]> SALOME platform Git repositories - modules/adao.git/commitdiff
Salome HOME
Fixing iterating observation use (4)
authorJean-Philippe ARGAUD <jean-philippe.argaud@edf.fr>
Thu, 8 Jul 2021 14:29:09 +0000 (16:29 +0200)
committerJean-Philippe ARGAUD <jean-philippe.argaud@edf.fr>
Thu, 8 Jul 2021 14:29:09 +0000 (16:29 +0200)
src/daComposant/daAlgorithms/ExtendedKalmanFilter.py
src/daComposant/daAlgorithms/UnscentedKalmanFilter.py
src/daComposant/daCore/NumericObjects.py

index 20c3976454a6a9b07a7bb793719eb6a3cf2e91ca..95cd3e3dfcf9db5cb510e18cd3649572542b43ca 100644 (file)
 
 import logging
 from daCore import BasicObjects, NumericObjects
-import numpy
 
 # ==============================================================================
 class ElementaryAlgorithm(BasicObjects.Algorithm):
     def __init__(self):
         BasicObjects.Algorithm.__init__(self, "EXTENDEDKALMANFILTER")
+        self.defineRequiredParameter(
+            name     = "Variant",
+            default  = "EKF",
+            typecast = str,
+            message  = "Variant ou formulation de la méthode",
+            listval  = [
+                "EKF",
+                ],
+            listadv  = [
+                "CEKF",
+                ],
+            )
         self.defineRequiredParameter(
             name     = "ConstrainedBy",
             default  = "EstimateProjection",
index dc15af774152778459691a6728463686aca230e7..6c497f8647bd065c20d6f8c6b841be8acb6c19d1 100644 (file)
 # Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
 
 import logging
-from daCore import BasicObjects
-import numpy, math
+from daCore import BasicObjects, NumericObjects
 
 # ==============================================================================
 class ElementaryAlgorithm(BasicObjects.Algorithm):
     def __init__(self):
         BasicObjects.Algorithm.__init__(self, "UNSCENTEDKALMANFILTER")
+        self.defineRequiredParameter(
+            name     = "Variant",
+            default  = "UKF",
+            typecast = str,
+            message  = "Variant ou formulation de la méthode",
+            listval  = [
+                "UKF",
+                ],
+            listadv  = [
+                "CUKF",
+                ],
+            )
         self.defineRequiredParameter(
             name     = "ConstrainedBy",
             default  = "EstimateProjection",
@@ -116,212 +127,9 @@ class ElementaryAlgorithm(BasicObjects.Algorithm):
     def run(self, Xb=None, Y=None, U=None, HO=None, EM=None, CM=None, R=None, B=None, Q=None, Parameters=None):
         self._pre_run(Parameters, Xb, Y, U, HO, EM, CM, R, B, Q)
         #
-        if self._parameters["EstimationOf"] == "Parameters":
-            self._parameters["StoreInternalVariables"] = True
-        #
-        L     = Xb.size
-        Alpha = self._parameters["Alpha"]
-        Beta  = self._parameters["Beta"]
-        if self._parameters["Kappa"] == 0:
-            if self._parameters["EstimationOf"] == "State":
-                Kappa = 0
-            elif self._parameters["EstimationOf"] == "Parameters":
-                Kappa = 3 - L
-        else:
-            Kappa = self._parameters["Kappa"]
-        Lambda = float( Alpha**2 ) * ( L + Kappa ) - L
-        Gamma  = math.sqrt( L + Lambda )
-        #
-        Ww = []
-        Ww.append( 0. )
-        for i in range(2*L):
-            Ww.append( 1. / (2.*(L + Lambda)) )
-        #
-        Wm = numpy.array( Ww )
-        Wm[0] = Lambda / (L + Lambda)
-        Wc = numpy.array( Ww )
-        Wc[0] = Lambda / (L + Lambda) + (1. - Alpha**2 + Beta)
-        #
-        # Opérateurs
-        # ----------
-        Hm = HO["Direct"].appliedControledFormTo
-        #
-        if self._parameters["EstimationOf"] == "State":
-            Mm = EM["Direct"].appliedControledFormTo
-        #
-        if CM is not None and "Tangent" in CM and U is not None:
-            Cm = CM["Tangent"].asMatrix(Xb)
-        else:
-            Cm = None
-        #
-        # Nombre de pas identique au nombre de pas d'observations
-        # -------------------------------------------------------
-        if hasattr(Y,"stepnumber"):
-            duration = Y.stepnumber()
-        else:
-            duration = 2
-        #
-        # Précalcul des inversions de B et R
-        # ----------------------------------
-        if self._parameters["StoreInternalVariables"] \
-            or self._toStore("CostFunctionJ") \
-            or self._toStore("CostFunctionJb") \
-            or self._toStore("CostFunctionJo"):
-            BI = B.getI()
-            RI = R.getI()
-        #
-        # Initialisation
-        # --------------
-        __n = Xb.size
-        Xn = Xb
-        if hasattr(B,"asfullmatrix"): Pn = B.asfullmatrix(__n)
-        else:                         Pn = B
-        #
-        if len(self.StoredVariables["Analysis"])==0 or not self._parameters["nextStep"]:
-            self.StoredVariables["CurrentIterationNumber"].store( len(self.StoredVariables["Analysis"]) )
-            self.StoredVariables["Analysis"].store( numpy.ravel(Xn) )
-            if self._toStore("APosterioriCovariance"):
-                self.StoredVariables["APosterioriCovariance"].store( Pn )
-                covarianceXa = Pn
-                if self._parameters["EstimationOf"] == "Parameters":
-                    covarianceXaMin = Pn
-        #
-        if self._parameters["EstimationOf"] == "Parameters":
-            XaMin            = Xn
-            previousJMinimum = numpy.finfo(float).max
-        #
-        for step in range(duration-1):
-            if hasattr(Y,"store"):
-                Ynpu = numpy.asmatrix(numpy.ravel( Y[step+1] )).T
-            else:
-                Ynpu = numpy.asmatrix(numpy.ravel( Y )).T
-            #
-            if U is not None:
-                if hasattr(U,"store") and len(U)>1:
-                    Un = numpy.asmatrix(numpy.ravel( U[step] )).T
-                elif hasattr(U,"store") and len(U)==1:
-                    Un = numpy.asmatrix(numpy.ravel( U[0] )).T
-                else:
-                    Un = numpy.asmatrix(numpy.ravel( U )).T
-            else:
-                Un = None
-            #
-            Pndemi = numpy.linalg.cholesky(Pn)
-            Xnp = numpy.hstack([Xn, Xn+Gamma*Pndemi, Xn-Gamma*Pndemi])
-            nbSpts = 2*Xn.size+1
-            #
-            if self._parameters["Bounds"] is not None and self._parameters["ConstrainedBy"] == "EstimateProjection":
-                for point in range(nbSpts):
-                    Xnp[:,point] = numpy.max(numpy.hstack((Xnp[:,point],numpy.asmatrix(self._parameters["Bounds"])[:,0])),axis=1)
-                    Xnp[:,point] = numpy.min(numpy.hstack((Xnp[:,point],numpy.asmatrix(self._parameters["Bounds"])[:,1])),axis=1)
-            #
-            XEtnnp = []
-            for point in range(nbSpts):
-                if self._parameters["EstimationOf"] == "State":
-                    XEtnnpi = numpy.asmatrix(numpy.ravel( Mm( (Xnp[:,point], Un) ) )).T
-                    if Cm is not None and Un is not None: # Attention : si Cm est aussi dans M, doublon !
-                        Cm = Cm.reshape(Xn.size,Un.size) # ADAO & check shape
-                        XEtnnpi = XEtnnpi + Cm * Un
-                    if self._parameters["Bounds"] is not None and self._parameters["ConstrainedBy"] == "EstimateProjection":
-                        XEtnnpi = numpy.max(numpy.hstack((XEtnnpi,numpy.asmatrix(self._parameters["Bounds"])[:,0])),axis=1)
-                        XEtnnpi = numpy.min(numpy.hstack((XEtnnpi,numpy.asmatrix(self._parameters["Bounds"])[:,1])),axis=1)
-                elif self._parameters["EstimationOf"] == "Parameters":
-                    # --- > Par principe, M = Id, Q = 0
-                    XEtnnpi = Xnp[:,point]
-                XEtnnp.append( XEtnnpi )
-            XEtnnp = numpy.hstack( XEtnnp )
-            #
-            Xncm = numpy.matrix( XEtnnp.getA()*numpy.array(Wm) ).sum(axis=1)
-            #
-            if self._parameters["Bounds"] is not None and self._parameters["ConstrainedBy"] == "EstimateProjection":
-                Xncm = numpy.max(numpy.hstack((Xncm,numpy.asmatrix(self._parameters["Bounds"])[:,0])),axis=1)
-                Xncm = numpy.min(numpy.hstack((Xncm,numpy.asmatrix(self._parameters["Bounds"])[:,1])),axis=1)
-            #
-            if self._parameters["EstimationOf"] == "State":        Pnm = Q
-            elif self._parameters["EstimationOf"] == "Parameters": Pnm = 0.
-            for point in range(nbSpts):
-                Pnm += Wc[i] * (XEtnnp[:,point]-Xncm) * (XEtnnp[:,point]-Xncm).T
-            #
-            if self._parameters["EstimationOf"] == "Parameters" and self._parameters["Bounds"] is not None:
-                Pnmdemi = self._parameters["Reconditioner"] * numpy.linalg.cholesky(Pnm)
-            else:
-                Pnmdemi = numpy.linalg.cholesky(Pnm)
-            #
-            Xnnp = numpy.hstack([Xncm, Xncm+Gamma*Pnmdemi, Xncm-Gamma*Pnmdemi])
-            #
-            if self._parameters["Bounds"] is not None and self._parameters["ConstrainedBy"] == "EstimateProjection":
-                for point in range(nbSpts):
-                    Xnnp[:,point] = numpy.max(numpy.hstack((Xnnp[:,point],numpy.asmatrix(self._parameters["Bounds"])[:,0])),axis=1)
-                    Xnnp[:,point] = numpy.min(numpy.hstack((Xnnp[:,point],numpy.asmatrix(self._parameters["Bounds"])[:,1])),axis=1)
-            #
-            Ynnp = []
-            for point in range(nbSpts):
-                if self._parameters["EstimationOf"] == "State":
-                    Ynnpi = numpy.asmatrix(numpy.ravel( Hm( (Xnnp[:,point], None) ) )).T
-                elif self._parameters["EstimationOf"] == "Parameters":
-                    Ynnpi = numpy.asmatrix(numpy.ravel( Hm( (Xnnp[:,point], Un) ) )).T
-                Ynnp.append( Ynnpi )
-            Ynnp = numpy.hstack( Ynnp )
-            #
-            Yncm = numpy.matrix( Ynnp.getA()*numpy.array(Wm) ).sum(axis=1)
-            #
-            Pyyn = R
-            Pxyn = 0.
-            for point in range(nbSpts):
-                Pyyn += Wc[i] * (Ynnp[:,point]-Yncm) * (Ynnp[:,point]-Yncm).T
-                Pxyn += Wc[i] * (Xnnp[:,point]-Xncm) * (Ynnp[:,point]-Yncm).T
-            #
-            d  = Ynpu - Yncm
-            if self._parameters["EstimationOf"] == "Parameters":
-                if Cm is not None and Un is not None: # Attention : si Cm est aussi dans H, doublon !
-                    d = d - Cm * Un
-            #
-            Kn = Pxyn * Pyyn.I
-            Xn = Xncm + Kn * d
-            Pn = Pnm - Kn * Pyyn * Kn.T
-            #
-            if self._parameters["Bounds"] is not None and self._parameters["ConstrainedBy"] == "EstimateProjection":
-                Xn = numpy.max(numpy.hstack((Xn,numpy.asmatrix(self._parameters["Bounds"])[:,0])),axis=1)
-                Xn = numpy.min(numpy.hstack((Xn,numpy.asmatrix(self._parameters["Bounds"])[:,1])),axis=1)
-            Xa = Xn # Pointeurs
-            #
-            self.StoredVariables["CurrentIterationNumber"].store( len(self.StoredVariables["Analysis"]) )
-            # ---> avec analysis
-            self.StoredVariables["Analysis"].store( Xa )
-            if self._toStore("APosterioriCovariance"):
-                self.StoredVariables["APosterioriCovariance"].store( Pn )
-            # ---> avec current state
-            if self._toStore("InnovationAtCurrentState"):
-                self.StoredVariables["InnovationAtCurrentState"].store( d )
-            if self._parameters["StoreInternalVariables"] \
-                or self._toStore("CurrentState"):
-                self.StoredVariables["CurrentState"].store( Xn )
-            if self._parameters["StoreInternalVariables"] \
-                or self._toStore("CostFunctionJ") \
-                or self._toStore("CostFunctionJb") \
-                or self._toStore("CostFunctionJo"):
-                Jb  = float( 0.5 * (Xa - Xb).T * BI * (Xa - Xb) )
-                Jo  = float( 0.5 * d.T * RI * d )
-                J   = Jb + Jo
-                self.StoredVariables["CostFunctionJb"].store( Jb )
-                self.StoredVariables["CostFunctionJo"].store( Jo )
-                self.StoredVariables["CostFunctionJ" ].store( J )
-            if self._parameters["EstimationOf"] == "Parameters" \
-                and J < previousJMinimum:
-                previousJMinimum    = J
-                XaMin               = Xa
-                if self._toStore("APosterioriCovariance"):
-                    covarianceXaMin = Pn
-        #
-        # Stockage final supplémentaire de l'optimum en estimation de paramètres
-        # ----------------------------------------------------------------------
-        if self._parameters["EstimationOf"] == "Parameters":
-            self.StoredVariables["CurrentIterationNumber"].store( len(self.StoredVariables["Analysis"]) )
-            self.StoredVariables["Analysis"].store( XaMin )
-            if self._toStore("APosterioriCovariance"):
-                self.StoredVariables["APosterioriCovariance"].store( covarianceXaMin )
-            if self._toStore("BMA"):
-                self.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(XaMin) )
+        #--------------------------
+        NumericObjects.uckf(self, Xb, Y, U, HO, EM, CM, R, B, Q)
+        #--------------------------
         #
         self._post_run(HO)
         return 0
index 0c6b441dd01c81133b5beb37dd48e76827594e58..5b3d679002472765c9d728a928f923cab00eac73 100644 (file)
@@ -3440,6 +3440,224 @@ def std4dvar(selfA, Xb, Y, U, HO, EM, CM, R, B, Q):
     #
     return 0
 
+# ==============================================================================
+def uckf(selfA, Xb, Y, U, HO, EM, CM, R, B, Q):
+    """
+    Unscented Kalman Filter
+    """
+    if selfA._parameters["EstimationOf"] == "Parameters":
+        selfA._parameters["StoreInternalVariables"] = True
+    #
+    L     = Xb.size
+    Alpha = selfA._parameters["Alpha"]
+    Beta  = selfA._parameters["Beta"]
+    if selfA._parameters["Kappa"] == 0:
+        if selfA._parameters["EstimationOf"] == "State":
+            Kappa = 0
+        elif selfA._parameters["EstimationOf"] == "Parameters":
+            Kappa = 3 - L
+    else:
+        Kappa = selfA._parameters["Kappa"]
+    Lambda = float( Alpha**2 ) * ( L + Kappa ) - L
+    Gamma  = math.sqrt( L + Lambda )
+    #
+    Ww = []
+    Ww.append( 0. )
+    for i in range(2*L):
+        Ww.append( 1. / (2.*(L + Lambda)) )
+    #
+    Wm = numpy.array( Ww )
+    Wm[0] = Lambda / (L + Lambda)
+    Wc = numpy.array( Ww )
+    Wc[0] = Lambda / (L + Lambda) + (1. - Alpha**2 + Beta)
+    #
+    # Opérateurs
+    Hm = HO["Direct"].appliedControledFormTo
+    #
+    if selfA._parameters["EstimationOf"] == "State":
+        Mm = EM["Direct"].appliedControledFormTo
+    #
+    if CM is not None and "Tangent" in CM and U is not None:
+        Cm = CM["Tangent"].asMatrix(Xb)
+    else:
+        Cm = None
+    #
+    # Durée d'observation et tailles
+    if hasattr(Y,"stepnumber"):
+        duration = Y.stepnumber()
+        __p = numpy.cumprod(Y.shape())[-1]
+    else:
+        duration = 2
+        __p = numpy.array(Y).size
+    #
+    # Précalcul des inversions de B et R
+    if selfA._parameters["StoreInternalVariables"] \
+        or selfA._toStore("CostFunctionJ") \
+        or selfA._toStore("CostFunctionJb") \
+        or selfA._toStore("CostFunctionJo"):
+        BI = B.getI()
+        RI = R.getI()
+    #
+    __n = Xb.size
+    #
+    if len(selfA.StoredVariables["Analysis"])==0 or not selfA._parameters["nextStep"]:
+        Xn = Xb
+        if hasattr(B,"asfullmatrix"):
+            Pn = B.asfullmatrix(__n)
+        else:
+            Pn = B
+        selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
+        selfA.StoredVariables["Analysis"].store( Xb )
+        if selfA._toStore("APosterioriCovariance"):
+            selfA.StoredVariables["APosterioriCovariance"].store( Pn )
+    elif selfA._parameters["nextStep"]:
+        Xn = selfA._getInternalState("Xn")
+        Pn = selfA._getInternalState("Pn")
+    #
+    if selfA._parameters["EstimationOf"] == "Parameters":
+        XaMin            = Xn
+        previousJMinimum = numpy.finfo(float).max
+    #
+    for step in range(duration-1):
+        if hasattr(Y,"store"):
+            Ynpu = numpy.ravel( Y[step+1] ).reshape((__p,1))
+        else:
+            Ynpu = numpy.ravel( Y ).reshape((__p,1))
+        #
+        if U is not None:
+            if hasattr(U,"store") and len(U)>1:
+                Un = numpy.asmatrix(numpy.ravel( U[step] )).T
+            elif hasattr(U,"store") and len(U)==1:
+                Un = numpy.asmatrix(numpy.ravel( U[0] )).T
+            else:
+                Un = numpy.asmatrix(numpy.ravel( U )).T
+        else:
+            Un = None
+        #
+        Pndemi = numpy.linalg.cholesky(Pn)
+        Xnp = numpy.hstack([Xn, Xn+Gamma*Pndemi, Xn-Gamma*Pndemi])
+        nbSpts = 2*Xn.size+1
+        #
+        if selfA._parameters["Bounds"] is not None and selfA._parameters["ConstrainedBy"] == "EstimateProjection":
+            for point in range(nbSpts):
+                Xnp[:,point] = numpy.max(numpy.hstack((Xnp[:,point],numpy.asmatrix(selfA._parameters["Bounds"])[:,0])),axis=1)
+                Xnp[:,point] = numpy.min(numpy.hstack((Xnp[:,point],numpy.asmatrix(selfA._parameters["Bounds"])[:,1])),axis=1)
+        #
+        XEtnnp = []
+        for point in range(nbSpts):
+            if selfA._parameters["EstimationOf"] == "State":
+                XEtnnpi = numpy.asmatrix(numpy.ravel( Mm( (Xnp[:,point], Un) ) )).T
+                if Cm is not None and Un is not None: # Attention : si Cm est aussi dans M, doublon !
+                    Cm = Cm.reshape(Xn.size,Un.size) # ADAO & check shape
+                    XEtnnpi = XEtnnpi + Cm * Un
+                if selfA._parameters["Bounds"] is not None and selfA._parameters["ConstrainedBy"] == "EstimateProjection":
+                    XEtnnpi = numpy.max(numpy.hstack((XEtnnpi,numpy.asmatrix(selfA._parameters["Bounds"])[:,0])),axis=1)
+                    XEtnnpi = numpy.min(numpy.hstack((XEtnnpi,numpy.asmatrix(selfA._parameters["Bounds"])[:,1])),axis=1)
+            elif selfA._parameters["EstimationOf"] == "Parameters":
+                # --- > Par principe, M = Id, Q = 0
+                XEtnnpi = Xnp[:,point]
+            XEtnnp.append( XEtnnpi )
+        XEtnnp = numpy.hstack( XEtnnp )
+        #
+        Xncm = numpy.matrix( XEtnnp.getA()*numpy.array(Wm) ).sum(axis=1)
+        #
+        if selfA._parameters["Bounds"] is not None and selfA._parameters["ConstrainedBy"] == "EstimateProjection":
+            Xncm = numpy.max(numpy.hstack((Xncm,numpy.asmatrix(selfA._parameters["Bounds"])[:,0])),axis=1)
+            Xncm = numpy.min(numpy.hstack((Xncm,numpy.asmatrix(selfA._parameters["Bounds"])[:,1])),axis=1)
+        #
+        if selfA._parameters["EstimationOf"] == "State":        Pnm = Q
+        elif selfA._parameters["EstimationOf"] == "Parameters": Pnm = 0.
+        for point in range(nbSpts):
+            Pnm += Wc[i] * (XEtnnp[:,point]-Xncm) * (XEtnnp[:,point]-Xncm).T
+        #
+        if selfA._parameters["EstimationOf"] == "Parameters" and selfA._parameters["Bounds"] is not None:
+            Pnmdemi = selfA._parameters["Reconditioner"] * numpy.linalg.cholesky(Pnm)
+        else:
+            Pnmdemi = numpy.linalg.cholesky(Pnm)
+        #
+        Xnnp = numpy.hstack([Xncm, Xncm+Gamma*Pnmdemi, Xncm-Gamma*Pnmdemi])
+        #
+        if selfA._parameters["Bounds"] is not None and selfA._parameters["ConstrainedBy"] == "EstimateProjection":
+            for point in range(nbSpts):
+                Xnnp[:,point] = numpy.max(numpy.hstack((Xnnp[:,point],numpy.asmatrix(selfA._parameters["Bounds"])[:,0])),axis=1)
+                Xnnp[:,point] = numpy.min(numpy.hstack((Xnnp[:,point],numpy.asmatrix(selfA._parameters["Bounds"])[:,1])),axis=1)
+        #
+        Ynnp = []
+        for point in range(nbSpts):
+            if selfA._parameters["EstimationOf"] == "State":
+                Ynnpi = numpy.asmatrix(numpy.ravel( Hm( (Xnnp[:,point], None) ) )).T
+            elif selfA._parameters["EstimationOf"] == "Parameters":
+                Ynnpi = numpy.asmatrix(numpy.ravel( Hm( (Xnnp[:,point], Un) ) )).T
+            Ynnp.append( Ynnpi )
+        Ynnp = numpy.hstack( Ynnp )
+        #
+        Yncm = numpy.matrix( Ynnp.getA()*numpy.array(Wm) ).sum(axis=1)
+        #
+        Pyyn = R
+        Pxyn = 0.
+        for point in range(nbSpts):
+            Pyyn += Wc[i] * (Ynnp[:,point]-Yncm) * (Ynnp[:,point]-Yncm).T
+            Pxyn += Wc[i] * (Xnnp[:,point]-Xncm) * (Ynnp[:,point]-Yncm).T
+        #
+        _Innovation  = Ynpu - Yncm
+        if selfA._parameters["EstimationOf"] == "Parameters":
+            if Cm is not None and Un is not None: # Attention : si Cm est aussi dans H, doublon !
+                _Innovation = _Innovation - Cm * Un
+        #
+        Kn = Pxyn * Pyyn.I
+        Xn = Xncm + Kn * _Innovation
+        Pn = Pnm - Kn * Pyyn * Kn.T
+        #
+        if selfA._parameters["Bounds"] is not None and selfA._parameters["ConstrainedBy"] == "EstimateProjection":
+            Xn = numpy.max(numpy.hstack((Xn,numpy.asmatrix(selfA._parameters["Bounds"])[:,0])),axis=1)
+            Xn = numpy.min(numpy.hstack((Xn,numpy.asmatrix(selfA._parameters["Bounds"])[:,1])),axis=1)
+        #
+        Xa = Xn # Pointeurs
+        #--------------------------
+        selfA._setInternalState("Xn", Xn)
+        selfA._setInternalState("Pn", Pn)
+        #--------------------------
+        #
+        selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
+        # ---> avec analysis
+        selfA.StoredVariables["Analysis"].store( Xa )
+        # ---> avec current state
+        if selfA._parameters["StoreInternalVariables"] \
+            or selfA._toStore("CurrentState"):
+            selfA.StoredVariables["CurrentState"].store( Xn )
+        if selfA._toStore("InnovationAtCurrentState"):
+            selfA.StoredVariables["InnovationAtCurrentState"].store( _Innovation )
+        if selfA._parameters["StoreInternalVariables"] \
+            or selfA._toStore("CostFunctionJ") \
+            or selfA._toStore("CostFunctionJb") \
+            or selfA._toStore("CostFunctionJo"):
+            Jb  = float( 0.5 * (Xa - Xb).T * BI * (Xa - Xb) )
+            Jo  = float( 0.5 * _Innovation.T * RI * _Innovation )
+            J   = Jb + Jo
+            selfA.StoredVariables["CostFunctionJb"].store( Jb )
+            selfA.StoredVariables["CostFunctionJo"].store( Jo )
+            selfA.StoredVariables["CostFunctionJ" ].store( J )
+        if selfA._toStore("APosterioriCovariance"):
+            selfA.StoredVariables["APosterioriCovariance"].store( Pn )
+        if selfA._parameters["EstimationOf"] == "Parameters" \
+            and J < previousJMinimum:
+            previousJMinimum    = J
+            XaMin               = Xa
+            if selfA._toStore("APosterioriCovariance"):
+                covarianceXaMin = selfA.StoredVariables["APosterioriCovariance"][-1]
+    #
+    # Stockage final supplémentaire de l'optimum en estimation de paramètres
+    # ----------------------------------------------------------------------
+    if selfA._parameters["EstimationOf"] == "Parameters":
+        selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
+        selfA.StoredVariables["Analysis"].store( XaMin )
+        if selfA._toStore("APosterioriCovariance"):
+            selfA.StoredVariables["APosterioriCovariance"].store( covarianceXaMin )
+        if selfA._toStore("BMA"):
+            selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(XaMin) )
+    #
+    return 0
+
 # ==============================================================================
 def van3dvar(selfA, Xb, Y, U, HO, EM, CM, R, B, Q):
     """