--- /dev/null
+// Copyright (C) 2007-2016 CEA/DEN, EDF R&D, OPEN CASCADE
+//
+// Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
+// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
+//
+// This library is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 2.1 of the License, or (at your option) any later version.
+//
+// This library is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+// Lesser General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License along with this library; if not, write to the Free Software
+// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+//
+// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
+//
+// File : SMESH_Offset.cxx
+// Created : Mon Dec 25 15:52:38 2017
+// Author : Edward AGAPOV (eap)
+
+#include "SMESH_MeshAlgos.hxx"
+
+#include <SMDS_PolygonalFaceOfNodes.hxx>
+#include "SMDS_Mesh.hxx"
+
+#include <Utils_SALOME_Exception.hxx>
+
+#include <Bnd_B3d.hxx>
+#include <NCollection_Map.hxx>
+#include <gp_Lin.hxx>
+#include <gp_Pln.hxx>
+
+#include <boost/container/flat_set.hpp>
+#include <boost/dynamic_bitset.hpp>
+
+namespace
+{
+ const size_t theMaxNbFaces = 256; // max number of faces sharing a node
+
+ typedef NCollection_DataMap< Standard_Address, const SMDS_MeshNode* > TNNMap;
+ typedef NCollection_Map< SMESH_Link, SMESH_Link > TLinkMap;
+
+ //--------------------------------------------------------------------------------
+ /*!
+ * \brief Intersected face side storing a node created at this intersection
+ * and a intersected face
+ */
+ struct CutLink
+ {
+ bool myReverse;
+ const SMDS_MeshNode* myNode[2]; // side nodes
+ mutable SMESH_NodeXYZ myIntNode; // intersection node
+ const SMDS_MeshElement* myFace; // cutter face
+ int myIndex; // index of a node on the same link
+
+ CutLink(const SMDS_MeshNode* node1=0,
+ const SMDS_MeshNode* node2=0,
+ const SMDS_MeshElement* face=0,
+ const int index=0) { Set ( node1, node2, face, index ); }
+
+ void Set( const SMDS_MeshNode* node1,
+ const SMDS_MeshNode* node2,
+ const SMDS_MeshElement* face,
+ const int index=0)
+ {
+ myNode[0] = node1; myNode[1] = node2; myFace = face; myIndex = index; myReverse = false;
+ if ( myNode[0] && ( myReverse = ( myNode[0]->GetID() > myNode[1]->GetID() )))
+ std::swap( myNode[0], myNode[1] );
+ }
+ const SMDS_MeshNode* IntNode() const { return myIntNode.Node(); }
+ const SMDS_MeshNode* Node1() const { return myNode[ myReverse ]; }
+ const SMDS_MeshNode* Node2() const { return myNode[ !myReverse ]; }
+
+ static Standard_Integer HashCode(const CutLink& link,
+ const Standard_Integer upper)
+ {
+ Standard_Integer n = ( link.myNode[0]->GetID() +
+ link.myNode[1]->GetID() +
+ link.myIndex );
+ return ::HashCode( n, upper );
+ }
+ static Standard_Boolean IsEqual(const CutLink& link1, const CutLink& link2 )
+ {
+ return ( link1.myNode[0] == link2.myNode[0] &&
+ link1.myNode[1] == link2.myNode[1] &&
+ link1.myIndex == link2.myIndex );
+ }
+ };
+
+ typedef NCollection_Map< CutLink, CutLink > TCutLinkMap;
+
+ //--------------------------------------------------------------------------------
+ /*!
+ * \brief Part of a divided face edge
+ */
+ struct EdgePart
+ {
+ const SMDS_MeshNode* myNode1;
+ const SMDS_MeshNode* myNode2;
+ int myIndex; // positive -> side index, negative -> State
+ const SMDS_MeshElement* myFace;
+
+ enum State { _INTERNAL = -1, _COPLANAR = -2 };
+
+ void Set( const SMDS_MeshNode* Node1,
+ const SMDS_MeshNode* Node2,
+ const SMDS_MeshElement* Face = 0,
+ int EdgeIndex = _INTERNAL )
+ { myNode1 = Node1; myNode2 = Node2; myIndex = EdgeIndex; myFace = Face; }
+
+ // bool HasSameNode( const EdgePart& other ) { return ( myNode1 == other.myNode1 ||
+ // myNode1 == other.myNode2 ||
+ // myNode2 == other.myNode1 ||
+ // myNode2 == other.myNode2 );
+ // }
+ bool IsInternal() const { return myIndex < 0; }
+ bool IsTwin( const EdgePart& e ) const { return myNode1 == e.myNode2 && myNode2 == e.myNode1; }
+ bool IsSame( const EdgePart& e ) const {
+ return (( myNode1 == e.myNode2 && myNode2 == e.myNode1 ) ||
+ ( myNode1 == e.myNode1 && myNode2 == e.myNode2 )); }
+ bool ReplaceCoplanar( const EdgePart& e );
+ operator SMESH_Link() const { return SMESH_Link( myNode1, myNode2 ); }
+ operator gp_Vec() const { return SMESH_NodeXYZ( myNode2 ) - SMESH_NodeXYZ( myNode1 ); }
+ };
+
+ //--------------------------------------------------------------------------------
+ /*!
+ * \brief Loop of EdgePart's forming a new face which is a part of CutFace
+ */
+ struct EdgeLoop : public SMDS_PolygonalFaceOfNodes
+ {
+ std::vector< const EdgePart* > myLinks;
+ bool myIsBndConnected; //!< is there a path to CutFace side edges
+ bool myHasPending; //!< an edge encounters twice
+
+ EdgeLoop() : SMDS_PolygonalFaceOfNodes( std::vector<const SMDS_MeshNode *>() ) {}
+ void Clear() { myLinks.clear(); myIsBndConnected = false; myHasPending = false; }
+ bool SetConnected() { bool was = myIsBndConnected; myIsBndConnected = true; return !was; }
+ bool Contains( const SMDS_MeshNode* n ) const
+ {
+ for ( size_t i = 0; i < myLinks.size(); ++i )
+ if ( myLinks[i]->myNode1 == n ) return true;
+ return false;
+ }
+ virtual int NbNodes() const { return myLinks.size(); }
+ virtual SMDS_ElemIteratorPtr nodesIterator() const
+ {
+ return setNodes(), SMDS_PolygonalFaceOfNodes::nodesIterator();
+ }
+ virtual SMDS_NodeIteratorPtr nodeIterator() const
+ {
+ return setNodes(), SMDS_PolygonalFaceOfNodes::nodeIterator();
+ }
+ void setNodes() const //!< set nodes to SMDS_PolygonalFaceOfNodes
+ {
+ EdgeLoop* me = const_cast<EdgeLoop*>( this );
+ me->myNodes.resize( NbNodes() );
+ size_t iMin = 0;
+ for ( size_t i = 1; i < myNodes.size(); ++i ) {
+ if ( myLinks[ i ]->myNode1->GetID() < myLinks[ iMin ]->myNode1->GetID() )
+ iMin = i;
+ }
+ for ( size_t i = 0; i < myNodes.size(); ++i )
+ me->myNodes[ i ] = myLinks[ ( iMin + i ) % myNodes.size() ]->myNode1;
+ }
+ };
+
+ //--------------------------------------------------------------------------------
+ /*!
+ * \brief Set of EdgeLoop's constructed from a CutFace
+ */
+ struct EdgeLoopSet
+ {
+ std::vector< EdgeLoop > myLoops; //!< buffer of EdgeLoop's
+ size_t myNbLoops; //!< number of constructed loops
+
+ const EdgePart* myEdge0; //!< & CutFace.myLinks[0]
+ size_t myNbUsedEdges; //!< nb of EdgePart's added to myLoops
+ boost::dynamic_bitset<> myIsUsedEdge; //!< is i-th EdgePart of CutFace is in any EdgeLoop
+ std::vector< EdgeLoop* > myLoopOfEdge; //!< EdgeLoop of CutFace.myLinks[i]
+ std::vector< EdgePart* > myCandidates; //!< EdgePart's starting at the same node
+
+ EdgeLoopSet(): myLoops(100) {}
+
+ void Init( const std::vector< EdgePart >& edges )
+ {
+ size_t nb = edges.size();
+ myEdge0 = & edges[0];
+ myNbLoops = 0;
+ myNbUsedEdges = 0;
+ myIsUsedEdge.reset();
+ myIsUsedEdge.resize( nb, false );
+ myLoopOfEdge.clear();
+ myLoopOfEdge.resize( nb, (EdgeLoop*) 0 );
+ }
+ EdgeLoop& AddNewLoop()
+ {
+ if ( ++myNbLoops >= myLoops.size() )
+ myLoops.resize( myNbLoops + 10 );
+ myLoops[ myNbLoops-1 ].Clear();
+ return myLoops[ myNbLoops-1 ];
+ }
+ bool AllEdgesUsed() const { return myNbUsedEdges == myLoopOfEdge.size(); }
+
+ bool AddEdge( EdgePart& edge )
+ {
+ size_t i = Index( edge );
+ if ( myIsUsedEdge[ i ])
+ return false;
+ myLoops[ myNbLoops-1 ].myLinks.push_back( &edge );
+ myLoopOfEdge[ i ] = & myLoops[ myNbLoops-1 ];
+ myIsUsedEdge[ i ] = true;
+ ++myNbUsedEdges;
+ return true;
+ }
+ void Erase( EdgeLoop* loop )
+ {
+ for ( size_t iE = 0; iE < loop->myLinks.size(); ++iE )
+ myLoopOfEdge[ Index( *loop->myLinks[ iE ] )] = 0;
+ loop->Clear();
+ }
+ size_t Index( const EdgePart& edge ) const { return &edge - myEdge0; }
+ EdgeLoop* GetLoopOf( const EdgePart* edge ) { return myLoopOfEdge[ Index( *edge )]; }
+ };
+
+ //--------------------------------------------------------------------------------
+ /*!
+ * \brief Intersections of a face
+ */
+ struct CutFace
+ {
+ mutable std::vector< EdgePart > myLinks;
+ const SMDS_MeshElement* myInitFace;
+
+ CutFace( const SMDS_MeshElement* face ): myInitFace( face ) {}
+ void AddEdge( const CutLink& p1,
+ const CutLink& p2,
+ const SMDS_MeshElement* cutter,
+ const int nbOnPlane,
+ const int iNotOnPlane = -1) const;
+ void AddPoint( const CutLink& p1, const CutLink& p2, double tol ) const;
+ bool ReplaceNodes( const TNNMap& theRm2KeepMap ) const;
+ bool IsCut() const;
+ int NbInternalEdges() const;
+ void MakeLoops( EdgeLoopSet& loops, const gp_XYZ& theFaceNorm ) const;
+ bool RemoveInternalLoops( EdgeLoopSet& theLoops ) const;
+ void CutOffLoops( EdgeLoopSet& theLoops,
+ const double theSign,
+ const std::vector< gp_XYZ >& theNormals,
+ std::vector< EdgePart >& theCutOffLinks,
+ TLinkMap& theCutOffCoplanarLinks) const;
+ void InitLinks() const;
+ bool IsCoplanar( const EdgePart* edge ) const;
+
+ static Standard_Integer HashCode(const CutFace& f, const Standard_Integer upper)
+ {
+ return ::HashCode( f.myInitFace->GetID(), upper );
+ }
+ static Standard_Boolean IsEqual(const CutFace& f1, const CutFace& f2 )
+ {
+ return f1.myInitFace == f2.myInitFace;
+ }
+ void Dump() const;
+
+ private:
+
+ EdgePart* getTwin( const EdgePart* edge ) const;
+ };
+
+ typedef NCollection_Map< CutFace, CutFace > TCutFaceMap;
+
+ //--------------------------------------------------------------------------------
+ /*!
+ * \brief Intersection point of two edges of co-planar triangles
+ */
+ struct IntPoint2D
+ {
+ size_t myEdgeInd[2]; //!< edge indices of triangles
+ double myU [2]; //!< parameter [0,1] on edges of triangles
+ SMESH_NodeXYZ myNode; //!< intersection node
+ bool myIsCollinear;//!< edges are collinear
+
+ IntPoint2D() : myIsCollinear( false ) {}
+
+ void InitLink( CutLink& link, int iFace, const std::vector< SMESH_NodeXYZ >& nodes ) const
+ {
+ link.Set( nodes[ myEdgeInd[ iFace ] ].Node(),
+ nodes[( myEdgeInd[ iFace ] + 1 ) % nodes.size() ].Node(),
+ link.myFace );
+ link.myIntNode = myNode;
+ }
+ const SMDS_MeshNode* Node() const { return myNode.Node(); }
+ };
+ struct IntPoint2DCompare
+ {
+ int myI;
+ IntPoint2DCompare( int iFace=0 ): myI( iFace ) {}
+ bool operator() ( const IntPoint2D* ip1, const IntPoint2D* ip2 ) const
+ {
+ return ip1->myU[ myI ] < ip2->myU[ myI ];
+ }
+ bool operator() ( const IntPoint2D& ip1, const IntPoint2D& ip2 ) const
+ {
+ return ip1.myU[ myI ] < ip2.myU[ myI ];
+ }
+ };
+ typedef boost::container::flat_set< IntPoint2D, IntPoint2DCompare > TIntPointSet;
+ typedef boost::container::flat_set< IntPoint2D*, IntPoint2DCompare > TIntPointPtrSet;
+
+ //--------------------------------------------------------------------------------
+ /*!
+ * \brief Face used to find translated position of the node
+ */
+ struct Face
+ {
+ const SMDS_MeshElement* myFace;
+ SMESH_TNodeXYZ myNode1; //!< nodes neighboring another node of myFace
+ SMESH_TNodeXYZ myNode2;
+ const gp_XYZ* myNorm;
+ bool myNodeRightOrder;
+ void operator=(const SMDS_MeshElement* f) { myFace = f; }
+ const SMDS_MeshElement* operator->() { return myFace; }
+ void SetNodes( int i0, int i1 ) //!< set myNode's
+ {
+ myNode1.Set( myFace->GetNode( i1 ));
+ int i2 = ( i0 - 1 + myFace->NbCornerNodes() ) % myFace->NbCornerNodes();
+ if ( i2 == i1 )
+ i2 = ( i0 + 1 ) % myFace->NbCornerNodes();
+ myNode2.Set( myFace->GetNode( i2 ));
+ myNodeRightOrder = ( Abs( i2-i1 ) == 1 ) ? i2 > i1 : i2 < i1;
+ }
+ void SetOldNodes( const SMDS_Mesh& theSrcMesh )
+ {
+ myNode1.Set( theSrcMesh.FindNode( myNode1->GetID() ));
+ myNode2.Set( theSrcMesh.FindNode( myNode2->GetID() ));
+ }
+ bool SetNormal( const std::vector< gp_XYZ >& faceNormals )
+ {
+ myNorm = & faceNormals[ myFace->GetID() ];
+ return ( myNorm->SquareModulus() > gp::Resolution() * gp::Resolution() );
+ }
+ const gp_XYZ& Norm() const { return *myNorm; }
+ };
+
+ //--------------------------------------------------------------------------------
+ /*!
+ * \brief Offset plane used to find translated position of the node
+ */
+ struct OffsetPlane
+ {
+ gp_XYZ myNode;
+ Face* myFace;
+ gp_Pln myPln;
+ gp_Lin myLines[2]; //!< line of intersection with neighbor OffsetPlane's
+ bool myIsLineOk[2];
+ double myWeight[2];
+
+ void Init( const gp_XYZ& node, Face& tria, double offset )
+ {
+ myNode = node;
+ myFace = & tria;
+ myPln = gp_Pln( node + tria.Norm() * offset, tria.Norm() );
+ myIsLineOk[0] = myIsLineOk[1] = false;
+ myWeight[0] = myWeight[1] = 0;
+ }
+ bool ComputeIntersectionLine( OffsetPlane& pln );
+ void SetSkewLine( const gp_Lin& line );
+ gp_XYZ GetCommonPoint( int & nbOkPoints, double& sumWeight );
+ gp_XYZ ProjectNodeOnLine( int & nbOkPoints );
+ double Weight() const { return myWeight[0] + myWeight[1]; }
+ };
+
+ //================================================================================
+ /*!
+ * \brief Set the second line
+ */
+ //================================================================================
+
+ void OffsetPlane::SetSkewLine( const gp_Lin& line )
+ {
+ myLines[1] = line;
+ gp_XYZ n = myLines[0].Direction().XYZ() ^ myLines[1].Direction().XYZ();
+ if (( myIsLineOk[1] = n.SquareModulus() > gp::Resolution() ))
+ myPln = gp_Pln( myPln.Location(), n );
+ }
+
+ //================================================================================
+ /*!
+ * \brief Project myNode on myLine[0]
+ */
+ //================================================================================
+
+ gp_XYZ OffsetPlane::ProjectNodeOnLine( int & nbOkPoints )
+ {
+ gp_XYZ p = gp::Origin().XYZ();
+ if ( myIsLineOk[0] )
+ {
+ gp_Vec l2n( myLines[0].Location(), myNode );
+ double u = l2n * myLines[0].Direction();
+ p = myLines[0].Location().XYZ() + u * myLines[0].Direction().XYZ();
+ ++nbOkPoints;
+ }
+ return p;
+ }
+
+ //================================================================================
+ /*!
+ * \brief Computes intersection point of myLines
+ */
+ //================================================================================
+
+ gp_XYZ OffsetPlane::GetCommonPoint( int & nbOkPoints, double& sumWeight )
+ {
+ if ( !myIsLineOk[0] || !myIsLineOk[1] )
+ {
+ // sumWeight += myWeight[0];
+ // return ProjectNodeOnLine( nbOkPoints ) * myWeight[0];
+ return gp::Origin().XYZ();
+ }
+
+ gp_XYZ p;
+
+ gp_Vec lPerp0 = myLines[0].Direction().XYZ() ^ myPln.Axis().Direction().XYZ();
+ double dot01 = lPerp0 * myLines[1].Direction().XYZ();
+ if ( Abs( dot01 ) > 0.05 )
+ {
+ gp_Vec l0l1 = myLines[1].Location().XYZ() - myLines[0].Location().XYZ();
+ double u1 = - ( lPerp0 * l0l1 ) / dot01;
+ p = ( myLines[1].Location().XYZ() + myLines[1].Direction().XYZ() * u1 );
+ }
+ else
+ {
+ gp_Vec lv0( myLines[0].Location(), myNode), lv1(myLines[1].Location(), myNode );
+ double dot0( lv0 * myLines[0].Direction() ), dot1( lv1 * myLines[1].Direction() );
+ p = 0.5 * ( myLines[0].Location().XYZ() + myLines[0].Direction().XYZ() * dot0 );
+ p += 0.5 * ( myLines[1].Location().XYZ() + myLines[1].Direction().XYZ() * dot1 );
+ }
+
+ sumWeight += Weight();
+ ++nbOkPoints;
+
+ return p * Weight();
+ }
+
+ //================================================================================
+ /*!
+ * \brief Compute line of intersection of 2 planes
+ */
+ //================================================================================
+
+ bool OffsetPlane::ComputeIntersectionLine( OffsetPlane& theNextPln )
+ {
+ const gp_XYZ& n1 = myFace->Norm();
+ const gp_XYZ& n2 = theNextPln.myFace->Norm();
+
+ gp_XYZ lineDir = n1 ^ n2;
+ gp_Pnt linePos;
+
+ double x = Abs( lineDir.X() );
+ double y = Abs( lineDir.Y() );
+ double z = Abs( lineDir.Z() );
+
+ int cooMax; // max coordinate
+ if (x > y) {
+ if (x > z) cooMax = 1;
+ else cooMax = 3;
+ }
+ else {
+ if (y > z) cooMax = 2;
+ else cooMax = 3;
+ }
+
+ bool ok = true;
+ if ( Abs( lineDir.Coord( cooMax )) < 0.05 )
+ {
+ // parallel planes - intersection is an offset of the common edge
+ linePos = 0.5 * ( myPln.Location().XYZ() + theNextPln.myPln.Location().XYZ() );
+ lineDir = myNode - myFace->myNode2;
+ ok = false;
+ myWeight[0] = 0;
+ }
+ else
+ {
+ // the constants in the 2 plane equations
+ double d1 = - ( n1 * myPln.Location().XYZ() );
+ double d2 = - ( n2 * theNextPln.myPln.Location().XYZ() );
+
+ switch ( cooMax ) {
+ case 1:
+ linePos.SetX( 0 );
+ linePos.SetY(( d2*n1.Z() - d1*n2.Z()) / lineDir.X() );
+ linePos.SetZ(( d1*n2.Y() - d2*n1.Y()) / lineDir.X() );
+ break;
+ case 2:
+ linePos.SetX(( d1*n2.Z() - d2*n1.Z()) / lineDir.Y() );
+ linePos.SetY( 0 );
+ linePos.SetZ(( d2*n1.X() - d1*n2.X()) / lineDir.Y() );
+ break;
+ case 3:
+ linePos.SetX(( d2*n1.Y() - d1*n2.Y()) / lineDir.Z() );
+ linePos.SetY(( d1*n2.X() - d2*n1.X()) / lineDir.Z() );
+ linePos.SetZ( 0 );
+ }
+ myWeight[0] = lineDir.SquareModulus();
+ if ( n1 * n2 < 0 )
+ myWeight[0] = 2. - myWeight[0];
+ }
+ myLines [ 0 ].SetDirection( lineDir );
+ myLines [ 0 ].SetLocation ( linePos );
+ myIsLineOk[ 0 ] = ok;
+
+ theNextPln.myLines [ 1 ] = myLines[ 0 ];
+ theNextPln.myIsLineOk[ 1 ] = ok;
+ theNextPln.myWeight [ 1 ] = myWeight[ 0 ];
+
+ return ok;
+ }
+
+ //================================================================================
+ /*!
+ * \brief Return a translated position of a node
+ * \param [in] new2OldNodes - new and old nodes
+ * \param [in] faceNormals - normals to input faces
+ * \param [in] theSrcMesh - initial mesh
+ * \param [in] theNewPos - a computed normal
+ * \return bool - true if theNewPos is computed
+ */
+ //================================================================================
+
+ bool getTranslatedPosition( const SMDS_MeshNode* theNewNode,
+ const double theOffset,
+ const double theTol,
+ const double theSign,
+ const std::vector< gp_XYZ >& theFaceNormals,
+ SMDS_Mesh& theSrcMesh,
+ gp_XYZ& theNewPos)
+ {
+ bool useOneNormal = true;
+
+ // check if theNewNode needs an average position, i.e. theNewNode is convex
+ // SMDS_ElemIteratorPtr faceIt = theNewNode->GetInverseElementIterator();
+ // const SMDS_MeshElement* f0 = faceIt->next();
+ // const gp_XYZ& norm0 = theFaceNormals[ f0->GetID() ];
+ // const SMESH_NodeXYZ nodePos = theNewNode;
+ // while ( faceIt->more() )
+ // {
+ // const SMDS_MeshElement* f = faceIt->next();
+ // const int nodeInd = f->GetNodeIndex( theNewNode );
+ // SMESH_NodeXYZ nodePos2 = f->GetWrapNode( nodeInd + 1 );
+ // try {
+ // const gp_XYZ nnDir = ( nodePos2 - nodePos ).Normalized();
+ // }
+ // catch {
+ // continue;
+ // }
+ // const double dot = norm0 * nnDir;
+ // bool isConvex =
+
+
+
+ // get faces surrounding theNewNode and sort them
+ Face faces[ theMaxNbFaces ];
+ SMDS_ElemIteratorPtr faceIt = theNewNode->GetInverseElementIterator();
+ faces[0] = faceIt->next();
+ while ( !faces[0].SetNormal( theFaceNormals ) && faceIt->more() )
+ faces[0] = faceIt->next();
+ int i0 = faces[0]->GetNodeIndex( theNewNode );
+ int i1 = ( i0 + 1 ) % faces[0]->NbCornerNodes();
+ faces[0].SetNodes( i0, i1 );
+ TIDSortedElemSet elemSet, avoidSet;
+ int iFace = 0;
+ const SMDS_MeshElement* f;
+ for ( ; faceIt->more(); faceIt->next() )
+ {
+ avoidSet.insert( faces[ iFace ].myFace );
+ f = SMESH_MeshAlgos::FindFaceInSet( theNewNode, faces[ iFace ].myNode2.Node(),
+ elemSet, avoidSet, &i0, &i1 );
+ if ( !f )
+ {
+ std::reverse( &faces[0], &faces[0] + iFace + 1 );
+ for ( int i = 0; i <= iFace; ++i )
+ {
+ std::swap( faces[i].myNode1, faces[i].myNode2 );
+ faces[i].myNodeRightOrder = !faces[i].myNodeRightOrder;
+ }
+ f = SMESH_MeshAlgos::FindFaceInSet( theNewNode, faces[ iFace ].myNode2.Node(),
+ elemSet, avoidSet, &i0, &i1 );
+ if ( !f )
+ break;
+ }
+ faces[ ++iFace ] = f;
+ faces[ iFace ].SetNodes( i0, i1 );
+ faces[ iFace ].SetNormal( theFaceNormals );
+ }
+ int nbFaces = Min( iFace + 1, (int)theMaxNbFaces );
+
+ theNewPos.SetCoord( 0, 0, 0 );
+ gp_XYZ oldXYZ = SMESH_NodeXYZ( theNewNode );
+
+ // check if all faces are co-planar
+ bool isPlanar = true;
+ const double tol = 1e-2;
+ for ( int i = 1; i < nbFaces && isPlanar; ++i )
+ isPlanar = ( faces[i].Norm() - faces[i-1].Norm() ).SquareModulus() < tol*tol;
+
+ if ( isPlanar )
+ {
+ theNewPos = oldXYZ + faces[0].Norm() * theOffset;
+ return useOneNormal;
+ }
+
+ // prepare OffsetPlane's
+ OffsetPlane pln[ theMaxNbFaces ];
+ for ( int i = 0; i < nbFaces; ++i )
+ {
+ faces[i].SetOldNodes( theSrcMesh );
+ pln[i].Init( oldXYZ, faces[i], theOffset );
+ }
+ // intersect neighboring OffsetPlane's
+ int nbOkPoints = 0;
+ for ( int i = 1; i < nbFaces; ++i )
+ nbOkPoints += pln[ i-1 ].ComputeIntersectionLine( pln[ i ]);
+ nbOkPoints += pln[ nbFaces-1 ].ComputeIntersectionLine( pln[ 0 ]);
+
+ // move intersection lines to over parallel planes
+ if ( nbOkPoints > 1 )
+ for ( int i = 0; i < nbFaces; ++i )
+ if ( pln[i].myIsLineOk[0] && !pln[i].myIsLineOk[1] )
+ for ( int j = 1; j < nbFaces && !pln[i].myIsLineOk[1]; ++j )
+ {
+ int i2 = ( i + j ) % nbFaces;
+ if ( pln[i2].myIsLineOk[0] )
+ pln[i].SetSkewLine( pln[i2].myLines[0] );
+ }
+
+ // get the translated position
+ nbOkPoints = 0;
+ double sumWegith = 0;
+ const double minWeight = Sin( 30 * M_PI / 180. ) * Sin( 30 * M_PI / 180. );
+ for ( int i = 0; i < nbFaces; ++i )
+ if ( pln[ i ].Weight() > minWeight )
+ theNewPos += pln[ i ].GetCommonPoint( nbOkPoints, sumWegith );
+
+ if ( nbOkPoints == 0 )
+ {
+ // there is only one feature edge;
+ // find the theNewPos by projecting oldXYZ to any intersection line
+ for ( int i = 0; i < nbFaces; ++i )
+ theNewPos += pln[ i ].ProjectNodeOnLine( nbOkPoints );
+
+ if ( nbOkPoints == 0 )
+ {
+ theNewPos = oldXYZ + faces[0].Norm() * theOffset;
+ return useOneNormal;
+ }
+ sumWegith = nbOkPoints;
+ }
+ theNewPos /= sumWegith;
+
+
+ // mark theNewNode if it is concave
+ useOneNormal = false;
+ gp_Vec moveVec( oldXYZ, theNewPos );
+ for ( int i = 0, iPrev = nbFaces-1; i < nbFaces; iPrev = i++ )
+ {
+ gp_Vec nodeVec( oldXYZ, faces[ i ].myNode1 );
+ double u = ( moveVec * nodeVec ) / nodeVec.SquareMagnitude();
+ if ( u > 0.5 ) // param [0,1] on nodeVec
+ {
+ theNewNode->setIsMarked( true );
+ }
+ if ( !useOneNormal )
+ {
+ gp_XYZ inFaceVec = faces[ i ].Norm() ^ nodeVec.XYZ();
+ double dot = inFaceVec * faces[ iPrev ].Norm();
+ if ( !faces[ i ].myNodeRightOrder )
+ dot *= -1;
+ if ( dot * theSign < 0 )
+ {
+ gp_XYZ p1 = oldXYZ + faces[ i ].Norm() * theOffset;
+ gp_XYZ p2 = oldXYZ + faces[ iPrev ].Norm() * theOffset;
+ useOneNormal = ( p1 - p2 ).SquareModulus() > theTol * theTol;
+ }
+ }
+ if ( useOneNormal && theNewNode->isMarked() )
+ break;
+ }
+
+ return useOneNormal;
+ }
+
+ //--------------------------------------------------------------------------------
+ /*!
+ * \brief Intersect faces of a mesh
+ */
+ struct Intersector
+ {
+ SMDS_Mesh* myMesh;
+ double myTol, myEps;
+ const std::vector< gp_XYZ >& myNormals;
+ TCutLinkMap myCutLinks; //!< assure sharing of new nodes
+ TCutFaceMap myCutFaces;
+ TNNMap myRemove2KeepNodes; //!< node merge map
+
+ // data to intersect 2 faces
+ const SMDS_MeshElement* myFace1;
+ const SMDS_MeshElement* myFace2;
+ std::vector< SMESH_NodeXYZ > myNodes1, myNodes2;
+ std::vector< double > myDist1, myDist2;
+ int myInd1, myInd2; // coordinate indices on an axis-aligned plane
+ int myNbOnPlane1, myNbOnPlane2;
+ TIntPointSet myIntPointSet;
+
+ Intersector( SMDS_Mesh* mesh, double tol, const std::vector< gp_XYZ >& normals )
+ : myMesh( mesh ),
+ myTol( tol ),
+ myEps( 1e-100 ),
+ //myEps( Sqrt( std::numeric_limits<double>::min() )),
+ //myEps( gp::Resolution() ),
+ myNormals( normals )
+ {}
+ void Cut( const SMDS_MeshElement* face1,
+ const SMDS_MeshElement* face2,
+ const int nbCommonNodes );
+ void MakeNewFaces( SMESH_MeshAlgos::TEPairVec& theNew2OldFaces,
+ SMESH_MeshAlgos::TNPairVec& theNew2OldNodes,
+ const double theSign );
+
+ private:
+
+ bool isPlaneIntersected( const gp_XYZ& n2,
+ const double d2,
+ const std::vector< SMESH_NodeXYZ >& nodes1,
+ std::vector< double > & dist1,
+ int & nbOnPlane1,
+ int & iNotOnPlane1);
+ void computeIntervals( const std::vector< SMESH_NodeXYZ >& nodes,
+ const std::vector< double >& dist,
+ const int nbOnPln,
+ const int iMaxCoo,
+ double * u,
+ int* iE);
+ void cutCoplanar();
+ void addLink ( CutLink& link );
+ bool findLink( CutLink& link );
+ bool coincide( const gp_XYZ& p1, const gp_XYZ& p2, const double tol ) const
+ {
+ return ( p1 - p2 ).SquareModulus() < tol * tol;
+ }
+ gp_XY p2D( const gp_XYZ& p ) const { return gp_XY( p.Coord( myInd1 ), p.Coord( myInd2 )); }
+
+ void intersectLink( const std::vector< SMESH_NodeXYZ >& nodes1,
+ const std::vector< double > & dist1,
+ const int iEdge1,
+ const SMDS_MeshElement* face2,
+ CutLink& link1);
+ void findIntPointOnPlane( const std::vector< SMESH_NodeXYZ >& nodes,
+ const std::vector< double > & dist,
+ CutLink& link );
+ void replaceIntNode( const SMDS_MeshNode* nToKeep, const SMDS_MeshNode* nToRemove );
+ void computeIntPoint( const double u1,
+ const double u2,
+ const int iE1,
+ const int iE2,
+ CutLink & link,
+ const SMDS_MeshNode* & node1,
+ const SMDS_MeshNode* & node2);
+ void cutCollinearLink( const int iNotOnPlane1,
+ const std::vector< SMESH_NodeXYZ >& nodes1,
+ const SMDS_MeshElement* face2,
+ const CutLink& link1,
+ const CutLink& link2);
+ void setPlaneIndices( const gp_XYZ& planeNorm );
+ bool intersectEdgeEdge( const gp_XY s1p0, const gp_XY s1p1,
+ const gp_XY s2p0, const gp_XY s2p1,
+ double & t1, double & t2,
+ bool & isCollinear );
+ bool intersectEdgeEdge( int iE1, int iE2, IntPoint2D& intPoint );
+ bool isPointInTriangle( const gp_XYZ& p, const std::vector< SMESH_NodeXYZ >& nodes );
+ void intersectNewEdges( const CutFace& theCFace );
+ const SMDS_MeshNode* createNode( const gp_XYZ& p );
+ };
+
+ //================================================================================
+ /*!
+ * \brief Return coordinate index with maximal abs value
+ */
+ //================================================================================
+
+ int MaxIndex( const gp_XYZ& x )
+ {
+ int iMaxCoo = ( Abs( x.X()) < Abs( x.Y() )) + 1;
+ if ( Abs( x.Coord( iMaxCoo )) < Abs( x.Z() ))
+ iMaxCoo = 3;
+ return iMaxCoo;
+ }
+ //================================================================================
+ /*!
+ * \brief Store a CutLink
+ */
+ //================================================================================
+
+ const SMDS_MeshNode* Intersector::createNode( const gp_XYZ& p )
+ {
+ const SMDS_MeshNode* n = myMesh->AddNode( p.X(), p.Y(), p.Z() );
+ n->setIsMarked( true ); // cut nodes are marked
+ return n;
+ }
+
+ //================================================================================
+ /*!
+ * \brief Store a CutLink
+ */
+ //================================================================================
+
+ void Intersector::addLink( CutLink& link )
+ {
+ link.myIndex = 0;
+ const CutLink* added = & myCutLinks.Added( link );
+ while ( added->myIntNode.Node() != link.myIntNode.Node() )
+ {
+ if ( !added->myIntNode )
+ {
+ added->myIntNode = link.myIntNode;
+ break;
+ }
+ else
+ {
+ link.myIndex++;
+ added = & myCutLinks.Added( link );
+ }
+ }
+ link.myIndex = 0;
+ }
+
+ //================================================================================
+ /*!
+ * \brief Find a CutLink with an intersection point coincident with that of a given link
+ */
+ //================================================================================
+
+ bool Intersector::findLink( CutLink& link )
+ {
+ link.myIndex = 0;
+ while ( myCutLinks.Contains( link ))
+ {
+ const CutLink* added = & myCutLinks.Added( link );
+ if ( !!added->myIntNode && coincide( added->myIntNode, link.myIntNode, myTol ))
+ {
+ link.myIntNode = added->myIntNode;
+ return true;
+ }
+ link.myIndex++;
+ }
+ return false;
+ }
+
+ //================================================================================
+ /*!
+ * \brief Check if a triangle intersects the plane of another triangle
+ * \param [in] nodes1 - nodes of triangle 1
+ * \param [in] n2 - normal of triangle 2
+ * \param [in] d2 - a constant of the plane equation 2
+ * \param [out] dist1 - distance of nodes1 from the plane 2
+ * \param [out] nbOnPlane - number of nodes1 lying on the plane 2
+ * \return bool - true if the triangle intersects the plane 2
+ */
+ //================================================================================
+
+ bool Intersector::isPlaneIntersected( const gp_XYZ& n2,
+ const double d2,
+ const std::vector< SMESH_NodeXYZ >& nodes1,
+ std::vector< double > & dist1,
+ int & nbOnPlane1,
+ int & iNotOnPlane1)
+ {
+ iNotOnPlane1 = nbOnPlane1 = 0;
+ dist1.resize( nodes1.size() );
+ for ( size_t i = 0; i < nodes1.size(); ++i )
+ {
+ dist1[i] = n2 * nodes1[i] + d2;
+ if ( Abs( dist1[i] ) < myTol )
+ {
+ ++nbOnPlane1;
+ dist1[i] = 0.;
+ }
+ else
+ {
+ iNotOnPlane1 = i;
+ }
+ }
+ if ( nbOnPlane1 == 0 )
+ for ( size_t i = 0; i < nodes1.size(); ++i )
+ if ( dist1[iNotOnPlane1] * dist1[i] < 0 )
+ return true;
+
+ return nbOnPlane1;
+ }
+
+ //================================================================================
+ /*!
+ * \brief Compute parameters on the plane intersection line of intersections
+ * of edges of a triangle
+ * \param [in] nodes - triangle nodes
+ * \param [in] dist - distance of triangle nodes from the plane of another triangle
+ * \param [in] nbOnPln - number of nodes lying on the plane of another triangle
+ * \param [in] iMaxCoo - index of coordinate of max component of the plane intersection line
+ * \param [out] u - two computed parameters on the plane intersection line
+ * \param [out] iE - indices of intersected edges
+ */
+ //================================================================================
+
+ void Intersector::computeIntervals( const std::vector< SMESH_NodeXYZ >& nodes,
+ const std::vector< double >& dist,
+ const int nbOnPln,
+ const int iMaxCoo,
+ double * u,
+ int* iE)
+ {
+ if ( nbOnPln == 3 )
+ {
+ u[0] = u[1] = 1e+100;
+ return;
+ }
+ int nb = 0;
+ int i1 = 2, i2 = 0;
+ if ( nbOnPln == 1 && ( dist[i1] == 0. || dist[i2] == 0 ))
+ {
+ int i = dist[i1] == 0 ? i1 : i2;
+ u [ 1 ] = nodes[ i ].Coord( iMaxCoo );
+ iE[ 1 ] = i;
+ i1 = i2++;
+ }
+ for ( ; i2 < 3 && nb < 2; i1 = i2++ )
+ {
+ double dd = dist[i1] - dist[i2];
+ if ( dd != 0. && dist[i2] * dist[i1] <= 0. )
+ {
+ double x1 = nodes[i1].Coord( iMaxCoo );
+ double x2 = nodes[i2].Coord( iMaxCoo );
+ u [ nb ] = x1 + ( x2 - x1 ) * dist[i1] / dd;
+ iE[ nb ] = i1;
+ ++nb;
+ }
+ }
+ if ( u[0] > u[1] )
+ {
+ std::swap( u [0], u [1] );
+ std::swap( iE[0], iE[1] );
+ }
+ }
+
+ //================================================================================
+ /*!
+ * \brief Try to find an intersection node on a link collinear with the plane intersection line
+ */
+ //================================================================================
+
+ void Intersector::findIntPointOnPlane( const std::vector< SMESH_NodeXYZ >& nodes,
+ const std::vector< double > & dist,
+ CutLink& link )
+ {
+ int i1 = ( dist[0] == 0 ? 0 : 1 ), i2 = ( dist[2] == 0 ? 2 : 1 );
+ CutLink link2 = link;
+ link2.Set( nodes[i1].Node(), nodes[i2].Node(), 0 );
+ if ( findLink( link2 ))
+ link.myIntNode = link2.myIntNode;
+ }
+
+ //================================================================================
+ /*!
+ * \brief Compute intersection point of a link1 with a face2
+ */
+ //================================================================================
+
+ void Intersector::intersectLink( const std::vector< SMESH_NodeXYZ >& nodes1,
+ const std::vector< double > & dist1,
+ const int iEdge1,
+ const SMDS_MeshElement* face2,
+ CutLink& link1)
+ {
+ const int iEdge2 = ( iEdge1 + 1 ) % nodes1.size();
+ const SMESH_NodeXYZ& p1 = nodes1[ iEdge1 ];
+ const SMESH_NodeXYZ& p2 = nodes1[ iEdge2 ];
+
+ link1.Set( p1.Node(), p2.Node(), face2 );
+ const CutLink* link = & myCutLinks.Added( link1 );
+ if ( !link->IntNode() )
+ {
+ if ( dist1[ iEdge1 ] == 0. ) link1.myIntNode = p1;
+ else if ( dist1[ iEdge2 ] == 0. ) link1.myIntNode = p2;
+ else
+ {
+ gp_XYZ p = p1 + ( p2 - p1 ) * dist1[ iEdge1 ] / ( dist1[ iEdge1 ] - dist1[ iEdge2 ]);
+ (gp_XYZ&)link1.myIntNode = p;
+ }
+ }
+ else
+ {
+ gp_XYZ p = p1 + ( p2 - p1 ) * dist1[ iEdge1 ] / ( dist1[ iEdge1 ] - dist1[ iEdge2 ]);
+ while ( link->IntNode() )
+ {
+ if ( coincide( p, link->myIntNode, myTol ))
+ {
+ link1.myIntNode = link->myIntNode;
+ break;
+ }
+ link1.myIndex++;
+ link = & myCutLinks.Added( link1 );
+ }
+ if ( !link1.IntNode() )
+ {
+ if ( dist1[ iEdge1 ] == 0. ) link1.myIntNode = p1;
+ else if ( dist1[ iEdge2 ] == 0. ) link1.myIntNode = p2;
+ else (gp_XYZ&)link1.myIntNode = p;
+ }
+ }
+ }
+
+ //================================================================================
+ /*!
+ * \brief Store node replacement in myCutFaces
+ */
+ //================================================================================
+
+ void Intersector::replaceIntNode( const SMDS_MeshNode* nToKeep,
+ const SMDS_MeshNode* nToRemove )
+ {
+ if ( nToKeep == nToRemove )
+ return;
+ if ( nToRemove->GetID() < nToKeep->GetID() ) // keep node with lower ID
+ myRemove2KeepNodes.Bind((void*) nToKeep, nToRemove );
+ else
+ myRemove2KeepNodes.Bind((void*) nToRemove, nToKeep );
+ }
+
+ //================================================================================
+ /*!
+ * \brief Compute intersection point on a link of either of faces by choosing
+ * a link whose parameter on the intersection line in maximal
+ * \param [in] u1 - parameter on the intersection line of link iE1 of myFace1
+ * \param [in] u2 - parameter on the intersection line of link iE2 of myFace2
+ * \param [in] iE1 - index of a link myFace1
+ * \param [in] iE2 - index of a link myFace2
+ * \param [out] link - CutLink storing the intersection point
+ * \param [out] node1 - a node of the 2nd link if two links intersect
+ * \param [out] node2 - a node of the 2nd link if two links intersect
+ */
+ //================================================================================
+
+ void Intersector::computeIntPoint( const double u1,
+ const double u2,
+ const int iE1,
+ const int iE2,
+ CutLink & link,
+ const SMDS_MeshNode* & node1,
+ const SMDS_MeshNode* & node2)
+ {
+ if ( u1 > u2 + myTol )
+ {
+ intersectLink( myNodes1, myDist1, iE1, myFace2, link );
+ node1 = node2 = 0;
+ if ( myNbOnPlane2 == 2 )
+ findIntPointOnPlane( myNodes2, myDist2, link );
+ }
+ else if ( u2 > u1 + myTol )
+ {
+ intersectLink( myNodes2, myDist2, iE2, myFace1, link );
+ node1 = node2 = 0;
+ if ( myNbOnPlane1 == 2 )
+ findIntPointOnPlane( myNodes1, myDist1, link );
+ }
+ else // edges of two faces intersect the line at the same point
+ {
+ CutLink link2;
+ intersectLink( myNodes1, myDist1, iE1, myFace2, link );
+ intersectLink( myNodes2, myDist2, iE2, myFace1, link2 );
+ node1 = link2.Node1();
+ node2 = link2.Node2();
+
+ if ( !link.IntNode() && link2.IntNode() )
+ link.myIntNode = link2.myIntNode;
+
+ else if ( !link.IntNode() && !link2.IntNode() )
+ (gp_XYZ&)link.myIntNode = 0.5 * ( link.myIntNode + link2.myIntNode );
+
+ else if ( link.IntNode() && link2.IntNode() )
+ replaceIntNode( link.IntNode(), link2.IntNode() );
+ }
+ }
+
+ //================================================================================
+ /*!
+ * \brief Add intersections to a link collinear with the intersection line
+ */
+ //================================================================================
+
+ void Intersector::cutCollinearLink( const int iNotOnPlane1,
+ const std::vector< SMESH_NodeXYZ >& nodes1,
+ const SMDS_MeshElement* face2,
+ const CutLink& link1,
+ const CutLink& link2)
+
+ {
+ int iN1 = ( iNotOnPlane1 + 1 ) % 3;
+ int iN2 = ( iNotOnPlane1 + 2 ) % 3;
+ CutLink link( nodes1[ iN1 ].Node(), nodes1[ iN2 ].Node(), face2 );
+ if ( link1.myFace != face2 )
+ {
+ link.myIntNode = link1.myIntNode;
+ addLink( link );
+ }
+ if ( link2.myFace != face2 )
+ {
+ link.myIntNode = link2.myIntNode;
+ addLink( link );
+ }
+ }
+
+ //================================================================================
+ /*!
+ * \brief Choose indices on an axis-aligned plane
+ */
+ //================================================================================
+
+ void Intersector::setPlaneIndices( const gp_XYZ& planeNorm )
+ {
+ switch ( MaxIndex( planeNorm )) {
+ case 1: myInd1 = 2; myInd2 = 3; break;
+ case 2: myInd1 = 3; myInd2 = 1; break;
+ case 3: myInd1 = 1; myInd2 = 2; break;
+ }
+ }
+
+ //================================================================================
+ /*!
+ * \brief Intersect two faces
+ */
+ //================================================================================
+
+ void Intersector::Cut( const SMDS_MeshElement* face1,
+ const SMDS_MeshElement* face2,
+ const int nbCommonNodes)
+ {
+ myFace1 = face1;
+ myFace2 = face2;
+ myNodes1.assign( face1->begin_nodes(), face1->end_nodes() );
+ myNodes2.assign( face2->begin_nodes(), face2->end_nodes() );
+
+ const gp_XYZ& n1 = myNormals[ face1->GetID() ];
+ const gp_XYZ& n2 = myNormals[ face2->GetID() ];
+
+ // check if triangles intersect
+ int iNotOnPlane1, iNotOnPlane2;
+ const double d2 = -( n2 * myNodes2[0]);
+ if ( !isPlaneIntersected( n2, d2, myNodes1, myDist1, myNbOnPlane1, iNotOnPlane1 ))
+ return;
+ const double d1 = -( n1 * myNodes1[0]);
+ if ( !isPlaneIntersected( n1, d1, myNodes2, myDist2, myNbOnPlane2, iNotOnPlane2 ))
+ return;
+
+ if ( myNbOnPlane1 == 3 || myNbOnPlane2 == 3 )// triangles are co-planar
+ {
+ setPlaneIndices( myNbOnPlane1 == 3 ? n2 : n1 ); // choose indices on an axis-aligned plane
+ cutCoplanar();
+ }
+ else if ( nbCommonNodes < 2 ) // triangle planes intersect
+ {
+ gp_XYZ lineDir = n1 ^ n2; // intersection line
+
+ // check if intervals of intersections of triangles with lineDir overlap
+
+ double u1[2], u2 [2]; // parameters on lineDir of edge intersection points { minU, maxU }
+ int iE1[2], iE2[2]; // indices of edges
+ int iMaxCoo = MaxIndex( lineDir );
+ computeIntervals( myNodes1, myDist1, myNbOnPlane1, iMaxCoo, u1, iE1 );
+ computeIntervals( myNodes2, myDist2, myNbOnPlane2, iMaxCoo, u2, iE2 );
+ if ( u1[1] < u2[0] - myTol || u2[1] < u1[0] - myTol )
+ return; // intervals do not overlap
+
+ // make intersection nodes
+
+ const SMDS_MeshNode *l1n1, *l1n2, *l2n1, *l2n2;
+ CutLink link1; // intersection with smaller u on lineDir
+ computeIntPoint( u1[0], u2[0], iE1[0], iE2[0], link1, l1n1, l1n2 );
+ CutLink link2; // intersection with larger u on lineDir
+ computeIntPoint( -u1[1], -u2[1], iE1[1], iE2[1], link2, l2n1, l2n2 );
+
+ const CutFace& cf1 = myCutFaces.Added( CutFace( face1 ));
+ const CutFace& cf2 = myCutFaces.Added( CutFace( face2 ));
+
+ if ( coincide( link1.myIntNode, link2.myIntNode, myTol ))
+ {
+ // intersection is a point
+ if ( link1.IntNode() && link2.IntNode() )
+ replaceIntNode( link1.IntNode(), link2.IntNode() );
+
+ CutLink* link = link2.IntNode() ? &link2 : &link1;
+ if ( !link->IntNode() )
+ {
+ gp_XYZ p = 0.5 * ( link1.myIntNode + link2.myIntNode );
+ link->myIntNode.Set( createNode( p ));
+ }
+ if ( !link1.IntNode() ) link1.myIntNode = link2.myIntNode;
+ if ( !link2.IntNode() ) link2.myIntNode = link1.myIntNode;
+
+ cf1.AddPoint( link1, link2, myTol );
+ cf2.AddPoint( link1, link2, myTol );
+ }
+ else
+ {
+ // intersection is a line segment
+ if ( !link1.IntNode() )
+ link1.myIntNode.Set( createNode( link1.myIntNode ));
+ if ( !link2.IntNode() )
+ link2.myIntNode.Set( createNode( link2.myIntNode ));
+
+ cf1.AddEdge( link1, link2, face2, myNbOnPlane1, iNotOnPlane1 );
+ if ( l1n1 ) link1.Set( l1n1, l1n2, face2 );
+ if ( l2n1 ) link2.Set( l2n1, l2n2, face2 );
+ cf2.AddEdge( link1, link2, face1, myNbOnPlane2, iNotOnPlane2 );
+
+ // add intersections to a link collinear with the intersection line
+ if ( myNbOnPlane1 == 2 && ( link1.myFace != face2 || link2.myFace != face2 ))
+ cutCollinearLink( iNotOnPlane1, myNodes1, face2, link1, link2 );
+
+ if ( myNbOnPlane2 == 2 && ( link1.myFace != face1 || link2.myFace != face1 ))
+ cutCollinearLink( iNotOnPlane2, myNodes2, face1, link1, link2 );
+ }
+
+ addLink( link1 );
+ addLink( link2 );
+
+ } // non co-planar case
+
+ return;
+ }
+
+ //================================================================================
+ /*!
+ * \brief Intersect two 2D line segments
+ */
+ //================================================================================
+
+ bool Intersector::intersectEdgeEdge( const gp_XY s1p0, const gp_XY s1p1,
+ const gp_XY s2p0, const gp_XY s2p1,
+ double & t1, double & t2,
+ bool & isCollinear )
+ {
+ gp_XY u = s1p1 - s1p0;
+ gp_XY v = s2p1 - s2p0;
+ gp_XY w = s1p0 - s2p0;
+ double perpDotUV = u * gp_XY( -v.Y(), v.X() );
+ double perpDotVW = v * gp_XY( -w.Y(), w.X() );
+ double perpDotUW = u * gp_XY( -w.Y(), w.X() );
+ double u2 = u.SquareModulus();
+ double v2 = v.SquareModulus();
+ if ( u2 < myEps * myEps || v2 < myEps * myEps )
+ return false;
+ if ( perpDotUV * perpDotUV / u2 / v2 < 1e-6 ) // cos ^ 2
+ {
+ if ( !isCollinear )
+ return false; // no need in collinear solution
+ if ( perpDotUW * perpDotUW / u2 > myTol * myTol )
+ return false; // parallel
+
+ // collinear
+ gp_XY w2 = s1p1 - s2p0;
+ if ( Abs( v.X()) + Abs( u.X()) > Abs( v.Y()) + Abs( u.Y())) {
+ t1 = w.X() / v.X(); // params on segment 2
+ t2 = w2.X() / v.X();
+ }
+ else {
+ t1 = w.Y() / v.Y();
+ t2 = w2.Y() / v.Y();
+ }
+ if ( Max( t1,t2 ) <= 0 || Min( t1,t2 ) >= 1 )
+ return false; // no overlap
+ return true;
+ }
+ isCollinear = false;
+
+ t1 = perpDotVW / perpDotUV; // param on segment 1
+ if ( t1 < 0. || t1 > 1. )
+ return false; // intersection not within the segment
+
+ t2 = perpDotUW / perpDotUV; // param on segment 2
+ if ( t2 < 0. || t2 > 1. )
+ return false; // intersection not within the segment
+
+ return true;
+ }
+
+ //================================================================================
+ /*!
+ * \brief Intersect two edges of co-planar triangles
+ * \param [inout] iE1 - edge index of triangle 1
+ * \param [inout] iE2 - edge index of triangle 2
+ * \param [inout] intPoints - intersection points
+ * \param [inout] nbIntPoints - nb of found intersection points
+ */
+ //================================================================================
+
+ bool Intersector::intersectEdgeEdge( int iE1, int iE2, IntPoint2D& intPoint )
+ {
+ int i01 = iE1, i11 = ( iE1 + 1 ) % 3;
+ int i02 = iE2, i12 = ( iE2 + 1 ) % 3;
+ if (( !intPoint.myIsCollinear ) &&
+ ( myNodes1[ i01 ] == myNodes2[ i02 ] ||
+ myNodes1[ i01 ] == myNodes2[ i12 ] ||
+ myNodes1[ i11 ] == myNodes2[ i02 ] ||
+ myNodes1[ i11 ] == myNodes2[ i12 ] ))
+ return false;
+
+ // segment 1
+ gp_XY s1p0 = p2D( myNodes1[ i01 ]);
+ gp_XY s1p1 = p2D( myNodes1[ i11 ]);
+
+ // segment 2
+ gp_XY s2p0 = p2D( myNodes2[ i02 ]);
+ gp_XY s2p1 = p2D( myNodes2[ i12 ]);
+
+ double t1, t2;
+ if ( !intersectEdgeEdge( s1p0,s1p1, s2p0,s2p1, t1, t2, intPoint.myIsCollinear ))
+ return false;
+
+ intPoint.myEdgeInd[0] = iE1;
+ intPoint.myEdgeInd[1] = iE2;
+ intPoint.myU[0] = t1;
+ intPoint.myU[1] = t2;
+ (gp_XYZ&)intPoint.myNode = myNodes1[i01] * ( 1 - t1 ) + myNodes1[i11] * t1;
+
+ if ( intPoint.myIsCollinear )
+ return true;
+
+ // try to find existing node at intPoint.myNode
+
+ if ( myNodes1[ i01 ] == myNodes2[ i02 ] ||
+ myNodes1[ i01 ] == myNodes2[ i12 ] ||
+ myNodes1[ i11 ] == myNodes2[ i02 ] ||
+ myNodes1[ i11 ] == myNodes2[ i12 ] )
+ return false;
+
+ const double coincTol = myTol * 1e-3;
+
+ CutLink link1( myNodes1[i01].Node(), myNodes1[i11].Node(), myFace2 );
+ CutLink link2( myNodes2[i02].Node(), myNodes2[i12].Node(), myFace1 );
+
+ SMESH_NodeXYZ& n1 = myNodes1[ t1 < 0.5 ? i01 : i11 ];
+ bool same1 = coincide( n1, intPoint.myNode, coincTol );
+ if ( same1 )
+ {
+ link2.myIntNode = intPoint.myNode = n1;
+ addLink( link2 );
+ }
+ SMESH_NodeXYZ& n2 = myNodes2[ t2 < 0.5 ? i02 : i12 ];
+ bool same2 = coincide( n2, intPoint.myNode, coincTol );
+ if ( same2 )
+ {
+ link1.myIntNode = intPoint.myNode = n2;
+ addLink( link1 );
+ if ( same1 )
+ {
+ replaceIntNode( n1.Node(), n2.Node() );
+ return false;
+ }
+ return true;
+ }
+ if ( same1 )
+ return true;
+
+ link1.myIntNode = intPoint.myNode;
+ if ( findLink( link1 ))
+ {
+ intPoint.myNode = link2.myIntNode = link1.myIntNode;
+ addLink( link2 );
+ return true;
+ }
+
+ link2.myIntNode = intPoint.myNode;
+ if ( findLink( link2 ))
+ {
+ intPoint.myNode = link1.myIntNode = link2.myIntNode;
+ addLink( link1 );
+ return true;
+ }
+
+ for ( int is2nd = 0; is2nd < 2; ++is2nd )
+ {
+ const SMDS_MeshElement* f = is2nd ? myFace1 : myFace2;
+ const CutFace& cf = myCutFaces.Added( CutFace( is2nd ? myFace2 : myFace1 ));
+ for ( size_t i = 0; i < cf.myLinks.size(); ++i )
+ if ( cf.myLinks[i].myFace == f &&
+ //cf.myLinks[i].myIndex != EdgePart::_COPLANAR &&
+ coincide( intPoint.myNode, SMESH_NodeXYZ( cf.myLinks[i].myNode1 ), coincTol ))
+ {
+ intPoint.myNode.Set( cf.myLinks[i].myNode1 );
+ return true;
+ }
+ }
+
+ // make a new node
+
+ intPoint.myNode._node = createNode( intPoint.myNode );
+ link1.myIntNode = link2.myIntNode = intPoint.myNode;
+ addLink( link1 );
+ addLink( link2 );
+
+ return true;
+ }
+
+
+ //================================================================================
+ /*!
+ * \brief Check if a point is contained in a triangle
+ */
+ //================================================================================
+
+ bool Intersector::isPointInTriangle( const gp_XYZ& p, const std::vector< SMESH_NodeXYZ >& nodes )
+ {
+ double bc1, bc2;
+ SMESH_MeshAlgos::GetBarycentricCoords( p2D( p ),
+ p2D( nodes[0] ), p2D( nodes[1] ), p2D( nodes[2] ),
+ bc1, bc2 );
+ return ( 0. < bc1 && 0. < bc2 && bc1 + bc2 < 1. );
+ }
+
+ //================================================================================
+ /*!
+ * \brief Intersect two co-planar faces
+ */
+ //================================================================================
+
+ void Intersector::cutCoplanar()
+ {
+ // find intersections of edges
+
+ IntPoint2D intPoints[ 6 ];
+ int nbIntPoints = 0;
+ for ( int iE1 = 0; iE1 < 3; ++iE1 )
+ {
+ int maxNbIntPoints = nbIntPoints + 2;
+ for ( int iE2 = 0; iE2 < 3 && nbIntPoints < maxNbIntPoints; ++iE2 )
+ nbIntPoints += intersectEdgeEdge( iE1, iE2, intPoints[ nbIntPoints ]);
+ }
+ const int minNbOnPlane = Min( myNbOnPlane1, myNbOnPlane2 );
+
+ if ( nbIntPoints == 0 ) // no intersections of edges
+ {
+ bool is1in2;
+ if ( isPointInTriangle( myNodes1[0], myNodes2 )) // face2 includes face1
+ is1in2 = true;
+ else if ( isPointInTriangle( myNodes2[0], myNodes1 )) // face1 includes face2
+ is1in2 = false;
+ else
+ return;
+
+ // add edges of an inner triangle to an outer one
+
+ const std::vector< SMESH_NodeXYZ >& nodesIn = is1in2 ? myNodes1 : myNodes2;
+ const SMDS_MeshElement* faceOut = is1in2 ? myFace2 : myFace1;
+ const SMDS_MeshElement* faceIn = is1in2 ? myFace1 : myFace2;
+
+ const CutFace& outFace = myCutFaces.Added( CutFace( faceOut ));
+ CutLink link1( nodesIn.back().Node(), nodesIn.back().Node(), faceOut );
+ CutLink link2( nodesIn.back().Node(), nodesIn.back().Node(), faceOut );
+
+ link1.myIntNode = nodesIn.back();
+ for ( size_t i = 0; i < nodesIn.size(); ++i )
+ {
+ link2.myIntNode = nodesIn[ i ];
+ outFace.AddEdge( link1, link2, faceIn, minNbOnPlane );
+ link1.myIntNode = link2.myIntNode;
+ }
+ }
+ else
+ {
+ // add parts of edges to a triangle including them
+
+ CutLink link1, link2;
+ IntPoint2D ip0, ip1;
+ ip0.myU[0] = ip0.myU[1] = 0.;
+ ip1.myU[0] = ip1.myU[1] = 1.;
+ ip0.myEdgeInd[0] = ip0.myEdgeInd[1] = ip1.myEdgeInd[0] = ip1.myEdgeInd[1] = 0;
+
+ for ( int isFromFace1 = 0; isFromFace1 < 2; ++isFromFace1 )
+ {
+ const SMDS_MeshElement* faceTo = isFromFace1 ? myFace2 : myFace1;
+ const SMDS_MeshElement* faceFrom = isFromFace1 ? myFace1 : myFace2;
+ const std::vector< SMESH_NodeXYZ >& nodesTo = isFromFace1 ? myNodes2 : myNodes1;
+ const std::vector< SMESH_NodeXYZ >& nodesFrom = isFromFace1 ? myNodes1 : myNodes2;
+ const int iTo = isFromFace1 ? 1 : 0;
+ const int iFrom = isFromFace1 ? 0 : 1;
+ //const int nbOnPlaneFrom = isFromFace1 ? myNbOnPlane1 : myNbOnPlane2;
+
+ const CutFace* cutFaceTo = & myCutFaces.Added( CutFace( faceTo ));
+ // const CutFace* cutFaceFrom = 0;
+ // if ( nbOnPlaneFrom > minNbOnPlane )
+ // cutFaceFrom = & myCutFaces.Added( CutFace( faceTo ));
+
+ link1.myFace = link2.myFace = faceTo;
+
+ IntPoint2DCompare ipCompare( iFrom );
+ TIntPointPtrSet pointsOnEdge( ipCompare ); // IntPoint2D sorted by parameter on edge
+
+ for ( size_t iE = 0; iE < nodesFrom.size(); ++iE )
+ {
+ // get parts of an edge iE
+
+ ip0.myEdgeInd[ iTo ] = iE;
+ ip1.myEdgeInd[ iTo ] = ( iE + 1 ) % nodesFrom.size();
+ ip0.myNode = nodesFrom[ ip0.myEdgeInd[ iTo ]];
+ ip1.myNode = nodesFrom[ ip1.myEdgeInd[ iTo ]];
+
+ pointsOnEdge.clear();
+
+ for ( int iP = 0; iP < nbIntPoints; ++iP )
+ if ( intPoints[ iP ].myEdgeInd[ iFrom ] == iE )
+ pointsOnEdge.insert( & intPoints[ iP ] );
+
+ pointsOnEdge.insert( pointsOnEdge.begin(), & ip0 );
+ pointsOnEdge.insert( pointsOnEdge.end(), & ip1 );
+
+ // add edge parts to faceTo
+
+ TIntPointPtrSet::iterator ipIt = pointsOnEdge.begin() + 1;
+ for ( ; ipIt != pointsOnEdge.end(); ++ipIt )
+ {
+ const IntPoint2D* p1 = *(ipIt-1);
+ const IntPoint2D* p2 = *ipIt;
+ gp_XYZ middle = 0.5 * ( p1->myNode + p2->myNode );
+ if ( isPointInTriangle( middle, nodesTo ))
+ {
+ p1->InitLink( link1, iTo, ( p1 != & ip0 ) ? nodesTo : nodesFrom );
+ p2->InitLink( link2, iTo, ( p2 != & ip1 ) ? nodesTo : nodesFrom );
+ cutFaceTo->AddEdge( link1, link2, faceFrom, minNbOnPlane );
+
+ // if ( cutFaceFrom )
+ // {
+ // p1->InitLink( link1, iFrom, nodesFrom );
+ // p2->InitLink( link2, iFrom, nodesFrom );
+ // cutFaceTo->AddEdge( link1, link2, faceTo, minNbOnPlane );
+ // }
+ }
+ }
+ }
+ }
+ }
+ return;
+
+ } // Intersector::cutCoplanar()
+
+ //================================================================================
+ /*!
+ * \brief Intersect edges added to myCutFaces
+ */
+ //================================================================================
+
+ void Intersector::intersectNewEdges( const CutFace& cf )
+ {
+ IntPoint2D intPoint;
+
+ if ( cf.NbInternalEdges() < 2 )
+ return;
+
+ const gp_XYZ& faceNorm = myNormals[ cf.myInitFace->GetID() ];
+ setPlaneIndices( faceNorm ); // choose indices on an axis-aligned plane
+
+ size_t limit = cf.myLinks.size() * cf.myLinks.size() * 2;
+
+ for ( size_t i1 = 3; i1 < cf.myLinks.size(); ++i1 )
+ {
+ if ( !cf.myLinks[i1].IsInternal() )
+ continue;
+
+ myIntPointSet.clear();
+ for ( size_t i2 = i1 + 2; i2 < cf.myLinks.size(); ++i2 )
+ {
+ if ( !cf.myLinks[i2].IsInternal() )
+ continue;
+
+ // prepare to intersection
+ myFace1 = cf.myLinks[i1].myFace;
+ myNodes1[0] = cf.myLinks[i1].myNode1;
+ myNodes1[1] = cf.myLinks[i1].myNode2;
+ myFace2 = cf.myLinks[i2].myFace;
+ myNodes2[0] = cf.myLinks[i2].myNode1;
+ myNodes2[1] = cf.myLinks[i2].myNode2;
+
+ // intersect
+ intPoint.myIsCollinear = true; // to find collinear solutions
+ if ( intersectEdgeEdge( 0, 0, intPoint ))
+ {
+ if ( cf.myLinks[i1].IsSame( cf.myLinks[i2] )) // remove i2
+ {
+ cf.myLinks[i1].ReplaceCoplanar( cf.myLinks[i2] );
+ cf.myLinks.erase( cf.myLinks.begin() + i2, cf.myLinks.begin() + i2 + 2 );
+ --i2;
+ continue;
+ }
+ if ( !intPoint.myIsCollinear )
+ {
+ intPoint.myEdgeInd[1] = i2;
+ myIntPointSet.insert( intPoint );
+ }
+ else // if ( intPoint.myIsCollinear ) // overlapping edges
+ {
+ myIntPointSet.clear(); // to recompute
+
+ if ( intPoint.myU[0] > intPoint.myU[1] ) // orient in same direction
+ {
+ std::swap( intPoint.myU[0], intPoint.myU[1] );
+ std::swap( myNodes1[0], myNodes1[1] );
+ }
+ // replace _COPLANAR by _INTERNAL
+ cf.myLinks[i1].ReplaceCoplanar( cf.myLinks[i1+1] );
+ cf.myLinks[i2].ReplaceCoplanar( cf.myLinks[i2+1] );
+
+ if ( coincide( myNodes1[0], myNodes2[0], myTol ) &&
+ coincide( myNodes1[1], myNodes2[1], myTol ))
+ {
+ cf.myLinks.erase( cf.myLinks.begin() + i2, cf.myLinks.begin() + i2 + 2 );
+ --i2;
+ continue;
+ }
+
+ EdgePart common = cf.myLinks[i1];
+ common.ReplaceCoplanar( cf.myLinks[i2] );
+
+ const SMDS_MeshNode* n1 = myNodes1[0].Node(); // end nodes of an overlapping part
+ const SMDS_MeshNode* n2 = myNodes1[1].Node();
+ size_t i3 = cf.myLinks.size();
+
+ if ( myNodes1[0] != myNodes2[0] ) // a part before the overlapping one
+ {
+ if ( intPoint.myU[0] < 0 )
+ cf.myLinks[i1].Set( myNodes1[0].Node(), myNodes2[0].Node(),
+ cf.myLinks[i1].myFace, cf.myLinks[i1].myIndex );
+ else
+ cf.myLinks[i1].Set( myNodes2[0].Node(), myNodes1[0].Node(),
+ cf.myLinks[i2].myFace, cf.myLinks[i2].myIndex );
+
+ cf.myLinks[i1+1].Set( cf.myLinks[i1].myNode2,
+ cf.myLinks[i1].myNode1,
+ cf.myLinks[i1].myFace,
+ cf.myLinks[i1].myIndex);
+ n1 = cf.myLinks[i1].myNode2;
+ }
+ else
+ i3 = i1;
+
+ if ( myNodes1[1] != myNodes2[1] ) // a part after the overlapping one
+ {
+ if ( intPoint.myU[1] < 1 )
+ cf.myLinks[i2].Set( myNodes1[1].Node(), myNodes2[1].Node(),
+ cf.myLinks[i2].myFace, cf.myLinks[i2].myIndex );
+ else
+ cf.myLinks[i2].Set( myNodes2[1].Node(), myNodes1[1].Node(),
+ cf.myLinks[i1].myFace, cf.myLinks[i1].myIndex );
+
+ cf.myLinks[i2+1].Set( cf.myLinks[i2].myNode2,
+ cf.myLinks[i2].myNode1,
+ cf.myLinks[i2].myFace,
+ cf.myLinks[i2].myIndex);
+ n2 = cf.myLinks[i2].myNode1;
+ }
+ else
+ i3 = i2;
+
+ if ( i3 == cf.myLinks.size() )
+ cf.myLinks.resize( i3 + 2 );
+
+ cf.myLinks[i3].Set ( n1, n2, common.myFace, common.myIndex );
+ cf.myLinks[i3+1].Set( n2, n1, common.myFace, common.myIndex );
+
+ i2 = i1 + 1; // recheck modified i1
+ continue;
+ }
+ //else
+ // {
+ // // remember a new node
+ // CutLink link1( myNodes1[0].Node(), myNodes1[1].Node(), cf.myInitFace );
+ // CutLink link2( myNodes2[0].Node(), myNodes2[1].Node(), cf.myInitFace );
+ // link2.myIntNode = link1.myIntNode = intPoint.myNode;
+ // addLink( link1 );
+ // addLink( link2 );
+
+ // // split edges
+ // size_t i = cf.myLinks.size();
+ // if ( intPoint.myNode != cf.myLinks[ i1 ].myNode1 &&
+ // intPoint.myNode != cf.myLinks[ i1 ].myNode2 )
+ // {
+ // cf.myLinks.push_back( cf.myLinks[ i1 ]);
+ // cf.myLinks.push_back( cf.myLinks[ i1 + 1 ]);
+ // cf.myLinks[ i1 ].myNode2 = cf.myLinks[ i1 + 1 ].myNode1 = intPoint.Node();
+ // cf.myLinks[ i ].myNode1 = cf.myLinks[ i + 1 ].myNode2 = intPoint.Node();
+ // }
+ // if ( intPoint.myNode != cf.myLinks[ i2 ].myNode1 &&
+ // intPoint.myNode != cf.myLinks[ i2 ].myNode2 )
+ // {
+ // i = cf.myLinks.size();
+ // cf.myLinks.push_back( cf.myLinks[ i2 ]);
+ // cf.myLinks.push_back( cf.myLinks[ i2 + 1 ]);
+ // cf.myLinks[ i2 ].myNode2 = cf.myLinks[ i2 + 1 ].myNode1 = intPoint.Node();
+ // cf.myLinks[ i ].myNode1 = cf.myLinks[ i + 1 ].myNode2 = intPoint.Node();
+ // }
+ // }
+
+ } // if ( intersectEdgeEdge( 0, 0, intPoint ))
+
+ ++i2;
+ --limit;
+ }
+
+ // split i1 edge and all edges it intersects
+ // don't do it inside intersection loop in order not to loose direction of i1 edge
+ if ( !myIntPointSet.empty() )
+ {
+ cf.myLinks.reserve( cf.myLinks.size() + myIntPointSet.size() * 2 + 2 );
+
+ EdgePart* edge1 = &cf.myLinks[ i1 ];
+ EdgePart* twin1 = &cf.myLinks[ i1 + 1 ];
+
+ TIntPointSet::iterator ipIt = myIntPointSet.begin();
+ for ( ; ipIt != myIntPointSet.end(); ++ipIt ) // int points sorted on i1 edge
+ {
+ size_t i = cf.myLinks.size();
+ if ( ipIt->myNode != edge1->myNode1 &&
+ ipIt->myNode != edge1->myNode2 )
+ {
+ cf.myLinks.push_back( *edge1 );
+ cf.myLinks.push_back( *twin1 );
+ edge1->myNode2 = twin1->myNode1 = ipIt->Node();
+ cf.myLinks[ i ].myNode1 = cf.myLinks[ i + 1 ].myNode2 = ipIt->Node();
+ edge1 = & cf.myLinks[ i ];
+ twin1 = & cf.myLinks[ i + 1 ];
+ }
+ size_t i2 = ipIt->myEdgeInd[1];
+ if ( ipIt->myNode != cf.myLinks[ i2 ].myNode1 &&
+ ipIt->myNode != cf.myLinks[ i2 ].myNode2 )
+ {
+ i = cf.myLinks.size();
+ cf.myLinks.push_back( cf.myLinks[ i2 ]);
+ cf.myLinks.push_back( cf.myLinks[ i2 + 1 ]);
+ cf.myLinks[ i2 ].myNode2 = cf.myLinks[ i2 + 1 ].myNode1 = ipIt->Node();
+ cf.myLinks[ i ].myNode1 = cf.myLinks[ i + 1 ].myNode2 = ipIt->Node();
+ }
+ }
+ if ( cf.myLinks.size() >= limit )
+ throw SALOME_Exception( "Infinite loop in Intersector::intersectNewEdges()" );
+ }
+ ++i1; // each internal edge encounters twice
+ }
+ return;
+ }
+
+ //================================================================================
+ /*!
+ * \brief Split intersected faces
+ */
+ //================================================================================
+
+ void Intersector::MakeNewFaces( SMESH_MeshAlgos::TEPairVec& theNew2OldFaces,
+ SMESH_MeshAlgos::TNPairVec& theNew2OldNodes,
+ const double theSign)
+ {
+ // unmark all nodes except intersection ones
+
+ for ( SMDS_NodeIteratorPtr nIt = myMesh->nodesIterator(); nIt->more(); )
+ {
+ const SMDS_MeshNode* n = nIt->next();
+ if ( n->isMarked() && n->GetID()-1 < (int) theNew2OldNodes.size() )
+ n->setIsMarked( false );
+ }
+ // SMESH_MeshAlgos::MarkElems( myMesh->nodesIterator(), false );
+
+ TCutLinkMap::const_iterator cutLinksIt = myCutLinks.cbegin();
+ // for ( ; cutLinksIt != myCutLinks.cend(); ++cutLinksIt )
+ // {
+ // const CutLink& link = *cutLinksIt;
+ // if ( link.IntNode() && link.IntNode()->GetID()-1 < (int) theNew2OldNodes.size() )
+ // link.IntNode()->setIsMarked( true );
+ // }
+
+ // intersect edges added to myCutFaces
+
+ TCutFaceMap::const_iterator cutFacesIt = myCutFaces.cbegin();
+ for ( ; cutFacesIt != myCutFaces.cend(); ++cutFacesIt )
+ {
+ const CutFace& cf = *cutFacesIt;
+ cf.ReplaceNodes( myRemove2KeepNodes );
+ intersectNewEdges( cf );
+ }
+
+ // make new faces
+
+ EdgeLoopSet loopSet;
+ SMESH_MeshAlgos::Triangulate triangulator;
+ std::vector< EdgePart > cutOffLinks;
+ TLinkMap cutOffCoplanarLinks;
+ std::vector< const CutFace* > touchedFaces;
+ SMESH_MeshAlgos::TEPairVec::value_type new2OldTria;
+ CutFace cutFace(0);
+ std::vector< const SMDS_MeshNode* > nodes;
+ std::vector<const SMDS_MeshElement *> faces;
+
+ cutOffLinks.reserve( myCutFaces.Extent() * 2 );
+
+ for ( cutFacesIt = myCutFaces.cbegin(); cutFacesIt != myCutFaces.cend(); ++cutFacesIt )
+ {
+ const CutFace& cf = *cutFacesIt;
+ if ( !cf.IsCut() )
+ {
+ touchedFaces.push_back( & cf );
+ continue;
+ }
+
+ const gp_XYZ& normal = myNormals[ cf.myInitFace->GetID() ];
+
+ // form loops of new faces
+ cf.ReplaceNodes( myRemove2KeepNodes );
+ cf.MakeLoops( loopSet, normal );
+
+ // avoid loops that are not connected to boundary edges of cf.myInitFace
+ if ( cf.RemoveInternalLoops( loopSet ))
+ {
+ intersectNewEdges( cf );
+ cf.MakeLoops( loopSet, normal );
+ }
+ // erase loops that are cut off by face intersections
+ cf.CutOffLoops( loopSet, theSign, myNormals, cutOffLinks, cutOffCoplanarLinks );
+
+ int index = cf.myInitFace->GetID(); // index in theNew2OldFaces
+
+ const SMDS_MeshElement* tria;
+ for ( size_t iL = 0; iL < loopSet.myNbLoops; ++iL )
+ {
+ EdgeLoop& loop = loopSet.myLoops[ iL ];
+ if ( loop.myLinks.size() == 0 )
+ continue;
+
+ int nbTria = triangulator.GetTriangles( &loop, nodes );
+ int nbNodes = 3 * nbTria;
+ for ( int i = 0; i < nbNodes; i += 3 )
+ {
+ if ( nodes[i] == nodes[i+1] || nodes[i] == nodes[i+2] || nodes[i+1] == nodes[i+2] )
+ {
+#ifdef _DEBUG_
+ std::cerr << "BAD tria" << std::endl;
+ cf.Dump();
+#endif
+ continue;
+ }
+ if (!( tria = myMesh->FindFace( nodes[i], nodes[i+1], nodes[i+2] )))
+ tria = myMesh->AddFace( nodes[i], nodes[i+1], nodes[i+2] );
+ tria->setIsMarked( true ); // not to remove it
+
+ new2OldTria = std::make_pair( tria, theNew2OldFaces[ index ].second );
+ if ( tria->GetID() < (int)theNew2OldFaces.size() )
+ theNew2OldFaces[ tria->GetID() ] = new2OldTria;
+ else
+ theNew2OldFaces.push_back( new2OldTria );
+
+ if ( index == tria->GetID() )
+ index = 0; // do not remove tria
+ }
+ }
+ theNew2OldFaces[ index ].first = 0;
+ }
+
+ // remove split faces
+ for ( size_t id = 1; id < theNew2OldFaces.size(); ++id )
+ {
+ if ( theNew2OldFaces[id].first )
+ continue;
+ if ( const SMDS_MeshElement* f = myMesh->FindElement( id ))
+ myMesh->RemoveFreeElement( f );
+ }
+
+ // remove face connected to cut off parts of cf.myInitFace
+
+ nodes.resize(2);
+ for ( size_t i = 0; i < cutOffLinks.size(); ++i )
+ {
+ //break;
+ nodes[0] = cutOffLinks[i].myNode1;
+ nodes[1] = cutOffLinks[i].myNode2;
+
+ if ( nodes[0] != nodes[1] &&
+ myMesh->GetElementsByNodes( nodes, faces ))
+ {
+ if ( cutOffLinks[i].myFace &&
+ cutOffLinks[i].myIndex != EdgePart::_COPLANAR &&
+ faces.size() == 2 )
+ continue;
+ for ( size_t iF = 0; iF < faces.size(); ++iF )
+ {
+ int index = faces[iF]->GetID();
+ // if ( //faces[iF]->isMarked() || // kept part of cutFace
+ // !theNew2OldFaces[ index ].first ) // already removed
+ // continue;
+ cutFace.myInitFace = faces[iF];
+ // if ( myCutFaces.Contains( cutFace )) // keep cutting faces needed in CutOffLoops()
+ // {
+ // if ( !myCutFaces.Added( cutFace ).IsCut() )
+ // theNew2OldFaces[ index ].first = 0;
+ // continue;
+ // }
+ cutFace.myLinks.clear();
+ cutFace.InitLinks();
+ for ( size_t iL = 0; iL < cutFace.myLinks.size(); ++iL )
+ if ( !cutOffLinks[i].IsSame( cutFace.myLinks[ iL ]))
+ cutOffLinks.push_back( cutFace.myLinks[ iL ]);
+
+ theNew2OldFaces[ index ].first = 0;
+ myMesh->RemoveFreeElement( faces[iF] );
+ }
+ }
+ }
+
+ // replace nodes in touched faces
+
+ // treat touched faces
+ for ( size_t i = 0; i < touchedFaces.size(); ++i )
+ {
+ const CutFace& cf = *touchedFaces[i];
+
+ int index = cf.myInitFace->GetID(); // index in theNew2OldFaces
+ if ( !theNew2OldFaces[ index ].first )
+ continue; // already cut off
+
+ if ( !cf.ReplaceNodes( myRemove2KeepNodes ))
+ continue; // just keep as is
+
+ if ( cf.myLinks.size() == 3 )
+ {
+ const SMDS_MeshElement* tria = myMesh->AddFace( cf.myLinks[0].myNode1,
+ cf.myLinks[1].myNode1,
+ cf.myLinks[2].myNode1 );
+ new2OldTria = std::make_pair( tria, theNew2OldFaces[ index ].second );
+ if ( tria->GetID() < (int)theNew2OldFaces.size() )
+ theNew2OldFaces[ tria->GetID() ] = new2OldTria;
+ else
+ theNew2OldFaces.push_back( new2OldTria );
+ }
+ theNew2OldFaces[ index ].first = 0;
+ }
+
+
+ // add used new nodes to theNew2OldNodes
+ SMESH_MeshAlgos::TNPairVec::value_type new2OldNode;
+ new2OldNode.second = NULL;
+ for ( cutLinksIt = myCutLinks.cbegin(); cutLinksIt != myCutLinks.cend(); ++cutLinksIt )
+ {
+ const CutLink& link = *cutLinksIt;
+ if ( link.IntNode() ) // && link.IntNode()->NbInverseElements() > 0 )
+ {
+ new2OldNode.first = link.IntNode();
+ theNew2OldNodes.push_back( new2OldNode );
+ }
+ }
+
+ return;
+ }
+
+ //================================================================================
+ /*!
+ * \brief Debug
+ */
+ //================================================================================
+
+ void CutFace::Dump() const
+ {
+ std::cout << std::endl << "INI F " << myInitFace->GetID() << std::endl;
+ for ( size_t i = 0; i < myLinks.size(); ++i )
+ std::cout << "[" << i << "] ("
+ << char(( myLinks[i].IsInternal() ? 'j' : '0' ) + myLinks[i].myIndex ) << ") "
+ << myLinks[i].myNode1->GetID() << " - " << myLinks[i].myNode2->GetID()
+ << " " << ( myLinks[i].myFace ? 'F' : 'C' )
+ << ( myLinks[i].myFace ? myLinks[i].myFace->GetID() : 0 ) << " " << std::endl;
+ }
+
+ //================================================================================
+ /*!
+ * \brief Add an edge cutting this face
+ * \param [in] p1 - start point of the edge
+ * \param [in] p2 - end point of the edge
+ * \param [in] cutter - a face producing the added cut edge.
+ * \param [in] nbOnPlane - nb of triangle nodes lying on the plane of the cutter face
+ */
+ //================================================================================
+
+ void CutFace::AddEdge( const CutLink& p1,
+ const CutLink& p2,
+ const SMDS_MeshElement* cutterFace,
+ const int nbOnPlane,
+ const int iNotOnPlane) const
+ {
+ int iN[2] = { myInitFace->GetNodeIndex( p1.IntNode() ),
+ myInitFace->GetNodeIndex( p2.IntNode() ) };
+ if ( iN[0] >= 0 && iN[1] >= 0 )
+ {
+ // the cutting edge is a whole side
+ if (( cutterFace && nbOnPlane < 3 ) &&
+ !( cutterFace->GetNodeIndex( p1.IntNode() ) >= 0 &&
+ cutterFace->GetNodeIndex( p2.IntNode() ) >= 0 ))
+ {
+ InitLinks();
+ myLinks[ Abs( iN[0] - iN[1] ) == 1 ? Min( iN[0], iN[1] ) : 2 ].myFace = cutterFace;
+ }
+ return;
+ }
+
+ if ( p1.IntNode() == p2.IntNode() )
+ {
+ AddPoint( p1, p2, 1e-10 );
+ return;
+ }
+
+ InitLinks();
+
+ // cut side edges by a new one
+
+ int iEOnPlane = ( nbOnPlane == 2 ) ? ( iNotOnPlane + 1 ) % 3 : -1;
+
+ double dist[2];
+ for ( int is2nd = 0; is2nd < 2; ++is2nd )
+ {
+ const CutLink& p = is2nd ? p2 : p1;
+ dist[ is2nd ] = 0;
+ if ( iN[ is2nd ] >= 0 )
+ continue;
+
+ int iE = Max( iEOnPlane, myInitFace->GetNodeIndex( p.Node1() ));
+ if ( iE < 0 )
+ continue; // link of other face
+
+ SMESH_NodeXYZ n0 = myLinks[iE].myNode1;
+ dist[ is2nd ] = ( n0 - p.myIntNode ).SquareModulus();
+
+ for ( size_t i = 0; i < myLinks.size(); ++i )
+ if ( myLinks[i].myIndex == iE )
+ {
+ double d1 = n0.SquareDistance( myLinks[i].myNode1 );
+ if ( d1 < dist[ is2nd ] )
+ {
+ double d2 = n0.SquareDistance( myLinks[i].myNode2 );
+ if ( dist[ is2nd ] < d2 )
+ {
+ myLinks.push_back( myLinks[i] );
+ myLinks.back().myNode1 = myLinks[i].myNode2 = p.IntNode();
+ break;
+ }
+ }
+ }
+ }
+
+ int state = nbOnPlane == 3 ? EdgePart::_COPLANAR : EdgePart::_INTERNAL;
+
+ // look for an existing equal edge
+ if ( nbOnPlane == 2 )
+ {
+ SMESH_NodeXYZ n0 = myLinks[ iEOnPlane ].myNode1;
+ if ( iN[0] >= 0 ) dist[0] = ( n0 - p1.myIntNode ).SquareModulus();
+ if ( iN[1] >= 0 ) dist[1] = ( n0 - p2.myIntNode ).SquareModulus();
+ if ( dist[0] > dist[1] )
+ std::swap( dist[0], dist[1] );
+ for ( size_t i = 0; i < myLinks.size(); ++i )
+ {
+ if ( myLinks[i].myIndex != iEOnPlane )
+ continue;
+ gp_XYZ mid = 0.5 * ( SMESH_NodeXYZ( myLinks[i].myNode1 ) +
+ SMESH_NodeXYZ( myLinks[i].myNode2 ));
+ double d = ( n0 - mid ).SquareModulus();
+ if ( dist[0] < d && d < dist[1] )
+ myLinks[i].myFace = cutterFace;
+ }
+ return;
+ }
+ else
+ {
+ EdgePart newEdge; newEdge.Set( p1.IntNode(), p2.IntNode(), cutterFace, state );
+ for ( size_t i = 0; i < myLinks.size(); ++i )
+ {
+ if ( myLinks[i].IsSame( newEdge ))
+ {
+ // if ( !myLinks[i].IsInternal() )
+ // myLinks[ i ].myFace = cutterFace;
+ // else
+ myLinks[ i ].ReplaceCoplanar( newEdge );
+ myLinks[ i+1 ].ReplaceCoplanar( newEdge );
+ return;
+ }
+ i += myLinks[i].IsInternal();
+ }
+ }
+
+ size_t i = myLinks.size();
+ myLinks.resize( i + 2 );
+ myLinks[ i ].Set( p1.IntNode(), p2.IntNode(), cutterFace, state );
+ myLinks[ i+1 ].Set( p2.IntNode(), p1.IntNode(), cutterFace, state );
+ }
+
+ //================================================================================
+ /*!
+ * \brief Add a point cutting this face
+ */
+ //================================================================================
+
+ void CutFace::AddPoint( const CutLink& p1, const CutLink& p2, double tol ) const
+ {
+ if ( myInitFace->GetNodeIndex( p1.IntNode() ) >= 0 ||
+ myInitFace->GetNodeIndex( p2.IntNode() ) >= 0 )
+ return;
+
+ InitLinks();
+
+ const CutLink* link = &p1;
+ int iE = myInitFace->GetNodeIndex( link->Node1() );
+ if ( iE < 0 )
+ {
+ link = &p2;
+ iE = myInitFace->GetNodeIndex( link->Node1() );
+ }
+ if ( iE >= 0 )
+ {
+ // cut an existing edge by the point
+ SMESH_NodeXYZ n0 = link->Node1();
+ double d = ( n0 - link->myIntNode ).SquareModulus();
+
+ for ( size_t i = 0; i < myLinks.size(); ++i )
+ if ( myLinks[i].myIndex == iE )
+ {
+ double d1 = n0.SquareDistance( myLinks[i].myNode1 );
+ if ( d1 < d )
+ {
+ double d2 = n0.SquareDistance( myLinks[i].myNode2 );
+ if ( d < d2 )
+ {
+ myLinks.push_back( myLinks[i] );
+ myLinks.back().myNode1 = myLinks[i].myNode2 = link->IntNode();
+ return;
+ }
+ }
+ }
+ }
+ else // point is inside the triangle
+ {
+ // // check if a point already added
+ // for ( size_t i = 3; i < myLinks.size(); ++i )
+ // if ( myLinks[i].myNode1 == p1.IntNode() )
+ // return;
+
+ // // create a link between the point and the closest corner node
+ // const SMDS_MeshNode* closeNode = myLinks[0].myNode1;
+ // double minDist = p1.myIntNode.SquareDistance( closeNode );
+ // for ( int i = 1; i < 3; ++i )
+ // {
+ // double dist = p1.myIntNode.SquareDistance( myLinks[i].myNode1 );
+ // if ( dist < minDist )
+ // {
+ // minDist = dist;
+ // closeNode = myLinks[i].myNode1;
+ // }
+ // }
+ // if ( minDist > tol * tol )
+ // {
+ // size_t i = myLinks.size();
+ // myLinks.resize( i + 2 );
+ // myLinks[ i ].Set( p1.IntNode(), closeNode );
+ // myLinks[ i+1 ].Set( closeNode, p1.IntNode() );
+ // }
+ }
+ }
+
+ //================================================================================
+ /*!
+ * \brief Perform node replacement
+ */
+ //================================================================================
+
+ bool CutFace::ReplaceNodes( const TNNMap& theRm2KeepMap ) const
+ {
+ bool replaced = false;
+ for ( size_t i = 0; i < myLinks.size(); ++i )
+ {
+ while ( theRm2KeepMap.IsBound((Standard_Address) myLinks[i].myNode1 ))
+ replaced = ( myLinks[i].myNode1 = theRm2KeepMap((Standard_Address) myLinks[i].myNode1 ));
+
+ while ( theRm2KeepMap.IsBound((Standard_Address) myLinks[i].myNode2 ))
+ replaced = ( myLinks[i].myNode2 = theRm2KeepMap((Standard_Address) myLinks[i].myNode2 ));
+ }
+
+ //if ( replaced ) // remove equal links
+ {
+ for ( size_t i1 = 0; i1 < myLinks.size(); ++i1 )
+ {
+ if ( myLinks[i1].myNode1 == myLinks[i1].myNode2 )
+ {
+ myLinks.erase( myLinks.begin() + i1,
+ myLinks.begin() + i1 + 1 + myLinks[i1].IsInternal() );
+ --i1;
+ continue;
+ }
+ size_t i2 = i1 + 1 + myLinks[i1].IsInternal();
+ for ( ; i2 < myLinks.size(); ++i2 )
+ {
+ if ( !myLinks[i2].IsInternal() )
+ continue;
+ if ( myLinks[i1].IsSame( myLinks[i2] ))
+ {
+ myLinks[i1]. ReplaceCoplanar( myLinks[i2] );
+ if ( myLinks[i1].IsInternal() )
+ myLinks[i1+1].ReplaceCoplanar( myLinks[i2+1] );
+ if ( !myLinks[i1].myFace && myLinks[i2].myFace )
+ {
+ myLinks[i1]. myFace = myLinks[i2].myFace;
+ if ( myLinks[i1].IsInternal() )
+ myLinks[i1+1].myFace = myLinks[i2+1].myFace;
+ }
+ myLinks.erase( myLinks.begin() + i2,
+ myLinks.begin() + i2 + 2 );
+ --i2;
+ continue;
+ }
+ ++i2;
+ }
+ i1 += myLinks[i1].IsInternal();
+ }
+ }
+
+ return replaced;
+ }
+
+ //================================================================================
+ /*!
+ * \brief Initialize myLinks with edges of myInitFace
+ */
+ //================================================================================
+
+ void CutFace::InitLinks() const
+ {
+ if ( !myLinks.empty() ) return;
+
+ int nbNodes = myInitFace->NbNodes();
+ myLinks.reserve( nbNodes * 2 );
+ myLinks.resize( nbNodes );
+
+ for ( int i = 0; i < nbNodes; ++i )
+ {
+ const SMDS_MeshNode* n1 = myInitFace->GetNode( i );
+ const SMDS_MeshNode* n2 = myInitFace->GetNodeWrap( i + 1);
+ myLinks[i].Set( n1, n2, 0, i );
+ }
+ }
+
+ //================================================================================
+ /*!
+ * \brief Return number of internal edges
+ */
+ //================================================================================
+
+ int CutFace::NbInternalEdges() const
+ {
+ int nb = 0;
+ for ( size_t i = 3; i < myLinks.size(); ++i )
+ nb += myLinks[i].IsInternal();
+
+ return nb / 2; // each internal edge encounters twice
+ }
+
+ //================================================================================
+ /*!
+ * \brief Remove loops that are not connected to boundary edges of myFace by
+ * adding edges connecting these loops to the boundary
+ */
+ //================================================================================
+
+ bool CutFace::RemoveInternalLoops( EdgeLoopSet& theLoops ) const
+ {
+ size_t nbReachedLoops = 0;
+
+ // count loops including boundary EdgeParts
+ for ( size_t iL = 0; iL < theLoops.myNbLoops; ++iL )
+ {
+ EdgeLoop& loop = theLoops.myLoops[ iL ];
+
+ for ( size_t iE = 0; iE < loop.myLinks.size(); ++iE )
+ if ( !loop.myLinks[ iE ]->IsInternal() )
+ {
+ nbReachedLoops += loop.SetConnected();
+ break;
+ }
+ }
+ if ( nbReachedLoops == theLoops.myNbLoops )
+ return false; // no unreachable loops
+
+
+ // try to reach all loops by propagating via internal edges shared by loops
+ size_t prevNbReached;
+ do
+ {
+ prevNbReached = nbReachedLoops;
+
+ for ( size_t iL = 0; iL < theLoops.myNbLoops; ++iL )
+ {
+ EdgeLoop& loop = theLoops.myLoops[ iL ];
+ if ( !loop.myIsBndConnected )
+ continue;
+
+ for ( size_t iE = 0; iE < loop.myLinks.size(); ++iE )
+ if ( loop.myLinks[ iE ]->IsInternal() )
+ {
+ const EdgePart* twinEdge = getTwin( loop.myLinks[ iE ]);
+ EdgeLoop* loop2 = theLoops.GetLoopOf( twinEdge );
+ if ( loop2->SetConnected() && ++nbReachedLoops == theLoops.myNbLoops )
+ return false; // no unreachable loops
+ }
+ }
+ }
+ while ( prevNbReached < nbReachedLoops );
+
+
+ // add links connecting internal loops with the boundary ones
+
+ for ( size_t iL = 0; iL < theLoops.myNbLoops; ++iL )
+ {
+ EdgeLoop& loop = theLoops.myLoops[ iL ];
+ if ( loop.myIsBndConnected )
+ continue;
+
+ // find a pair of closest nodes
+ const SMDS_MeshNode *closestNode1, *closestNode2;
+ double minDist = 1e100;
+ for ( size_t iE = 0; iE < loop.myLinks.size(); ++iE )
+ {
+ SMESH_NodeXYZ n1 = loop.myLinks[ iE ]->myNode1;
+
+ for ( size_t i = 0; i < myLinks.size(); ++i )
+ {
+ if ( !loop.Contains( myLinks[i].myNode1 ))
+ {
+ double dist = n1.SquareDistance( myLinks[i].myNode1 );
+ if ( dist < minDist )
+ {
+ minDist = dist;
+ closestNode1 = loop.myLinks[ iE ]->myNode1;
+ closestNode2 = myLinks[i].myNode1;
+ }
+ }
+ if ( myLinks[i].IsInternal() )
+ ++i;
+ }
+ }
+
+ size_t i = myLinks.size();
+ myLinks.resize( i + 2 );
+ myLinks[ i ].Set( closestNode1, closestNode2 );
+ myLinks[ i+1 ].Set( closestNode2, closestNode1 );
+ }
+
+ return true;
+ }
+
+ //================================================================================
+ /*!
+ * \brief Return equal reversed edge
+ */
+ //================================================================================
+
+ EdgePart* CutFace::getTwin( const EdgePart* edge ) const
+ {
+ size_t i = edge - & myLinks[0];
+
+ if ( i > 2 && myLinks[ i-1 ].IsTwin( *edge ))
+ return & myLinks[ i-1 ];
+
+ if ( i+1 < myLinks.size() &&
+ myLinks[ i+1 ].IsTwin( *edge ))
+ return & myLinks[ i+1 ];
+
+ return 0;
+ }
+
+ //================================================================================
+ /*!
+ * \brief Fill loops of edges
+ */
+ //================================================================================
+
+ void CutFace::MakeLoops( EdgeLoopSet& theLoops, const gp_XYZ& theFaceNorm ) const
+ {
+ theLoops.Init( myLinks );
+
+ if ( myLinks.size() == 3 )
+ {
+ theLoops.AddNewLoop();
+ theLoops.AddEdge( myLinks[0] );
+ theLoops.AddEdge( myLinks[1] );
+ theLoops.AddEdge( myLinks[2] );
+ return;
+ }
+
+ while ( !theLoops.AllEdgesUsed() )
+ {
+ theLoops.AddNewLoop();
+
+ // add 1st edge to a new loop
+ size_t i1;
+ for ( i1 = theLoops.myNbLoops - 1; i1 < myLinks.size(); ++i1 )
+ if ( theLoops.AddEdge( myLinks[i1] ))
+ break;
+
+ EdgePart* lastEdge = & myLinks[ i1 ];
+ EdgePart* twinEdge = getTwin( lastEdge );
+ const SMDS_MeshNode* firstNode = lastEdge->myNode1;
+ const SMDS_MeshNode* lastNode = lastEdge->myNode2;
+
+ do // add the rest edges
+ {
+ theLoops.myCandidates.clear(); // edges starting at lastNode
+ int nbInternal = 0;
+
+ // find candidate edges
+ for ( size_t i = i1 + 1; i < myLinks.size(); ++i )
+ if ( myLinks[ i ].myNode1 == lastNode &&
+ &myLinks[ i ] != twinEdge &&
+ !theLoops.myIsUsedEdge[ i ])
+ {
+ theLoops.myCandidates.push_back( & myLinks[ i ]);
+ nbInternal += myLinks[ i ].IsInternal();
+ }
+
+ // choose among candidates
+ if ( theLoops.myCandidates.size() == 0 )
+ {
+ theLoops.GetLoopOf( lastEdge )->myHasPending = true;
+ lastEdge = twinEdge;
+ }
+ else if ( theLoops.myCandidates.size() == 1 )
+ {
+ lastEdge = theLoops.myCandidates[0];
+ }
+ else if ( nbInternal == 1 && !lastEdge->IsInternal() )
+ {
+ lastEdge = theLoops.myCandidates[ !theLoops.myCandidates[0]->IsInternal() ];
+ }
+ else
+ {
+ gp_Vec lastVec = *lastEdge;
+ double maxAngle = -2 * M_PI;
+ for ( size_t i = 0; i < theLoops.myCandidates.size(); ++i )
+ {
+ double angle = lastVec.AngleWithRef( *theLoops.myCandidates[i], theFaceNorm );
+ if ( angle > maxAngle )
+ {
+ maxAngle = angle;
+ lastEdge = theLoops.myCandidates[i];
+ }
+ }
+ }
+ theLoops.AddEdge( *lastEdge );
+ lastNode = lastEdge->myNode2;
+ twinEdge = getTwin( lastEdge );
+ }
+ while ( lastNode != firstNode );
+
+ } // while ( !theLoops.AllEdgesUsed() )
+
+ return;
+ }
+
+ //================================================================================
+ /*!
+ * \brief Erase loops that are cut off by face intersections
+ */
+ //================================================================================
+
+ void CutFace::CutOffLoops( EdgeLoopSet& theLoops,
+ const double theSign,
+ const std::vector< gp_XYZ >& theNormals,
+ std::vector< EdgePart >& theCutOffLinks,
+ TLinkMap& theCutOffCoplanarLinks) const
+ {
+ EdgePart sideEdge;
+ for ( size_t i = 0; i < myLinks.size(); ++i )
+ {
+ if ( !myLinks[i].myFace )
+ continue;
+
+ EdgeLoop* loop = theLoops.GetLoopOf( & myLinks[i] );
+ if ( !loop || loop->myLinks.empty() || loop->myHasPending )
+ continue;
+
+ bool toErase, isCoplanar = ( myLinks[i].myIndex == EdgePart::_COPLANAR );
+
+ gp_Vec iniNorm = theNormals[ myInitFace->GetID() ];
+ if ( isCoplanar )
+ {
+ toErase = ( myLinks[i].myFace->GetID() > myInitFace->GetID() );
+
+ const EdgePart* twin = getTwin( & myLinks[i] );
+ if ( !twin || twin->myFace == myLinks[i].myFace )
+ {
+ // only one co-planar face includes myLinks[i]
+ gp_Vec inFaceDir = iniNorm ^ myLinks[i];
+ gp_XYZ edgePnt = SMESH_NodeXYZ( myLinks[i].myNode1 );
+ for ( int iN = 0; iN < 3; ++iN )
+ {
+ gp_Vec inCutFaceDir = ( SMESH_NodeXYZ( myLinks[i].myFace->GetNode( iN )) - edgePnt );
+ if ( inCutFaceDir * inFaceDir < 0 )
+ {
+ toErase = false;
+ break;
+ }
+ }
+ }
+ }
+ else
+ {
+ gp_Vec cutNorm = theNormals[ myLinks[i].myFace->GetID() ];
+ gp_Vec inFaceDir = iniNorm ^ myLinks[i];
+
+ toErase = inFaceDir * cutNorm * theSign < 0;
+ if ( !toErase )
+ {
+ // erase a neighboring loop
+ loop = 0;
+ if ( const EdgePart* twin = getTwin( & myLinks[i] ))
+ loop = theLoops.GetLoopOf( twin );
+ toErase = ( loop && !loop->myLinks.empty() );
+ }
+ }
+
+ if ( toErase )
+ {
+ if ( !isCoplanar )
+ {
+ // remember whole sides of myInitFace that are cut off
+ for ( size_t iE = 0; iE < loop->myLinks.size(); ++iE )
+ {
+ if ( !loop->myLinks[ iE ]->myFace &&
+ !loop->myLinks[ iE ]->IsInternal() )// &&
+ // !loop->myLinks[ iE ]->myNode1->isMarked() && // cut nodes are marked
+ // !loop->myLinks[ iE ]->myNode2->isMarked() )
+ {
+ int i = loop->myLinks[ iE ]->myIndex;
+ sideEdge.Set( myInitFace->GetNode ( i ),
+ myInitFace->GetNodeWrap( i+1 ));
+ theCutOffLinks.push_back( sideEdge );
+
+ if ( !sideEdge.IsSame( *loop->myLinks[ iE ] )) // nodes replaced
+ {
+ theCutOffLinks.push_back( *loop->myLinks[ iE ] );
+ }
+ }
+ else if ( IsCoplanar( loop->myLinks[ iE ]))
+ {
+ // propagate erasure to a co-planar face
+ theCutOffLinks.push_back( *loop->myLinks[ iE ]);
+ }
+ else if ( loop->myLinks[ iE ]->myFace &&
+ loop->myLinks[ iE ]->IsInternal() )
+ theCutOffLinks.push_back( *loop->myLinks[ iE ]);
+ }
+
+ // clear the loop
+ theLoops.Erase( loop );
+ }
+ }
+ }
+ return;
+ }
+
+ //================================================================================
+ /*!
+ * \brief Check if the face has cut edges
+ */
+ //================================================================================
+
+ bool CutFace::IsCut() const
+ {
+ if ( myLinks.size() > 3 )
+ return true;
+
+ if ( myLinks.size() == 3 )
+ for ( size_t i = 0; i < 3; ++i )
+ if ( myLinks[i].myFace )
+ return true;
+
+ return false;
+ }
+
+ //================================================================================
+ /*!
+ * \brief Check if an edge is produced by a co-planar cut
+ */
+ //================================================================================
+
+ bool CutFace::IsCoplanar( const EdgePart* edge ) const
+ {
+ if ( edge->myIndex == EdgePart::_COPLANAR )
+ {
+ const EdgePart* twin = getTwin( edge );
+ return ( !twin || twin->myIndex == EdgePart::_COPLANAR );
+ }
+ return false;
+ }
+
+ //================================================================================
+ /*!
+ * \brief Replace _COPLANAR cut edge by _INTERNAL oe vice versa
+ */
+ //================================================================================
+
+ bool EdgePart::ReplaceCoplanar( const EdgePart& e )
+ {
+ if ( myIndex + e.myIndex == _COPLANAR + _INTERNAL )
+ {
+ //check if the faces are connected
+ int nbCommonNodes = SMESH_MeshAlgos::GetCommonNodes( e.myFace, myFace ).size();
+ bool toReplace = (( myIndex == _INTERNAL && nbCommonNodes > 1 ) ||
+ ( myIndex == _COPLANAR && nbCommonNodes < 2 ));
+ if ( toReplace )
+ {
+ myIndex = e.myIndex;
+ myFace = e.myFace;
+ return true;
+ }
+ }
+ return false;
+ }
+
+} // namespace
+
+//================================================================================
+/*!
+ * \brief Create an offsetMesh of given faces
+ * \param [in] faceIt - the input faces
+ * \param [out] new2OldFaces - history of faces
+ * \param [out] new2OldNodes - history of nodes
+ * \return SMDS_Mesh* - the new offset mesh, a caller should delete
+ */
+//================================================================================
+
+SMDS_Mesh* SMESH_MeshAlgos::MakeOffset( SMDS_ElemIteratorPtr theFaceIt,
+ SMDS_Mesh& theSrcMesh,
+ const double theOffset,
+ const bool theFixIntersections,
+ TEPairVec& theNew2OldFaces,
+ TNPairVec& theNew2OldNodes)
+{
+ SMDS_Mesh* newMesh = new SMDS_Mesh;
+ theNew2OldFaces.clear();
+ theNew2OldNodes.clear();
+ theNew2OldFaces.push_back
+ ( std::make_pair(( const SMDS_MeshElement*) 0,
+ ( const SMDS_MeshElement*) 0)); // to have index == face->GetID()
+
+ if ( theSrcMesh.GetMeshInfo().NbFaces( ORDER_QUADRATIC ) > 0 )
+ throw SALOME_Exception( "Offset of quadratic mesh not supported" );
+ if ( theSrcMesh.GetMeshInfo().NbFaces() > theSrcMesh.GetMeshInfo().NbTriangles() )
+ throw SALOME_Exception( "Offset of non-triangular mesh not supported" );
+
+ // copy input faces to the newMesh keeping IDs of nodes
+
+ double minNodeDist = 1e100;
+
+ std::vector< const SMDS_MeshNode* > nodes;
+ while ( theFaceIt->more() )
+ {
+ const SMDS_MeshElement* face = theFaceIt->next();
+ if ( face->GetType() != SMDSAbs_Face ) continue;
+
+ // copy nodes
+ nodes.assign( face->begin_nodes(), face->end_nodes() );
+ for ( size_t i = 0; i < nodes.size(); ++i )
+ {
+ const SMDS_MeshNode* newNode = newMesh->FindNode( nodes[i]->GetID() );
+ if ( !newNode )
+ {
+ SMESH_NodeXYZ xyz( nodes[i] );
+ newNode = newMesh->AddNodeWithID( xyz.X(), xyz.Y(), xyz.Z(), nodes[i]->GetID() );
+ theNew2OldNodes.push_back( std::make_pair( newNode, nodes[i] ));
+ nodes[i] = newNode;
+ }
+ }
+ const SMDS_MeshElement* newFace = 0;
+ switch ( face->GetEntityType() )
+ {
+ case SMDSEntity_Triangle:
+ newFace = newMesh->AddFace( nodes[0],nodes[1],nodes[2] );
+ break;
+ case SMDSEntity_Quad_Triangle:
+ newFace = newMesh->AddFace( nodes[0],nodes[1],nodes[2],
+ nodes[3],nodes[4],nodes[5] );
+ break;
+ case SMDSEntity_BiQuad_Triangle:
+ newFace = newMesh->AddFace( nodes[0],nodes[1],nodes[2],
+ nodes[3],nodes[4],nodes[5],nodes[6] );
+ break;
+ case SMDSEntity_Quadrangle:
+ newFace = newMesh->AddFace( nodes[0],nodes[1],nodes[2],nodes[3] );
+ break;
+ case SMDSEntity_Quad_Quadrangle:
+ newFace = newMesh->AddFace( nodes[0],nodes[1],nodes[2],nodes[3],
+ nodes[4],nodes[5],nodes[6],nodes[7] );
+ break;
+ case SMDSEntity_BiQuad_Quadrangle:
+ newFace = newMesh->AddFace( nodes[0],nodes[1],nodes[2],nodes[3],nodes[4],
+ nodes[5],nodes[6],nodes[7],nodes[8] );
+ break;
+ case SMDSEntity_Polygon:
+ newFace = newMesh->AddPolygonalFace( nodes );
+ break;
+ case SMDSEntity_Quad_Polygon:
+ newFace = newMesh->AddQuadPolygonalFace( nodes );
+ break;
+ default:
+ continue;
+ }
+ theNew2OldFaces.push_back( std::make_pair( newFace, face ));
+
+ SMESH_NodeXYZ pPrev = nodes.back(), p;
+ for ( size_t i = 0; i < nodes.size(); ++i )
+ {
+ p.Set( nodes[i] );
+ double dist = ( pPrev - p ).SquareModulus();
+ if ( dist > std::numeric_limits<double>::min() )
+ minNodeDist = dist;
+ pPrev = p;
+ }
+ } // while ( faceIt->more() )
+
+
+ // compute normals to faces
+ std::vector< gp_XYZ > normals( theNew2OldFaces.size() );
+ for ( size_t i = 1; i < normals.size(); ++i )
+ {
+ if ( !SMESH_MeshAlgos::FaceNormal( theNew2OldFaces[i].second, normals[i] ))
+ normals[i].SetCoord( 0,0,0 ); // TODO find norm by neighbors
+ }
+
+ const double tol = 1e-3 * Sqrt( minNodeDist );
+ const double sign = ( theOffset < 0 ? -1 : +1 );
+
+ // translate new nodes by normal to input faces
+ gp_XYZ newXYZ;
+ std::vector< const SMDS_MeshNode* > multiNormalNodes;
+ for ( size_t i = 0; i < theNew2OldNodes.size(); ++i )
+ {
+ const SMDS_MeshNode* newNode = theNew2OldNodes[i].first;
+
+ if ( getTranslatedPosition( newNode, theOffset, tol*10., sign, normals, theSrcMesh, newXYZ ))
+ newMesh->MoveNode( newNode, newXYZ.X(), newXYZ.Y(), newXYZ.Z() );
+ else
+ multiNormalNodes.push_back( newNode );
+ }
+ // make multi-normal translation
+ std::vector< SMESH_NodeXYZ > multiPos(10);
+ for ( size_t i = 0; i < multiNormalNodes.size(); ++i )
+ {
+ const SMDS_MeshNode* newNode = multiNormalNodes[i];
+ newNode->setIsMarked( true );
+ SMESH_NodeXYZ oldXYZ = newNode;
+ multiPos.clear();
+ for ( SMDS_ElemIteratorPtr fIt = newNode->GetInverseElementIterator(); fIt->more(); )
+ {
+ const SMDS_MeshElement* newFace = fIt->next();
+ const int faceIndex = newFace->GetID();
+ const gp_XYZ& oldNorm = normals[ faceIndex ];
+ const gp_XYZ newXYZ = oldXYZ + oldNorm * theOffset;
+ if ( multiPos.empty() )
+ {
+ newMesh->MoveNode( newNode, newXYZ.X(), newXYZ.Y(), newXYZ.Z() );
+ multiPos.emplace_back( newNode );
+ }
+ else
+ {
+ newNode = 0;
+ for ( size_t iP = 0; iP < multiPos.size() && !newNode; ++iP )
+ if (( multiPos[iP] - newXYZ ).SquareModulus() < tol * tol )
+ newNode = multiPos[iP].Node();
+ if ( !newNode )
+ {
+ newNode = newMesh->AddNode( newXYZ.X(), newXYZ.Y(), newXYZ.Z() );
+ newNode->setIsMarked( true );
+ theNew2OldNodes.push_back( std::make_pair( newNode, theNew2OldNodes[i].second ));
+ multiPos.emplace_back( newNode );
+ }
+ }
+ if ( newNode != oldXYZ.Node() )
+ {
+ nodes.assign( newFace->begin_nodes(), newFace->end_nodes() );
+ nodes[ newFace->GetNodeIndex( oldXYZ.Node() )] = newNode;
+ newMesh->ChangeElementNodes( newFace, & nodes[0], nodes.size() );
+ }
+ }
+ }
+
+ if ( !theFixIntersections )
+ return newMesh;
+
+
+ // remove new faces around concave nodes (they are marked) if the faces are inverted
+ gp_XYZ faceNorm;
+ for ( size_t i = 0; i < theNew2OldNodes.size(); ++i )
+ {
+ const SMDS_MeshNode* newNode = theNew2OldNodes[i].first;
+ //const SMDS_MeshNode* oldNode = theNew2OldNodes[i].second;
+ if ( newNode->isMarked() )
+ {
+ //gp_XYZ moveVec = sign * ( SMESH_NodeXYZ( newNode ) - SMESH_NodeXYZ( oldNode ));
+
+ //bool haveInverseFace = false;
+ for ( SMDS_ElemIteratorPtr fIt = newNode->GetInverseElementIterator(); fIt->more(); )
+ {
+ const SMDS_MeshElement* newFace = fIt->next();
+ const int faceIndex = newFace->GetID();
+ const gp_XYZ& oldNorm = normals[ faceIndex ];
+ if ( !SMESH_MeshAlgos::FaceNormal( newFace, faceNorm, /*normalize=*/false ) ||
+ //faceNorm * moveVec < 0 )
+ faceNorm * oldNorm < 0 )
+ {
+ //haveInverseFace = true;
+ theNew2OldFaces[ faceIndex ].first = 0;
+ newMesh->RemoveFreeElement( newFace );
+ //break;
+ }
+ }
+ // if ( haveInverseFace )
+ // {
+ // newMesh->MoveNode( newNode, oldNode->X(), oldNode->Y(), oldNode->Z() );
+
+ // for ( SMDS_ElemIteratorPtr fIt = newNode->GetInverseElementIterator(); fIt->more(); )
+ // {
+ // const SMDS_MeshElement* newFace = fIt->next();
+ // if ( !SMESH_MeshAlgos::FaceNormal( newFace, normals[ newFace->GetID() ] ))
+ // normals[i].SetCoord( 0,0,0 ); // TODO find norm by neighbors
+ // }
+ // }
+ }
+ // mark all new nodes located closer than theOffset from theSrcMesh
+ }
+
+ // ==================================================
+ // find self-intersections of new faces and fix them
+ // ==================================================
+
+ std::unique_ptr< SMESH_ElementSearcher > fSearcher
+ ( SMESH_MeshAlgos::GetElementSearcher( *newMesh, tol ));
+
+ Intersector intersector( newMesh, tol, normals );
+
+ std::vector< const SMDS_MeshElement* > closeFaces;
+ std::vector< const SMDS_MeshNode* > faceNodes;
+ Bnd_B3d faceBox;
+ for ( size_t iF = 1; iF < theNew2OldFaces.size(); ++iF )
+ {
+ const SMDS_MeshElement* newFace = theNew2OldFaces[iF].first;
+ if ( !newFace ) continue;
+ faceNodes.assign( newFace->begin_nodes(), newFace->end_nodes() );
+
+ bool isConcaveNode1 = false;
+ for ( size_t iN = 0; iN < faceNodes.size() && !isConcaveNode1; ++iN )
+ isConcaveNode1 = faceNodes[iN]->isMarked();
+
+ // get faces close to a newFace
+ closeFaces.clear();
+ faceBox.Clear();
+ for ( size_t i = 0; i < faceNodes.size(); ++i )
+ faceBox.Add( SMESH_NodeXYZ( faceNodes[i] ));
+ faceBox.Enlarge( tol );
+
+ fSearcher->GetElementsInBox( faceBox, SMDSAbs_Face, closeFaces );
+
+ // intersect the newFace with closeFaces
+
+ for ( size_t i = 0; i < closeFaces.size(); ++i )
+ {
+ const SMDS_MeshElement* closeFace = closeFaces[i];
+ if ( closeFace->GetID() <= newFace->GetID() )
+ continue; // this pair already treated
+
+ // do not intersect connected faces if they have no concave nodes
+ int nbCommonNodes = 0;
+ for ( size_t iN = 0; iN < faceNodes.size(); ++iN )
+ nbCommonNodes += ( closeFace->GetNodeIndex( faceNodes[iN] ) >= 0 );
+
+ if ( !isConcaveNode1 )
+ {
+ bool isConcaveNode2 = false;
+ for ( SMDS_ElemIteratorPtr nIt = closeFace->nodesIterator(); nIt->more(); )
+ if (( isConcaveNode2 = nIt->next()->isMarked() ))
+ break;
+
+ if ( !isConcaveNode2 && nbCommonNodes > 0 )
+ continue;
+ }
+
+ intersector.Cut( newFace, closeFace, nbCommonNodes );
+ }
+ }
+ intersector.MakeNewFaces( theNew2OldFaces, theNew2OldNodes, sign );
+
+ return newMesh;
+}