               than 1e-06, this face will be returned, otherwise the
-                               algorithm tries to build any suitable face on the given
-                               wire and prints a warning message.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the created face.
-            """
-            # Example: see GEOM_TestAll.py
-            anObj = self.ShapesOp.MakeFace(theWire, isPlanarWanted)
-            if isPlanarWanted and anObj is not None and self.ShapesOp.GetErrorCode() == "MAKE_FACE_TOLERANCE_TOO_BIG":
-                print "WARNING: Cannot build a planar face: required tolerance is too big. Non-planar face is built."
-            else:
-                RaiseIfFailed("MakeFace", self.ShapesOp)
-            self._autoPublish(anObj, theName, "face")
-            return anObj
-
-        ## Create a face on the given wires set.
-        #  @param theWires List of closed wires or edges to build the face on.
-        #  @param isPlanarWanted If TRUE, the algorithm tries to build a planar face.
-        #                        If the tolerance of the obtained planar face is less
-        #                        than 1e-06, this face will be returned, otherwise the
-        #                        algorithm tries to build any suitable face on the given
-        #                        wire and prints a warning message.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created face.
-        #
-        #  @ref tui_creation_face "Example"
-        def MakeFaceWires(self, theWires, isPlanarWanted, theName=None):
-            """
-            Create a face on the given wires set.
-
-            Parameters:
-                theWires List of closed wires or edges to build the face on.
-                isPlanarWanted If TRUE, the algorithm tries to build a planar face.
-                               If the tolerance of the obtained planar face is less
-                               than 1e-06, this face will be returned, otherwise the
-                               algorithm tries to build any suitable face on the given
-                               wire and prints a warning message.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns: 
-                New GEOM.GEOM_Object, containing the created face.
-            """
-            # Example: see GEOM_TestAll.py
-            anObj = self.ShapesOp.MakeFaceWires(theWires, isPlanarWanted)
-            if isPlanarWanted and anObj is not None and self.ShapesOp.GetErrorCode() == "MAKE_FACE_TOLERANCE_TOO_BIG":
-                print "WARNING: Cannot build a planar face: required tolerance is too big. Non-planar face is built."
-            else:
-                RaiseIfFailed("MakeFaceWires", self.ShapesOp)
-            self._autoPublish(anObj, theName, "face")
-            return anObj
-
-        ## See MakeFaceWires() method for details.
-        #
-        #  @ref tui_creation_face "Example 1"
-        #  \n @ref swig_MakeFaces  "Example 2"
-        def MakeFaces(self, theWires, isPlanarWanted, theName=None):
-            """
-            See geompy.MakeFaceWires() method for details.
-            """
-            # Example: see GEOM_TestOthers.py
-            # note: auto-publishing is done in self.MakeFaceWires()
-            anObj = self.MakeFaceWires(theWires, isPlanarWanted, theName)
-            return anObj
-
-        ## Create a shell from the set of faces and shells.
-        #  @param theFacesAndShells List of faces and/or shells.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created shell.
-        #
-        #  @ref tui_creation_shell "Example"
-        def MakeShell(self, theFacesAndShells, theName=None):
-            """
-            Create a shell from the set of faces and shells.
-
-            Parameters:
-                theFacesAndShells List of faces and/or shells.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the created shell.
-            """
-            # Example: see GEOM_TestAll.py
-            anObj = self.ShapesOp.MakeShell(theFacesAndShells)
-            RaiseIfFailed("MakeShell", self.ShapesOp)
-            self._autoPublish(anObj, theName, "shell")
-            return anObj
-
-        ## Create a solid, bounded by the given shells.
-        #  @param theShells Sequence of bounding shells.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created solid.
-        #
-        #  @ref tui_creation_solid "Example"
-        def MakeSolid(self, theShells, theName=None):
-            """
-            Create a solid, bounded by the given shells.
-
-            Parameters:
-                theShells Sequence of bounding shells.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the created solid.
-            """
-            # Example: see GEOM_TestAll.py
-            if len(theShells) == 1:
-                descr = self.MeasuOp.IsGoodForSolid(theShells[0])
-                #if len(descr) > 0:
-                #    raise RuntimeError, "MakeSolidShells : " + descr
-                if descr == "WRN_SHAPE_UNCLOSED":
-                    raise RuntimeError, "MakeSolidShells : Unable to create solid from unclosed shape"
-            anObj = self.ShapesOp.MakeSolidShells(theShells)
-            RaiseIfFailed("MakeSolidShells", self.ShapesOp)
-            self._autoPublish(anObj, theName, "solid")
-            return anObj
-
-        ## Create a compound of the given shapes.
-        #  @param theShapes List of shapes to put in compound.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created compound.
-        #
-        #  @ref tui_creation_compound "Example"
-        def MakeCompound(self, theShapes, theName=None):
-            """
-            Create a compound of the given shapes.
-
-            Parameters:
-                theShapes List of shapes to put in compound.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the created compound.
-            """
-            # Example: see GEOM_TestAll.py
-            anObj = self.ShapesOp.MakeCompound(theShapes)
-            RaiseIfFailed("MakeCompound", self.ShapesOp)
-            self._autoPublish(anObj, theName, "compound")
-            return anObj
-
-        # end of l3_advanced
-        ## @}
-
-        ## @addtogroup l2_measure
-        ## @{
-
-        ## Gives quantity of faces in the given shape.
-        #  @param theShape Shape to count faces of.
-        #  @return Quantity of faces.
-        #
-        #  @ref swig_NumberOf "Example"
-        def NumberOfFaces(self, theShape):
-            """
-            Gives quantity of faces in the given shape.
-
-            Parameters:
-                theShape Shape to count faces of.
-
-            Returns:    
-                Quantity of faces.
-            """
-            # Example: see GEOM_TestOthers.py
-            nb_faces = self.ShapesOp.NumberOfFaces(theShape)
-            RaiseIfFailed("NumberOfFaces", self.ShapesOp)
-            return nb_faces
-
-        ## Gives quantity of edges in the given shape.
-        #  @param theShape Shape to count edges of.
-        #  @return Quantity of edges.
-        #
-        #  @ref swig_NumberOf "Example"
-        def NumberOfEdges(self, theShape):
-            """
-            Gives quantity of edges in the given shape.
-
-            Parameters:
-                theShape Shape to count edges of.
-
-            Returns:    
-                Quantity of edges.
-            """
-            # Example: see GEOM_TestOthers.py
-            nb_edges = self.ShapesOp.NumberOfEdges(theShape)
-            RaiseIfFailed("NumberOfEdges", self.ShapesOp)
-            return nb_edges
-
-        ## Gives quantity of sub-shapes of type theShapeType in the given shape.
-        #  @param theShape Shape to count sub-shapes of.
-        #  @param theShapeType Type of sub-shapes to count (see ShapeType())
-        #  @return Quantity of sub-shapes of given type.
-        #
-        #  @ref swig_NumberOf "Example"
-        def NumberOfSubShapes(self, theShape, theShapeType):
-            """
-            Gives quantity of sub-shapes of type theShapeType in the given shape.
-
-            Parameters:
-                theShape Shape to count sub-shapes of.
-                theShapeType Type of sub-shapes to count (see geompy.ShapeType)
-
-            Returns:
-                Quantity of sub-shapes of given type.
-            """
-            # Example: see GEOM_TestOthers.py
-            nb_ss = self.ShapesOp.NumberOfSubShapes(theShape, theShapeType)
-            RaiseIfFailed("NumberOfSubShapes", self.ShapesOp)
-            return nb_ss
-
-        ## Gives quantity of solids in the given shape.
-        #  @param theShape Shape to count solids in.
-        #  @return Quantity of solids.
-        #
-        #  @ref swig_NumberOf "Example"
-        def NumberOfSolids(self, theShape):
-            """
-            Gives quantity of solids in the given shape.
-
-            Parameters:
-                theShape Shape to count solids in.
-
-            Returns:
-                Quantity of solids.
-            """
-            # Example: see GEOM_TestOthers.py
-            nb_solids = self.ShapesOp.NumberOfSubShapes(theShape, ShapeType["SOLID"])
-            RaiseIfFailed("NumberOfSolids", self.ShapesOp)
-            return nb_solids
-
-        # end of l2_measure
-        ## @}
-
-        ## @addtogroup l3_healing
-        ## @{
-
-        ## Reverses an orientation the given shape.
-        #  @param theShape Shape to be reversed.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return The reversed copy of theShape.
-        #
-        #  @ref swig_ChangeOrientation "Example"
-        def ChangeOrientation(self, theShape, theName=None):
-            """
-            Reverses an orientation the given shape.
-
-            Parameters:
-                theShape Shape to be reversed.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:   
-                The reversed copy of theShape.
-            """
-            # Example: see GEOM_TestAll.py
-            anObj = self.ShapesOp.ChangeOrientation(theShape)
-            RaiseIfFailed("ChangeOrientation", self.ShapesOp)
-            self._autoPublish(anObj, theName, "reversed")
-            return anObj
-
-        ## See ChangeOrientation() method for details.
-        #
-        #  @ref swig_OrientationChange "Example"
-        def OrientationChange(self, theShape, theName=None):
-            """
-            See geompy.ChangeOrientation method for details.
-            """
-            # Example: see GEOM_TestOthers.py
-            # note: auto-publishing is done in self.ChangeOrientation()
-            anObj = self.ChangeOrientation(theShape, theName)
-            return anObj
-
-        # end of l3_healing
-        ## @}
-
-        ## @addtogroup l4_obtain
-        ## @{
-
-        ## Retrieve all free faces from the given shape.
-        #  Free face is a face, which is not shared between two shells of the shape.
-        #  @param theShape Shape to find free faces in.
-        #  @return List of IDs of all free faces, contained in theShape.
-        #
-        #  @ref tui_measurement_tools_page "Example"
-        def GetFreeFacesIDs(self,theShape):
-            """
-            Retrieve all free faces from the given shape.
-            Free face is a face, which is not shared between two shells of the shape.
-
-            Parameters:
-                theShape Shape to find free faces in.
-
-            Returns:
-                List of IDs of all free faces, contained in theShape.
-            """
-            # Example: see GEOM_TestOthers.py
-            anIDs = self.ShapesOp.GetFreeFacesIDs(theShape)
-            RaiseIfFailed("GetFreeFacesIDs", self.ShapesOp)
-            return anIDs
-
-        ## Get all sub-shapes of theShape1 of the given type, shared with theShape2.
-        #  @param theShape1 Shape to find sub-shapes in.
-        #  @param theShape2 Shape to find shared sub-shapes with.
-        #  @param theShapeType Type of sub-shapes to be retrieved.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return List of sub-shapes of theShape1, shared with theShape2.
-        #
-        #  @ref swig_GetSharedShapes "Example"
-        def GetSharedShapes(self, theShape1, theShape2, theShapeType, theName=None):
-            """
-            Get all sub-shapes of theShape1 of the given type, shared with theShape2.
-
-            Parameters:
-                theShape1 Shape to find sub-shapes in.
-                theShape2 Shape to find shared sub-shapes with.
-                theShapeType Type of sub-shapes to be retrieved.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                List of sub-shapes of theShape1, shared with theShape2.
-            """
-            # Example: see GEOM_TestOthers.py
-            aList = self.ShapesOp.GetSharedShapes(theShape1, theShape2, theShapeType)
-            RaiseIfFailed("GetSharedShapes", self.ShapesOp)
-            self._autoPublish(aList, theName, "shared")
-            return aList
-
-        ## Get all sub-shapes, shared by all shapes in the list <VAR>theShapes</VAR>.
-        #  @param theShapes Shapes to find common sub-shapes of.
-        #  @param theShapeType Type of sub-shapes to be retrieved (see ShapeType())
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return List of objects, that are sub-shapes of all given shapes.
-        #
-        #  @ref swig_GetSharedShapes "Example"
-        def GetSharedShapesMulti(self, theShapes, theShapeType, theName=None):
-            """
-            Get all sub-shapes, shared by all shapes in the list theShapes.
-
-            Parameters:
-                theShapes Shapes to find common sub-shapes of.
-                theShapeType Type of sub-shapes to be retrieved (see geompy.ShapeType)
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:    
-                List of GEOM.GEOM_Object, that are sub-shapes of all given shapes.
-            """
-            # Example: see GEOM_TestOthers.py
-            aList = self.ShapesOp.GetSharedShapesMulti(theShapes, theShapeType)
-            RaiseIfFailed("GetSharedShapesMulti", self.ShapesOp)
-            self._autoPublish(aList, theName, "shared")
-            return aList
-
-        ## Find in <VAR>theShape</VAR> all sub-shapes of type <VAR>theShapeType</VAR>,
-        #  situated relatively the specified plane by the certain way,
-        #  defined through <VAR>theState</VAR> parameter.
-        #  @param theShape Shape to find sub-shapes of.
-        #  @param theShapeType Type of sub-shapes to be retrieved (see ShapeType())
-        #  @param theAx1 Vector (or line, or linear edge), specifying normal
-        #                direction and location of the plane to find shapes on.
-        #  @param theState The state of the sub-shapes to find (see GEOM::shape_state)
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return List of all found sub-shapes.
-        #
-        #  @ref swig_GetShapesOnPlane "Example"
-        def GetShapesOnPlane(self, theShape, theShapeType, theAx1, theState, theName=None):
-            """
-            Find in theShape all sub-shapes of type theShapeType,
-            situated relatively the specified plane by the certain way,
-            defined through theState parameter.
-
-            Parameters:
-                theShape Shape to find sub-shapes of.
-                theShapeType Type of sub-shapes to be retrieved (see geompy.ShapeType)
-                theAx1 Vector (or line, or linear edge), specifying normal
-                       direction and location of the plane to find shapes on.
-                theState The state of the sub-shapes to find (see GEOM::shape_state)
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                List of all found sub-shapes.
-            """
-            # Example: see GEOM_TestOthers.py
-            aList = self.ShapesOp.GetShapesOnPlane(theShape, theShapeType, theAx1, theState)
-            RaiseIfFailed("GetShapesOnPlane", self.ShapesOp)
-            self._autoPublish(aList, theName, "shapeOnPlane")
-            return aList
-
-        ## Find in <VAR>theShape</VAR> all sub-shapes of type <VAR>theShapeType</VAR>,
-        #  situated relatively the specified plane by the certain way,
-        #  defined through <VAR>theState</VAR> parameter.
-        #  @param theShape Shape to find sub-shapes of.
-        #  @param theShapeType Type of sub-shapes to be retrieved (see ShapeType())
-        #  @param theAx1 Vector (or line, or linear edge), specifying normal
-        #                direction and location of the plane to find shapes on.
-        #  @param theState The state of the sub-shapes to find (see GEOM::shape_state)
-        #
-        #  @return List of all found sub-shapes indices.
-        #
-        #  @ref swig_GetShapesOnPlaneIDs "Example"
-        def GetShapesOnPlaneIDs(self, theShape, theShapeType, theAx1, theState):
-            """
-            Find in theShape all sub-shapes of type theShapeType,
-            situated relatively the specified plane by the certain way,
-            defined through theState parameter.
-
-            Parameters:
-                theShape Shape to find sub-shapes of.
-                theShapeType Type of sub-shapes to be retrieved (see geompy.ShapeType)
-                theAx1 Vector (or line, or linear edge), specifying normal
-                       direction and location of the plane to find shapes on.
-                theState The state of the sub-shapes to find (see GEOM::shape_state)
-
-            Returns:
-                List of all found sub-shapes indices.
-            """
-            # Example: see GEOM_TestOthers.py
-            aList = self.ShapesOp.GetShapesOnPlaneIDs(theShape, theShapeType, theAx1, theState)
-            RaiseIfFailed("GetShapesOnPlaneIDs", self.ShapesOp)
-            return aList
-
-        ## Find in <VAR>theShape</VAR> all sub-shapes of type <VAR>theShapeType</VAR>,
-        #  situated relatively the specified plane by the certain way,
-        #  defined through <VAR>theState</VAR> parameter.
-        #  @param theShape Shape to find sub-shapes of.
-        #  @param theShapeType Type of sub-shapes to be retrieved (see ShapeType())
-        #  @param theAx1 Vector (or line, or linear edge), specifying normal
-        #                direction of the plane to find shapes on.
-        #  @param thePnt Point specifying location of the plane to find shapes on.
-        #  @param theState The state of the sub-shapes to find (see GEOM::shape_state)
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return List of all found sub-shapes.
-        #
-        #  @ref swig_GetShapesOnPlaneWithLocation "Example"
-        def GetShapesOnPlaneWithLocation(self, theShape, theShapeType, theAx1, thePnt, theState, theName=None):
-            """
-            Find in theShape all sub-shapes of type theShapeType,
-            situated relatively the specified plane by the certain way,
-            defined through theState parameter.
-
-            Parameters:
-                theShape Shape to find sub-shapes of.
-                theShapeType Type of sub-shapes to be retrieved (see geompy.ShapeType)
-                theAx1 Vector (or line, or linear edge), specifying normal
-                       direction and location of the plane to find shapes on.
-                thePnt Point specifying location of the plane to find shapes on.
-                theState The state of the sub-shapes to find (see GEOM::shape_state)
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                List of all found sub-shapes.
-            """
-            # Example: see GEOM_TestOthers.py
-            aList = self.ShapesOp.GetShapesOnPlaneWithLocation(theShape, theShapeType,
-                                                               theAx1, thePnt, theState)
-            RaiseIfFailed("GetShapesOnPlaneWithLocation", self.ShapesOp)
-            self._autoPublish(aList, theName, "shapeOnPlane")
-            return aList
-
-        ## Find in <VAR>theShape</VAR> all sub-shapes of type <VAR>theShapeType</VAR>,
-        #  situated relatively the specified plane by the certain way,
-        #  defined through <VAR>theState</VAR> parameter.
-        #  @param theShape Shape to find sub-shapes of.
-        #  @param theShapeType Type of sub-shapes to be retrieved (see ShapeType())
-        #  @param theAx1 Vector (or line, or linear edge), specifying normal
-        #                direction of the plane to find shapes on.
-        #  @param thePnt Point specifying location of the plane to find shapes on.
-        #  @param theState The state of the sub-shapes to find (see GEOM::shape_state)
-        #
-        #  @return List of all found sub-shapes indices.
-        #
-        #  @ref swig_GetShapesOnPlaneWithLocationIDs "Example"
-        def GetShapesOnPlaneWithLocationIDs(self, theShape, theShapeType, theAx1, thePnt, theState):
-            """
-            Find in theShape all sub-shapes of type theShapeType,
-            situated relatively the specified plane by the certain way,
-            defined through theState parameter.
-
-            Parameters:
-                theShape Shape to find sub-shapes of.
-                theShapeType Type of sub-shapes to be retrieved (see geompy.ShapeType)
-                theAx1 Vector (or line, or linear edge), specifying normal
-                       direction and location of the plane to find shapes on.
-                thePnt Point specifying location of the plane to find shapes on.
-                theState The state of the sub-shapes to find (see GEOM::shape_state)
-
-            Returns:
-                List of all found sub-shapes indices.
-            """
-            # Example: see GEOM_TestOthers.py
-            aList = self.ShapesOp.GetShapesOnPlaneWithLocationIDs(theShape, theShapeType,
-                                                                  theAx1, thePnt, theState)
-            RaiseIfFailed("GetShapesOnPlaneWithLocationIDs", self.ShapesOp)
-            return aList
-
-        ## Find in \a theShape all sub-shapes of type \a theShapeType, situated relatively
-        #  the specified cylinder by the certain way, defined through \a theState parameter.
-        #  @param theShape Shape to find sub-shapes of.
-        #  @param theShapeType Type of sub-shapes to be retrieved (see ShapeType())
-        #  @param theAxis Vector (or line, or linear edge), specifying
-        #                 axis of the cylinder to find shapes on.
-        #  @param theRadius Radius of the cylinder to find shapes on.
-        #  @param theState The state of the sub-shapes to find (see GEOM::shape_state)
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return List of all found sub-shapes.
-        #
-        #  @ref swig_GetShapesOnCylinder "Example"
-        def GetShapesOnCylinder(self, theShape, theShapeType, theAxis, theRadius, theState, theName=None):
-            """
-            Find in theShape all sub-shapes of type theShapeType, situated relatively
-            the specified cylinder by the certain way, defined through theState parameter.
-
-            Parameters:
-                theShape Shape to find sub-shapes of.
-                theShapeType Type of sub-shapes to be retrieved (see geompy.ShapeType)
-                theAxis Vector (or line, or linear edge), specifying
-                        axis of the cylinder to find shapes on.
-                theRadius Radius of the cylinder to find shapes on.
-                theState The state of the sub-shapes to find (see GEOM::shape_state)
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                List of all found sub-shapes.
-            """
-            # Example: see GEOM_TestOthers.py
-            aList = self.ShapesOp.GetShapesOnCylinder(theShape, theShapeType, theAxis, theRadius, theState)
-            RaiseIfFailed("GetShapesOnCylinder", self.ShapesOp)
-            self._autoPublish(aList, theName, "shapeOnCylinder")
-            return aList
-
-        ## Find in \a theShape all sub-shapes of type \a theShapeType, situated relatively
-        #  the specified cylinder by the certain way, defined through \a theState parameter.
-        #  @param theShape Shape to find sub-shapes of.
-        #  @param theShapeType Type of sub-shapes to be retrieved (see ShapeType())
-        #  @param theAxis Vector (or line, or linear edge), specifying
-        #                 axis of the cylinder to find shapes on.
-        #  @param theRadius Radius of the cylinder to find shapes on.
-        #  @param theState The state of the sub-shapes to find (see GEOM::shape_state)
-        #
-        #  @return List of all found sub-shapes indices.
-        #
-        #  @ref swig_GetShapesOnCylinderIDs "Example"
-        def GetShapesOnCylinderIDs(self, theShape, theShapeType, theAxis, theRadius, theState):
-            """
-            Find in theShape all sub-shapes of type theShapeType, situated relatively
-            the specified cylinder by the certain way, defined through theState parameter.
-
-            Parameters:
-                theShape Shape to find sub-shapes of.
-                theShapeType Type of sub-shapes to be retrieved (see geompy.ShapeType)
-                theAxis Vector (or line, or linear edge), specifying
-                        axis of the cylinder to find shapes on.
-                theRadius Radius of the cylinder to find shapes on.
-                theState The state of the sub-shapes to find (see GEOM::shape_state)
-
-            Returns:
-                List of all found sub-shapes indices.
-            """
-            # Example: see GEOM_TestOthers.py
-            aList = self.ShapesOp.GetShapesOnCylinderIDs(theShape, theShapeType, theAxis, theRadius, theState)
-            RaiseIfFailed("GetShapesOnCylinderIDs", self.ShapesOp)
-            return aList
-
-        ## Find in \a theShape all sub-shapes of type \a theShapeType, situated relatively
-        #  the specified cylinder by the certain way, defined through \a theState parameter.
-        #  @param theShape Shape to find sub-shapes of.
-        #  @param theShapeType Type of sub-shapes to be retrieved (see ShapeType())
-        #  @param theAxis Vector (or line, or linear edge), specifying
-        #                 axis of the cylinder to find shapes on.
-        #  @param thePnt Point specifying location of the bottom of the cylinder.
-        #  @param theRadius Radius of the cylinder to find shapes on.
-        #  @param theState The state of the sub-shapes to find (see GEOM::shape_state)
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return List of all found sub-shapes.
-        #
-        #  @ref swig_GetShapesOnCylinderWithLocation "Example"
-        def GetShapesOnCylinderWithLocation(self, theShape, theShapeType, theAxis, thePnt, theRadius, theState, theName=None):
-            """
-            Find in theShape all sub-shapes of type theShapeType, situated relatively
-            the specified cylinder by the certain way, defined through theState parameter.
-
-            Parameters:
-                theShape Shape to find sub-shapes of.
-                theShapeType Type of sub-shapes to be retrieved (see geompy.ShapeType)
-                theAxis Vector (or line, or linear edge), specifying
-                        axis of the cylinder to find shapes on.
-                theRadius Radius of the cylinder to find shapes on.
-                theState The state of the sub-shapes to find (see GEOM::shape_state)
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                List of all found sub-shapes.
-            """
-            # Example: see GEOM_TestOthers.py
-            aList = self.ShapesOp.GetShapesOnCylinderWithLocation(theShape, theShapeType, theAxis, thePnt, theRadius, theState)
-            RaiseIfFailed("GetShapesOnCylinderWithLocation", self.ShapesOp)
-            self._autoPublish(aList, theName, "shapeOnCylinder")
-            return aList
-
-        ## Find in \a theShape all sub-shapes of type \a theShapeType, situated relatively
-        #  the specified cylinder by the certain way, defined through \a theState parameter.
-        #  @param theShape Shape to find sub-shapes of.
-        #  @param theShapeType Type of sub-shapes to be retrieved (see ShapeType())
-        #  @param theAxis Vector (or line, or linear edge), specifying
-        #                 axis of the cylinder to find shapes on.
-        #  @param thePnt Point specifying location of the bottom of the cylinder.
-        #  @param theRadius Radius of the cylinder to find shapes on.
-        #  @param theState The state of the sub-shapes to find (see GEOM::shape_state)
-        #
-        #  @return List of all found sub-shapes indices
-        #
-        #  @ref swig_GetShapesOnCylinderWithLocationIDs "Example"
-        def GetShapesOnCylinderWithLocationIDs(self, theShape, theShapeType, theAxis, thePnt, theRadius, theState):
-            """
-            Find in theShape all sub-shapes of type theShapeType, situated relatively
-            the specified cylinder by the certain way, defined through theState parameter.
-
-            Parameters:
-                theShape Shape to find sub-shapes of.
-                theShapeType Type of sub-shapes to be retrieved (see geompy.ShapeType)
-                theAxis Vector (or line, or linear edge), specifying
-                        axis of the cylinder to find shapes on.
-                theRadius Radius of the cylinder to find shapes on.
-                theState The state of the sub-shapes to find (see GEOM::shape_state)
-
-            Returns:
-                List of all found sub-shapes indices.            
-            """
-            # Example: see GEOM_TestOthers.py
-            aList = self.ShapesOp.GetShapesOnCylinderWithLocationIDs(theShape, theShapeType, theAxis, thePnt, theRadius, theState)
-            RaiseIfFailed("GetShapesOnCylinderWithLocationIDs", self.ShapesOp)
-            return aList
-
-        ## Find in \a theShape all sub-shapes of type \a theShapeType, situated relatively
-        #  the specified sphere by the certain way, defined through \a theState parameter.
-        #  @param theShape Shape to find sub-shapes of.
-        #  @param theShapeType Type of sub-shapes to be retrieved (see ShapeType())
-        #  @param theCenter Point, specifying center of the sphere to find shapes on.
-        #  @param theRadius Radius of the sphere to find shapes on.
-        #  @param theState The state of the sub-shapes to find (see GEOM::shape_state)
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return List of all found sub-shapes.
-        #
-        #  @ref swig_GetShapesOnSphere "Example"
-        def GetShapesOnSphere(self, theShape, theShapeType, theCenter, theRadius, theState, theName=None):
-            """
-            Find in theShape all sub-shapes of type theShapeType, situated relatively
-            the specified sphere by the certain way, defined through theState parameter.
-
-            Parameters:
-                theShape Shape to find sub-shapes of.
-                theShapeType Type of sub-shapes to be retrieved (see geompy.ShapeType)
-                theCenter Point, specifying center of the sphere to find shapes on.
-                theRadius Radius of the sphere to find shapes on.
-                theState The state of the sub-shapes to find (see GEOM::shape_state)
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                List of all found sub-shapes.
-            """
-            # Example: see GEOM_TestOthers.py
-            aList = self.ShapesOp.GetShapesOnSphere(theShape, theShapeType, theCenter, theRadius, theState)
-            RaiseIfFailed("GetShapesOnSphere", self.ShapesOp)
-            self._autoPublish(aList, theName, "shapeOnSphere")
-            return aList
-
-        ## Find in \a theShape all sub-shapes of type \a theShapeType, situated relatively
-        #  the specified sphere by the certain way, defined through \a theState parameter.
-        #  @param theShape Shape to find sub-shapes of.
-        #  @param theShapeType Type of sub-shapes to be retrieved (see ShapeType())
-        #  @param theCenter Point, specifying center of the sphere to find shapes on.
-        #  @param theRadius Radius of the sphere to find shapes on.
-        #  @param theState The state of the sub-shapes to find (see GEOM::shape_state)
-        #
-        #  @return List of all found sub-shapes indices.
-        #
-        #  @ref swig_GetShapesOnSphereIDs "Example"
-        def GetShapesOnSphereIDs(self, theShape, theShapeType, theCenter, theRadius, theState):
-            """
-            Find in theShape all sub-shapes of type theShapeType, situated relatively
-            the specified sphere by the certain way, defined through theState parameter.
-
-            Parameters:
-                theShape Shape to find sub-shapes of.
-                theShapeType Type of sub-shapes to be retrieved (see geompy.ShapeType)
-                theCenter Point, specifying center of the sphere to find shapes on.
-                theRadius Radius of the sphere to find shapes on.
-                theState The state of the sub-shapes to find (see GEOM::shape_state)
-
-            Returns:
-                List of all found sub-shapes indices.
-            """
-            # Example: see GEOM_TestOthers.py
-            aList = self.ShapesOp.GetShapesOnSphereIDs(theShape, theShapeType, theCenter, theRadius, theState)
-            RaiseIfFailed("GetShapesOnSphereIDs", self.ShapesOp)
-            return aList
-
-        ## Find in \a theShape all sub-shapes of type \a theShapeType, situated relatively
-        #  the specified quadrangle by the certain way, defined through \a theState parameter.
-        #  @param theShape Shape to find sub-shapes of.
-        #  @param theShapeType Type of sub-shapes to be retrieved (see ShapeType())
-        #  @param theTopLeftPoint Point, specifying top left corner of a quadrangle
-        #  @param theTopRigthPoint Point, specifying top right corner of a quadrangle
-        #  @param theBottomLeftPoint Point, specifying bottom left corner of a quadrangle
-        #  @param theBottomRigthPoint Point, specifying bottom right corner of a quadrangle
-        #  @param theState The state of the sub-shapes to find (see GEOM::shape_state)
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return List of all found sub-shapes.
-        #
-        #  @ref swig_GetShapesOnQuadrangle "Example"
-        def GetShapesOnQuadrangle(self, theShape, theShapeType,
-                                  theTopLeftPoint, theTopRigthPoint,
-                                  theBottomLeftPoint, theBottomRigthPoint, theState, theName=None):
-            """
-            Find in theShape all sub-shapes of type theShapeType, situated relatively
-            the specified quadrangle by the certain way, defined through theState parameter.
-
-            Parameters:
-                theShape Shape to find sub-shapes of.
-                theShapeType Type of sub-shapes to be retrieved (see geompy.ShapeType)
-                theTopLeftPoint Point, specifying top left corner of a quadrangle
-                theTopRigthPoint Point, specifying top right corner of a quadrangle
-                theBottomLeftPoint Point, specifying bottom left corner of a quadrangle
-                theBottomRigthPoint Point, specifying bottom right corner of a quadrangle
-                theState The state of the sub-shapes to find (see GEOM::shape_state)
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                List of all found sub-shapes.
-            """
-            # Example: see GEOM_TestOthers.py
-            aList = self.ShapesOp.GetShapesOnQuadrangle(theShape, theShapeType,
-                                                        theTopLeftPoint, theTopRigthPoint,
-                                                        theBottomLeftPoint, theBottomRigthPoint, theState)
-            RaiseIfFailed("GetShapesOnQuadrangle", self.ShapesOp)
-            self._autoPublish(aList, theName, "shapeOnQuadrangle")
-            return aList
-
-        ## Find in \a theShape all sub-shapes of type \a theShapeType, situated relatively
-        #  the specified quadrangle by the certain way, defined through \a theState parameter.
-        #  @param theShape Shape to find sub-shapes of.
-        #  @param theShapeType Type of sub-shapes to be retrieved (see ShapeType())
-        #  @param theTopLeftPoint Point, specifying top left corner of a quadrangle
-        #  @param theTopRigthPoint Point, specifying top right corner of a quadrangle
-        #  @param theBottomLeftPoint Point, specifying bottom left corner of a quadrangle
-        #  @param theBottomRigthPoint Point, specifying bottom right corner of a quadrangle
-        #  @param theState The state of the sub-shapes to find (see GEOM::shape_state)
-        #
-        #  @return List of all found sub-shapes indices.
-        #
-        #  @ref swig_GetShapesOnQuadrangleIDs "Example"
-        def GetShapesOnQuadrangleIDs(self, theShape, theShapeType,
-                                     theTopLeftPoint, theTopRigthPoint,
-                                     theBottomLeftPoint, theBottomRigthPoint, theState):
-            """
-            Find in theShape all sub-shapes of type theShapeType, situated relatively
-            the specified quadrangle by the certain way, defined through theState parameter.
-
-            Parameters:
-                theShape Shape to find sub-shapes of.
-                theShapeType Type of sub-shapes to be retrieved (see geompy.ShapeType)
-                theTopLeftPoint Point, specifying top left corner of a quadrangle
-                theTopRigthPoint Point, specifying top right corner of a quadrangle
-                theBottomLeftPoint Point, specifying bottom left corner of a quadrangle
-                theBottomRigthPoint Point, specifying bottom right corner of a quadrangle
-                theState The state of the sub-shapes to find (see GEOM::shape_state)
-
-            Returns:
-                List of all found sub-shapes indices.
-            """
-
-            # Example: see GEOM_TestOthers.py
-            aList = self.ShapesOp.GetShapesOnQuadrangleIDs(theShape, theShapeType,
-                                                           theTopLeftPoint, theTopRigthPoint,
-                                                           theBottomLeftPoint, theBottomRigthPoint, theState)
-            RaiseIfFailed("GetShapesOnQuadrangleIDs", self.ShapesOp)
-            return aList
-
-        ## Find in \a theShape all sub-shapes of type \a theShapeType, situated relatively
-        #  the specified \a theBox by the certain way, defined through \a theState parameter.
-        #  @param theBox Shape for relative comparing.
-        #  @param theShape Shape to find sub-shapes of.
-        #  @param theShapeType Type of sub-shapes to be retrieved (see ShapeType())
-        #  @param theState The state of the sub-shapes to find (see GEOM::shape_state)
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return List of all found sub-shapes.
-        #
-        #  @ref swig_GetShapesOnBox "Example"
-        def GetShapesOnBox(self, theBox, theShape, theShapeType, theState, theName=None):
-            """
-            Find in theShape all sub-shapes of type theShapeType, situated relatively
-            the specified theBox by the certain way, defined through theState parameter.
-
-            Parameters:
-                theBox Shape for relative comparing.
-                theShape Shape to find sub-shapes of.
-                theShapeType Type of sub-shapes to be retrieved (see geompy.ShapeType)
-                theState The state of the sub-shapes to find (see GEOM::shape_state)
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                List of all found sub-shapes.
-            """
-            # Example: see GEOM_TestOthers.py
-            aList = self.ShapesOp.GetShapesOnBox(theBox, theShape, theShapeType, theState)
-            RaiseIfFailed("GetShapesOnBox", self.ShapesOp)
-            self._autoPublish(aList, theName, "shapeOnBox")
-            return aList
-
-        ## Find in \a theShape all sub-shapes of type \a theShapeType, situated relatively
-        #  the specified \a theBox by the certain way, defined through \a theState parameter.
-        #  @param theBox Shape for relative comparing.
-        #  @param theShape Shape to find sub-shapes of.
-        #  @param theShapeType Type of sub-shapes to be retrieved (see ShapeType())
-        #  @param theState The state of the sub-shapes to find (see GEOM::shape_state)
-        #
-        #  @return List of all found sub-shapes indices.
-        #
-        #  @ref swig_GetShapesOnBoxIDs "Example"
-        def GetShapesOnBoxIDs(self, theBox, theShape, theShapeType, theState):
-            """
-            Find in theShape all sub-shapes of type theShapeType, situated relatively
-            the specified theBox by the certain way, defined through theState parameter.
-
-            Parameters:
-                theBox Shape for relative comparing.
-                theShape Shape to find sub-shapes of.
-                theShapeType Type of sub-shapes to be retrieved (see geompy.ShapeType)
-                theState The state of the sub-shapes to find (see GEOM::shape_state)
-
-            Returns:
-                List of all found sub-shapes indices.
-            """
-            # Example: see GEOM_TestOthers.py
-            aList = self.ShapesOp.GetShapesOnBoxIDs(theBox, theShape, theShapeType, theState)
-            RaiseIfFailed("GetShapesOnBoxIDs", self.ShapesOp)
-            return aList
-
-        ## Find in \a theShape all sub-shapes of type \a theShapeType,
-        #  situated relatively the specified \a theCheckShape by the
-        #  certain way, defined through \a theState parameter.
-        #  @param theCheckShape Shape for relative comparing. It must be a solid.
-        #  @param theShape Shape to find sub-shapes of.
-        #  @param theShapeType Type of sub-shapes to be retrieved (see ShapeType()) 
-        #  @param theState The state of the sub-shapes to find (see GEOM::shape_state)
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return List of all found sub-shapes.
-        #
-        #  @ref swig_GetShapesOnShape "Example"
-        def GetShapesOnShape(self, theCheckShape, theShape, theShapeType, theState, theName=None):
-            """
-            Find in theShape all sub-shapes of type theShapeType,
-            situated relatively the specified theCheckShape by the
-            certain way, defined through theState parameter.
-
-            Parameters:
-                theCheckShape Shape for relative comparing. It must be a solid.
-                theShape Shape to find sub-shapes of.
-                theShapeType Type of sub-shapes to be retrieved (see geompy.ShapeType)
-                theState The state of the sub-shapes to find (see GEOM::shape_state)
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                List of all found sub-shapes.
-            """
-            # Example: see GEOM_TestOthers.py
-            aList = self.ShapesOp.GetShapesOnShape(theCheckShape, theShape,
-                                                   theShapeType, theState)
-            RaiseIfFailed("GetShapesOnShape", self.ShapesOp)
-            self._autoPublish(aList, theName, "shapeOnShape")
-            return aList
-
-        ## Find in \a theShape all sub-shapes of type \a theShapeType,
-        #  situated relatively the specified \a theCheckShape by the
-        #  certain way, defined through \a theState parameter.
-        #  @param theCheckShape Shape for relative comparing. It must be a solid.
-        #  @param theShape Shape to find sub-shapes of.
-        #  @param theShapeType Type of sub-shapes to be retrieved (see ShapeType())
-        #  @param theState The state of the sub-shapes to find (see GEOM::shape_state)
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return All found sub-shapes as compound.
-        #
-        #  @ref swig_GetShapesOnShapeAsCompound "Example"
-        def GetShapesOnShapeAsCompound(self, theCheckShape, theShape, theShapeType, theState, theName=None):
-            """
-            Find in theShape all sub-shapes of type theShapeType,
-            situated relatively the specified theCheckShape by the
-            certain way, defined through theState parameter.
-
-            Parameters:
-                theCheckShape Shape for relative comparing. It must be a solid.
-                theShape Shape to find sub-shapes of.
-                theShapeType Type of sub-shapes to be retrieved (see geompy.ShapeType)
-                theState The state of the sub-shapes to find (see GEOM::shape_state)
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                All found sub-shapes as compound.
-            """
-            # Example: see GEOM_TestOthers.py
-            anObj = self.ShapesOp.GetShapesOnShapeAsCompound(theCheckShape, theShape,
-                                                             theShapeType, theState)
-            RaiseIfFailed("GetShapesOnShapeAsCompound", self.ShapesOp)
-            self._autoPublish(anObj, theName, "shapeOnShape")
-            return anObj
-
-        ## Find in \a theShape all sub-shapes of type \a theShapeType,
-        #  situated relatively the specified \a theCheckShape by the
-        #  certain way, defined through \a theState parameter.
-        #  @param theCheckShape Shape for relative comparing. It must be a solid.
-        #  @param theShape Shape to find sub-shapes of.
-        #  @param theShapeType Type of sub-shapes to be retrieved (see ShapeType())
-        #  @param theState The state of the sub-shapes to find (see GEOM::shape_state)
-        #
-        #  @return List of all found sub-shapes indices.
-        #
-        #  @ref swig_GetShapesOnShapeIDs "Example"
-        def GetShapesOnShapeIDs(self, theCheckShape, theShape, theShapeType, theState):
-            """
-            Find in theShape all sub-shapes of type theShapeType,
-            situated relatively the specified theCheckShape by the
-            certain way, defined through theState parameter.
-
-            Parameters:
-                theCheckShape Shape for relative comparing. It must be a solid.
-                theShape Shape to find sub-shapes of.
-                theShapeType Type of sub-shapes to be retrieved (see geompy.ShapeType)
-                theState The state of the sub-shapes to find (see GEOM::shape_state)
-
-            Returns:
-                List of all found sub-shapes indices.
-            """
-            # Example: see GEOM_TestOthers.py
-            aList = self.ShapesOp.GetShapesOnShapeIDs(theCheckShape, theShape,
-                                                      theShapeType, theState)
-            RaiseIfFailed("GetShapesOnShapeIDs", self.ShapesOp)
-            return aList
-
-        ## Get sub-shape(s) of theShapeWhere, which are
-        #  coincident with \a theShapeWhat or could be a part of it.
-        #  @param theShapeWhere Shape to find sub-shapes of.
-        #  @param theShapeWhat Shape, specifying what to find.
-        #  @param isNewImplementation implementation of GetInPlace functionality
-        #             (default = False, old alghorithm based on shape properties)
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return Group of all found sub-shapes or a single found sub-shape.
-        #
-        #  @note This function has a restriction on argument shapes.
-        #        If \a theShapeWhere has curved parts with significantly
-        #        outstanding centres (i.e. the mass centre of a part is closer to
-        #        \a theShapeWhat than to the part), such parts will not be found.
-        #        @image html get_in_place_lost_part.png
-        #
-        #  @ref swig_GetInPlace "Example"
-        def GetInPlace(self, theShapeWhere, theShapeWhat, isNewImplementation = False, theName=None):
-            """
-            Get sub-shape(s) of theShapeWhere, which are
-            coincident with  theShapeWhat or could be a part of it.
-
-            Parameters:
-                theShapeWhere Shape to find sub-shapes of.
-                theShapeWhat Shape, specifying what to find.
-                isNewImplementation Implementation of GetInPlace functionality
-                                    (default = False, old alghorithm based on shape properties)
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                Group of all found sub-shapes or a single found sub-shape.
-
-                
-            Note:
-                This function has a restriction on argument shapes.
-                If theShapeWhere has curved parts with significantly
-                outstanding centres (i.e. the mass centre of a part is closer to
-                theShapeWhat than to the part), such parts will not be found.
-            """
-            # Example: see GEOM_TestOthers.py
-            anObj = None
-            if isNewImplementation:
-                anObj = self.ShapesOp.GetInPlace(theShapeWhere, theShapeWhat)
-            else:
-                anObj = self.ShapesOp.GetInPlaceOld(theShapeWhere, theShapeWhat)
-                pass
-            RaiseIfFailed("GetInPlace", self.ShapesOp)
-            self._autoPublish(anObj, theName, "inplace")
-            return anObj
-
-        ## Get sub-shape(s) of \a theShapeWhere, which are
-        #  coincident with \a theShapeWhat or could be a part of it.
-        #
-        #  Implementation of this method is based on a saved history of an operation,
-        #  produced \a theShapeWhere. The \a theShapeWhat must be among this operation's
-        #  arguments (an argument shape or a sub-shape of an argument shape).
-        #  The operation could be the Partition or one of boolean operations,
-        #  performed on simple shapes (not on compounds).
-        #
-        #  @param theShapeWhere Shape to find sub-shapes of.
-        #  @param theShapeWhat Shape, specifying what to find (must be in the
-        #                      building history of the ShapeWhere).
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return Group of all found sub-shapes or a single found sub-shape.
-        #
-        #  @ref swig_GetInPlace "Example"
-        def GetInPlaceByHistory(self, theShapeWhere, theShapeWhat, theName=None):
-            """
-            Implementation of this method is based on a saved history of an operation,
-            produced theShapeWhere. The theShapeWhat must be among this operation's
-            arguments (an argument shape or a sub-shape of an argument shape).
-            The operation could be the Partition or one of boolean operations,
-            performed on simple shapes (not on compounds).
-
-            Parameters:
-                theShapeWhere Shape to find sub-shapes of.
-                theShapeWhat Shape, specifying what to find (must be in the
-                                building history of the ShapeWhere).
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                Group of all found sub-shapes or a single found sub-shape.
-            """
-            # Example: see GEOM_TestOthers.py
-            anObj = self.ShapesOp.GetInPlaceByHistory(theShapeWhere, theShapeWhat)
-            RaiseIfFailed("GetInPlaceByHistory", self.ShapesOp)
-            self._autoPublish(anObj, theName, "inplace")
-            return anObj
-
-        ## Get sub-shape of theShapeWhere, which is
-        #  equal to \a theShapeWhat.
-        #  @param theShapeWhere Shape to find sub-shape of.
-        #  @param theShapeWhat Shape, specifying what to find.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object for found sub-shape.
-        #
-        #  @ref swig_GetSame "Example"
-        def GetSame(self, theShapeWhere, theShapeWhat, theName=None):
-            """
-            Get sub-shape of theShapeWhere, which is
-            equal to theShapeWhat.
-
-            Parameters:
-                theShapeWhere Shape to find sub-shape of.
-                theShapeWhat Shape, specifying what to find.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object for found sub-shape.
-            """
-            anObj = self.ShapesOp.GetSame(theShapeWhere, theShapeWhat)
-            RaiseIfFailed("GetSame", self.ShapesOp)
-            self._autoPublish(anObj, theName, "sameShape")
-            return anObj
-
-
-        ## Get sub-shape indices of theShapeWhere, which is
-        #  equal to \a theShapeWhat.
-        #  @param theShapeWhere Shape to find sub-shape of.
-        #  @param theShapeWhat Shape, specifying what to find.
-        #  @return List of all found sub-shapes indices. 
-        #
-        #  @ref swig_GetSame "Example"
-        def GetSameIDs(self, theShapeWhere, theShapeWhat):
-            """
-            Get sub-shape indices of theShapeWhere, which is
-            equal to theShapeWhat.
-
-            Parameters:
-                theShapeWhere Shape to find sub-shape of.
-                theShapeWhat Shape, specifying what to find.
-
-            Returns:
-                List of all found sub-shapes indices.
-            """
-            anObj = self.ShapesOp.GetSameIDs(theShapeWhere, theShapeWhat)
-            RaiseIfFailed("GetSameIDs", self.ShapesOp)
-            return anObj
-
-
-        # end of l4_obtain
-        ## @}
-
-        ## @addtogroup l4_access
-        ## @{
-
-        ## Obtain a composite sub-shape of <VAR>aShape</VAR>, composed from sub-shapes
-        #  of aShape, selected by their unique IDs inside <VAR>aShape</VAR>
-        #  @param aShape Shape to get sub-shape of.
-        #  @param ListOfID List of sub-shapes indices.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return Found sub-shape.
-        #
-        #  @ref swig_all_decompose "Example"
-        def GetSubShape(self, aShape, ListOfID, theName=None):
-            """
-            Obtain a composite sub-shape of aShape, composed from sub-shapes
-            of aShape, selected by their unique IDs inside aShape
-
-            Parameters:
-                aShape Shape to get sub-shape of.
-                ListOfID List of sub-shapes indices.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                Found sub-shape.
-            """
-            # Example: see GEOM_TestAll.py
-            anObj = self.AddSubShape(aShape,ListOfID)
-            self._autoPublish(anObj, theName, "subshape")
-            return anObj
-
-        ## Obtain unique ID of sub-shape <VAR>aSubShape</VAR> inside <VAR>aShape</VAR>
-        #  of aShape, selected by their unique IDs inside <VAR>aShape</VAR>
-        #  @param aShape Shape to get sub-shape of.
-        #  @param aSubShape Sub-shapes of aShape.
-        #  @return ID of found sub-shape.
-        #
-        #  @ref swig_all_decompose "Example"
-        def GetSubShapeID(self, aShape, aSubShape):
-            """
-            Obtain unique ID of sub-shape aSubShape inside aShape
-            of aShape, selected by their unique IDs inside aShape
-
-            Parameters:
-               aShape Shape to get sub-shape of.
-               aSubShape Sub-shapes of aShape.
-
-            Returns:
-               ID of found sub-shape.
-            """
-            # Example: see GEOM_TestAll.py
-            anID = self.LocalOp.GetSubShapeIndex(aShape, aSubShape)
-            RaiseIfFailed("GetSubShapeIndex", self.LocalOp)
-            return anID
-            
-        ## Obtain unique IDs of sub-shapes <VAR>aSubShapes</VAR> inside <VAR>aShape</VAR>
-        #  This function is provided for performance purpose. The complexity is O(n) with n
-        #  the number of subobjects of aShape
-        #  @param aShape Shape to get sub-shape of.
-        #  @param aSubShapes Sub-shapes of aShape.
-        #  @return list of IDs of found sub-shapes.
-        #
-        #  @ref swig_all_decompose "Example"
-        def GetSubShapesIDs(self, aShape, aSubShapes):
-            """
-            Obtain a list of IDs of sub-shapes aSubShapes inside aShape
-            This function is provided for performance purpose. The complexity is O(n) with n
-            the number of subobjects of aShape
-
-            Parameters:
-               aShape Shape to get sub-shape of.
-               aSubShapes Sub-shapes of aShape.
-
-            Returns:
-               List of IDs of found sub-shape.
-            """
-            # Example: see GEOM_TestAll.py
-            anIDs = self.ShapesOp.GetSubShapesIndices(aShape, aSubShapes)
-            RaiseIfFailed("GetSubShapesIndices", self.ShapesOp)
-            return anIDs
-
-        # end of l4_access
-        ## @}
-
-        ## @addtogroup l4_decompose
-        ## @{
-
-        ## Get all sub-shapes and groups of \a theShape,
-        #  that were created already by any other methods.
-        #  @param theShape Any shape.
-        #  @param theGroupsOnly If this parameter is TRUE, only groups will be
-        #                       returned, else all found sub-shapes and groups.
-        #  @return List of existing sub-objects of \a theShape.
-        #
-        #  @ref swig_all_decompose "Example"
-        def GetExistingSubObjects(self, theShape, theGroupsOnly = False):
-            """
-            Get all sub-shapes and groups of theShape,
-            that were created already by any other methods.
-
-            Parameters:
-                theShape Any shape.
-                theGroupsOnly If this parameter is TRUE, only groups will be
-                                 returned, else all found sub-shapes and groups.
-
-            Returns:
-                List of existing sub-objects of theShape.
-            """
-            # Example: see GEOM_TestAll.py
-            ListObj = self.ShapesOp.GetExistingSubObjects(theShape, theGroupsOnly)
-            RaiseIfFailed("GetExistingSubObjects", self.ShapesOp)
-            return ListObj
-
-        ## Get all groups of \a theShape,
-        #  that were created already by any other methods.
-        #  @param theShape Any shape.
-        #  @return List of existing groups of \a theShape.
-        #
-        #  @ref swig_all_decompose "Example"
-        def GetGroups(self, theShape):
-            """
-            Get all groups of theShape,
-            that were created already by any other methods.
-
-            Parameters:
-                theShape Any shape.
-
-            Returns:
-                List of existing groups of theShape.
-            """
-            # Example: see GEOM_TestAll.py
-            ListObj = self.ShapesOp.GetExistingSubObjects(theShape, True)
-            RaiseIfFailed("GetExistingSubObjects", self.ShapesOp)
-            return ListObj
-
-        ## Explode a shape on sub-shapes of a given type.
-        #  If the shape itself matches the type, it is also returned.
-        #  @param aShape Shape to be exploded.
-        #  @param aType Type of sub-shapes to be retrieved (see ShapeType()) 
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return List of sub-shapes of type theShapeType, contained in theShape.
-        #
-        #  @ref swig_all_decompose "Example"
-        def SubShapeAll(self, aShape, aType, theName=None):
-            """
-            Explode a shape on sub-shapes of a given type.
-            If the shape itself matches the type, it is also returned.
-
-            Parameters:
-                aShape Shape to be exploded.
-                aType Type of sub-shapes to be retrieved (see geompy.ShapeType) 
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                List of sub-shapes of type theShapeType, contained in theShape.
-            """
-            # Example: see GEOM_TestAll.py
-            ListObj = self.ShapesOp.MakeAllSubShapes(aShape, EnumToLong( aType ), False)
-            RaiseIfFailed("SubShapeAll", self.ShapesOp)
-            self._autoPublish(ListObj, theName, "subshape")
-            return ListObj
-
-        ## Explode a shape on sub-shapes of a given type.
-        #  @param aShape Shape to be exploded.
-        #  @param aType Type of sub-shapes to be retrieved (see ShapeType())
-        #  @return List of IDs of sub-shapes.
-        #
-        #  @ref swig_all_decompose "Example"
-        def SubShapeAllIDs(self, aShape, aType):
-            """
-            Explode a shape on sub-shapes of a given type.
-
-            Parameters:
-                aShape Shape to be exploded (see geompy.ShapeType)
-                aType Type of sub-shapes to be retrieved (see geompy.ShapeType)
-
-            Returns:
-                List of IDs of sub-shapes.
-            """
-            ListObj = self.ShapesOp.GetAllSubShapesIDs(aShape, EnumToLong( aType ), False)
-            RaiseIfFailed("SubShapeAllIDs", self.ShapesOp)
-            return ListObj
-
-        ## Obtain a compound of sub-shapes of <VAR>aShape</VAR>,
-        #  selected by they indices in list of all sub-shapes of type <VAR>aType</VAR>.
-        #  Each index is in range [1, Nb_Sub-Shapes_Of_Given_Type]
-        #  @param aShape Shape to get sub-shape of.
-        #  @param ListOfInd List of sub-shapes indices.
-        #  @param aType Type of sub-shapes to be retrieved (see ShapeType())
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return A compound of sub-shapes of aShape.
-        #
-        #  @ref swig_all_decompose "Example"
-        def SubShape(self, aShape, aType, ListOfInd, theName=None):
-            """
-            Obtain a compound of sub-shapes of aShape,
-            selected by they indices in list of all sub-shapes of type aType.
-            Each index is in range [1, Nb_Sub-Shapes_Of_Given_Type]
-            
-            Parameters:
-                aShape Shape to get sub-shape of.
-                ListOfID List of sub-shapes indices.
-                aType Type of sub-shapes to be retrieved (see geompy.ShapeType)
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                A compound of sub-shapes of aShape.
-            """
-            # Example: see GEOM_TestAll.py
-            ListOfIDs = []
-            AllShapeIDsList = self.SubShapeAllIDs(aShape, EnumToLong( aType ))
-            for ind in ListOfInd:
-                ListOfIDs.append(AllShapeIDsList[ind - 1])
-            # note: auto-publishing is done in self.GetSubShape()
-            anObj = self.GetSubShape(aShape, ListOfIDs, theName)
-            return anObj
-
-        ## Explode a shape on sub-shapes of a given type.
-        #  Sub-shapes will be sorted by coordinates of their gravity centers.
-        #  If the shape itself matches the type, it is also returned.
-        #  @param aShape Shape to be exploded.
-        #  @param aType Type of sub-shapes to be retrieved (see ShapeType())
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return List of sub-shapes of type theShapeType, contained in theShape.
-        #
-        #  @ref swig_SubShapeAllSorted "Example"
-        def SubShapeAllSortedCentres(self, aShape, aType, theName=None):
-            """
-            Explode a shape on sub-shapes of a given type.
-            Sub-shapes will be sorted by coordinates of their gravity centers.
-            If the shape itself matches the type, it is also returned.
-
-            Parameters: 
-                aShape Shape to be exploded.
-                aType Type of sub-shapes to be retrieved (see geompy.ShapeType)
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns: 
-                List of sub-shapes of type theShapeType, contained in theShape.
-            """
-            # Example: see GEOM_TestAll.py
-            ListObj = self.ShapesOp.MakeAllSubShapes(aShape, EnumToLong( aType ), True)
-            RaiseIfFailed("SubShapeAllSortedCentres", self.ShapesOp)
-            self._autoPublish(ListObj, theName, "subshape")
-            return ListObj
-
-        ## Explode a shape on sub-shapes of a given type.
-        #  Sub-shapes will be sorted by coordinates of their gravity centers.
-        #  @param aShape Shape to be exploded.
-        #  @param aType Type of sub-shapes to be retrieved (see ShapeType())
-        #  @return List of IDs of sub-shapes.
-        #
-        #  @ref swig_all_decompose "Example"
-        def SubShapeAllSortedCentresIDs(self, aShape, aType):
-            """
-            Explode a shape on sub-shapes of a given type.
-            Sub-shapes will be sorted by coordinates of their gravity centers.
-
-            Parameters: 
-                aShape Shape to be exploded.
-                aType Type of sub-shapes to be retrieved (see geompy.ShapeType)
-
-            Returns: 
-                List of IDs of sub-shapes.
-            """
-            ListIDs = self.ShapesOp.GetAllSubShapesIDs(aShape, EnumToLong( aType ), True)
-            RaiseIfFailed("SubShapeAllIDs", self.ShapesOp)
-            return ListIDs
-
-        ## Obtain a compound of sub-shapes of <VAR>aShape</VAR>,
-        #  selected by they indices in sorted list of all sub-shapes of type <VAR>aType</VAR>.
-        #  Each index is in range [1, Nb_Sub-Shapes_Of_Given_Type]
-        #  @param aShape Shape to get sub-shape of.
-        #  @param ListOfInd List of sub-shapes indices.
-        #  @param aType Type of sub-shapes to be retrieved (see ShapeType())
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return A compound of sub-shapes of aShape.
-        #
-        #  @ref swig_all_decompose "Example"
-        def SubShapeSortedCentres(self, aShape, aType, ListOfInd, theName=None):
-            """
-            Obtain a compound of sub-shapes of aShape,
-            selected by they indices in sorted list of all sub-shapes of type aType.
-            Each index is in range [1, Nb_Sub-Shapes_Of_Given_Type]
-
-            Parameters:
-                aShape Shape to get sub-shape of.
-                ListOfID List of sub-shapes indices.
-                aType Type of sub-shapes to be retrieved (see geompy.ShapeType)
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                A compound of sub-shapes of aShape.
-            """
-            # Example: see GEOM_TestAll.py
-            ListOfIDs = []
-            AllShapeIDsList = self.SubShapeAllSortedCentresIDs(aShape, EnumToLong( aType ))
-            for ind in ListOfInd:
-                ListOfIDs.append(AllShapeIDsList[ind - 1])
-            # note: auto-publishing is done in self.GetSubShape()
-            anObj = self.GetSubShape(aShape, ListOfIDs, theName)
-            return anObj
-
-        ## Extract shapes (excluding the main shape) of given type.
-        #  @param aShape The shape.
-        #  @param aType  The shape type (see ShapeType())
-        #  @param isSorted Boolean flag to switch sorting on/off.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return List of sub-shapes of type aType, contained in aShape.
-        #
-        #  @ref swig_FilletChamfer "Example"
-        def ExtractShapes(self, aShape, aType, isSorted = False, theName=None):
-            """
-            Extract shapes (excluding the main shape) of given type.
-
-            Parameters:
-                aShape The shape.
-                aType  The shape type (see geompy.ShapeType)
-                isSorted Boolean flag to switch sorting on/off.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:     
-                List of sub-shapes of type aType, contained in aShape.
-            """
-            # Example: see GEOM_TestAll.py
-            ListObj = self.ShapesOp.ExtractSubShapes(aShape, EnumToLong( aType ), isSorted)
-            RaiseIfFailed("ExtractSubShapes", self.ShapesOp)
-            self._autoPublish(ListObj, theName, "subshape")
-            return ListObj
-
-        ## Get a set of sub-shapes defined by their unique IDs inside <VAR>aShape</VAR>
-        #  @param aShape Main shape.
-        #  @param anIDs List of unique IDs of sub-shapes inside <VAR>aShape</VAR>.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #  @return List of GEOM.GEOM_Object, corresponding to found sub-shapes.
-        #
-        #  @ref swig_all_decompose "Example"
-        def SubShapes(self, aShape, anIDs, theName=None):
-            """
-            Get a set of sub-shapes defined by their unique IDs inside theMainShape
-
-            Parameters:
-                aShape Main shape.
-                anIDs List of unique IDs of sub-shapes inside theMainShape.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:      
-                List of GEOM.GEOM_Object, corresponding to found sub-shapes.
-            """
-            # Example: see GEOM_TestAll.py
-            ListObj = self.ShapesOp.MakeSubShapes(aShape, anIDs)
-            RaiseIfFailed("SubShapes", self.ShapesOp)
-            self._autoPublish(ListObj, theName, "subshape")
-            return ListObj
-
-        # end of l4_decompose
-        ## @}
-
-        ## @addtogroup l4_decompose_d
-        ## @{
-
-        ## Deprecated method
-        #  It works like SubShapeAllSortedCentres(), but wrongly
-        #  defines centres of faces, shells and solids.
-        def SubShapeAllSorted(self, aShape, aType, theName=None):
-            """
-            Deprecated method
-            It works like geompy.SubShapeAllSortedCentres, but wrongly
-            defines centres of faces, shells and solids.
-            """
-            ListObj = self.ShapesOp.MakeExplode(aShape, EnumToLong( aType ), True)
-            RaiseIfFailed("MakeExplode", self.ShapesOp)
-            self._autoPublish(ListObj, theName, "subshape")
-            return ListObj
-
-        ## Deprecated method
-        #  It works like SubShapeAllSortedCentresIDs(), but wrongly
-        #  defines centres of faces, shells and solids.
-        def SubShapeAllSortedIDs(self, aShape, aType):
-            """
-            Deprecated method
-            It works like geompy.SubShapeAllSortedCentresIDs, but wrongly
-            defines centres of faces, shells and solids.
-            """
-            ListIDs = self.ShapesOp.SubShapeAllIDs(aShape, EnumToLong( aType ), True)
-            RaiseIfFailed("SubShapeAllIDs", self.ShapesOp)
-            return ListIDs
-
-        ## Deprecated method
-        #  It works like SubShapeSortedCentres(), but has a bug
-        #  (wrongly defines centres of faces, shells and solids).
-        def SubShapeSorted(self, aShape, aType, ListOfInd, theName=None):
-            """
-            Deprecated method
-            It works like geompy.SubShapeSortedCentres, but has a bug
-            (wrongly defines centres of faces, shells and solids).
-            """
-            ListOfIDs = []
-            AllShapeIDsList = self.SubShapeAllSortedIDs(aShape, EnumToLong( aType ))
-            for ind in ListOfInd:
-                ListOfIDs.append(AllShapeIDsList[ind - 1])
-            # note: auto-publishing is done in self.GetSubShape()
-            anObj = self.GetSubShape(aShape, ListOfIDs, theName)
-            return anObj
-
-        # end of l4_decompose_d
-        ## @}
-
-        ## @addtogroup l3_healing
-        ## @{
-
-        ## Apply a sequence of Shape Healing operators to the given object.
-        #  @param theShape Shape to be processed.
-        #  @param theOperators List of names of operators ("FixShape", "SplitClosedFaces", etc.).
-        #  @param theParameters List of names of parameters
-        #                    ("FixShape.Tolerance3d", "SplitClosedFaces.NbSplitPoints", etc.).
-        #  @param theValues List of values of parameters, in the same order
-        #                    as parameters are listed in <VAR>theParameters</VAR> list.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  <b> Operators and Parameters: </b> \n
-        #
-        #  * \b FixShape - corrects invalid shapes. \n
-        #  - \b FixShape.Tolerance3d - work tolerance for detection of the problems and correction of them. \n
-        #  - \b FixShape.MaxTolerance3d - maximal possible tolerance of the shape after correction. \n
-        #
-        #  * \b FixFaceSize - removes small faces, such as spots and strips.\n
-        #  - \b FixFaceSize.Tolerance - defines minimum possible face size. \n
-        #  - \b DropSmallEdges - removes edges, which merge with neighbouring edges. \n
-        #  - \b DropSmallEdges.Tolerance3d - defines minimum possible distance between two parallel edges.\n
-        #
-        #  * \b SplitAngle - splits faces based on conical surfaces, surfaces of revolution and cylindrical
-        #    surfaces in segments using a certain angle. \n
-        #  - \b SplitAngle.Angle - the central angle of the resulting segments (i.e. we obtain two segments
-        #    if Angle=180, four if Angle=90, etc). \n
-        #  - \b SplitAngle.MaxTolerance - maximum possible tolerance among the resulting segments.\n
-        #
-        #  * \b SplitClosedFaces - splits closed faces in segments.
-        #    The number of segments depends on the number of splitting points.\n
-        #  - \b SplitClosedFaces.NbSplitPoints - the number of splitting points.\n
-        #
-        #  * \b SplitContinuity - splits shapes to reduce continuities of curves and surfaces.\n
-        #  - \b SplitContinuity.Tolerance3d - 3D tolerance for correction of geometry.\n
-        #  - \b SplitContinuity.SurfaceContinuity - required continuity for surfaces.\n
-        #  - \b SplitContinuity.CurveContinuity - required continuity for curves.\n
-        #   This and the previous parameters can take the following values:\n
-        #   \b Parametric \b Continuity \n
-        #   \b C0 (Positional Continuity): curves are joined (the end positions of curves or surfaces
-        #   are coincidental. The curves or surfaces may still meet at an angle, giving rise to a sharp corner or edge).\n
-        #   \b C1 (Tangential Continuity): first derivatives are equal (the end vectors of curves or surfaces are parallel,
-        #    ruling out sharp edges).\n
-        #   \b C2 (Curvature Continuity): first and second derivatives are equal (the end vectors of curves or surfaces 
-        #       are of the same magnitude).\n
-        #   \b CN N-th derivatives are equal (both the direction and the magnitude of the Nth derivatives of curves
-        #    or surfaces (d/du C(u)) are the same at junction. \n
-        #   \b Geometric \b Continuity \n
-        #   \b G1: first derivatives are proportional at junction.\n
-        #   The curve tangents thus have the same direction, but not necessarily the same magnitude.
-        #      i.e., C1'(1) = (a,b,c) and C2'(0) = (k*a, k*b, k*c).\n
-        #   \b G2: first and second derivatives are proportional at junction.
-        #   As the names imply, geometric continuity requires the geometry to be continuous, while parametric
-        #    continuity requires that the underlying parameterization was continuous as well.
-        #   Parametric continuity of order n implies geometric continuity of order n, but not vice-versa.\n
-        #
-        #  * \b BsplineRestriction - converts curves and surfaces to Bsplines and processes them with the following parameters:\n
-        #  - \b BSplineRestriction.SurfaceMode - approximation of surfaces if restriction is necessary.\n
-        #  - \b BSplineRestriction.Curve3dMode - conversion of any 3D curve to BSpline and approximation.\n
-        #  - \b BSplineRestriction.Curve2dMode - conversion of any 2D curve to BSpline and approximation.\n
-        #  - \b BSplineRestriction.Tolerance3d - defines the possibility of surfaces and 3D curves approximation
-        #       with the specified parameters.\n
-        #  - \b BSplineRestriction.Tolerance2d - defines the possibility of surfaces and 2D curves approximation
-        #       with the specified parameters.\n
-        #  - \b BSplineRestriction.RequiredDegree - required degree of the resulting BSplines.\n
-        #  - \b BSplineRestriction.RequiredNbSegments - required maximum number of segments of resultant BSplines.\n
-        #  - \b BSplineRestriction.Continuity3d - continuity of the resulting surfaces and 3D curves.\n
-        #  - \b BSplineRestriction.Continuity2d - continuity of the resulting 2D curves.\n
-        #
-        #  * \b ToBezier - converts curves and surfaces of any type to Bezier curves and surfaces.\n
-        #  - \b ToBezier.SurfaceMode - if checked in, allows conversion of surfaces.\n
-        #  - \b ToBezier.Curve3dMode - if checked in, allows conversion of 3D curves.\n
-        #  - \b ToBezier.Curve2dMode - if checked in, allows conversion of 2D curves.\n
-        #  - \b ToBezier.MaxTolerance - defines tolerance for detection and correction of problems.\n
-        #
-        #  * \b SameParameter - fixes edges of 2D and 3D curves not having the same parameter.\n
-        #  - \b SameParameter.Tolerance3d - defines tolerance for fixing of edges.\n
-        #
-        #
-        #  @return New GEOM.GEOM_Object, containing processed shape.
-        #
-        #  \n @ref tui_shape_processing "Example"
-        def ProcessShape(self, theShape, theOperators, theParameters, theValues, theName=None):
-            """
-            Apply a sequence of Shape Healing operators to the given object.
-
-            Parameters:
-                theShape Shape to be processed.
-                theValues List of values of parameters, in the same order
-                          as parameters are listed in theParameters list.
-                theOperators List of names of operators ("FixShape", "SplitClosedFaces", etc.).
-                theParameters List of names of parameters
-                              ("FixShape.Tolerance3d", "SplitClosedFaces.NbSplitPoints", etc.).
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-                Operators and Parameters:
-
-                 * FixShape - corrects invalid shapes.
-                     * FixShape.Tolerance3d - work tolerance for detection of the problems and correction of them.
-                     * FixShape.MaxTolerance3d - maximal possible tolerance of the shape after correction.
-                 * FixFaceSize - removes small faces, such as spots and strips.
-                     * FixFaceSize.Tolerance - defines minimum possible face size.
-                     * DropSmallEdges - removes edges, which merge with neighbouring edges.
-                     * DropSmallEdges.Tolerance3d - defines minimum possible distance between two parallel edges.
-                 * SplitAngle - splits faces based on conical surfaces, surfaces of revolution and cylindrical surfaces
-                                in segments using a certain angle.
-                     * SplitAngle.Angle - the central angle of the resulting segments (i.e. we obtain two segments
-                                          if Angle=180, four if Angle=90, etc).
-                     * SplitAngle.MaxTolerance - maximum possible tolerance among the resulting segments.
-                 * SplitClosedFaces - splits closed faces in segments. The number of segments depends on the number of
-                                      splitting points.
-                     * SplitClosedFaces.NbSplitPoints - the number of splitting points.
-                 * SplitContinuity - splits shapes to reduce continuities of curves and surfaces.
-                     * SplitContinuity.Tolerance3d - 3D tolerance for correction of geometry.
-                     * SplitContinuity.SurfaceContinuity - required continuity for surfaces.
-                     * SplitContinuity.CurveContinuity - required continuity for curves.
-                       This and the previous parameters can take the following values:
-                       
-                       Parametric Continuity:
-                       C0 (Positional Continuity): curves are joined (the end positions of curves or surfaces are
-                                                   coincidental. The curves or surfaces may still meet at an angle,
-                                                   giving rise to a sharp corner or edge).
-                       C1 (Tangential Continuity): first derivatives are equal (the end vectors of curves or surfaces
-                                                   are parallel, ruling out sharp edges).
-                       C2 (Curvature Continuity): first and second derivatives are equal (the end vectors of curves
-                                                  or surfaces are of the same magnitude).
-                       CN N-th derivatives are equal (both the direction and the magnitude of the Nth derivatives of
-                          curves or surfaces (d/du C(u)) are the same at junction.
-                          
-                       Geometric Continuity:
-                       G1: first derivatives are proportional at junction.
-                           The curve tangents thus have the same direction, but not necessarily the same magnitude.
-                           i.e., C1'(1) = (a,b,c) and C2'(0) = (k*a, k*b, k*c).
-                       G2: first and second derivatives are proportional at junction. As the names imply,
-                           geometric continuity requires the geometry to be continuous, while parametric continuity requires
-                           that the underlying parameterization was continuous as well. Parametric continuity of order n implies
-                           geometric continuity of order n, but not vice-versa.
-                 * BsplineRestriction - converts curves and surfaces to Bsplines and processes them with the following parameters:
-                     * BSplineRestriction.SurfaceMode - approximation of surfaces if restriction is necessary.
-                     * BSplineRestriction.Curve3dMode - conversion of any 3D curve to BSpline and approximation.
-                     * BSplineRestriction.Curve2dMode - conversion of any 2D curve to BSpline and approximation.
-                     * BSplineRestriction.Tolerance3d - defines the possibility of surfaces and 3D curves approximation with
-                                                        the specified parameters.
-                     * BSplineRestriction.Tolerance2d - defines the possibility of surfaces and 2D curves approximation with
-                                                        the specified parameters.
-                     * BSplineRestriction.RequiredDegree - required degree of the resulting BSplines.
-                     * BSplineRestriction.RequiredNbSegments - required maximum number of segments of resultant BSplines.
-                     * BSplineRestriction.Continuity3d - continuity of the resulting surfaces and 3D curves.
-                     * BSplineRestriction.Continuity2d - continuity of the resulting 2D curves.
-                 * ToBezier - converts curves and surfaces of any type to Bezier curves and surfaces.
-                     * ToBezier.SurfaceMode - if checked in, allows conversion of surfaces.
-                     * ToBezier.Curve3dMode - if checked in, allows conversion of 3D curves.
-                     * ToBezier.Curve2dMode - if checked in, allows conversion of 2D curves.
-                     * ToBezier.MaxTolerance - defines tolerance for detection and correction of problems.
-                 * SameParameter - fixes edges of 2D and 3D curves not having the same parameter.
-                     * SameParameter.Tolerance3d - defines tolerance for fixing of edges.
-
-            Returns:
-                New GEOM.GEOM_Object, containing processed shape.
-
-            Note: For more information look through SALOME Geometry User's Guide->
-                  -> Introduction to Geometry-> Repairing Operations-> Shape Processing
-            """
-            # Example: see GEOM_TestHealing.py
-            theValues,Parameters = ParseList(theValues)
-            anObj = self.HealOp.ProcessShape(theShape, theOperators, theParameters, theValues)
-            # To avoid script failure in case of good argument shape
-            if self.HealOp.GetErrorCode() == "ShHealOper_NotError_msg":
-                return theShape
-            RaiseIfFailed("ProcessShape", self.HealOp)
-            for string in (theOperators + theParameters):
-                Parameters = ":" + Parameters
-                pass
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "healed")
-            return anObj
-
-        ## Remove faces from the given object (shape).
-        #  @param theObject Shape to be processed.
-        #  @param theFaces Indices of faces to be removed, if EMPTY then the method
-        #                  removes ALL faces of the given object.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing processed shape.
-        #
-        #  @ref tui_suppress_faces "Example"
-        def SuppressFaces(self, theObject, theFaces, theName=None):
-            """
-            Remove faces from the given object (shape).
-
-            Parameters:
-                theObject Shape to be processed.
-                theFaces Indices of faces to be removed, if EMPTY then the method
-                         removes ALL faces of the given object.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing processed shape.
-            """
-            # Example: see GEOM_TestHealing.py
-            anObj = self.HealOp.SuppressFaces(theObject, theFaces)
-            RaiseIfFailed("SuppressFaces", self.HealOp)
-            self._autoPublish(anObj, theName, "suppressFaces")
-            return anObj
-
-        ## Sewing of some shapes into single shape.
-        #  @param ListShape Shapes to be processed.
-        #  @param theTolerance Required tolerance value.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing processed shape.
-        #
-        #  @ref tui_sewing "Example"
-        def MakeSewing(self, ListShape, theTolerance, theName=None):
-            """
-            Sewing of some shapes into single shape.
-
-            Parameters:
-                ListShape Shapes to be processed.
-                theTolerance Required tolerance value.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing processed shape.
-            """
-            # Example: see GEOM_TestHealing.py
-            comp = self.MakeCompound(ListShape)
-            # note: auto-publishing is done in self.Sew()
-            anObj = self.Sew(comp, theTolerance, theName)
-            return anObj
-
-        ## Sewing of the given object.
-        #  @param theObject Shape to be processed.
-        #  @param theTolerance Required tolerance value.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing processed shape.
-        def Sew(self, theObject, theTolerance, theName=None):
-            """
-            Sewing of the given object.
-
-            Parameters:
-                theObject Shape to be processed.
-                theTolerance Required tolerance value.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing processed shape.
-            """
-            # Example: see MakeSewing() above
-            theTolerance,Parameters = ParseParameters(theTolerance)
-            anObj = self.HealOp.Sew(theObject, theTolerance)
-            RaiseIfFailed("Sew", self.HealOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "sewed")
-            return anObj
-
-        ## Remove internal wires and edges from the given object (face).
-        #  @param theObject Shape to be processed.
-        #  @param theWires Indices of wires to be removed, if EMPTY then the method
-        #                  removes ALL internal wires of the given object.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing processed shape.
-        #
-        #  @ref tui_suppress_internal_wires "Example"
-        def SuppressInternalWires(self, theObject, theWires, theName=None):
-            """
-            Remove internal wires and edges from the given object (face).
-
-            Parameters:
-                theObject Shape to be processed.
-                theWires Indices of wires to be removed, if EMPTY then the method
-                         removes ALL internal wires of the given object.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:                
-                New GEOM.GEOM_Object, containing processed shape.
-            """
-            # Example: see GEOM_TestHealing.py
-            anObj = self.HealOp.RemoveIntWires(theObject, theWires)
-            RaiseIfFailed("RemoveIntWires", self.HealOp)
-            self._autoPublish(anObj, theName, "suppressWires")
-            return anObj
-
-        ## Remove internal closed contours (holes) from the given object.
-        #  @param theObject Shape to be processed.
-        #  @param theWires Indices of wires to be removed, if EMPTY then the method
-        #                  removes ALL internal holes of the given object
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing processed shape.
-        #
-        #  @ref tui_suppress_holes "Example"
-        def SuppressHoles(self, theObject, theWires, theName=None):
-            """
-            Remove internal closed contours (holes) from the given object.
-
-            Parameters:
-                theObject Shape to be processed.
-                theWires Indices of wires to be removed, if EMPTY then the method
-                         removes ALL internal holes of the given object
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:    
-                New GEOM.GEOM_Object, containing processed shape.
-            """
-            # Example: see GEOM_TestHealing.py
-            anObj = self.HealOp.FillHoles(theObject, theWires)
-            RaiseIfFailed("FillHoles", self.HealOp)
-            self._autoPublish(anObj, theName, "suppressHoles")
-            return anObj
-
-        ## Close an open wire.
-        #  @param theObject Shape to be processed.
-        #  @param theWires Indexes of edge(s) and wire(s) to be closed within <VAR>theObject</VAR>'s shape,
-        #                  if [ ], then <VAR>theObject</VAR> itself is a wire.
-        #  @param isCommonVertex If True  : closure by creation of a common vertex,
-        #                        If False : closure by creation of an edge between ends.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing processed shape.
-        #
-        #  @ref tui_close_contour "Example"
-        def CloseContour(self,theObject, theWires, isCommonVertex, theName=None):
-            """
-            Close an open wire.
-
-            Parameters: 
-                theObject Shape to be processed.
-                theWires Indexes of edge(s) and wire(s) to be closed within theObject's shape,
-                         if [ ], then theObject itself is a wire.
-                isCommonVertex If True  : closure by creation of a common vertex,
-                               If False : closure by creation of an edge between ends.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:                      
-                New GEOM.GEOM_Object, containing processed shape. 
-            """
-            # Example: see GEOM_TestHealing.py
-            anObj = self.HealOp.CloseContour(theObject, theWires, isCommonVertex)
-            RaiseIfFailed("CloseContour", self.HealOp)
-            self._autoPublish(anObj, theName, "closeContour")
-            return anObj
-
-        ## Addition of a point to a given edge object.
-        #  @param theObject Shape to be processed.
-        #  @param theEdgeIndex Index of edge to be divided within theObject's shape,
-        #                      if -1, then theObject itself is the edge.
-        #  @param theValue Value of parameter on edge or length parameter,
-        #                  depending on \a isByParameter.
-        #  @param isByParameter If TRUE : \a theValue is treated as a curve parameter [0..1], \n
-        #                       if FALSE : \a theValue is treated as a length parameter [0..1]
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing processed shape.
-        #
-        #  @ref tui_add_point_on_edge "Example"
-        def DivideEdge(self, theObject, theEdgeIndex, theValue, isByParameter, theName=None):
-            """
-            Addition of a point to a given edge object.
-
-            Parameters: 
-                theObject Shape to be processed.
-                theEdgeIndex Index of edge to be divided within theObject's shape,
-                             if -1, then theObject itself is the edge.
-                theValue Value of parameter on edge or length parameter,
-                         depending on isByParameter.
-                isByParameter If TRUE :  theValue is treated as a curve parameter [0..1],
-                              if FALSE : theValue is treated as a length parameter [0..1]
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:  
-                New GEOM.GEOM_Object, containing processed shape.
-            """
-            # Example: see GEOM_TestHealing.py
-            theEdgeIndex,theValue,isByParameter,Parameters = ParseParameters(theEdgeIndex,theValue,isByParameter)
-            anObj = self.HealOp.DivideEdge(theObject, theEdgeIndex, theValue, isByParameter)
-            RaiseIfFailed("DivideEdge", self.HealOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "divideEdge")
-            return anObj
-
-        ## Suppress the vertices in the wire in case if adjacent edges are C1 continuous.
-        #  @param theWire Wire to minimize the number of C1 continuous edges in.
-        #  @param theVertices A list of vertices to suppress. If the list
-        #                     is empty, all vertices in a wire will be assumed.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object with modified wire.
-        #
-        #  @ref tui_fuse_collinear_edges "Example"
-        def FuseCollinearEdgesWithinWire(self, theWire, theVertices = [], theName=None):
-            """
-            Suppress the vertices in the wire in case if adjacent edges are C1 continuous.
-
-            Parameters: 
-                theWire Wire to minimize the number of C1 continuous edges in.
-                theVertices A list of vertices to suppress. If the list
-                            is empty, all vertices in a wire will be assumed.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:  
-                New GEOM.GEOM_Object with modified wire.
-            """
-            anObj = self.HealOp.FuseCollinearEdgesWithinWire(theWire, theVertices)
-            RaiseIfFailed("FuseCollinearEdgesWithinWire", self.HealOp)
-            self._autoPublish(anObj, theName, "fuseEdges")
-            return anObj
-
-        ## Change orientation of the given object. Updates given shape.
-        #  @param theObject Shape to be processed.
-        #  @return Updated <var>theObject</var>
-        #
-        #  @ref swig_todo "Example"
-        def ChangeOrientationShell(self,theObject):
-            """
-            Change orientation of the given object. Updates given shape.
-
-            Parameters: 
-                theObject Shape to be processed.
-
-            Returns:  
-                Updated theObject
-            """
-            theObject = self.HealOp.ChangeOrientation(theObject)
-            RaiseIfFailed("ChangeOrientation", self.HealOp)
-            pass
-
-        ## Change orientation of the given object.
-        #  @param theObject Shape to be processed.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing processed shape.
-        #
-        #  @ref swig_todo "Example"
-        def ChangeOrientationShellCopy(self, theObject, theName=None):
-            """
-            Change orientation of the given object.
-
-            Parameters:
-                theObject Shape to be processed.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:   
-                New GEOM.GEOM_Object, containing processed shape.
-            """
-            anObj = self.HealOp.ChangeOrientationCopy(theObject)
-            RaiseIfFailed("ChangeOrientationCopy", self.HealOp)
-            self._autoPublish(anObj, theName, "reversed")
-            return anObj
-
-        ## Try to limit tolerance of the given object by value \a theTolerance.
-        #  @param theObject Shape to be processed.
-        #  @param theTolerance Required tolerance value.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing processed shape.
-        #
-        #  @ref tui_limit_tolerance "Example"
-        def LimitTolerance(self, theObject, theTolerance = 1e-07, theName=None):
-            """
-            Try to limit tolerance of the given object by value theTolerance.
-
-            Parameters:
-                theObject Shape to be processed.
-                theTolerance Required tolerance value.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:   
-                New GEOM.GEOM_Object, containing processed shape.
-            """
-            anObj = self.HealOp.LimitTolerance(theObject, theTolerance)
-            RaiseIfFailed("LimitTolerance", self.HealOp)
-            self._autoPublish(anObj, theName, "limitTolerance")
-            return anObj
-
-        ## Get a list of wires (wrapped in GEOM.GEOM_Object-s),
-        #  that constitute a free boundary of the given shape.
-        #  @param theObject Shape to get free boundary of.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return [\a status, \a theClosedWires, \a theOpenWires]
-        #  \n \a status: FALSE, if an error(s) occured during the method execution.
-        #  \n \a theClosedWires: Closed wires on the free boundary of the given shape.
-        #  \n \a theOpenWires: Open wires on the free boundary of the given shape.
-        #
-        #  @ref tui_measurement_tools_page "Example"
-        def GetFreeBoundary(self, theObject, theName=None):
-            """
-            Get a list of wires (wrapped in GEOM.GEOM_Object-s),
-            that constitute a free boundary of the given shape.
-
-            Parameters:
-                theObject Shape to get free boundary of.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns: 
-                [status, theClosedWires, theOpenWires]
-                 status: FALSE, if an error(s) occured during the method execution.
-                 theClosedWires: Closed wires on the free boundary of the given shape.
-                 theOpenWires: Open wires on the free boundary of the given shape.
-            """
-            # Example: see GEOM_TestHealing.py
-            anObj = self.HealOp.GetFreeBoundary(theObject)
-            RaiseIfFailed("GetFreeBoundary", self.HealOp)
-            self._autoPublish(anObj[1], theName, "closedWire")
-            self._autoPublish(anObj[2], theName, "openWire")
-            return anObj
-
-        ## Replace coincident faces in theShape by one face.
-        #  @param theShape Initial shape.
-        #  @param theTolerance Maximum distance between faces, which can be considered as coincident.
-        #  @param doKeepNonSolids If FALSE, only solids will present in the result,
-        #                         otherwise all initial shapes.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing a copy of theShape without coincident faces.
-        #
-        #  @ref tui_glue_faces "Example"
-        def MakeGlueFaces(self, theShape, theTolerance, doKeepNonSolids=True, theName=None):
-            """
-            Replace coincident faces in theShape by one face.
-
-            Parameters:
-                theShape Initial shape.
-                theTolerance Maximum distance between faces, which can be considered as coincident.
-                doKeepNonSolids If FALSE, only solids will present in the result,
-                                otherwise all initial shapes.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing a copy of theShape without coincident faces.
-            """
-            # Example: see GEOM_Spanner.py
-            theTolerance,Parameters = ParseParameters(theTolerance)
-            anObj = self.ShapesOp.MakeGlueFaces(theShape, theTolerance, doKeepNonSolids)
-            if anObj is None:
-                raise RuntimeError, "MakeGlueFaces : " + self.ShapesOp.GetErrorCode()
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "glueFaces")
-            return anObj
-
-        ## Find coincident faces in theShape for possible gluing.
-        #  @param theShape Initial shape.
-        #  @param theTolerance Maximum distance between faces,
-        #                      which can be considered as coincident.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return GEOM.ListOfGO
-        #
-        #  @ref tui_glue_faces "Example"
-        def GetGlueFaces(self, theShape, theTolerance, theName=None):
-            """
-            Find coincident faces in theShape for possible gluing.
-
-            Parameters:
-                theShape Initial shape.
-                theTolerance Maximum distance between faces,
-                             which can be considered as coincident.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:                    
-                GEOM.ListOfGO
-            """
-            anObj = self.ShapesOp.GetGlueFaces(theShape, theTolerance)
-            RaiseIfFailed("GetGlueFaces", self.ShapesOp)
-            self._autoPublish(anObj, theName, "facesToGlue")
-            return anObj
-
-        ## Replace coincident faces in theShape by one face
-        #  in compliance with given list of faces
-        #  @param theShape Initial shape.
-        #  @param theTolerance Maximum distance between faces,
-        #                      which can be considered as coincident.
-        #  @param theFaces List of faces for gluing.
-        #  @param doKeepNonSolids If FALSE, only solids will present in the result,
-        #                         otherwise all initial shapes.
-        #  @param doGlueAllEdges If TRUE, all coincident edges of <VAR>theShape</VAR>
-        #                        will be glued, otherwise only the edges,
-        #                        belonging to <VAR>theFaces</VAR>.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing a copy of theShape
-        #          without some faces.
-        #
-        #  @ref tui_glue_faces "Example"
-        def MakeGlueFacesByList(self, theShape, theTolerance, theFaces,
-                                doKeepNonSolids=True, doGlueAllEdges=True, theName=None):
-            """
-            Replace coincident faces in theShape by one face
-            in compliance with given list of faces
-
-            Parameters:
-                theShape Initial shape.
-                theTolerance Maximum distance between faces,
-                             which can be considered as coincident.
-                theFaces List of faces for gluing.
-                doKeepNonSolids If FALSE, only solids will present in the result,
-                                otherwise all initial shapes.
-                doGlueAllEdges If TRUE, all coincident edges of theShape
-                               will be glued, otherwise only the edges,
-                               belonging to theFaces.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing a copy of theShape
-                    without some faces.
-            """
-            anObj = self.ShapesOp.MakeGlueFacesByList(theShape, theTolerance, theFaces,
-                                                      doKeepNonSolids, doGlueAllEdges)
-            if anObj is None:
-                raise RuntimeError, "MakeGlueFacesByList : " + self.ShapesOp.GetErrorCode()
-            self._autoPublish(anObj, theName, "glueFaces")
-            return anObj
-
-        ## Replace coincident edges in theShape by one edge.
-        #  @param theShape Initial shape.
-        #  @param theTolerance Maximum distance between edges, which can be considered as coincident.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing a copy of theShape without coincident edges.
-        #
-        #  @ref tui_glue_edges "Example"
-        def MakeGlueEdges(self, theShape, theTolerance, theName=None):
-            """
-            Replace coincident edges in theShape by one edge.
-
-            Parameters:
-                theShape Initial shape.
-                theTolerance Maximum distance between edges, which can be considered as coincident.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:    
-                New GEOM.GEOM_Object, containing a copy of theShape without coincident edges.
-            """
-            theTolerance,Parameters = ParseParameters(theTolerance)
-            anObj = self.ShapesOp.MakeGlueEdges(theShape, theTolerance)
-            if anObj is None:
-                raise RuntimeError, "MakeGlueEdges : " + self.ShapesOp.GetErrorCode()
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "glueEdges")
-            return anObj
-
-        ## Find coincident edges in theShape for possible gluing.
-        #  @param theShape Initial shape.
-        #  @param theTolerance Maximum distance between edges,
-        #                      which can be considered as coincident.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return GEOM.ListOfGO
-        #
-        #  @ref tui_glue_edges "Example"
-        def GetGlueEdges(self, theShape, theTolerance, theName=None):
-            """
-            Find coincident edges in theShape for possible gluing.
-
-            Parameters:
-                theShape Initial shape.
-                theTolerance Maximum distance between edges,
-                             which can be considered as coincident.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:                         
-                GEOM.ListOfGO
-            """
-            anObj = self.ShapesOp.GetGlueEdges(theShape, theTolerance)
-            RaiseIfFailed("GetGlueEdges", self.ShapesOp)
-            self._autoPublish(anObj, theName, "edgesToGlue")
-            return anObj
-
-        ## Replace coincident edges in theShape by one edge
-        #  in compliance with given list of edges.
-        #  @param theShape Initial shape.
-        #  @param theTolerance Maximum distance between edges,
-        #                      which can be considered as coincident.
-        #  @param theEdges List of edges for gluing.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing a copy of theShape
-        #          without some edges.
-        #
-        #  @ref tui_glue_edges "Example"
-        def MakeGlueEdgesByList(self, theShape, theTolerance, theEdges, theName=None):
-            """
-            Replace coincident edges in theShape by one edge
-            in compliance with given list of edges.
-
-            Parameters:
-                theShape Initial shape.
-                theTolerance Maximum distance between edges,
-                             which can be considered as coincident.
-                theEdges List of edges for gluing.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:  
-                New GEOM.GEOM_Object, containing a copy of theShape
-                without some edges.
-            """
-            anObj = self.ShapesOp.MakeGlueEdgesByList(theShape, theTolerance, theEdges)
-            if anObj is None:
-                raise RuntimeError, "MakeGlueEdgesByList : " + self.ShapesOp.GetErrorCode()
-            self._autoPublish(anObj, theName, "glueEdges")
-            return anObj
-
-        # end of l3_healing
-        ## @}
-
-        ## @addtogroup l3_boolean Boolean Operations
-        ## @{
-
-        # -----------------------------------------------------------------------------
-        # Boolean (Common, Cut, Fuse, Section)
-        # -----------------------------------------------------------------------------
-
-        ## Perform one of boolean operations on two given shapes.
-        #  @param theShape1 First argument for boolean operation.
-        #  @param theShape2 Second argument for boolean operation.
-        #  @param theOperation Indicates the operation to be done:\n
-        #                      1 - Common, 2 - Cut, 3 - Fuse, 4 - Section.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the result shape.
-        #
-        #  @ref tui_fuse "Example"
-        def MakeBoolean(self, theShape1, theShape2, theOperation, theName=None):
-            """
-            Perform one of boolean operations on two given shapes.
-
-            Parameters: 
-                theShape1 First argument for boolean operation.
-                theShape2 Second argument for boolean operation.
-                theOperation Indicates the operation to be done:
-                             1 - Common, 2 - Cut, 3 - Fuse, 4 - Section.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:   
-                New GEOM.GEOM_Object, containing the result shape.
-            """
-            # Example: see GEOM_TestAll.py
-            anObj = self.BoolOp.MakeBoolean(theShape1, theShape2, theOperation)
-            RaiseIfFailed("MakeBoolean", self.BoolOp)
-            def_names = { 1: "common", 2: "cut", 3: "fuse", 4: "section" }
-            self._autoPublish(anObj, theName, def_names[theOperation])
-            return anObj
-
-        ## Perform Common boolean operation on two given shapes.
-        #  @param theShape1 First argument for boolean operation.
-        #  @param theShape2 Second argument for boolean operation.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the result shape.
-        #
-        #  @ref tui_common "Example 1"
-        #  \n @ref swig_MakeCommon "Example 2"
-        def MakeCommon(self, theShape1, theShape2, theName=None):
-            """
-            Perform Common boolean operation on two given shapes.
-
-            Parameters: 
-                theShape1 First argument for boolean operation.
-                theShape2 Second argument for boolean operation.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:   
-                New GEOM.GEOM_Object, containing the result shape.
-            """
-            # Example: see GEOM_TestOthers.py
-            # note: auto-publishing is done in self.MakeBoolean()
-            return self.MakeBoolean(theShape1, theShape2, 1, theName)
-
-        ## Perform Cut boolean operation on two given shapes.
-        #  @param theShape1 First argument for boolean operation.
-        #  @param theShape2 Second argument for boolean operation.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the result shape.
-        #
-        #  @ref tui_cut "Example 1"
-        #  \n @ref swig_MakeCommon "Example 2"
-        def MakeCut(self, theShape1, theShape2, theName=None):
-            """
-            Perform Cut boolean operation on two given shapes.
-
-            Parameters: 
-                theShape1 First argument for boolean operation.
-                theShape2 Second argument for boolean operation.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:   
-                New GEOM.GEOM_Object, containing the result shape.
-            
-            """
-            # Example: see GEOM_TestOthers.py
-            # note: auto-publishing is done in self.MakeBoolean()
-            return self.MakeBoolean(theShape1, theShape2, 2, theName)
-
-        ## Perform Fuse boolean operation on two given shapes.
-        #  @param theShape1 First argument for boolean operation.
-        #  @param theShape2 Second argument for boolean operation.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the result shape.
-        #
-        #  @ref tui_fuse "Example 1"
-        #  \n @ref swig_MakeCommon "Example 2"
-        def MakeFuse(self, theShape1, theShape2, theName=None):
-            """
-            Perform Fuse boolean operation on two given shapes.
-
-            Parameters: 
-                theShape1 First argument for boolean operation.
-                theShape2 Second argument for boolean operation.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:   
-                New GEOM.GEOM_Object, containing the result shape.
-            
-            """
-            # Example: see GEOM_TestOthers.py
-            # note: auto-publishing is done in self.MakeBoolean()
-            return self.MakeBoolean(theShape1, theShape2, 3, theName)
-
-        ## Perform Section boolean operation on two given shapes.
-        #  @param theShape1 First argument for boolean operation.
-        #  @param theShape2 Second argument for boolean operation.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the result shape.
-        #
-        #  @ref tui_section "Example 1"
-        #  \n @ref swig_MakeCommon "Example 2"
-        def MakeSection(self, theShape1, theShape2, theName=None):
-            """
-            Perform Section boolean operation on two given shapes.
-
-            Parameters: 
-                theShape1 First argument for boolean operation.
-                theShape2 Second argument for boolean operation.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:   
-                New GEOM.GEOM_Object, containing the result shape.
-            
-            """
-            # Example: see GEOM_TestOthers.py
-            # note: auto-publishing is done in self.MakeBoolean()
-            return self.MakeBoolean(theShape1, theShape2, 4, theName)
-
-        # end of l3_boolean
-        ## @}
-
-        ## @addtogroup l3_basic_op
-        ## @{
-
-        ## Perform partition operation.
-        #  @param ListShapes Shapes to be intersected.
-        #  @param ListTools Shapes to intersect theShapes.
-        #  @param Limit Type of resulting shapes (see ShapeType()).\n
-        #         If this parameter is set to -1 ("Auto"), most appropriate shape limit
-        #         type will be detected automatically.
-        #  @param KeepNonlimitShapes if this parameter == 0, then only shapes of
-        #                             target type (equal to Limit) are kept in the result,
-        #                             else standalone shapes of lower dimension
-        #                             are kept also (if they exist).
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @note Each compound from ListShapes and ListTools will be exploded
-        #        in order to avoid possible intersection between shapes from this compound.
-        #
-        #  After implementation new version of PartitionAlgo (October 2006)
-        #  other parameters are ignored by current functionality. They are kept
-        #  in this function only for support old versions.
-        #      @param ListKeepInside Shapes, outside which the results will be deleted.
-        #         Each shape from theKeepInside must belong to theShapes also.
-        #      @param ListRemoveInside Shapes, inside which the results will be deleted.
-        #         Each shape from theRemoveInside must belong to theShapes also.
-        #      @param RemoveWebs If TRUE, perform Glue 3D algorithm.
-        #      @param ListMaterials Material indices for each shape. Make sence,
-        #         only if theRemoveWebs is TRUE.
-        #
-        #  @return New GEOM.GEOM_Object, containing the result shapes.
-        #
-        #  @ref tui_partition "Example"
-        def MakePartition(self, ListShapes, ListTools=[], ListKeepInside=[], ListRemoveInside=[],
-                          Limit=ShapeType["AUTO"], RemoveWebs=0, ListMaterials=[],
-                          KeepNonlimitShapes=0, theName=None):
-            """
-            Perform partition operation.
-
-            Parameters: 
-                ListShapes Shapes to be intersected.
-                ListTools Shapes to intersect theShapes.
-                Limit Type of resulting shapes (see geompy.ShapeType)
-                      If this parameter is set to -1 ("Auto"), most appropriate shape limit
-                      type will be detected automatically.
-                KeepNonlimitShapes if this parameter == 0, then only shapes of
-                                    target type (equal to Limit) are kept in the result,
-                                    else standalone shapes of lower dimension
-                                    are kept also (if they exist).
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-            Note:
-                    Each compound from ListShapes and ListTools will be exploded
-                    in order to avoid possible intersection between shapes from
-                    this compound.
-                    
-            After implementation new version of PartitionAlgo (October 2006) other
-            parameters are ignored by current functionality. They are kept in this
-            function only for support old versions.
-            
-            Ignored parameters:
-                ListKeepInside Shapes, outside which the results will be deleted.
-                               Each shape from theKeepInside must belong to theShapes also.
-                ListRemoveInside Shapes, inside which the results will be deleted.
-                                 Each shape from theRemoveInside must belong to theShapes also.
-                RemoveWebs If TRUE, perform Glue 3D algorithm.
-                ListMaterials Material indices for each shape. Make sence, only if theRemoveWebs is TRUE.
-
-            Returns:   
-                New GEOM.GEOM_Object, containing the result shapes.
-            """
-            # Example: see GEOM_TestAll.py
-            if Limit == ShapeType["AUTO"]:
-                # automatic detection of the most appropriate shape limit type
-                lim = GEOM.SHAPE
-                for s in ListShapes: lim = min( lim, s.GetMaxShapeType() )
-                Limit = EnumToLong(lim)
-                pass
-            anObj = self.BoolOp.MakePartition(ListShapes, ListTools,
-                                              ListKeepInside, ListRemoveInside,
-                                              Limit, RemoveWebs, ListMaterials,
-                                              KeepNonlimitShapes);
-            RaiseIfFailed("MakePartition", self.BoolOp)
-            self._autoPublish(anObj, theName, "partition")
-            return anObj
-
-        ## Perform partition operation.
-        #  This method may be useful if it is needed to make a partition for
-        #  compound contains nonintersected shapes. Performance will be better
-        #  since intersection between shapes from compound is not performed.
-        #
-        #  Description of all parameters as in previous method MakePartition()
-        #
-        #  @note Passed compounds (via ListShapes or via ListTools)
-        #           have to consist of nonintersecting shapes.
-        #
-        #  @return New GEOM.GEOM_Object, containing the result shapes.
-        #
-        #  @ref swig_todo "Example"
-        def MakePartitionNonSelfIntersectedShape(self, ListShapes, ListTools=[],
-                                                 ListKeepInside=[], ListRemoveInside=[],
-                                                 Limit=ShapeType["AUTO"], RemoveWebs=0,
-                                                 ListMaterials=[], KeepNonlimitShapes=0,
-                                                 theName=None):
-            """
-            Perform partition operation.
-            This method may be useful if it is needed to make a partition for
-            compound contains nonintersected shapes. Performance will be better
-            since intersection between shapes from compound is not performed.
-
-            Parameters: 
-                Description of all parameters as in method geompy.MakePartition
-        
-            NOTE:
-                Passed compounds (via ListShapes or via ListTools)
-                have to consist of nonintersecting shapes.
-
-            Returns:   
-                New GEOM.GEOM_Object, containing the result shapes.
-            """
-            if Limit == ShapeType["AUTO"]:
-                # automatic detection of the most appropriate shape limit type
-                lim = GEOM.SHAPE
-                for s in ListShapes: lim = min( lim, s.GetMaxShapeType() )
-                Limit = EnumToLong(lim)
-                pass
-            anObj = self.BoolOp.MakePartitionNonSelfIntersectedShape(ListShapes, ListTools,
-                                                                     ListKeepInside, ListRemoveInside,
-                                                                     Limit, RemoveWebs, ListMaterials,
-                                                                     KeepNonlimitShapes);
-            RaiseIfFailed("MakePartitionNonSelfIntersectedShape", self.BoolOp)
-            self._autoPublish(anObj, theName, "partition")
-            return anObj
-
-        ## See method MakePartition() for more information.
-        #
-        #  @ref tui_partition "Example 1"
-        #  \n @ref swig_Partition "Example 2"
-        def Partition(self, ListShapes, ListTools=[], ListKeepInside=[], ListRemoveInside=[],
-                      Limit=ShapeType["AUTO"], RemoveWebs=0, ListMaterials=[],
-                      KeepNonlimitShapes=0, theName=None):
-            """
-            See method geompy.MakePartition for more information.
-            """
-            # Example: see GEOM_TestOthers.py
-            # note: auto-publishing is done in self.MakePartition()
-            anObj = self.MakePartition(ListShapes, ListTools,
-                                       ListKeepInside, ListRemoveInside,
-                                       Limit, RemoveWebs, ListMaterials,
-                                       KeepNonlimitShapes, theName);
-            return anObj
-
-        ## Perform partition of the Shape with the Plane
-        #  @param theShape Shape to be intersected.
-        #  @param thePlane Tool shape, to intersect theShape.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the result shape.
-        #
-        #  @ref tui_partition "Example"
-        def MakeHalfPartition(self, theShape, thePlane, theName=None):
-            """
-            Perform partition of the Shape with the Plane
-
-            Parameters: 
-                theShape Shape to be intersected.
-                thePlane Tool shape, to intersect theShape.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:  
-                New GEOM.GEOM_Object, containing the result shape.
-            """
-            # Example: see GEOM_TestAll.py
-            anObj = self.BoolOp.MakeHalfPartition(theShape, thePlane)
-            RaiseIfFailed("MakeHalfPartition", self.BoolOp)
-            self._autoPublish(anObj, theName, "partition")
-            return anObj
-
-        # end of l3_basic_op
-        ## @}
-
-        ## @addtogroup l3_transform
-        ## @{
-
-        ## Translate the given object along the vector, specified
-        #  by its end points.
-        #  @param theObject The object to be translated.
-        #  @param thePoint1 Start point of translation vector.
-        #  @param thePoint2 End point of translation vector.
-        #  @param theCopy Flag used to translate object itself or create a copy.
-        #  @return Translated @a theObject (GEOM.GEOM_Object) if @a theCopy flag is @c False (default) or
-        #  new GEOM.GEOM_Object, containing the translated object if @a theCopy flag is @c True.
-        def TranslateTwoPoints(self, theObject, thePoint1, thePoint2, theCopy=False):
-            """
-            Translate the given object along the vector, specified by its end points.
-
-            Parameters: 
-                theObject The object to be translated.
-                thePoint1 Start point of translation vector.
-                thePoint2 End point of translation vector.
-                theCopy Flag used to translate object itself or create a copy.
-
-            Returns: 
-                Translated theObject (GEOM.GEOM_Object) if theCopy flag is False (default) or
-                new GEOM.GEOM_Object, containing the translated object if theCopy flag is True.
-            """
-            if theCopy:
-                anObj = self.TrsfOp.TranslateTwoPointsCopy(theObject, thePoint1, thePoint2)
-            else:
-                anObj = self.TrsfOp.TranslateTwoPoints(theObject, thePoint1, thePoint2)
-            RaiseIfFailed("TranslateTwoPoints", self.TrsfOp)
-            return anObj
-
-        ## Translate the given object along the vector, specified
-        #  by its end points, creating its copy before the translation.
-        #  @param theObject The object to be translated.
-        #  @param thePoint1 Start point of translation vector.
-        #  @param thePoint2 End point of translation vector.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the translated object.
-        #
-        #  @ref tui_translation "Example 1"
-        #  \n @ref swig_MakeTranslationTwoPoints "Example 2"
-        def MakeTranslationTwoPoints(self, theObject, thePoint1, thePoint2, theName=None):
-            """
-            Translate the given object along the vector, specified
-            by its end points, creating its copy before the translation.
-
-            Parameters: 
-                theObject The object to be translated.
-                thePoint1 Start point of translation vector.
-                thePoint2 End point of translation vector.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:  
-                New GEOM.GEOM_Object, containing the translated object.
-            """
-            # Example: see GEOM_TestAll.py
-            anObj = self.TrsfOp.TranslateTwoPointsCopy(theObject, thePoint1, thePoint2)
-            RaiseIfFailed("TranslateTwoPointsCopy", self.TrsfOp)
-            self._autoPublish(anObj, theName, "translated")
-            return anObj
-
-        ## Translate the given object along the vector, specified by its components.
-        #  @param theObject The object to be translated.
-        #  @param theDX,theDY,theDZ Components of translation vector.
-        #  @param theCopy Flag used to translate object itself or create a copy.
-        #  @return Translated @a theObject (GEOM.GEOM_Object) if @a theCopy flag is @c False (default) or
-        #  new GEOM.GEOM_Object, containing the translated object if @a theCopy flag is @c True.
-        #
-        #  @ref tui_translation "Example"
-        def TranslateDXDYDZ(self, theObject, theDX, theDY, theDZ, theCopy=False):
-            """
-            Translate the given object along the vector, specified by its components.
-
-            Parameters: 
-                theObject The object to be translated.
-                theDX,theDY,theDZ Components of translation vector.
-                theCopy Flag used to translate object itself or create a copy.
-
-            Returns: 
-                Translated theObject (GEOM.GEOM_Object) if theCopy flag is False (default) or
-                new GEOM.GEOM_Object, containing the translated object if theCopy flag is True.
-            """
-            # Example: see GEOM_TestAll.py
-            theDX, theDY, theDZ, Parameters = ParseParameters(theDX, theDY, theDZ)
-            if theCopy:
-                anObj = self.TrsfOp.TranslateDXDYDZCopy(theObject, theDX, theDY, theDZ)
-            else:
-                anObj = self.TrsfOp.TranslateDXDYDZ(theObject, theDX, theDY, theDZ)
-            anObj.SetParameters(Parameters)
-            RaiseIfFailed("TranslateDXDYDZ", self.TrsfOp)
-            return anObj
-
-        ## Translate the given object along the vector, specified
-        #  by its components, creating its copy before the translation.
-        #  @param theObject The object to be translated.
-        #  @param theDX,theDY,theDZ Components of translation vector.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the translated object.
-        #
-        #  @ref tui_translation "Example"
-        def MakeTranslation(self,theObject, theDX, theDY, theDZ, theName=None):
-            """
-            Translate the given object along the vector, specified
-            by its components, creating its copy before the translation.
-
-            Parameters: 
-                theObject The object to be translated.
-                theDX,theDY,theDZ Components of translation vector.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns: 
-                New GEOM.GEOM_Object, containing the translated object.
-            """
-            # Example: see GEOM_TestAll.py
-            theDX, theDY, theDZ, Parameters = ParseParameters(theDX, theDY, theDZ)
-            anObj = self.TrsfOp.TranslateDXDYDZCopy(theObject, theDX, theDY, theDZ)
-            anObj.SetParameters(Parameters)
-            RaiseIfFailed("TranslateDXDYDZ", self.TrsfOp)
-            self._autoPublish(anObj, theName, "translated")
-            return anObj
-
-        ## Translate the given object along the given vector.
-        #  @param theObject The object to be translated.
-        #  @param theVector The translation vector.
-        #  @param theCopy Flag used to translate object itself or create a copy.
-        #  @return Translated @a theObject (GEOM.GEOM_Object) if @a theCopy flag is @c False (default) or
-        #  new GEOM.GEOM_Object, containing the translated object if @a theCopy flag is @c True.
-        def TranslateVector(self, theObject, theVector, theCopy=False):
-            """
-            Translate the given object along the given vector.
-
-            Parameters: 
-                theObject The object to be translated.
-                theVector The translation vector.
-                theCopy Flag used to translate object itself or create a copy.
-
-            Returns: 
-                Translated theObject (GEOM.GEOM_Object) if theCopy flag is False (default) or
-                new GEOM.GEOM_Object, containing the translated object if theCopy flag is True.
-            """
-            if theCopy:
-                anObj = self.TrsfOp.TranslateVectorCopy(theObject, theVector)
-            else:
-                anObj = self.TrsfOp.TranslateVector(theObject, theVector)
-            RaiseIfFailed("TranslateVector", self.TrsfOp)
-            return anObj
-
-        ## Translate the given object along the given vector,
-        #  creating its copy before the translation.
-        #  @param theObject The object to be translated.
-        #  @param theVector The translation vector.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the translated object.
-        #
-        #  @ref tui_translation "Example"
-        def MakeTranslationVector(self, theObject, theVector, theName=None):
-            """
-            Translate the given object along the given vector,
-            creating its copy before the translation.
-
-            Parameters: 
-                theObject The object to be translated.
-                theVector The translation vector.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns: 
-                New GEOM.GEOM_Object, containing the translated object.
-            """
-            # Example: see GEOM_TestAll.py
-            anObj = self.TrsfOp.TranslateVectorCopy(theObject, theVector)
-            RaiseIfFailed("TranslateVectorCopy", self.TrsfOp)
-            self._autoPublish(anObj, theName, "translated")
-            return anObj
-
-        ## Translate the given object along the given vector on given distance.
-        #  @param theObject The object to be translated.
-        #  @param theVector The translation vector.
-        #  @param theDistance The translation distance.
-        #  @param theCopy Flag used to translate object itself or create a copy.
-        #  @return Translated @a theObject (GEOM.GEOM_Object) if @a theCopy flag is @c False (default) or
-        #  new GEOM.GEOM_Object, containing the translated object if @a theCopy flag is @c True.
-        #
-        #  @ref tui_translation "Example"
-        def TranslateVectorDistance(self, theObject, theVector, theDistance, theCopy=False):
-            """
-            Translate the given object along the given vector on given distance.
-
-            Parameters: 
-                theObject The object to be translated.
-                theVector The translation vector.
-                theDistance The translation distance.
-                theCopy Flag used to translate object itself or create a copy.
-
-            Returns: 
-                Translated theObject (GEOM.GEOM_Object) if theCopy flag is False (default) or
-                new GEOM.GEOM_Object, containing the translated object if theCopy flag is True.
-            """
-            # Example: see GEOM_TestAll.py
-            theDistance,Parameters = ParseParameters(theDistance)
-            anObj = self.TrsfOp.TranslateVectorDistance(theObject, theVector, theDistance, theCopy)
-            RaiseIfFailed("TranslateVectorDistance", self.TrsfOp)
-            anObj.SetParameters(Parameters)
-            return anObj
-
-        ## Translate the given object along the given vector on given distance,
-        #  creating its copy before the translation.
-        #  @param theObject The object to be translated.
-        #  @param theVector The translation vector.
-        #  @param theDistance The translation distance.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the translated object.
-        #
-        #  @ref tui_translation "Example"
-        def MakeTranslationVectorDistance(self, theObject, theVector, theDistance, theName=None):
-            """
-            Translate the given object along the given vector on given distance,
-            creating its copy before the translation.
-
-            Parameters:
-                theObject The object to be translated.
-                theVector The translation vector.
-                theDistance The translation distance.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns: 
-                New GEOM.GEOM_Object, containing the translated object.
-            """
-            # Example: see GEOM_TestAll.py
-            theDistance,Parameters = ParseParameters(theDistance)
-            anObj = self.TrsfOp.TranslateVectorDistance(theObject, theVector, theDistance, 1)
-            RaiseIfFailed("TranslateVectorDistance", self.TrsfOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "translated")
-            return anObj
-
-        ## Rotate the given object around the given axis on the given angle.
-        #  @param theObject The object to be rotated.
-        #  @param theAxis Rotation axis.
-        #  @param theAngle Rotation angle in radians.
-        #  @param theCopy Flag used to rotate object itself or create a copy.
-        #
-        #  @return Rotated @a theObject (GEOM.GEOM_Object) if @a theCopy flag is @c False (default) or
-        #  new GEOM.GEOM_Object, containing the rotated object if @a theCopy flag is @c True.
-        #
-        #  @ref tui_rotation "Example"
-        def Rotate(self, theObject, theAxis, theAngle, theCopy=False):
-            """
-            Rotate the given object around the given axis on the given angle.
-
-            Parameters:
-                theObject The object to be rotated.
-                theAxis Rotation axis.
-                theAngle Rotation angle in radians.
-                theCopy Flag used to rotate object itself or create a copy.
-
-            Returns:
-                Rotated theObject (GEOM.GEOM_Object) if theCopy flag is False (default) or
-                new GEOM.GEOM_Object, containing the rotated object if theCopy flag is True.
-            """
-            # Example: see GEOM_TestAll.py
-            flag = False
-            if isinstance(theAngle,str):
-                flag = True
-            theAngle, Parameters = ParseParameters(theAngle)
-            if flag:
-                theAngle = theAngle*math.pi/180.0
-            if theCopy:
-                anObj = self.TrsfOp.RotateCopy(theObject, theAxis, theAngle)
-            else:
-                anObj = self.TrsfOp.Rotate(theObject, theAxis, theAngle)
-            RaiseIfFailed("Rotate", self.TrsfOp)
-            anObj.SetParameters(Parameters)
-            return anObj
-
-        ## Rotate the given object around the given axis
-        #  on the given angle, creating its copy before the rotatation.
-        #  @param theObject The object to be rotated.
-        #  @param theAxis Rotation axis.
-        #  @param theAngle Rotation angle in radians.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the rotated object.
-        #
-        #  @ref tui_rotation "Example"
-        def MakeRotation(self, theObject, theAxis, theAngle, theName=None):
-            """
-            Rotate the given object around the given axis
-            on the given angle, creating its copy before the rotatation.
-
-            Parameters:
-                theObject The object to be rotated.
-                theAxis Rotation axis.
-                theAngle Rotation angle in radians.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the rotated object.
-            """
-            # Example: see GEOM_TestAll.py
-            flag = False
-            if isinstance(theAngle,str):
-                flag = True
-            theAngle, Parameters = ParseParameters(theAngle)
-            if flag:
-                theAngle = theAngle*math.pi/180.0
-            anObj = self.TrsfOp.RotateCopy(theObject, theAxis, theAngle)
-            RaiseIfFailed("RotateCopy", self.TrsfOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "rotated")
-            return anObj
-
-        ## Rotate given object around vector perpendicular to plane
-        #  containing three points.
-        #  @param theObject The object to be rotated.
-        #  @param theCentPoint central point the axis is the vector perpendicular to the plane
-        #  containing the three points.
-        #  @param thePoint1,thePoint2 points in a perpendicular plane of the axis.
-        #  @param theCopy Flag used to rotate object itself or create a copy.
-        #  @return Rotated @a theObject (GEOM.GEOM_Object) if @a theCopy flag is @c False (default) or
-        #  new GEOM.GEOM_Object, containing the rotated object if @a theCopy flag is @c True.
-        def RotateThreePoints(self, theObject, theCentPoint, thePoint1, thePoint2, theCopy=False):
-            """
-            Rotate given object around vector perpendicular to plane
-            containing three points.
-
-            Parameters:
-                theObject The object to be rotated.
-                theCentPoint central point  the axis is the vector perpendicular to the plane
-                             containing the three points.
-                thePoint1,thePoint2 points in a perpendicular plane of the axis.
-                theCopy Flag used to rotate object itself or create a copy.
-
-            Returns:
-                Rotated theObject (GEOM.GEOM_Object) if theCopy flag is False (default) or
-                new GEOM.GEOM_Object, containing the rotated object if theCopy flag is True.
-            """
-            if theCopy:
-                anObj = self.TrsfOp.RotateThreePointsCopy(theObject, theCentPoint, thePoint1, thePoint2)
-            else:
-                anObj = self.TrsfOp.RotateThreePoints(theObject, theCentPoint, thePoint1, thePoint2)
-            RaiseIfFailed("RotateThreePoints", self.TrsfOp)
-            return anObj
-
-        ## Rotate given object around vector perpendicular to plane
-        #  containing three points, creating its copy before the rotatation.
-        #  @param theObject The object to be rotated.
-        #  @param theCentPoint central point the axis is the vector perpendicular to the plane
-        #  containing the three points.
-        #  @param thePoint1,thePoint2 in a perpendicular plane of the axis.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the rotated object.
-        #
-        #  @ref tui_rotation "Example"
-        def MakeRotationThreePoints(self, theObject, theCentPoint, thePoint1, thePoint2, theName=None):
-            """
-            Rotate given object around vector perpendicular to plane
-            containing three points, creating its copy before the rotatation.
-
-            Parameters:
-                theObject The object to be rotated.
-                theCentPoint central point  the axis is the vector perpendicular to the plane
-                             containing the three points.
-                thePoint1,thePoint2  in a perpendicular plane of the axis.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the rotated object.
-            """
-            # Example: see GEOM_TestAll.py
-            anObj = self.TrsfOp.RotateThreePointsCopy(theObject, theCentPoint, thePoint1, thePoint2)
-            RaiseIfFailed("RotateThreePointsCopy", self.TrsfOp)
-            self._autoPublish(anObj, theName, "rotated")
-            return anObj
-
-        ## Scale the given object by the specified factor.
-        #  @param theObject The object to be scaled.
-        #  @param thePoint Center point for scaling.
-        #                  Passing None for it means scaling relatively the origin of global CS.
-        #  @param theFactor Scaling factor value.
-        #  @param theCopy Flag used to scale object itself or create a copy.
-        #  @return Scaled @a theObject (GEOM.GEOM_Object) if @a theCopy flag is @c False (default) or
-        #  new GEOM.GEOM_Object, containing the scaled object if @a theCopy flag is @c True.
-        def Scale(self, theObject, thePoint, theFactor, theCopy=False):
-            """
-            Scale the given object by the specified factor.
-
-            Parameters:
-                theObject The object to be scaled.
-                thePoint Center point for scaling.
-                         Passing None for it means scaling relatively the origin of global CS.
-                theFactor Scaling factor value.
-                theCopy Flag used to scale object itself or create a copy.
-
-            Returns:    
-                Scaled theObject (GEOM.GEOM_Object) if theCopy flag is False (default) or
-                new GEOM.GEOM_Object, containing the scaled object if theCopy flag is True.
-            """
-            # Example: see GEOM_TestAll.py
-            theFactor, Parameters = ParseParameters(theFactor)
-            if theCopy:
-                anObj = self.TrsfOp.ScaleShapeCopy(theObject, thePoint, theFactor)
-            else:
-                anObj = self.TrsfOp.ScaleShape(theObject, thePoint, theFactor)
-            RaiseIfFailed("Scale", self.TrsfOp)
-            anObj.SetParameters(Parameters)
-            return anObj
-
-        ## Scale the given object by the factor, creating its copy before the scaling.
-        #  @param theObject The object to be scaled.
-        #  @param thePoint Center point for scaling.
-        #                  Passing None for it means scaling relatively the origin of global CS.
-        #  @param theFactor Scaling factor value.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the scaled shape.
-        #
-        #  @ref tui_scale "Example"
-        def MakeScaleTransform(self, theObject, thePoint, theFactor, theName=None):
-            """
-            Scale the given object by the factor, creating its copy before the scaling.
-
-            Parameters:
-                theObject The object to be scaled.
-                thePoint Center point for scaling.
-                         Passing None for it means scaling relatively the origin of global CS.
-                theFactor Scaling factor value.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:    
-                New GEOM.GEOM_Object, containing the scaled shape.
-            """
-            # Example: see GEOM_TestAll.py
-            theFactor, Parameters = ParseParameters(theFactor)
-            anObj = self.TrsfOp.ScaleShapeCopy(theObject, thePoint, theFactor)
-            RaiseIfFailed("ScaleShapeCopy", self.TrsfOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "scaled")
-            return anObj
-
-        ## Scale the given object by different factors along coordinate axes.
-        #  @param theObject The object to be scaled.
-        #  @param thePoint Center point for scaling.
-        #                  Passing None for it means scaling relatively the origin of global CS.
-        #  @param theFactorX,theFactorY,theFactorZ Scaling factors along each axis.
-        #  @param theCopy Flag used to scale object itself or create a copy.
-        #  @return Scaled @a theObject (GEOM.GEOM_Object) if @a theCopy flag is @c False (default) or
-        #  new GEOM.GEOM_Object, containing the scaled object if @a theCopy flag is @c True.
-        def ScaleAlongAxes(self, theObject, thePoint, theFactorX, theFactorY, theFactorZ, theCopy=False):
-            """
-            Scale the given object by different factors along coordinate axes.
-
-            Parameters:
-                theObject The object to be scaled.
-                thePoint Center point for scaling.
-                            Passing None for it means scaling relatively the origin of global CS.
-                theFactorX,theFactorY,theFactorZ Scaling factors along each axis.
-                theCopy Flag used to scale object itself or create a copy.
-
-            Returns:    
-                Scaled theObject (GEOM.GEOM_Object) if theCopy flag is False (default) or
-                new GEOM.GEOM_Object, containing the scaled object if theCopy flag is True.
-            """
-            # Example: see GEOM_TestAll.py
-            theFactorX, theFactorY, theFactorZ, Parameters = ParseParameters(theFactorX, theFactorY, theFactorZ)
-            if theCopy:
-                anObj = self.TrsfOp.ScaleShapeAlongAxesCopy(theObject, thePoint,
-                                                            theFactorX, theFactorY, theFactorZ)
-            else:
-                anObj = self.TrsfOp.ScaleShapeAlongAxes(theObject, thePoint,
-                                                        theFactorX, theFactorY, theFactorZ)
-            RaiseIfFailed("ScaleAlongAxes", self.TrsfOp)
-            anObj.SetParameters(Parameters)
-            return anObj
-
-        ## Scale the given object by different factors along coordinate axes,
-        #  creating its copy before the scaling.
-        #  @param theObject The object to be scaled.
-        #  @param thePoint Center point for scaling.
-        #                  Passing None for it means scaling relatively the origin of global CS.
-        #  @param theFactorX,theFactorY,theFactorZ Scaling factors along each axis.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the scaled shape.
-        #
-        #  @ref swig_scale "Example"
-        def MakeScaleAlongAxes(self, theObject, thePoint, theFactorX, theFactorY, theFactorZ, theName=None):
-            """
-            Scale the given object by different factors along coordinate axes,
-            creating its copy before the scaling.
-
-            Parameters:
-                theObject The object to be scaled.
-                thePoint Center point for scaling.
-                            Passing None for it means scaling relatively the origin of global CS.
-                theFactorX,theFactorY,theFactorZ Scaling factors along each axis.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the scaled shape.
-            """
-            # Example: see GEOM_TestAll.py
-            theFactorX, theFactorY, theFactorZ, Parameters = ParseParameters(theFactorX, theFactorY, theFactorZ)
-            anObj = self.TrsfOp.ScaleShapeAlongAxesCopy(theObject, thePoint,
-                                                        theFactorX, theFactorY, theFactorZ)
-            RaiseIfFailed("MakeScaleAlongAxes", self.TrsfOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "scaled")
-            return anObj
-
-        ## Mirror an object relatively the given plane.
-        #  @param theObject The object to be mirrored.
-        #  @param thePlane Plane of symmetry.
-        #  @param theCopy Flag used to mirror object itself or create a copy.
-        #  @return Mirrored @a theObject (GEOM.GEOM_Object) if @a theCopy flag is @c False (default) or
-        #  new GEOM.GEOM_Object, containing the mirrored object if @a theCopy flag is @c True.
-        def MirrorByPlane(self, theObject, thePlane, theCopy=False):
-            """
-            Mirror an object relatively the given plane.
-
-            Parameters:
-                theObject The object to be mirrored.
-                thePlane Plane of symmetry.
-                theCopy Flag used to mirror object itself or create a copy.
-
-            Returns:
-                Mirrored theObject (GEOM.GEOM_Object) if theCopy flag is False (default) or
-                new GEOM.GEOM_Object, containing the mirrored object if theCopy flag is True.
-            """
-            if theCopy:
-                anObj = self.TrsfOp.MirrorPlaneCopy(theObject, thePlane)
-            else:
-                anObj = self.TrsfOp.MirrorPlane(theObject, thePlane)
-            RaiseIfFailed("MirrorByPlane", self.TrsfOp)
-            return anObj
-
-        ## Create an object, symmetrical
-        #  to the given one relatively the given plane.
-        #  @param theObject The object to be mirrored.
-        #  @param thePlane Plane of symmetry.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the mirrored shape.
-        #
-        #  @ref tui_mirror "Example"
-        def MakeMirrorByPlane(self, theObject, thePlane, theName=None):
-            """
-            Create an object, symmetrical to the given one relatively the given plane.
-
-            Parameters:
-                theObject The object to be mirrored.
-                thePlane Plane of symmetry.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the mirrored shape.
-            """
-            # Example: see GEOM_TestAll.py
-            anObj = self.TrsfOp.MirrorPlaneCopy(theObject, thePlane)
-            RaiseIfFailed("MirrorPlaneCopy", self.TrsfOp)
-            self._autoPublish(anObj, theName, "mirrored")
-            return anObj
-
-        ## Mirror an object relatively the given axis.
-        #  @param theObject The object to be mirrored.
-        #  @param theAxis Axis of symmetry.
-        #  @param theCopy Flag used to mirror object itself or create a copy.
-        #  @return Mirrored @a theObject (GEOM.GEOM_Object) if @a theCopy flag is @c False (default) or
-        #  new GEOM.GEOM_Object, containing the mirrored object if @a theCopy flag is @c True.
-        def MirrorByAxis(self, theObject, theAxis, theCopy=False):
-            """
-            Mirror an object relatively the given axis.
-
-            Parameters:
-                theObject The object to be mirrored.
-                theAxis Axis of symmetry.
-                theCopy Flag used to mirror object itself or create a copy.
-
-            Returns:
-                Mirrored theObject (GEOM.GEOM_Object) if theCopy flag is False (default) or
-                new GEOM.GEOM_Object, containing the mirrored object if theCopy flag is True.
-            """
-            if theCopy:
-                anObj = self.TrsfOp.MirrorAxisCopy(theObject, theAxis)
-            else:
-                anObj = self.TrsfOp.MirrorAxis(theObject, theAxis)
-            RaiseIfFailed("MirrorByAxis", self.TrsfOp)
-            return anObj
-
-        ## Create an object, symmetrical
-        #  to the given one relatively the given axis.
-        #  @param theObject The object to be mirrored.
-        #  @param theAxis Axis of symmetry.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the mirrored shape.
-        #
-        #  @ref tui_mirror "Example"
-        def MakeMirrorByAxis(self, theObject, theAxis, theName=None):
-            """
-            Create an object, symmetrical to the given one relatively the given axis.
-
-            Parameters:
-                theObject The object to be mirrored.
-                theAxis Axis of symmetry.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns: 
-                New GEOM.GEOM_Object, containing the mirrored shape.
-            """
-            # Example: see GEOM_TestAll.py
-            anObj = self.TrsfOp.MirrorAxisCopy(theObject, theAxis)
-            RaiseIfFailed("MirrorAxisCopy", self.TrsfOp)
-            self._autoPublish(anObj, theName, "mirrored")
-            return anObj
-
-        ## Mirror an object relatively the given point.
-        #  @param theObject The object to be mirrored.
-        #  @param thePoint Point of symmetry.
-        #  @param theCopy Flag used to mirror object itself or create a copy.
-        #  @return Mirrored @a theObject (GEOM.GEOM_Object) if @a theCopy flag is @c False (default) or
-        #  new GEOM.GEOM_Object, containing the mirrored object if @a theCopy flag is @c True.
-        def MirrorByPoint(self, theObject, thePoint, theCopy=False):
-            """
-            Mirror an object relatively the given point.
-
-            Parameters:
-                theObject The object to be mirrored.
-                thePoint Point of symmetry.
-                theCopy Flag used to mirror object itself or create a copy.
-
-            Returns:
-                Mirrored theObject (GEOM.GEOM_Object) if theCopy flag is False (default) or
-                new GEOM.GEOM_Object, containing the mirrored object if theCopy flag is True.
-            """
-            # Example: see GEOM_TestAll.py
-            if theCopy:
-                anObj = self.TrsfOp.MirrorPointCopy(theObject, thePoint)
-            else:
-                anObj = self.TrsfOp.MirrorPoint(theObject, thePoint)
-            RaiseIfFailed("MirrorByPoint", self.TrsfOp)
-            return anObj
-
-        ## Create an object, symmetrical
-        #  to the given one relatively the given point.
-        #  @param theObject The object to be mirrored.
-        #  @param thePoint Point of symmetry.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the mirrored shape.
-        #
-        #  @ref tui_mirror "Example"
-        def MakeMirrorByPoint(self, theObject, thePoint, theName=None):
-            """
-            Create an object, symmetrical
-            to the given one relatively the given point.
-
-            Parameters:
-                theObject The object to be mirrored.
-                thePoint Point of symmetry.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:  
-                New GEOM.GEOM_Object, containing the mirrored shape.
-            """
-            # Example: see GEOM_TestAll.py
-            anObj = self.TrsfOp.MirrorPointCopy(theObject, thePoint)
-            RaiseIfFailed("MirrorPointCopy", self.TrsfOp)
-            self._autoPublish(anObj, theName, "mirrored")
-            return anObj
-
-        ## Modify the location of the given object.
-        #  @param theObject The object to be displaced.
-        #  @param theStartLCS Coordinate system to perform displacement from it.\n
-        #                     If \a theStartLCS is NULL, displacement
-        #                     will be performed from global CS.\n
-        #                     If \a theObject itself is used as \a theStartLCS,
-        #                     its location will be changed to \a theEndLCS.
-        #  @param theEndLCS Coordinate system to perform displacement to it.
-        #  @param theCopy Flag used to displace object itself or create a copy.
-        #  @return Displaced @a theObject (GEOM.GEOM_Object) if @a theCopy flag is @c False (default) or
-        #  new GEOM.GEOM_Object, containing the displaced object if @a theCopy flag is @c True.
-        def Position(self, theObject, theStartLCS, theEndLCS, theCopy=False):
-            """
-            Modify the Location of the given object by LCS, creating its copy before the setting.
-
-            Parameters:
-                theObject The object to be displaced.
-                theStartLCS Coordinate system to perform displacement from it.
-                            If theStartLCS is NULL, displacement
-                            will be performed from global CS.
-                            If theObject itself is used as theStartLCS,
-                            its location will be changed to theEndLCS.
-                theEndLCS Coordinate system to perform displacement to it.
-                theCopy Flag used to displace object itself or create a copy.
-
-            Returns:
-                Displaced theObject (GEOM.GEOM_Object) if theCopy flag is False (default) or
-                new GEOM.GEOM_Object, containing the displaced object if theCopy flag is True.
-            """
-            # Example: see GEOM_TestAll.py
-            if theCopy:
-                anObj = self.TrsfOp.PositionShapeCopy(theObject, theStartLCS, theEndLCS)
-            else:
-                anObj = self.TrsfOp.PositionShape(theObject, theStartLCS, theEndLCS)
-            RaiseIfFailed("Displace", self.TrsfOp)
-            return anObj
-
-        ## Modify the Location of the given object by LCS,
-        #  creating its copy before the setting.
-        #  @param theObject The object to be displaced.
-        #  @param theStartLCS Coordinate system to perform displacement from it.\n
-        #                     If \a theStartLCS is NULL, displacement
-        #                     will be performed from global CS.\n
-        #                     If \a theObject itself is used as \a theStartLCS,
-        #                     its location will be changed to \a theEndLCS.
-        #  @param theEndLCS Coordinate system to perform displacement to it.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the displaced shape.
-        #
-        #  @ref tui_modify_location "Example"
-        def MakePosition(self, theObject, theStartLCS, theEndLCS, theName=None):
-            """
-            Modify the Location of the given object by LCS, creating its copy before the setting.
-
-            Parameters:
-                theObject The object to be displaced.
-                theStartLCS Coordinate system to perform displacement from it.
-                            If theStartLCS is NULL, displacement
-                            will be performed from global CS.
-                            If theObject itself is used as theStartLCS,
-                            its location will be changed to theEndLCS.
-                theEndLCS Coordinate system to perform displacement to it.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:  
-                New GEOM.GEOM_Object, containing the displaced shape.
-
-            Example of usage:
-                # create local coordinate systems
-                cs1 = geompy.MakeMarker( 0, 0, 0, 1,0,0, 0,1,0)
-                cs2 = geompy.MakeMarker(30,40,40, 1,0,0, 0,1,0)
-                # modify the location of the given object
-                position = geompy.MakePosition(cylinder, cs1, cs2)
-            """
-            # Example: see GEOM_TestAll.py
-            anObj = self.TrsfOp.PositionShapeCopy(theObject, theStartLCS, theEndLCS)
-            RaiseIfFailed("PositionShapeCopy", self.TrsfOp)
-            self._autoPublish(anObj, theName, "displaced")
-            return anObj
-
-        ## Modify the Location of the given object by Path.
-        #  @param  theObject The object to be displaced.
-        #  @param  thePath Wire or Edge along that the object will be translated.
-        #  @param  theDistance progress of Path (0 = start location, 1 = end of path location).
-        #  @param  theCopy is to create a copy objects if true.
-        #  @param  theReverse  0 - for usual direction, 1 - to reverse path direction.
-        #  @return Displaced @a theObject (GEOM.GEOM_Object) if @a theCopy is @c False or
-        #          new GEOM.GEOM_Object, containing the displaced shape if @a theCopy is @c True.
-        #
-        #  @ref tui_modify_location "Example"
-        def PositionAlongPath(self,theObject, thePath, theDistance, theCopy, theReverse):
-            """
-            Modify the Location of the given object by Path.
-
-            Parameters:
-                 theObject The object to be displaced.
-                 thePath Wire or Edge along that the object will be translated.
-                 theDistance progress of Path (0 = start location, 1 = end of path location).
-                 theCopy is to create a copy objects if true.
-                 theReverse  0 - for usual direction, 1 - to reverse path direction.
-
-            Returns:  
-                 Displaced theObject (GEOM.GEOM_Object) if theCopy is False or
-                 new GEOM.GEOM_Object, containing the displaced shape if theCopy is True.
-
-            Example of usage:
-                position = geompy.PositionAlongPath(cylinder, circle, 0.75, 1, 1)
-            """
-            # Example: see GEOM_TestAll.py
-            anObj = self.TrsfOp.PositionAlongPath(theObject, thePath, theDistance, theCopy, theReverse)
-            RaiseIfFailed("PositionAlongPath", self.TrsfOp)
-            return anObj
-
-        ## Modify the Location of the given object by Path, creating its copy before the operation.
-        #  @param theObject The object to be displaced.
-        #  @param thePath Wire or Edge along that the object will be translated.
-        #  @param theDistance progress of Path (0 = start location, 1 = end of path location).
-        #  @param theReverse  0 - for usual direction, 1 - to reverse path direction.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the displaced shape.
-        def MakePositionAlongPath(self, theObject, thePath, theDistance, theReverse, theName=None):
-            """
-            Modify the Location of the given object by Path, creating its copy before the operation.
-
-            Parameters:
-                 theObject The object to be displaced.
-                 thePath Wire or Edge along that the object will be translated.
-                 theDistance progress of Path (0 = start location, 1 = end of path location).
-                 theReverse  0 - for usual direction, 1 - to reverse path direction.
-                 theName Object name; when specified, this parameter is used
-                         for result publication in the study. Otherwise, if automatic
-                         publication is switched on, default value is used for result name.
-
-            Returns:  
-                New GEOM.GEOM_Object, containing the displaced shape.
-            """
-            # Example: see GEOM_TestAll.py
-            anObj = self.TrsfOp.PositionAlongPath(theObject, thePath, theDistance, 1, theReverse)
-            RaiseIfFailed("PositionAlongPath", self.TrsfOp)
-            self._autoPublish(anObj, theName, "displaced")
-            return anObj
-
-        ## Offset given shape.
-        #  @param theObject The base object for the offset.
-        #  @param theOffset Offset value.
-        #  @param theCopy Flag used to offset object itself or create a copy.
-        #  @return Modified @a theObject (GEOM.GEOM_Object) if @a theCopy flag is @c False (default) or
-        #  new GEOM.GEOM_Object, containing the result of offset operation if @a theCopy flag is @c True.
-        def Offset(self, theObject, theOffset, theCopy=False):
-            """
-            Offset given shape.
-
-            Parameters:
-                theObject The base object for the offset.
-                theOffset Offset value.
-                theCopy Flag used to offset object itself or create a copy.
-
-            Returns: 
-                Modified theObject (GEOM.GEOM_Object) if theCopy flag is False (default) or
-                new GEOM.GEOM_Object, containing the result of offset operation if theCopy flag is True.
-            """
-            theOffset, Parameters = ParseParameters(theOffset)
-            if theCopy:
-                anObj = self.TrsfOp.OffsetShapeCopy(theObject, theOffset)
-            else:
-                anObj = self.TrsfOp.OffsetShape(theObject, theOffset)
-            RaiseIfFailed("Offset", self.TrsfOp)
-            anObj.SetParameters(Parameters)
-            return anObj
-
-        ## Create new object as offset of the given one.
-        #  @param theObject The base object for the offset.
-        #  @param theOffset Offset value.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the offset object.
-        #
-        #  @ref tui_offset "Example"
-        def MakeOffset(self, theObject, theOffset, theName=None):
-            """
-            Create new object as offset of the given one.
-
-            Parameters:
-                theObject The base object for the offset.
-                theOffset Offset value.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:  
-                New GEOM.GEOM_Object, containing the offset object.
-
-            Example of usage:
-                 box = geompy.MakeBox(20, 20, 20, 200, 200, 200)
-                 # create a new object as offset of the given object
-                 offset = geompy.MakeOffset(box, 70.)
-            """
-            # Example: see GEOM_TestAll.py
-            theOffset, Parameters = ParseParameters(theOffset)
-            anObj = self.TrsfOp.OffsetShapeCopy(theObject, theOffset)
-            RaiseIfFailed("OffsetShapeCopy", self.TrsfOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "offset")
-            return anObj
-
-        ## Create new object as projection of the given one on a 2D surface.
-        #  @param theSource The source object for the projection. It can be a point, edge or wire.
-        #  @param theTarget The target object. It can be planar or cylindrical face.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the projection.
-        #
-        #  @ref tui_projection "Example"
-        def MakeProjection(self, theSource, theTarget, theName=None):
-            """
-            Create new object as projection of the given one on a 2D surface.
-
-            Parameters:
-                theSource The source object for the projection. It can be a point, edge or wire.
-                theTarget The target object. It can be planar or cylindrical face.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:  
-                New GEOM.GEOM_Object, containing the projection.
-            """
-            # Example: see GEOM_TestAll.py
-            anObj = self.TrsfOp.ProjectShapeCopy(theSource, theTarget)
-            RaiseIfFailed("ProjectShapeCopy", self.TrsfOp)
-            self._autoPublish(anObj, theName, "projection")
-            return anObj
-
-        # -----------------------------------------------------------------------------
-        # Patterns
-        # -----------------------------------------------------------------------------
-
-        ## Translate the given object along the given vector a given number times
-        #  @param theObject The object to be translated.
-        #  @param theVector Direction of the translation. DX if None.
-        #  @param theStep Distance to translate on.
-        #  @param theNbTimes Quantity of translations to be done.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing compound of all
-        #          the shapes, obtained after each translation.
-        #
-        #  @ref tui_multi_translation "Example"
-        def MakeMultiTranslation1D(self, theObject, theVector, theStep, theNbTimes, theName=None):
-            """
-            Translate the given object along the given vector a given number times
-
-            Parameters:
-                theObject The object to be translated.
-                theVector Direction of the translation. DX if None.
-                theStep Distance to translate on.
-                theNbTimes Quantity of translations to be done.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:     
-                New GEOM.GEOM_Object, containing compound of all
-                the shapes, obtained after each translation.
-
-            Example of usage:
-                r1d = geompy.MakeMultiTranslation1D(prism, vect, 20, 4)
-            """
-            # Example: see GEOM_TestAll.py
-            theStep, theNbTimes, Parameters = ParseParameters(theStep, theNbTimes)
-            anObj = self.TrsfOp.MultiTranslate1D(theObject, theVector, theStep, theNbTimes)
-            RaiseIfFailed("MultiTranslate1D", self.TrsfOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "multitranslation")
-            return anObj
-
-        ## Conseqently apply two specified translations to theObject specified number of times.
-        #  @param theObject The object to be translated.
-        #  @param theVector1 Direction of the first translation. DX if None.
-        #  @param theStep1 Step of the first translation.
-        #  @param theNbTimes1 Quantity of translations to be done along theVector1.
-        #  @param theVector2 Direction of the second translation. DY if None.
-        #  @param theStep2 Step of the second translation.
-        #  @param theNbTimes2 Quantity of translations to be done along theVector2.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing compound of all
-        #          the shapes, obtained after each translation.
-        #
-        #  @ref tui_multi_translation "Example"
-        def MakeMultiTranslation2D(self, theObject, theVector1, theStep1, theNbTimes1,
-                                   theVector2, theStep2, theNbTimes2, theName=None):
-            """
-            Conseqently apply two specified translations to theObject specified number of times.
-
-            Parameters:
-                theObject The object to be translated.
-                theVector1 Direction of the first translation. DX if None.
-                theStep1 Step of the first translation.
-                theNbTimes1 Quantity of translations to be done along theVector1.
-                theVector2 Direction of the second translation. DY if None.
-                theStep2 Step of the second translation.
-                theNbTimes2 Quantity of translations to be done along theVector2.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing compound of all
-                the shapes, obtained after each translation.
-
-            Example of usage:
-                tr2d = geompy.MakeMultiTranslation2D(prism, vect1, 20, 4, vect2, 80, 3)
-            """
-            # Example: see GEOM_TestAll.py
-            theStep1,theNbTimes1,theStep2,theNbTimes2, Parameters = ParseParameters(theStep1,theNbTimes1,theStep2,theNbTimes2)
-            anObj = self.TrsfOp.MultiTranslate2D(theObject, theVector1, theStep1, theNbTimes1,
-                                                 theVector2, theStep2, theNbTimes2)
-            RaiseIfFailed("MultiTranslate2D", self.TrsfOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "multitranslation")
-            return anObj
-
-        ## Rotate the given object around the given axis a given number times.
-        #  Rotation angle will be 2*PI/theNbTimes.
-        #  @param theObject The object to be rotated.
-        #  @param theAxis The rotation axis. DZ if None.
-        #  @param theNbTimes Quantity of rotations to be done.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing compound of all the
-        #          shapes, obtained after each rotation.
-        #
-        #  @ref tui_multi_rotation "Example"
-        def MultiRotate1DNbTimes (self, theObject, theAxis, theNbTimes, theName=None):
-            """
-            Rotate the given object around the given axis a given number times.
-            Rotation angle will be 2*PI/theNbTimes.
-
-            Parameters:
-                theObject The object to be rotated.
-                theAxis The rotation axis. DZ if None.
-                theNbTimes Quantity of rotations to be done.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:     
-                New GEOM.GEOM_Object, containing compound of all the
-                shapes, obtained after each rotation.
-
-            Example of usage:
-                rot1d = geompy.MultiRotate1DNbTimes(prism, vect, 4)
-            """
-            # Example: see GEOM_TestAll.py
-            theNbTimes, Parameters = ParseParameters(theNbTimes)
-            anObj = self.TrsfOp.MultiRotate1D(theObject, theAxis, theNbTimes)
-            RaiseIfFailed("MultiRotate1DNbTimes", self.TrsfOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "multirotation")
-            return anObj
-
-        ## Rotate the given object around the given axis
-        #  a given number times on the given angle.
-        #  @param theObject The object to be rotated.
-        #  @param theAxis The rotation axis. DZ if None.
-        #  @param theAngleStep Rotation angle in radians.
-        #  @param theNbTimes Quantity of rotations to be done.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing compound of all the
-        #          shapes, obtained after each rotation.
-        #
-        #  @ref tui_multi_rotation "Example"
-        def MultiRotate1DByStep(self, theObject, theAxis, theAngleStep, theNbTimes, theName=None):
-            """
-            Rotate the given object around the given axis
-            a given number times on the given angle.
-
-            Parameters:
-                theObject The object to be rotated.
-                theAxis The rotation axis. DZ if None.
-                theAngleStep Rotation angle in radians.
-                theNbTimes Quantity of rotations to be done.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:     
-                New GEOM.GEOM_Object, containing compound of all the
-                shapes, obtained after each rotation.
-
-            Example of usage:
-                rot1d = geompy.MultiRotate1DByStep(prism, vect, math.pi/4, 4)
-            """
-            # Example: see GEOM_TestAll.py
-            theAngleStep, theNbTimes, Parameters = ParseParameters(theAngleStep, theNbTimes)
-            anObj = self.TrsfOp.MultiRotate1DByStep(theObject, theAxis, theAngleStep, theNbTimes)
-            RaiseIfFailed("MultiRotate1DByStep", self.TrsfOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "multirotation")
-            return anObj
-
-        ## Rotate the given object around the given axis a given
-        #  number times and multi-translate each rotation result.
-        #  Rotation angle will be 2*PI/theNbTimes1.
-        #  Translation direction passes through center of gravity
-        #  of rotated shape and its projection on the rotation axis.
-        #  @param theObject The object to be rotated.
-        #  @param theAxis Rotation axis. DZ if None.
-        #  @param theNbTimes1 Quantity of rotations to be done.
-        #  @param theRadialStep Translation distance.
-        #  @param theNbTimes2 Quantity of translations to be done.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing compound of all the
-        #          shapes, obtained after each transformation.
-        #
-        #  @ref tui_multi_rotation "Example"
-        def MultiRotate2DNbTimes(self, theObject, theAxis, theNbTimes1, theRadialStep, theNbTimes2, theName=None):
-            """
-            Rotate the given object around the
-            given axis on the given angle a given number
-            times and multi-translate each rotation result.
-            Translation direction passes through center of gravity
-            of rotated shape and its projection on the rotation axis.
-
-            Parameters:
-                theObject The object to be rotated.
-                theAxis Rotation axis. DZ if None.
-                theNbTimes1 Quantity of rotations to be done.
-                theRadialStep Translation distance.
-                theNbTimes2 Quantity of translations to be done.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:    
-                New GEOM.GEOM_Object, containing compound of all the
-                shapes, obtained after each transformation.
-
-            Example of usage:
-                rot2d = geompy.MultiRotate2D(prism, vect, 60, 4, 50, 5)
-            """
-            # Example: see GEOM_TestAll.py
-            theNbTimes1, theRadialStep, theNbTimes2, Parameters = ParseParameters(theNbTimes1, theRadialStep, theNbTimes2)
-            anObj = self.TrsfOp.MultiRotate2DNbTimes(theObject, theAxis, theNbTimes1, theRadialStep, theNbTimes2)
-            RaiseIfFailed("MultiRotate2DNbTimes", self.TrsfOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "multirotation")
-            return anObj
-
-        ## Rotate the given object around the
-        #  given axis on the given angle a given number
-        #  times and multi-translate each rotation result.
-        #  Translation direction passes through center of gravity
-        #  of rotated shape and its projection on the rotation axis.
-        #  @param theObject The object to be rotated.
-        #  @param theAxis Rotation axis. DZ if None.
-        #  @param theAngleStep Rotation angle in radians.
-        #  @param theNbTimes1 Quantity of rotations to be done.
-        #  @param theRadialStep Translation distance.
-        #  @param theNbTimes2 Quantity of translations to be done.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing compound of all the
-        #          shapes, obtained after each transformation.
-        #
-        #  @ref tui_multi_rotation "Example"
-        def MultiRotate2DByStep (self, theObject, theAxis, theAngleStep, theNbTimes1, theRadialStep, theNbTimes2, theName=None):
-            """
-            Rotate the given object around the
-            given axis on the given angle a given number
-            times and multi-translate each rotation result.
-            Translation direction passes through center of gravity
-            of rotated shape and its projection on the rotation axis.
-
-            Parameters:
-                theObject The object to be rotated.
-                theAxis Rotation axis. DZ if None.
-                theAngleStep Rotation angle in radians.
-                theNbTimes1 Quantity of rotations to be done.
-                theRadialStep Translation distance.
-                theNbTimes2 Quantity of translations to be done.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:    
-                New GEOM.GEOM_Object, containing compound of all the
-                shapes, obtained after each transformation.
-
-            Example of usage:
-                rot2d = geompy.MultiRotate2D(prism, vect, math.pi/3, 4, 50, 5)
-            """
-            # Example: see GEOM_TestAll.py
-            theAngleStep, theNbTimes1, theRadialStep, theNbTimes2, Parameters = ParseParameters(theAngleStep, theNbTimes1, theRadialStep, theNbTimes2)
-            anObj = self.TrsfOp.MultiRotate2DByStep(theObject, theAxis, theAngleStep, theNbTimes1, theRadialStep, theNbTimes2)
-            RaiseIfFailed("MultiRotate2DByStep", self.TrsfOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "multirotation")
-            return anObj
-
-        ## The same, as MultiRotate1DNbTimes(), but axis is given by direction and point
-        #
-        #  @ref swig_MakeMultiRotation "Example"
-        def MakeMultiRotation1DNbTimes(self, aShape, aDir, aPoint, aNbTimes, theName=None):
-            """
-            The same, as geompy.MultiRotate1DNbTimes, but axis is given by direction and point
-
-            Example of usage:
-                pz = geompy.MakeVertex(0, 0, 100)
-                vy = geompy.MakeVectorDXDYDZ(0, 100, 0)
-                MultiRot1D = geompy.MakeMultiRotation1DNbTimes(prism, vy, pz, 6)
-            """
-            # Example: see GEOM_TestOthers.py
-            aVec = self.MakeLine(aPoint,aDir)
-            # note: auto-publishing is done in self.MultiRotate1D()
-            anObj = self.MultiRotate1DNbTimes(aShape, aVec, aNbTimes, theName)
-            return anObj
-
-        ## The same, as MultiRotate1DByStep(), but axis is given by direction and point
-        #
-        #  @ref swig_MakeMultiRotation "Example"
-        def MakeMultiRotation1DByStep(self, aShape, aDir, aPoint, anAngle, aNbTimes, theName=None):
-            """
-            The same, as geompy.MultiRotate1D, but axis is given by direction and point
-
-            Example of usage:
-                pz = geompy.MakeVertex(0, 0, 100)
-                vy = geompy.MakeVectorDXDYDZ(0, 100, 0)
-                MultiRot1D = geompy.MakeMultiRotation1DByStep(prism, vy, pz, math.pi/3, 6)
-            """
-            # Example: see GEOM_TestOthers.py
-            aVec = self.MakeLine(aPoint,aDir)
-            # note: auto-publishing is done in self.MultiRotate1D()
-            anObj = self.MultiRotate1DByStep(aShape, aVec, anAngle, aNbTimes, theName)
-            return anObj
-
-        ## The same, as MultiRotate2DNbTimes(), but axis is given by direction and point
-        #
-        #  @ref swig_MakeMultiRotation "Example"
-        def MakeMultiRotation2DNbTimes(self, aShape, aDir, aPoint, nbtimes1, aStep, nbtimes2, theName=None):
-            """
-            The same, as MultiRotate2DNbTimes(), but axis is given by direction and point
-            
-            Example of usage:
-                pz = geompy.MakeVertex(0, 0, 100)
-                vy = geompy.MakeVectorDXDYDZ(0, 100, 0)
-                MultiRot2D = geompy.MakeMultiRotation2DNbTimes(f12, vy, pz, 6, 30, 3)
-            """
-            # Example: see GEOM_TestOthers.py
-            aVec = self.MakeLine(aPoint,aDir)
-            # note: auto-publishing is done in self.MultiRotate2DNbTimes()
-            anObj = self.MultiRotate2DNbTimes(aShape, aVec, nbtimes1, aStep, nbtimes2, theName)
-            return anObj
-
-        ## The same, as MultiRotate2DByStep(), but axis is given by direction and point
-        #
-        #  @ref swig_MakeMultiRotation "Example"
-        def MakeMultiRotation2DByStep(self, aShape, aDir, aPoint, anAngle, nbtimes1, aStep, nbtimes2, theName=None):
-            """
-            The same, as MultiRotate2DByStep(), but axis is given by direction and point
-            
-            Example of usage:
-                pz = geompy.MakeVertex(0, 0, 100)
-                vy = geompy.MakeVectorDXDYDZ(0, 100, 0)
-                MultiRot2D = geompy.MakeMultiRotation2DByStep(f12, vy, pz, math.pi/4, 6, 30, 3)
-            """
-            # Example: see GEOM_TestOthers.py
-            aVec = self.MakeLine(aPoint,aDir)
-            # note: auto-publishing is done in self.MultiRotate2D()
-            anObj = self.MultiRotate2DByStep(aShape, aVec, anAngle, nbtimes1, aStep, nbtimes2, theName)
-            return anObj
-
-        # end of l3_transform
-        ## @}
-
-        ## @addtogroup l3_transform_d
-        ## @{
-
-        ## Deprecated method. Use MultiRotate1DNbTimes instead.
-        def MultiRotate1D(self, theObject, theAxis, theNbTimes, theName=None):
-            """
-            Deprecated method. Use MultiRotate1DNbTimes instead.
-            """
-            print "The method MultiRotate1D is DEPRECATED. Use MultiRotate1DNbTimes instead."
-            return self.MultiRotate1DNbTimes(theObject, theAxis, theNbTimes, theName)
-
-        ## The same, as MultiRotate2DByStep(), but theAngle is in degrees.
-        #  This method is DEPRECATED. Use MultiRotate2DByStep() instead.
-        def MultiRotate2D(self, theObject, theAxis, theAngle, theNbTimes1, theStep, theNbTimes2, theName=None):
-            """
-            The same, as MultiRotate2DByStep(), but theAngle is in degrees.
-            This method is DEPRECATED. Use MultiRotate2DByStep() instead.
-
-            Example of usage:
-                rot2d = geompy.MultiRotate2D(prism, vect, 60, 4, 50, 5)
-            """
-            print "The method MultiRotate2D is DEPRECATED. Use MultiRotate2DByStep instead."
-            theAngle, theNbTimes1, theStep, theNbTimes2, Parameters = ParseParameters(theAngle, theNbTimes1, theStep, theNbTimes2)
-            anObj = self.TrsfOp.MultiRotate2D(theObject, theAxis, theAngle, theNbTimes1, theStep, theNbTimes2)
-            RaiseIfFailed("MultiRotate2D", self.TrsfOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "multirotation")
-            return anObj
-
-        ## The same, as MultiRotate1D(), but axis is given by direction and point
-        #  This method is DEPRECATED. Use MakeMultiRotation1DNbTimes instead.
-        def MakeMultiRotation1D(self, aShape, aDir, aPoint, aNbTimes, theName=None):
-            """
-            The same, as geompy.MultiRotate1D, but axis is given by direction and point.
-            This method is DEPRECATED. Use MakeMultiRotation1DNbTimes instead.
-
-            Example of usage:
-                pz = geompy.MakeVertex(0, 0, 100)
-                vy = geompy.MakeVectorDXDYDZ(0, 100, 0)
-                MultiRot1D = geompy.MakeMultiRotation1D(prism, vy, pz, 6)
-            """
-            print "The method MakeMultiRotation1D is DEPRECATED. Use MakeMultiRotation1DNbTimes instead."
-            aVec = self.MakeLine(aPoint,aDir)
-            # note: auto-publishing is done in self.MultiRotate1D()
-            anObj = self.MultiRotate1D(aShape, aVec, aNbTimes, theName)
-            return anObj
-
-        ## The same, as MultiRotate2D(), but axis is given by direction and point
-        #  This method is DEPRECATED. Use MakeMultiRotation2DByStep instead.
-        def MakeMultiRotation2D(self, aShape, aDir, aPoint, anAngle, nbtimes1, aStep, nbtimes2, theName=None):
-            """
-            The same, as MultiRotate2D(), but axis is given by direction and point
-            This method is DEPRECATED. Use MakeMultiRotation2DByStep instead.
-            
-            Example of usage:
-                pz = geompy.MakeVertex(0, 0, 100)
-                vy = geompy.MakeVectorDXDYDZ(0, 100, 0)
-                MultiRot2D = geompy.MakeMultiRotation2D(f12, vy, pz, 45, 6, 30, 3)
-            """
-            print "The method MakeMultiRotation2D is DEPRECATED. Use MakeMultiRotation2DByStep instead."
-            aVec = self.MakeLine(aPoint,aDir)
-            # note: auto-publishing is done in self.MultiRotate2D()
-            anObj = self.MultiRotate2D(aShape, aVec, anAngle, nbtimes1, aStep, nbtimes2, theName)
-            return anObj
-
-        # end of l3_transform_d
-        ## @}
-
-        ## @addtogroup l3_local
-        ## @{
-
-        ## Perform a fillet on all edges of the given shape.
-        #  @param theShape Shape, to perform fillet on.
-        #  @param theR Fillet radius.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the result shape.
-        #
-        #  @ref tui_fillet "Example 1"
-        #  \n @ref swig_MakeFilletAll "Example 2"
-        def MakeFilletAll(self, theShape, theR, theName=None):
-            """
-            Perform a fillet on all edges of the given shape.
-
-            Parameters:
-                theShape Shape, to perform fillet on.
-                theR Fillet radius.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns: 
-                New GEOM.GEOM_Object, containing the result shape.
-
-            Example of usage: 
-               filletall = geompy.MakeFilletAll(prism, 10.)
-            """
-            # Example: see GEOM_TestOthers.py
-            theR,Parameters = ParseParameters(theR)
-            anObj = self.LocalOp.MakeFilletAll(theShape, theR)
-            RaiseIfFailed("MakeFilletAll", self.LocalOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "fillet")
-            return anObj
-
-        ## Perform a fillet on the specified edges/faces of the given shape
-        #  @param theShape Shape, to perform fillet on.
-        #  @param theR Fillet radius.
-        #  @param theShapeType Type of shapes in <VAR>theListShapes</VAR> (see ShapeType())
-        #  @param theListShapes Global indices of edges/faces to perform fillet on.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @note Global index of sub-shape can be obtained, using method GetSubShapeID().
-        #
-        #  @return New GEOM.GEOM_Object, containing the result shape.
-        #
-        #  @ref tui_fillet "Example"
-        def MakeFillet(self, theShape, theR, theShapeType, theListShapes, theName=None):
-            """
-            Perform a fillet on the specified edges/faces of the given shape
-
-            Parameters:
-                theShape Shape, to perform fillet on.
-                theR Fillet radius.
-                theShapeType Type of shapes in theListShapes (see geompy.ShapeTypes)
-                theListShapes Global indices of edges/faces to perform fillet on.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Note:
-                Global index of sub-shape can be obtained, using method geompy.GetSubShapeID
-
-            Returns: 
-                New GEOM.GEOM_Object, containing the result shape.
-
-            Example of usage:
-                # get the list of IDs (IDList) for the fillet
-                prism_edges = geompy.SubShapeAllSortedCentres(prism, geompy.ShapeType["EDGE"])
-                IDlist_e = []
-                IDlist_e.append(geompy.GetSubShapeID(prism, prism_edges[0]))
-                IDlist_e.append(geompy.GetSubShapeID(prism, prism_edges[1]))
-                IDlist_e.append(geompy.GetSubShapeID(prism, prism_edges[2]))
-                # make a fillet on the specified edges of the given shape
-                fillet = geompy.MakeFillet(prism, 10., geompy.ShapeType["EDGE"], IDlist_e)
-            """
-            # Example: see GEOM_TestAll.py
-            theR,Parameters = ParseParameters(theR)
-            anObj = None
-            if theShapeType == ShapeType["EDGE"]:
-                anObj = self.LocalOp.MakeFilletEdges(theShape, theR, theListShapes)
-                RaiseIfFailed("MakeFilletEdges", self.LocalOp)
-            else:
-                anObj = self.LocalOp.MakeFilletFaces(theShape, theR, theListShapes)
-                RaiseIfFailed("MakeFilletFaces", self.LocalOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "fillet")
-            return anObj
-
-        ## The same that MakeFillet() but with two Fillet Radius R1 and R2
-        def MakeFilletR1R2(self, theShape, theR1, theR2, theShapeType, theListShapes, theName=None):
-            """
-            The same that geompy.MakeFillet but with two Fillet Radius R1 and R2
-
-            Example of usage:
-                # get the list of IDs (IDList) for the fillet
-                prism_edges = geompy.SubShapeAllSortedCentres(prism, geompy.ShapeType["EDGE"])
-                IDlist_e = []
-                IDlist_e.append(geompy.GetSubShapeID(prism, prism_edges[0]))
-                IDlist_e.append(geompy.GetSubShapeID(prism, prism_edges[1]))
-                IDlist_e.append(geompy.GetSubShapeID(prism, prism_edges[2]))
-                # make a fillet on the specified edges of the given shape
-                fillet = geompy.MakeFillet(prism, 10., 15., geompy.ShapeType["EDGE"], IDlist_e)
-            """
-            theR1,theR2,Parameters = ParseParameters(theR1,theR2)
-            anObj = None
-            if theShapeType == ShapeType["EDGE"]:
-                anObj = self.LocalOp.MakeFilletEdgesR1R2(theShape, theR1, theR2, theListShapes)
-                RaiseIfFailed("MakeFilletEdgesR1R2", self.LocalOp)
-            else:
-                anObj = self.LocalOp.MakeFilletFacesR1R2(theShape, theR1, theR2, theListShapes)
-                RaiseIfFailed("MakeFilletFacesR1R2", self.LocalOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "fillet")
-            return anObj
-
-        ## Perform a fillet on the specified edges of the given shape
-        #  @param theShape  Wire Shape to perform fillet on.
-        #  @param theR  Fillet radius.
-        #  @param theListOfVertexes Global indices of vertexes to perform fillet on.
-        #    \note Global index of sub-shape can be obtained, using method GetSubShapeID()
-        #    \note The list of vertices could be empty,
-        #          in this case fillet will done done at all vertices in wire
-        #  @param doIgnoreSecantVertices If FALSE, fillet radius is always limited
-        #         by the length of the edges, nearest to the fillet vertex.
-        #         But sometimes the next edge is C1 continuous with the one, nearest to
-        #         the fillet point, and such two (or more) edges can be united to allow
-        #         bigger radius. Set this flag to TRUE to allow collinear edges union,
-        #         thus ignoring the secant vertex (vertices).
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the result shape.
-        #
-        #  @ref tui_fillet2d "Example"
-        def MakeFillet1D(self, theShape, theR, theListOfVertexes, doIgnoreSecantVertices = True, theName=None):
-            """
-            Perform a fillet on the specified edges of the given shape
-
-            Parameters:
-                theShape  Wire Shape to perform fillet on.
-                theR  Fillet radius.
-                theListOfVertexes Global indices of vertexes to perform fillet on.
-                doIgnoreSecantVertices If FALSE, fillet radius is always limited
-                    by the length of the edges, nearest to the fillet vertex.
-                    But sometimes the next edge is C1 continuous with the one, nearest to
-                    the fillet point, and such two (or more) edges can be united to allow
-                    bigger radius. Set this flag to TRUE to allow collinear edges union,
-                    thus ignoring the secant vertex (vertices).
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-            Note:
-                Global index of sub-shape can be obtained, using method geompy.GetSubShapeID
-
-                The list of vertices could be empty,in this case fillet will done done at all vertices in wire
-
-            Returns: 
-                New GEOM.GEOM_Object, containing the result shape.
-
-            Example of usage:  
-                # create wire
-                Wire_1 = geompy.MakeWire([Edge_12, Edge_7, Edge_11, Edge_6, Edge_1,Edge_4])
-                # make fillet at given wire vertices with giver radius
-                Fillet_1D_1 = geompy.MakeFillet1D(Wire_1, 55, [3, 4, 6, 8, 10])
-            """
-            # Example: see GEOM_TestAll.py
-            theR,doIgnoreSecantVertices,Parameters = ParseParameters(theR,doIgnoreSecantVertices)
-            anObj = self.LocalOp.MakeFillet1D(theShape, theR, theListOfVertexes, doIgnoreSecantVertices)
-            RaiseIfFailed("MakeFillet1D", self.LocalOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "fillet")
-            return anObj
-
-        ## Perform a fillet at the specified vertices of the given face/shell.
-        #  @param theShape Face or Shell shape to perform fillet on.
-        #  @param theR Fillet radius.
-        #  @param theListOfVertexes Global indices of vertexes to perform fillet on.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @note Global index of sub-shape can be obtained, using method GetSubShapeID().
-        #
-        #  @return New GEOM.GEOM_Object, containing the result shape.
-        #
-        #  @ref tui_fillet2d "Example"
-        def MakeFillet2D(self, theShape, theR, theListOfVertexes, theName=None):
-            """
-            Perform a fillet at the specified vertices of the given face/shell.
-
-            Parameters:
-                theShape  Face or Shell shape to perform fillet on.
-                theR  Fillet radius.
-                theListOfVertexes Global indices of vertexes to perform fillet on.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-            Note:
-                Global index of sub-shape can be obtained, using method geompy.GetSubShapeID
-
-            Returns: 
-                New GEOM.GEOM_Object, containing the result shape.
-
-            Example of usage:
-                face = geompy.MakeFaceHW(100, 100, 1)
-                fillet2d = geompy.MakeFillet2D(face, 30, [7, 9])
-            """
-            # Example: see GEOM_TestAll.py
-            theR,Parameters = ParseParameters(theR)
-            anObj = self.LocalOp.MakeFillet2D(theShape, theR, theListOfVertexes)
-            RaiseIfFailed("MakeFillet2D", self.LocalOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "fillet")
-            return anObj
-
-        ## Perform a symmetric chamfer on all edges of the given shape.
-        #  @param theShape Shape, to perform chamfer on.
-        #  @param theD Chamfer size along each face.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the result shape.
-        #
-        #  @ref tui_chamfer "Example 1"
-        #  \n @ref swig_MakeChamferAll "Example 2"
-        def MakeChamferAll(self, theShape, theD, theName=None):
-            """
-            Perform a symmetric chamfer on all edges of the given shape.
-
-            Parameters:
-                theShape Shape, to perform chamfer on.
-                theD Chamfer size along each face.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:     
-                New GEOM.GEOM_Object, containing the result shape.
-
-            Example of usage:
-                chamfer_all = geompy.MakeChamferAll(prism, 10.)
-            """
-            # Example: see GEOM_TestOthers.py
-            theD,Parameters = ParseParameters(theD)
-            anObj = self.LocalOp.MakeChamferAll(theShape, theD)
-            RaiseIfFailed("MakeChamferAll", self.LocalOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "chamfer")
-            return anObj
-
-        ## Perform a chamfer on edges, common to the specified faces,
-        #  with distance D1 on the Face1
-        #  @param theShape Shape, to perform chamfer on.
-        #  @param theD1 Chamfer size along \a theFace1.
-        #  @param theD2 Chamfer size along \a theFace2.
-        #  @param theFace1,theFace2 Global indices of two faces of \a theShape.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @note Global index of sub-shape can be obtained, using method GetSubShapeID().
-        #
-        #  @return New GEOM.GEOM_Object, containing the result shape.
-        #
-        #  @ref tui_chamfer "Example"
-        def MakeChamferEdge(self, theShape, theD1, theD2, theFace1, theFace2, theName=None):
-            """
-            Perform a chamfer on edges, common to the specified faces,
-            with distance D1 on the Face1
-
-            Parameters:
-                theShape Shape, to perform chamfer on.
-                theD1 Chamfer size along theFace1.
-                theD2 Chamfer size along theFace2.
-                theFace1,theFace2 Global indices of two faces of theShape.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Note:
-                Global index of sub-shape can be obtained, using method geompy.GetSubShapeID
-
-            Returns:      
-                New GEOM.GEOM_Object, containing the result shape.
-
-            Example of usage:
-                prism_faces = geompy.SubShapeAllSortedCentres(prism, geompy.ShapeType["FACE"])
-                f_ind_1 = geompy.GetSubShapeID(prism, prism_faces[0])
-                f_ind_2 = geompy.GetSubShapeID(prism, prism_faces[1])
-                chamfer_e = geompy.MakeChamferEdge(prism, 10., 10., f_ind_1, f_ind_2)
-            """
-            # Example: see GEOM_TestAll.py
-            theD1,theD2,Parameters = ParseParameters(theD1,theD2)
-            anObj = self.LocalOp.MakeChamferEdge(theShape, theD1, theD2, theFace1, theFace2)
-            RaiseIfFailed("MakeChamferEdge", self.LocalOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "chamfer")
-            return anObj
-
-        ## Perform a chamfer on edges
-        #  @param theShape Shape, to perform chamfer on.
-        #  @param theD Chamfer length
-        #  @param theAngle Angle of chamfer (angle in radians or a name of variable which defines angle in degrees)
-        #  @param theFace1,theFace2 Global indices of two faces of \a theShape.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @note Global index of sub-shape can be obtained, using method GetSubShapeID().
-        #
-        #  @return New GEOM.GEOM_Object, containing the result shape.
-        def MakeChamferEdgeAD(self, theShape, theD, theAngle, theFace1, theFace2, theName=None):
-            """
-            Perform a chamfer on edges
-
-            Parameters:
-                theShape Shape, to perform chamfer on.
-                theD1 Chamfer size along theFace1.
-                theAngle Angle of chamfer (angle in radians or a name of variable which defines angle in degrees).
-                theFace1,theFace2 Global indices of two faces of theShape.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Note:
-                Global index of sub-shape can be obtained, using method geompy.GetSubShapeID
-
-            Returns:      
-                New GEOM.GEOM_Object, containing the result shape.
-
-            Example of usage:
-                prism_faces = geompy.SubShapeAllSortedCentres(prism, geompy.ShapeType["FACE"])
-                f_ind_1 = geompy.GetSubShapeID(prism, prism_faces[0])
-                f_ind_2 = geompy.GetSubShapeID(prism, prism_faces[1])
-                ang = 30
-                chamfer_e = geompy.MakeChamferEdge(prism, 10., ang, f_ind_1, f_ind_2)
-            """
-            flag = False
-            if isinstance(theAngle,str):
-                flag = True
-            theD,theAngle,Parameters = ParseParameters(theD,theAngle)
-            if flag:
-                theAngle = theAngle*math.pi/180.0
-            anObj = self.LocalOp.MakeChamferEdgeAD(theShape, theD, theAngle, theFace1, theFace2)
-            RaiseIfFailed("MakeChamferEdgeAD", self.LocalOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "chamfer")
-            return anObj
-
-        ## Perform a chamfer on all edges of the specified faces,
-        #  with distance D1 on the first specified face (if several for one edge)
-        #  @param theShape Shape, to perform chamfer on.
-        #  @param theD1 Chamfer size along face from \a theFaces. If both faces,
-        #               connected to the edge, are in \a theFaces, \a theD1
-        #               will be get along face, which is nearer to \a theFaces beginning.
-        #  @param theD2 Chamfer size along another of two faces, connected to the edge.
-        #  @param theFaces Sequence of global indices of faces of \a theShape.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @note Global index of sub-shape can be obtained, using method GetSubShapeID().
-        #
-        #  @return New GEOM.GEOM_Object, containing the result shape.
-        #
-        #  @ref tui_chamfer "Example"
-        def MakeChamferFaces(self, theShape, theD1, theD2, theFaces, theName=None):
-            """
-            Perform a chamfer on all edges of the specified faces,
-            with distance D1 on the first specified face (if several for one edge)
-
-            Parameters:
-                theShape Shape, to perform chamfer on.
-                theD1 Chamfer size along face from  theFaces. If both faces,
-                      connected to the edge, are in theFaces, theD1
-                      will be get along face, which is nearer to theFaces beginning.
-                theD2 Chamfer size along another of two faces, connected to the edge.
-                theFaces Sequence of global indices of faces of theShape.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-                
-            Note: Global index of sub-shape can be obtained, using method geompy.GetSubShapeID().
-
-            Returns:  
-                New GEOM.GEOM_Object, containing the result shape.
-            """
-            # Example: see GEOM_TestAll.py
-            theD1,theD2,Parameters = ParseParameters(theD1,theD2)
-            anObj = self.LocalOp.MakeChamferFaces(theShape, theD1, theD2, theFaces)
-            RaiseIfFailed("MakeChamferFaces", self.LocalOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "chamfer")
-            return anObj
-
-        ## The Same that MakeChamferFaces() but with params theD is chamfer lenght and
-        #  theAngle is Angle of chamfer (angle in radians or a name of variable which defines angle in degrees)
-        #
-        #  @ref swig_FilletChamfer "Example"
-        def MakeChamferFacesAD(self, theShape, theD, theAngle, theFaces, theName=None):
-            """
-            The Same that geompy.MakeChamferFaces but with params theD is chamfer lenght and
-            theAngle is Angle of chamfer (angle in radians or a name of variable which defines angle in degrees)
-            """
-            flag = False
-            if isinstance(theAngle,str):
-                flag = True
-            theD,theAngle,Parameters = ParseParameters(theD,theAngle)
-            if flag:
-                theAngle = theAngle*math.pi/180.0
-            anObj = self.LocalOp.MakeChamferFacesAD(theShape, theD, theAngle, theFaces)
-            RaiseIfFailed("MakeChamferFacesAD", self.LocalOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "chamfer")
-            return anObj
-
-        ## Perform a chamfer on edges,
-        #  with distance D1 on the first specified face (if several for one edge)
-        #  @param theShape Shape, to perform chamfer on.
-        #  @param theD1,theD2 Chamfer size
-        #  @param theEdges Sequence of edges of \a theShape.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the result shape.
-        #
-        #  @ref swig_FilletChamfer "Example"
-        def MakeChamferEdges(self, theShape, theD1, theD2, theEdges, theName=None):
-            """
-            Perform a chamfer on edges,
-            with distance D1 on the first specified face (if several for one edge)
-            
-            Parameters:
-                theShape Shape, to perform chamfer on.
-                theD1,theD2 Chamfer size
-                theEdges Sequence of edges of theShape.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the result shape.
-            """
-            theD1,theD2,Parameters = ParseParameters(theD1,theD2)
-            anObj = self.LocalOp.MakeChamferEdges(theShape, theD1, theD2, theEdges)
-            RaiseIfFailed("MakeChamferEdges", self.LocalOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "chamfer")
-            return anObj
-
-        ## The Same that MakeChamferEdges() but with params theD is chamfer lenght and
-        #  theAngle is Angle of chamfer (angle in radians or a name of variable which defines angle in degrees)
-        def MakeChamferEdgesAD(self, theShape, theD, theAngle, theEdges, theName=None):
-            """
-            The Same that geompy.MakeChamferEdges but with params theD is chamfer lenght and
-            theAngle is Angle of chamfer (angle in radians or a name of variable which defines angle in degrees)
-            """
-            flag = False
-            if isinstance(theAngle,str):
-                flag = True
-            theD,theAngle,Parameters = ParseParameters(theD,theAngle)
-            if flag:
-                theAngle = theAngle*math.pi/180.0
-            anObj = self.LocalOp.MakeChamferEdgesAD(theShape, theD, theAngle, theEdges)
-            RaiseIfFailed("MakeChamferEdgesAD", self.LocalOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "chamfer")
-            return anObj
-
-        ## @sa MakeChamferEdge(), MakeChamferFaces()
-        #
-        #  @ref swig_MakeChamfer "Example"
-        def MakeChamfer(self, aShape, d1, d2, aShapeType, ListShape, theName=None):
-            """
-            See geompy.MakeChamferEdge() and geompy.MakeChamferFaces() functions for more information.
-            """
-            # Example: see GEOM_TestOthers.py
-            anObj = None
-            # note: auto-publishing is done in self.MakeChamferEdge() or self.MakeChamferFaces()
-            if aShapeType == ShapeType["EDGE"]:
-                anObj = self.MakeChamferEdge(aShape,d1,d2,ListShape[0],ListShape[1],theName)
-            else:
-                anObj = self.MakeChamferFaces(aShape,d1,d2,ListShape,theName)
-            return anObj
-            
-        ## Remove material from a solid by extrusion of the base shape on the given distance.
-        #  @param theInit Shape to remove material from. It must be a solid or 
-        #  a compound made of a single solid.
-        #  @param theBase Closed edge or wire defining the base shape to be extruded.
-        #  @param theH Prism dimension along the normal to theBase
-        #  @param theAngle Draft angle in degrees.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the initial shape with removed material 
-        #
-        #  @ref tui_creation_prism "Example"
-        def MakeExtrudedCut(self, theInit, theBase, theH, theAngle, theName=None):
-            """
-            Add material to a solid by extrusion of the base shape on the given distance.
-
-            Parameters:
-                theInit Shape to remove material from. It must be a solid or a compound made of a single solid.
-                theBase Closed edge or wire defining the base shape to be extruded.
-                theH Prism dimension along the normal  to theBase
-                theAngle Draft angle in degrees.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object,  containing the initial shape with removed material.
-            """
-            # Example: see GEOM_TestAll.py
-            #theH,Parameters = ParseParameters(theH)
-            anObj = self.PrimOp.MakeDraftPrism(theInit, theBase, theH, theAngle, False)
-            RaiseIfFailed("MakeExtrudedBoss", self.PrimOp)
-            #anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "extrudedCut")
-            return anObj   
-            
-        ## Add material to a solid by extrusion of the base shape on the given distance.
-        #  @param theInit Shape to add material to. It must be a solid or 
-        #  a compound made of a single solid.
-        #  @param theBase Closed edge or wire defining the base shape to be extruded.
-        #  @param theH Prism dimension along the normal to theBase
-        #  @param theAngle Draft angle in degrees.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the initial shape with added material 
-        #
-        #  @ref tui_creation_prism "Example"
-        def MakeExtrudedBoss(self, theInit, theBase, theH, theAngle, theName=None):
-            """
-            Add material to a solid by extrusion of the base shape on the given distance.
-
-            Parameters:
-                theInit Shape to add material to. It must be a solid or a compound made of a single solid.
-                theBase Closed edge or wire defining the base shape to be extruded.
-                theH Prism dimension along the normal  to theBase
-                theAngle Draft angle in degrees.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object,  containing the initial shape with added material.
-            """
-            # Example: see GEOM_TestAll.py
-            #theH,Parameters = ParseParameters(theH)
-            anObj = self.PrimOp.MakeDraftPrism(theInit, theBase, theH, theAngle, True)
-            RaiseIfFailed("MakeExtrudedBoss", self.PrimOp)
-            #anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "extrudedBoss")
-            return anObj   
-
-        # end of l3_local
-        ## @}
-
-        ## @addtogroup l3_basic_op
-        ## @{
-
-        ## Perform an Archimde operation on the given shape with given parameters.
-        #  The object presenting the resulting face is returned.
-        #  @param theShape Shape to be put in water.
-        #  @param theWeight Weight og the shape.
-        #  @param theWaterDensity Density of the water.
-        #  @param theMeshDeflection Deflection of the mesh, using to compute the section.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing a section of \a theShape
-        #          by a plane, corresponding to water level.
-        #
-        #  @ref tui_archimede "Example"
-        def Archimede(self, theShape, theWeight, theWaterDensity, theMeshDeflection, theName=None):
-            """
-            Perform an Archimde operation on the given shape with given parameters.
-            The object presenting the resulting face is returned.
-
-            Parameters: 
-                theShape Shape to be put in water.
-                theWeight Weight og the shape.
-                theWaterDensity Density of the water.
-                theMeshDeflection Deflection of the mesh, using to compute the section.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns: 
-                New GEOM.GEOM_Object, containing a section of theShape
-                by a plane, corresponding to water level.
-            """
-            # Example: see GEOM_TestAll.py
-            theWeight,theWaterDensity,theMeshDeflection,Parameters = ParseParameters(
-              theWeight,theWaterDensity,theMeshDeflection)
-            anObj = self.LocalOp.MakeArchimede(theShape, theWeight, theWaterDensity, theMeshDeflection)
-            RaiseIfFailed("MakeArchimede", self.LocalOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "archimede")
-            return anObj
-
-        # end of l3_basic_op
-        ## @}
-
-        ## @addtogroup l2_measure
-        ## @{
-
-        ## Get point coordinates
-        #  @return [x, y, z]
-        #
-        #  @ref tui_measurement_tools_page "Example"
-        def PointCoordinates(self,Point):
-            """
-            Get point coordinates
-
-            Returns:
-                [x, y, z]
-            """
-            # Example: see GEOM_TestMeasures.py
-            aTuple = self.MeasuOp.PointCoordinates(Point)
-            RaiseIfFailed("PointCoordinates", self.MeasuOp)
-            return aTuple 
-        
-        ## Get vector coordinates
-        #  @return [x, y, z]
-        #
-        #  @ref tui_measurement_tools_page "Example"
-        def VectorCoordinates(self,Vector):
-            """
-            Get vector coordinates
-
-            Returns:
-                [x, y, z]
-            """
-
-            p1=self.GetFirstVertex(Vector)
-            p2=self.GetLastVertex(Vector)
-            
-            X1=self.PointCoordinates(p1)
-            X2=self.PointCoordinates(p2)
-
-            return (X2[0]-X1[0],X2[1]-X1[1],X2[2]-X1[2])
-
-
-        ## Compute cross product
-        #  @return vector w=u^v
-        #
-        #  @ref tui_measurement_tools_page "Example"
-        def CrossProduct(self, Vector1, Vector2):
-            """ 
-            Compute cross product
-            
-            Returns: vector w=u^v
-            """
-            u=self.VectorCoordinates(Vector1)
-            v=self.VectorCoordinates(Vector2)
-            w=self.MakeVectorDXDYDZ(u[1]*v[2]-u[2]*v[1], u[2]*v[0]-u[0]*v[2], u[0]*v[1]-u[1]*v[0])
-            
-            return w
-        
-        ## Compute cross product
-        #  @return dot product  p=u.v
-        #
-        #  @ref tui_measurement_tools_page "Example"
-        def DotProduct(self, Vector1, Vector2):
-            """ 
-            Compute cross product
-            
-            Returns: dot product  p=u.v
-            """
-            u=self.VectorCoordinates(Vector1)
-            v=self.VectorCoordinates(Vector2)
-            p=u[0]*v[0]+u[1]*v[1]+u[2]*v[2]
-            
-            return p
-
-
-        ## Get summarized length of all wires,
-        #  area of surface and volume of the given shape.
-        #  @param theShape Shape to define properties of.
-        #  @return [theLength, theSurfArea, theVolume]\n
-        #  theLength:   Summarized length of all wires of the given shape.\n
-        #  theSurfArea: Area of surface of the given shape.\n
-        #  theVolume:   Volume of the given shape.
-        #
-        #  @ref tui_measurement_tools_page "Example"
-        def BasicProperties(self,theShape):
-            """
-            Get summarized length of all wires,
-            area of surface and volume of the given shape.
-
-            Parameters: 
-                theShape Shape to define properties of.
-
-            Returns:
-                [theLength, theSurfArea, theVolume]
-                 theLength:   Summarized length of all wires of the given shape.
-                 theSurfArea: Area of surface of the given shape.
-                 theVolume:   Volume of the given shape.
-            """
-            # Example: see GEOM_TestMeasures.py
-            aTuple = self.MeasuOp.GetBasicProperties(theShape)
-            RaiseIfFailed("GetBasicProperties", self.MeasuOp)
-            return aTuple
-
-        ## Get parameters of bounding box of the given shape
-        #  @param theShape Shape to obtain bounding box of.
-        #  @return [Xmin,Xmax, Ymin,Ymax, Zmin,Zmax]
-        #  Xmin,Xmax: Limits of shape along OX axis.
-        #  Ymin,Ymax: Limits of shape along OY axis.
-        #  Zmin,Zmax: Limits of shape along OZ axis.
-        #
-        #  @ref tui_measurement_tools_page "Example"
-        def BoundingBox (self, theShape):
-            """
-            Get parameters of bounding box of the given shape
-
-            Parameters: 
-                theShape Shape to obtain bounding box of.
-
-            Returns:
-                [Xmin,Xmax, Ymin,Ymax, Zmin,Zmax]
-                 Xmin,Xmax: Limits of shape along OX axis.
-                 Ymin,Ymax: Limits of shape along OY axis.
-                 Zmin,Zmax: Limits of shape along OZ axis.
-            """
-            # Example: see GEOM_TestMeasures.py
-            aTuple = self.MeasuOp.GetBoundingBox(theShape)
-            RaiseIfFailed("GetBoundingBox", self.MeasuOp)
-            return aTuple
-
-        ## Get bounding box of the given shape
-        #  @param theShape Shape to obtain bounding box of.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created box.
-        #
-        #  @ref tui_measurement_tools_page "Example"
-        def MakeBoundingBox (self, theShape, theName=None):
-            """
-            Get bounding box of the given shape
-
-            Parameters: 
-                theShape Shape to obtain bounding box of.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the created box.
-            """
-            # Example: see GEOM_TestMeasures.py
-            anObj = self.MeasuOp.MakeBoundingBox(theShape)
-            RaiseIfFailed("MakeBoundingBox", self.MeasuOp)
-            self._autoPublish(anObj, theName, "bndbox")
-            return anObj
-
-        ## Get inertia matrix and moments of inertia of theShape.
-        #  @param theShape Shape to calculate inertia of.
-        #  @return [I11,I12,I13, I21,I22,I23, I31,I32,I33, Ix,Iy,Iz]
-        #  I(1-3)(1-3): Components of the inertia matrix of the given shape.
-        #  Ix,Iy,Iz:    Moments of inertia of the given shape.
-        #
-        #  @ref tui_measurement_tools_page "Example"
-        def Inertia(self,theShape):
-            """
-            Get inertia matrix and moments of inertia of theShape.
-
-            Parameters: 
-                theShape Shape to calculate inertia of.
-
-            Returns:
-                [I11,I12,I13, I21,I22,I23, I31,I32,I33, Ix,Iy,Iz]
-                 I(1-3)(1-3): Components of the inertia matrix of the given shape.
-                 Ix,Iy,Iz:    Moments of inertia of the given shape.
-            """
-            # Example: see GEOM_TestMeasures.py
-            aTuple = self.MeasuOp.GetInertia(theShape)
-            RaiseIfFailed("GetInertia", self.MeasuOp)
-            return aTuple
-
-        ## Get if coords are included in the shape (ST_IN or ST_ON)
-        #  @param theShape Shape
-        #  @param coords list of points coordinates [x1, y1, z1, x2, y2, z2, ...]
-        #  @param tolerance to be used (default is 1.0e-7)
-        #  @return list_of_boolean = [res1, res2, ...]
-        def AreCoordsInside(self, theShape, coords, tolerance=1.e-7):
-            """
-            Get if coords are included in the shape (ST_IN or ST_ON)
-            
-            Parameters: 
-                theShape Shape
-                coords list of points coordinates [x1, y1, z1, x2, y2, z2, ...]
-                tolerance to be used (default is 1.0e-7)
-
-            Returns:
-                list_of_boolean = [res1, res2, ...]
-            """
-            return self.MeasuOp.AreCoordsInside(theShape, coords, tolerance)
-
-        ## Get minimal distance between the given shapes.
-        #  @param theShape1,theShape2 Shapes to find minimal distance between.
-        #  @return Value of the minimal distance between the given shapes.
-        #
-        #  @ref tui_measurement_tools_page "Example"
-        def MinDistance(self, theShape1, theShape2):
-            """
-            Get minimal distance between the given shapes.
-            
-            Parameters: 
-                theShape1,theShape2 Shapes to find minimal distance between.
-
-            Returns:    
-                Value of the minimal distance between the given shapes.
-            """
-            # Example: see GEOM_TestMeasures.py
-            aTuple = self.MeasuOp.GetMinDistance(theShape1, theShape2)
-            RaiseIfFailed("GetMinDistance", self.MeasuOp)
-            return aTuple[0]
-
-        ## Get minimal distance between the given shapes.
-        #  @param theShape1,theShape2 Shapes to find minimal distance between.
-        #  @return Value of the minimal distance between the given shapes, in form of list
-        #          [Distance, DX, DY, DZ].
-        #
-        #  @ref swig_all_measure "Example"
-        def MinDistanceComponents(self, theShape1, theShape2):
-            """
-            Get minimal distance between the given shapes.
-
-            Parameters: 
-                theShape1,theShape2 Shapes to find minimal distance between.
-
-            Returns:  
-                Value of the minimal distance between the given shapes, in form of list
-                [Distance, DX, DY, DZ]
-            """
-            # Example: see GEOM_TestMeasures.py
-            aTuple = self.MeasuOp.GetMinDistance(theShape1, theShape2)
-            RaiseIfFailed("GetMinDistance", self.MeasuOp)
-            aRes = [aTuple[0], aTuple[4] - aTuple[1], aTuple[5] - aTuple[2], aTuple[6] - aTuple[3]]
-            return aRes
-
-        ## Get closest points of the given shapes.
-        #  @param theShape1,theShape2 Shapes to find closest points of.
-        #  @return The number of found solutions (-1 in case of infinite number of
-        #          solutions) and a list of (X, Y, Z) coordinates for all couples of points.
-        #
-        #  @ref tui_measurement_tools_page "Example"
-        def ClosestPoints (self, theShape1, theShape2):
-            """
-            Get closest points of the given shapes.
-
-            Parameters: 
-                theShape1,theShape2 Shapes to find closest points of.
-
-            Returns:    
-                The number of found solutions (-1 in case of infinite number of
-                solutions) and a list of (X, Y, Z) coordinates for all couples of points.
-            """
-            # Example: see GEOM_TestMeasures.py
-            aTuple = self.MeasuOp.ClosestPoints(theShape1, theShape2)
-            RaiseIfFailed("ClosestPoints", self.MeasuOp)
-            return aTuple
-
-        ## Get angle between the given shapes in degrees.
-        #  @param theShape1,theShape2 Lines or linear edges to find angle between.
-        #  @note If both arguments are vectors, the angle is computed in accordance
-        #        with their orientations, otherwise the minimum angle is computed.
-        #  @return Value of the angle between the given shapes in degrees.
-        #
-        #  @ref tui_measurement_tools_page "Example"
-        def GetAngle(self, theShape1, theShape2):
-            """
-            Get angle between the given shapes in degrees.
-
-            Parameters: 
-                theShape1,theShape2 Lines or linear edges to find angle between.
-
-            Note:
-                If both arguments are vectors, the angle is computed in accordance
-                with their orientations, otherwise the minimum angle is computed.
-
-            Returns:  
-                Value of the angle between the given shapes in degrees.
-            """
-            # Example: see GEOM_TestMeasures.py
-            anAngle = self.MeasuOp.GetAngle(theShape1, theShape2)
-            RaiseIfFailed("GetAngle", self.MeasuOp)
-            return anAngle
-
-        ## Get angle between the given shapes in radians.
-        #  @param theShape1,theShape2 Lines or linear edges to find angle between.
-        #  @note If both arguments are vectors, the angle is computed in accordance
-        #        with their orientations, otherwise the minimum angle is computed.
-        #  @return Value of the angle between the given shapes in radians.
-        #
-        #  @ref tui_measurement_tools_page "Example"
-        def GetAngleRadians(self, theShape1, theShape2):
-            """
-            Get angle between the given shapes in radians.
-
-            Parameters: 
-                theShape1,theShape2 Lines or linear edges to find angle between.
-
-                
-            Note:
-                If both arguments are vectors, the angle is computed in accordance
-                with their orientations, otherwise the minimum angle is computed.
-
-            Returns:  
-                Value of the angle between the given shapes in radians.
-            """
-            # Example: see GEOM_TestMeasures.py
-            anAngle = self.MeasuOp.GetAngle(theShape1, theShape2)*math.pi/180.
-            RaiseIfFailed("GetAngle", self.MeasuOp)
-            return anAngle
-
-        ## Get angle between the given vectors in degrees.
-        #  @param theShape1,theShape2 Vectors to find angle between.
-        #  @param theFlag If True, the normal vector is defined by the two vectors cross,
-        #                 if False, the opposite vector to the normal vector is used.
-        #  @return Value of the angle between the given vectors in degrees.
-        #
-        #  @ref tui_measurement_tools_page "Example"
-        def GetAngleVectors(self, theShape1, theShape2, theFlag = True):
-            """
-            Get angle between the given vectors in degrees.
-
-            Parameters: 
-                theShape1,theShape2 Vectors to find angle between.
-                theFlag If True, the normal vector is defined by the two vectors cross,
-                        if False, the opposite vector to the normal vector is used.
-
-            Returns:  
-                Value of the angle between the given vectors in degrees.
-            """
-            anAngle = self.MeasuOp.GetAngleBtwVectors(theShape1, theShape2)
-            if not theFlag:
-                anAngle = 360. - anAngle
-            RaiseIfFailed("GetAngleVectors", self.MeasuOp)
-            return anAngle
-
-        ## The same as GetAngleVectors, but the result is in radians.
-        def GetAngleRadiansVectors(self, theShape1, theShape2, theFlag = True):
-            """
-            Get angle between the given vectors in radians.
-
-            Parameters: 
-                theShape1,theShape2 Vectors to find angle between.
-                theFlag If True, the normal vector is defined by the two vectors cross,
-                        if False, the opposite vector to the normal vector is used.
-
-            Returns:  
-                Value of the angle between the given vectors in radians.
-            """
-            anAngle = self.GetAngleVectors(theShape1, theShape2, theFlag)*math.pi/180.
-            return anAngle
-
-        ## @name Curve Curvature Measurement
-        #  Methods for receiving radius of curvature of curves
-        #  in the given point
-        ## @{
-
-        ## Measure curvature of a curve at a point, set by parameter.
-        #  @param theCurve a curve.
-        #  @param theParam parameter.
-        #  @return radius of curvature of \a theCurve.
-        #
-        #  @ref swig_todo "Example"
-        def CurveCurvatureByParam(self, theCurve, theParam):
-            """
-            Measure curvature of a curve at a point, set by parameter.
-
-            Parameters: 
-                theCurve a curve.
-                theParam parameter.
-
-            Returns: 
-                radius of curvature of theCurve.
-            """
-            # Example: see GEOM_TestMeasures.py
-            aCurv = self.MeasuOp.CurveCurvatureByParam(theCurve,theParam)
-            RaiseIfFailed("CurveCurvatureByParam", self.MeasuOp)
-            return aCurv
-
-        ## Measure curvature of a curve at a point.
-        #  @param theCurve a curve.
-        #  @param thePoint given point.
-        #  @return radius of curvature of \a theCurve.
-        #
-        #  @ref swig_todo "Example"
-        def CurveCurvatureByPoint(self, theCurve, thePoint):
-            """
-            Measure curvature of a curve at a point.
-
-            Parameters: 
-                theCurve a curve.
-                thePoint given point.
-
-            Returns: 
-                radius of curvature of theCurve.           
-            """
-            aCurv = self.MeasuOp.CurveCurvatureByPoint(theCurve,thePoint)
-            RaiseIfFailed("CurveCurvatureByPoint", self.MeasuOp)
-            return aCurv
-        ## @}
-
-        ## @name Surface Curvature Measurement
-        #  Methods for receiving max and min radius of curvature of surfaces
-        #  in the given point
-        ## @{
-
-        ## Measure max radius of curvature of surface.
-        #  @param theSurf the given surface.
-        #  @param theUParam Value of U-parameter on the referenced surface.
-        #  @param theVParam Value of V-parameter on the referenced surface.
-        #  @return max radius of curvature of theSurf.
-        #
-        ## @ref swig_todo "Example"
-        def MaxSurfaceCurvatureByParam(self, theSurf, theUParam, theVParam):
-            """
-            Measure max radius of curvature of surface.
-
-            Parameters: 
-                theSurf the given surface.
-                theUParam Value of U-parameter on the referenced surface.
-                theVParam Value of V-parameter on the referenced surface.
-                
-            Returns:     
-                max radius of curvature of theSurf.
-            """
-            # Example: see GEOM_TestMeasures.py
-            aSurf = self.MeasuOp.MaxSurfaceCurvatureByParam(theSurf,theUParam,theVParam)
-            RaiseIfFailed("MaxSurfaceCurvatureByParam", self.MeasuOp)
-            return aSurf
-
-        ## Measure max radius of curvature of surface in the given point
-        #  @param theSurf the given surface.
-        #  @param thePoint given point.
-        #  @return max radius of curvature of theSurf.
-        #
-        ## @ref swig_todo "Example"
-        def MaxSurfaceCurvatureByPoint(self, theSurf, thePoint):
-            """
-            Measure max radius of curvature of surface in the given point.
-
-            Parameters: 
-                theSurf the given surface.
-                thePoint given point.
-                
-            Returns:     
-                max radius of curvature of theSurf.          
-            """
-            aSurf = self.MeasuOp.MaxSurfaceCurvatureByPoint(theSurf,thePoint)
-            RaiseIfFailed("MaxSurfaceCurvatureByPoint", self.MeasuOp)
-            return aSurf
-
-        ## Measure min radius of curvature of surface.
-        #  @param theSurf the given surface.
-        #  @param theUParam Value of U-parameter on the referenced surface.
-        #  @param theVParam Value of V-parameter on the referenced surface.
-        #  @return min radius of curvature of theSurf.
-        #   
-        ## @ref swig_todo "Example"
-        def MinSurfaceCurvatureByParam(self, theSurf, theUParam, theVParam):
-            """
-            Measure min radius of curvature of surface.
-
-            Parameters: 
-                theSurf the given surface.
-                theUParam Value of U-parameter on the referenced surface.
-                theVParam Value of V-parameter on the referenced surface.
-                
-            Returns:     
-                Min radius of curvature of theSurf.
-            """
-            aSurf = self.MeasuOp.MinSurfaceCurvatureByParam(theSurf,theUParam,theVParam)
-            RaiseIfFailed("MinSurfaceCurvatureByParam", self.MeasuOp)
-            return aSurf
-
-        ## Measure min radius of curvature of surface in the given point
-        #  @param theSurf the given surface.
-        #  @param thePoint given point.
-        #  @return min radius of curvature of theSurf.
-        #
-        ## @ref swig_todo "Example"
-        def MinSurfaceCurvatureByPoint(self, theSurf, thePoint):
-            """
-            Measure min radius of curvature of surface in the given point.
-
-            Parameters: 
-                theSurf the given surface.
-                thePoint given point.
-                
-            Returns:     
-                Min radius of curvature of theSurf.          
-            """
-            aSurf = self.MeasuOp.MinSurfaceCurvatureByPoint(theSurf,thePoint)
-            RaiseIfFailed("MinSurfaceCurvatureByPoint", self.MeasuOp)
-            return aSurf
-        ## @}
-
-        ## Get min and max tolerances of sub-shapes of theShape
-        #  @param theShape Shape, to get tolerances of.
-        #  @return [FaceMin,FaceMax, EdgeMin,EdgeMax, VertMin,VertMax]\n
-        #  FaceMin,FaceMax: Min and max tolerances of the faces.\n
-        #  EdgeMin,EdgeMax: Min and max tolerances of the edges.\n
-        #  VertMin,VertMax: Min and max tolerances of the vertices.
-        #
-        #  @ref tui_measurement_tools_page "Example"
-        def Tolerance(self,theShape):
-            """
-            Get min and max tolerances of sub-shapes of theShape
-
-            Parameters: 
-                theShape Shape, to get tolerances of.
-
-            Returns:    
-                [FaceMin,FaceMax, EdgeMin,EdgeMax, VertMin,VertMax]
-                 FaceMin,FaceMax: Min and max tolerances of the faces.
-                 EdgeMin,EdgeMax: Min and max tolerances of the edges.
-                 VertMin,VertMax: Min and max tolerances of the vertices.
-            """
-            # Example: see GEOM_TestMeasures.py
-            aTuple = self.MeasuOp.GetTolerance(theShape)
-            RaiseIfFailed("GetTolerance", self.MeasuOp)
-            return aTuple
-
-        ## Obtain description of the given shape (number of sub-shapes of each type)
-        #  @param theShape Shape to be described.
-        #  @return Description of the given shape.
-        #
-        #  @ref tui_measurement_tools_page "Example"
-        def WhatIs(self,theShape):
-            """
-            Obtain description of the given shape (number of sub-shapes of each type)
-
-            Parameters:
-                theShape Shape to be described.
-
-            Returns:
-                Description of the given shape.
-            """
-            # Example: see GEOM_TestMeasures.py
-            aDescr = self.MeasuOp.WhatIs(theShape)
-            RaiseIfFailed("WhatIs", self.MeasuOp)
-            return aDescr
-
-        ## Obtain quantity of shapes of the given type in \a theShape.
-        #  If \a theShape is of type \a theType, it is also counted.
-        #  @param theShape Shape to be described.
-        #  @param theType the given ShapeType().
-        #  @return Quantity of shapes of type \a theType in \a theShape.
-        #
-        #  @ref tui_measurement_tools_page "Example"
-        def NbShapes (self, theShape, theType):
-            """
-            Obtain quantity of shapes of the given type in theShape.
-            If theShape is of type theType, it is also counted.
-
-            Parameters:
-                theShape Shape to be described.
-                theType the given geompy.ShapeType
-
-            Returns:
-                Quantity of shapes of type theType in theShape.
-            """
-            # Example: see GEOM_TestMeasures.py
-            listSh = self.SubShapeAllIDs(theShape, theType)
-            Nb = len(listSh)
-            t       = EnumToLong(theShape.GetShapeType())
-            theType = EnumToLong(theType)
-            if t == theType:
-                Nb = Nb + 1
-                pass
-            return Nb
-
-        ## Obtain quantity of shapes of each type in \a theShape.
-        #  The \a theShape is also counted.
-        #  @param theShape Shape to be described.
-        #  @return Dictionary of ShapeType() with bound quantities of shapes.
-        #
-        #  @ref tui_measurement_tools_page "Example"
-        def ShapeInfo (self, theShape):
-            """
-            Obtain quantity of shapes of each type in theShape.
-            The theShape is also counted.
-
-            Parameters:
-                theShape Shape to be described.
-
-            Returns:
-                Dictionary of geompy.ShapeType with bound quantities of shapes.
-            """
-            # Example: see GEOM_TestMeasures.py
-            aDict = {}
-            for typeSh in ShapeType:
-                if typeSh in ( "AUTO", "SHAPE" ): continue
-                listSh = self.SubShapeAllIDs(theShape, ShapeType[typeSh])
-                Nb = len(listSh)
-                if EnumToLong(theShape.GetShapeType()) == ShapeType[typeSh]:
-                    Nb = Nb + 1
-                    pass
-                aDict[typeSh] = Nb
-                pass
-            return aDict
-
-        ## Get a point, situated at the centre of mass of theShape.
-        #  @param theShape Shape to define centre of mass of.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created point.
-        #
-        #  @ref tui_measurement_tools_page "Example"
-        def MakeCDG(self, theShape, theName=None):
-            """
-            Get a point, situated at the centre of mass of theShape.
-
-            Parameters:
-                theShape Shape to define centre of mass of.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the created point.
-            """
-            # Example: see GEOM_TestMeasures.py
-            anObj = self.MeasuOp.GetCentreOfMass(theShape)
-            RaiseIfFailed("GetCentreOfMass", self.MeasuOp)
-            self._autoPublish(anObj, theName, "centerOfMass")
-            return anObj
-
-        ## Get a vertex sub-shape by index depended with orientation.
-        #  @param theShape Shape to find sub-shape.
-        #  @param theIndex Index to find vertex by this index (starting from zero)
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created vertex.
-        #
-        #  @ref tui_measurement_tools_page "Example"
-        def GetVertexByIndex(self, theShape, theIndex, theName=None):
-            """
-            Get a vertex sub-shape by index depended with orientation.
-
-            Parameters:
-                theShape Shape to find sub-shape.
-                theIndex Index to find vertex by this index (starting from zero)
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the created vertex.
-            """
-            # Example: see GEOM_TestMeasures.py
-            anObj = self.MeasuOp.GetVertexByIndex(theShape, theIndex)
-            RaiseIfFailed("GetVertexByIndex", self.MeasuOp)
-            self._autoPublish(anObj, theName, "vertex")
-            return anObj
-
-        ## Get the first vertex of wire/edge depended orientation.
-        #  @param theShape Shape to find first vertex.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created vertex.
-        #
-        #  @ref tui_measurement_tools_page "Example"
-        def GetFirstVertex(self, theShape, theName=None):
-            """
-            Get the first vertex of wire/edge depended orientation.
-
-            Parameters:
-                theShape Shape to find first vertex.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:    
-                New GEOM.GEOM_Object, containing the created vertex.
-            """
-            # Example: see GEOM_TestMeasures.py
-            # note: auto-publishing is done in self.GetVertexByIndex()
-            anObj = self.GetVertexByIndex(theShape, 0, theName)
-            RaiseIfFailed("GetFirstVertex", self.MeasuOp)
-            return anObj
-
-        ## Get the last vertex of wire/edge depended orientation.
-        #  @param theShape Shape to find last vertex.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created vertex.
-        #
-        #  @ref tui_measurement_tools_page "Example"
-        def GetLastVertex(self, theShape, theName=None):
-            """
-            Get the last vertex of wire/edge depended orientation.
-
-            Parameters: 
-                theShape Shape to find last vertex.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:   
-                New GEOM.GEOM_Object, containing the created vertex.
-            """
-            # Example: see GEOM_TestMeasures.py
-            nb_vert =  self.ShapesOp.NumberOfSubShapes(theShape, ShapeType["VERTEX"])
-            # note: auto-publishing is done in self.GetVertexByIndex()
-            anObj = self.GetVertexByIndex(theShape, (nb_vert-1), theName)
-            RaiseIfFailed("GetLastVertex", self.MeasuOp)
-            return anObj
-
-        ## Get a normale to the given face. If the point is not given,
-        #  the normale is calculated at the center of mass.
-        #  @param theFace Face to define normale of.
-        #  @param theOptionalPoint Point to compute the normale at.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created vector.
-        #
-        #  @ref swig_todo "Example"
-        def GetNormal(self, theFace, theOptionalPoint = None, theName=None):
-            """
-            Get a normale to the given face. If the point is not given,
-            the normale is calculated at the center of mass.
-            
-            Parameters: 
-                theFace Face to define normale of.
-                theOptionalPoint Point to compute the normale at.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:   
-                New GEOM.GEOM_Object, containing the created vector.
-            """
-            # Example: see GEOM_TestMeasures.py
-            anObj = self.MeasuOp.GetNormal(theFace, theOptionalPoint)
-            RaiseIfFailed("GetNormal", self.MeasuOp)
-            self._autoPublish(anObj, theName, "normal")
-            return anObj
-
-        ## Check a topology of the given shape.
-        #  @param theShape Shape to check validity of.
-        #  @param theIsCheckGeom If FALSE, only the shape's topology will be checked, \n
-        #                        if TRUE, the shape's geometry will be checked also.
-        #  @param theReturnStatus If FALSE and if theShape is invalid, a description \n
-        #                        of problem is printed.
-        #                        if TRUE and if theShape is invalid, the description 
-        #                        of problem is also returned.
-        #  @return TRUE, if the shape "seems to be valid".
-        #
-        #  @ref tui_measurement_tools_page "Example"
-        def CheckShape(self,theShape, theIsCheckGeom = 0, theReturnStatus = 0):
-            """
-            Check a topology of the given shape.
-
-            Parameters: 
-                theShape Shape to check validity of.
-                theIsCheckGeom If FALSE, only the shape's topology will be checked,
-                               if TRUE, the shape's geometry will be checked also.
-                theReturnStatus If FALSE and if theShape is invalid, a description
-                                of problem is printed.
-                                if TRUE and if theShape is invalid, the description 
-                                of problem is returned.
-
-            Returns:   
-                TRUE, if the shape "seems to be valid".
-                If theShape is invalid, prints a description of problem.
-                This description can also be returned.
-            """
-            # Example: see GEOM_TestMeasures.py
-            if theIsCheckGeom:
-                (IsValid, Status) = self.MeasuOp.CheckShapeWithGeometry(theShape)
-                RaiseIfFailed("CheckShapeWithGeometry", self.MeasuOp)
-            else:
-                (IsValid, Status) = self.MeasuOp.CheckShape(theShape)
-                RaiseIfFailed("CheckShape", self.MeasuOp)
-            if IsValid == 0:
-                if theReturnStatus == 0:
-                    print Status
-            if theReturnStatus == 1:
-              return (IsValid, Status)
-            return IsValid
-
-        ## Detect self-intersections in the given shape.
-        #  @param theShape Shape to check.
-        #  @return TRUE, if the shape contains no self-intersections.
-        #
-        #  @ref tui_measurement_tools_page "Example"
-        def CheckSelfIntersections(self, theShape):
-            """
-            Detect self-intersections in the given shape.
-
-            Parameters: 
-                theShape Shape to check.
-
-            Returns:   
-                TRUE, if the shape contains no self-intersections.
-            """
-            # Example: see GEOM_TestMeasures.py
-            (IsValid, Pairs) = self.MeasuOp.CheckSelfIntersections(theShape)
-            RaiseIfFailed("CheckSelfIntersections", self.MeasuOp)
-            return IsValid
-
-        ## Get position (LCS) of theShape.
-        #
-        #  Origin of the LCS is situated at the shape's center of mass.
-        #  Axes of the LCS are obtained from shape's location or,
-        #  if the shape is a planar face, from position of its plane.
-        #
-        #  @param theShape Shape to calculate position of.
-        #  @return [Ox,Oy,Oz, Zx,Zy,Zz, Xx,Xy,Xz].
-        #          Ox,Oy,Oz: Coordinates of shape's LCS origin.
-        #          Zx,Zy,Zz: Coordinates of shape's LCS normal(main) direction.
-        #          Xx,Xy,Xz: Coordinates of shape's LCS X direction.
-        #
-        #  @ref swig_todo "Example"
-        def GetPosition(self,theShape):
-            """
-            Get position (LCS) of theShape.
-            Origin of the LCS is situated at the shape's center of mass.
-            Axes of the LCS are obtained from shape's location or,
-            if the shape is a planar face, from position of its plane.
-
-            Parameters: 
-                theShape Shape to calculate position of.
-
-            Returns:  
-                [Ox,Oy,Oz, Zx,Zy,Zz, Xx,Xy,Xz].
-                 Ox,Oy,Oz: Coordinates of shape's LCS origin.
-                 Zx,Zy,Zz: Coordinates of shape's LCS normal(main) direction.
-                 Xx,Xy,Xz: Coordinates of shape's LCS X direction.
-            """
-            # Example: see GEOM_TestMeasures.py
-            aTuple = self.MeasuOp.GetPosition(theShape)
-            RaiseIfFailed("GetPosition", self.MeasuOp)
-            return aTuple
-
-        ## Get kind of theShape.
-        #
-        #  @param theShape Shape to get a kind of.
-        #  @return Returns a kind of shape in terms of <VAR>GEOM.GEOM_IKindOfShape.shape_kind</VAR> enumeration
-        #          and a list of parameters, describing the shape.
-        #  @note  Concrete meaning of each value, returned via \a theIntegers
-        #         or \a theDoubles list depends on the kind() of the shape.
-        #
-        #  @ref swig_todo "Example"
-        def KindOfShape(self,theShape):
-            """
-            Get kind of theShape.
-         
-            Parameters: 
-                theShape Shape to get a kind of.
-
-            Returns:
-                a kind of shape in terms of GEOM_IKindOfShape.shape_kind enumeration
-                    and a list of parameters, describing the shape.
-            Note:
-                Concrete meaning of each value, returned via theIntegers
-                or theDoubles list depends on the geompy.kind of the shape
-            """
-            # Example: see GEOM_TestMeasures.py
-            aRoughTuple = self.MeasuOp.KindOfShape(theShape)
-            RaiseIfFailed("KindOfShape", self.MeasuOp)
-
-            aKind  = aRoughTuple[0]
-            anInts = aRoughTuple[1]
-            aDbls  = aRoughTuple[2]
-
-            # Now there is no exception from this rule:
-            aKindTuple = [aKind] + aDbls + anInts
-
-            # If they are we will regroup parameters for such kind of shape.
-            # For example:
-            #if aKind == kind.SOME_KIND:
-            #    #  SOME_KIND     int int double int double double
-            #    aKindTuple = [aKind, anInts[0], anInts[1], aDbls[0], anInts[2], aDbls[1], aDbls[2]]
-
-            return aKindTuple
-
-        # end of l2_measure
-        ## @}
-
-        ## @addtogroup l2_import_export
-        ## @{
-
-        ## Import a shape from the BREP or IGES or STEP file
-        #  (depends on given format) with given name.
-        #  @param theFileName The file, containing the shape.
-        #  @param theFormatName Specify format for the file reading.
-        #         Available formats can be obtained with InsertOp.ImportTranslators() method.
-        #         If format 'IGES_SCALE' is used instead of 'IGES' or
-        #            format 'STEP_SCALE' is used instead of 'STEP',
-        #            length unit will be set to 'meter' and result model will be scaled.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the imported shape.
-        #
-        #  @ref swig_Import_Export "Example"
-        def ImportFile(self, theFileName, theFormatName, theName=None):
-            """
-            Import a shape from the BREP or IGES or STEP file
-            (depends on given format) with given name.
-
-            Parameters: 
-                theFileName The file, containing the shape.
-                theFormatName Specify format for the file reading.
-                    Available formats can be obtained with geompy.InsertOp.ImportTranslators() method.
-                    If format 'IGES_SCALE' is used instead of 'IGES' or
-                       format 'STEP_SCALE' is used instead of 'STEP',
-                       length unit will be set to 'meter' and result model will be scaled.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the imported shape.
-            """
-            # Example: see GEOM_TestOthers.py
-            anObj = self.InsertOp.ImportFile(theFileName, theFormatName)
-            RaiseIfFailed("ImportFile", self.InsertOp)
-            self._autoPublish(anObj, theName, "imported")
-            return anObj
-
-        ## Deprecated analog of ImportFile()
-        def Import(self, theFileName, theFormatName, theName=None):
-            """
-            Deprecated analog of geompy.ImportFile, kept for backward compatibility only.
-            """
-            print "WARNING: Function Import is deprecated, use ImportFile instead"
-            # note: auto-publishing is done in self.ImportFile()
-            return self.ImportFile(theFileName, theFormatName, theName)
-
-        ## Shortcut to ImportFile() for BREP format.
-        #  Import a shape from the BREP file with given name.
-        #  @param theFileName The file, containing the shape.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the imported shape.
-        #
-        #  @ref swig_Import_Export "Example"
-        def ImportBREP(self, theFileName, theName=None):
-            """
-            geompy.ImportFile(...) function for BREP format
-            Import a shape from the BREP file with given name.
-
-            Parameters: 
-                theFileName The file, containing the shape.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the imported shape.
-            """
-            # Example: see GEOM_TestOthers.py
-            # note: auto-publishing is done in self.ImportFile()
-            return self.ImportFile(theFileName, "BREP", theName)
-
-        ## Shortcut to ImportFile() for IGES format
-        #  Import a shape from the IGES file with given name.
-        #  @param theFileName The file, containing the shape.
-        #  @param ignoreUnits If True, file length units will be ignored (set to 'meter')
-        #                     and result model will be scaled, if its units are not meters.
-        #                     If False (default), file length units will be taken into account.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the imported shape.
-        #
-        #  @ref swig_Import_Export "Example"
-        def ImportIGES(self, theFileName, ignoreUnits = False, theName=None):
-            """
-            geompy.ImportFile(...) function for IGES format
-
-            Parameters:
-                theFileName The file, containing the shape.
-                ignoreUnits If True, file length units will be ignored (set to 'meter')
-                            and result model will be scaled, if its units are not meters.
-                            If False (default), file length units will be taken into account.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the imported shape.
-            """
-            # Example: see GEOM_TestOthers.py
-            # note: auto-publishing is done in self.ImportFile()
-            if ignoreUnits:
-                return self.ImportFile(theFileName, "IGES_SCALE", theName)
-            return self.ImportFile(theFileName, "IGES", theName)
-
-        ## Return length unit from given IGES file
-        #  @param theFileName The file, containing the shape.
-        #  @return String, containing the units name.
-        #
-        #  @ref swig_Import_Export "Example"
-        def GetIGESUnit(self, theFileName):
-            """
-            Return length units from given IGES file
-
-            Parameters:
-                theFileName The file, containing the shape.
-
-            Returns:
-                String, containing the units name.
-            """
-            # Example: see GEOM_TestOthers.py
-            aUnitName = self.InsertOp.ReadValue(theFileName, "IGES", "LEN_UNITS")
-            return aUnitName
-
-        ## Shortcut to ImportFile() for STEP format
-        #  Import a shape from the STEP file with given name.
-        #  @param theFileName The file, containing the shape.
-        #  @param ignoreUnits If True, file length units will be ignored (set to 'meter')
-        #                     and result model will be scaled, if its units are not meters.
-        #                     If False (default), file length units will be taken into account.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the imported shape.
-        #
-        #  @ref swig_Import_Export "Example"
-        def ImportSTEP(self, theFileName, ignoreUnits = False, theName=None):
-            """
-            geompy.ImportFile(...) function for STEP format
-
-            Parameters:
-                theFileName The file, containing the shape.
-                ignoreUnits If True, file length units will be ignored (set to 'meter')
-                            and result model will be scaled, if its units are not meters.
-                            If False (default), file length units will be taken into account.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the imported shape.
-            """
-            # Example: see GEOM_TestOthers.py
-            # note: auto-publishing is done in self.ImportFile()
-            if ignoreUnits:
-                return self.ImportFile(theFileName, "STEP_SCALE", theName)
-            return self.ImportFile(theFileName, "STEP", theName)
-
-        ## Return length unit from given IGES or STEP file
-        #  @param theFileName The file, containing the shape.
-        #  @return String, containing the units name.
-        #
-        #  @ref swig_Import_Export "Example"
-        def GetSTEPUnit(self, theFileName):
-            """
-            Return length units from given STEP file
-
-            Parameters:
-                theFileName The file, containing the shape.
-
-            Returns:
-                String, containing the units name.
-            """
-            # Example: see GEOM_TestOthers.py
-            aUnitName = self.InsertOp.ReadValue(theFileName, "STEP", "LEN_UNITS")
-            return aUnitName
-
-        ## Read a shape from the binary stream, containing its bounding representation (BRep).
-        #  @note This method will not be dumped to the python script by DumpStudy functionality.
-        #  @note GEOM.GEOM_Object.GetShapeStream() method can be used to obtain the shape's BRep stream.
-        #  @param theStream The BRep binary stream.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM_Object, containing the shape, read from theStream.
-        #
-        #  @ref swig_Import_Export "Example"
-        def RestoreShape (self, theStream, theName=None):
-            """
-            Read a shape from the binary stream, containing its bounding representation (BRep).
-
-            Note:
-                shape.GetShapeStream() method can be used to obtain the shape's BRep stream.
-
-            Parameters: 
-                theStream The BRep binary stream.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM_Object, containing the shape, read from theStream.
-            """
-            # Example: see GEOM_TestOthers.py
-            anObj = self.InsertOp.RestoreShape(theStream)
-            RaiseIfFailed("RestoreShape", self.InsertOp)
-            self._autoPublish(anObj, theName, "restored")
-            return anObj
-
-        ## Export the given shape into a file with given name.
-        #  @param theObject Shape to be stored in the file.
-        #  @param theFileName Name of the file to store the given shape in.
-        #  @param theFormatName Specify format for the shape storage.
-        #         Available formats can be obtained with
-        #         geompy.InsertOp.ExportTranslators()[0] method.
-        #
-        #  @ref swig_Import_Export "Example"
-        def Export(self, theObject, theFileName, theFormatName):
-            """
-            Export the given shape into a file with given name.
-
-            Parameters: 
-                theObject Shape to be stored in the file.
-                theFileName Name of the file to store the given shape in.
-                theFormatName Specify format for the shape storage.
-                              Available formats can be obtained with
-                              geompy.InsertOp.ExportTranslators()[0] method.
-            """
-            # Example: see GEOM_TestOthers.py
-            self.InsertOp.Export(theObject, theFileName, theFormatName)
-            if self.InsertOp.IsDone() == 0:
-                raise RuntimeError,  "Export : " + self.InsertOp.GetErrorCode()
-                pass
-            pass
-
-        ## Shortcut to Export() for BREP format
-        #
-        #  @ref swig_Import_Export "Example"
-        def ExportBREP(self,theObject, theFileName):
-            """
-            geompy.Export(...) function for BREP format
-            """
-            # Example: see GEOM_TestOthers.py
-            return self.Export(theObject, theFileName, "BREP")
-
-        ## Shortcut to Export() for IGES format
-        #
-        #  @ref swig_Import_Export "Example"
-        def ExportIGES(self,theObject, theFileName):
-            """
-            geompy.Export(...) function for IGES format
-            """
-            # Example: see GEOM_TestOthers.py
-            return self.Export(theObject, theFileName, "IGES")
-
-        ## Shortcut to Export() for STEP format
-        #
-        #  @ref swig_Import_Export "Example"
-        def ExportSTEP(self,theObject, theFileName):
-            """
-            geompy.Export(...) function for STEP format
-            """
-            # Example: see GEOM_TestOthers.py
-            return self.Export(theObject, theFileName, "STEP")
-
-        # end of l2_import_export
-        ## @}
-
-        ## @addtogroup l3_blocks
-        ## @{
-
-        ## Create a quadrangle face from four edges. Order of Edges is not
-        #  important. It is  not necessary that edges share the same vertex.
-        #  @param E1,E2,E3,E4 Edges for the face bound.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created face.
-        #
-        #  @ref tui_building_by_blocks_page "Example"
-        def MakeQuad(self, E1, E2, E3, E4, theName=None):
-            """
-            Create a quadrangle face from four edges. Order of Edges is not
-            important. It is  not necessary that edges share the same vertex.
-
-            Parameters: 
-                E1,E2,E3,E4 Edges for the face bound.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns: 
-                New GEOM.GEOM_Object, containing the created face.
-
-            Example of usage:               
-                qface1 = geompy.MakeQuad(edge1, edge2, edge3, edge4)
-            """
-            # Example: see GEOM_Spanner.py
-            anObj = self.BlocksOp.MakeQuad(E1, E2, E3, E4)
-            RaiseIfFailed("MakeQuad", self.BlocksOp)
-            self._autoPublish(anObj, theName, "quad")
-            return anObj
-
-        ## Create a quadrangle face on two edges.
-        #  The missing edges will be built by creating the shortest ones.
-        #  @param E1,E2 Two opposite edges for the face.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created face.
-        #
-        #  @ref tui_building_by_blocks_page "Example"
-        def MakeQuad2Edges(self, E1, E2, theName=None):
-            """
-            Create a quadrangle face on two edges.
-            The missing edges will be built by creating the shortest ones.
-
-            Parameters: 
-                E1,E2 Two opposite edges for the face.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns: 
-                New GEOM.GEOM_Object, containing the created face.
-            
-            Example of usage:
-                # create vertices
-                p1 = geompy.MakeVertex(  0.,   0.,   0.)
-                p2 = geompy.MakeVertex(150.,  30.,   0.)
-                p3 = geompy.MakeVertex(  0., 120.,  50.)
-                p4 = geompy.MakeVertex(  0.,  40.,  70.)
-                # create edges
-                edge1 = geompy.MakeEdge(p1, p2)
-                edge2 = geompy.MakeEdge(p3, p4)
-                # create a quadrangle face from two edges
-                qface2 = geompy.MakeQuad2Edges(edge1, edge2)
-            """
-            # Example: see GEOM_Spanner.py
-            anObj = self.BlocksOp.MakeQuad2Edges(E1, E2)
-            RaiseIfFailed("MakeQuad2Edges", self.BlocksOp)
-            self._autoPublish(anObj, theName, "quad")
-            return anObj
-
-        ## Create a quadrangle face with specified corners.
-        #  The missing edges will be built by creating the shortest ones.
-        #  @param V1,V2,V3,V4 Corner vertices for the face.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created face.
-        #
-        #  @ref tui_building_by_blocks_page "Example 1"
-        #  \n @ref swig_MakeQuad4Vertices "Example 2"
-        def MakeQuad4Vertices(self, V1, V2, V3, V4, theName=None):
-            """
-            Create a quadrangle face with specified corners.
-            The missing edges will be built by creating the shortest ones.
-
-            Parameters: 
-                V1,V2,V3,V4 Corner vertices for the face.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns: 
-                New GEOM.GEOM_Object, containing the created face.
-
-            Example of usage:
-                # create vertices
-                p1 = geompy.MakeVertex(  0.,   0.,   0.)
-                p2 = geompy.MakeVertex(150.,  30.,   0.)
-                p3 = geompy.MakeVertex(  0., 120.,  50.)
-                p4 = geompy.MakeVertex(  0.,  40.,  70.)
-                # create a quadrangle from four points in its corners
-                qface3 = geompy.MakeQuad4Vertices(p1, p2, p3, p4)
-            """
-            # Example: see GEOM_Spanner.py
-            anObj = self.BlocksOp.MakeQuad4Vertices(V1, V2, V3, V4)
-            RaiseIfFailed("MakeQuad4Vertices", self.BlocksOp)
-            self._autoPublish(anObj, theName, "quad")
-            return anObj
-
-        ## Create a hexahedral solid, bounded by the six given faces. Order of
-        #  faces is not important. It is  not necessary that Faces share the same edge.
-        #  @param F1,F2,F3,F4,F5,F6 Faces for the hexahedral solid.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created solid.
-        #
-        #  @ref tui_building_by_blocks_page "Example 1"
-        #  \n @ref swig_MakeHexa "Example 2"
-        def MakeHexa(self, F1, F2, F3, F4, F5, F6, theName=None):
-            """
-            Create a hexahedral solid, bounded by the six given faces. Order of
-            faces is not important. It is  not necessary that Faces share the same edge.
-
-            Parameters: 
-                F1,F2,F3,F4,F5,F6 Faces for the hexahedral solid.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:    
-                New GEOM.GEOM_Object, containing the created solid.
-
-            Example of usage:
-                solid = geompy.MakeHexa(qface1, qface2, qface3, qface4, qface5, qface6)
-            """
-            # Example: see GEOM_Spanner.py
-            anObj = self.BlocksOp.MakeHexa(F1, F2, F3, F4, F5, F6)
-            RaiseIfFailed("MakeHexa", self.BlocksOp)
-            self._autoPublish(anObj, theName, "hexa")
-            return anObj
-
-        ## Create a hexahedral solid between two given faces.
-        #  The missing faces will be built by creating the smallest ones.
-        #  @param F1,F2 Two opposite faces for the hexahedral solid.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the created solid.
-        #
-        #  @ref tui_building_by_blocks_page "Example 1"
-        #  \n @ref swig_MakeHexa2Faces "Example 2"
-        def MakeHexa2Faces(self, F1, F2, theName=None):
-            """
-            Create a hexahedral solid between two given faces.
-            The missing faces will be built by creating the smallest ones.
-
-            Parameters: 
-                F1,F2 Two opposite faces for the hexahedral solid.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the created solid.
-
-            Example of usage:
-                solid1 = geompy.MakeHexa2Faces(qface1, qface2)
-            """
-            # Example: see GEOM_Spanner.py
-            anObj = self.BlocksOp.MakeHexa2Faces(F1, F2)
-            RaiseIfFailed("MakeHexa2Faces", self.BlocksOp)
-            self._autoPublish(anObj, theName, "hexa")
-            return anObj
-
-        # end of l3_blocks
-        ## @}
-
-        ## @addtogroup l3_blocks_op
-        ## @{
-
-        ## Get a vertex, found in the given shape by its coordinates.
-        #  @param theShape Block or a compound of blocks.
-        #  @param theX,theY,theZ Coordinates of the sought vertex.
-        #  @param theEpsilon Maximum allowed distance between the resulting
-        #                    vertex and point with the given coordinates.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the found vertex.
-        #
-        #  @ref swig_GetPoint "Example"
-        def GetPoint(self, theShape, theX, theY, theZ, theEpsilon, theName=None):
-            """
-            Get a vertex, found in the given shape by its coordinates.
-
-            Parameters: 
-                theShape Block or a compound of blocks.
-                theX,theY,theZ Coordinates of the sought vertex.
-                theEpsilon Maximum allowed distance between the resulting
-                           vertex and point with the given coordinates.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:                  
-                New GEOM.GEOM_Object, containing the found vertex.
-
-            Example of usage:
-                pnt = geompy.GetPoint(shape, -50,  50,  50, 0.01)
-            """
-            # Example: see GEOM_TestOthers.py
-            anObj = self.BlocksOp.GetPoint(theShape, theX, theY, theZ, theEpsilon)
-            RaiseIfFailed("GetPoint", self.BlocksOp)
-            self._autoPublish(anObj, theName, "vertex")
-            return anObj
-
-        ## Find a vertex of the given shape, which has minimal distance to the given point.
-        #  @param theShape Any shape.
-        #  @param thePoint Point, close to the desired vertex.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the found vertex.
-        #
-        #  @ref swig_GetVertexNearPoint "Example"
-        def GetVertexNearPoint(self, theShape, thePoint, theName=None):
-            """
-            Find a vertex of the given shape, which has minimal distance to the given point.
-
-            Parameters: 
-                theShape Any shape.
-                thePoint Point, close to the desired vertex.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the found vertex.
-
-            Example of usage:
-                pmidle = geompy.MakeVertex(50, 0, 50)
-                edge1 = geompy.GetEdgeNearPoint(blocksComp, pmidle)
-            """
-            # Example: see GEOM_TestOthers.py
-            anObj = self.BlocksOp.GetVertexNearPoint(theShape, thePoint)
-            RaiseIfFailed("GetVertexNearPoint", self.BlocksOp)
-            self._autoPublish(anObj, theName, "vertex")
-            return anObj
-
-        ## Get an edge, found in the given shape by two given vertices.
-        #  @param theShape Block or a compound of blocks.
-        #  @param thePoint1,thePoint2 Points, close to the ends of the desired edge.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the found edge.
-        #
-        #  @ref swig_GetEdge "Example"
-        def GetEdge(self, theShape, thePoint1, thePoint2, theName=None):
-            """
-            Get an edge, found in the given shape by two given vertices.
-
-            Parameters: 
-                theShape Block or a compound of blocks.
-                thePoint1,thePoint2 Points, close to the ends of the desired edge.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the found edge.
-            """
-            # Example: see GEOM_Spanner.py
-            anObj = self.BlocksOp.GetEdge(theShape, thePoint1, thePoint2)
-            RaiseIfFailed("GetEdge", self.BlocksOp)
-            self._autoPublish(anObj, theName, "edge")
-            return anObj
-
-        ## Find an edge of the given shape, which has minimal distance to the given point.
-        #  @param theShape Block or a compound of blocks.
-        #  @param thePoint Point, close to the desired edge.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the found edge.
-        #
-        #  @ref swig_GetEdgeNearPoint "Example"
-        def GetEdgeNearPoint(self, theShape, thePoint, theName=None):
-            """
-            Find an edge of the given shape, which has minimal distance to the given point.
-
-            Parameters: 
-                theShape Block or a compound of blocks.
-                thePoint Point, close to the desired edge.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the found edge.
-            """
-            # Example: see GEOM_TestOthers.py
-            anObj = self.BlocksOp.GetEdgeNearPoint(theShape, thePoint)
-            RaiseIfFailed("GetEdgeNearPoint", self.BlocksOp)
-            self._autoPublish(anObj, theName, "edge")
-            return anObj
-
-        ## Returns a face, found in the given shape by four given corner vertices.
-        #  @param theShape Block or a compound of blocks.
-        #  @param thePoint1,thePoint2,thePoint3,thePoint4 Points, close to the corners of the desired face.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the found face.
-        #
-        #  @ref swig_todo "Example"
-        def GetFaceByPoints(self, theShape, thePoint1, thePoint2, thePoint3, thePoint4, theName=None):
-            """
-            Returns a face, found in the given shape by four given corner vertices.
-
-            Parameters:
-                theShape Block or a compound of blocks.
-                thePoint1,thePoint2,thePoint3,thePoint4 Points, close to the corners of the desired face.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the found face.
-            """
-            # Example: see GEOM_Spanner.py
-            anObj = self.BlocksOp.GetFaceByPoints(theShape, thePoint1, thePoint2, thePoint3, thePoint4)
-            RaiseIfFailed("GetFaceByPoints", self.BlocksOp)
-            self._autoPublish(anObj, theName, "face")
-            return anObj
-
-        ## Get a face of block, found in the given shape by two given edges.
-        #  @param theShape Block or a compound of blocks.
-        #  @param theEdge1,theEdge2 Edges, close to the edges of the desired face.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the found face.
-        #
-        #  @ref swig_todo "Example"
-        def GetFaceByEdges(self, theShape, theEdge1, theEdge2, theName=None):
-            """
-            Get a face of block, found in the given shape by two given edges.
-
-            Parameters:
-                theShape Block or a compound of blocks.
-                theEdge1,theEdge2 Edges, close to the edges of the desired face.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the found face.
-            """
-            # Example: see GEOM_Spanner.py
-            anObj = self.BlocksOp.GetFaceByEdges(theShape, theEdge1, theEdge2)
-            RaiseIfFailed("GetFaceByEdges", self.BlocksOp)
-            self._autoPublish(anObj, theName, "face")
-            return anObj
-
-        ## Find a face, opposite to the given one in the given block.
-        #  @param theBlock Must be a hexahedral solid.
-        #  @param theFace Face of \a theBlock, opposite to the desired face.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the found face.
-        #
-        #  @ref swig_GetOppositeFace "Example"
-        def GetOppositeFace(self, theBlock, theFace, theName=None):
-            """
-            Find a face, opposite to the given one in the given block.
-
-            Parameters:
-                theBlock Must be a hexahedral solid.
-                theFace Face of theBlock, opposite to the desired face.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns: 
-                New GEOM.GEOM_Object, containing the found face.
-            """
-            # Example: see GEOM_Spanner.py
-            anObj = self.BlocksOp.GetOppositeFace(theBlock, theFace)
-            RaiseIfFailed("GetOppositeFace", self.BlocksOp)
-            self._autoPublish(anObj, theName, "face")
-            return anObj
-
-        ## Find a face of the given shape, which has minimal distance to the given point.
-        #  @param theShape Block or a compound of blocks.
-        #  @param thePoint Point, close to the desired face.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the found face.
-        #
-        #  @ref swig_GetFaceNearPoint "Example"
-        def GetFaceNearPoint(self, theShape, thePoint, theName=None):
-            """
-            Find a face of the given shape, which has minimal distance to the given point.
-
-            Parameters:
-                theShape Block or a compound of blocks.
-                thePoint Point, close to the desired face.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the found face.
-            """
-            # Example: see GEOM_Spanner.py
-            anObj = self.BlocksOp.GetFaceNearPoint(theShape, thePoint)
-            RaiseIfFailed("GetFaceNearPoint", self.BlocksOp)
-            self._autoPublish(anObj, theName, "face")
-            return anObj
-
-        ## Find a face of block, whose outside normale has minimal angle with the given vector.
-        #  @param theBlock Block or a compound of blocks.
-        #  @param theVector Vector, close to the normale of the desired face.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the found face.
-        #
-        #  @ref swig_todo "Example"
-        def GetFaceByNormale(self, theBlock, theVector, theName=None):
-            """
-            Find a face of block, whose outside normale has minimal angle with the given vector.
-
-            Parameters:
-                theBlock Block or a compound of blocks.
-                theVector Vector, close to the normale of the desired face.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the found face.
-            """
-            # Example: see GEOM_Spanner.py
-            anObj = self.BlocksOp.GetFaceByNormale(theBlock, theVector)
-            RaiseIfFailed("GetFaceByNormale", self.BlocksOp)
-            self._autoPublish(anObj, theName, "face")
-            return anObj
-
-        ## Find all sub-shapes of type \a theShapeType of the given shape,
-        #  which have minimal distance to the given point.
-        #  @param theShape Any shape.
-        #  @param thePoint Point, close to the desired shape.
-        #  @param theShapeType Defines what kind of sub-shapes is searched GEOM::shape_type
-        #  @param theTolerance The tolerance for distances comparison. All shapes
-        #                      with distances to the given point in interval
-        #                      [minimal_distance, minimal_distance + theTolerance] will be gathered.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM_Object, containing a group of all found shapes.
-        #
-        #  @ref swig_GetShapesNearPoint "Example"
-        def GetShapesNearPoint(self, theShape, thePoint, theShapeType, theTolerance = 1e-07, theName=None):
-            """
-            Find all sub-shapes of type theShapeType of the given shape,
-            which have minimal distance to the given point.
-
-            Parameters:
-                theShape Any shape.
-                thePoint Point, close to the desired shape.
-                theShapeType Defines what kind of sub-shapes is searched (see GEOM::shape_type)
-                theTolerance The tolerance for distances comparison. All shapes
-                                with distances to the given point in interval
-                                [minimal_distance, minimal_distance + theTolerance] will be gathered.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM_Object, containing a group of all found shapes.
-            """
-            # Example: see GEOM_TestOthers.py
-            anObj = self.BlocksOp.GetShapesNearPoint(theShape, thePoint, theShapeType, theTolerance)
-            RaiseIfFailed("GetShapesNearPoint", self.BlocksOp)
-            self._autoPublish(anObj, theName, "group")
-            return anObj
-
-        # end of l3_blocks_op
-        ## @}
-
-        ## @addtogroup l4_blocks_measure
-        ## @{
-
-        ## Check, if the compound of blocks is given.
-        #  To be considered as a compound of blocks, the
-        #  given shape must satisfy the following conditions:
-        #  - Each element of the compound should be a Block (6 faces and 12 edges).
-        #  - A connection between two Blocks should be an entire quadrangle face or an entire edge.
-        #  - The compound should be connexe.
-        #  - The glue between two quadrangle faces should be applied.
-        #  @param theCompound The compound to check.
-        #  @return TRUE, if the given shape is a compound of blocks.
-        #  If theCompound is not valid, prints all discovered errors.
-        #
-        #  @ref tui_measurement_tools_page "Example 1"
-        #  \n @ref swig_CheckCompoundOfBlocks "Example 2"
-        def CheckCompoundOfBlocks(self,theCompound):
-            """
-            Check, if the compound of blocks is given.
-            To be considered as a compound of blocks, the
-            given shape must satisfy the following conditions:
-            - Each element of the compound should be a Block (6 faces and 12 edges).
-            - A connection between two Blocks should be an entire quadrangle face or an entire edge.
-            - The compound should be connexe.
-            - The glue between two quadrangle faces should be applied.
-
-            Parameters:
-                theCompound The compound to check.
-
-            Returns:
-                TRUE, if the given shape is a compound of blocks.
-                If theCompound is not valid, prints all discovered errors.            
-            """
-            # Example: see GEOM_Spanner.py
-            (IsValid, BCErrors) = self.BlocksOp.CheckCompoundOfBlocks(theCompound)
-            RaiseIfFailed("CheckCompoundOfBlocks", self.BlocksOp)
-            if IsValid == 0:
-                Descr = self.BlocksOp.PrintBCErrors(theCompound, BCErrors)
-                print Descr
-            return IsValid
-
-        ## Retrieve all non blocks solids and faces from \a theShape.
-        #  @param theShape The shape to explore.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return A tuple of two GEOM_Objects. The first object is a group of all
-        #          non block solids (= not 6 faces, or with 6 faces, but with the
-        #          presence of non-quadrangular faces). The second object is a
-        #          group of all non quadrangular faces.
-        #
-        #  @ref tui_measurement_tools_page "Example 1"
-        #  \n @ref swig_GetNonBlocks "Example 2"
-        def GetNonBlocks (self, theShape, theName=None):
-            """
-            Retrieve all non blocks solids and faces from theShape.
-
-            Parameters:
-                theShape The shape to explore.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                A tuple of two GEOM_Objects. The first object is a group of all
-                non block solids (= not 6 faces, or with 6 faces, but with the
-                presence of non-quadrangular faces). The second object is a
-                group of all non quadrangular faces.
-
-            Usage:
-                (res_sols, res_faces) = geompy.GetNonBlocks(myShape1)
-            """
-            # Example: see GEOM_Spanner.py
-            aTuple = self.BlocksOp.GetNonBlocks(theShape)
-            RaiseIfFailed("GetNonBlocks", self.BlocksOp)
-            self._autoPublish(aTuple, theName, ("groupNonHexas", "groupNonQuads"))
-            return aTuple
-
-        ## Remove all seam and degenerated edges from \a theShape.
-        #  Unite faces and edges, sharing one surface. It means that
-        #  this faces must have references to one C++ surface object (handle).
-        #  @param theShape The compound or single solid to remove irregular edges from.
-        #  @param doUnionFaces If True, then unite faces. If False (the default value),
-        #         do not unite faces.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return Improved shape.
-        #
-        #  @ref swig_RemoveExtraEdges "Example"
-        def RemoveExtraEdges(self, theShape, doUnionFaces=False, theName=None):
-            """
-            Remove all seam and degenerated edges from theShape.
-            Unite faces and edges, sharing one surface. It means that
-            this faces must have references to one C++ surface object (handle).
-
-            Parameters:
-                theShape The compound or single solid to remove irregular edges from.
-                doUnionFaces If True, then unite faces. If False (the default value),
-                             do not unite faces.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns: 
-                Improved shape.
-            """
-            # Example: see GEOM_TestOthers.py
-            nbFacesOptimum = -1 # -1 means do not unite faces
-            if doUnionFaces is True: nbFacesOptimum = 0 # 0 means unite faces
-            anObj = self.BlocksOp.RemoveExtraEdges(theShape, nbFacesOptimum)
-            RaiseIfFailed("RemoveExtraEdges", self.BlocksOp)
-            self._autoPublish(anObj, theName, "removeExtraEdges")
-            return anObj
-
-        ## Check, if the given shape is a blocks compound.
-        #  Fix all detected errors.
-        #    \note Single block can be also fixed by this method.
-        #  @param theShape The compound to check and improve.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return Improved compound.
-        #
-        #  @ref swig_CheckAndImprove "Example"
-        def CheckAndImprove(self, theShape, theName=None):
-            """
-            Check, if the given shape is a blocks compound.
-            Fix all detected errors.
-
-            Note:
-                Single block can be also fixed by this method.
-
-            Parameters:
-                theShape The compound to check and improve.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns: 
-                Improved compound.
-            """
-            # Example: see GEOM_TestOthers.py
-            anObj = self.BlocksOp.CheckAndImprove(theShape)
-            RaiseIfFailed("CheckAndImprove", self.BlocksOp)
-            self._autoPublish(anObj, theName, "improved")
-            return anObj
-
-        # end of l4_blocks_measure
-        ## @}
-
-        ## @addtogroup l3_blocks_op
-        ## @{
-
-        ## Get all the blocks, contained in the given compound.
-        #  @param theCompound The compound to explode.
-        #  @param theMinNbFaces If solid has lower number of faces, it is not a block.
-        #  @param theMaxNbFaces If solid has higher number of faces, it is not a block.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @note If theMaxNbFaces = 0, the maximum number of faces is not restricted.
-        #
-        #  @return List of GEOM.GEOM_Object, containing the retrieved blocks.
-        #
-        #  @ref tui_explode_on_blocks "Example 1"
-        #  \n @ref swig_MakeBlockExplode "Example 2"
-        def MakeBlockExplode(self, theCompound, theMinNbFaces, theMaxNbFaces, theName=None):
-            """
-            Get all the blocks, contained in the given compound.
-
-            Parameters:
-                theCompound The compound to explode.
-                theMinNbFaces If solid has lower number of faces, it is not a block.
-                theMaxNbFaces If solid has higher number of faces, it is not a block.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Note:
-                If theMaxNbFaces = 0, the maximum number of faces is not restricted.
-
-            Returns:  
-                List of GEOM.GEOM_Object, containing the retrieved blocks.
-            """
-            # Example: see GEOM_TestOthers.py
-            theMinNbFaces,theMaxNbFaces,Parameters = ParseParameters(theMinNbFaces,theMaxNbFaces)
-            aList = self.BlocksOp.ExplodeCompoundOfBlocks(theCompound, theMinNbFaces, theMaxNbFaces)
-            RaiseIfFailed("ExplodeCompoundOfBlocks", self.BlocksOp)
-            for anObj in aList:
-                anObj.SetParameters(Parameters)
-                pass
-            self._autoPublish(aList, theName, "block")
-            return aList
-
-        ## Find block, containing the given point inside its volume or on boundary.
-        #  @param theCompound Compound, to find block in.
-        #  @param thePoint Point, close to the desired block. If the point lays on
-        #         boundary between some blocks, we return block with nearest center.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the found block.
-        #
-        #  @ref swig_todo "Example"
-        def GetBlockNearPoint(self, theCompound, thePoint, theName=None):
-            """
-            Find block, containing the given point inside its volume or on boundary.
-
-            Parameters:
-                theCompound Compound, to find block in.
-                thePoint Point, close to the desired block. If the point lays on
-                         boundary between some blocks, we return block with nearest center.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the found block.
-            """
-            # Example: see GEOM_Spanner.py
-            anObj = self.BlocksOp.GetBlockNearPoint(theCompound, thePoint)
-            RaiseIfFailed("GetBlockNearPoint", self.BlocksOp)
-            self._autoPublish(anObj, theName, "block")
-            return anObj
-
-        ## Find block, containing all the elements, passed as the parts, or maximum quantity of them.
-        #  @param theCompound Compound, to find block in.
-        #  @param theParts List of faces and/or edges and/or vertices to be parts of the found block.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the found block.
-        #
-        #  @ref swig_GetBlockByParts "Example"
-        def GetBlockByParts(self, theCompound, theParts, theName=None):
-            """
-             Find block, containing all the elements, passed as the parts, or maximum quantity of them.
-
-             Parameters:
-                theCompound Compound, to find block in.
-                theParts List of faces and/or edges and/or vertices to be parts of the found block.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns: 
-                New GEOM_Object, containing the found block.
-            """
-            # Example: see GEOM_TestOthers.py
-            anObj = self.BlocksOp.GetBlockByParts(theCompound, theParts)
-            RaiseIfFailed("GetBlockByParts", self.BlocksOp)
-            self._autoPublish(anObj, theName, "block")
-            return anObj
-
-        ## Return all blocks, containing all the elements, passed as the parts.
-        #  @param theCompound Compound, to find blocks in.
-        #  @param theParts List of faces and/or edges and/or vertices to be parts of the found blocks.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return List of GEOM.GEOM_Object, containing the found blocks.
-        #
-        #  @ref swig_todo "Example"
-        def GetBlocksByParts(self, theCompound, theParts, theName=None):
-            """
-            Return all blocks, containing all the elements, passed as the parts.
-
-            Parameters:
-                theCompound Compound, to find blocks in.
-                theParts List of faces and/or edges and/or vertices to be parts of the found blocks.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                List of GEOM.GEOM_Object, containing the found blocks.
-            """
-            # Example: see GEOM_Spanner.py
-            aList = self.BlocksOp.GetBlocksByParts(theCompound, theParts)
-            RaiseIfFailed("GetBlocksByParts", self.BlocksOp)
-            self._autoPublish(aList, theName, "block")
-            return aList
-
-        ## Multi-transformate block and glue the result.
-        #  Transformation is defined so, as to superpose direction faces.
-        #  @param Block Hexahedral solid to be multi-transformed.
-        #  @param DirFace1 ID of First direction face.
-        #  @param DirFace2 ID of Second direction face.
-        #  @param NbTimes Quantity of transformations to be done.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @note Unique ID of sub-shape can be obtained, using method GetSubShapeID().
-        #
-        #  @return New GEOM.GEOM_Object, containing the result shape.
-        #
-        #  @ref tui_multi_transformation "Example"
-        def MakeMultiTransformation1D(self, Block, DirFace1, DirFace2, NbTimes, theName=None):
-            """
-            Multi-transformate block and glue the result.
-            Transformation is defined so, as to superpose direction faces.
-
-            Parameters:
-                Block Hexahedral solid to be multi-transformed.
-                DirFace1 ID of First direction face.
-                DirFace2 ID of Second direction face.
-                NbTimes Quantity of transformations to be done.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Note:
-                Unique ID of sub-shape can be obtained, using method GetSubShapeID().
-
-            Returns:
-                New GEOM.GEOM_Object, containing the result shape.
-            """
-            # Example: see GEOM_Spanner.py
-            DirFace1,DirFace2,NbTimes,Parameters = ParseParameters(DirFace1,DirFace2,NbTimes)
-            anObj = self.BlocksOp.MakeMultiTransformation1D(Block, DirFace1, DirFace2, NbTimes)
-            RaiseIfFailed("MakeMultiTransformation1D", self.BlocksOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "transformed")
-            return anObj
-
-        ## Multi-transformate block and glue the result.
-        #  @param Block Hexahedral solid to be multi-transformed.
-        #  @param DirFace1U,DirFace2U IDs of Direction faces for the first transformation.
-        #  @param DirFace1V,DirFace2V IDs of Direction faces for the second transformation.
-        #  @param NbTimesU,NbTimesV Quantity of transformations to be done.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM.GEOM_Object, containing the result shape.
-        #
-        #  @ref tui_multi_transformation "Example"
-        def MakeMultiTransformation2D(self, Block, DirFace1U, DirFace2U, NbTimesU,
-                                      DirFace1V, DirFace2V, NbTimesV, theName=None):
-            """
-            Multi-transformate block and glue the result.
-
-            Parameters:
-                Block Hexahedral solid to be multi-transformed.
-                DirFace1U,DirFace2U IDs of Direction faces for the first transformation.
-                DirFace1V,DirFace2V IDs of Direction faces for the second transformation.
-                NbTimesU,NbTimesV Quantity of transformations to be done.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM.GEOM_Object, containing the result shape.
-            """
-            # Example: see GEOM_Spanner.py
-            DirFace1U,DirFace2U,NbTimesU,DirFace1V,DirFace2V,NbTimesV,Parameters = ParseParameters(
-              DirFace1U,DirFace2U,NbTimesU,DirFace1V,DirFace2V,NbTimesV)
-            anObj = self.BlocksOp.MakeMultiTransformation2D(Block, DirFace1U, DirFace2U, NbTimesU,
-                                                            DirFace1V, DirFace2V, NbTimesV)
-            RaiseIfFailed("MakeMultiTransformation2D", self.BlocksOp)
-            anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "transformed")
-            return anObj
-
-        ## Build all possible propagation groups.
-        #  Propagation group is a set of all edges, opposite to one (main)
-        #  edge of this group directly or through other opposite edges.
-        #  Notion of Opposite Edge make sence only on quadrangle face.
-        #  @param theShape Shape to build propagation groups on.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return List of GEOM.GEOM_Object, each of them is a propagation group.
-        #
-        #  @ref swig_Propagate "Example"
-        def Propagate(self, theShape, theName=None):
-            """
-            Build all possible propagation groups.
-            Propagation group is a set of all edges, opposite to one (main)
-            edge of this group directly or through other opposite edges.
-            Notion of Opposite Edge make sence only on quadrangle face.
-
-            Parameters:
-                theShape Shape to build propagation groups on.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                List of GEOM.GEOM_Object, each of them is a propagation group.
-            """
-            # Example: see GEOM_TestOthers.py
-            listChains = self.BlocksOp.Propagate(theShape)
-            RaiseIfFailed("Propagate", self.BlocksOp)
-            self._autoPublish(listChains, theName, "propagate")
-            return listChains
-
-        # end of l3_blocks_op
-        ## @}
-
-        ## @addtogroup l3_groups
-        ## @{
-
-        ## Creates a new group which will store sub-shapes of theMainShape
-        #  @param theMainShape is a GEOM object on which the group is selected
-        #  @param theShapeType defines a shape type of the group (see GEOM::shape_type)
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return a newly created GEOM group (GEOM.GEOM_Object)
-        #
-        #  @ref tui_working_with_groups_page "Example 1"
-        #  \n @ref swig_CreateGroup "Example 2"
-        def CreateGroup(self, theMainShape, theShapeType, theName=None):
-            """
-            Creates a new group which will store sub-shapes of theMainShape
-
-            Parameters:
-               theMainShape is a GEOM object on which the group is selected
-               theShapeType defines a shape type of the group:"COMPOUND", "COMPSOLID",
-                            "SOLID", "SHELL", "FACE", "WIRE", "EDGE", "VERTEX", "SHAPE".
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-               a newly created GEOM group
-
-            Example of usage:
-                group = geompy.CreateGroup(Box, geompy.ShapeType["FACE"])
-                
-            """
-            # Example: see GEOM_TestOthers.py
-            anObj = self.GroupOp.CreateGroup(theMainShape, theShapeType)
-            RaiseIfFailed("CreateGroup", self.GroupOp)
-            self._autoPublish(anObj, theName, "group")
-            return anObj
-
-        ## Adds a sub-object with ID theSubShapeId to the group
-        #  @param theGroup is a GEOM group to which the new sub-shape is added
-        #  @param theSubShapeID is a sub-shape ID in the main object.
-        #  \note Use method GetSubShapeID() to get an unique ID of the sub-shape
-        #
-        #  @ref tui_working_with_groups_page "Example"
-        def AddObject(self,theGroup, theSubShapeID):
-            """
-            Adds a sub-object with ID theSubShapeId to the group
-
-            Parameters:
-                theGroup       is a GEOM group to which the new sub-shape is added
-                theSubShapeID  is a sub-shape ID in the main object.
-
-            Note:
-                Use method GetSubShapeID() to get an unique ID of the sub-shape 
-            """
-            # Example: see GEOM_TestOthers.py
-            self.GroupOp.AddObject(theGroup, theSubShapeID)
-            if self.GroupOp.GetErrorCode() != "PAL_ELEMENT_ALREADY_PRESENT":
-                RaiseIfFailed("AddObject", self.GroupOp)
-                pass
-            pass
-
-        ## Removes a sub-object with ID \a theSubShapeId from the group
-        #  @param theGroup is a GEOM group from which the new sub-shape is removed
-        #  @param theSubShapeID is a sub-shape ID in the main object.
-        #  \note Use method GetSubShapeID() to get an unique ID of the sub-shape
-        #
-        #  @ref tui_working_with_groups_page "Example"
-        def RemoveObject(self,theGroup, theSubShapeID):
-            """
-            Removes a sub-object with ID theSubShapeId from the group
-
-            Parameters:
-                theGroup is a GEOM group from which the new sub-shape is removed
-                theSubShapeID is a sub-shape ID in the main object.
-
-            Note:
-                Use method GetSubShapeID() to get an unique ID of the sub-shape
-            """
-            # Example: see GEOM_TestOthers.py
-            self.GroupOp.RemoveObject(theGroup, theSubShapeID)
-            RaiseIfFailed("RemoveObject", self.GroupOp)
-            pass
-
-        ## Adds to the group all the given shapes. No errors, if some shapes are alredy included.
-        #  @param theGroup is a GEOM group to which the new sub-shapes are added.
-        #  @param theSubShapes is a list of sub-shapes to be added.
-        #
-        #  @ref tui_working_with_groups_page "Example"
-        def UnionList (self,theGroup, theSubShapes):
-            """
-            Adds to the group all the given shapes. No errors, if some shapes are alredy included.
-
-            Parameters:
-                theGroup is a GEOM group to which the new sub-shapes are added.
-                theSubShapes is a list of sub-shapes to be added.
-            """
-            # Example: see GEOM_TestOthers.py
-            self.GroupOp.UnionList(theGroup, theSubShapes)
-            RaiseIfFailed("UnionList", self.GroupOp)
-            pass
-
-        ## Adds to the group all the given shapes. No errors, if some shapes are alredy included.
-        #  @param theGroup is a GEOM group to which the new sub-shapes are added.
-        #  @param theSubShapes is a list of indices of sub-shapes to be added.
-        #
-        #  @ref swig_UnionIDs "Example"
-        def UnionIDs(self,theGroup, theSubShapes):
-            """
-            Adds to the group all the given shapes. No errors, if some shapes are alredy included.
-
-            Parameters:
-                theGroup is a GEOM group to which the new sub-shapes are added.
-                theSubShapes is a list of indices of sub-shapes to be added.
-            """
-            # Example: see GEOM_TestOthers.py
-            self.GroupOp.UnionIDs(theGroup, theSubShapes)
-            RaiseIfFailed("UnionIDs", self.GroupOp)
-            pass
-
-        ## Removes from the group all the given shapes. No errors, if some shapes are not included.
-        #  @param theGroup is a GEOM group from which the sub-shapes are removed.
-        #  @param theSubShapes is a list of sub-shapes to be removed.
-        #
-        #  @ref tui_working_with_groups_page "Example"
-        def DifferenceList (self,theGroup, theSubShapes):
-            """
-            Removes from the group all the given shapes. No errors, if some shapes are not included.
-
-            Parameters:
-                theGroup is a GEOM group from which the sub-shapes are removed.
-                theSubShapes is a list of sub-shapes to be removed.
-            """
-            # Example: see GEOM_TestOthers.py
-            self.GroupOp.DifferenceList(theGroup, theSubShapes)
-            RaiseIfFailed("DifferenceList", self.GroupOp)
-            pass
-
-        ## Removes from the group all the given shapes. No errors, if some shapes are not included.
-        #  @param theGroup is a GEOM group from which the sub-shapes are removed.
-        #  @param theSubShapes is a list of indices of sub-shapes to be removed.
-        #
-        #  @ref swig_DifferenceIDs "Example"
-        def DifferenceIDs(self,theGroup, theSubShapes):
-            """
-            Removes from the group all the given shapes. No errors, if some shapes are not included.
-
-            Parameters:
-                theGroup is a GEOM group from which the sub-shapes are removed.
-                theSubShapes is a list of indices of sub-shapes to be removed.
-            """            
-            # Example: see GEOM_TestOthers.py
-            self.GroupOp.DifferenceIDs(theGroup, theSubShapes)
-            RaiseIfFailed("DifferenceIDs", self.GroupOp)
-            pass
-
-        ## Union of two groups.
-        #  New group is created. It will contain all entities
-        #  which are present in groups theGroup1 and theGroup2.
-        #  @param theGroup1, theGroup2 are the initial GEOM groups
-        #                              to create the united group from.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return a newly created GEOM group.
-        #
-        #  @ref tui_union_groups_anchor "Example"
-        def UnionGroups (self, theGroup1, theGroup2, theName=None):
-            """
-            Union of two groups.
-            New group is created. It will contain all entities
-            which are present in groups theGroup1 and theGroup2.
-
-            Parameters:
-                theGroup1, theGroup2 are the initial GEOM groups
-                                     to create the united group from.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                a newly created GEOM group.
-            """
-            # Example: see GEOM_TestOthers.py
-            aGroup = self.GroupOp.UnionGroups(theGroup1, theGroup2)
-            RaiseIfFailed("UnionGroups", self.GroupOp)
-            self._autoPublish(aGroup, theName, "group")
-            return aGroup
-
-        ## Intersection of two groups.
-        #  New group is created. It will contain only those entities
-        #  which are present in both groups theGroup1 and theGroup2.
-        #  @param theGroup1, theGroup2 are the initial GEOM groups to get common part of.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return a newly created GEOM group.
-        #
-        #  @ref tui_intersect_groups_anchor "Example"
-        def IntersectGroups (self, theGroup1, theGroup2, theName=None):
-            """
-            Intersection of two groups.
-            New group is created. It will contain only those entities
-            which are present in both groups theGroup1 and theGroup2.
-
-            Parameters:
-                theGroup1, theGroup2 are the initial GEOM groups to get common part of.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                a newly created GEOM group.
-            """
-            # Example: see GEOM_TestOthers.py
-            aGroup = self.GroupOp.IntersectGroups(theGroup1, theGroup2)
-            RaiseIfFailed("IntersectGroups", self.GroupOp)
-            self._autoPublish(aGroup, theName, "group")
-            return aGroup
-
-        ## Cut of two groups.
-        #  New group is created. It will contain entities which are
-        #  present in group theGroup1 but are not present in group theGroup2.
-        #  @param theGroup1 is a GEOM group to include elements of.
-        #  @param theGroup2 is a GEOM group to exclude elements of.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return a newly created GEOM group.
-        #
-        #  @ref tui_cut_groups_anchor "Example"
-        def CutGroups (self, theGroup1, theGroup2, theName=None):
-            """
-            Cut of two groups.
-            New group is created. It will contain entities which are
-            present in group theGroup1 but are not present in group theGroup2.
-
-            Parameters:
-                theGroup1 is a GEOM group to include elements of.
-                theGroup2 is a GEOM group to exclude elements of.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                a newly created GEOM group.
-            """
-            # Example: see GEOM_TestOthers.py
-            aGroup = self.GroupOp.CutGroups(theGroup1, theGroup2)
-            RaiseIfFailed("CutGroups", self.GroupOp)
-            self._autoPublish(aGroup, theName, "group")
-            return aGroup
-
-        ## Union of list of groups.
-        #  New group is created. It will contain all entities that are
-        #  present in groups listed in theGList.
-        #  @param theGList is a list of GEOM groups to create the united group from.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return a newly created GEOM group.
-        #
-        #  @ref tui_union_groups_anchor "Example"
-        def UnionListOfGroups (self, theGList, theName=None):
-            """
-            Union of list of groups.
-            New group is created. It will contain all entities that are
-            present in groups listed in theGList.
-
-            Parameters:
-                theGList is a list of GEOM groups to create the united group from.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                a newly created GEOM group.
-            """
-            # Example: see GEOM_TestOthers.py
-            aGroup = self.GroupOp.UnionListOfGroups(theGList)
-            RaiseIfFailed("UnionListOfGroups", self.GroupOp)
-            self._autoPublish(aGroup, theName, "group")
-            return aGroup
-
-        ## Cut of lists of groups.
-        #  New group is created. It will contain only entities
-        #  which are present in groups listed in theGList1 but 
-        #  are not present in groups from theGList2.
-        #  @param theGList1 is a list of GEOM groups to include elements of.
-        #  @param theGList2 is a list of GEOM groups to exclude elements of.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return a newly created GEOM group.
-        #
-        #  @ref tui_intersect_groups_anchor "Example"
-        def IntersectListOfGroups (self, theGList, theName=None):
-            """
-            Cut of lists of groups.
-            New group is created. It will contain only entities
-            which are present in groups listed in theGList1 but 
-            are not present in groups from theGList2.
-
-            Parameters:
-                theGList1 is a list of GEOM groups to include elements of.
-                theGList2 is a list of GEOM groups to exclude elements of.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                a newly created GEOM group.
-            """
-            # Example: see GEOM_TestOthers.py
-            aGroup = self.GroupOp.IntersectListOfGroups(theGList)
-            RaiseIfFailed("IntersectListOfGroups", self.GroupOp)
-            self._autoPublish(aGroup, theName, "group")
-            return aGroup
-
-        ## Cut of lists of groups.
-        #  New group is created. It will contain only entities
-        #  which are present in groups listed in theGList1 but 
-        #  are not present in groups from theGList2.
-        #  @param theGList1 is a list of GEOM groups to include elements of.
-        #  @param theGList2 is a list of GEOM groups to exclude elements of.
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return a newly created GEOM group.
-        #
-        #  @ref tui_cut_groups_anchor "Example"
-        def CutListOfGroups (self, theGList1, theGList2, theName=None):
-            """
-            Cut of lists of groups.
-            New group is created. It will contain only entities
-            which are present in groups listed in theGList1 but 
-            are not present in groups from theGList2.
-
-            Parameters:
-                theGList1 is a list of GEOM groups to include elements of.
-                theGList2 is a list of GEOM groups to exclude elements of.
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                a newly created GEOM group.
-            """
-            # Example: see GEOM_TestOthers.py
-            aGroup = self.GroupOp.CutListOfGroups(theGList1, theGList2)
-            RaiseIfFailed("CutListOfGroups", self.GroupOp)
-            self._autoPublish(aGroup, theName, "group")
-            return aGroup
-
-        ## Returns a list of sub-objects ID stored in the group
-        #  @param theGroup is a GEOM group for which a list of IDs is requested
-        #
-        #  @ref swig_GetObjectIDs "Example"
-        def GetObjectIDs(self,theGroup):
-            """
-            Returns a list of sub-objects ID stored in the group
-
-            Parameters:
-                theGroup is a GEOM group for which a list of IDs is requested
-            """
-            # Example: see GEOM_TestOthers.py
-            ListIDs = self.GroupOp.GetObjects(theGroup)
-            RaiseIfFailed("GetObjects", self.GroupOp)
-            return ListIDs
-
-        ## Returns a type of sub-objects stored in the group
-        #  @param theGroup is a GEOM group which type is returned.
-        #
-        #  @ref swig_GetType "Example"
-        def GetType(self,theGroup):
-            """
-            Returns a type of sub-objects stored in the group
-
-            Parameters:
-                theGroup is a GEOM group which type is returned.
-            """
-            # Example: see GEOM_TestOthers.py
-            aType = self.GroupOp.GetType(theGroup)
-            RaiseIfFailed("GetType", self.GroupOp)
-            return aType
-
-        ## Convert a type of geom object from id to string value
-        #  @param theId is a GEOM obect type id.
-        #  @return type of geom object (POINT, VECTOR, PLANE, LINE, TORUS, ... )
-        #  @ref swig_GetType "Example"
-        def ShapeIdToType(self, theId):
-            """
-            Convert a type of geom object from id to string value
-
-            Parameters:
-                theId is a GEOM obect type id.
-                
-            Returns:
-                type of geom object (POINT, VECTOR, PLANE, LINE, TORUS, ... )
-            """
-            if theId == 0:
-                return "COPY"
-            if theId == 1:
-                return "IMPORT"
-            if theId == 2:
-                return "POINT"
-            if theId == 3:
-                return "VECTOR"
-            if theId == 4:
-                return "PLANE"
-            if theId == 5:
-                return "LINE"
-            if theId == 6:
-                return "TORUS"
-            if theId == 7:
-                return "BOX"
-            if theId == 8:
-                return "CYLINDER"
-            if theId == 9:
-                return "CONE"
-            if theId == 10:
-                return "SPHERE"
-            if theId == 11:
-                return "PRISM"
-            if theId == 12:
-                return "REVOLUTION"
-            if theId == 13:
-                return "BOOLEAN"
-            if theId == 14:
-                return "PARTITION"
-            if theId == 15:
-                return "POLYLINE"
-            if theId == 16:
-                return "CIRCLE"
-            if theId == 17:
-                return "SPLINE"
-            if theId == 18:
-                return "ELLIPSE"
-            if theId == 19:
-                return "CIRC_ARC"
-            if theId == 20:
-                return "FILLET"
-            if theId == 21:
-                return "CHAMFER"
-            if theId == 22:
-                return "EDGE"
-            if theId == 23:
-                return "WIRE"
-            if theId == 24:
-                return "FACE"
-            if theId == 25:
-                return "SHELL"
-            if theId == 26:
-                return "SOLID"
-            if theId == 27:
-                return "COMPOUND"
-            if theId == 28:
-                return "SUBSHAPE"
-            if theId == 29:
-                return "PIPE"
-            if theId == 30:
-                return "ARCHIMEDE"
-            if theId == 31:
-                return "FILLING"
-            if theId == 32:
-                return "EXPLODE"
-            if theId == 33:
-                return "GLUED"
-            if theId == 34:
-                return "SKETCHER"
-            if theId == 35:
-                return "CDG"
-            if theId == 36:
-                return "FREE_BOUNDS"
-            if theId == 37:
-                return "GROUP"
-            if theId == 38:
-                return "BLOCK"
-            if theId == 39:
-                return "MARKER"
-            if theId == 40:
-                return "THRUSECTIONS"
-            if theId == 41:
-                return "COMPOUNDFILTER"
-            if theId == 42:
-                return "SHAPES_ON_SHAPE"
-            if theId == 43:
-                return "ELLIPSE_ARC"
-            if theId == 44:
-                return "3DSKETCHER"
-            if theId == 45:
-                return "FILLET_2D"
-            if theId == 46:
-                return "FILLET_1D"
-            if theId == 201:
-                return "PIPETSHAPE"
-            return "Shape Id not exist."
-
-        ## Returns a main shape associated with the group
-        #  @param theGroup is a GEOM group for which a main shape object is requested
-        #  @return a GEOM object which is a main shape for theGroup
-        #
-        #  @ref swig_GetMainShape "Example"
-        def GetMainShape(self,theGroup):
-            """
-            Returns a main shape associated with the group
-
-            Parameters:
-                theGroup is a GEOM group for which a main shape object is requested
-
-            Returns:
-                a GEOM object which is a main shape for theGroup
-
-            Example of usage: BoxCopy = geompy.GetMainShape(CreateGroup)
-            """
-            # Example: see GEOM_TestOthers.py
-            anObj = self.GroupOp.GetMainShape(theGroup)
-            RaiseIfFailed("GetMainShape", self.GroupOp)
-            return anObj
-
-        ## Create group of edges of theShape, whose length is in range [min_length, max_length].
-        #  If include_min/max == 0, edges with length == min/max_length will not be included in result.
-        #  @param theShape given shape (see GEOM.GEOM_Object)
-        #  @param min_length minimum length of edges of theShape
-        #  @param max_length maximum length of edges of theShape
-        #  @param include_max indicating if edges with length == max_length should be included in result, 1-yes, 0-no (default=1)
-        #  @param include_min indicating if edges with length == min_length should be included in result, 1-yes, 0-no (default=1)
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return a newly created GEOM group of edges
-        #
-        #  @@ref swig_todo "Example"
-        def GetEdgesByLength (self, theShape, min_length, max_length, include_min = 1, include_max = 1, theName=None):
-            """
-            Create group of edges of theShape, whose length is in range [min_length, max_length].
-            If include_min/max == 0, edges with length == min/max_length will not be included in result.
-
-            Parameters:
-                theShape given shape
-                min_length minimum length of edges of theShape
-                max_length maximum length of edges of theShape
-                include_max indicating if edges with length == max_length should be included in result, 1-yes, 0-no (default=1)
-                include_min indicating if edges with length == min_length should be included in result, 1-yes, 0-no (default=1)
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-             Returns:
-                a newly created GEOM group of edges.
-            """
-            edges = self.SubShapeAll(theShape, ShapeType["EDGE"])
-            edges_in_range = []
-            for edge in edges:
-                Props = self.BasicProperties(edge)
-                if min_length <= Props[0] and Props[0] <= max_length:
-                    if (not include_min) and (min_length == Props[0]):
-                        skip = 1
-                    else:
-                        if (not include_max) and (Props[0] == max_length):
-                            skip = 1
-                        else:
-                            edges_in_range.append(edge)
-
-            if len(edges_in_range) <= 0:
-                print "No edges found by given criteria"
-                return None
-
-            # note: auto-publishing is done in self.CreateGroup()
-            group_edges = self.CreateGroup(theShape, ShapeType["EDGE"], theName)
-            self.UnionList(group_edges, edges_in_range)
-
-            return group_edges
-
-        ## Create group of edges of selected shape, whose length is in range [min_length, max_length].
-        #  If include_min/max == 0, edges with length == min/max_length will not be included in result.
-        #  @param min_length minimum length of edges of selected shape
-        #  @param max_length maximum length of edges of selected shape
-        #  @param include_max indicating if edges with length == max_length should be included in result, 1-yes, 0-no (default=1)
-        #  @param include_min indicating if edges with length == min_length should be included in result, 1-yes, 0-no (default=1)
-        #  @return a newly created GEOM group of edges
-        #  @ref swig_todo "Example"
-        def SelectEdges (self, min_length, max_length, include_min = 1, include_max = 1):
-            """
-            Create group of edges of selected shape, whose length is in range [min_length, max_length].
-            If include_min/max == 0, edges with length == min/max_length will not be included in result.
-
-            Parameters:
-                min_length minimum length of edges of selected shape
-                max_length maximum length of edges of selected shape
-                include_max indicating if edges with length == max_length should be included in result, 1-yes, 0-no (default=1)
-                include_min indicating if edges with length == min_length should be included in result, 1-yes, 0-no (default=1)
-
-             Returns:
-                a newly created GEOM group of edges.
-            """
-            nb_selected = sg.SelectedCount()
-            if nb_selected < 1:
-                print "Select a shape before calling this function, please."
-                return 0
-            if nb_selected > 1:
-                print "Only one shape must be selected"
-                return 0
-
-            id_shape = sg.getSelected(0)
-            shape = IDToObject( id_shape )
-
-            group_edges = self.GetEdgesByLength(shape, min_length, max_length, include_min, include_max)
-
-            left_str  = " < "
-            right_str = " < "
-            if include_min: left_str  = " <= "
-            if include_max: right_str  = " <= "
-
-            self.addToStudyInFather(shape, group_edges, "Group of edges with " + `min_length`
-                                    + left_str + "length" + right_str + `max_length`)
-
-            sg.updateObjBrowser(1)
-
-            return group_edges
-
-        # end of l3_groups
-        ## @}
-
-        ## @addtogroup l4_advanced
-        ## @{
-
-        ## Create a T-shape object with specified caracteristics for the main
-        #  and the incident pipes (radius, width, half-length).
-        #  The extremities of the main pipe are located on junctions points P1 and P2.
-        #  The extremity of the incident pipe is located on junction point P3.
-        #  If P1, P2 and P3 are not given, the center of the shape is (0,0,0) and
-        #  the main plane of the T-shape is XOY.
-        #  @param theR1 Internal radius of main pipe
-        #  @param theW1 Width of main pipe
-        #  @param theL1 Half-length of main pipe
-        #  @param theR2 Internal radius of incident pipe (R2 < R1)
-        #  @param theW2 Width of incident pipe (R2+W2 < R1+W1)
-        #  @param theL2 Half-length of incident pipe
-        #  @param theHexMesh Boolean indicating if shape is prepared for hex mesh (default=True)
-        #  @param theP1 1st junction point of main pipe
-        #  @param theP2 2nd junction point of main pipe
-        #  @param theP3 Junction point of incident pipe
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return List of GEOM.GEOM_Object, containing the created shape and propagation groups.
-        #
-        #  @ref tui_creation_pipetshape "Example"
-        def MakePipeTShape(self, theR1, theW1, theL1, theR2, theW2, theL2, theHexMesh=True, theP1=None, theP2=None, theP3=None, theName=None):
-            """
-            Create a T-shape object with specified caracteristics for the main
-            and the incident pipes (radius, width, half-length).
-            The extremities of the main pipe are located on junctions points P1 and P2.
-            The extremity of the incident pipe is located on junction point P3.
-            If P1, P2 and P3 are not given, the center of the shape is (0,0,0) and
-            the main plane of the T-shape is XOY.
-
-            Paremeters:
-                theR1 Internal radius of main pipe
-                theW1 Width of main pipe
-                theL1 Half-length of main pipe
-                theR2 Internal radius of incident pipe (R2 < R1)
-                theW2 Width of incident pipe (R2+W2 < R1+W1)
-                theL2 Half-length of incident pipe
-                theHexMesh Boolean indicating if shape is prepared for hex mesh (default=True)
-                theP1 1st junction point of main pipe
-                theP2 2nd junction point of main pipe
-                theP3 Junction point of incident pipe
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                List of GEOM_Object, containing the created shape and propagation groups.
-
-            Example of usage:
-                # create PipeTShape object
-                pipetshape = geompy.MakePipeTShape(80.0, 20.0, 200.0, 50.0, 20.0, 200.0)
-                # create PipeTShape object with position
-                pipetshape_position = geompy.MakePipeTShape(80.0, 20.0, 200.0, 50.0, 20.0, 200.0, True, P1, P2, P3)
-            """
-            theR1, theW1, theL1, theR2, theW2, theL2, Parameters = ParseParameters(theR1, theW1, theL1, theR2, theW2, theL2)        
-            if (theP1 and theP2 and theP3):
-                anObj = self.AdvOp.MakePipeTShapeWithPosition(theR1, theW1, theL1, theR2, theW2, theL2, theHexMesh, theP1, theP2, theP3)
-            else:
-                anObj = self.AdvOp.MakePipeTShape(theR1, theW1, theL1, theR2, theW2, theL2, theHexMesh)
-            RaiseIfFailed("MakePipeTShape", self.AdvOp)
-            if Parameters: anObj[0].SetParameters(Parameters)
-            def_names = [ "pipeTShape" ] + [ "pipeTShape_grp_%d" % i for i in range(1, len(anObj)) ]
-            self._autoPublish(anObj, _toListOfNames(theName, len(anObj)), def_names)
-            return anObj
-
-        ## Create a T-shape object with chamfer and with specified caracteristics for the main
-        #  and the incident pipes (radius, width, half-length). The chamfer is
-        #  created on the junction of the pipes.
-        #  The extremities of the main pipe are located on junctions points P1 and P2.
-        #  The extremity of the incident pipe is located on junction point P3.
-        #  If P1, P2 and P3 are not given, the center of the shape is (0,0,0) and
-        #  the main plane of the T-shape is XOY.
-        #  @param theR1 Internal radius of main pipe
-        #  @param theW1 Width of main pipe
-        #  @param theL1 Half-length of main pipe
-        #  @param theR2 Internal radius of incident pipe (R2 < R1)
-        #  @param theW2 Width of incident pipe (R2+W2 < R1+W1)
-        #  @param theL2 Half-length of incident pipe
-        #  @param theH Height of the chamfer.
-        #  @param theW Width of the chamfer.
-        #  @param theHexMesh Boolean indicating if shape is prepared for hex mesh (default=True)
-        #  @param theP1 1st junction point of main pipe
-        #  @param theP2 2nd junction point of main pipe
-        #  @param theP3 Junction point of incident pipe
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return List of GEOM.GEOM_Object, containing the created shape and propagation groups.
-        #
-        #  @ref tui_creation_pipetshape "Example"
-        def MakePipeTShapeChamfer(self, theR1, theW1, theL1, theR2, theW2, theL2, theH, theW, theHexMesh=True, theP1=None, theP2=None, theP3=None, theName=None):
-            """
-            Create a T-shape object with chamfer and with specified caracteristics for the main
-            and the incident pipes (radius, width, half-length). The chamfer is
-            created on the junction of the pipes.
-            The extremities of the main pipe are located on junctions points P1 and P2.
-            The extremity of the incident pipe is located on junction point P3.
-            If P1, P2 and P3 are not given, the center of the shape is (0,0,0) and
-            the main plane of the T-shape is XOY.
-
-            Paremeters:
-                theR1 Internal radius of main pipe
-                theW1 Width of main pipe
-                theL1 Half-length of main pipe
-                theR2 Internal radius of incident pipe (R2 < R1)
-                theW2 Width of incident pipe (R2+W2 < R1+W1)
-                theL2 Half-length of incident pipe
-                theH Height of the chamfer.
-                theW Width of the chamfer.
-                theHexMesh Boolean indicating if shape is prepared for hex mesh (default=True)
-                theP1 1st junction point of main pipe
-                theP2 2nd junction point of main pipe
-                theP3 Junction point of incident pipe
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                List of GEOM_Object, containing the created shape and propagation groups.
-
-            Example of usage:
-                # create PipeTShape with chamfer object
-                pipetshapechamfer = geompy.MakePipeTShapeChamfer(80.0, 20.0, 200.0, 50.0, 20.0, 200.0, 20.0, 20.0)
-                # create PipeTShape with chamfer object with position
-                pipetshapechamfer_position = geompy.MakePipeTShapeChamfer(80.0, 20.0, 200.0, 50.0, 20.0, 200.0, 20.0, 20.0, True, P1, P2, P3)
-            """
-            theR1, theW1, theL1, theR2, theW2, theL2, theH, theW, Parameters = ParseParameters(theR1, theW1, theL1, theR2, theW2, theL2, theH, theW)
-            if (theP1 and theP2 and theP3):
-              anObj = self.AdvOp.MakePipeTShapeChamferWithPosition(theR1, theW1, theL1, theR2, theW2, theL2, theH, theW, theHexMesh, theP1, theP2, theP3)
-            else:
-              anObj = self.AdvOp.MakePipeTShapeChamfer(theR1, theW1, theL1, theR2, theW2, theL2, theH, theW, theHexMesh)
-            RaiseIfFailed("MakePipeTShapeChamfer", self.AdvOp)
-            if Parameters: anObj[0].SetParameters(Parameters)
-            def_names = [ "pipeTShape" ] + [ "pipeTShape_grp_%d" % i for i in range(1, len(anObj)) ]
-            self._autoPublish(anObj, _toListOfNames(theName, len(anObj)), def_names)
-            return anObj
-
-        ## Create a T-shape object with fillet and with specified caracteristics for the main
-        #  and the incident pipes (radius, width, half-length). The fillet is
-        #  created on the junction of the pipes.
-        #  The extremities of the main pipe are located on junctions points P1 and P2.
-        #  The extremity of the incident pipe is located on junction point P3.
-        #  If P1, P2 and P3 are not given, the center of the shape is (0,0,0) and
-        #  the main plane of the T-shape is XOY.
-        #  @param theR1 Internal radius of main pipe
-        #  @param theW1 Width of main pipe
-        #  @param theL1 Half-length of main pipe
-        #  @param theR2 Internal radius of incident pipe (R2 < R1)
-        #  @param theW2 Width of incident pipe (R2+W2 < R1+W1)
-        #  @param theL2 Half-length of incident pipe
-        #  @param theRF Radius of curvature of fillet.
-        #  @param theHexMesh Boolean indicating if shape is prepared for hex mesh (default=True)
-        #  @param theP1 1st junction point of main pipe
-        #  @param theP2 2nd junction point of main pipe
-        #  @param theP3 Junction point of incident pipe
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return List of GEOM.GEOM_Object, containing the created shape and propagation groups.
-        #
-        #  @ref tui_creation_pipetshape "Example"
-        def MakePipeTShapeFillet(self, theR1, theW1, theL1, theR2, theW2, theL2, theRF, theHexMesh=True, theP1=None, theP2=None, theP3=None, theName=None):
-            """
-            Create a T-shape object with fillet and with specified caracteristics for the main
-            and the incident pipes (radius, width, half-length). The fillet is
-            created on the junction of the pipes.
-            The extremities of the main pipe are located on junctions points P1 and P2.
-            The extremity of the incident pipe is located on junction point P3.
-
-            Paremeters:
-                If P1, P2 and P3 are not given, the center of the shape is (0,0,0) and
-                the main plane of the T-shape is XOY.
-                theR1 Internal radius of main pipe
-                theW1 Width of main pipe
-                heL1 Half-length of main pipe
-                theR2 Internal radius of incident pipe (R2 < R1)
-                theW2 Width of incident pipe (R2+W2 < R1+W1)
-                theL2 Half-length of incident pipe
-                theRF Radius of curvature of fillet.
-                theHexMesh Boolean indicating if shape is prepared for hex mesh (default=True)
-                theP1 1st junction point of main pipe
-                theP2 2nd junction point of main pipe
-                theP3 Junction point of incident pipe
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-                
-            Returns:
-                List of GEOM_Object, containing the created shape and propagation groups.
-                
-            Example of usage:
-                # create PipeTShape with fillet object
-                pipetshapefillet = geompy.MakePipeTShapeFillet(80.0, 20.0, 200.0, 50.0, 20.0, 200.0, 5.0)
-                # create PipeTShape with fillet object with position
-                pipetshapefillet_position = geompy.MakePipeTShapeFillet(80.0, 20.0, 200.0, 50.0, 20.0, 200.0, 5.0, True, P1, P2, P3)
-        
-            """
-            theR1, theW1, theL1, theR2, theW2, theL2, theRF, Parameters = ParseParameters(theR1, theW1, theL1, theR2, theW2, theL2, theRF)
-            if (theP1 and theP2 and theP3):
-              anObj = self.AdvOp.MakePipeTShapeFilletWithPosition(theR1, theW1, theL1, theR2, theW2, theL2, theRF, theHexMesh, theP1, theP2, theP3)
-            else:
-              anObj = self.AdvOp.MakePipeTShapeFillet(theR1, theW1, theL1, theR2, theW2, theL2, theRF, theHexMesh)
-            RaiseIfFailed("MakePipeTShapeFillet", self.AdvOp)
-            if Parameters: anObj[0].SetParameters(Parameters)
-            def_names = [ "pipeTShape" ] + [ "pipeTShape_grp_%d" % i for i in range(1, len(anObj)) ]
-            self._autoPublish(anObj, _toListOfNames(theName, len(anObj)), def_names)
-            return anObj
-
-        ## This function allows creating a disk already divided into blocks. It
-        #  can be used to create divided pipes for later meshing in hexaedra.
-        #  @param theR Radius of the disk
-        #  @param theOrientation Orientation of the plane on which the disk will be built
-        #         1 = XOY, 2 = OYZ, 3 = OZX
-        #  @param thePattern Division pattern. It can be GEOM.SQUARE or GEOM.HEXAGON
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM_Object, containing the created shape.
-        #
-        #  @ref tui_creation_divideddisk "Example"
-        def MakeDividedDisk(self, theR, theOrientation, thePattern, theName=None):
-            """
-            Creates a disk, divided into blocks. It can be used to create divided pipes
-            for later meshing in hexaedra.
-
-            Parameters:
-                theR Radius of the disk
-                theOrientation Orientation of the plane on which the disk will be built:
-                               1 = XOY, 2 = OYZ, 3 = OZX
-                thePattern Division pattern. It can be GEOM.SQUARE or GEOM.HEXAGON
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM_Object, containing the created shape.
-            """
-            theR, Parameters = ParseParameters(theR)
-            anObj = self.AdvOp.MakeDividedDisk(theR, 67.0, theOrientation, thePattern)
-            RaiseIfFailed("MakeDividedDisk", self.AdvOp)
-            if Parameters: anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "dividedDisk")
-            return anObj
-            
-        ## This function allows creating a disk already divided into blocks. It
-        #  can be used to create divided pipes for later meshing in hexaedra.
-        #  @param theCenter Center of the disk
-        #  @param theVector Normal vector to the plane of the created disk
-        #  @param theRadius Radius of the disk
-        #  @param thePattern Division pattern. It can be GEOM.SQUARE or GEOM.HEXAGON
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM_Object, containing the created shape.
-        #
-        #  @ref tui_creation_divideddisk "Example"
-        def MakeDividedDiskPntVecR(self, theCenter, theVector, theRadius, thePattern, theName=None):
-            """
-            Creates a disk already divided into blocks. It can be used to create divided pipes
-            for later meshing in hexaedra.
-
-            Parameters:
-                theCenter Center of the disk
-                theVector Normal vector to the plane of the created disk
-                theRadius Radius of the disk
-                thePattern Division pattern. It can be GEOM.SQUARE or GEOM.HEXAGON
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM_Object, containing the created shape.
-            """
-            theRadius, Parameters = ParseParameters(theRadius)
-            anObj = self.AdvOp.MakeDividedDiskPntVecR(theCenter, theVector, theRadius, 67.0, thePattern)
-            RaiseIfFailed("MakeDividedDiskPntVecR", self.AdvOp)
-            if Parameters: anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "dividedDisk")
-            return anObj
-
-        ## Builds a cylinder prepared for hexa meshes
-        #  @param theR Radius of the cylinder
-        #  @param theH Height of the cylinder
-        #  @param thePattern Division pattern. It can be GEOM.SQUARE or GEOM.HEXAGON
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM_Object, containing the created shape.
-        #
-        #  @ref tui_creation_dividedcylinder "Example"
-        def MakeDividedCylinder(self, theR, theH, thePattern, theName=None):
-            """
-            Builds a cylinder prepared for hexa meshes
-
-            Parameters:
-                theR Radius of the cylinder
-                theH Height of the cylinder
-                thePattern Division pattern. It can be GEOM.SQUARE or GEOM.HEXAGON
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM_Object, containing the created shape.
-            """
-            theR, theH, Parameters = ParseParameters(theR, theH)
-            anObj = self.AdvOp.MakeDividedCylinder(theR, theH, thePattern)
-            RaiseIfFailed("MakeDividedCylinder", self.AdvOp)
-            if Parameters: anObj.SetParameters(Parameters)
-            self._autoPublish(anObj, theName, "dividedCylinder")
-            return anObj
-
-        #@@ insert new functions before this line @@ do not remove this line @@#
-
-        # end of l4_advanced
-        ## @}
-
-        ## Create a copy of the given object
-        #
-        #  @param theOriginal geometry object for copy
-        #  @return unique object identifier
-        #  @ingroup l1_geompyDC_auxiliary
-        #  @param theName Object name; when specified, this parameter is used
-        #         for result publication in the study. Otherwise, if automatic
-        #         publication is switched on, default value is used for result name.
-        #
-        #  @return New GEOM_Object, containing the copied shape.
-        #
-        #  @ingroup l1_geompy_auxiliary
-        #  @ref swig_MakeCopy "Example"
-        def MakeCopy(self, theOriginal, theName=None):
-            """
-            Create a copy of the given object
-
-            Paremeters:
-                theOriginal geometry object for copy
-                theName Object name; when specified, this parameter is used
-                        for result publication in the study. Otherwise, if automatic
-                        publication is switched on, default value is used for result name.
-
-            Returns:
-                New GEOM_Object, containing the copied shape.
-
-            Example of usage: Copy = geompy.MakeCopy(Box)
-            """
-            # Example: see GEOM_TestAll.py
-            anObj = self.InsertOp.MakeCopy(theOriginal)
-            RaiseIfFailed("MakeCopy", self.InsertOp)
-            self._autoPublish(anObj, theName, "copy")
-            return anObj
-
-        ## Add Path to load python scripts from
-        #  @param Path a path to load python scripts from
-        #  @ingroup l1_geompyDC_auxiliary
-        def addPath(self,Path):
-            """
-            Add Path to load python scripts from
-
-            Parameters:
-                Path a path to load python scripts from
-            """
-            if (sys.path.count(Path) < 1):
-                sys.path.append(Path)
-                pass
-            pass
-
-        ## Load marker texture from the file
-        #  @param Path a path to the texture file
-        #  @return unique texture identifier
-        #  @ingroup l1_geompyDC_auxiliary
-        def LoadTexture(self, Path):
-            """
-            Load marker texture from the file
-            
-            Parameters:
-                Path a path to the texture file
-                
-            Returns:
-                unique texture identifier
-            """
-            # Example: see GEOM_TestAll.py
-            ID = self.InsertOp.LoadTexture(Path)
-            RaiseIfFailed("LoadTexture", self.InsertOp)
-            return ID
-
-        ## Get internal name of the object based on its study entry
-        #  @note This method does not provide an unique identifier of the geometry object.
-        #  @note This is internal function of GEOM component, though it can be used outside it for 
-        #  appropriate reason (e.g. for identification of geometry object).
-        #  @param obj geometry object
-        #  @return unique object identifier
-        #  @ingroup l1_geompyDC_auxiliary
-        def getObjectID(self, obj):
-            """
-            Get internal name of the object based on its study entry.
-            Note: this method does not provide an unique identifier of the geometry object.
-            It is an internal function of GEOM component, though it can be used outside GEOM for 
-            appropriate reason (e.g. for identification of geometry object).
-
-            Parameters:
-                obj geometry object
-
-            Returns:
-                unique object identifier
-            """
-            ID = ""
-            entry = salome.ObjectToID(obj)
-            if entry is not None:
-                lst = entry.split(":")
-                if len(lst) > 0:
-                    ID = lst[-1] # -1 means last item in the list            
-                    return "GEOM_" + ID
-            return ID
-                
-            
-
-        ## Add marker texture. @a Width and @a Height parameters
-        #  specify width and height of the texture in pixels.
-        #  If @a RowData is @c True, @a Texture parameter should represent texture data
-        #  packed into the byte array. If @a RowData is @c False (default), @a Texture
-        #  parameter should be unpacked string, in which '1' symbols represent opaque
-        #  pixels and '0' represent transparent pixels of the texture bitmap.
-        #
-        #  @param Width texture width in pixels
-        #  @param Height texture height in pixels
-        #  @param Texture texture data
-        #  @param RowData if @c True, @a Texture data are packed in the byte stream
-        #  @return unique texture identifier
-        #  @ingroup l1_geompyDC_auxiliary
-        def AddTexture(self, Width, Height, Texture, RowData=False):
-            """
-            Add marker texture. Width and Height parameters
-            specify width and height of the texture in pixels.
-            If RowData is True, Texture parameter should represent texture data
-            packed into the byte array. If RowData is False (default), Texture
-            parameter should be unpacked string, in which '1' symbols represent opaque
-            pixels and '0' represent transparent pixels of the texture bitmap.
-
-            Parameters:
-                Width texture width in pixels
-                Height texture height in pixels
-                Texture texture data
-                RowData if True, Texture data are packed in the byte stream
-
-            Returns:
-                return unique texture identifier
-            """
-            if not RowData: Texture = PackData(Texture)
-            ID = self.InsertOp.AddTexture(Width, Height, Texture)
-            RaiseIfFailed("AddTexture", self.InsertOp)
-            return ID
-
-import omniORB
-# Register the new proxy for GEOM_Gen
-omniORB.registerObjref(GEOM._objref_GEOM_Gen._NP_RepositoryId, geompyDC)
-
-def geomInstance( study, instance=None):
-    print "geomInstance ", study, instance
-    global engine
-    global geom
-    global doLcc
-    engine = instance
-    if engine is None:
-      doLcc = True
-    geom = geompyDC()
-    assert isinstance(geom,geompyDC), "Geom engine class is %s but should be geompyDC.geompyDC. Import geompyDC before creating the instance."%geom.__class__
-    geom.init_geom(study)
-    return geom